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Abstract: Largely unnoticed, all life on earth is constantly exposed to low levels of ionizing 13 
radiation. Radon, an imperceptible natural occurring radioactive noble gas contributes as the largest 14 
single fraction to radiation exposure from natural sources. For that reason, radon represents a major 15 
issue for radiation protection. Nevertheless, radon is also applied for the therapy of inflammatory 16 
and degenerative diseases in galleries and spas to many thousand patients a year. In either case, 17 
chronic environmental exposure or therapy, the effect of radon on the organism exposed is still 18 
under investigation at all levels of interaction. This includes the physical stage of diffusion and 19 
energy deposition by radioactive decay of radon and its progeny and the biological stage of 20 
initiating and propagating a physiologically response or inducing cancer after chronical exposure. 21 
The purpose of this manuscript is to comprehensively review the current knowledge on physical 22 
background, associated cancer risk of radon and its progeny and potential therapeutic effects. 23 

Keywords: radon therapy, low doses, α-particles, clinical studies, anti-inflammatory effects, 24 
changes immune activation, osteoimmunological changes 25 

 26 

1. Introduction 27 
Radon is a naturally occurring, radioactive noble gas that contributes as the largest single 28 

fraction to radiation exposure from natural sources [1]. It is produced by various decay chains of 29 
uranium and thorium and has no stable isotopes [2], however, there are three natural occurring 30 
isotopes: 222Rn with a half-life of 3.825 days, originating from the uranium series, 220Rn (thoron, 31 
T1/2 = 55.6 s) derived from the thorium series and 219Rn (actinon, T1/2 = 3.96 s) from the actinium 32 
series [3]. As these isotopes are noble gases, there are no known chemical interactions at physiological 33 
temperatures [4]. 34 

In 1899, Rutherford and Owens discovered radiation emanating from thorium oxide and 35 
uranium [5]. In further studies, Rutherford identified a radioactive substance, permanently emitted 36 
from thorium compounds, which turned out to be 220Rn [6]. In parallel, Marie and Pierre Curie 37 
discovered the 222Rn isotope by studying the emanation from radium, which stayed radioactive for 38 
several days due to the comparatively long half-life of this isotope [7]. Based on the work of 39 
Rutherford and Curie, Dorn confirmed their results with both, uranium and thorium [8], while 40 
Debierne discovered the isotope 219Rn by measuring radioactive emanation from actinium [9]. 41 

Because of their half-life’s of 3.8 days and 55.6 seconds respectively, 222Rn and 220 Rn isotopes 42 
are the only radon-nuclides that exist long enough to emanate from natural rocks and soil where they 43 
are formed. Due to its short half-life, 220Rn has a shorter diffusion length than 222Rn. Nevertheless, 44 
if 220Rn is present, it can contribute upsignificantly to 50% of the total inhalation dose and should 45 



Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 47 

 

not be neglected [10]. Thus, both isotopes, 222Rn as well as 220 Rn, are the only significant 46 
contributors to human radon exposure from natural sources [1]. After emanation in ambient air, 47 
radon isotopes accumulate indoors and represent the most important contributor to annual radiation 48 
dose of the population [11,12]. However, the radon activity concentrations in homes highly depend 49 
on geological conditions such as the uranium respectively thorium content orand the gas 50 
permeability of the soil. In addition, anthropogenic factors such as building materials, ventilation 51 
systems or living habits play a significant role. Interestingly, some building materials are not only 52 
sources for indoor 222Rn but also 220Rn exposure [1] and its concentration varies considerably, with 53 
the distance from the wall and the airflow [13]. All these facts together lead to large regional 54 
differences [12,14,15] and, in average, to higher radon concentration indoors than outdoors [16]. 55 
Regions like Kerala in India and cities like Yangjiang (China) or Ramsar (Iran) have particularly high 56 
radon concentrations in soil and indoors [17]. However, not only indoor accumulation, but also 57 
showering with radon containing water releases radon to moist air which represents a substantial 58 
source of radon exposure [18]. This fact is supported by measurements of the radon activity 59 
concentration in spa treatment rooms during filling of the bathing tubes enhancing radon activity 60 
concentrations [19]. Nevertheless, the level of radon daughter nuclides usually remains low during 61 
filling, since they attach to vapor and are removed by ventilation and air circulation [20]. Intake of 62 
radon via drinking radon containing water represents a minor source of exposure compared to 63 
inhalation [21]. 64 

Table 1. Decay scheme of 222Rn and 220Rn [22] 65 
222Rn 220Rn 

nuclide half-life decay-mode nuclide half-life decay-mode 
222Rn 3.825 d α 220Rn 55 s α, γ 
218Po 3.05 min α 216Po 0.15 s α 
214Pb 26.8 min β, γ 212Pb 10.64 h β, γ 
214Bi 19.9 min β, γ 212Bi 60.6 min α, β, γ 
214Po 164 µs α 212Po 304 ns α 
210Pb 22.3 a β, γ 208Tl 3.05 min β, γ 
210Bi 5.0 d β, γ 208Pb stable  

210Po 138.4 d α     

206Pb stable       

 66 
Both radon isotopes disintegrate into several instable daughter nuclides, emitting different 67 

radiation types (see Table 1). After decay in air, the nuclides react in less than one second with trace 68 
gases and air vapor, forming clusters of 0.5-5 nm size, also called the “unattached progeny”, which 69 
are positively charged and highly mobile [23,24]. Within 100 s, those clusters may attach to aerosol 70 
particles by diffusion, described by gas kinetic laws. The parameter that mostly influences the fraction 71 
of attached daughter nuclides is the number of aerosols [25] with the influence of electrostatic forces 72 
considered to be negligible [23,26]. The formed particles build the “attached progeny” for which 73 
diffusion coefficient measurements showed three distinct size ranges. These are called nucleation 74 
mode covering sizes from 10-100 nm, accumulation mode with particle sizes ranging from 100-450 75 
nm and the coarse mode for particles larger than 1 µm [1]. The size distribution is strongly influenced 76 
by the aerosol mixture in the air. Accordingly, all studies show slightly different results but were 77 
consistent in the fact that the highest activity originates from radon decay products bound to aerosols 78 
associated with the accumulation mode [1,25,27]. Moreover, measurements showed that over 90 % 79 
of the activity is associated with the “attached progeny” while the “unattached progeny” accounts 80 
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for only 10 % [21,23] being in turn 3 to 5 times more effective in dose commitment due to its smaller 81 
size [28]. 82 

Once built, solid daughter nuclei deposit on surfaces such as walls and furnitures by different 83 
mechanisms (sedimentation, impaction, interception and diffusion), resulting in a lower activity 84 
concentration of the decay products in indoor-air than expected from equilibrium with radon [23,27]. 85 
This and other removal processes reduce the concentration of radon decay products, depending on a 86 
number of interlinked parameters such as the loss by radioactive decay, ventilation or the 87 
aforementioned deposition on room surfaces [29]. 88 

2. Intake and distribution of radon in the human organism 89 
There are different routes of intake for radon and its solid progeny into the human body: during 90 

inhalation through the epithelial surfaces of lung, uptake through the skin while bathing in radon 91 
containing water and by ingestion via the gastrointestinal tract by drinking radon containing water. 92 
The incorporation of radon via drinking water is not further addressed here, as this route only plays 93 
a minor role for therapeutic application as well as public health [21].  94 
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2.1. Inhalation 95 
The primary route of incorporation is inhalation, which occurs in radon galleries and in radon 96 

contaminated buildings, leading to diffusion of radon gas through the lung epithelium and 97 
deposition of the solid progeny in the lung. The α-particles originating in this decay chain are the 98 
major contributors to the physical absorbed dose, whereas β- and γ-decay contributes for around 10% 99 
of the deposited energy [28,30]. For radiation protection purposes a proper risk assessment is 100 
necessary and the exposure to certain radon activity concentrations has to be converted into an 101 
effective dose. For this the absorbed energy has to be determined leading to the physical dose which 102 
is multiplied with radiation and organ specific weighting factors, taking into accountconsidering the 103 
ionization pattern of various radiation types and the relative sensitivity of different tissues. 104 

Considering the inhaled progeny, the lung equivalent-dose contributes to more than 95% of the 105 
total effective dose [31], because the progeny will largely deposit on the surface of the respiratory 106 
tract and decay before clearance can occur [1,28]. Additionally, simulations with various models of 107 
chronic exposure suggest, that decay products cover more than 95% of the total effective dose 108 
received by exposure to radon while the radon gas itself contributes to less than 5% [1,28,31-33]. The 109 
reason is that presumably only about 1% of the inhaled gas is absorbed by the blood [33,34]. 110 
Assuming the inhalation of pure radon gas without progeny, simulations revealed that 30-50% of the 111 
effective dose is deposited in the lung due to radon decay in the airways. 112 

Model calculations based on animal experiments describe the deposition of particles which is 113 
different for attached and unattached radon progeny. The aerosols to which the progeny are attached 114 
show different characteristics (size, shape and others). If combined with detailed morphometry and 115 
physiological parameters of the lung (breathing pattern und lung geometry) three different 116 
deposition mechanisms are to be discriminated: inertial impaction, sedimentation and diffusion. (see 117 
Figure 1). Despite these measurements are not being performed with radon decay products, the basic 118 
mechanisms are supposed to be the same. Although there are a lot of simulations, the exact dose to 119 
different parts of the lung remains unclear as there are no experimental data to ascertain these 120 
simulations.  121 

In the upper region of the respiratory tract (nasopharynx, trachea and upper bronchi), particles 122 
with 2-20 µm diameter keep their trajectory, despite changes in direction of air stream because of 123 
their inertial momentum and get stuck there. This process is called inertial impaction. Sedimentation 124 
describes the settling of smaller particles (0.1-50 µm) due to gravity in the upper respiratory tract and 125 
mainly in bronchioles and alveoli. Diffusion due to Brownian motion increases with decreasing 126 
particle size (< 0.2 µm) and predominates in the gas exchange regions of the lung, whereby the 127 
“unattached progeny” (0.5-5nm) mainly deposits directly after entering the respiratory tract (see 128 
Figure 1). The total lung deposition shows a minimum for particle sizes ranging from 0.2-0.5 µm [35-129 
37] as these particles are too lightweight for sedimentation but have a decreased diffusion coefficient 130 
due to their size. Moreover, turbulences and inverse flows cause an inhomogeneous deposition 131 
pattern and hot spots of deposition at bifurcations from larger into smaller airways [37].  132 

 133 
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 134 
Figure 1. Different deposition mechanism for attached and unattached particles with various 135 

particle sizes. Drawing was taken from OpenClipart-Vectors on Pixabay under Creative 136 
CommonsCC0. 137 

 138 
In the lung models used by the International Commission for Radiation Protection (ICRP), are 139 

considered to have different sensitivities to radiation at different regions of the respiratory tract [1] 140 
and basal and mucous cells in the bronchial epithelium are regarded as particularly radiosensitive 141 
[38]. Further, simulation studies suggest, that the highest dose from radon decay products is 142 
deposited at the bifurcation of the trachea [39] with the latter not to be the most sensitive region. 143 

