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Abstract: Background: The spontaneously diabetic “non-obese diabetic” (NOD) mouse is a faithful
model of human type-1 diabetes (T1D). Methods: Given the pivotal role of α4 integrin (CD49d) in
other autoimmune diseases, we generated NOD mice with α4-deficient hematopoiesis (NOD.α4-/-)
to study the role of α4 integrin in T1D. Results: NOD.α4-/- mice developed islet-specific T-cells
and antibodies, albeit quantitatively less than α4+ counterparts. Nevertheless, NOD.α4-/- mice
were completely and life-long protected from diabetes and insulitis. Moreover, transplantation with
isogeneic α4-/- bone marrow prevented progression to T1D of pre-diabetic NOD.α4+ mice despite
significant pre-existing islet cell injury. Transfer of α4+/CD3+, but not α4+/CD4+ splenocytes from
diabetic to NOD.α4-/- mice induced diabetes with short latency. Despite an only modest contribution
of adoptively transferred α4+/CD3+ cells to peripheral blood, pancreas-infiltrating T-cells were
exclusively graft derived, i.e., α4+. Microbiota of diabetes-resistant NOD.α4-/- and pre-diabetic
NOD.α4+ mice were identical. Co- housed diabetic NOD.α4+ mice showed the characteristic diabetic
dysbiosis, implying causality of diabetes for dysbiosis. Incidentally, NOD.α4-/- mice were protected
from autoimmune sialitis. Conclusion: α4 is a potential target for primary or secondary prevention
of T1D.
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1. Introduction

The increasing incidence and decreasing age at onset of autoimmune type-1 diabetes (T1D) [1,2]
reinforces the need for a causal therapeutic intervention since euglycemia, which is always challenging
to maintain with insulin replacement, is notoriously difficult to achieve in young children because of
irregular life-styles, growth spurts and frequent, otherwise banal febrile infections [3,4]. When T1D
is first diagnosed, significant residual islet cell mass remains [5,6] and islet cells possess relevant
regenerative potential [7,8]. Interventions arresting the autoimmune process at this stage could
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therefore potentially still be curative [9]. Alternatively, the appearance of islet autoantibodies, sensitive
harbingers of T1D development [10], in siblings of patients with T1D could trigger the initiation of
islet-preserving therapies during pre-diabetes.

The adhesion molecules very late antigen-4 (VLA-4), a heterodimer of the α4 (CD49d) and
the ß1 (CD29) integrins, and, to a lesser degree, LPAM-1 (α4/ß7) have been identified as exquisite
targets for immune modulation in a number of autoimmune disease models [11–14], as well as in
select clinical indications, namely refractory multiple sclerosis (MS) and inflammatory bowel disease
(IBD) [15–17]. Indeed anti-functional α4 antibodies were also studied in the NOD mouse, a faithful
model of human T1D. Evidence was provided that neutralizing anti-α4 rat-anti-mouse antibodies could
delay, attenuate penetrance, or outright prevent T1D development [18–21]. Two basic experimental
constellations were tested. Either NOD mice were transiently treated with anti-functional anti-α4
antibodies, where earlier onset of treatment and longer treatment duration seemed to affect the efficacy
of the intervention [19–21]. Alternatively, diabetogenic NOD T-cells incubated with anti-α4 antibodies
were adoptively transferred into isogeneic NOD/SCID (severe combined immunodeficiency) mice
followed by further antibody treatment of the recipients. This approach similarly delayed T1D or
reduced its incidence [18]. Three studies, all by the same group, addressed the role of α4 for NOD
autoimmune sialitis; in their experimental set-up, function-blocking anti-α4 antibody was ineffective;
the paradigm of α4 independence of NOD autoimmune sialitis is based entirely on this limited set
of studies [19,22,23]. Several additional important questions could not be addressed in these models,
in part due to limitations of the model per se, in part due to new technologies which have arisen since
the execution of these seminal experiments. We therefore generated NOD mice deleted for α4 in the
hematopoietic lineage (NOD.α4-/-) to study T1D and sialitis development and some related questions.

2. Materials and Methods

Mice: Diabetes-prone NOD/ShiLtJ mice (NOD) were purchased from Jackson Laboratories (Bar
Harbor, ME). NOD.α4f/fTie2cre+ mice (α4-ablator mice) were generated by separately back-crossing
NOD mice with the previously described C57Bl/6.α4f/f [24] and C57Bl/6.Tie2cre+ [25] mice. In the first
generation, NOD males were used, to fix the Y-chromosome, in all future generations, mixed male
offspring were crossed with NOD females. After 10 generations, whole genome screening for genetic
purity was performed (Jackson Laboratories). Confirmed NOD.α4f/+ and NOD.cre+ mice were
crossed to generate ablators. Genotyping was completed on ear punch DNA using a conventional
3-primer strategy [24]; all putatively α4-deficient mice were additionally phenotyped in blood using
flow cytometry. Throughout this manuscript, we will refer to all α4-homozygous NOD mice, whether
α4+/+ (irrespective of cre status), α4f/+cre- or α4f/fcre-, as “NOD” or “NOD.α4+”, to α4f/+cre+

