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Abstract: 
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considered in HMSS’s base model. The necessary modifications, as expressed in terms of 
empirical caveats, are substantial to derive unbiased market efficiency measures for Xetra in 
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1 Introduction

The enormous progress in computer and telecommunication technologies accompanied

by the dramatic decline in their development costs as observed over the last few decades

have promoted and still keep on promoting the diffusion of electronic open limit order

book (LOB) markets across the world. By the end of the nineties Domowitz and Steil

(1999) not only observe that many emerging markets apply the LOB design right from

the very beginning but their analysis also reveals that a significant number of already

existing markets undergo restructuring away from traditional trading floors to pure or-

der driven or hybrid trading systems.1 To underline this development, they report that

in the exemplary time span from 1997 to 1998 a considerable number of sixteen stock

exchanges, including as prominent examples London, Tokyo and Toronto, conduct such

a transformation. A recent study provided by Jain (2003) shows that nowadays the over-

whelming majority of over 80% of the world’s exchanges with a market capitalization

of equal dimension operate some sort of electronic trading mechanism with automatic

execution.2

Unlike traditional exchange mechanisms open LOB markets operate without the in-

termediation of dealers, who participate in every trade in quote driven markets, or bro-

kers, who are responsible for finding liquidity in brokered markets. Instead LOB mar-

kets use rule-based order matching systems that are implemented electronically and in

which liquidity supply and demand are provided by traders themselves instead of deal-

ers or brokers: patient traders offer liquidity by indicating the conditions under which

they will trade via the submission of instructions to buy (sell) a given number of shares

at the best price possible but not to pay (demand) more (less) than a limit price (limit

order traders). Impatient traders directly demand liquidity by accepting the limit order

traders’ conditions via the submission of market orders that trade a given number of

shares at the best price available (market order traders). The limit orders are queued

1Hybrid trading systems obey characteristics of quote driven, brokered and order driven markets. The
currently most prominent example of a hybrid market is the New York Stock Exchange.

2More precisely 51% of the world’s exchanges operate as pure LOB markets with a share of market
capitalization of 28% while the other 29% of the world’s exchanges are attributable to hybrid markets
with a share of market capitalization of 50%.
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into the electronic LOB according to order precedence rules while well defined pric-

ing rules ascertain their automatic execution. In open LOB markets the electronic order

book is displayed to all market participants.

Given the prominent role of the LOB market design in today’s stock market environ-

ment, an important question is how efficient LOB markets actually operate and whether

particular LOB markets perform better than others. For such a performance evaluation

it is essential to obtain a profound knowledge of the determinants of liquidity and price

formation in LOB markets. The analysis of the latter in turn requires a deep understan-

ding of the fundamental decision problem that traders face in LOB markets involving

not only the order type choice (choice between buy versus sell order and market versus

limit order) but also the timing of the order submission.

A vast literature developed around these subjects. Two classes of theoretical LOB

models derive equilibrium prices in LOB markets and exploit how price setting rules

evolve and determine traders’ optimal order placement strategies: the class of static and

the class of dynamic LOB models. The former are static in the sense that equilibrium

conditions in LOB markets are determined at a specific point in time considering only

past and current information. In contrast, the equilibrium conditions in dynamic LOB

models are determined over time, i.e. not only by taking into account current and past

information, but also by allowing for the anticipation of future events. The roots of these

model classes go back to three seminal papers: the work of Glosten (1994) who intro-

duced the class of static LOB models and the models of Parlour (1998) and Foucault

(1999) who particularly influenced the class of dynamic LOB models. The theoretical

LOB models reveal as driving forces of the price formation and the liquidity provision in

LOB markets the optimal order placement strategies of traders that result from finding

trade-offs between execution probabilities, picking off risks and order prices for alterna-

tive order submissions. Order book information turns out to considerably help traders

to solve this fundamental decision problem.

On the basis of the predictions provided by the theoretical LOB models a variety of

descriptive and econometric analyses evolved that deal with econometric modeling and
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hypothesis testing: Sandås (2001) and Frey and Grammig (2006) present econometric

methodologies for testing economic restrictions on the price schedules offered in pure

open LOB markets. Their approaches directly build on Glosten’s (1994) baseline model

and incorporate real world LOB market features like discrete prices and time priority

rules. While Sandås’s (2001) approach contains too many simplifying assumptions ren-

dering impossible to fit the data well, Frey and Grammig’s (2006) variant succeeds to

provide evidence for Glosten’s (1994) model putting forward one of the key messages

of LOB market theory, namely that liquidity supply and adverse selection costs are in-

versely related.

In common with Biais, Hillion, and Spatt (1995) who analyze the interaction between

the order book and the order flow using a sample from the LOB market at the Paris

Bourse by means of rather basic statistical tools, a variety of descriptive and experimen-

tal studies use the rich information flow delivered by electronic LOB markets to test

predictions of dynamic LOB market theory and to reveal further stylized facts (Degryse,

de Jong, Ravenswaaij, and Wuyts (2005), Coppejans, Domowitz, and Madhavan (2004),

Gomber, Schweickert, and Theissen (2004) and Cao, Hansch, and Wang (2006)). Besides

the assessment of the informational content of the order book in determining a security’s

true value, the main focus of these studies lies on the analysis of aggressive orders and

the resiliency of LOB markets. The aggressiveness of an order is measured in terms of

the price and time priority demanded by traders; the higher the demand for price and

time priority of a trader the more aggressive his order. The resiliency of a market refers

to the rate at which prices revert to former levels after having been changed in response

to large order flow imbalances induced by aggressive orders (cp. Harris (2003)) and is

used to evaluate an LOB market’s performance in this respect.

While the studies in line with Biais, Hillion, and Spatt (1995) were mainly descriptive,

Griffiths, Smith, Turnbull, and White (2000), Ranaldo (2004) and Pascual and Veredas

(2006) implement the classification of orders according to their aggressiveness by means

of ordered probit techniques with explanatory variables that capture the state of the

order book. Bisière and Kamionka (2000), Hall and Hautsch (2006) and Large (2007) ar-
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gue in favor of using multivariate point processes (duration or intensity based models)

that allow to model market orders, limit orders and cancelations as individual but in-

terdependent processes while simultaneously accounting for order book dynamics. The

previous literature of econometric LOB models provides evidence for the intertwined

dynamics between the order book and the order flow in real world LOB markets. It

further points out the significant informational content of the LOB with regard to the

underlying value of assets. Moreover, the literature presents means for the performance

evaluation of real world LOB markets on the basis of the various dimensions of liquidity

putting forward results that confirm the quality of this market design.

Instead of measuring a market’s quality in terms of its resiliency, which is only one

dimension of liquidity, the calculation of the gains agents derive from trading provides

another way to assess a market’s quality. Economists measure the gains agents derive

from trading by the surpluses they obtain as a consequence of a transaction. A seller’s

surplus is generally defined as the difference between the trade price and his valuation

of the stock, a buyer’s surplus as the difference between his valuation of the stock and

the trade price, with both surpluses eventually being reduced by transaction costs. What

makes it challenging to measure the gains from trade by trader surpluses is that, in

general, the valuation a trader places on the stock he trades is unknown.

Hollifield, Miller, Sandås, and Slive (2006) (henceforth HMSS) provide an econo-

metric methodology that links traders’ optimal order submissions in LOB markets with

traders’ valuations for the stock and the trade-offs across execution probabilities, picking

off risks and order prices for alternative order submissions compare Hollifield, Miller,

and Sandås (2004). These relations make possible to determine traders’ surpluses and to

actually compute estimates of the gains from trade. The main end-product of HMSS’s

approach are such estimates derived for an order driven stock exchange that are com-

puted as a percentage of the theoretical benchmarks of maximum possible or monopoly-

induced gains from trade - results that serve as standardized and hence comparable

measures to assess the efficiency of real world LOB markets. HMSS’s methodology pro-

vides convincing results for the estimates of the gains from trade for the LOB market at

4



the Vancouver Stock Exchange (VSE) - a fact that encourages to adopt their method to

other real world LOB markets for the purpose of market performance evaluation and

comparison.3 The objective of this paper is to look deeply into HMSS’s methodology for

estimating the gains from trade in LOB markets in order to provide a detailed recipe for

the planned application of this method to the Xetra LOB system at the Frankfurt Stock

Exchange (FSE).

The remainder of this paper is organized as follows. Section 2 explicitly describes

the market structure of the Xetra trading system at the FSE which provides useful for

the adoption of HMSS’s methodology to the German stock market as it reveals potential

features of the Xetra LOB market that need to be factored into the HMSS base model.

The econometric methodology for quantifying the efficiency of the Xetra LOB market

in terms of the gains from trade is presented in section 3. Section 4 provides a detailed

recipe for the econometric implementation and the final computation of HMSS’s market

efficiency measures. Section 5 deals with empirical caveats and extensions. Section 6

finally concludes.

2 Market Structure of the Xetra LOB Market

Trading takes place during the trading session that can be specified further by its trading

forum, its trading hours and by the type of trading session that is used to arrange trades.

Concerning the trading forum, the Xetra trading system is a so-called distributed access

market: due to client-server solutions traders in different locations have worldwide ac-

cess to this system via their trading screens. With respect to the trading hours, regular

trading on Xetra takes place during the normal business hours from 9:00 a.m. CET to

5:30 p.m. CET on trading days of the FSE. During the pretrading phase starting at 7:30

a.m. CET market participants are allowed to cancel and change old or submit new or-

ders and quotes to prepare for the main trading phase. The hours after the closing of

the main trading phase until 8:30 p.m. CET are used to adjust existing positions and to

3HMSS find that for the LOB market at the VSE the current gains from trade are approximately 90% of
the maximum gains from trade and approximately 50% more than the monopoly gains from trade.
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submit new orders that will be incorporated in the next day’s regular trading session.

Moreover, traders use these posttrading hours to work on their trades with regard to

the settlement and the reporting of the results to potential clients. Regarding the type

of trading session that is used to arrange trades, Xetra can behave as both a continuous

market and a call market depending on the security that needs to be traded. While only

a negligible fraction of securities4 is traded in a call auction once a day or in continuous

auctions throughout the day, for the majority of securities, such as the stocks of the DAX

30 for example, Xetra is generally referred to as a continuous market in which trading

is possible anytime the market is open. Nevertheless, the regular continuous trading

session on Xetra is enriched by call market elements since it begins with an opening call

auction, ends with a closing call auction and is interrupted by a mid-day call auction.

Besides, call auctions can be used to restart continuous trading after trading halts.

The execution system of a market constitutes the core of the market structure as it

defines how buyers are matched to sellers and how trade prices are determined. The

three main types of execution systems are the quote driven market, the brokered market

and the order driven market. The electronic trading system Xetra is a typical example

of the latter containing traces of a quote driven market for smaller listed stocks.5 In or-

der to do without the intermediation of dealers, who participate in every trade in the

quote driven market, or brokers, who are responsible for finding liquidity in the bro-

kered market, Xetra uses a rule-based order-matching system. This system ascertains a

smooth functioning of the trading procedure via a set of well defined trading rules that

are implemented electronically and work without further intermediation under normal

circumstances: the order precedence rules that match buyers to sellers and the pric-

ing rules that define which price has to be paid for a particular trade. In order to take

part in the trading process, traders make their trading conditions available to the Xe-

tra system in electronic form. As a result, liquidity supply and demand are provided

4Namely ’other shares’ and ’Covered Warrants, Certificates, Reverse Convertibles’; see
the Xetra R© trading parameters available on the Deutsche Börse webpage (http://deutsche-
boerse.com/dbag/dispatch/de/kir/gdb navigation/trading members/12 Xetra/45 Trading Parameter).

5If a stock does not comply with the liquidity requirements for continuous trading, it needs to be su-
pervised by a so-called designated sponsor. The banks or securities trading houses, who act as designated
sponsors, guarantee price quality by providing additional liquidity.
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by traders themselves as limit order traders offer liquidity by indicating the conditions

under which they will trade and market order traders directly demand liquidity by ac-

cepting the limit order traders’ conditions. Nevertheless, trading on Xetra is not directly

allowed to any individual who wants to trade but is rather delimited to financial insti-

tutions and securities trading houses that are simply referred to as traders from now on.

Individuals can only trade indirectly through these channels.

Xetra’s primary order precedence rule is price priority meaning that the trader, who

is willing to buy at the highest price among all buyers and the trader, who is willing to

sell at the lowest price among all sellers, are matched first. If the primary order prece-

dence rule is insufficient to unambiguously rank all buyers and sellers, the secondary

order precedence rule finds a remedy which is time priority for Xetra: for two orders

being identically ranked along the price dimension, an order will be considered first if it

has been submitted first. In the presence of special order types like iceberg orders time

priority can be dominated by the display precedence rule that gives the visible fraction

of the order precedence over its hidden counterpart.6 The interplay of Xetra’s order

precedence rules encourages traders to permanently improve the best prices and to be

honest concerning the display of their orders which are features that are very beneficial

for traders who wish to execute immediately.

Once an unambiguous hierarchy of buy and sell orders is assessed with the help of

order precedence rules and once all this information is stored in the electronic order

book, sellers are matched with buyers along this hierarchy. Trades occur whenever the

sellside overlaps the buyside in the sense that sellers meet buyers that accept the re-

spective trade conditions concerning the price and the volume of the asset of interest.

In continuous markets the best bid and the best offer do not overlap but trades rather

occur immediately whenever incoming orders can be filled with already existing orders

stored in the order book. Orders that can be filled immediately are called marketable

orders, in contrast to non-marketable orders that enter the order book and still have to

wait for being executed.

6In the case of iceberg orders (also called hidden orders) only a fraction of the order quantity is dis-
played to the market.
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After matching buyers with sellers, trade prices need to be determined. The determi-

nation of trade prices on Xetra follows two different rules. As Xetra is both a continuous

market as well as a call market depending on the security that needs to be traded, this

feature is reflected in its execution system, too: when behaving as a continuous market,

Xetra conducts continuous two-sided auctions and the price discovery process follows

the so-called discriminatory pricing rule; when behaving as a call market, single-price

auctions are required for the price discovery process alongside the so-called uniform

pricing rule. Under the discriminatory pricing rule, it is the limit price of the standing

order that determines the price for each trade, whereas under the uniform pricing rule

all trades take place at the same market clearing price being the price that maximizes

traded volume.7

Concerning the market information system, the existence of an electronic order book

on Xetra ensures that all information related to orders is stored with the maximum pos-

sible accuracy: a market order is stored with its date, time and volume at entry and its

date, time, volume and price at execution; a limit order is stored with its date, time,

volume and limit price at entry and its time at (partial) execution or cancelation; and so

on. Hence, Xetra’s electronic order book is more than simply an information collection

system, but it is an extremely valuable source of information as it reveals the conditions

under which trades occur. During continuous trading Xetra behaves as an open LOB

market in the sense that its order book is displayed to all market participants. Open

LOB markets offer the highest degree of transparency as they do not only report quotes

and orders immediately, which is referred to as offering ex ante transparency, but also

report trades without any delay, which is referred to as offering ex post transparency.