Beside deposition, the reversed process of removal has to be considered for dose estimation. 144 
After deposition, solid daughter nuclei can be eliminated by clearance mechanisms. General 145 
knowledge about the physiological mechanisms suggest three primary routes of clearance: via the 146 
blood streambloodstream, the lymphatic drainage system or the gastrointestinal tract [35], depending 147 
on the characteristics of the particles used and the settings of the respective experiments (e.g. particle 148 
number, location in the respiratory tract) [40-42]. In the trachea or bronchial tubes, clearance mostly 149 
occurs by mucociliary transport or phagocytosis by pulmonary alveolar macrophages. Below the 150 
ciliated airways in the area of gas exchange, clearance and transport to other tissues takes place via 151 
the bloodstream, lymphatic channels or phagocytosis. Depending on the main mechanism of 152 
clearance different regions of the respiratory tract show different predominant clearance rates, 153 
whereby a superimposition of different clearing rates can occur in one lung region. [35,40,43]. 154 

2.2. Incorporation via skin 155 
In homes and especially in radon galleries, inhalation of radon via the lung plays a dominant 156 

role in radon uptake. In spa treatments with radon containing water and in vapor cabinets, radon 157 
and its progeny enter the body via the skin epithelium, while inhalation only plays a minor role as 158 
the head of the patients usually remains outside the treatment tub in the well -ventilated treatment 159 
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rooms [44]. In open bath tubes radon and progeny containing vapor is also inhaled through the lung 160 
[45].  161 

As for the lung epithelium, radon can diffuse through the skin. When reaching the blood 162 
streambloodstream, it is distributed throughout the body. A part is transported back to the lung and 163 
exhaled [46]. After entering radon containing water, the radon activity concentration in the exhalation 164 
air of patients undergoing spa therapy increases very fast, reaching saturation levels after 165 
approximately 20 minutes [46]. Afterwards, it is reported that radon is removed via breathing in an 166 
exponential fashion within a few minutes [44], whereas the decay products are mainly eliminated via 167 
excretion [47]. This means that the uptake and elimination of radon in and out of the human body is 168 
a fast process, while the decay products can stay in the body for considerably longer time. 169 

For radon bathing, it was stated that a minor fraction of the radon progeny will be abdsorbed by 170 
the skin, but the major part will be desorbed after their decay. In radon galleries and vapor bathes, 171 
this is not the case and radon progenies will stay on the skin. In both cases, radon progeny deposit a 172 
considerable energy to the skin, which is higher after treatment in a radon gallery than after radon 173 
bath [48,49]. According to experimental results reported by Tempfer and colleagues the radon 174 
progeny activity shows an exponential decrease with skin depth to 20-30 % of the surface activity at 175 
a depth of 20 µm [48]. This is attributed to diffusion and transport of progeny along hair capillaries 176 
and micro-crevices [48]. 177 

2.3. Distribution 178 
Measurements of the distribution of primary radon in the human body after exposure are scarce. 179 

Inhalation experiments with the radioactive noble gas krypton, show that the uptake and elimination 180 
of krypton (79Kr, 81Kr) activity at knee and arms was influenced by the rate of blood flow, as better 181 
circulation leads to faster kinetics with half times between 6-320 minutes [50]. One of the few 182 
measurements of radon activity concentrations in humans was obtained by exposure of a test person 183 
to high levels of radon and subsequent analyses of the radon concentration in the exhaled air. Five 184 
distinct elimination coefficients were determined, which were correlated with different body sites to 185 
conclude on the retention and exhalation of radon gas due to its solubility in body tissues [51]. There 186 
are few additional data mainly used for modelling purpose on the retention of radioxenon in the 187 
human body [52] and in dogs [53] and for krypton in guinea pigs [54]. 188 

Most of the data for radon solubility are derived from animal experiments obtained in rats, 189 
where the highest value was determined for adipose tissue (omental fat), with a more than 10 times 190 
increased solubility as compared to other tissues like brain, liver or muscle [34,38,55], although the 191 
maximum radon concentration is attained much slower. Adipose tissue shows a two-component 192 
built-up with different time constants of 21 and 138 minutes [56]. Calculations further indicate an 193 
elevated dose to red bone marrow, due to the high fat cell content [57]. More recently, comparable 194 
results for the solubility of radon in different organs were obtained in mice [55]. In vitro 195 
measurements of radon solubility coefficients in fatty acids indicate an interrelationship between the 196 
number of carbon atoms in the fatty acid and the solubility per molecule [58]. In addition, radon is 197 
not equally distributed between different compounds. Although radon solubility is highly dependent 198 
on external conditions like temperature or salinity when measuring in water [59], measurements and 199 
molecular dynamic simulations revealed that radon is more soluble in fatty acids than in water 200 
because of the stronger cross bonding of the water molecules compared to fat [60]. 201 

In contrast to the pure solubility, which is a passive process, radon in addition is transported 202 
actively via the blood streambloodstream and its further exchange via diffusion is governed by radon 203 
solubility. The resulting inhomogeneous distribution between different tissues determines the dose 204 
to different organs. For subsequent dose calculations, measurements of activity concentrations and 205 
determination of diffusion and solubility of radon in different tissues are required [28,61]. 206 

For such multiparametric calculations, model systems are used, which usually consist of 207 
different compartments with specific morphometric and physiological parameters, conterminously 208 
with different tissue and organs in the human body [31,62,63]. Even though a model for the 209 
calculation of absorbed dose rates to organs and tissues in mice, rats and humans, provide similar 210 
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values for the different species [34], the input parameters for radon distribution in these models 211 
usually are derived from animal data, making it difficult to transmit these values to humans.  212 

Beside the dependence on the model and the physiological parameters, the calculated doses are 213 
highly dependent on factors like exposure duration, radon activity concentration, amount of radon 214 
decay products in air, and size of the formed particles [64]. Therefore, we consider it difficult to 215 
provide exact dose values, but some statements on the relative dose depositions seem to be supported 216 
by the data. The highest dose is deposited in the lung, mainly caused by radon decay products during 217 
inhalation of primary radon [28]. This is supported by biodosimetric measurements in mice after 218 
radon exposure which show a three times higher dose in the lung compared to kidney, heart or liver 219 
[65]. 220 

As the reported measurements and simulations are consistent regarding high solubility of radon 221 
in adipose tissue, it seems reasonable to assume that this is also the reason for the calculated higher 222 
doses in bone marrow and female breast, which is approximately half of the dose to the lung [31,62]. 223 
However, the inner organs outside the respiratory tract receiving the highest dose from radon decay 224 
products are the kidneys [28]. 225 

In conclusion, the question remains whether this inhomogeneous distribution and the hot spots 226 
in fatty tissue are important to clarify the mechanistic basis in the clinical effects observed in patients 227 
and must be related to the potential risk associated with radon exposure, i.e. the integrated radon 228 
activity concentrations. Nevertheless, radon solubility coefficients are weak points in these models, 229 
as these values strongly depend on the scarce parameters as mentioned before [31,34,63]. 230 

3. Cancer risk 231 
Risk estimation is important for chronic exposure to radon at working places as well as in homes, 232 

but it is indispensable for a balanced risk to benefit evaluation for therapeutic applications. The 233 
epidemiological studies which are available center on chronic (i.e. years of daily, continuous) 234 
exposure, either occupational or environmental. In contrast, non-chronic radon therapy typically 235 
covers up to 10 treatment sessions (i.e. treatment time of 20 to 60 min daily) in one series and normally 236 
performed once a year. Unfortunately, there are no epidemiologic data about a therapeutic exposure 237 
to radon reported up to now.  238 

The short-living, α-emitting decay products together with the primary radon contribute 239 
significantly to the exposure of humans from natural sources [66]. Since long time there is strong 240 
evidence that these isotopes are the causative agent for lung cancer induction in miners when 241 
deposited in the respiratory tract. So, an increased risk for the development of lung cancer was shown 242 
for occupational exposure of minors in mountain galleries to radon and its progeny [16,67]. There is 243 
consent that environmental exposure to radon is the second leading cause of lung cancer induction 244 
after cigarette smoking [14,17]. The excess risk for lung cancer induction due to radon exposure and 245 
due to smoking act synergistically in a sub-multiplicative interaction while an additive relation was 246 
rejected by modeling the epidemiologic data sets [68,69]. 247 

For risk estimation, the evaluated occurrence of lung cancer must be related to the exposure, i.e. 248 
the integrated radon activity concentrations. One problem for epidemiological studies is that the 249 
radon activity concentrations during exposure to radon and its progeny depend on environmental 250 
and behavioral factors, leading to highly variable concentrations. The exact determination would be 251 
important for risk assessment but is difficult to achieve, in particular retrospectively [67]. However, 252 
epidemiological studies for chronic exposure show a significant increase for risk of lung cancer with 253 
increasing radon concentrations [70,71] and exposure duration [72]. In the study of Darby et al., an 254 
increase in the risk of lung cancer of 16% per 100 Bq/m3 (95% confidence interval 5%--31%) was found 255 
in a collaborative meta-analysis of 13 case -controlled studies [73]. These findings are in 256 
agreementand comply with cohort studies of miners with low exposure rates over long times [74]. 257 
Age at and time since exposure modifyies the excess relative risk per cumulative exposure. The risk 258 
decreases significantly by increasing the time at and since exposure [68]. Overall, lung cancer 259 
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mortality and radon exposure are correlated linearly [74] without threshold [73]. When adjusting the 260 
absolute lifetime risk of lung cancer for smoking status, the risk for never smokers is much lower 261 
than that for smokers [72]. The conclusion of these epidemiologic studies is that radon represents a 262 
significant public health problem [75]. , when chronic exposure takes place. 263 

During radon therapy, the doses received by the patients in the course of one treatment series 264 
(typically consisting of ten sessions of one hour each) are in the same order of magnitude as for the 265 
natural annual background radiation due to radon. The major difference is the much shorter time 266 
period in which the patients obtain this dose and consequently the higher dose rate. Therefore, the 267 
risk of a radiation/radon induced severe effect of a radon treatment as prescribed by physicists is only 268 
fragmentarily described. The best description of side effects is from Franke A and Franke T analyzing 269 
the data of the so called IMuRa trial [76]Therefore, it is difficult to specify an additional risk due to 270 
radon therapy, as there are many unknown factors like radon activity concentration during therapy,. 271 
They described no acute side effects, which exceed a minor degree and they do not report any 272 
radiation induced severe side effects, even at long term observations. These reports correspond with 273 
any other description of trials dealing with radon treatment as summarized in table 3. Today there 274 
are two major concerns when extrapolating the carcinogenic effects on patients treated with radon 275 
bathes or gallery visits: On the one hand the dose and duration as well as the frequency of radon 276 
contact (including inhalation and skin contact) is completely different. On the other hand, the patients 277 
are consuming or have consumed pain relieving drugs for years. The exclusion of the side effects 278 
from the radon induced ones at short or even long follow up time is nearly impossible. Therefore, it 279 
is difficult to specify an additional risk due to radon therapy, as there are again additionally many 280 
unknown factors like natural background in patient homes due to radon or smoking behavior. 281 
Additionally, the impact of dose rate, which is well known for low LET irradiation, lowers the 282 
transferability of risk estimates related to the different exposure scenarios [77]. As a result, it is not 283 
possible to present. Precisely for this reason a reliable value for the excess risk of radon therapy. One 284 
can only make an educated guess that the excess by radon itself cannot be calculated from 285 
retrospective or epidemiologic data. So, a potential risk for lung cancer might be infrom radon faces 286 
the same orderdescribed effect of magnitude aspain relief even for occupational exposure.long term 287 
and is therefore ethically negligible.  288 