mice as “α4 haploinsufficient”, and α4f/fcre+ as “NOD.α4-/-“. To observe spontaneous occurrence
of T1D in our cohort, female NOD, haploinsufficient NOD or NOD.α4-/- mice were continuously
recruited until 20 NOD.α4-/- mice had been accrued. For adoptive T-cell transfer experiments,
splenocytes of diabetic NOD mice were bluntly extruded, red blood cells (RBC) lysed in hypotonic
buffer, washed and immunomagnetically enriched using Miltenyi directly conjugated antibody-bead
complexes, CD3-negative selection (Pan T Cell Kit II) or CD4-positive selection (CD4 microbeads) and
AutoMACS according to manufacturer’s instructions (selection reagents and technology Miltenyi,
Bergisch-Gladbach, Germany). Isogeneic recipients, all females aged 8–10 weeks, α4-competent or not,
received 650 cGy irradiation for lymphodepletion, followed by i.v. injection of 5× 106 CD3+ or 2.5× 106
CD4+ splenic T-cells, as previously described [15]. Transplantation used α4-competent 10-12 week-old
pre-diabetic NOD recipients who received lethal irradiation of 1050 cGy followed by i.v. transplants
of 2 × 106 NOD or 10 × 106 NOD.α4-/- bone marrow (BM) cells in a volume of 200 µL, as previously
reported [24]. Peritransplant, drinking water was prophylactically supplemented with 0.02% Baytril
(Bayer, Leverkusen, Germany) [26]. Wherever donor cells were used, cells from 3–5 donors were pooled
to reduce effects of inter-individual variability. Blood glucose level was tested weekly for spontaneous
diabetes cohorts (starting week 8 for untreated and week 4 after transplantation for transplanted mice)
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and thrice weekly after T-cell transfer (starting 1 week after transfer) (ACCU-CHECK Aviva hardware
and consumable; Roche Diabetes Care, Mannheim, Germany). Diabetes was diagnosed based on any
blood glucose level >200 mg/dL on two consecutive days [15]. Prior to stool sampling, mice from
the different cohorts (pre-diabetic NOD, diabetic NOD, NOD.α4-/-) were co-housed for at least one
week, thereafter separated for 48 hours and from each of the mice all stool pellets were collected
into sterile 1.5 mL tubes which were shock-frozen at ≤−80 ◦C and shipped to the Mouse Metabolic
Phenotyping Center, University of California, Davis, California (MMPC). Unless otherwise noted,
mice were kept in groups of up to 5 mice per cage in the vivarium of Goethe University School of
Medicine under conventional (non-specific pathogen-free) conditions in filter top cages with food and
water ad libitum. Mouse experiments were guided by the RRR principles, followed the Association for
Assessment and Accreditation of Laboratory Animal Care International (AAALAC) guidelines for
humane mouse experimentation and were approved by the animal protection authority of the state of
Hessen (approval #F27/K5452).

Cellular immune system: blood was drawn from the facial vein of diabetic α4- competent
NOD control mice or from 20-week-old female NOD.α4-/- mice; after RBC-lysis, peripheral blood
leukocytes were stained with anti-CD45/anti-CD3/anti- CD4/anti-CD8/anti-CD44/anti-CD62L (to
distinguish in the CD4+ and CD8+ compartments naïve, memory and effector cells) [27,28], as well
as anti-CD335 (to detect NK-cells) [29] (all antibodies (ABs) directly fluorochrome labeled, all ABs
Biolegend, Amsterdam, the Netherlands), washed and re-suspended in 7AAD-containing FACS buffer
for acquisition and analysis on an LSR Fortessa flow cytometer (Becton-Dickinson). For detection
of antigen-specific T- cells, lysed peripheral blood was co-stained with anti-CD45, anti-CD3 and
anti-CD8 directly fluorescence-labeled antibodies (all Becton-Dickinson, Heidelberg, Germany) as well
as phycoerythrin (PE)-labeled major histocompatibility (MHC)-I dextramer H-2Kd/VYLKTNVFL
(from islet-specific glucose-6-phosphatase catalytic subunit-related protein, IGRP) according to
manufacturer’s recommendations (Immudex, Copenhagen, DK) for acquisition/analysis on LSR
Fortessa [30]. The same stainings with leukocytes from MHC-disparate C57Bl/6 mice served to
establish the level of unspecific background staining (negative controls). The frequencies shown
for antigen-specific CD8+ T-cells in the NOD or NOD.α4-/- mice are corrected by subtracting mean
background staining from negative controls.

Humoral immune system: B-cell subtypes in BM, spleen and blood were distinguished
by flow cytometry using established antibody panels (anti-CD45/anti-B220/anti-CD24/anti-CD43/

anti-IgD/anti-IgM (for detection of surface IgD/IgM)) [31,32]. To generate benchmarking data for
the capacity of the α4-deficient immune system, mice received three weekly i.m. injections of
1 µg recombinant Hepatitis B surface antigen (HBs) vaccine HBVAXPRO (axicorp Pharma GmbH,
Friedrichsdorf, Germany) and a booster injection in week 12, and anti-HBs titers were measured in
mouse EDTA plasma 1:3 diluted in PBS after 4, 11 and 13 weeks using the ARCHITECT anti-HBs
chemiluminescent microparticle immunoassay on the ARCHITECT i1000SR (Abbott, Wiesbaden,
Germany) according to the manufacturer’s instructions. Anti-insulin autoantibodies were measured in
mouse EDTA plasma using the IAA sandwich ELISA (Elabscience Biotechnology, Houston, Texas, USA)
on the VICTOR X4 multiplate reader (Perkin-Elmer, Rodgau, Germany) as directed by the manufacturer.