Xetra is less transparent during single price auctions where the order book is partially

closed. The amount of information announced during single price auctions varies dy-

namically depending on the market situation: while in the case of a crossed order book

the hypothetical price resulting under the uniform pricing rule is published, in the case

7For a more detailed description and exemplary illustration see Marktmodell Ak-
tien, Xetra R© Release 7.1, available at the webpage of Deutsche Börse (http://deutsche-
boerse.com/dbag/dispatch/de/kir/gdb navigation/trading members/12 Xetra/35 Market Model).
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of non-overlapping buy and sell sides the best bid and ask quotes are announced, both

indications eventually enriched by information about market imbalances.8 Neverthe-

less, traders do not favor the highest degree of transparency in all respects: although

they wish to see all information available about the behavior of other traders, they usu-

ally prefer to act in secrecy in order to maintain potential informational advantages.

Xetra handles this fact as follows: it provides ex ante anonymity for all instruments,

but ex post anonymity only where Xetra has a central counterparty service (CCP). For

various instruments such as those of the DAX for example, the CCP arbitrates between

sellers and buyers and does not only ensure anonymity, but also takes the potential risk

of default.

3 Methodology for Quantifying the Efficiency of the Xetra

LOB Market

3.1 Theoretical Model

The basic setup of the model can be summarized as follows: the execution system un-

derlying HMSS’s analysis is a continuous order driven market for a single risky asset.

The asset’s underlying value yt is a random variable with innovations drawn from a sta-

tionary process with possibly time-varying conditional moments. The market dispenses

with designated market makers and works on the basis of an electronic open LOB with

a potential multiple-tick spread between the best quotes at the best ask price pbuy
t,0 and

the best bid price psell
t,0 . The trading process is regulated by strict price and time priority

as order precedence rules. The determination of trade prices follows the discriminatory

pricing rule. The market is further characterized as a one-shot, one-unit market.9 Orders

may last for multiple periods and can be canceled but are not permitted to be modified.

The submission of an order requires the payment of an order submission fee c0 ≥ 0,

8For further details see Marktmodell Aktien, Xetra R© Release 7.1.
9The one-unit characteristic is simply to reduce notation. In principle the model can deal with multiple-

unit orders, too.
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while the execution of an order involves an order execution cost ce ≥ 0.

Regarding the characteristics of agents, HMSS make the following assumptions: a-

gents are risk-neutral and endowed only with public information contained in the in-

formation set zt = (xt, ωt), where zt follows a stationary Markov process and xt and ωt

denote finite-dimensional vectors of exogenous and endogenous state variables.10 The

endogenous state variables ωt are chosen as to predict the outcomes of order submis-

sions in t, while the purpose of the exogenous state variables xt is to predict the distri-

bution of the common value innovations introduced above as well as the trader arrival

rates and the private value distribution of traders presented in the following. Traders

arrive sequentially with a conditional trader arrival rate equal to

lim
∆t→0

Pr(Trader arrives in [t, t + ∆t) | xt)
∆t

= λ(t; xt). (1)

They differ in their valuations vt of the stock, which are decomposed as follows

vt = yt + ut, (2)

where yt is the above introduced underlying value of the stock and ut denotes a trader

specific private valuation of the stock drawn from the conditional distribution

Pr(ut ≤ u | xt) ≡ G(u | xt) (3)

with its corresponding density denoted as g(u|xt). Once trader t arrived at the market,

his valuation vt remains fixed and he chooses between buy or sell market order submis-

sions and a variety of buy or sell limit order submissions. His order choice is formalized

with the help of decision indicators: dsell
t,s ∈ {0, 1} with the finite set of available sell or-

der submissions s = 0, 1, . . . , S and dbuy
t,b ∈ {0, 1}with the finite set of available buy order

submissions b = 0, 1, . . . , B. If dsell
t,s = 0 for all s this signals that no sell order is submitted

at t. The time t submission of a sell market order at price psell
t,0 is indicated by dsell

t,0 = 1,

10A Markov process obeys the so-called Markov property that implies that the future of the process,
given the present, is independent of the past (cp. Spanos (1986)).
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while dsell
t,s = 1 represents the time t submission of a sell limit order at price psell

t,s , a price

s ticks above the current best bid quote. The buy side indicator works similarly.

Trades exhibit the following characteristics: a limit order submitted at time t either

executes at the random execution time t + τexecute or cancels at the random cancelation

time t + τcancel. The cancelation of an order does not occur later than t + ∆T, i.e. τcancel is

bounded from above by ∆T. The execution of an order requires that τexecute ≤ τcancel and

the order is canceled otherwise which can be summarized with the help of the indicator

function

It(τexecute ≤ τcancel) =





1, if t + τexecute ≤ t + τcancel,

0, otherwise.
(4)

The conditional distributions of the latent execution and cancelation times illustrated

for the case of an arbitrary buy limit order

Pr(t + τexecute ≤ t + τ | zt, dbuy
t,b = 1) = Fexecute(τ | zt, dbuy

t,b = 1), (5)

Pr(t + τcancel ≤ t + τ | zt, dbuy
t,b = 1) = Fcancel(τ | zt, dbuy

t,b = 1) (6)

show that the limit order’s outcome (execution or cancelation) is uncertain and depends

on the state vector zt as well as on the trader’s order submission. As a consequence

of this uncertainty, the trader submitting the above presented arbitrary buy limit order

faces the risk of non-execution represented by the execution probability

ψ
buy
b (zt) ≡ IE[It(τexecute ≤ τcancel) | zt, dbuy

t,b = 1], (7)

and the picking off risk

ξ
buy
b (zt) ≡ IE[It(τexecute ≤ τcancel)(yt+τexecute − yt) | zt, dbuy

t,b = 1], (8)

both conditional on the state vector zt and the order submission. The latter can be ex-
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pressed in terms of the conditional execution probability as follows

ξ
buy
b (zt) = IE[(yt+τexecute − yt) | It(τexecute ≤ τcancel) = 1, zt, dbuy

t,b = 1]ψbuy
b (zt).11 (9)

The trader’s order submission choice depends on the utility he realizes as a conse-

quence of the submission of a particular order. In the case of the exemplary buy order

the trader’s realized utility is given by

It(τexecute ≤ τcancel)(yt+τexecute + ut − pbuy
t,b − ce)− c0

= It(τexecute ≤ τcancel)(yt + ut − pbuy
t,b − ce)

+It(τexecute ≤ τcancel)(yt+τexecute − yt)− c0, (10)

where the term on the second line reflects the payoff that the trader would earn at im-

mediate execution and the term on the third line is the payoff due to a change in the

common value minus the order submission cost. In the case of non-execution the re-

alized utility is reduced to −c0. Using the definitions of the execution probability and

the picking off risk, the expected utility from submitting a buy order at price pbuy
t,b as a

function of the trader’s valuation yt + ut is given by

Ubuy
b (yt + ut; zt) = ψ

buy
b (zt)(yt + ut − pbuy

t,b − ce) + ξ
buy
b (zt)− c0. (11)

The expected utility from submitting a sell order at price psell
t,s is derived similarly and

looks as follows

Usell
s (yt + ut; zt) = ψsell

s (zt)(psell
t,s − yt − ut − ce)− ξsell

s (zt)− c0. (12)

Given a realization of his valuation of the stock yt + ut and given a certain state of

the world zt, trader t behaves as expected utility maximizer in order to determine his

11This expression is a result of an application of the law of iterated expectation: IE[IE[ . |F1]|F0] =
IE[ . |F0], where the information sets F1 = [zt, dbuy

t,b ] and F0 = [It(τexecute ≤ τcancel) = 1, zt, dbuy
t,b ]. The

additional condition on order execution is obvious since the picking off risk only hurts if the order is
executed.
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optimal order submission strategy. He solves the following representative optimization

problem:

max
{dsell

t,s },{dbuy
t,b }

S

∑
s=0

dsell
t,s Usell

s (yt + ut; zt) +
B

∑
b=0

dbuy
t,b Ubuy

b (yt + ut; zt), (13)

subject to
S

∑
s=0

dsell
t,s +

B

∑
b=0

dbuy
t,b ≤ 1, (14)

where equation (14) reflects the one-shot market characteristic. Denote {dsell∗
s (yt + ut; zt),

dbuy∗
b (yt + ut; zt)} as this optimization problem’s solutions. Considering the whole pop-

ulation of expected utility maximizing traders who have different valuations for the

stock, the randomness of yt + ut spans a whole set of potential optimal order submis-

sions: S∗(zt) = {s0(zt), s1(zt), . . . , sS(zt)} and B∗(zt) = {b0(zt), b1(zt), . . . , bB(zt)} with

indices sorted by decreasing execution probability. This set of potential optimal order

submissions is a subset of the set of available order submissions reduced by those order

submissions that are not optimal for anybody.12

Hollifield, Miller, and Sandås (2004) show that the traders’ optimal order submission

strategies can be represented by threshold valuations, i.e. valuations of the stock that

mark the limits of intervals within which specific order types are submitted. In other

words, traders with valuations ranging in the same interval submit orders of the same

type. Hollifield, Miller, and Sandås (2004) further show that optimal order submissions

exhibit a monotonicity property in the sense that traders with extremely low private

valuations submit sell orders with high execution probabilities while traders with ex-

tremely high private valuations submit buy orders with high execution probabilities.

The less extreme the trader’s private valuation the less probable the execution of the

order submitted such that traders with intermediate private valuations either submit no

order or limit orders with low execution probabilities. The monotonicity property in

its complete elegance ensures that the threshold valuations form a monotone sequence

12Remember that the set of available order submissions was described by the decision indicators dsell
t,s ∈

{0, 1} for s = 0, 1, . . . , S and dbuy
t,b ∈ {0, 1} for b = 0, 1, . . . , B, where s and b index the finite set of available

order submissions.
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and that order submissions are uniquely related to threshold intervals, a property that

is useful for the subsequent construction of the market efficiency measures in terms of

the gains from trade.13

The computation of such threshold valuations is based on pairwise expected utility

comparisons for alternative order submissions. The thresholds, denoted by θ, are the

valuations associated with indifference between two possible order submissions. Con-

sider e.g. a sell order submitted at price psell
t,si−1(zt)

and a sell order submitted at price

psell
t,si(zt)

, then a trader is indifferent between both orders if

Usell
si−1(zt)(yt + ut; zt) = Usell

si(zt)(yt + ut; zt)

ψsell
si−1(zt)(zt)(psell

t,si−1(zt) − yt − ut − ce) = ψsell
si(zt)(zt)(psell

t,si(zt) − yt − ut − ce)

−ξsell
si−1(zt)(zt)− c0 −ξsell

si(zt)(zt)− c0. (15)

Solving equation (15) for yt + ut delivers the threshold valuation at which trader t is

indifferent between the submission of a sell order at price psell
t,si−1(zt)

and a sell order at

price psell
t,si(zt)

θsell
si−1(zt),si(zt)(zt)

= yt + ut

= psell
t,si−1(zt) − ce −

(
psell

t,si(zt)
− psell

t,si−1(zt)

)
ψsell

si(zt)
(zt) +

(
ξsell

si−1(zt)
(zt)− ξsell

si(zt)
(zt)

)

ψsell
si−1(zt)

(zt)− ψsell
si(zt)

(zt)
(16)

which is a function of order prices, trader t’s subjective beliefs about execution prob-

abilities and picking off risks and the order submission and execution costs. Similarly

derived, the threshold valuation associated with indifference between a sell order sub-
13In their empirical application Hollifield, Miller, and Sandås (2004) give evidence for the validity of the

monotonicity property at least for buy and sell orders considered separately. They reject the monotonicity
restrictions for buy and sell orders considered jointly and argue that this is due to inadequacies of the
model to some extent.
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mitted at price psell
t,si(zt)

and no order submission is given by

θsell
si(zt),no(zt) = psell

t,si(zt) − ce −
ξsell

si(zt)
(zt) + c0

ψsell
si(zt)

(zt)
. (17)

The threshold valuation associated with indifference between the submission of a buy

order submitted at price pbuy
t,bi−1(zt)

and a buy order submitted at price pbuy
t,bi(zt)

looks as

follows

θ
buy
bi−1(zt),bi(zt)

(zt)

= pbuy
t,bi−1(zt)

+ ce +

(
pbuy

t,bi−1(zt)
− pbuy

t,bi(zt)

)
ψ

buy
bi(zt)

(zt) +
(

ξ
buy
bi(zt)

(zt)− ξ
buy
bi−1(zt)

(zt)
)

ψ
buy
bi−1(zt)

(zt)− ψ
buy
bi(zt)

(zt)
(18)

while the threshold valuation associated with indifference between the submission of a

buy order at price pbuy
t,bi(zt)

and no order submission is given by

θ
buy
bi(zt),no(zt) = pbuy

t,bi(zt)
+ ce −

ξ
buy
bi(zt)

(zt)− c0

ψ
buy
bi(zt)

(zt)
. (19)

The case of indifference between the submission of a buy order at price pbuy
t,bi(zt)

and the

submission of a sell order at price psell
t,si(zt)

is captured by the threshold

θsi(zt),bi(zt)(zt)

=

(
pbuy

t,bi(zt)
ψ

buy
bi(zt)

(zt) + psell
t,si(zt)

ψsell
si(zt)

(zt)
)

+ ce

(
ψ

buy
bi(zt)

(zt)− ψsell
si(zt)

(zt)
)

ψsell
si(zt)

(zt) + ψ
buy
bi(zt)

(zt)

−
(

ξ
buy
bi(zt)

(zt)− ξsell
si(zt)

(zt)
)

ψsell
si(zt)

(zt) + ψ
buy
bi(zt)

(zt)
. (20)

To illustrate the link between traders’ valuations for the stock and their optimal order

submission strategies, consider the case for which the set of optimal order submissions

is described by S∗(zt) = {s0(zt), sS(zt)} and B∗(zt) = {b0(zt), bB(zt)}, i.e. some traders

find it optimal to submit buy or sell market orders at prices pbuy∗
t,b0(zt)

and psell∗
t,s0(zt)

, while
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others find it optimal to submit marginal buy or sell limit orders at prices pbuy∗
t,bB(zt)

and

psell∗
t,sS(zt)

. Under the validity of the monotonicity property the optimal order submission

strategies of traders with different valuations vt = yt + ut for an asset illustrated in

terms of threshold valuations can look as cases (a) and (b) in figure 1.

Figure 1: Optimal order submission strategies in a LOB market

vt = yt + ut

6

?
−∞

∞

¾
buy MO submission
at price pbuy∗

t,b0(zt)

θsell
sS(zt),s0(zt)

(zt)

¾
buy LO submission
at price pbuy∗

t,bB(zt)

¾ no buy order sub-
mission

-no sell order sub-
mission

θsell
sS(zt),no(zt)

-sell LO submission
at price psell∗

t,sS(zt)

θ
buy
bB(zt),no(zt)

-sell MO submission
at price psell∗

t,s0(zt)

θ
buy
bB(zt),b0(zt)

(zt)

(a) θsell
sS(zt),no(zt) ≤ θ

buy
bB(zt),no(zt)

vt = yt + ut

6

?
−∞

∞

θsell
sS(zt),s0(zt)

(zt)

¾
buy MO submission
at price pbuy∗

t,b0(zt)

¾
buy LO submission
at price pbuy∗

t,bB(zt)
θsS(zt),bB(zt)(zt)

-sell LO submission
at price psell∗

t,sS(zt)

θ
buy
bB(zt),b0(zt)

(zt)

-sell MO submission
at price psell∗

t,s0(zt)

(b) θ
buy
bB(zt),no(zt) ≤ θsS(zt),bB(zt)(zt) ≤ θsell

sS(zt),no(zt)

Before shedding light on the cases’ differences the focus lies on their similarities: in

both cases the threshold valuations form a monotone sequence on the valuation axis

vt = yt + ut such that order submissions are uniquely related to threshold intervals.
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More precisely, the figure has to be read as follows: given a realization of the common

value of the stock yt the realization of trader t’s private value of the stock ut determines

his optimal order submission strategy via the interval his valuation vt lies in.