Besides induction of lung cancer, other organs could be affected. For instance, there are studies 289 
on the effects by plate out of radon progeny on the skin to investigate ulceration and dermal atrophy 290 
as potential effects. These non-cancer effects were considered as unlikely to occur for irradiation by 291 
those nuclides, as they require an irradiation of the dermis. During exposure, deeper layers which 292 
cannot be reached by these α-particles would need to be irradiated and this makes a correlation 293 
between radon progeny exposure and skin cancer induction unlikely [78]. However, an excess risk 294 
of basal cell carcinoma was found for residents of geothermal areas in Iceland withchronically 295 
exposed to elevated levels of radon, but confounding factors could also not be excluded [79]. The 296 
results of a Danish radon study with 51,445 subjects and a mean follow-up of 13.6 years suggests a 297 
potential effect on the development of basal cell carcinoma, but again confounding factors like 298 
sunlight could not be excluded [80] making the statements on skin effects of radon less reliable.  299 

There is some evidence for a correlation between chronic exposure to radon and mortality due 300 
to malignant brain tumors. Nevertheless, this study had a non-robust epidemiological design to 301 
confirm this finding [81]. Additionally, in studies on the occurrence of the radon decay products 302 
210Po and 210Bi in the brain of persons suffering from Alzheimer’s or Parkinson’s disease, an 303 
inhomogeneous distribution of these nuclides was found, but these findings are not sufficient to draw 304 
conclusions concerning correlative underlying mechanisms [82,83]. . 305 

Suggestions were made on a correlation between myeloid leukemia and chronic radon exposure 306 
[57] and a significant positive association between indoor radon and acute myeloid leukemia 307 
incidence in children was observed [84]. In sum, based on these epidemiologic data, 222Rn and its 308 
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decay products are classified as carcinogenic to humans for lung cancer by the international agency 309 
for research on cancer, while data are inconclusive for other cancer entities [85]. In addition, a latency 310 
time between irradiation and development of malignancies of 5-7 years for leukemia and 10-60 years 311 
for solid tumors was observed [86].. Additionally, the age at exposure and the time since exposure 312 
seem to play a role for the risk due to irradiation. This makes it difficult to estimate the cancer risk 313 
after therapeutic application of radon. 314 

4. Radon as a therapeutic agent 315 
In spite of the aforementioned risk associated with radon exposure, it is used as a therapeutic 316 

agent. In ancient history, applications of “hot bathes” as well as inhalation were basic medical 317 
principles applied for treatment of inflammatory diseases. At the beginning of the 20th century radon 318 
was found to be a therapeutic agent in several thermal springs [87,88]. Therefore, the raise of so-called 319 
radon spas started and the application of radon for relief of pain caused by chronic degenerative 320 
diseases became popular. Although there was only clinical experience, the results of several recent 321 
trials suggest a positive effect of radon treatment related with pain reduction [85-8887-90]. 322 

At present, the main application of radon for therapy is inhalation at former mines or bathing in 323 
radon containing water (Appendix A). As the application procedures and indications for treatments 324 
expanded, the EURADON (European Association Radon Spas e.V.) was founded and started to 325 
define the indications for radon application, i.e. musculoskeletal and chronic pain diseases as well as 326 
pulmonary and gynaecological diseases (see Table 2). 327 

Table 2. List of recommended indications for radon treatment [8991]. 328 

Musculoskeletal disorders and chronic 
pain diseases 

Ankylosing spondylitis and other spondylarthropathies 
(AS) 
Chronic polyarthritis (rheumatoid arthritis, RA) 
Chronic arthritis urica 
Psoriasis arthropathy 
Polymyalgia rheumatic 
Arthrosis and osteoarthritis (OA) 
Degenerative diseases of the spinal column 
Auxiliary treatment consecutive to intervertebral disc 
operations 
Osteoporosis 
Non-inflammatory soft tissue rheumatism (e.g. 
fibromyalgia) 
Chronic consequences of casualty or sporting injuries 
Auxiliary treatment consecutive to orthopedic 
operations 
Neuralgia, neuritis, polyneuropathy 
Multiple Sclerosis (MS) 

Cutaneous disorders and diseases Insufficiently healing wounds (e.g. ulcus cruris) 
Atopic dermatitis (neurodermatitis) 
Psoriasis 
Scleroderma 
Low grade circulatory problems of the skin 

Pulmonary diseases Asthma bronchiale 
Chronic-obstructive pulmonary diseases (COPD) 
Rhinitis allergica 
Chronic sinusitis 

Gynaecological diseases Praeclimacteric and climacteric disorders 
Pelvipethia spastica 

 329 
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4.1. Clinical trials 332 
In Europe and the United States radon therapy is under ongoing discussion [92] because many 333 

historical trials were not in accordance with today’s evidence-based medicine [93]. Especially before 334 
1993, studies did not include control groups or were not randomized. Between 1993 and 2000, only 335 
three prospective studies including radon therapy for patients with rheumatic disease were reported 336 
[94-96], all of them in German, and one is published as a PhD thesis. Lindt-Albrecht investigated the 337 
effect of radon treatment in gallery (speleotherapy) versus sauna therapy in ankylosing spondylitis 338 
(AS) patients (n=100, nonblinded) and found significant differences in pain reduction between the 339 
groups three months after the end of therapy [94]. Pratzel and co-workers [95] investigated pain 340 
parameters in a group of patients (n=46) suffering from disorders of the cervical spine up to three 341 
months after end of treatment. In this blinded and randomized study, patients were treated by 342 
bathing in radon containing water (or tap water) (balneotherapy) and a long-lasting pain reduction 343 
(up to 3 months) was found only in the radon group. Later on using the same conditions, the authors 344 
reported similar effects for patients with degenerative spinal disorders and osteoarthritis (OA) (n=52) 345 
[9496]. 346 

Due to the scarce database, clinical trials are seriously needed that are conducted according to 347 
the rules of global evidence-based medicine [97]. Unfortunately, the number of prospective, 348 
randomized and blinded clinical trials performed, starting from 2000 with a reasonable group size is 349 
limited (table 3). One major problem is the blinding of radon treatment as it is not possible to have a 350 
radon-free “sham gallery” for speleotherapy to efficiently separate a radon effect from a placebo 351 
effect. Accordingly, radon bathes are more eligible, because they can be applied in a blinded manner.  352 

Therefore, three trials by Franke and colleagues, performed between 2000 and 2013, examined 353 
in a prospective and blinded manner the effect of radon/carbon dioxide (CO2) bathes on patients 354 
suffering from rheumatoid arthritis (RA) [98]. Sixty patients medicated with anti-rheumatic drugs 355 
were offered 15 bathes within four weeks with radon/CO2 water (radon activity of 1.3 kBq/L) or only 356 
CO2 containing water as a control. In addition, the patients had different manual therapies during 357 
the bath period and follow-up. Interestingly, both treatment groups had similar early effects, but the 358 
effect of pain relief lasted significantly longer in the radon group (up to six months) and confirmatory 359 
analyses showed a significant superiority in patients receiving radon balneotherapy [98]. In a 360 
subsequent randomized trial published in 2007, 134 patients were enrolled to radon/CO2 or CO2 361 
balneotherapy only, similar to the first trial [99]. These patients showed no significant difference in 362 
pain intensity by visual analogue scale (VAS) between the treatment regimes, but differences 363 
increased with increasing follow-up time (up to nine months). In line with that, the confirmatory 364 
analysis showed a clear and significant effect of radon balneotherapy: the pain relief lasted longer in 365 
the radon group. In addition, drug intake was diminished in this group, resulting in a higher quality 366 
of life. However, these trials lacked an effective blinding of the water and were biased, since patients 367 
were at a regimen at the health resort during radon application. Further, these patients were allowed 368 
to have various manual therapies whereas the control group had to stay at home [99]. 369 

The third trial of Franke et al. [76] addressed the above mentioned bias problems partially. It 370 
was the first multicentric trial with 652 patients treated at different spas in Germany and Austria. 371 
This study called IMuRa was prospective, randomized and blinded. Patients suffering from OA, RA, 372 
AS and back pain (BP), received 12 bathes either with radon-containing water or the site-specific 373 
placebo (i.e. tap water, thermal water, or CO2 thermal water). The superiority of radon in inducing 374 
pain-relieving effects was confirmed and the intake of non-steroidal anti-rheumatic drugs (NSARDs) 375 
was significantly reduced in radon-treated patients for up to six months. The patients suffering from 376 
BP and inflammatory rheumatism (combination of RA and AS in this study) did not benefit from the 377 
radon baths as much as patients with OA did in terms of functional capacity.  378 

Based on these findings, the GREWIS alpha consortium (funded by the German ministry of 379 
Research,02NUK050) started to analyse the contribution of the immune system in radon therapy 380 
responsiveness. By this, the RAD-ON01 trial was set up to analyse immunological alterations induced 381 
by radon balneotherapy in an explorative manner. One hundred patients enrolled in this study 382 
received either nine full radon bathes (1.2 kBq/L) or radon/CO2 bathes (0.6 kBq/L), respectively, in a 383 
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covered bathtub to minimize radon inhalation. The bathing was double-blinded and whole blood of 384 
the patients was analysed before, during and at several time points after radon spa by detailed 385 
immunophenotyping, getting first hints for immunological markers of pain, bone destruction and 386 
inflammation [100-102], as described in more detail below. Similar to the trials described before, a 387 
significant pain reduction was quantified by VAS and pain dolorimetry for up to 18 weeks, 388 
performed at eight different tender points [102,103,104]. 389 

Several prospective, non-blinded trials conducted with patients at radon galleries were 390 
published. Van Tubergen and colleagues recruited 120 AS patients for three weeks of daily treatment 391 
in the radon gallery (speleotherapy with hyperthermia, HT) or “normal” steam sauna [105]. These 392 
patients also performed physical exercises. Since the patients of the two groups were not supposed 393 
to meet, the treatments were conducted at two different spa resorts in Europe. The patients who 394 
visited the radon gallery reported a significant and long-lasting ease of their pain. But these positive 395 
results could only be detected in a secondary analysis, since the power of the primary study goal (e.g. 396 
Bath Ankylosing Spondylitis Functional Index (BASFI), well-being, VAS-score) was too low to show 397 
statistical significance. Only a ‘pooled index of change’ analysis resulted in a significant beneficial 398 
effect for AS patients, which lasted up to 40 weeks after the spa-exercise program [1045]. 399 

Another longitudinal observation of 33 AS patients revealed a significant reduction in the main 400 
AS scores, but the study was defined as a pilot trial lacking a control group [106]. Notable effects are 401 
described by a significant reduction of pain and enhanced functional behaviour in AS patients [107]. 402 
Interestingly, Dischereit et al. reported similar results in a trial with 48 patients (half/half of RA/AS, 403 
no blinding or control group) [108]. Here, patients with RA had more benefit from radon application, 404 
since the pain relieving capacity lasted up to 3 months, while the effects in AS patients were 405 
diminished after 3 weeks [108]. A meta-analysis of several trials pointed out that the observed effects 406 
seem to be significantly triggered by bone restoration following radon exposure [109]. 407 

In summary, several trials starting from the year 2000 suggested that radon therapy has 408 
beneficial effects on patients with painful, degenerative and inflammatory diseases describing a 409 
significant reduction of pain and enhanced mobility as well as increased quality of life. Other 410 
indications, singularly analysed and based on small patient collectives or historic cohorts do not seem 411 
to be adequately proven, like dermal inflammatory diseases [110], fibromyalgia [111] and respiratory 412 
diseases [112].413 
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Table 3. Clinical trials with radon application from year 2000 on 415 
First Author 
Year of 
publication 

Trial Design Patient number 
Indication 

Dose Type of exposure 
Frequency 
Duration 

Endpoints and 
timepoints 

Most important findings Ref. 