Preparation of pancreas-infiltrating lymphocytes: Immediately post-mortally, the pancreas was
located, the jejunum was clamped proximally and distally of the major papilla and collagenase IV
buffer (1 mg/mL in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)) was injected via the
gall bladder. The pancreas was removed into collagenase IV buffer, digested for 15 min in a 37 ◦C
water bath with occasional agitation, subsequently shaken to generate a homogenous cell dispersion.
An excess of HEPES without collagenase was added and the suspension abruptly cooled to stop
the digest, cells were washed twice, then filtered through a 70 µm filter. Under a microscope islets
were picked into Roswell Park Memorial Institute (RPMI) medium with 10% fetal bovine serum
and Pen/Strep and transferred to a cell culture incubator (standard conditions) to allow overnight
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lymphocyte migration into the medium [33]. Cells were co-stained with directly conjugated CD3 and
CD49d antibody for acquisition/analysis on the LSR Fortessa flow cytometer (BD).

Histology and insulitis scoring: pancreata and submandibular glands were prepared from
painlessly killed non-diabetic 8 weeks-old, newly diabetic and “chronically” diabetic (three weeks
after diabetes onset) α4-competent control NOD mice as well as from 40 weeks-old NOD.α4-/- mice.
They were successively paraformaldehyde-fixed (4% v/v), paraffin-embedded, sectioned into 4 µm
thick slices, layered on glass slides, hematoxylin–eosin (HE)-stained and analyzed for insulitis and
sialitis severity, respectively, using established morphological scores, as described [21]. Briefly, islet
without lymphocytic infiltrates were scored as ◦0, minimal focal infiltration as ◦1, peri-islet infiltration
of <25% as ◦2, peri- and intra-islet infiltration of <50% as ◦3, and extensive islet infiltration of ≥50%,
with or without complete destruction of islet tissue and replacement by fibroblasts as ◦4. Sialitis was
scored as number of lymphocyte infiltrates per section [34]. Scoring was blinded and performed by two
independent investigators. Immunofluorescence histology used 10 µm frozen sections incubated with
rabbit-anti-mouse-CD3 (OriGene, Rockville, MD, USA), rat- anti-mouse-Meca32 (BioLegend, San Diego,
CA, USA) and goat-anti-rabbit Alexa488, goat-anti-rat Alexa546 and DAPI (all Invitrogen, Carlsbad,
CA, USA) using standard protocols. Histological specimens were visualized on an Olympus (Tokyo,
JP) BX53 microscope fitted with an Olympus SC30 camera model; image acquisition and analysis were
done with cellSens software (Olympus) or with the BZ-X810 All-in- One Fluorescence Microscope,
Keyence (Neu Isenburg, Germany) and imaging software BZ-X800 Analyzer. No adjustments except
brightness were made.

Microbiota: frozen fecal samples were shipped on dry ice to UC Davis MMPC and Host Microbe
Systems Biology Core. Total DNA was extracted using Mo-Bio (now Qiagen, Venlo, The Netherlands)
PowerFecal kit. Sample libraries were prepared and analyzed by barcoded amplicon sequencing.
In brief, purified DNA was PCR- amplified on the V4 region of the 16S rRNA genes using primers
F319 (5′-ACTCCTACGGGAGGCAG CAGT-3′) and R806 (5′-GGACTACNVGGGTWTCTAAT-3′).
High-throughput sequencing was performed with Illumina MiSeq paired end 250- pb run.
The sequencing data were processed using QIIME2 for 16S based microbiota analyses (Qiime2
version 2018.6.0; QIIME2 Development Team (2017)). For quality filtering and feature (OTU) prediction,
we used DADA2 [35]. Forward and reverse reads were truncated to 260 and 220 nucleotides, respectively.
Representative sequences were aligned using MAFFT [36]. A phylogenetic tree of the aligned sequences
was made using FastTree 2 [37]. OTUs/features were taxonomically classified using a pre-trained
Naïve Bayes taxonomy classifier. The classifier was trained using the Silva 128 97% OTUs [38] for the
310F-806R region. Tables of taxonomic counts and percentage (relative frequency) were generated.
Diversity analyses were run on the resulting OTU/feature biom tables to provide both phylogenetic and
non-phylogenetic metrics of α and ß diversity [39] Additional data analysis (PLS-DA) and statistics
were performed with R. Analyses and bioinformatics were performed by the MMPC.