Consider for example the interval [θbuy
bB(zt),b0(zt)

(zt), +∞) that implies for a given yt

extremely high private valuations ut, then traders with valuations vt ranging within this

interval will submit buy market orders at price pbuy∗
t,b0

(zt) since they exhibit the highest

execution probability. Similarly, traders with extremely low private valuations ut exhibit

valuations vt that range within the interval (−∞, θsell
sS(zt),s0(zt)

(zt)) such that they submit

sell market orders at price psell∗
t,s0

(zt). Traders with intermediate private valuations ut

either submit no order or orders with low execution probabilities. At this point cases

(a) and (b) need to be distinguished.

Case (a) shows traders’ optimal order submission strategies in a LOB market for

θsell
sS(zt),no(zt) ≤ θ

buy
bB(zt),no(zt) such that there is a range of valuations, namely θsell

sS(zt),no(zt) ≤
vt < θ

buy
bB(zt),no(zt), within which no orders are submitted. Hence, for a given yt traders

with intermediate private valuations ut either submit no order if their valuations vt

range within [θsell
sS(zt),no(zt), θ

buy
bB(zt),no(zt)) or they submit buy or sell limit orders with low

execution probabilities if their valuations vt range within [θbuy
bB(zt),no(zt), θ

buy
bB(zt),b0(zt)

(zt))

or [θsell
sS(zt),s0(zt)

(zt), θsell
sS(zt),no(zt)). Case (b) shows traders’ optimal order submission strate-

gies in a LOB market for θ
buy
bB(zt),no(zt) ≤ θsS(zt),bB(zt)(zt) ≤ θsell

sS(zt),no(zt) such that for any

possible valuation a trader submits some order: for a given yt traders with intermedi-

ate private valuations ut either submit a buy limit order if their private valuations ut

lie within [θsS(zt),bB(zt)(zt), θ
buy
bB(zt),b0(zt)

(zt)) or a sell limit order if their private valuations

ut lie within [θsell
sS(zt),s0(zt)

(zt), θsS(zt),bB(zt)(zt)). To capture the distinction of optimal or-

der submissions for intermediate private valuations, define as marginal thresholds for

sellers and buyers

θ
buy
marginal(zt) = max(θsS(zt),bB(zt)(zt), θ

buy
bB(zt),no(zt)),

θsell
marginal(zt) = min(θsS(zt),bB(zt)(zt), θsell

sS(zt),no(zt)).
(21)

The optimal order submission strategies in terms of threshold valuations in the gen-
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eral case, i.e. allowing for the full set of potential optimal order submissions S∗(zt) =

{s0(zt), s1(zt), . . . , sS(zt)} and B∗(zt) = {b0(zt), b1(zt), . . . , bB(zt)}, can formally be sum-

marized as follows:

dsell∗
s (yt + ut; zt) = 0, for s 6∈ S∗(zt) (22)

dsell∗
0 (yt + ut; zt) =





1, if −∞ ≤ yt + ut < θsell
s0(zt),s1(zt)

(zt),

0, otherwise,
(23)

dsell∗
si(zt)(yt + ut; zt) =





1, if si(zt) 6∈ {0, sS(zt)} and

θsell
si−1(zt),si(zt)

(zt) ≤ yt + ut < θsell
si(zt),si+1(zt)

(zt),

0, otherwise,

(24)

dsell∗
sS(zt)(yt + ut; zt) =





1, if θsell
sS−1(zt),sS(zt)

(zt) ≤ yt + ut < θsell
marginal(zt),

0, otherwise,
(25)

for the sell side of the market, with the buy side looking similarly.

3.2 Construction of Market Efficiency Measures

HMSS use as market efficiency measures the gains from trade at an order driven stock

exchange, namely current gains CG, as a percentage of the theoretical benchmarks of

either the maximum possible, denoted as maximum gains MaG, or monopoly-induced

gains from trade, called monopoly gains MoG:

Market efficiency measure I =
CG

MaG
× 100[%], (26)

Market efficiency measure II =
CG

MoG
× 100[%]. (27)

To guard against confusion, what HMSS sloppily call current, maximum and monopoly

gains are not the gains from trade accruing from a transaction in the respective market

form as a whole, but rather quantifications of how much we expect a single trader with

unknown valuation for an asset to contribute to the gains from trade in the three market
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forms. How the market efficiency measures’ ingredients can be derived on the basis of

the above described theoretical relations is presented in the following.

In the LOB market gains from trade accrue as a consequence of transactions between

market and limit order traders. Consider for example a sell market order trader with

private valuation usell
t+τ and a buy limit order trader with private valuation ubuy

t who

transact at time t + τ at price pbuy
t,b = psell

t+τ,0. Under these conditions the exchange surplus

in terms of the traders’ realized utilities is given by

(psell
t+τ,0 − yt+τ − usell

t+τ − ce − c0) + (yt+τ + ubuy
t − pbuy

t,b − ce − c0)

= (−usell
t+τ − ce − c0) + (ubuy

t − ce − c0), (28)

with the seller’s contribution to the gains from trade equal to −usell
t+τ − ce − c0 and the

buyer’s contribution to the gains from trade equal to ubuy
t − ce − c0. The result for a sell

limit order executing with a buy market order looks similarly, whereas in the case of a

non-executing limit order the limit order trader’s contribution to the gains from trade is

negative and given by −c0.

However, what HMSS call current gains from trade realized in state zt is not trader t’s

ex-post contribution to the gains from trade that accrues as a consequence of a particular

trade, but his expected contribution to the gains from trade in a given state before his

valuation is known. Consider a trader with unknown valuation vt = yt + ut arriving

at state zt, then it is the randomness of his valuation that spans a whole set of poten-

tial optimal order submissions, which in turn together with the appropriate execution

probabilities span a whole set of potential contributions to the gains from trade. Taking

expectations conditional on zt over the set of potential contributions to the gains from

trade delivers what is defined as current gains from trade:

CG(zt) = IE




∑S
s=0 dsell∗

s (yt + ut; zt)
(
ψsell

s (zt)(−ut − ce)− c0
)

+ ∑B
b=0 dbuy∗

b (yt + ut; zt)
(

ψ
buy
b (zt)(ut − ce)− c0

) zt


 . (29)

Equation (29) depends on zt but the computation of the final market efficiency measures
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from (26) and (27) requires an expression for the unconditional current gains from trade,

i.e. a quantification of how much a single trader arriving in t with unknown valuation

for an asset is expected to contribute to the gains from trade without knowing the real-

ization of zt, expectations across all zt need to be taken to deliver

CG = IE [CG(zt)|Trader arrives and submits an order] , (30)

the unconditional expected current gains from trade.

The maximum gains from trade can be achieved in a perfectly liquid market which

only exists as a theoretical benchmark delivering an upper bound on the gains from

trade attainable in any real world trading mechanism. In order to determine the ex-

pected contribution of a single trader with unknown valuation for the stock arriving in

state xt to the maximum gains from trade, a link between his optimal order submission

strategy and his valuation for the stock in this market form is needed. To provide this

link, the stock allocation is described with the help of the indicator function:

Isell(ut; xt) =





1, if a trader with private value ut sells the stock in state xt,

0, otherwise,
(31)

with the buy indicator function defined similarly. The stock allocation that delivers the

maximum expected gains from trade for trader t is derived by solving the following

optimization problem

max
{Isell(ut;xt),Ibuy(ut;xt)}

IE
[

Isell(ut; xt)(−ut − ce − c0) + Ibuy(ut; xt)(ut − ce − c0) | xt

]
, (32)

subject to

Isell(ut; xt) + Ibuy(ut; xt) ≤ 1, for all ut, (33)

IE
[

Isell(ut; xt) | xt

]
= IE

[
Ibuy(ut; xt) | xt

]
, (34)

where (33) represents the one-shot market characteristic and (34) is the market clearing
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condition. Assuming the distribution of trader t’s private valuation for the stock to be

continuous and symmetric with median zero, then HMSS show that the optimal stock

allocation of trader t is given by

Isell∗(ut; xt) =





1, for ut ≤ −ce − c0,

0, otherwise,
(35)

Ibuy∗(ut; xt) =





1, for ut ≥ ce + c0,

0, otherwise.
(36)

These results deliver the link between trader t’s valuation for the stock and his optimal

order submission strategy in the perfectly liquid market that is needed to assess trader

t’s expected contribution to the maximum gains from trade. As in the case of the current

gains from trade, the randomness of trader t’s private valuation for the stock implies

that, via the randomness of the optimal order submission strategy, his contribution to

the maximum gains from trade is also random. Taking expectations conditional on xt

over the potential contributions to the gains from trade delivers what is called maximum

gains from trade:

MaG(xt) = IE




Isell∗(ut; xt)(−ut − ce − c0)

+Ibuy∗(ut; xt)(ut − ce − c0)
xt


 . (37)

As in the case of the current gains from trade expectations across all states xt need to be

taken to deliver

MaG = IE [MaG(xt)|Trader arrives and submits an order] , (38)

the unconditional expected maximum gains from trade which are needed to compute

the final market efficiency measure from (26).14

14In addition HMSS provide the means for a decomposition of the losses, measured as the difference
between the maximum and current gains from trade, into the four sources (i) no execution, (ii) no sub-
mission, (iii) wrong direction and (iv) extramarginal submission. This master thesis abstains from doing
so for shortage of space.

21



The monopoly gains from trade result from a market in which liquidity is supplied

by a profit maximizing monopolist. In this market form traders are price takers in the

sense that market prices are exogenous. In order to determine the expected contribu-

tion of a single trader with unknown valuation for the stock arriving in state xt to the

monopoly gains from trade, trader t’s optimal response to the monopolist’s profit max-

imizing quotes, the bid bm
t and the ask am

t , as a function of his valuation for the stock

needs to be found. To provide this link, the order submission strategy of trader t is

described with the help of the following indicator function:

Im,sell(bm
t ; ut; xt) =





1, if a trader with private value ut sells the stock in state xt,

0, otherwise,
(39)

with the buy indicator function defined similarly. The monopolist determines his profit

maximizing quotes by solving the following optimization problem

max
{bm

t ,am
t }

IE
[

Im,sell(bm
t ; ut; xt)(yt − bm

t ) + Im,buy(am
t ; ut; xt)(am

t − yt)
]

, (40)

subject to

IE
[

Im,sell(bm
t ; ut; xt) | xt

]
= IE

[
Im,buy(am

t ; ut; xt) | xt

]
, (41)

where (41) is the market clearing condition. Assuming the distribution of trader t’s

private valuation for the stock to be continuous and symmetric with median zero, then

HMSS show that the monopolist’s profit maximizing quotes are given by

bm∗
t = yt − G(bm∗

t − ce − c0 − yt|xt)
g(bm∗

t − ce − c0 − yt|xt)
, (42)

am∗
t = yt +

1− G(am∗
t + ce + c0 − yt|xt)

g(am∗
t + ce + c0 − yt|xt)

, (43)
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while trader t’s optimal order submission strategy is described by

Im,sell(bm∗
t ; ut; xt) =





1, for u ≤ bm∗
t − ce − c0 − yt

0, otherwise,
(44)

Im,buy(am∗
t ; ut; xt) =





1, for u ≥ am∗
t + ce + c0 − yt

0, otherwise.
(45)

These results deliver trader t’s optimal response to the monopolist’s profit maximizing

quotes as a function of his private valuation for the stock which is needed to assess

trader t’s expected contribution to the monopoly gains from trade. Once again it is

the randomness of trader t’s private valuation for the stock that implies not only the

randomness of the optimal order submission strategy, but also the fact that trader t’s

contribution to the monopoly gains from trade is random. Taking expectations condi-

tional on xt over the potential contributions to the gains from trade delivers what is

called monopoly gains from trade:

MoG(xt) = IE




Im,sell(bm∗
t ; ut; xt)(−ut − ce − c0)

+Im,buy(am∗
t ; ut; xt)(ut − ce − c0)

xt


 . (46)

Once again, as for the current and the maximum gains from trade, expectations across

all states xt need to be taken to deliver

MoG = IE [MoG(xt)|Trader arrives and submits an order] , (47)

the unconditional expected monopoly gains from trade which are needed to compute

the final market efficiency measure from (27).

In the sense that the hypothetical benchmark of the maximum gains from trade pro-

vides an upper bound on the gains from trade attainable in any feasible mechanism, the

monopoly gains from trade may not exactly match the concept of minimum possible

gains from trade that are conceivable theoretically. Nevertheless, they provide a lower
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bound on the gains from trade attainable in any feasible mechanism since a monopoly

market is by far the most unprofitable environment for agents to trade in reality.

With the ingredients derived, the market efficiency measures as introduced above

can be constructed at least theoretically. How numbers can be attached to these theoret-

ical constructs is subject of the next section.

4 Recipe for Estimating the Gains from Trade in Xetra LOB

Market

4.1 Econometric Implementation

This paragraph deals with the econometric implementation of the theoretical model in

order to provide closed form solutions of the above presented theoretical market effi-

ciency measures. In the course of this paragraph first the two step estimation procedure

proposed by HMSS will be presented in detail as to provide a structured recipe for the

planned application to the Xetra trading system. Second the data requirements to im-

plement the estimation procedure will be summarized.

First Step Estimation

On the one hand the first step estimation comprises the maximum likelihood estimation

of a competing risks model for the latent cancelation and execution times.15 On the

other hand it implies the ordinary least squares estimation of regression models for the

expected common value changes conditional on order execution. The former delivers

formulations of the distribution functions of latent cancelation and execution times that

allow to compute estimates of the execution probabilities of distinct order types. The

latter makes possible to compute estimates of the common value changes conditional

on order execution. Both the estimates of the execution probabilities and the estimates

of the common value changes are used to compute estimates of the respective picking

15For a brief summary of competing risks model theory essentials see appendix A.1.
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off risks. The procedure of the first step estimation is illustrated in figure 2 with the

steps 1.1 through 1.5 described in detail subsequently.16

1.1 MLE of competing risks models for latent cancelation and execution times

In the present application the cancelation and the execution of an order constitute two

reasons for an order to quit the LOB. In competing risks models’ terminology these

reasons are called failure types which occur at the random failure times

t + τcancel : latent cancelation time, (48)

t + τexecute : latent execution time. (49)

Core of the maximum likelihood estimations of the competing risks models for the la-

tent cancelation and execution times are the corresponding log-likelihood functions as

given for a general competing risks model in equation (96) in appendix A.1.1. The log-

likelihood functions’ ingredients, i.e. the cancelation and execution hazard rates com-

pare their general formulation in equation (98) in appendix A.1.1, are computed for the

sets of conditioning information {zt, dbuy
t,1 = 1}, {zt, dsell

t,1 = 1}, {zt, dbuy
t,B(zt)

= 1} and

{zt, dsell
t,S(zt)

= 1} in this application.

For the purpose of illustration, the computation of the hazard rates and the forma-

tion of the log-likelihood function are presented for the conditioning information set

{zt, dbuy
t,1 = 1}, i.e. conditional on zt and the submission of a one-tick buy limit order.