Franke et al., 
2000 

Prospective; 
blinded; 
randomized 

60 patients RA Radon group: 
1.3 kBq/L, 1.6 g/L 
CO2 
 
Placebo group: 
1.6 g/L CO2 
 

Bath 
20 min 
15 times 
4 weeks 
T = 35 °C 
 
Additional: 
Physiotherapy 
Occupational therapy 
Galvanic bathes 
(3/week) 
Classic massage 

Endpoints: 
Pain intensity (VAS) 
Keitel functional Test 
(KFI) 
Arthritis Impact 
Measurement (AIMS) 
 
Timepoints: 
Before and directly after 
therapy, as well as, 3 and 
6 months after therapy. 

Pain intensity decreased in both 
groups, radon treatment results in 
a significant and longer lasting 
benefit from pain relief; 
KFI more in radon group; 
AIMS score was significantly 
increased in radon treated 
patients up to 6 months; 
KFI score shows a not significant 
benefit in radon treated patients 
 

[98] 

Van 
Tubergen et 
al., 2001 

Prospective; 
different 
treatment 
groups at 
different places. 

120 patients AS 
(40 spa with 
radon, 40 spa 
w/o radon 
40 physical 
therapy at 
home) 

Radon group: 
0.536 WLM 
 
Placebo group: 
Thermal water + 
sauna 
Hydrotherapy 
Bathing 
Sports 

Gallery/ inhalation 
Each 1 hour 
16 times 
3 weeks 
T = 38 – 41 °C 
 
Additional: 
Physical exercise 
Postural correction 
therapy 

Endpoints: 
BASFI 
Well-being VAS 
Pain intensity VAS 
Morning stiffness  
 
Timepoints: 
Before therapy  
After therapy week 4, 16, 
28, and 40 

Primary goals borderline 
significant; 
pooled index of change shows 
highly significant differences as 
well as long lasting effects of 
radon compared to conventional 
treatment 

[105] 

  416 
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Yamaoka et 
al., 2004 
 

Prospective 15 people 
(putative 
healthy 
individuals) 

Radon group: 
2080Bq/m3 
 
Sauna Group: 
54 Bq/m3 
 
Control Group: 
54 Bq/m3 
 

Inhalation 
40 min  
5 times 
TRadon = 36 °C 
TSauna = 48 °C 
TControl = 36 °C  

Endpoints: 
SOD 
AOC 
lipid metabolism 
CD4/CD8 immune cells 
vasoactive substances 
diabetes-associated 
markers 
 
Timepoints: 
Blood draw before and 
at 2 hours after each 
treatment. In addition, 5 
and 10 days after 
treatment. 

Significant increase in SOD as 
well as decrease of lipid 
metabolism and cholesterol at 10 
days for radon and sauna group;  
radon enhances T cell activity 
significantly, while sauna has 
similar effects, only significant at 
10 days after treatment; 
radon enhances the CD4 T cell 
amount significantly after 
treatment, while CD8 T cells were 
decreased, respectively; 
radon group shows significantly 
more endorphin and a reduced 
vasopression 
 
 

[113] 

Yamaoka et 
al., 2004 

Prospective 20 patients OA Radon group: 
2080Bq/m3 

 
non-controlled 

Inhalation 
40 min each 
Every 2 days 
T = 42 °C 

Endpoints: 
SOD, catalase, lipid 
peroxide, total 
cholesterol, GSH, β-
endorphin, ACTH, uric 
acid, ANP and 
vasopressin levels in 
blood 
 
Timepoints: 
Before therapy, 2h, 2, 4 
and 6 weeks after 
therapy 

SOD activity is significantly and 
long lasting increased; 
Catalase activity is significantly 
increased after 4 and 6 weeks; 
T cells of CD4 type are 
increased, while CD8 T cells 
are decreased from 2 to 4 
weeks after therapy; 
β-endorphin and anti ANP 
levels were significantly and 
long lasting increased after 
therapy; 
Vasopressin was 
significantly and long 
lasting decreased; 
Cholesterol and lipid 
peroxide levels were 
significantly and long 
lasting decreased 

[114] 
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Shehata et al., 
2006 

Retrospective 83 patients AS 
(radon 
treatment) 
10 patients AS 
(conv. 
Treatment) 
10 patients LBP 

Radon group: 
~4.5nCi/l 
 
Placebo groups: 
Convent. Therapy 
 

Gallery/ inhalation 
1 hour each 
T = 38 – 41 °C 
9 – 12 times 
3 – 4 weeks 
 
Additional: 
Physiotherapy 
Hydrotherapy 
Massage 
Exercises 

Endpopoint: 
TGF-β (total and active 
form) 
 
Timepoint: 
Before, during and after 
the treatement (~0, 2 and 
4 weeks)- 
 
 

Total TGF-β level increased 
significantly in radon exposed 
patients compared to 
conventional treated patients or 
LBP controls; 
active TGF-β increased strongly 
and significantly in radon 
exposed patients compared to 
conventional treated patients or 
LBP controls; 
therapy responders show an 
inverse correlation with CRP 
concentration 

[107] 

Franke et al., 
2007 

Prospective; 
blinded; 
randomized 

134 patients RA 
(67 patients per 
group)  

Radon group: 
1.1 kBq/L, 1.3 g/L 
CO2 
 
Placebo group: 
1.6 g/L CO2 
 

Baths 
20 min 
15 times 
3 weeks 
T = 35 °C 
 
Additional: 
Physiotherapy 
Occupational 
therapy 
Galvanic bathes 
(3/week) 
Swedish massage 

Endpoints: 
pain intensity, pain 
frequency, morning 
stiffness, functional 
capacity (all VAS), Drug 
intake  
 
Timepoints: 
Before and after last 
treatment, 3, 6, 9 and 12 
months after treatment 

Drug intake was significantly 
reduced from month 9 on; 
both groups had treatment 
effects, most not significant; 
repeated measurement ANCOVA 
revealed significant and long-
lasting enhanced quality of life 
due to less limitations induced by 
pain 

[99] 

Moder et al., 
2010 

Prospective 33 AS patients Radon group: 
~4.5 nCi/L 
 
non-controlled 

Gallery/ inhalation 
90 min each 
10 times 
3 weeks 
37 – 40.5 °C 

Endpoints: 
Disease activity, 
BASDAI. BASFI, BASMI 
serum concentration of  
RANKL, OPG, TNFα, 
TGF-β, IL-17, IL-6 
 
Timepoints: 
Before and after therapy 
(3 weeks) 

Disease-associated scores 
BASDAI. BASFI, BASMI 
decreased significantly after 
therapy; 
serum conc. of TGF-β1, IL-6, 
TNF-α, RANKL, OPG, as well as 
OPG/RANKL ratio was 
significantly increased; 
active form of TGF-β, IL-6, TNFα. 

[106] 



Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 47 

 

Franke et al., 
2013 
(IMuRa Trial) 

Prospective; 
blinded; 
randomized; 
 
multicentric 

652 Patients 
 
BP 437 pts. 
OA 230 pts. 
RA 98 pts. 
AS 39 pts. 
Multi 146 pts. 
 

Radon group 
(332 patients) 
Radon bathes 
according to 
specific center 
(with or without 
CO2) 
or 
Radon 
Speleotherapy 
 
Control group: 
(320 patients) 
Placebo bathes 
according to 
specific center 
(either tap water or 
non-radon 
containing 
fountain, with or 
without CO2) 

Bath 
20 min 
12 times 
3 – 4 weeks 
T = 36 - 38 °C 
 

Endpoints: 
Pain intensity (VAS) 
Pain Questionnaire 
Functional capacity 
(FFbH) 
Western Ontario 
questionnaire (WOMAC) 
Health assessment 
questionnaire (HAQ) 
BASFI 
Drug intake  
 
Timepoints: 
Before and after last 
treatment, 3, 6, and 9 
month after treatment 

Radon treatment leading to 
significantly and long lasting 
relieve of self-assessed pain 
(VAS);  
OA and BP patients have the 
strongest and most lasting benefit 
from radon treatment, while OA 
patients seem to additionally 
having an enhanced quality of 
live up to 6 month after treatment 

[76] 

Dischereit et 
al., 2014 
(Article in 
german) 

Prospective 24 patients RA 
24 patients OA 

Radon group 
44kBq/m3 

 
non-controlled 

Gallery/ inhalation 
60 min each 
12 times 
3 weeks 
T= 37.5 - 41 °C 

Endpoints: 
Pain intensity and 
duration 
Disease activity and 
functional score 
(BASDAI; BAS-G) 
Serum levels of RANKL, 
OPG, and TNF-α 
 
Timepoints: 
Directly before and after 
therapy, as well as 3 
months after therapy 

Pain was relieved after therapy 
and after 3 months in AS patients 
and after 3 months in OA 
patients; 
BASDAI was reduced 
significantly and long lasting in 
AS patients; 
TNF-α level was decreased in 
both groups, significantly in OA; 
RANKL level was significantly 
decreased in both groups, OPG 
increased only in AS; 
RANKL/OPG ratio decreased 
only AS significantly 

[108] 
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Winklmayr et 
al., 2015 

Prospective; 
blinded; 
randomized 

64 healthy 
individuals 
Married 
partners 
 

Radon group 
412-900 Bq/L,  
 
Placebo: 
thermal water 

Bath 
20 min 
5 times + 3 times 
brush up 
T = 36 – 39 °C 
 
Additional: 
Mountain hiking 3-4 
h daily 
 

Endpoints: 
Serum conc. OPG, 
RANKL, OPG/RANKL 
ratio 
Timepoints: 
Day 0, 6, 60 and 63 and 6 
months after last 
treatment  

Treatment benefits were seen in 
both groups in OPG, RANKL and 
OPG/RANKL ratio; 
detected borderline significant 
trend towards bigger effect in 
Radon treated group 
 

[115] 

Lange et al., 
2016 and 2012 

Prospective 25 patients RA 
24 patients OA 

Radon group 
4.5 nCi/l 
 
non-controlled 

Gallery/ inhalation 
60 min each 
12 times 
3 weeks 
T= 37.5 -  41 °C 
 

Endpoints: 
serum conc. RANKL, 
OPG, TNF-α and ACPA 
 
Timepoints: 
Directly before and after 
therapy 

The serum conc. of TNFα and 
RANKL levels decreased in both 
groups; 
only in RA patients, OPG level 
increased, leading to a decreased 
RANKL/OPG ratio; 
ACPA titers decreased only in RA 
patients 