Statistics: descriptive statistics and Student’s t-tests, with Bonferroni correction for multiple testing
where applicable, were calculated in Excel (Microsoft, Redmond, WA). Non-parametric values were
compared using Mann–Whitney’s U-test calculated with the online tool on www.socscistatistics.com.
Kaplan–Meyer statistics were calculated using the log–rank (Mantel–Cox) test in Prism (GraphPad
Software, San Diego, CA). With the exception of the experiments shown in Figure 1D and Figure S4,
all cohort studies were performed in at least two independent experiments; the cumulative number of
animals from all experiments is given either directly in the figure panel or the accompanying legend.
A p < 0.05 was considered statistically significant.

www.socscistatistics.com
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Figure 1. Diabetes and adaptive immune responses against islet antigens. Diabetes was diagnosed on 
the basis of recurrent hyperglycemia. Spontaneous diabetes development was tracked in α4-WT 
(NOD, blue), α4-haploinsufficient NOD (NOD.α4+/-, grey) and α4-deficient NOD (NOD.α4-/-, red) 
mice. The cumulative diabetes incidence after 40 weeks in the two α4-competent strains was 82% 
(NOD) and 75% (NOD.α4+/-), respectively (p = n.s.), while none of the NOD.α4-/- mice developed 
diabetes (p < 0.001 vs. both α4-competent strains) (A). MHC-I dextramer H-2Kd/VYLKTNVFL 
binding to CD8+ T-cells was assessed by flow cytometry. Shown are representative dot plots for NOD, 
NOD.α4-/- and MHC-disparate C57Bl/6 (negative control) mouse blood (upper panel) as well as 
quantitative analysis (lower panel) where dextramer-positive events in negative control blood were 
subtracted as background (n = 9 per group; p < 0.05) (B). Anti-insulin autoantibodies were quantified 
by ELISA (n = 7 per group; p < 0.05) (C). 5 × 106 CD3+ splenocytes from diabetic donors were 
transferred into young adult non-diabetic NOD or NOD.α4-/- hosts. All recipients became diabetic, 
but onset of diabetes was significantly delayed in NOD.α4-/- hosts (p < 0.05) (D). 2.5 × 106 CD4+ 
splenocytes from diabetic donors were transferred into young adult non-diabetic NOD or NOD.α4-/- 
hosts. NOD rapidly became diabetic, while NOD.α4-/- were immune (p < 0.05) (E). Lethally irradiated 
pre-diabetic young female NOD mice received bone marrow transplants from NOD or NOD.α4-/- 
donors. Recipients of NOD bone marrow became diabetic with typical kinetics, while recipients of 
NOD.α4-/- bone marrow were protected (p < 0.001) (F). Asterisks indicate statistical significance at the 
0.05 (*) or 0.005 (***) level. 

3. Results 

3.1. Generation of NOD.α4-/- Mice 

Hematopoietic specific ablation of the α4 integrin under the control of the tie2 promoter was 
described previously [24]. Tie2Cre+ and α4f/f mice were individually inbred into the NOD 
background for 10 generations. NOD strain background was confirmed using whole genome 
screening (Figure S1A); the strains we then crossed to generate NOD.α4f/fTie2cre+ (NOD.α4-/-) mice 
(Figure S1B,C for genotyping strategy and exemplary results). NOD.α4-/- mice were efficiently α4 

Figure 1. Diabetes and adaptive immune responses against islet antigens. Diabetes was diagnosed on
the basis of recurrent hyperglycemia. Spontaneous diabetes development was tracked in α4-WT (NOD,
blue), α4-haploinsufficient NOD (NOD.α4+/-, grey) and α4-deficient NOD (NOD.α4-/-, red) mice.
The cumulative diabetes incidence after 40 weeks in the two α4-competent strains was 82% (NOD)
and 75% (NOD.α4+/-), respectively (p = n.s.), while none of the NOD.α4-/- mice developed diabetes
(p < 0.001 vs. both α4-competent strains) (A). MHC-I dextramer H-2Kd/VYLKTNVFL binding to
CD8+ T-cells was assessed by flow cytometry. Shown are representative dot plots for NOD, NOD.α4-/-
and MHC-disparate C57Bl/6 (negative control) mouse blood (upper panel) as well as quantitative
analysis (lower panel) where dextramer-positive events in negative control blood were subtracted as
background (n = 9 per group; p < 0.05) (B). Anti-insulin autoantibodies were quantified by ELISA (n = 7
per group; p < 0.05) (C). 5 × 106 CD3+ splenocytes from diabetic donors were transferred into young
adult non-diabetic NOD or NOD.α4-/- hosts. All recipients became diabetic, but onset of diabetes
was significantly delayed in NOD.α4-/- hosts (p < 0.05) (D). 2.5 × 106 CD4+ splenocytes from diabetic
donors were transferred into young adult non-diabetic NOD or NOD.α4-/- hosts. NOD rapidly became
diabetic, while NOD.α4-/- were immune (p < 0.05) (E). Lethally irradiated pre-diabetic young female
NOD mice received bone marrow transplants from NOD or NOD.α4-/- donors. Recipients of NOD
bone marrow became diabetic with typical kinetics, while recipients of NOD.α4-/- bone marrow were
protected (p < 0.001) (F). Asterisks indicate statistical significance at the 0.05 (*) or 0.005 (***) level.