The latent execution and cancelation times of this order type are assumed to follow in-

dependent conditional Weibull distributions that look as in equations (50) and (51):

Fcancel(τ|zt, dbuy
t,1 = 1) = 1− exp

(
− exp(z′tγ

buy
1 )τα

buy
1

)
(50)

16The parameter estimates required for the computation of both the estimates of the execution proba-
bilities and the estimates of the picking off risks are derived for the one-tick and the marginal buy and
sell limit orders (that execute) only, constituting a subset of the event data set indexed by j = 1, . . . , J
(l = 1, . . . , L). These are sufficient to derive upper and lower bounds of the current gains from trade as
well as the average current gains from trade for each zti of the full sample indexed by i = 1, . . . , I. For
further explanations see section 4.2.
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Fexecute(τ|zt, dbuy
t,1 = 1) = 1− exp

(
− exp(z′tκ

buy
1 )τβ

buy
1

)
(51)

with densities as given in equations (52) and (53):

fcancel(τ|zt, dbuy
t,1 = 1) = exp

(
− exp(z′tγ

buy
1 )τα

buy
1

) (
exp(z′tγ

buy
1 )α

buy
1 τα

buy
1 −1

)
, (52)

fexecute(τ|zt, dbuy
t,1 = 1) = exp

(
− exp(z′tκ

buy
1 )τβ

buy
1

) (
exp(z′tκ

buy
1 )β

buy
1 τβ

buy
1 −1

)
, (53)

where γ
buy
1 and κ

buy
1 are coefficient vectors of the same dimension as the state vector

zt that measure the effects of the state variables on the corresponding hazard rates.

α
buy
1 and β

buy
1 are scalar Weibull shape parameters and can be interpreted as follows: if

α
buy
1 (β

buy
1 ) = 1, then the corresponding hazard rate is independent of τ. If α

buy
1 (β

buy
1 ) <

1, then the corresponding hazard rate is decreasing in τ. If α
buy
1 (β

buy
1 ) > 1, then the

corresponding hazard rate is increasing in τ.

The hazard rates for the latent cancelation and execution times for the exemplary

one-tick buy limit order can be computed as shown in the following:

hcancel(t + τ; zt, dbuy
t,1 = 1) =

fcancel(τ|zt, dbuy
t,1 = 1)

1− Fcancel(τ|zt, dbuy
t,1 = 1)

=
exp

(
− exp(z′tγ

buy
1 )τα

buy
1

) (
exp(z′tγ

buy
1 )α

buy
1 τα

buy
1 −1

)

1−
(

1− exp
(
− exp(z′tγ

buy
1 )τα

buy
1

))

= exp(z′tγ
buy
1 )α

buy
1 τα

buy
1 −1, (54)

hexecute(t + τ; zt, dbuy
t,1 = 1) =

fexecute(τ|zt, dbuy
t,1 = 1)

1− Fexecute(τ|zt, dbuy
t,1 = 1)

=
exp

(
− exp(z′tκ

buy
1 )τβ

buy
1

) (
exp(z′tκ

buy
1 )β

buy
1 τβ

buy
1 −1

)

1−
(

1− exp
(
− exp(z′tκ

buy
1 )τβ

buy
1

))

= exp(z′tκ
buy
1 )β

buy
1 τβ

buy
1 −1. (55)

To construct the log-likelihood function suppose J orders indexed by j = 1, . . . , J give
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rise to data [tj + τj, Itj(τexecute > τcancel), Itj(τexecute ≤ τcancel), ztj , dbuy
tj,1

= 1] containing

all one-tick buy limit orders of the sample, where tj + τj is the observed failure time,

Itj(τexecute > τcancel) is an indicator function for the cancelation of the jth one-tick buy

limit order, Itj(τexecute ≤ τcancel) is an indicator function for the execution of the jth one-

tick buy limit order and {ztj , dbuy
tj,1

= 1} is the associated conditioning information.17 18

Then with equation (96) in appendix A.1.1 the conditional log-likelihood function used

to estimate the probability distributions of the latent cancelation and latent execution

times of the exemplary one-tick buy limit orders is given by

logL(. | ztj , dbuy
tj,1

= 1)

=
J

∑
j=1

{
Itj(τexecute > τcancel) ln

(
hcancel(tj + τj; ztj , dbuy

tj,1
= 1)

)

+ Itj(τexecute ≤ τcancel) ln
(

hexecute(tj + τj; ztj , dbuy
tj,1

= 1)
)

−
∫ tj+τj

0

(
hcancel(s; ztj , dbuy

tj,1
= 1) + hexecute(s; ztj , dbuy

tj,1
= 1)

)
ds

}
. (57)

In order to provide estimates of the Weibull parameters α
buy
1 , β

buy
1 , γ

buy
1 and κ

buy
1 , equa-

tion (57) is estimated by maximum likelihood for one-tick buy limit orders treating or-

ders that last longer than the prespecified time span ∆T as censored observations.

The hazard rates and the log-likelihood functions on the basis of the conditioning in-

formation sets {zt, dsell
t,1 = 1}, {zt, dbuy

t,B(zt)
= 1} and {zt, dsell

t,S(zt)
= 1} can be derived equiv-

alently. The remaining parameters to be estimated are αsell
1 , βsell

1 , γsell
1 , κsell

1 , α
buy
marginal ,

β
buy
marginal, γ

buy
marginal , κ

buy
marginal , αsell

marginal , βsell
marginal , γsell

marginal and κsell
marginal .

17 Itj(τexecute ≤ τcancel) is defined in (4), while It(τexecute > τcancel) is given by

It(τexecute > τcancel) =
{

1, if t + τexecute > t + τcancel ,
0, otherwise. (56)

18Note that here the notation is simplified in that the index j is used for the subset of one-tick buy limit
orders, but lateron also for the subsets of one-tick sell, marginal buy and marginal sell limit orders to
avoid more complex and confusing indices.
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1.2 Computation of estimates of execution probabilities

Pretending to know neither the failure time nor the failure type of an order submitted at

t, i.e. treating the execution of an order as random variable, then the execution proba-

bilities of all order submissions of interest can be obtained by taking expectations of the

random order execution as illustrated for the exemplary one-tick buy limit order:

IE
[

It(τexecute ≤ τcancel)|zt, dbuy
t,1 = 1

]

=
∫ +∞

−∞
It(τexecute ≤ τcancel) f

It(τexecute≤τcancel)|zt,d
buy
t,1 =1

dτ

=
∫ ∆T

0
It(τexecute ≤ τcancel) f

It(τexecute≤τcancel)|zt,d
buy
t,1 =1

dτ

=
∫ ∆T

0
1 · f

It(τexecute≤τcancel)|zt,d
buy
t,1 =1

dτ

=
∫ ∆T

0

(
1− Fcancel(τ|zt, dbuy

t,1 = 1)
)
·
(

dFexecute(τ|zt, dbuy
t,1 = 1)

)
(58)

The second line provides the definition of the conditional expectation of a continuous

random variable, while line three results as a consequence of the failure time to be

bounded from below by 0 and from above by ∆T. In line four the indicator function

is replaced by the value 1 standing for order execution while the 0 for otherwise can be

neglected. Line five replaces the joint probability that the order has not yet been can-

celed by t + τ and executes between t + τ and t + τ + ∆τ, f
It(τexecute≤τcancel)|zt,d

buy
t,1 =1

dτ, by

the product of the marginal probabilities
(

1− Fcancel(τ|zt, dbuy
t,1 = 1)

)
· dFexecute(τ|zt, dbuy

t,1

= 1), where the first element is the probability that the order has not yet been canceled

by t + τ while the second denotes the probability that the order executes between t + τ

and t + τ + ∆τ.19 Taking the expectations for the one-tick sell limit order and the mar-

ginal buy and sell limit orders can be conducted similarly.

The estimates of the execution probabilities of the one-tick and the marginal buy and

sell limit orders are obtained by replacing the theoretical distribution functions as il-

lustrated for the exemplary one-tick buy limit order in (58) by their respective Weibull

specifications evaluated at the parameter estimates derived in 1.1. The resulting execu-

19This holds because of assuming independence between the latent execution and cancelation times.
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tion probability estimates of the one-tick buy limit order

ψ̂
buy
1 (zti) =

∫ ∆T

0
exp

(
− exp(z′ti

γ̂
buy
1 )τ

α̂
buy
1

i

)
·

exp
(
− exp(z′ti

κ̂
buy
1 )τ

β̂
buy
1

i

) (
exp(z′ti

κ̂
buy
1 )β̂

buy
1 τ

β̂
buy
1 −1

i

)
dτi, (59)

and those of the one-tick sell and the marginal buy and sell limit orders ψ̂sell
1 (zti), ψ̂

buy
marginal

(zti) and ψ̂sell
1 (zti) are each computed for all order submissions in the sample indexed by

i = 1, . . . , I, no matter if submitted as one-tick or marginal buy or sell limit order or not.

1.3 OLS of regression models for common value changes

The expected common value changes conditional on order execution are parameterized

as linear regression models. Suppose L orders indexed by l = 1, . . . , L give rise to data

[ytl , yt+τexecutel , ztl , Itl(τexecute ≤ τcancel) = 1, dbuy
tl ,1

, dsell
tl ,1

, dbuy
tl ,B(ztl )

, dsell
tl ,S(ztl )

] containing one-tick

and marginal buy and sell limit orders that execute, then the four regression models

IE
[
(yt+τexecutel − ytl)|Itl(τexecute ≤ τcancel) = 1, ztl , dbuy

tl ,1
= 1

]
= z′tl

Λbuy
1 (60)

IE
[
(yt+τexecutel − ytl)|Itl(τexecute ≤ τcancel) = 1, ztl , dsell

tl ,1 = 1
]

= z′tl
Λsell

1 (61)

IE
[
(yt+τexecutel − ytl)|Itl(τexecute ≤ τcancel) = 1, ztl , dbuy

tl ,B(zt)
= 1

]
= z′tl

Λbuy
marginal (62)

IE
[
(yt+τexecutel − ytl)|Itl(τexecute ≤ τcancel) = 1, ztl , dsell

tl ,S(zt) = 1
]

= z′tl
Λsell

marginal (63)

can be estimated by OLS to provide estimates of Λbuy
1 , Λsell

1 , Λbuy
marginal and Λsell

marginal.

1.4 Computation of estimates of common value changes

Suppose I orders indexed by i = 1, . . . , I give rise to data [zti ] containing the state vectors

of all order submissions in the sample, then estimates of the expected changes in the

common value at every order submission are delivered for the exemplary one-tick buy

limit order by computing

ÎE
[
(yti+τi − yti)|Iti(τexecute ≤ τcancel) = 1, zti , dbuy

ti,1
= 1

]
= z′ti

Λ̂buy
1 . (64)
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The estimates of the common value changes for the sell one-tick and the buy and sell

marginal limit orders at every order submission, i.e. ÎE
[
(yti+τi − yti)|Iti(τexecute ≤

τcancel) = 1, zti , dsell
ti,1

= 1
]
, ÎE

[
(yti+τi − yti)|Iti(τexecute ≤ τcancel) = 1, zti , dbuy

ti,B(zt)
= 1

]

and ÎE
[
(yti+τi − yti)|Iti(τexecute ≤ τcancel) = 1, zti , dsell

ti,S(zt)
= 1

]
, can be computed similarly.

1.5 Computation of estimates of picking off risks

In order to derive estimates of the picking off risks of the exemplary one-tick buy limit

order at every order submission in the sample indexed by i = 1, . . . , I, substituting the

appropriate estimates of the execution probabilities and the associated estimates of the

common-value changes into equation (9) delivers:

ξ̂
buy
1 (zti) = ÎE

[
(yt+τexecutei − yti) | Iti(τexecute ≤ τcancel) = 1, zti , dbuy

ti,1
= 1

]
ψ̂

buy
1 (zti).(65)

Similarly, the estimates of the picking off risks of the one-tick sell and the marginal buy

and sell limit orders at every order submission, i.e. ξ̂sell
1 (zti), ξ̂

buy
B(zti )

(zti) and ξ̂sell
S(zti )

(zti),

are obtained.

Second Step Estimation

The second step estimation deals with the maximum likelihood estimation of a compet-

ing risks model for the timing of market and limit orders that delivers the remaining pa-

rameters needed to actually calculate the market efficiency measures from (26) and (27).

The results of the first step estimation enter the likelihood function of the second step

estimation via the threshold functions that characterize the optimal order submission

strategies. The estimation of the likelihood function further requires parameterizations

of the trader arrival rates and the private value distribution. The procedure of the sec-

ond step estimation is illustrated in figure 3 with the steps 2.1 through 2.4 to be handled

described in a detailed recipe provided in the text.
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2.1 Weibull model for trader arrival rate

The trader arrival rate from equation (1) is parameterized as the following Weibull

model

λ(t; xti)dt = exp(x′ti
δ)η(t− ti−1)η−1dt, (66)

which supposes that the last order submission was at ti−1. δ is a coefficient vector of

the same dimension as the exogenous state variables xti and measures the effects of the

latter on the hazard rate λ(t; xti). The scalar Weibull shape parameter η is interpreted as

in the case of the Weibull formulations for the latent cancelation and execution times.

2.2 Mixture of two normal distributions for private value distribution

The conditional private value distribution from equation (3) is parameterized as a mix-

ture of two normal distributions with mean zero and standard deviations as functions

of the common value and the exogenous state variables

σ∗1 (yt, xt) = ytσ1 exp(x′tΓ), (67)

σ∗2 (yt, xt) = ytσ2 exp(x′tΓ), (68)

where σ1 6= σ2, and looks as follows:

G(u|xt) = ρΦ
(

u
σ∗1 (yt, xt)

)
+ (1− ρ)Φ

(
u

σ∗2 (yt, xt)

)
. (69)

The symbol Φ stands for the normal cumulative distribution function, ρ satisfying 0 <

ρ < 1 denotes the weighting factor, while Γ is a coefficient vector of the same dimension

as the exogenous state vector xt that measures the effect of the latter on the standard

deviations σ∗1 (yt, xt) and σ∗2 (yt, xt).

2.3 Evaluation of threshold functions at first step estimates

Under the assumption that the log-likelihood function for the timing of market and

limit orders will be formed for buy and sell market orders and buy and sell limit orders
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between the one-tick and the marginal limit orders, the threshold valuations needed for

the computation of the log-likelihood function are those illustrated in figure 4.20

Figure 4: Optimal order submission strategies for MLE of logL(. | zt)
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The first step estimates of the execution probabilities ψ̂
buy
1 (zti), ψ̂sell

1 (zti), ψ̂
buy
B(zti )

(zti)

and ψ̂sell
S(zti )

(zti) for all order submissions in the sample indexed by i = 1, . . . , I and the

associated first step estimates of the picking off risks ξ̂
buy
1 (zti), ξ̂sell

1 (zti), ξ̂
buy
B(zti )

(zti) and

ξ̂sell
S(zti )

(zti) are substituted into the threshold functions from equations (16) to (20) in order

to deliver formulations of the threshold valuations at every order submission θ
buy
1,0 (zti),

θ
buy
marginal(zti), θsell

marginal(zti) and θsell
1,0 (zti) leaving solely the parameters c0 and ce to be es-

timated in order to actually compute the respective threshold valuations at every order

submission.

2.4 MLE of competing risks model for timing of market and limit orders

In the present application the submissions of buy and sell market orders and buy and

sell limit orders constitute four reasons (failure types) for a trader to arrive and submit

20Figure 4 illustrates the optimal order submission strategies under validity of the monotonicity prop-
erty (see above).
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an order. In order to set up this competing risks model’s likelihood function, the hazard

rates associated with these order submissions need to be computed.