[116,117] 

Lange et al., 
2017 

Endpoints: 
Pain VAS 
FFbH questionnaire 
ESR 
Serum CRP, RANKL, 
OPG, TNF-α, IL-10, and 
ACPA 
 
Timepoints: 
Directly before and after 
therapy, as well as 3 
months after therapy 

RA patients have significant 
immediate and lasting effect in 
pain relieve, while health status 
(FFbH) is increasing; 
OA patients have significantly 
lasting pain relieve effect; 
serum concentration of IL-10 is 
significantly increased directly 
after treatment in RA patients 
 

[118] 

  417 
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Rühle et al., 
2017 (RAD-
ON01) 

Prospective 
Blinded 
Randomized 

100 patients 
with 
musculoskeletal 
disorders 
50 patients per 
group 
 
Ambulant 
patients 

Radon group 
1200Bq/L, Radon 
water only group); 
 
Radon/CO2 group 
600 Bq/L and 1g/l 
CO2; Radon-CO2-
group 
Covered bath-tube 

Bath 
20 min each 
9 times 
3 weeks 
T = 35 °C 

Endpoints: 
Immune modulation via 
DIoB [100] method 
Pain relieve (VAS and 
questionnaire) 
Pain sensitivity 
(dolorimetry, pressure 
point measurement) 
 
Timepoints: 
Directly before as well as 
6, 12, and 30 weeks after 
therapy 

Long-lasting and significant pain 
reduction until end of observation 
period in whole trial population; 
significant and long-lasting 
increase in T cells and monocytes; 
significant temporarily increase of 
dendritic cells and regulatory T 
cells; 
significant and long-lasting 
reduction of the expression of the 
activation marker CD69 on T, B, 
and NK cells 

[104] 

Cucu et al., 
2017 
(RAD-
ON01) 

    Endpoints: 
Amount of regulatory T 
cells 
Serum markers of bone 
and lipid metabolism 
 

significant and long-lasting 
decrease of collagen fragments 
(CTX-I) and reduced levels of 
visfatin. Both factors are 
correlating significantly with pain 
intensity (VAS); 
regulatory T cells increase 
significantly and long lasting after 
treatment 

[102] 

Rühle et al., 
2018 (RAD-
ON01) 

    Endpoints: 
Pain relieve (VAS and 
questionnaire) 
Pain sensitivity 
(dolorimetry, pressure 
point measurement) 
Blood pressure 
Antioxidative capacity 
(AOC) 
Superoxiddismutase 
(SOD) 

Long-lasting and significant pain 
reduction until end of observation 
period in whole trial population, 
Radon CO2 bathes show a trend 
to be less effective (n.s.); 
lowered blood pressure in both 
groups, nightly measured systolic 
and diastolic blood pressure 
significantly decreased in 
Radon/CO2 treated patients; 
SD-VLF decreased significantly 
after radon therapy; 
SOD2 reduced significantly 6 
weeks after treatment and 

[103] 
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increased significantly long 
lasting 

Kullmann et 
al., 2018 
(RAD-ON01) 

    Endpoints: 
Detection of 
inflammatory and anti-
inflammatory cytokines 
in serum of patients. 
 

No significant effects found for 
TNFα, IL-1β, IFNγ, IL-18, IL-1Ra, 
IL-10 concentration in serum of 
the patients; 
TGF-β concentration was 
significantly increased after 
treatment and significantly 
correlates with pain sensitivity; 
IL-18 level corresponds with 
lowered pain perception 

[101] 

Abbreviations: ACPA anti-citrullinated peptide antibodies; ACTH adrenocorticotropic hormone; ACTH Adrenocorticotropine; AIMS arthritis impact 418 
measurement score; ANP atrial natriuretic polypeptide; AOC Anti-Oxidative Capacity; AS ankylosing spondylitis; BAG-G Bath Ankylosing Spondylitis Patient 419 
Global Score; BALF bronchioalvelolar lavage fluid; BASDAI Bath Ankylosing Spondylitis Disease Activity Index; BASFI Bath Ankylosing Spondylitis Functional 420 
Index; BASMI Bath Ankylosing Spondylitis Metrology Index; BP Back Pain; CD cluster of differentiation; CO2 carbondioxide; CRP c-reactive protein; CTX Cross 421 
Laps; FFbH Funktions Fragebogen Hannover (Functional Capacity) ; GSH Glutathione; HAQ Health assessment questionnaire; IFN interferon; IL interleukin; KFI 422 
Keitel functional index; ; LBP lower back pain; OA Osteoarthritis; OPG osteoprotegerin; RA rheumatoid arthritis; RANKL receptor activator of NFkB Ligand; SOD 423 
superoxide dismutase; TGF transforming growth factor; TNF tumor necrosis factor; VAS Visual Analog Scale; WOMAC Western Ontario questionnaire. 424 

 425 
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4.2. Biomedical investigations in patients 426 
In addition to the evaluation of pain or functionality of joints, the biomedical investigations 427 

reviewed in the following paragraph revealed treatment-induced changes of the immune status and 428 
release of specific factors. These are cytokines, hormones and growth factors, which are known to 429 
influence pain perception, inflammation, bone metabolism and the cardiovascular system.  430 

One putative key player associated with pain reduction is the anti-inflammatory cytokine 431 
transforming growth factor beta 1 (TGF)-β1. Indications come from patient studies, all not blinded 432 
and without control groups. In AS patients undergoing combined radon speleotherapy and exercise 433 
treatment, an increase of serum levels of both, the precursor and activated TGF-β1 was detected 434 
directly after therapy while this was not the case for lower back pain patients [n=83, prospective 435 
study] [107]. For a subgroup of “responders” [n=48], a correlation of morning stiffness and decreased 436 
C-reactive protein (CRP) level was observed directly after therapy, suggesting that the pain reducing 437 
effect of TGF-β1 is based on a reduction of inflammation [108]. A comparable increment in the serum 438 
levels of active TGF-β1 was found directly after therapy for different treatment modalities and 439 
diseases, i.e. in the serum of AS patients [n=33] after radon speleotherapy [106] and six weeks after 440 
radon balneotherapy, in a larger cohort of patients [n=100], suffering from non-rheumatic, 441 
musculoskeletal diseases (MSD) [101]. . 442 

Studies on β-endorphin, another important signaling protein, are also pointing to a reduced pain 443 
perception after radon treatment. Levels of β-endorphin were found to be increased directly after 444 
radon speleotherapy in OA patients [n=15, control group: sauna] [114] and slightly (not significant) 445 
in patients with chronic respiratory diseases [n=81] [119]. . 446 

In addition, inflammation, which is likely to be a cause of pain, was investigated. Regardless of 447 
a chronic or acute inflammatory status of the patients before treatment, low serum levels of the pro-448 
inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interferon (IFN)-γ and IL-449 
18 were detected. For example, despite low basal TNF-α levels, they further decreased significantly 450 
in OA and RA patients after combined radon and HT treatment [OA: n=48, balneotherapy [108]; RA: 451 
n=49, speleotherapy [117]; sample collection directly after therapy]. A clear anti-inflammatory effect 452 
in RA patients was confirmed in one of these studies, based on the levels of ACPA (Anti–citrullinated 453 
protein antibodies) along with inflammatory cytokines and pain reduction [117]. In contrast, for AS 454 
patients the TNF-α decrease was less pronounced as reported in the study of Dischereit and 455 
coworkers [108]. . 456 

Decreased serum levels of IL-18 were observed in MSD patients [mostly OA, n=100] directly 457 
after radon balneotherapy and correlated with reduced pain perception [101]. However, only a trend 458 
was observed and the treatment was radon exposure alone, suggesting that the anti-inflammatory 459 
effect is relatively weak and becomes more pronounced in combination with HT. This idea is 460 
endorsed by the results of a study performed in AS patients for radon and HT- speleotherapy [n=33], 461 
where disease scores were improved and TGF-β1 was increased [106]. A weak point of this study is 462 
that the serum levels were measured only directly after exposure. 463 

The studies as mentioned above, however, all have to be interpreted with care as they were non-464 
blinded and mainly lack control groups. In line with that, a potential causal relationship of β-465 
endorphin and TGF-β1 levels remains to be elucidated. 466 

Increasing However, increasing evidence is provided for treatment-induced changes of the 467 
immune status of the patients. In an earlier study with a low number of patients enrolled [n=15] a 468 
combined treatment with radon and HT was compared to HT alone. Proliferation of CD4+ T-helper 469 
cells was increased after ex vivo stimulation, whereas the response to stimulation with concanavalin 470 
A of CD8+ cytotoxic T-cells was decreased. Both effects were lasting until the end of therapy (10 days) 471 
only in the radon-HT-group, but not in the group receiving HT only [113]. The interpretation of these 472 
treatment induced changes is difficult, as there are not enough data on the interaction of immune 473 
cells. More recently, a wider picture of the immune status of MSD patients was provided in the frame 474 
of a larger study where a detailed immune phenotyping was performed after radon balneotherapy 475 
[n=100, RAD-ON-01 study]. While the large immune cell classes such as B-cells or T-cells remained 476 
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almost unaffected, the results suggest transient anti-inflammatory and immune inhibiting effects. For 477 
example, mostly immune suppressive regulatory T cells (Treg) were increased up to 12 weeks in the 478 
complete cohort [104]. In addition, Treg levels that were investigated in a smaller subgroup of this 479 
large cohort remained increased over the whole observation period of 30 weeks, whereas the amount 480 
of immune stimulating T helper cells (Th17) was not changed [102]. In addition, common activation 481 
markers like CD69 and HLA-DR were altered and stayed upregulated (HLA-DR) or downregulated 482 
(CD69) during the observation period.  483 

Since radon-treated patients reported improvements in mobility, diagnostic markers for bone 484 
formation (OPG, osteoprotegerin) and bone resorption (RANKL, receptor activator of nuclear factor 485 
kappa b ligand) were studied. A positive influence of a combined radon and HT-balneotherapy on 486 
bone metabolism was investigated in a randomized and blinded trial. This trial enrolled 487 
postmenopausal women, who were healthy but at risk for developing osteoporosis [n=64, 488 
randomized, blinded, controlled]. A control group received regular water bathes; both groups 489 
underwent regular physical exercise. A slight increase of the OPG/RANKL ratio was observed in both 490 
treatment groups that was lasting up to 2 months only after radon treatment, indicating enhanced 491 
bone formation and/or reduced bone resorption. However, these changes, along with the observed 492 
increase of other markers for bone formation (osteocalcin and osteopontin), cannot be attributed to 493 
radon treatment alone, because of the combination with enhanced physical exercise during treatment 494 
[115]. 495 

. In AS and OA patients, hints for changes in bone metabolism were obtained in studies without 496 
physical exercise, after combined radon and HT speleotherapy treatment. RANKL serum levels were 497 
significantly decreased in these patients directly after therapy [n=48] [108]. In a second study, the 498 
same authors report similar results for RA patients in combination with decreased disease activity 499 
and functional restriction, and increased spine mobility score directly after therapy [118]. 500 