3. Results

3.1. Generation of NOD.α4-/- Mice

Hematopoietic specific ablation of the α4 integrin under the control of the tie2 promoter was
described previously [24]. Tie2Cre+ and α4f/f mice were individually inbred into the NOD background
for 10 generations. NOD strain background was confirmed using whole genome screening (Figure
S1A); the strains we then crossed to generate NOD.α4f/fTie2cre+ (NOD.α4-/-) mice (Figure S1B,C
for genotyping strategy and exemplary results). NOD.α4-/- mice were efficiently α4 ablated in the
hematopoietic lineage, specifically also on T-cells (Figure S1D). Albeit being born at slightly less than
Mendelian ratios, NOD.α4-/- were normal-sized and healthy-appearing.
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The α4-/- cellular immune system was previously tested and its overall functionality confirmed
for C57Bl/6 mice, although several models of autoimmune disease were markedly attenuated in α4-/-
mice [40,41]. We assessed distribution of T-cells in NOD.α4-/- blood and spleen of naïve, effector
and memory cells in both cytotoxic and helper cell compartments, as well as relative frequency of
T-cells (Figure S2A–C) and found them to be very similar in NOD and NOD.α4-/- cells. Both strains
also had similar numbers of NK cells (Figure S2D). The α4-/- humoral immune system has received
less attention; for NOD.α4-/- mice, here we show quantitatively normal B-cell maturation in spleen,
blood and bone marrow (BM) (Figure S3A–C, respectively) as well as demonstrating—in an innovative
murine immunization model—that α4-deficiency does not impair the humoral immune response
including B-memory function per se (Figure S3D), although antibody titers were significantly lower in
NOD.α4-/- than in NOD mice (p < 0.05).

3.2. NOD.α4-/- Mice Are Protected from Autoimmune Diabetes

Twenty female NOD.α4-/- mice and all concurrent female NOD (wild-type; n = 62) or NOD.α4+/-
(α4 haplo-insufficent; n = 59) mice were continuously accrued and observed for a total of 40 weeks
for development of T1D. NOD and NOD.α4+/- became diabetic with indistinguishable kinetics
(p = n.s.), with the first mice manifesting at 9–10 weeks of age, reaching peak cumulative incidence
of 75–80% at age 40 weeks and dying or requiring painless killing within 1–3 weeks of diabetes
onset. By contrast, NOD.α4-/- mice were completely protected from diabetes (cumulative incidence,
0%; p < 0.001 (lLog–rank test) vs. NOD and NOD.α4+/-; Figure 1A). Because of the absence of a
distinctive (e.g., attenuated) phenotype of the α4 haplo-insufficient mice, all further experiments
considered haplo-insufficient mice as α4-competent. Henceforth, we will solely distinguish between
NOD (α4-competent) and NOD.α4-/- mice.

3.3. Adaptive Cellular and Humoral Immune Responses of NOD.α4-/- Mice against Islet Cell Antigens

In spite of their diabetes resistance, NOD.α4-/- mice tested positive for both circulating islet-antigen
specific cytotoxic T-cells (Figure 1B) and islet autoantibodies (Figure 1C), albeit both quantitatively
significantly less than the α4-competent counterparts (p < 0.05 for both). However, these islet-antigen
specific α4-/- T-cells were apparently incapable of infiltrating islets, while α4 competent NOD mice
showed significant insulitis already at the age of 8 weeks of life (Figure 2A,B and Figure 3A,B; NOD.α4-/-
vs. pre-diabetic 8 week-old NOD (p = 0.0037), vs. newly diabetic (p = 0.0006) and vs. longer-term
diabetic (p = 0.0007) NOD mice; comparison of the three NOD cohorts with one another: p = 0.097–0.47,
n.s.). NOD.α4-/- mice were also protected from the characteristic autoimmune sialitis which in NOD
mice was characterized by large T-lymphocyte infiltrates at young adult age and eventually progressed
to virtually complete destruction of the acini (Figure 2C,D and Figure 4A,B; p < 0.001).

3.4. Adoptive Transfer of a Mix of Diabetogenic α4+ Helper and Cytotoxic T-Cells, but Not α4+ Helper T-Cells
Alone, Induce Diabetes in NOD.α4-/- Mice

Our knock-out mice provided the opportunity to perform some unique adoptive immune transfer
experiments that could not be addressed with anti-functional antibodies. Using NOD or NOD.α4-/-
mice as recipients of negatively selected CD3+ splenocytes from diabetic mice, both recipient groups
developed diabetes within two (NOD) or four (NOD.α4-/-) weeks. The delay was statistically significant
(Figure 1D; p < 0.05). When the diabetic NOD.α4-/- hosts were bled, their pancreata were harvested,
and host vs. donor T-cells were analyzed, T-cells isolated from islets were exclusively donor-derived,
i.e., α4+, despite representing only a minor fraction (13.6%) of T cells in the blood (Figure S4). We next
tested the ability of α4+/CD4+ spleen T-cells to cause diabetes, with a most remarkable outcome: all
NOD hosts developed diabetes, as before with very short latency, while NOD.α4-/- recipients were
completely protected (Figure 1E; p < 0.01).
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Figure 2. Histological analysis of pancreas islets and submandibular glands. Histological evaluation 
of lymphocyte infiltration of pancreas islets (A,B) and submandibular glands (C,D). Exemplary 
appearance of diabetic NOD or age-matched NOD.α4-/- pancreas (A) and quantitative analysis of 
insulitis severity in the indicated groups (B). Each dot represents the average insulitis score from 
multiple non-consecutive sections from one animal, the bar marking the mean (n = 5 (NOD) to 8 
(NOD.α4-/-) animals per group; p < 0.005 for NOD.α4-/- vs. each of the NOD groups, p = n.s. between 
NOD groups). Inset images of islets in (B) exemplify the 5-grade histological scoring system between 
0 and 4. Exemplary appearance of NOD or NOD.α4-/- submandibular glands (C) and enumeration of 
sialitis score (D). Each dot represents the average sialitis score from multiple non-consecutive sections 
from one animal, the bar marking the mean (n = 5–6 animals per group; p < 0.001). Asterisks indicate 
statistical significance at the 0.005 (***) level. 