Given the conditional private value distribution from equation (3) and the trader

arrival rate from equation (1), the conditional probability of the submission of a sell

market order between t and t + dt is given by

Pr(Sell MO in [t, t + dt]|zt)

= Pr(yt + ut < θsell
0,1 ) · Pr(Trader arrives in [t, t + dt) | xt)

= G(θsell
0,1 (zt)− yt|xt) · λ(t; xt)dt, (70)

such that the associated hazard rate is equal to

G(θsell
0,1 (zt)− yt|xt)λ(t; xt). (71)

The conditional probability of the submission of a sell limit order between the one-tick

and the marginal sell limit order between t and t + dt is given by

Pr(Sell LO in [t, t + dt]|zt)

= Pr(θsell
0,1 ≤ yt + ut < θsell

marginal) · Pr(Trader arrives in [t, t + dt) | xt)

=
[

G(θsell
marginal(zt)− yt|xt)− G(θsell

0,1 (zt)− yt|xt)
]
· λ(t; xt)dt, (72)

such that the associated hazard rate is equal to

[
G(θsell

marginal(zt)− yt|xt)− G(θsell
0,1 (zt)− yt|xt)

]
λ(t; xt). (73)

Similarly derived, the hazard rate for the submission of a buy market order submitted

in t equals
[
1− G(θ

buy
0,1 (zt)− yt|xt)

]
λ(t; xt), (74)

while the hazard rate for a buy limit order between the one-tick and the marginal buy
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limit order in t is given by

[
G(θ

buy
0,1 (zt)− yt|xt)− G(θ

buy
marginal(zt)− yt|xt)

]
λ(t; xt). (75)

The hazard rate for the submission of an order of any type is given by the sum of equa-

tions (71), (73), (74) and (75) and equals:

[
1− G(θ

buy
marginal(zt)− yt|xt) + G(θsell

marginal(zt)− yt|xt)
]

λ(t; xt). (76)

Suppose I orders indexed by i = 1, . . . , I give rise to data [ti, dsell
ti,s , dbuy

ti,b
, xti ] for s =

0, 1, . . . , S(zti) and b = 0, 1, . . . , B(zti) containing all buy and sell market and limit orders,

where ti is the observed order submission time, dsell
ti,s is an indicator function for the

ith order being a sell order, dbuy
ti,b

is an indicator function for the ith order being a buy

order and xti is the associated conditioning information. Then with equation (96) in

appendix A.1.1, the conditional log-likelihood function used to estimate the probability

distributions for the timing of market and limit orders results as

logL(.|zti)

=
I

∑
i=1

{
dsell

ti,0 ln
(

G(θsell
0,1 (zti)− yti |xti)λ(ti; xti)

)

+




S(zti )

∑
s=1

dsell
ti,s


 ln

([
G(θsell

marginal(zti)− yti |xti)− G(θsell
0,1 (zti)− yti |xti)

]
λ(ti; xti)

)

+dbuy
ti,0

ln
([

1− G(θ
buy
0,1 (zti)− yti |xti)

]
λ(ti; xti)

)

+




B(zti )

∑
b=1

dbuy
ti,b


 ln

([
G(θ

buy
0,1 (zti)− yti |xti)− G(θ

buy
marginal(zti)− yti |xti)

]
λ(ti; xti)

)

−
∫ ti

ti−1

[
1− G(θ

buy
marginal(zt)− yt|xt) + G(θsell

marginal(zt)− yt|xt)
]

λ(t; xt)dt
}

. (77)
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Assuming that the common value and the state vector only change in the case of

order submission, the log-likelihood function simplifies to

logL(.|zti)

=
I

∑
i=1

{
dsell

ti,0 ln
(

G(θsell
0,1 (zti)− yti |xti)λ(ti; xti)

)

+




S(zti )

∑
s=1

dsell
ti,s


 ln

([
G(θsell

marginal(zti)− yti |xti)− G(θsell
0,1 (zti)− yti |xti)

]
λ(ti; xti)

)

+dbuy
ti,0

ln
([

1− G(θ
buy
0,1 (zti)− yti |xti)

]
λ(ti; xti)

)

+




B(zti )

∑
b=1

dbuy
ti,b


 ln

([
G(θ

buy
0,1 (zti)− yti |xti)− G(θ

buy
marginal(zti)− yti |xti)

]
λ(ti; xti)

)

−
[
1− G(θ

buy
marginal(zti)− yti |xti) + G(θsell

marginal(zti)− yti |xti)
] ∫ ti

ti−1

λ(t; xti)dt
}

.(78)

Substituting the threshold valuations evaluated at the first step parameter estimates,

the parameterization of the conditional private value distribution as well as that of the

trader arrival rate into equation (78) allows to estimate logL(.|zt) by maximum like-

lihood. The remaining parameters to be estimated are the order submission cost c0,

the order execution cost ce, the parameters that characterize the conditional private

value distribution σ1, σ2, Γ and ρ as well as the Weibull parameters of the trader arrival

rate model δ and η.21 Given these estimates, the estimates of the threshold valuations

θ̂sell
0,1 (zt), θ̂

buy
0,1 (zt), θ̂sell

marginal(zt) and θ̂
buy
marginal(zt) at every order submission can be derived

that are needed for the computation of the final market efficiency measures.

Data Requirements

The structured recipe of the two step estimation procedure reveals which data require-

ments need to be fulfilled to actually conduct the estimation and to provide the estimates

necessary for the subsequent computation of the market efficiency measures. These re-

quirements are summarized in the following.

21The order execution and submission costs are estimated as a percentage of the common value in
HMSS, i.e. ce and c0 are replaced by cp

e · yt and cp
0 · yt in the log-likelihood function. Given the estimates

ĉp
e and ĉp

0 , ĉe and ĉ0 are delivered by ĉp
e · yt and ĉp

0 · yt.
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In order to estimate the ingredients of the final market efficiency measures for the

Xetra LOB market, the availability of an event data set of a stock traded on Xetra with i =

1, . . . , I observations is necessary containing the time of the initial order submission ti of

each order, the failure time ti + τi of each order, an indicator function for the cancelation

of the ith order Iti(τexecute > τcancel), an indicator function for the execution of the ith

order Iti(τexecute ≤ τcancel), indicator functions for the type of the ith order dsell
ti,s or dbuy

ti,b

with s = 0, . . . , S(zti) and b = 0, . . . , B(zti), a proxy for the stock’s common value at

the time of the submission of the ith order yti as well as at the failure time of the ith

order yti+τi and the corresponding exogenous as well as endogenous state variables zti =

(xti , ωti).22

In the theoretical model the exogenous state variables xti predict the trader arrival

rates, the distribution of innovations to the common value and the conditional distri-

bution of the traders’ private values. In the empirical application they should be se-

lected in a way that they are likely to be correlated with the traders’ desire to change

their portfolios and with innovations in the stocks’ common value. In the ideal case the

endogenous state variables wti would include the entire LOB and any other variables

known at ti that help to predict the outcomes of order submissions at ti. However, if the

sample is relatively small it is better to use a smaller number of variables in the endoge-

nous state vector wti . Which specific variables are actually used as state variables for the

Xetra application in the end depends on the choice of the stock for which the analysis is

conducted.23

4.2 Computation of Market Efficiency Measures

The theoretical market efficiency measures from equations (26) and (27), once imple-

mented empirically, allow to compute standardized and hence comparable measures

that assess the efficiency of a real world LOB market. With the ingredients derived

22HMSS use as proxy for yti a centered moving average of the midquotes mqti = (pbuy
ti ,0

+ psell
ti ,0

)/2 over a
20-minute window. An adequate specification of yt for the Xetra LOB data needs to be found.

23HMSS’s use the TSX mining volatility as exogenous state variable for their application conducted for
stocks that obey strong relations to the mining industry.
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above, this paragraph deals with the computation of closed form solutions of these mea-

sures to actually document the efficiency of a real world LOB market like Xetra with

numbers.

The estimate of the current gains from trade ĈG(zt) is obtained by substituting the

optimal order submission strategies of the sell side from equations (22) to (25) and the

respective optimal order submission strategies of the buy side, both evaluated at the

parameter estimates delivered in the preceding subparagraph, into the formula for the

current gains from trade delivered in equation (29).24 The resulting estimate equals

ĈG(zt)

= IE
[

I(−∞ < yt + ut ≤ θ̂sell
0,1 (zt))(−ut − ĉe − ĉ0)|zt

]

+
S(zt)−1

∑
s=1

IE
[

I
(

θ̂sell
s−1,s(zt) ≤ yt + ut ≤ θ̂sell

s,s+1(zt)
) (

ψ̂sell
s (zt)(−ut − ĉe)− ĉ0

)
|zt

]

+IE
[

I
(

θ̂sell
S(zt)−1,S(zt)(zt) ≤ yt + ut ≤ θ̂sell

marginal(zt)
) (

ψ̂sell
S(zt)(zt)(−ut − ĉe)− ĉ0

)
|zt

]

+IE
[

I
(

θ̂
buy
0,1 (zt) ≤ yt + ut < ∞

)
(ut − ĉe − ĉ0)|zt

]

+
B(zt)−1

∑
b=1

IE
[

I
(

θ̂
buy
b,b+1(zt) ≤ yt + ut ≤ θ̂

buy
b−1,b(zt)

) (
ψ̂

buy
b (zt)(ut − ĉe)− ĉ0

)
|zt

]

+IE
[

I
(

θ̂
buy
marginal(zt) ≤ yt + ut ≤ θ̂

buy
B(zt)−1,B(zt)

(zt)
)

(
ψ̂

buy
B(zt)

(zt)(ut − ĉe)− ĉ0

)
|zt

]
. (79)

24This estimate as well as the followinig estimates of the current gains from trade are computed at every
order submission in the sample indexed by i = 1, . . . , I. Nonetheless the index i is dropped for reasons of
convenience.
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Using solely the estimates of the execution probabilities for the marginal limit orders

ψ̂
buy
B(zt)

(zt) and ψ̂sell
S(zt)

(zt) for the execution probabilities of all limit orders ψ
buy
b (zt) and

ψsell
s (zt) provides a lower bound for the estimate of the current gains from trade:

ĈG(zt) ≥ ĈGlb(zt)

= IE
[

I(−∞ < yt + ut ≤ θ̂sell
0,1 (zt))(−ut − ĉe − ĉ0)|zt

]

+IE
[

I
(

θ̂sell
0,1 (zt) ≤ yt + ut ≤ θ̂sell

marginal(zt)
) (

ψ̂sell
S(zt)(zt)(−ut − ĉe)− ĉ0

)
|zt

]

+IE
[

I
(

θ̂
buy
0,1 (zt) ≤ yt + ut < ∞

)
(ut − ĉe − ĉ0)|zt

]

+IE
[

I
(

θ̂
buy
marginal(zt) ≤ yt + ut ≤ θ̂

buy
0,1 (zt)

) (
ψ̂

buy
B(zt)

(zt)(ut − ĉe)− ĉ0

)
|zt

]
, (80)

since the true execution probabilities of orders submitted less far away from the best

quotes than marginal limit orders are greater than the marginal execution probabilities

computed for these orders.

Similarly, using solely the execution probabilities for the one-tick limit orders ψ̂
buy
1 (zt)

and ψ̂sell
1 (zt) for the execution probabilities of all limit orders ψ

buy
b (zt) and ψsell

s (zt) pro-

vides an upper bound for the estimate of the current gains from trade:

ĈG(zt) ≤ ĈGub(zt)

= IE
[

I(−∞ < yt + ut ≤ θ̂sell
0,1 (zt))(−ut − ĉe − ĉ0)|zt

]

+IE
[

I
(

θ̂sell
0,1 (zt) ≤ yt + ut ≤ θ̂sell

marginal(zt)
) (

ψ̂sell
1 (zt)(−ut − ĉe)− ĉ0

)
|zt

]

+IE
[

I
(

θ̂
buy
0,1 (zt) ≤ yt + ut < ∞

)
(ut − ĉe − ĉ0)|zt

]

+IE
[

I
(

θ̂
buy
marginal(zt) ≤ yt + ut ≤ θ̂

buy
0,1 (zt)

) (
ψ̂

buy
1 (zt)(ut − ĉe)− ĉ0

)
|zt

]
, (81)

since the true execution probabilities of orders submitted farther away from the best

quotes than one-tick limit orders are smaller than one-tick execution probabilities com-

puted for these orders.
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Using the average execution probabilities, i.e. ψ̂
buy
avg(zt) = 0.5 ·

(
ψ̂

buy
1 (zt) + ψ̂

buy
B(zt)

(zt)
)

and ψ̂sell
avg(zt) = 0.5 ·

(
ψ̂sell

1 (zt) + ψ̂sell
S(zt)

(zt)
)

for the execution probabilities of all limit

orders ψ
buy
b (zt) and ψsell

s (zt) delivers an estimate of the average current gains from trade:

ĈGavg(zt)

= IE
[

I(−∞ < yt + ut ≤ θ̂sell
0,1 (zt))(−ut − ĉe − ĉ0)|zt

]

+IE
[

I
(

θ̂sell
0,1 (zt) ≤ yt + ut ≤ θ̂sell

marginal(zt)
) (

ψ̂sell
avg(zt)(−ut − ĉe)− ĉ0

)
|zt

]

+IE
[

I
(

θ̂
buy
0,1 (zt) ≤ yt + ut < ∞

)
(ut − ĉe − ĉ0)|zt

]

+IE
[

I
(

θ̂
buy
marginal(zt) ≤ yt + ut ≤ θ̂

buy
0,1 (zt)

) (
ψ̂

buy
avg(zt)(ut − ĉe)− ĉ0

)
|zt

]
. (82)

To actually compute the estimates of the lower and upper bounds as well as the

average current gains from trade conditional on zt, equations (80) through (82) need to

be expressed in terms of the private value distribution from equation (69). The closed

form formulas of (80) through (82) as well as their derivation are provided in appendix

A.2.1.25

The estimates of the lower bound ĈGlb(zt), upper bound ĈGub(zt) and the average

current gains from trade ĈGavg(zt) from equation (121) in appendix A.2.1 quantify how

much a single trader arriving in t with unknown valuation for an asset is expected to

contribute to the gains from trade in the respective market form in state zt. To derive

unconditional estimates, i.e. estimates that do not depend on zt, expectations across all

states zt are taken. Taking expectations across zt for the exemplary estimate of the lower

bound of the current gains from trade delivers its unconditional expectation

IE
[
ĈGlb(zt)|Trader arrives and submits an order

]
, (83)

that is conditional on the arrival of a trader who submits an order, since samples de-

livered by electronic limit order book markets like Xetra do not capture the arrival of

traders who abstain from submitting orders. With I being the total number of observa-

25The ready-to-use formulas illustrated in equation (121) are quite space-wasting and their appearance
is superfluous at this passage. Nevertheless they are important for the planned empirical implementation.
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tions in the sample, equation (83) can be estimated by its sample analogue

ĈGlb =
1
I

I

∑
i=1

ĈGlb(zti). (84)

The unconditional expected estimates of the upper bound ĈGub and the average of the

current gains from trade ĈGavg are computed similarly.26

The estimate of the maximum gains from trade can be derived by substituting the

parameterization of the private value distribution from equation (69) evaluated at the

parameter estimates into the formula for the maximum gains from trade in equation

(37). The derivation of the resulting estimate

ˆMaG(xt)

= ρ̂

(
2σ̂∗1 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗1 (yt, xt)

)
− (ĉe + ĉ0)2Φ

( −ĉe − ĉ0

σ̂∗1 (yt, xt)

))

+(1− ρ̂)
(

2σ̂∗2 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗2 (yt, xt)

)
− (ĉe + ĉ0)2Φ

( −ĉe − ĉ0

σ̂∗2 (yt, xt)

))
. (85)

can be retraced in appendix A.2.2.27 Its unconditional counterpart can be derived as in

the case of the current gains from trade and equals

ˆMaG =
1
I

I

∑
i=1

ˆMaG(xti), (86)

with I being the total number of observations in the sample.