 Taken together, for AS and RA patients, the indications for reduced bone resorption and, in 501 
some cases, enhanced bone formation are reported [120,121]. In line with the above-mentioned 502 
weaker effect reported for MSD (mostly OA) patients [n=32], no significant alterations of RANKL and 503 
OPG after radon balneotherapy were found for up to 30 weeks after therapy. However, a reduced 504 
bone resorption can be assumed, because collagen fragments (CTX-I) in serum samples were 505 
significantly lower during the 30 -week period of biomedical follow-up [102]. . 506 

In the following, some smaller studies are reviewed in order to highlight single observations 507 
concerning adipokines related to chronic inflammation, pain related stress hormones, antioxidative 508 
capacity and the cardiovascular and central nervous system. Those findings, substantiated by most 509 
studies, may contribute to clarify the mechanism of action of radon therapy after verification in larger 510 
patient cohorts. 511 

Some hormones, i.e. leptin and visfatin, are typically released by the adipose tissue and play a 512 
role in the pathogenesis of chronic inflammatory bone diseases [122]. Changes of these adipokines 513 
after radon treatment were recently published [102]. Following radon balneotherapy alone, visfatin 514 
levels were found to be significantly reduced over the observation period of 30 weeks in MSD (mostly 515 
OA) patients [102]. One of the aforementioned studies [115], where radon balneotherapy or bathes in 516 
normal water were combined with physical exercise, revealed decreased leptin levels, concomitantly 517 
with increased osteocalcin levels.  518 

Pain is a stressor activating the hypothalamic–pituitary–adrenal–thyroid–gonadal (HPATG) 519 
system, which includes hormones like cortisol, insulin, thyroid hormones, or adrenal corticotropin 520 
hormone (ACTH) [123]. A reduced activation of these signaling molecules could be an indirect 521 
indication of a modified pain perception. A couple of studies were conducted, most of them for a 522 
combined treatment with radon and HT. Accordingly, the specific effect of radon treatment cannot 523 
be discriminated from these investigations yet. 524 

Two studies with radon speleotherapy revealed that serum levels of insulin [n=15] [113] and 525 
ACTH [n=20] [114] were increased for OA patients, directly or two weeks after therapy, respectively. 526 
A decreased activation was found for thyroid hormones directly following radon speleotherapy 527 
alone, mostly in male patients with chronic respiratory diseases [n=81] [112]. The treatment-induced 528 
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changes in the regulation of these hormones may imply a role in the response to radon therapy, 529 
although analyses were restricted to short periods after the end of treatment only. 530 

Also, after combined radon and HT balneotherapy, but in combination with physical exercise 531 
and in healthy individuals, adrenocorticotropic hormone (ACTH), was decreased over the course of 532 
follow-up of 6 months, [n=53, blinded, randomized, placebo controlled]. In addition, a long-lasting 533 
decrease of parathyroid hormone (PTH) serum levels in both treatment groups (HT balneotherapy 534 
with or without radon) was reported. PTH indirectly stimulates osteoclast activity in bones [115], 535 
indicating an additional reason for the putative decrease of bone resorption after treatment.  536 

Hints for a beneficial impact of radon therapy on the cardiovascular system were also reported. 537 
In the RAD-ON-01 balneotherapy study, all patients had lowered blood pressure, a long-term 538 
relaxation effect and decreased heart rate variability. These effects indicate a modulation of the 539 
sympathetic nervous system and a relaxation of smooth muscles in the cardiovascular system [103]. 540 
In a study of OA patients [n=20], atrial natriuretic peptide (ANP), a vasodilator, was increased after 541 
speleotherapy [114], whereas vasopressin, a vasoconstrictor, was decreased [124], which could 542 
explain the effects. 543 

Indications for an enhanced antioxidative capacity were obtained in two studies. One study 544 
showed for combined radon and HT speleotherapy a decreased lipid peroxide and cholesterol level, 545 
while superoxide dismutase (SOD) was increased in both treatment groups directly after treatment 546 
[n=15] [113], indicating an enhanced antioxidative capacity. In MSD patients [n=100, RAD-ON-01], 547 
the SOD levels were decreased at early time points (6 weeks), but increased later after radon 548 
balneotherapy [103], emphasizing the importance of longitudinal assessments of treatment induced 549 
changes. 550 

4.3. Animal studies 551 
Although radon therapy is in therapeutical use for decades, preclinical studies on underlying 552 

mechanisms are scarce and restricted to the last 20 years. The few studies available will be 553 
summarized in this paragraph. The review, however, will exclude lung cancer studies, performed in 554 
rats after radon exposure [125] because these investigations highlight the effects of chronic exposure.  555 

Although well conducted, the design of most studies investigating non-cancer effects of radon 556 
treatment challenges their relevance for the impact of patient treatment. No animal studies are 557 
available investigating the effects of the typical exposure situations, such as radon bathing or using 558 
animal models for the main indications of radon therapy, i.e. rheumatoid arthritis and Morbus 559 
Bechterew. Furthermore, the experimental design of these studies hardly overlaps with treatment 560 
conditions. Nevertheless, some basic information about the activation of anti-oxidative mechanisms 561 
can be inferred from these studies. In some of the disease models, an enhanced SOD activity and 562 
higher t-GSH levels in blood and different organs were found [126-129], which is in line with the 563 
measurements in OA patients mentioned above [113] [103]. Interestingly, an enhanced anti-oxidative 564 
activity was also observed in healthy mice [130,131], thus pointing to a more general mechanistic 565 
feature of radon exposure.  566 

Using a polyarthritic mouse model to investigate the clinically effects of radon exposure, 567 
ongoing experiments investigate the underlying mechanisms and their potential correlation to radon 568 
exposure. In the same mouse model, beneficial effects of low dose radiotherapy with photons have 569 
already been reported [132]. Furthermore, experiments to test the effect of radon on chronic 570 
inflammatory skin diseases, i.e. psoriasis in a mouse model are performed. Notably, for treatment of 571 
psoriasis no animal or valid patient studies are published up to now, although the disease covers an 572 
indication for radon spas and speleotherapies (see table 4). However, in one animal study the impact 573 
of radon exposure on atopic dermatitis, which also covers an indication for radon treatment, is 574 
assessed [133]. The authors reported significantly lowered severity score of the skin lesions, together 575 
with a lower immunoglobulin E (IgE) level after radon treatment. Importantly, these beneficial effects 576 
were only found after pre-treatment with radon prior to skin sensitization with picrylchloride, 577 
indicating a protective rather than a curing effect of radon treatment. From a mechanistic point of 578 
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view this is endorsed by other animal studies (table 4), where radon treatment was also started before 579 
disease induction.580 
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Table 4. Animal studies with radon 581 
First Author 
Year of 
publication 

Species Group size Type of treatment 
and dose 

Time of 
analysis 
after 
exposure 

Disease model Endpoints Most important findings Ref. 

Takahashi et 
al., 2006 

Mice  
(SPF 
NC/Nga, 
female, 5 
weeks) 
Mice 
(C57BL/6, 
male, 6 
weeks) 

n= 4-9 Drinking water;  
203 Bq/L; 
approximate 
amount of radon 
ingested by each 
mouse 140–176, 68–
85 and 0.86–1.08 
Bq/kg week  

Up to 4 
weeks 

Atopic dermatitis 
model: 
sensitization with 
5% purified 
picrylchloride  
Lung metastasis 
model: injection 
of B16 melanoma 
cells 
(both 2 weeks 
after start of 
radon treatment) 

Atopic dermatitis:  
Skin severity score, 
Plasma IgE 
Lung metastasis: 
number of metastasis 

Lower skin severity score 
and lower plasma IgE, only 
after radon pretreatment, 
Lower number of lung 
metastasis only after radon 
pretreatment and small 
number of inoculated 
tumor cells  

[133] 

Kataoka et 
al., 2011 

Mice 
(BALB/c, 
male, 7-8 
weeks, 25g) 

n= 5 (Exp.3) 
n=4-7 (Exp.4) 
n=5-6 (Exp.5) 

Exp.3: inhalation 
for 24h, 4000 Bq/m³  
Exp:4 600 and 3500 
Bq/m³ 
Exp.5: 180 Bq/m³ 
for 6h 

Exp.3: 
directly 
Exp.4: 4h 
Exp.5:24h 

Alcohol-induced 
oxidative 
damage; CCl4-
induced 
hepathopathy 

SOD activity 
Catalase activity  
ALD-activity and t-
GSH in brain and 
liver 

Protective effect of radon 
on oxidative damage 

[127] 

Kataoka et 
al., 2011 

Mice 
(BALB/c, 
male, 7 
weeks, 25g) 

n= 4-6 Inhalation,  
18 kBq/m³ for 6h 
 

24h  CCl4-induced 
hepatic and renal 
damage 

t-GSH content, lipid 
peroxide levels, and 
GPx and GR activity 
in liver and kidney 
GOT, GPT, ALP 
activity, CRE and T-
CHO in serum 

Radon inhalation inhibits 
oxidative damage of liver 
and kidney 

[126] 
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Kataoka et 
al., 2011 

Mice 
(BALB/c, 
male, 7 
weeks, 25g)  

n= 5 Inhalation, 250, 500, 
1000, 2000, or 4000 
Bq/m³ for 0.5, 1, 2, 
4, or 8 days 

Directly Healthy SOD activity in 
brain, lung, thymus, 
heart, liver, stomach, 
pancreas, kidney 

Activation of SOD; in 
plasma, brain, and lung 
strong and rapid response 
(enhancement); in liver, 
heart, pancreas, and small 
intestine only after low and 
high concentrations; in 
thymus and kidney after 
low concentration; no 
change in stomach 

[130] 

Kataoka et 
al., 2012 

Mice  
(ICR, female, 
8 weeks, 28g)   

n= 5-8 Inhalation, 1000 or 
2000 Bq/m³ for 24h 
or (L(+)-ascorbic 
acid injection or  
DL-α- 
tocopherol injection 

24h CCl4-induced 
hepathopathy 

SOD activity, 
catalase activity, GPx 
activity, t-GSH, LP 
levels and TG in the 
liver; GOT, GPT 
activity, TG and T-
CHO levels in the 
serum; and 
histological 
examination of liver 
tissue 

Decreased activities of GOT 
and GPT in serum; 
decreased TG levels in liver 
significantly higher SOD, 
catalase and GPx activity in 
livers;  
radon inhalation has an 
anti-oxidative effect against 
CCl4-induced hepatopathy 
that is comparable to 
treatment with AA or 
α-tocopherol  

[128] 

Kataoka et 
al., 2012 

Mice  
(ICR, female, 
8 weeks, 28g)   

n=5-8 Inhalation, 1000 or 
2000 Bq/m³ for 24h 
or DL-α-tocopherol 
injection different 
concentrations) 

24h  CCl4-induced 
hepathopathy 

SOD, catalase, t-
GSH, and LP in 
kidneys CRE level in 
serum,  

Decrease of CRE an LP 
levels; radon inhalation has 
an antioxidative effect 
comparable to the 
treatment with α-
tocopherol at a dose of 300–
500 mg/kg weight 

[134] 

  582 
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Kataoka et 
al., 2012 

Mice  
(ICR, female, 
8 weeks, 28g)   

n=6-7 Inhalation, 2000 
Bq/m³ for 24h  

2h Carrageenan-
induced 
inflammatory 
paw edema 

SOD activity, 
catalase activity, t-
GSH content, LP 
levels, TNF-α, NO, 
and paw histology. 