Figure 2. Histological analysis of pancreas islets and submandibular glands. Histological evaluation of
lymphocyte infiltration of pancreas islets (A,B) and submandibular glands (C,D). Exemplary appearance
of diabetic NOD or age-matched NOD.α4-/- pancreas (A) and quantitative analysis of insulitis severity in
the indicated groups (B). Each dot represents the average insulitis score from multiple non-consecutive
sections from one animal, the bar marking the mean (n = 5 (NOD) to 8 (NOD.α4-/-) animals per group;
p < 0.005 for NOD.α4-/- vs. each of the NOD groups, p = n.s. between NOD groups). Inset images of
islets in (B) exemplify the 5-grade histological scoring system between 0 and 4. Exemplary appearance
of NOD or NOD.α4-/- submandibular glands (C) and enumeration of sialitis score (D). Each dot
represents the average sialitis score from multiple non-consecutive sections from one animal, the bar
marking the mean (n = 5–6 animals per group; p < 0.001). Asterisks indicate statistical significance at
the 0.005 (***) level.
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green, Meca32: red, merged fluorescence image including DAPI; 20× original magnification; 100 μm 
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Figure 3. Pancreas immunofluorescence histology of young adult non-diabetic mice. Pancreas from
NOD (A) and NOD.α4-/- (B) young adults is shown, with a prominent lymphocyte infiltrate in (A).
Adjacent sections were used for hematoxylin–eosin (HE) or immunohistochemistry staining (CD3:
green, Meca32: red, merged fluorescence image including DAPI; 20× original magnification; 100 µm
size bars in image).

3.5. α4 Ablation Protects Pre-Diabetic NOD Mice from Diabetes

As α4 blockade is efficacious in established autoimmune disease like multiple sclerosis and
inflammatory bowel disease in humans, we furthermore asked whether α4 ablation could also prevent
autoimmune diabetes in young adult pre-diabetic NOD mice, i.e., in mice with established insulitis but
with residual islet cell function and thus still normoglycemic. Eight to ten week-old female NOD hosts
were radio-conditioned followed by transplantation with young female α4 competent non-diabetic
NOD or NOD.α4-/- bone marrow. Both engrafted promptly and completely, and recipients of α4
competent NOD bone marrow developed diabetes with similar kinetics and cumulative incidence as
for spontaneous NOD diabetes. Thus, in agreement with published work [42], lethal irradiation and
transplantation by itself does not affect the outcomes as most NOD bone marrow recipients became
diabetic 12–25 weeks after transplantation. All NOD mice reconstituted with α4-/- hematopoiesis, in
contrast, remained diabetes-free (Figure 1F; p < 0.001).

3.6. Pre-Diabetic NOD Mice Have Normal Microbiota

Altered microbiota have been described in several autoimmune disorders including diabetes.
Whether the autoimmune disease is a cause or consequence of the dysbiosis remains unclear [43–45].
Our model afforded us the unique opportunity to co-houseα4-competent and -deficient mice. Over time,
some of the α4-competent ones eventually became diabetic. Mice exhibiting coprophagia, co-housing
were expected to result in maximally similar microbiota. Indeed non-diabetic (or more precisely,
pre-diabetic) NOD and diabetes-resistant NOD.α4-/- mice had essentially indistinguishable microbiota.
Similarity extended to both α-diversity (Shannon α-diversity; p = 0.75) and abundance or absence
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of certain components. By contrast, α-diversity was markedly restricted in diabetic NOD mice
(p = 0.02 and 0.04 compared to non-diabetic NOD and NOD.α4-/- mice, respectively, Figure 5A).
Moreover, certain genera were completely extinct, such as Ruminococcus, Prevotella and Candidatus
Saccharimonas, or over-represented (Bacteroidales S24-7 group) in the feces of diabetic NOD mice
(Analysis of Composition of Microbiomes (ANCOM) scores 0.7 or greater for all; Figure 5B–E).
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Figure 5. Microbiota analysis. Feces from 5 non-diabetic NOD, 5 NOD.α4-/- and 9 diabetic NOD mice
were subjected to microbiota analyses. Microbiota diversity of diabetic mice was restricted (Shannon
α-diversity p < 0.05 diabetic NOD compared to both non-diabetic groups; p = n.s. between non-diabetic
NOD and NOD.α4-/-) (A) and marked by appearance (B), extinction (C,D) or quantitative depletion (E)
of unique taxa (ANCOM score ≥ 0.7 for all four; box plot marking interquartile range and median; Dots
mark outlier values).
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4. Discussion

Several studies reported effects of anti-functional anti-integrin antibodies in mice which
experiments with genetic models subsequently unraveled as artifacts (for a recent example, see: [46]).
Therefore, although work with anti- functional antibodies in NOD mice [15,19–21] had in principle
indicated contributions of α4 integrin to insulitis and diabetes (although their magnitude was discussed
controversially), we sought to reappraise the issue with an NOD.α4 knock-out mouse. Furthermore,
the knock-out mouse could address certain questions which were inaccessible with anti-functional
antibodies or had previously remained unanswered. Specifically, hematopoietic integrin knock-out
mice allow the separation of effects of circulating vs. resident and hematopoietic vs. stromal cells,
as well as interrogation of contributions of isolated sub-populations. The unique, or novel, insight
provided by the newly generated NOD.α4-/- mouse is discussed below.