The estimate of the monopoly gains from trade can be derived by substituting the

parameterization of the private value distribution from equation (69) evaluated at the

parameter estimates and the corresponding density function first into the monopolist’s

optimal quotes and second via the traders’ optimal order submission strategies from

equations (44) and (45) into the formula of the monopoly gains from trade given in

26Due to the fact that the sample does not capture trader arrivals that are associated with traders who
abstain from trading, equation (83) and the respective measures for the upper bound and the average of
the current gains from trade as well as the maximum and the monopoly gains from trade are downward
biased. To correct for this bias, HMSS develop a method to reweight their sample. For shortage of space,
this thesis abstains from delivering the reweighting procedure as it is explicitly described in HMSS.

27Note that equation (85) does not report ˆMaG(zt) as a percentage of the common value as in HMSS
but it delivers ˆMaG(zt) in absolute terms.
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equation (46). The derivation of the resulting estimate

ˆMoG(xt)

= ρ̂σ̂∗1 (yt, xt)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)σ̂∗2 (yt, xt)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗2 (yt, xt)

)

−
(

ρ̂Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗2 (yt, xt)

))
(ĉe + ĉ0)

+ρ̂σ̂∗1 (yt, xt)φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)σ̂∗2 (yt, xt)φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗2 (yt, xt)

)

−
(

ρ̂

(
1−Φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗1 (yt, xt)

))
+ (1− ρ̂)

(
1−Φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗2 (yt, xt)

)))

(ĉe + ĉ0) (87)

can be followed in appendix A.2.3. Its unconditional analogue is obtained by the sample

average

ˆMoG =
1
I

I

∑
i=1

ˆMoG(xti), (88)

with I being the total number of observations in the sample.

With numbers assessed to the unconditional expected estimates of the upper and

lower bounds as well as to the average of the current gains from trade and with the

unconditional expected estimates of the maximum as well as of the monopoly gains

from trade derived, the upper and lower bounds as well as the average of the final

market efficiency measures can be computed as follows:

̂Market efficiency measure Ilb =
ĈGlb

ˆMaG
× 100[%], (89)

̂Market efficiency measure Iub =
ĈGub

ˆMaG
× 100[%], (90)

̂Market efficiency measure Iavg =
ĈGavg

ˆMaG
× 100[%], (91)

̂Market efficiency measure IIlb =
ĈGlb

ˆMoG
× 100[%], (92)

̂Market efficiency measure IIub =
ĈGub

ˆMoG
× 100[%], (93)

̂Market efficiency measure IIavg =
ĈGavg

ˆMoG
× 100[%]. (94)

44



5 Empirical Caveats and Extensions

The quality of the market efficiency measures derived and implemented above depends

on how good the data matches the theoretical assumptions of the model. Which as-

sumptions are particularly important and how one can check whether the data admits

to use these assumptions as reasonable approximations is discussed in the following.

First, the theoretical model is based on the assumption that no hidden limit order

(also called iceberg orders) enter the LOB although many LOB markets like Xetra for

example allow limit order traders to submit such orders. Whether the assumption of no

hidden limit orders can be maintained or not depends on how frequently traders make

use of them in the market under investigation. To check for the importance of hidden

limit orders in the sample under investigation, compute summary statistics of order

submissions that reveal the percentage of hidden limit orders. If the fraction of hidden

limit orders in the sample is sufficiently small, the assumption of no hidden limit orders

can be maintained. Otherwise HMSS’s base model needs to modified in order to take

hidden limit orders into account for the derivation of the market efficiency measures.

Second, in the theoretical model order quantity is normalized to unity which is rea-

sonable under the assumption that orders fully quit the LOB either as consequence of

execution or due to cancelation. On the contrary, in real world LOB markets like Xetra

partial executions occur. HMSS propose to deal with partial executions by attaching

a partially executed order to the group of fully executed orders if at least 50% of its

quantity is executed and to the group of fully canceled orders otherwise. Again descrip-

tive statistics help to assess whether this procedure can be maintained as a reasonable

approximation of the data from the Xetra trading system: the greater the average per-

centage of the submitted order quantity within the so-arranged group of fully executed

orders and the smaller the average percentage of the submitted order quantity within

the group of fully canceled orders, the better this approximation holds.

Third, the maximum likelihood estimations of the competing risks models for the

latent cancelation and execution times require sufficiently large samples in order to en-

sure consistent results. The sample size may in particular be a problem for the subsets
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of marginal buy and sell limit orders which presumably will occur quite infrequently. If

the subsamples of marginal buy or sell limit orders in the Xetra data set happen to be

too small to consistently estimate the execution and cancelation hazard rates, eventually

marginal limit orders need to be combined with orders up to a certain number of ticks

away from the marginal prices.

Fourth, although orders are allowed to last for multiple periods in the theoretical

model, the computation of the estimates of the execution probabilities compare equation

(59) requires the introduction of a censoring time span ∆T. The censoring implies that

orders lasting longer than ∆T in the LOB are treated as canceled orders. To identify ∆T

for the sample under investigation, descriptive statistics revealing the distribution of

the time to execution of orders are useful. HMSS for example set ∆T to 48, 600 seconds

which corresponds to two trading days. They argue that this is a reasonable assumption

since less than 1% of order executions occur later than two trading days after the time

of the order submission in their sample.

Taking these empirical caveats into account should result in market efficiency mea-

sures that reflect the quality of a real world LOB market like Xetra quite well.

6 Conclusion

Motivated by the prominent role of electronic LOB markets in today’s stock market envi-

ronment, this paper provides the basis for understanding, reconstructing and adopting

HMSS’s methodology for estimating the gains from trade to the Xetra LOB market at

the FSE in order to evaluate its performance in this respect. Therefore this paper looked

deeply into HMSS’s base model and provided a structured recipe for the planned imple-

mentation with Xetra LOB data. The contribution of this paper lies in the modification of

HMSS’s methodology with respect to the particularities of the Xetra trading system that

are not yet considered in HMSS’s base model. The necessary modifications, as expressed

in terms of empirical caveats, are substantial to derive unbiased market efficiency mea-

sures for Xetra in the end.
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Future work should first and foremost focus on the realization of the project to es-

timate the gains from trade for the Xetra LOB market alongside the structured recipe

provided above. However, HMSS’s original estimation procedure, which remains un-

touched in this work, and hence also the structured recipe provided above leave a great

margin for improvements concerning the choice of econometric tools. As a consequence,

future work should additionally focus on developing an advanced econometric founda-

tion that will reflect real world LOB market characteristics even better. A third interest-

ing direction of future research is to advance the methodology for estimating the gains

from trade to its application not only to LOB markets but to other important market

designs like the hybrid trading system implemented at the New York Stock Exchange.

Such an extension would enable researches to directly compare the most important trad-

ing designs in terms of the gains from trade and to answer the question of whether

particular market designs perform better than others in this respect.

A Appendix

A.1 Competing Risks Model Essentials

Competing risks models provide a method for data analysis when there is a single, pos-

sibly censored failure time FT on each of i = 1, . . . , I study objects that occurs as conse-

quence of e = 1, . . . , E distinct causes. The failure type and the failure time are observed

fulfilling FT = min(FT1, . . . , FTE).

A.1.1 Derivation of conditional log-likelihood function of competing risks model

Suppose I study objects indexed by i = 1, . . . , I give rise to data (ti, δi,e, Qcr
i ) for e =

1, . . . , E possible failure types where ti is the time of the ith failure, δi,e is an indica-

tor function for the ith failure type, and Qcr
i is the associated conditioning information.

On the basis of the competing risks model theory provided in Kalbfleisch and Pren-

tice (2002), chapter 8, and Lancaster (1990), chapter 5, HMSS show that the conditional

likelihood function of an independent competing risks model with e = 1, . . . , E distinct
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failure types and independent latent failure times FTe looks as follows

L(.|Qcr) =
I

∏
i=1

{
E

∏
e=1

he(ti; Qcr
i )δi,e exp

(
−

∫ ti

0

E

∑
e=1

he(s; Qcr
i )ds

)}
. (95)

Taking logarithms delivers the log-likelihood function

logL(.|Qcr) =
I

∑
i=1

{
E

∑
e=1

δi,e ln (he(ti; Qcr
i ))−

∫ ti

0

E

∑
e=1

he(s; Qcr
i )ds

}
, (96)

where he(t; Qcr) is the hazard rate for the eth latent failure time FTe

he(t; Qcr) = lim
∆t→0

Pr(FTe ∈ [t, t + ∆t)|FT ≥ t, Qcr)
∆t

(97)

=
fe(t|Qcr)

1− Fe(t|Qcr)
(98)

with Fe(t|Qcr) denoting the distribution of the eth latent failure time and fe(t|Qcr) the

associated density. These results are used to compute the log-likelihood functions in the

first and the second step estimation in section 4.1.

A.2 Computation of Market Efficiency Measures

A.2.1 Current Gains from Trade

The final formulas of the estimates of the lower and upper bounds as well as the average

current gains from trade are derived by substituting the parameterization of the private

value distribution from equation (69) evaluated at the parameter estimates

G(u|xt) = ρ̂Φ
(

u
σ̂∗1 (yt, xt)

)
+ (1− ρ̂)Φ

(
u

σ̂∗2 (yt, xt)

)
(99)

with

σ̂∗1 (yt, xt) = ytσ̂1 exp(x′tΓ̂), (100)

σ̂∗2 (yt, xt) = ytσ̂2 exp(x′tΓ̂), (101)
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into equations (80) through (82). Consider as illustrative example the estimate of the

lower bound of the current gains from trade:

ĈGlb(zt)

= IE
[

I(−∞ < yt + ut ≤ θ̂sell
0,1 (zt))(−ut − ĉe − ĉ0)|zt

]

+IE
[

I
(

θ̂sell
0,1 (zt) ≤ yt + ut ≤ θ̂sell

marginal(zt)
) (

ψ̂sell
S(zt)(zt)(−ut − ĉe)− ĉ0

)
|zt

]

+IE
[

I
(

θ̂
buy
0,1 (zt) ≤ yt + ut < ∞

)
(ut − ĉe − ĉ0)|zt

]

+IE
[

I
(

θ̂
buy
marginal(zt) ≤ yt + ut ≤ θ̂

buy
0,1 (zt)

) (
ψ̂

buy
B(zt)

(zt)(ut − ĉe)− ĉ0

)
|zt

]
,(102)

which can be rewritten as:

ĈGlb(zt)

=
∣∣∣−IE

[
I(−∞− yt < ut ≤ θ̂sell

0,1 (zt)− yt)ut|zt

]∣∣∣ (103)

−IE
[

I(−∞− yt < ut ≤ θ̂sell
0,1 (zt)− yt)|zt

]
(ĉe + ĉ0) (104)

+
∣∣∣−IE

[
I
(

θ̂sell
0,1 (zt)− yt ≤ ut ≤ θ̂sell

marginal(zt)− yt

)
ut|zt

]
ψ̂sell

S(zt)(zt)
∣∣∣ (105)

−IE
[

I
(

θ̂sell
0,1 (zt)− yt ≤ ut ≤ θ̂sell

marginal(zt)− yt

)
|zt

] (
ψ̂sell

S(zt)(zt)ĉe + ĉ0

)
(106)

+
∣∣∣IE

[
I
(

θ̂
buy
0,1 (zt)− yt ≤ ut < ∞− yt

)
ut|zt

]∣∣∣ (107)

−IE
[

I
(

θ̂
buy
0,1 (zt)− yt ≤ ut < ∞− yt

)
|zt

]
(ĉe + ĉ0) (108)

+
∣∣∣IE

[
I
(

θ̂
buy
marginal(zt)− yt ≤ ut ≤ θ̂

buy
0,1 (zt)− yt

)
ut|zt

]
ψ̂

buy
B(zt)

(zt)
∣∣∣ (109)

−IE
[

I
(

θ̂
buy
marginal(zt)− yt ≤ ut ≤ θ̂

buy
0,1 (zt)− yt

)
|zt

] (
ψ̂

buy
B(zt)

(zt)ĉe + ĉ0

)
. (110)

The following transformation rules for the random variable u being distributed as a

mixture of two normal distributions with mean zero and standard deviations σ̂∗1 (yt, xt),

σ̂∗2 (yt, xt), weighting factor ρ̂, and I(a ≤ u ≤ b) an indicator function that takes the value
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1 for a ≤ u ≤ b hold:

IE [I(a ≤ u ≤ b)u]

= ρ̂

(
σ̂∗1 (yt, xt)φ

(
b

σ̂∗1 (yt, xt)

)
− σ̂∗1 (yt, xt)φ

(
a

σ̂∗1 (yt, xt)

))

+(1− ρ̂)
(

σ̂∗2 (yt, xt)φ

(
b

σ̂∗2 (yt, xt)

)
− σ̂∗2 (yt, xt)φ

(
a

σ̂∗2 (yt, xt)

))
, (111)

IE [I(a ≤ u ≤ b)]

= ρ̂

(
Φ

(
b

σ̂∗1 (yt, xt)

)
−Φ

(
a

σ̂∗1 (yt, xt)

))

+(1− ρ̂)
(

Φ
(

b
σ̂∗2 (yt, xt)

)
−Φ

(
a

σ̂∗2 (yt, xt)

))
. (112)

Applying (111) to (103) delivers

IE
[

I(−∞− yt < ut ≤ θ̂sell
0,1 (zt)− yt)ut|zt

]

= ρ̂

(
σ̂∗1 (yt, xt)φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗1 (yt, xt)

)
− σ̂∗1 (yt, xt)φ

(−∞− yt

σ̂∗1 (yt, xt)

))

+(1− ρ̂)

(
σ̂∗2 (yt, xt)φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗2 (yt, xt)

)
− σ̂∗2 (yt, xt)φ

(−∞− yt

σ̂∗2 (yt, xt)

))

= ρ̂σ̂∗1 (yt, xt)φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)σ̂∗2 (yt, xt)φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗2 (yt, xt)

)
. (113)

Applying (112) to (104) delivers

IE
[

I(−∞− yt < ut ≤ θ̂sell
0,1 (zt)− yt)|zt

]

= ρ̂

(
Φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗1 (yt, xt)

)
−Φ

(−∞− yt

σ̂∗1 (yt, xt)

))

+(1− ρ̂)

(
Φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗2 (yt, xt)

)
−Φ

(−∞− yt

σ̂∗2 (yt, xt)

))

= ρ̂Φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)Φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗2 (yt, xt)

)
. (114)
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Applying (111) to (105) delivers

IE
[

I
(

θ̂sell
0,1 (zt)− yt ≤ ut ≤ θ̂sell

marginal(zt)− yt

)
ut|zt

]

= ρ̂

(
σ̂∗1 (yt, xt)φ

(
θ̂sell

marginal(zt)− yt

σ̂∗1 (yt, xt)

)
− σ̂∗1 (yt, xt)φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗1 (yt, xt)

))