Paw volume significantly 
decreased; lower TNF- α 
and NO levels; SOD 
activity increased; fewer 
infiltrating leukocytes; 
increased SOD and catalase 
activities  

[135] 

Nishiyama et 
al., 2012 

Mice  
(BALB/c, 
male, 7 
weeks, 23 g) 

n=8 Inhalation, 2000 
Bq/m³ for 8 days 

Directly Dextran sulfate 
sodium (DSS) 
model of colitis 
(while radon 
exposure) 

MPO, NO, TNF-α, 
SOD, CAT, t-GSH), 
LPO level, and 
Histology, DAI and 
weight gain 

Significant lower DAI 
score; less shortened colon; 
lower plasma TNF- α and 
MPO activity in colon; 
enhanced SOD activity and 
tGSH content; lower LPO 
level in the colon and NO 
level in plasma 

[136] 

Toyota et al., 
2012 

Mice 
(C57BL/6J, 
male, 8 
weeks, 20g)   

n= 4-6 Inhalation,  
4000 Bq/m³ for 24h 

6 and 24h Acute alcohol-
induced 
hepatopathy 

SOD, catalase, t-
GSH, GPx, GR, TG, 
and lipid peroxide in 
liver, GOT and GPT, 
activity and the TG, 
T-CHO in serum  

Radon treatment activates 
antioxidative functions and 
inhibits acute alcohol-
induced oxidative damage, 
hepatopathy and fatty liver 
in mice 

[137] 

Nishiyama et 
al., 2013 

Mice, 
(C57BL/6J, 
male, 9 
weeks,  
25-28 g) 

n=5-8 Inhalation, 1000, 
2500, and 5500 
Bq/m3 for 24h 

4 days Streptozotocin-
induced Type-1 
Diabetes (after 
radon exposure) 

SOD activity, CAT 
activity, t-GSH 
content, LPO, blood 
glucose, serum 
insulin, and body 
weight 

Higher SOD activity and t-
GSH content, lower LPO 
levels; significantly 
suppressed blood glucose 
elevation and body weight 
decrease; higher serum 
insulin; radon inhalation 
partially suppressed type-1 
diabetes induced by STZ 
administration  

[138] 
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Yamato et 
al., 2013 

Mice 
(male ICR, 8 
weeks, 38 g) 

n=5-10 Inhalation, 1,000 or 
2,000 Bq/m³ for 24h  

Up to 35 
min 
(licking 
response), 
no 
information 
for other 
endpoints 

Formalin-induced 
transient 
inflammatory 
pain 

licking response 
(pain), TNF-α, NO, 
paw histology, SOD 
and CAT activities, 
total glutathione (t-
GSH) content, and 
LPO levels 

Enhanced SOD-activity, t-
GSH content in serum and 
paws, reduced number of 
leukocytes, reduced TNF-α 
and NO level  

[139] 

Etani et al., 
2016 

Mice  
(male, 8 
weeks, 32-
38g) 

n=8-9 
(drinking 
treatment) 
n=6 
(inhalation) 

Drinking water: 338 
± 11 Bq/L for 2 
weeks 
Inhalation:  
2000 Bq/m³ for  
24 h 

3h PO model of 
hyperuricemia 
(induced after 
radon treatment) 

Activities of XOD, 
SOD and 
CAT; levels of t-GSH 
and proteins in liver 
and kidney 

Radon-inhalation activates 
anti-oxidative function and 
reduces serum uric acid 
levels 
 

[140] 

Kataoka et 
al., 2016 

Mice  
(ICR, male, 8 
weeks; 33–
40g 

n=5-6  Inhalation, 1000 
Bq/m³ for 24h 
and/or pregabalin 
treatment. 

30 min, 60 
min, 90 
min, 120 
min   

CCI - induced 
neuropathic pain 

von Frey Test (pain), 
SOD activity, 
catalase activity, t-
GSH content, and LP 
level in paw. 

Pregabalin and radon has 
mitigative effect on pain 
after CCI due to 
antioxidative function after 
radon inhalation  

[141] 

Etani et al., 
2017 

Mice 
(BALB/c, 
male, 8 
weeks, 25-
28g) 

n=8 
(drinking 
treatment) 
n=8 
(inhalation) 

Drinking water: 663 
± 36 Bq/L for 2 
weeks 
Inhalation:  
2000 Bq/m³ for  
24 h 

1h Gastric mucosal 
injury induced by 
oral ethanol 
administration 
(induced after 
radon treatment) 

UI and HI:  SOD 
and 
CAT activity, and the 
levels of t-GSH in 
stomachs 

Lower UI and IHI after 
radon treatment; activation 
of antioxidative 
mechanisms 

[142] 

Kataoka et 
al., 2017  

Mice 
(BALB/c, 
male, 8 
weeks, 24-
28g) 

n=7 Inhalation, 500-
2000 Bq/m³ for 24h 

Unclear Healthy NF-κB, NIK, IKK-β, 
ATM; total SOD, Mn-
SOD and Cu/Zn-
SOD activities and 
protein levels 

Induction of SOD proteins, 
mainly Mn-SOD; Mn-SOD 
induced by NF-κB 
activation stimulated by 
DNA damage and 
oxidative stress 

[131] 
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Pei et al., 
2017 

Mice, 
(BALB/c, 
male, 15 g)  

n=6  Inhalation, 100,000 
Bq/m3, 12h/d, for 
up to cumulative 
doses of 
60 WLM 

Directly Healthy circRNA, H&E, 
Caspase 3  

Enhanced Caspase 3 
expression, circRNA 
profiles are changed  

[143] 

Paletta et al. 
1975 

Rat  
(male, 200g) 

n=5 Series 1: Rn 12.5 
nCi/L, RaB/Rn 0,25; 
Series 2: Rn 110 
nCi/L, RaB/Rn 0,33 
Different doses to 
organs? 

12 d Healthy Corticosteroid level 
in serum 

2 maxima of corticosteroid 
after exposure, one after 8h, 
one after 5 (low) or 9 hours 
(high concentration) 

[144] 

Taya et al., 
1994 

Rat  
(male, 4-6 
months old) 

n=10-25 120-990 WLM (dose 
rate 7-9 WLM/h; 
725-770Bq/m3) 

7-28 d Healthy Proliferation in 
epithelial cells of 
respiratory tract; 
binucleate alveolar 
macrophages (AM) 
and/or micronuclei 

Labelling indices increased 
after exposure; highest in 
bronchial epithelial cells; 
binculeate AM as well as 
induction of micronuclei 
was increased after 
exposure; binucleate AM 
with micronuclei were only 
induced in exposed 
animals; 
no inflammation 

[145] 

Ma et al., 
1996 

Rats  
(Wistar, 
male, 30 
weeks)  

n=3 Inhalation, 1000-
5000 kBq/m³ or 400-
1600 kBq/m³ for 4 
or 16h 

Directly  Healthy SOD activity in 
blood, kidney, spleen 
and liver   

Increase after 4 hours, 
decrease after 16 hours of 
exposure  

[129] 

 583 
  584 
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Collier et al., 
1997  

Rats 
(Sprague-
Dawley, 
male, 2-12 
month,  

n=2-6 Inhalation, 200-
1600 WLM, 250-
7142 WL for 1-27.5 
days  

14 d Healthy Cell number, nuclear 
abberations, number 
of macrophages and 
macrophage 
proliferation in lung 
lavage fluid, H&E 
and BrdU staining of 
lung sections  

Positive dose response for 
most effects 
 

[146] 

Cui et al., 
2008  

Rats  
(Wistar) 

n=6   Inhalation; 60, 90, 
and 120 working 
level months 
(WLM) in total; 
inhalation for 8 h 
per day, 6 days per 
week 

No 
information 

Healthy MNR, hprt assay in 
lymphocytes and 
tracheal-bronchial 
epithelial cells 

Dose dependent increase of 
MNR, the mutation 
frequency of hprt is 
increased with 
accumulated dose, can be 
used as biomarkers for 
genetic changes after radon 
exposure 

[147] 

Yamaoka et 
al., 1993 

Rabbits n=10-14 Inhalation of 
nebulized radon 
water; 7-10 kBq/L 
or 14-18 kBq/L  

Directly 
and 2h  

Healthy Lipid peroxide, SOD, 
membrane fluidity in 
brain, spleen, lung, 
liver and serum 

Enhanced SOD activity, 
reduced lipid peroxide 
levels 

[148] 

Kataoka et 
al., 2014 

Mongolian 
gerbil 
MGS/sea, 
(female, 8 
weeks, 50g) 

n=5-7 Inhalation, 2,000 
Bq/m³ for 24h 

Directly Transient global 
cerebral ischemia 
induced by 
bilateral occlusion 
of the common 
carotid artery (3 
days before radon 
treatment)  

Brain histology, SOD 
activity, CAT 
activity, and t-GSH 
content in the brain 
and serum. 

Number of damaged 
neurons significantly lower;  
increased SOD activity; 
unchanged t-GSH 

[149] 

Abbreviations: WT wild type, PO potassium oxonate, UI ulcer index, IHI index of histological injury, SOD superoxide dismutase, XOD xanthine oxidase, CAT catalase, GPx glutathione peroxidase, GR glutathione 585 
reductase, GOT glutamic oxaloacetic transaminase, GPT glutamic pyruvic transaminase, ALP alkaline phosphatase, CRE creatinine, T-CHO total cholesterol, LP lipid peroxidase  TG triglyceride, AA L(+)-ascorbic acid, TNF-α 586 
tumor necrosis factor alpha, t-GSH total glutathione content, NO nitric monoxide, CCI chronic constriction injury, NIK NF-κB–inducing kinase, IKK-β inhibitor of κB kinase-β, ATM ataxia-telangiectasia mutated kinase, MPO 587 
myeloperoxidase, DAI disease activity index, WLM working level months, hprt hypoxanthine phosphoribosyl transferase, MNR micronuclei rate 588 
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5. Discussion: What do we know so far about the dose distribution and mechanism of action 590 
originating from radon exposure and where are limitations? 591 

When considering the physical and biological interaction of radon with the human body, large 592 
uncertainties are emerging. This is mainly due to the fact that there are fewonly fragmentarily data 593 
available for radon distribution in the human body and on underlying biological mechanisms. For 594 
radiation protection purposes related to occupational and indoor radon exposure, knowledge about 595 
the physical characteristics and the morphometry and physiology of the respiratory tract has been 596 
combined to model dose deposition in the lung and in inner organs. Models predict that the lung 597 
equivalent dose makes up for over 95% of the effective dose, whereby over 95% of that dose are 598 
caused by progeny and less than 5% by the radon gas itself. Besides the lung, organs with a high fat 599 
content receive the highest dose due to the high radon solubility in those tissues [1,43,63,150]. Still, 600 
models cannot consider all variations in external environmental conditions and individual 601 
physiological factors, but can discriminate between typical exposure scenarios, leading to a more 602 
exact dose determination in individual cases. However, the experimental data base for model 603 
calculations of the distribution of incorporated radon and thus energy deposition in the body are 604 
based on data obtained from just a handful of studies performed decades ago, making further 605 
investigations for a proper dose determination necessary [51,56,58]. In biokinetic models, an 606 
estimation of cancer risk is based on dose conversion factors, as specified in ICRP 137 [1]. Only 607 
recently, investigations on radon relevant for the estimation of cancer risk have restarted with state-608 
of-the-art technologies [55,151]. Major target organs of radon exposure, i.e. lung and adipose tissue, 609 
have been confirmed [1,31,62,63]. However, further extension of the experimental database is still 610 
desirable to fully elucidate target tissues and organs.  611 