For one, certain short-comings of published studies with xenogeneic anti-functional antibodies
in NOD mice [15,19–21] could not be ruled out by the design of the published studies, including
immunological reactions which could cause anti-diabetic inflammatory responses or opsonization
and lymphodepletion, or simple pharmacological effects such as dosing and dose interval. In the
published work, protection was mostly only relative and highly variable between studies; the n in
most studies was small [15,21]. As we are conclusively showing in a large cohort, α4 ablation affords
perfect protection from T1D and autoimmune insulitis, thus, definitively validating prior work with
our distinct experimental approach (Figures 1A and 2A,B).

Secondly, some tools for more mechanistic assessment of anti-islet immune responses were until
quite recently not available so that earlier work regarding α4 in T1D had predominantly provided
phenotypic analyses [15,19–21]. Using MHC multimer reagents (H-2Kd with peptide VYLKTNVFL
from IGRP), we clearly identified islet antigen-specific T-cells in NOD.α4-/- mice. To study the
NOD.α4-/- humoral immune system, we developed a novel, highly sensitive, specific and quantitative
immunization model. The assay informs of the principle ability of the mice to initiate adaptive humoral
responses and to establish humoral memory. Indeed we know that patients treated with anti-functional
anti-α4 antibodies are capable of B-cell responses [47]. The attenuated humoral response to the
immunization observed here (Figure S3D) is proportionally reflected by the reduced islet autoantibody
titers (Figure 1C). Thus, α4 deficiency prevents neither cellular nor humoral responses against islet
autoantigens. Instead, α4-/- T-cells fail to migrate into the target tissue (Figure 2A,B and Figure S4).
The observation teaches that adaptive immunity against islet antigens arises in extra-pancreatic
compartments and is not critically dependent on α4 integrin. Moreover, islet autoantibodies by
themselves do not induce diabetes. This conclusion is in line with clinical observations in patients with
established MS and IBD, where therapeutic α4-blockade remains effective in the presence of significant
numbers of antigen-specific T-cells in and inflammation of target tissues [16–18,47]. With our transplant
experiments, whereby pre-diabetic α4+ recipients were made diabetes-resistant with transplants from
NOD.α4-/- donors, we extend this paradigm to T1D (Figure 1F).

Thirdly, a genetic model can target integrins on selected immune cell species as opposed to the
invariably ubiquitous inhibition achieved by antibodies. We thus performed some unique experiments
with mixed chimeras for α4+ and α4-/- T-cells. Transfer of α4+ splenocytes from diabetic donors to
NOD or NOD.α4-/- mice induced diabetes with 100% penetrance, albeit with a marked delay in the
NOD.α4-/- mice (Figure 1D). We take this temporal delay to indicate differential recruitment velocity of
autoaggressive T-cells to inflamed (in the pre-diabetic α4+ recipients) vs. bland (in the α4-/- recipients)
islets. Alternative or complimentary explanations for the differential kinetics of adoptively transferred
diabetes include overall more rapid activation and proliferation of these T-cells in the inflammatory
milieu of the pre-diabetic NOD mouse although one might expect the radiation-induced inflammation
to override subtle systemic effects of insulitis. Possibly, reduced islet cell reserve in pre-diabetic hosts
can contribute to relative disease acceleration, less optimal interaction with contributing α4-/- than
with WT non-T-host cells to slight attenuation. Importantly, although markedly under-represented in
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blood, all T-cells recovered from pancreata of these mixed chimeras were α4+ (Figure S4). Thus, even
inflamed islets infiltrated with α4+ T-cells cannot co-recruit α4-/- T-cells.

While transfer of diabetic donor CD8+ cells alone cannot elicit diabetes [48], a highly variable
diabetogenic potential of diabetic donor CD4+ cells has been reported [48–51]. In some cases, co-injected
contaminating CD8+ T-cells could be imputed [49]. Importantly, these data were generated with
immunodeficient NOD/SCID hosts which lack endogenous lymphocytes which the donor cells could
coopt and whose antigen presentation is defective [52]. From these data, Janeway et al. conclude that
although in principle CD4+ T-cells are capable of T1D induction, this process is much more efficient in
the presence of CD8+ T cells [48]. In our immunocompetent NOD hosts, transfer of highly purified
CD4+ cells from diabetic donors caused diabetes in all α4+, yet none of the α4-/- recipients. Thus CD4+

T-cells are actually quite efficient at inducing diabetes if they can recruit and instruct additional α4+

host immune cells, presumably CD8+ lymphocytes. α4-/- immune cells, whether innate or adaptive,
cannot support α4+/CD4+ to induce islet cell destruction.