+(1− ρ̂)

(
σ̂∗2 (yt, xt)φ

(
θ̂sell

marginal(zt)− yt

σ̂∗2 (yt, xt)

)
− σ̂∗2 (yt, xt)φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗2 (yt, xt)

))
.(115)

Applying (112) to (106) delivers

IE
[

I
(

θ̂sell
0,1 (zt)− yt ≤ ut ≤ θ̂sell

marginal(zt)− yt

)
|zt

]

= ρ̂

(
Φ

(
θ̂sell

marginal(zt)− yt

σ̂∗1 (yt, xt)

)
−Φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗1 (yt, xt)

))

+(1− ρ̂)

(
Φ

(
θ̂sell

marginal(zt)− yt

σ̂∗2 (yt, xt)

)
−Φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗2 (yt, xt)

))
. (116)

Applying (111) to (107) delivers

IE
[

I
(

θ̂
buy
0,1 (zt)− yt ≤ ut < ∞− yt

)
ut|zt

]

= ρ̂


σ̂∗1 (yt, xt)φ

(
∞− yt

σ̂∗1 (yt, xt)

)
− σ̂∗1 (yt, xt)φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗1 (yt, xt)







+(1− ρ̂)


σ̂∗2 (yt, xt)φ

(
∞− yt

σ̂∗2 (yt, xt)

)
− σ̂∗2 (yt, xt)φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗2 (yt, xt)







= −

ρ̂σ̂∗1 (yt, xt)φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗1 (yt, xt)


 + (1− ρ̂)σ̂∗2 (yt, xt)φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗2 (yt, xt)





 .(117)
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Applying (112) to (108) delivers

IE
[

I
(

θ̂
buy
0,1 (zt)− yt ≤ ut < ∞− yt

)
|zt

]

= ρ̂


Φ

(
∞− yt

σ̂∗1 (yt, xt)

)
−Φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗1 (yt, xt)







+(1− ρ̂)


Φ

(
∞− yt

σ̂∗2 (yt, xt)

)
−Φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗2 (yt, xt)







= ρ̂


1−Φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗1 (yt, xt)





 + (1− ρ̂)


1−Φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗2 (yt, xt)





 . (118)

Applying (111) to (109) delivers

IE
[

I
(

θ̂
buy
marginal(zt)− yt ≤ ut ≤ θ̂

buy
0,1 (zt)− yt

)
ut|zt

]

= ρ̂


σ̂∗1 (yt, xt)φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗1 (yt, xt)


− σ̂∗1 (yt, xt)φ


 θ̂

buy
marginal(zt)− yt

σ̂∗1 (yt, xt)







+(1− ρ̂)σ̂∗2 (yt, xt)φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗2 (yt, xt)




−(1− ρ̂)σ̂∗2 (yt, xt)φ


 θ̂

buy
marginal(zt)− yt

σ̂∗2 (yt, xt)


 . (119)

Applying (112) to (110) delivers

IE
[

I
(

θ̂
buy
marginal(zt)− yt ≤ ut ≤ θ̂

buy
0,1 (zt)− yt

)
|zt

]

= ρ̂


Φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗1 (yt, xt)


−Φ


 θ̂

buy
marginal(zt)− yt

σ̂∗1 (yt, xt)







+(1− ρ̂)


Φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗2 (yt, xt)


−Φ


 θ̂

buy
marginal(zt)− yt

σ̂∗2 (yt, xt)





 . (120)
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Resubstituting (113) through (120) into (103) through (110) delivers the closed form

solution of the estimate of the lower bound of the current gains from trade:

ĈGlb(zt)

= ρ̂σ̂∗1 (yt, xt)φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)σ̂∗2 (yt, xt)φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗2 (yt, xt)

)

−
(

ρ̂Φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)Φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗2 (yt, xt)

))
(ĉe + ĉ0)

+

{
ρ̂

(
σ̂∗1 (yt, xt)φ

(
θ̂sell

marginal(zt)− yt

σ̂∗1 (yt, xt)

)
− σ̂∗1 (yt, xt)φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗1 (yt, xt)

))
+ (1− ρ̂)

(
σ̂∗2 (yt, xt)φ

(
θ̂sell

marginal(zt)− yt

σ̂∗2 (yt, xt)

)
− σ̂∗2 (yt, xt)φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗2 (yt, xt)

))}
ψ̂sell

S(zt)(zt)

−
{

ρ̂

(
Φ

(
θ̂sell

marginal(zt)− yt

σ̂∗1 (yt, xt)

)
−Φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗1 (yt, xt)

))
+ (1− ρ̂)

(
Φ

(
θ̂sell

marginal(zt)− yt

σ̂∗2 (yt, xt)

)
−Φ

(
θ̂sell

0,1 (zt)− yt

σ̂∗2 (yt, xt)

))} (
ψ̂sell

S(zt)(zt)ĉe + ĉ0

)

+


ρ̂σ̂∗1 (yt, xt)φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗1 (yt, xt)


 + (1− ρ̂)σ̂∗2 (yt, xt)φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗2 (yt, xt)







−

ρ̂


1−Φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗1 (yt, xt)





 + (1− ρ̂)


1−Φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗2 (yt, xt)








 (ĉe + ĉ0)

+



ρ̂


σ̂∗1 (yt, xt)φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗1 (yt, xt)


− σ̂∗1 (yt, xt)φ


 θ̂

buy
marginal(zt)− yt

σ̂∗1 (yt, xt)





 + (1− ρ̂)


σ̂∗2 (yt, xt)φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗2 (yt, xt)


− σ̂∗2 (yt, xt)φ


 θ̂

buy
marginal(zt)− yt

σ̂∗2 (yt, xt)









 ψ̂

buy
B(zt)

(zt)

−


ρ̂


Φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗1 (yt, xt)


−Φ


 θ̂

buy
marginal(zt)− yt

σ̂∗1 (yt, xt)





 + (1− ρ̂)


Φ


 θ̂

buy
0,1 (zt)− yt

σ̂∗2 (yt, xt)


−Φ


 θ̂

buy
marginal(zt)− yt

σ̂∗2 (yt, xt)











(
ψ̂

buy
B(zt)

(zt)ĉe + ĉ0

)
(121)

The closed form solutions for the upper bound ĈGub(zt) and the average current

gains from trade ĈGavg(zt) are as given in equation (121) with the estimates of the exe-

cution probabilities ψ̂
buy
S(zt)

(zt) and ψ̂sell
S(zt)

(zt) replaced by their appropriate counterparts
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ψ̂
buy
1 (zt) and ψ̂sell

1 (zt) or ψ̂
buy
avg(zt) and ψ̂sell

avg(zt).

Substituting ytσ̂1 exp(x′tΓ̂) for σ̂∗1 (yt, xt) and ytσ̂2 exp(x′tΓ̂) for σ̂∗2 (yt, xt) as well as ĉp
e ·

yt for ĉe and ĉp
0 · yt for ĉ0, equation (121) can be written as

ĈGlb(zt)

= ρ̂ytσ̂1 exp(x′tΓ̂)φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)

)
+ (1− ρ̂)ytσ̂2 exp(x′tΓ̂)φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)

)

−
(

ρ̂Φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)

)
+ (1− ρ̂)Φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)

))
(ĉp

e + ĉp
0)yt

+

{
ρ̂

(
ytσ̂1 exp(x′tΓ̂)φ

(
θ̂sell

marginal(zt)− yt

ytσ̂1 exp(x′tΓ̂)

)
− ytσ̂1 exp(x′tΓ̂)φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)

))
+ (1− ρ̂)

(
ytσ̂2 exp(x′tΓ̂)φ

(
θ̂sell

marginal(zt)− yt

ytσ̂2 exp(x′tΓ̂)

)
− ytσ̂2 exp(x′tΓ̂)φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)

))}
ψ̂sell

S(zt)(zt)

−
{

ρ̂

(
Φ

(
θ̂sell

marginal(zt)− yt

ytσ̂1 exp(x′tΓ̂)

)
−Φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)

))
+ (1− ρ̂)

(
Φ

(
θ̂sell

marginal(zt)− yt

ytσ̂2 exp(x′tΓ̂)

)
−Φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)

))} (
ψ̂sell

S(zt)(zt)ĉp
e + ĉp

0

)
yt

+


ρ̂ytσ̂1 exp(x′tΓ̂)φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)


 + (1− ρ̂)ytσ̂2 exp(x′tΓ̂)φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)







−

ρ̂


1−Φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)





 + (1− ρ̂)


1−Φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)








 (ĉp

e + ĉp
0)yt

+



ρ̂


ytσ̂1 exp(x′tΓ̂)φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)


− ytσ̂1 exp(x′tΓ̂)φ


 θ̂

buy
marginal(zt)− yt

ytσ̂1 exp(x′tΓ̂)





 + (1− ρ̂)


ytσ̂2 exp(x′tΓ̂)φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)


− ytσ̂2 exp(x′tΓ̂)φ


 θ̂

buy
marginal(zt)− yt

ytσ̂2 exp(x′tΓ̂)









 ψ̂

buy
B(zt)

(zt)

−


ρ̂


Φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)


−Φ


 θ̂

buy
marginal(zt)− yt

ytσ̂1 exp(x′tΓ̂)





 + (1− ρ̂)


Φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)


−Φ


 θ̂

buy
marginal(zt)− yt

ytσ̂2 exp(x′tΓ̂)











(
ψ̂

buy
B(zt)

(zt)ĉp
e + ĉp

0

)
yt (122)

such that the estimate of the lower bound of the current gains from trade as a percentage
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of the common value equals

ĈGlb(zt)
yt

= ρ̂σ̂1 exp(x′tΓ̂)φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)

)
+ (1− ρ̂)σ̂2 exp(x′tΓ̂)φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)

)

−
(

ρ̂Φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)

)
+ (1− ρ̂)Φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)

))
(ĉp

e + ĉp
0)

+

{
ρ̂

(
σ̂1 exp(x′tΓ̂)φ

(
θ̂sell

marginal(zt)− yt

ytσ̂1 exp(x′tΓ̂)

)
− σ̂1 exp(x′tΓ̂)φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)

))
+ (1− ρ̂)

(
σ̂2 exp(x′tΓ̂)φ

(
θ̂sell

marginal(zt)− yt

ytσ̂2 exp(x′tΓ̂)

)
− σ̂2 exp(x′tΓ̂)φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)

))}
ψ̂sell

S(zt)(zt)

−
{

ρ̂

(
Φ

(
θ̂sell

marginal(zt)− yt

ytσ̂1 exp(x′tΓ̂)

)
−Φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)

))
+ (1− ρ̂)

(
Φ

(
θ̂sell

marginal(zt)− yt

ytσ̂2 exp(x′tΓ̂)

)
−Φ

(
θ̂sell

0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)

))} (
ψ̂sell

S(zt)(zt)ĉp
e + ĉp

0

)

+


ρ̂σ̂1 exp(x′tΓ̂)φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)


 + (1− ρ̂)σ̂2 exp(x′tΓ̂)φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)







−

ρ̂


1−Φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)





 + (1− ρ̂)


1−Φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)








 (ĉp

e + ĉp
0)

+



ρ̂


σ̂1 exp(x′tΓ̂)φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)


− σ̂1 exp(x′tΓ̂)φ


 θ̂

buy
marginal(zt)− yt

ytσ̂1 exp(x′tΓ̂)





 + (1− ρ̂)


σ̂2 exp(x′tΓ̂)φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)


− σ̂2 exp(x′tΓ̂)φ


 θ̂

buy
marginal(zt)− yt

ytσ̂2 exp(x′tΓ̂)









 ψ̂

buy
B(zt)

(zt)

−


ρ̂


Φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂1 exp(x′tΓ̂)


−Φ


 θ̂

buy
marginal(zt)− yt

ytσ̂1 exp(x′tΓ̂)





 + (1− ρ̂)


Φ


 θ̂

buy
0,1 (zt)− yt

ytσ̂2 exp(x′tΓ̂)


−Φ


 θ̂

buy
marginal(zt)− yt

ytσ̂2 exp(x′tΓ̂)











(
ψ̂

buy
B(zt)

(zt)ĉp
e + ĉp

0

)
. (123)

Again, the closed form solutions for the upper bound ĈGub(zt) and the average cur-

rent gains from trade ĈGavg(zt) as a percentage of the common value are as given in

equation (123) with the estimates of the execution probabilities ψ̂
buy
S(zt)

(zt) and ψ̂sell
S(zt)

(zt)

replaced by their appropriate counterparts ψ̂
buy
1 (zt) and ψ̂sell

1 (zt) or ψ̂
buy
avg(zt) and ψ̂sell

avg(zt).
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A.2.2 Maximum Gains from Trade

The estimate of the maximum gains from trade can be derived by substituting the para-

meterization of the private value distribution evaluated at the parameter estimates into

the formula for the maximum gains from trade

MaG(xt) = IE




Isell∗(ut; xt)(−ut − ce − c0)

+Ibuy∗(ut; xt)(ut − ce − c0)
xt


 , (124)

which, written more extensively, looks as follows:

MaG(xt)

= IE
[

Isell∗(ut; xt)(−ut − ce − c0) + Ibuy∗(ut; xt)(ut − ce − c0)|xt

]

= IE
[

Isell∗(−∞ < ut ≤ −ce − c0; xt)(−ut − ce − c0)|xt

]

+IE
[

Ibuy∗(ce + c0 ≤ ut < ∞; xt)(ut − ce − c0)|xt

]

=
∣∣∣−IE

[
Isell∗(−∞ < ut ≤ −ce − c0; xt)ut|xt

]∣∣∣ (125)

−IE
[

Isell∗(−∞ < ut ≤ −ce − c0; xt)|xt

]
(ce + c0) (126)

+
∣∣∣IE

[
Ibuy∗(ce + c0 ≤ ut < ∞; xt)ut|xt

]∣∣∣ (127)

−IE
[

Ibuy∗(ce + c0 ≤ ut < ∞; xt)|xt

]
(ce + c0). (128)

Applying (111) to (125) delivers

IE
[

Isell∗(−∞ < ut ≤ −ĉe − ĉ0; xt)ut|xt

]

= ρ̂

(
σ̂∗1 (yt, xt)φ

( −ĉe − ĉ0

σ∗1 (yt, xt)

)
− σ̂∗1 (yt, xt)φ

( −∞
σ̂∗1 (yt, xt)

))

+(1− ρ̂)
(

σ̂∗2 (yt, xt)φ

( −ĉe − ĉ0

σ̂∗2 (yt, xt)

)
− σ̂∗2 (yt, xt)φ

( −∞
σ̂∗2 (yt, xt)

))

= ρ̂σ̂∗1 (yt, xt)φ

( −ĉe − ĉ0

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)σ∗2 (yt, xt)φ

( −ĉe − ĉ0

σ̂∗2 (yt, xt)

)
. (129)
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Applying (112) to (126) delivers

IE
[

Isell∗(−∞ < ut ≤ −ĉe − ĉ0; xt)|xt

]

= ρ̂

(
Φ

( −ĉe − ĉ0

σ̂∗1 (yt, xt)

)
−Φ

( −∞
σ̂∗1 (yt, xt)

))

+(1− ρ̂)
(

Φ
( −ĉe − ĉ0

σ̂∗2 (yt, xt)

)
−Φ

( −∞
σ̂∗2 (yt, xt)

))