In epidemiological studies, cancer risk related to chronic exposure (occupational, indoor) has 612 
been evaluated, providing data sets allowing for estimations of the lung cancer risk based on activity 613 
concentrations. These estimations are valid, but at low activity concentrations the uncertainties are 614 
significantly high. AnywayDespite large uncertainties at low activity concentrations, a cancer risk 615 
from radon exposure at low activity concentrations cannot be denied, because there is common 616 
agreement on . Albeit model approaches assuming a non-linear dose response relationship between 617 
dose for low radiation doses, such as ‘hormesis’ are discussed, but large and sufficiently powered 618 
epidemiological studies on lung cancer risk following chronic radon exposure show a linear dose 619 
response relationship without a threshold dose [68,69,71,73]. For non-chronic exposure scenarios, that 620 
are relevant for radon therapy of chronic inflammatory diseases, epidemiological data to estimate the 621 
cancer risk are completely lacking. As pointed out the additional uncertainties especially to long term 622 
drug intake also complicate the analysis of a reliable value for the excess risk of radon therapy by 623 
radon itself. So, there is an urgent need of prospective and quality controlled trials to analyse these 624 
hypotheses. In spite of this, a high number of patients expose themselves to radon, because they 625 
experience a benefit from the treatment. The therapeutic efficacy of radon therapy to ameliorate the 626 
symptoms of patients with chronic, degenerative and painful diseases is significant and the major 627 
goals are achieved, i.e. higher mobility and pain reliefalleviation [76,98,99]. Thus, it is reasonable to 628 
assume, but not proven that the ratio of risk and benefit related to a radon therapy is different for the 629 
patients compared to healthy individuals. 630 

Beside the above-mentioned uncertainties for the distribution and thus dose application of radon 631 
in the human body and the associated risk, radon is used sincefor decades for the therapy of 632 
inflammatory diseases. In view of these uncertainties, the discussion about radon application in 633 
patients with chronic diseases will continue. In line with that, morethere is an urgent need for more 634 
quality controlled clinical trials for radon treatment to obtain a higher level of evidence are seriously 635 
neededas well to obtain reliable data on the risk of radon itself in therapeutic application. For 636 
example, the level of evidence for the efficiency of radon bathes was set to a moderate level in the 637 
Cochrane report by Verhagen et al. [93]. For radon balneotherapy an effective blinding is possible 638 
reducing the patients’ bias. Newly designed trials should always include safety analyses to get a 639 
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balanced view on this type of treatment (risk-benefit-analyses). Currently, two major trials are 640 
running addressing many of the above- mentioned problems: 641 

 642 
I) The RAD-ON02 trial (EudraCT: 2016-002085-31; DRKS00016019) according to the German 643 

drug law was started in 2018 and covers molecular and osteoimmunological analyses 644 
correlated to pain relief as well as safety issues of the patients treated in radon bathes. The final 645 
analysis of this placebo-controlled, blinded and randomized trial is anticipated for late 2021 646 
[152]. 647 

II) The radon register trial of Austria was started in 2017 to cover the procedures and effects of 648 
many patients as a European basis for upcoming multicentre trials [153].. 649 
 650 

However, in contrast to the efficacy of a radon treatment, a scientific basis for the causative 651 
relationship between beneficial effects of radon treatment and the concomitant radiation exposure is 652 
still needed. In this review, we aimed at summarizing the current knowledge on putative underlying 653 
mechanisms and causal relationships, thereby highlighting hypothesis and preliminary versus 654 
established results. According to the results on biomedical investigations reported in this review, we 655 
suggest a multi-factorial effect of radon exposure on the course of the disease in radon exposed 656 
patients. This is illustrated in Figure 2: 657 

 658 
(1) Trigger of the anti-oxidative defensce by increased superoxide dismutase (SOD) and catalase 659 

activities. 660 
(2) Inhibition of the local and systemic inflammatory processes by increased release of TGF-β1 661 

along with reduced TNF- α levels.  662 
(3) Decreased activation of immune cells and shift of the ratio of immune cells towards a more 663 

anti-inflammatory state.  664 
(4) Alterations in bone metabolism resulting in diminished bone erosion.  665 
(5) Enhanced bone formation and pain release are mediated by hormones. 666 
  667 
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 669 
Figure 2. Proposed mechanism of action when radon is used to treat patients with a treatment for 670 
chronic musculoskeletal diseases (mostly ankylosing spondylitis, osteoarthritis or rheumatoid 671 
arthritis). Findings from in vitro or patient studies have been combined in this graph, where a solid 672 
line represents experimental findings (─) and a dashed line indicates a hypothetical relationship (- - - 673 
-). Please see the text for a more detailed discussion. Abbreviations: ACTH Adrenocorticotropic 674 
hormone; CTX collagen fragments type I; OC osteoclasts; IL interleukin; RANKL receptor activator 675 
of nuclear factor-κB ligand; OPG osteoprotegerin; ROS reactive oxygen species; SOD superoxide 676 
dismutase; TGF transforming growth factor. Illustrations based on pictures from Smart Servier 677 
Medical Art under the Creative Commons Attribution 3.0, France. 678 

The primary route of radon intake is inhalation. Inhaled radon daughter nuclei attach to the 679 
epithelial surface and radon is distributed via diffusion and active transport to different organs. The 680 
main target organ therefore is the lung, but in bone marrow and fat tissue radon daughter nuclides 681 
also accumulate. In view of the clinical application and the biomedical results obtained in patients 682 
also the musculoskeletal system has to be considered. In MSD, bone and structures of the joints are 683 
affected by erosion or resorption, often accompanied by inflammatory processes [154]. It is plausible 684 
to assume that cellular reactive oxygen species (ROS) production is part of the pathogenesis of many 685 
of the diseases treated with radon, because it is followed by an inflammatory reaction, characterized 686 
i.e. by enhanced production of TNF-α and other cytokines [155,156]. For example, in MSD patients, 687 
TNF-α is involved in recruiting OC progenitors to sites of inflammation [157], as to the joints, 688 
resulting in an increased bone resorption. According to measurements in the serum of patients, the 689 
anti-oxidative defense is activated, i.e. SOD is increased after radon treatment (Figure 2-1) [103] which 690 
was also reported in animal studies [142]. ROS levels are difficult to measure directly, but the above-691 
mentioned findings indicate a reduction after radon exposure. A concomitant reduction of the levels 692 
of pro-inflammatory cytokines such as TNF-α was reported in some patient studies (e.g. [108,117]). 693 
Remarkably one potential antagonist of TNF-α is the pleiotropic cytokine TGF-β1, which can also be 694 
activated by ROS [158]. In the types of diseases treated with radon this cytokine can either foster a 695 
pro-inflammatory immune reaction by inducing the differentiation of T cells into Th17 cells, together 696 
with IL-6 [159-161]; or, in contrast, lead to an up-regulation of anti-inflammatory Treg cells (Figure 697 
2-2). As can be expected, TGF-β1 levels were found to be increased [101,107] and the ratio between 698 
Th17 and Treg cells was changed in the serum of patients upon radon balneotherapy, the latter 699 
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mainly due to an increase of the amount of Treg cells [102,104], which possibly attenuates the 700 
inflammatory reaction and may also inhibit osteoclast activity [1312]. 701 

In joints of patients suffering from autoimmune bone diseases, activated Th17 cells and also pro-702 
inflammatory synovial fibroblasts produce the growth factors RANKL and MCSF, leading to an 703 
increased OC differentiation and bone resorption [157]. A decrease of RANKL release, most likely 704 
associated with a reduction of bone resorption by OC, has been shown after radon treatment of RA 705 
patients (Figure 2-3) [117] and is claimed also for AS patients [106]. Not only via the RANKL/MCSF 706 
axis, but also by an increased proportion of Treg cells, triggered by the aforementioned elevated TGF-707 
β levels, bone resorption is impacted (Figure 2-4). This could probably be due to direct interaction of 708 
Treg cells with OC precursors via IL-4, IL-10 and TGF-β1 as well as cytotoxic T-lymphocyte-709 
associated protein 4 (CTLA4)-signaling, shown in murine cells [157]. In the same line of evidence, in 710 
patient studies the RANKL-antagonist OPG was found to be enhanced after radon balneotherapy. 711 
This finding supports the proposed reduction of bone erosion in MSD (mostly OA) patients 712 
[102,108,115,117]. Additionally, pathological bone erosion seems to be counteracted after radon 713 
treatment by new bone formation, which could be caused by a stimulating effect of radon therapy on 714 
ACTH production and an upregulation of cortisol. As a consequence, pain is reduced and osteoblast 715 
proliferation is promoted (Figure 2-5) [113,115,162]. 716 

6. Conclusion 717 
In summary, experimental research on the effects of radon exposure is needed on multiple levels. 718 

For risk assessment related to different exposure scenarios including therapeutic application, the 719 
estimations of organ doses and mechanisms of intake and elimination of radon and its progeny have 720 
to be underpinned with more solid experimental measurements. The clinical applications have to be 721 
further analysed in high quality and placebo-controlled trials, accompanied by biomedical 722 
investigations, to increase the level of evidence of the therapy. as well as for assessment of potential 723 
side effects. This will help not only the patients directly in enhancing their mobility, but also might 724 
have a positive socio- economic effect for an aging population. 725 
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Appendix 739 

Table A1. Today’s radon spas all over the World [87,88,90,163]. 740 
Country Place (City) 
Austria Bad Gastein, Bad Hofgastein, Bad Zell, Gasteiner Heilstollen 
Bulgaria Hisarja 

Czech 
Republic 

Jáchymov 

Chile Jahucl Hot Springs 
China Nanshui, Taishan 
France Plombiers 

Germany Bad Brambach, Bad Kreuznach, Bad Münster am Stein, Bad Schlema, Bad 
Steben, Sibyllenbad, Menzenschwand St. Blasien, Weissenstadt 

Greece Ikaria, Polichnitos, Eftalou 
Hungary Abaliget Cave, Budapest, Beke Cave, Eger, lstván Cave, Tapolca Hospital Cave, 

Szemlöhegy Cave 
Italy Ischia, Meran 

Japan Misasa 
Poland Długopole-Zdrój, Ladek-Zdrój, Świeradów-Zdrój, Szczawno-Zdrój, Przerzeczyn-

Zdrój 
Romania Felix Spa 

Russia Pyatigorsk (Caucasus). Belokuriha (Altai, Siberia) and Yangan Tau (Ural) 
Ukraine Khmelnik 

USA Boulder (Montana) 
 741 

 742 
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