Fourth, the reciprocal relationship between host and gut microbiota has been the focus of a
significant body of recent work [43–45]. The association of a given disease with recurrent alterations of
the microbiota has sometimes been interpreted as indicative of a causal relationship: According to
that hypothesis, the aberrant microbiota was hypothesized to arise spontaneously and to exacerbate
the pathology [53,54]. Clearly, dysbiosis with pathogenic bacteria can attenuate diabetes proneness
in the NOD mouse [55]. Our NOD.α4-/- mice afforded the opportunity to study the microbiota in
unperturbed co-housed pre-diabetic, newly diabetic or diabetes- resistant NOD mice. We pursued
two aims, the first seeking to ascertain whether a universal “diabetic microbiota” exists, by comparing
our data with published work in other diabetes models [43–45,53–56]. Secondly, our genetic model
should be able to answer the question of cause and causality of diabetes and dysbiosis. Indeed,
we observed a marked dysbiosis in the diabetic NOD mice, with significantly reduced diversity and
selection/de-selection of certain bacterial genera (Figure 3). Both lack of diversity and the specific
changes in the microbiota are similar in nature and magnitude, and they also affect some of the same
genera as were previously reported for other diabetes models [43–45,53–56]. Common denominators
include the appearance of Bacteroidales and extinction of Prevotella in diabetic NOD mice [53,54,56].
Pre-diabetic and diabetes-resistant NOD mice’s microbiota, however, was indistinguishable. Thus the
“diabetic” flora only establishes itself once the mice are hyperglycemic. The scientific community is
currently beginning to understand nutrient preference of microbial taxa in situ; apparently certain gut
metabolites select or de-select specific microbes. Thus, Cand. Saccharimonas, extinguished from the
microbiota of the diabetic hosts, [57] negatively correlates with methylamine in stool, with methylamine
being a product of amine catabolism which is increased in diabetes. The aggregate evidence thus
suggests that in the model presented here, abnormal microbiota is consequence, not a cause of diabetes
in NOD mice, likely secondary to an altered fecal metabolome.

Fifth, our model conclusively demonstrates for the first time the critical dependence on α4 integrin
for development of autoimmune sialitis in NOD mice. In earlier work [19,20], administration of
α4-blocking antibody for the first four weeks of life had failed to affect frequency and severity of sialitis
at 42 weeks of age. Since the same antibody regimen had provided long-term protection from diabetes,
the authors had thus concluded about α4-independence of NOD sialitis. The probable explanation for
these divergent findings is that likely long-term α4-blockade is required to prevent sialitis.

Sixth, protection of pre-diabetic recipients of α4-negative hematopoietic transplants documents
the potential of α4-targeted therapy to prevent diabetes even after sensitization and islet cell infiltration
have occurred, i.e., in a clinically relevant scenario. Similar experiments in new-onset diabetic mice
failed due to the rapid disease progression after diagnosis.
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Short-comings of the NOD model as a model of human T1D deserve brief mentioning. The strain
is characterized by numerous immunological defects, including aberrant down-regulation of MHC in
response to IFNγ [58], apoptosis-deficient lymphocytes [59], abnormal function of antigen-presenting
cells and natural killer-cell dysfunction [60], as well as complement C5 deficiency [61], together
translating into a general defect in the development of regular immune tolerance [62]. Possibly in part
due to these abnormalities, but also due to a timing which is hard to reproduce in humans, i.e., long
before diabetes onset [9], of the long list of interventions capable of attenuating diabetes risk in NOD
mice most have failed to be confirmed in humans [9]. With respect to α4 we believe, however, that the
ability of α4-blocking antibody to modify the course of certain established autoimmune diseases
predicts that the situation may be different. We thus predict that α4 blockade during pre-diabetes
(after islet-specific autoantibodies can be detected) or even in recent-onset diabetes can be arrested
or reversed. Alternative animal models of spontaneous diabetes, most famously the biobreeder (BB)
rat [63], have been described, each with their own idiosyncrasies, but for the work presented here the
NOD model appears to be meaningfully informative.

5. Conclusions

In summary, we show that NOD.α4-/- mice are diabetes resistant despite developing adaptive
immunity, albeit attenuated, against islet cell autoantigens. Transfer of diabetogenic CD4+ T-cells did not
cause diabetes in NOD.α4-/- mice. Diabetic NOD mice have a “diabetic” microbiota which is markedly
distinct from the microbiota of co-housed pre-diabetic NOD and NOD.α4-/- mice, implying that in the
absence of external selection pressure on the microbiome (e.g., with antibiotics), host factors—likely
nutritional—select the microbiota. NOD.α4-/- mice are protected against autoimmune sialitis. The data
provided in this paper have immediate translational potential, since relatively safe, tolerable and highly
effective α4-targeting reagents of pharmaceutical quality, i.e., the anti-functional anti-α4-antibody
Natalizumab, are readily available. Certainly during the pre-diabetic phase characterized by
normoglycemia with circulating islet antigen antibodies, α4-blockade would be expected to provide
secondary diabetes prevention. We also posit that therapeutic α4-blockade in children with recent-onset
diabetes will be able to preserve the residual islet cell mass and allow for its regeneration, thus at least
delaying T1D until a less fragile age, ideally beyond puberty.
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