= ρ̂Φ
( −ĉe − ĉ0

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)Φ

( −ĉe − ĉ0

σ∗2 (yt, xt)

)
. (130)

Applying (111) to (127) delivers

IE
[

Ibuy∗(ĉe + ĉ0 ≤ ut < ∞; xt)ut|xt

]

= ρ̂

(
σ̂∗1 (yt, xt)φ

(
∞

σ̂∗1 (yt, xt)

)
− σ̂∗1 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗1 (yt, xt)

))

+(1− ρ̂)
(

σ̂∗2 (yt, xt)φ

(
∞

σ̂∗2 (yt, xt)

)
− σ̂∗2 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗2 (yt, xt)

))

= −
(

ρ̂σ̂∗1 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)σ̂∗2 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗2 (yt, xt)

))
. (131)

Applying (112) to (128) delivers

IE
[

Ibuy∗(ĉe + ĉ0 ≤ ut < ∞; xt)|xt

]

= ρ̂

(
Φ

(
∞

σ̂∗1 (yt, xt)

)
−Φ

(
ĉe + ĉ0

σ̂∗1 (yt, xt)

))

+(1− ρ̂)
(

Φ
(

∞
σ̂∗2 (yt, xt)

)
−Φ

(
ĉe + ĉ0

σ̂∗2 (yt, xt)

))

= ρ̂

(
1−Φ

(
ĉe + ĉ0

σ̂∗1 (yt, xt)

))
+ (1− ρ̂)

(
1−Φ

(
ĉe + ĉ0

σ̂∗2 (yt, xt)

))
. (132)
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Substituting (129) to (132) into (125) to (128) and collecting terms delivers

ˆMaG(xt)

=
∣∣∣∣−ρ̂σ̂∗1 (yt, xt)φ

( −ĉe − ĉ0

σ̂∗1 (yt, xt)

)
− (1− ρ̂)σ̂∗2 (yt, xt)φ

( −ĉe − ĉ0

σ̂∗2 (yt, xt)

)∣∣∣∣

+
(
−ρ̂Φ

( −ĉe − ĉ0

σ̂∗1 (yt, xt)

)
− (1− ρ̂)Φ

( −ĉe − ĉ0

σ̂∗2 (yt, xt)

))
(ĉe + ĉ0)

∣∣∣∣−ρ̂σ̂∗1 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗1 (yt, xt)

)
− (1− ρ̂)σ̂∗2 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗2 (yt, xt)

)∣∣∣∣

+
(
−ρ̂

(
1−Φ

(
ĉe + ĉ0

σ̂∗1 (yt, xt)

))
− (1− ρ̂)

(
1−Φ

(
ĉe + ĉ0

σ̂∗2 (yt, xt)

)))
(ĉe + ĉ0)

= ρ̂2σ̂∗1 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)2σ̂∗2 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗2 (yt, xt)

)

(
−ρ̂2Φ

( −ĉe − ĉ0

σ̂∗1 (yt, xt)

)
− (1− ρ̂)2Φ

( −ĉe − ĉ0

σ̂∗2 (yt, xt)

))
(ĉe + ĉ0)

= ρ̂

(
2σ̂∗1 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗1 (yt, xt)

)
− (ĉe + ĉ0)2Φ

( −ĉe − ĉ0

σ̂∗1 (yt, xt)

))

+(1− ρ̂)
(

2σ̂∗2 (yt, xt)φ

(
ĉe + ĉ0

σ̂∗2 (yt, xt)

)
− (ĉe + ĉ0)2Φ

( −ĉe − ĉ0

σ̂∗2 (yt, xt)

))
. (133)

In the first step the terms from above are substituted and the curved brackets are mul-

tiplied out partially. In the second step the relationships φ(u) = φ(−u) and Φ(−u) =

1−Φ(u) are applied to collect terms.

Substituting ytσ̂1 exp(x′tΓ̂) for σ̂∗1 (yt, xt) and ytσ̂2 exp(x′tΓ̂) for σ̂∗2 (yt, xt) as well as ĉp
e ·

yt for ĉe and ĉp
0 · yt for ĉ0, equation (133) can be written as

ˆMaG(xt)

= ρ̂

(
2ytσ̂1 exp(x′tΓ̂)φ

(
ĉp

e + ĉp
0

σ̂1 exp(x′tΓ̂)

)
− (ĉp

e + ĉp
0)yt2Φ

(
−ĉp

e − ĉp
0

σ̂1 exp(x′tΓ̂)

))

+(1− ρ̂)2ytσ̂2 exp(x′tΓ̂)φ

(
ĉp

e + ĉp
0

σ̂2 exp(x′tΓ̂)

)

−(1− ρ̂)(ĉp
e + ĉp

0)2ytΦ

(
−ĉp

e − ĉp
0

σ̂2 exp(x′tΓ̂)

)
(134)

such that the estimate of the maximum gains as a percentage of the common value
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equals

ˆMaG(xt)
yt

= ρ̂

(
2σ̂1 exp(x′tΓ̂)φ

(
ĉp

e + ĉp
0

σ̂1 exp(x′tΓ̂)

)
− (ĉp

e + ĉp
0)2Φ

(
−ĉp

e − ĉp
0

σ̂1 exp(x′tΓ̂)

))

+(1− ρ̂)

(
2σ̂2 exp(x′tΓ̂)φ

(
ĉp

e + ĉp
0

σ̂2 exp(x′tΓ̂)

)
− (ĉp

e + ĉp
0)2Φ

(
−ĉp

e − ĉp
0

σ̂2 exp(x′tΓ̂)

))
(135)

which corresponds to the closed form solution of the maximum gains from trade pro-

vided in the paper of HMSS.

A.2.3 Monopoly Gains from Trade

The estimate of the monopoly gains from trade is obtained by substituting the parame-

terization of the private value distribution evaluated at the parameter estimates from

(99) and the corresponding density function first into the monopolist’s optimal quotes

and second via the traders’ optimal order submission strategies from (44) and (45) into

the formula of the monopoly gains from trade from (46).

The estimates of the monopolist’s optimal quotes hence are obtained by solving

b̂m∗
t = yt − G(b̂m∗

t − ĉe − ĉ0 − yt|xt)
g(b̂m∗

t − ĉe − ĉ0 − yt|xt)

= yt −
ρ̂Φ

(
b̂m∗

t −ĉe−ĉ0−yt
σ̂∗1 (yt,xt)

)
+ (1− ρ̂)Φ

(
b̂m∗

t −ĉe−ĉ0−yt
σ̂∗2 (yt,xt)

)

ρ̂φ

(
b̂m∗

t −ĉe−ĉ0−yt
σ̂∗1 (yt,xt)

)
+ (1− ρ̂)φ

(
b̂m∗

t −ĉe−ĉ0−yt
σ̂∗2 (yt,xt)

) , (136)

âm∗
t = yt +

1− G(âm∗
t + ĉe + ĉ0 − yt|xt)

g(âm∗
t + ĉe + ĉ0 − yt|xt)

= yt +
1−

(
ρ̂Φ

(
âm∗

t +ĉe+ĉ0−yt
σ̂∗1 (yt,xt)

)
+ (1− ρ̂)Φ

(
âm∗

t +ĉe+ĉ0−yt
σ̂∗2 (yt,xt)

))

ρ̂φ
(

âm∗
t +ĉe+ĉ0−yt

σ̂∗1 (yt,xt)

)
+ (1− ρ̂)φ

(
âm∗

t +ĉe+ĉ0−yt
σ̂∗2 (yt,xt)

) (137)

for b̂m∗
t and âm∗

t .
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The monopoly gains from trade

MoG(xt) = IE




Im,sell(bm∗
t ; ut; xt)(−ut − ce − c0)

+Im,buy(am∗
t ; ut; xt)(ut − ce − c0)

xt


 (138)

can be rewritten as

MoG(xt)

= IE
[

Im,sell(−∞ < ut ≤ bm∗
t − ce − c0 − yt; xt)(−ut − ce − c0)|xt

]

+IE
[

Im,buy(am∗
t + ce + c0 − yt ≤ ut < ∞; xt)(ut − ce − c0)|xt

]

=
∣∣∣−IE

[
Im,sell(−∞ < ut ≤ bm∗

t − ce − c0 − yt; xt)ut|xt

]∣∣∣ (139)

−IE
[

Im,sell(−∞ < ut ≤ bm∗
t − ce − c0 − yt; xt)|xt

]
(ce + c0) (140)

+
∣∣∣IE

[
Im,buy(am∗

t + ce + c0 − yt ≤ ut < ∞; xt)ut|xt

]∣∣∣ (141)

−IE
[

Im,buy(am∗
t + ce + c0 − yt ≤ ut < ∞; xt)|xt

]
(ce + c0). (142)

Using the estimates of the monopolist’s optimal quotes and the transformation rules

for the private value distibution evaluated at the parameter estimates from above de-

livers the ingredients for the closed form solution of the monopolist’s gains from trade.

Precisely, applying (111) to (139) delivers

IE
[

Im,sell(−∞ < ut ≤ b̂m∗
t − ĉe − ĉ0 − yt; xt)ut|xt

]

= ρ̂

(
σ̂∗1 (yt, xt)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗1 (yt, xt)

)
− σ̂∗1 (yt, xt)φ

( −∞
σ̂∗1 (yt, xt)

))

+(1− ρ̂)

(
σ̂∗2 (yt, xt)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗2 (yt, xt)

)
− σ̂∗2 (yt, xt)φ

( −∞
σ̂∗2 (yt, xt)

))

= ρ̂σ̂∗1 (yt, xt)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗1 (yt, xt)

)

+(1− ρ̂)σ̂∗2 (yt, xt)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗2 (yt, xt)

)
(143)
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Applying (112) to (140) delivers

IE
[

Im,sell(−∞ < ut ≤ b̂m∗
t − ĉe − ĉ0 − yt; xt)|xt

]

= ρ̂

(
Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗1 (yt, xt)

)
−Φ

( −∞
σ̂∗1 (yt, xt)

))

+(1− ρ̂)

(
Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗2 (yt, xt)

)
−Φ

( −∞
σ̂∗2 (yt, xt)

))

= ρ̂Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗2 (yt, xt)

)
(144)

Applying (111) to (141) delivers

IE
[

Im,buy(âm∗
t + ĉe + ĉ0 − yt ≤ ut < ∞; xt)ut|xt

]

= ρ̂

(
σ̂∗1 (yt, xt)φ

(
∞

σ̂∗1 (yt, xt)

)
− σ̂∗1 (yt, xt)φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗1 (yt, xt)

))

+(1− ρ̂)
(

σ̂∗2 (yt, xt)φ

(
∞

σ̂∗2 (yt, xt)

)
− σ̂∗2 (yt, xt)φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗2 (yt, xt)

))

= −ρ̂σ̂∗1 (yt, xt)φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗1 (yt, xt)

)

−(1− ρ̂)σ̂∗2 (yt, xt)φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗2 (yt, xt)

)
(145)

Applying (112) to (142) delivers

IE
[

Im,buy(âm∗
t + ĉe + ĉ0 − yt ≤ ut < ∞; xt)|xt

]

= ρ̂

(
Φ

(
∞

σ̂∗1 (yt, xt)

)
−Φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗1 (yt, xt)

))

+(1− ρ̂)
(

Φ
(

∞
σ̂∗2 (yt, xt)

)
−Φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗2 (yt, xt)

))

= ρ̂

(
1−Φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗1 (yt, xt)

))

+(1− ρ̂)
(

1−Φ
(

âm∗
t + ĉe + ĉ0 − yt

σ̂∗2 (yt, xt)

))
(146)
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Substituting (143) through (146) into (139) through (142) delivers the closed form

solution for the estimate of the monopolist’s gains from trade:

ˆMoG(xt)

=

∣∣∣∣∣−ρ̂σ̂∗1 (yt, xt)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗1 (yt, xt)

)
− (1− ρ̂)σ̂∗2 (yt, xt)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗2 (yt, xt)

)∣∣∣∣∣

−
(

ρ̂Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗2 (yt, xt)

))
(ĉe + ĉ0)

+
∣∣∣∣−

(
ρ̂σ̂∗1 (yt, xt)φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)σ̂∗2 (yt, xt)φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗2 (yt, xt)

))∣∣∣∣

−
(

ρ̂

(
1−Φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗1 (yt, xt)

))
+ (1− ρ̂)

(
1−Φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗2 (yt, xt)

)))

(ĉe + ĉ0).

= ρ̂σ̂∗1 (yt, xt)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)σ̂∗2 (yt, xt)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗2 (yt, xt)

)

−
(

ρ̂Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

σ̂∗2 (yt, xt)

))
(ĉe + ĉ0)

+ρ̂σ̂∗1 (yt, xt)φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗1 (yt, xt)

)
+ (1− ρ̂)σ̂∗2 (yt, xt)φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗2 (yt, xt)

)

−
(

ρ̂

(
1−Φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗1 (yt, xt)

))
+ (1− ρ̂)

(
1−Φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗2 (yt, xt)

)))

(ĉe + ĉ0). (147)

Substituting ytσ̂1 exp(x′tΓ̂) for σ̂∗1 (yt, xt) and ytσ̂2 exp(x′tΓ̂) for σ̂∗2 (yt, xt) as well as ĉp
e ·

yt for ĉe and ĉp
0 · yt for ĉ0, equation (147) can be written as

ˆMoG(xt)

= ρ̂ytσ̂1 exp(x′tΓ̂)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

ytσ̂1 exp(x′tΓ̂)

)
+ (1− ρ̂)ytσ̂2 exp(x′tΓ̂)φ

(
b̂m∗

t − ĉe − ĉ0 − yt

ytσ̂2 exp(x′tΓ̂)

)

−
(

ρ̂Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

ytσ̂1 exp(x′tΓ̂)

)
+ (1− ρ̂)Φ

(
b̂m∗
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such that the estimate of the monopoly gains from trade as a percentage of the common

value equals

ˆMoG(xt)
yt

= ρ̂σ̂1 exp(x′tΓ̂)φ

(
b̂m∗

t − ĉe − ĉ0 − yt
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)
+ (1− ρ̂)σ̂2 exp(x′tΓ̂)φ

(
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t − ĉe − ĉ0 − yt

ytσ̂2 exp(x′tΓ̂)

)

−
(
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(
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t − ĉe − ĉ0 − yt

ytσ̂1 exp(x′tΓ̂)

)
+ (1− ρ̂)Φ

(
b̂m∗

t − ĉe − ĉ0 − yt

ytσ̂2 exp(x′tΓ̂)

))
(ĉp

e + ĉp
0)

+ρ̂σ̂1 exp(x′tΓ̂)φ

(
âm∗

t + ĉe + ĉ0 − yt

ytσ̂1 exp(x′tΓ̂)

)
+ (1− ρ̂)σ̂2 exp(x′tΓ̂)φ

(
âm∗

t + ĉe + ĉ0 − yt

σ̂∗2 (yt, xt)

)

−
(

ρ̂

(
1−Φ

(
âm∗

t + ĉe + ĉ0 − yt

ytσ̂1 exp(x′tΓ̂)

))
+ (1− ρ̂)

(
1−Φ

(
âm∗

t + ĉe + ĉ0 − yt

ytσ̂2 exp(x′tΓ̂)

)))

(ĉp
e + ĉp

0). (149)

A.3 Prototypical Programming

Table 1 provides an exemplary programming schedule indicating the data and the tools

needed to actually implement the estimation procedure for the Xetra data.
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