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Abstract: Optimal investment decisions by institutional investors require accurate predictions with
respect to the development of stock markets. Motivated by previous research that revealed the
unsatisfactory performance of existing stock market prediction models, this study proposes a novel
prediction approach. Our proposed system combines Artificial Intelligence (AI) with data from
Virtual Investment Communities (VICs) and leverages VICs’ ability to support the process of pre-
dicting stock markets. An empirical study with two different models using real data shows the
potential of the AI-based system with VICs information as an instrument for stock market predictions.
VICs can be a valuable addition but our results indicate that this type of data is only helpful in certain
market phases.
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1. Introduction

Related research that focuses on prediction models for stock markets shows regu-
larly unsatisfactory performance of these models [1] and in consequence such inaccurate
predictions can lead to economic losses. Investors therefore have an interest in accurate
predictions that not only minimize their losses but are also able to generate economic value.
As a result, we observe in business practice a technological arms race that tries to improve
prediction models [2]. Accurately predicting stock prices is a key basis for investment
decisions by institutional investors [3]. However, the problem is that financial markets are
very complex, which makes it difficult to develop appropriate prediction models [4].

For these models new pieces of information could be relevant for prediction. Especially
sources of information that have not been examined yet seem promising. Virtual Investment
Communities (VICs) have the ability, as an information platform, to influence investor
decisions [5] or can be used to significantly improve portfolio allocation [6] and could
thus serve as additional source of information for prediction models. We define VICs as a
virtual community where communication technologies are used [7] to share knowledge [8]
with respect to investing topics. Examples for such VICs are “Sharewise”, “Swipestox”
or “Wikifolio”. Previous information systems (IS) research has largely focused on VICs
Networks. However, there is as yet little understanding of the information content in VICs
in the context of prediction. The objective of this paper is therefore to close this gap. The
aim of this paper is to assess the predictive value of data that users in VICs share. To
answer this question, we compare the predictive performance of a deep learning model
that uses VIC information to a baseline model that does not use these data. Although
recent studies have examined the community features of VICs, we are the first to assess the
predictive value of VICs information.

The remainder of the paper proceeds as follows: The next section focuses on previous
research on VICs and proposes a theoretical framework. The section called “Methods”
describes our empirical approach and our model that we apply to forecast the S&P 500

Mach. Learn. Knowl. Extr. 2021, 3, 1–13. https://dx.doi.org/10.3390/make3010001 https://www.mdpi.com/journal/make

https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-2588-6552
https://orcid.org/0000-0002-7294-3097
https://orcid.org/0000-0003-4757-0599
https://www.mdpi.com/2504-4990/3/1/1?type=check_update&version=1
https://dx.doi.org/10.3390/make3010001
https://dx.doi.org/10.3390/make3010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/make3010001
https://www.mdpi.com/journal/make


Mach. Learn. Knowl. Extr. 2021, 3 2

Index. After that, the section called “Results” presents the findings of the model. The last
section offers the implications and a discussion of this research.

2. Previous Research

Previous IS research on VICs focuses strongly on the community aspects and is
now rather well-understood. For example, Park et al. [5] examines the impact of stock
recommendations on investors. This work shows that investors exhibit confirmation bias,
whereby they preferentially react on messages from VICs that support their prior beliefs.
The work of Nofer and Hinz [9] examines the performance of recommendations in VICs
versus analysts’ recommendations. The results show that users make an annual return
based on VIC recommendation that is on average 0.59% higher than annual returns based
on recommendations by banks, brokers and professional analysts.

Most relevant to this study is the work by Gottschlich and Hinz (2014) [6], that shows
that data from VICs can lead to a superior portfolio allocation. The authors suggest a
decision support system that enables investors to include the VICs recommendations in
their investment decisions and use it to manage a portfolio which ultimately leads to higher
absolute returns.

These results indicate that VICs can be seen as a source of private information that the
market has not fully incorporated. As a result, individual investors, unlike institutional
investors, have access to relevant information for the relevant share [5] and these platforms
can act as a source of information and can thus be seen as an aggregator of private informa-
tion. Therefore, it seems plausible that these pieces of private information might improve
the predictive accuracy of the corresponding prediction models [10].

Previous research reveals that users share their insights in VICs because they are
interested in gaining recognition and reputation, and are less motivated by monetary
incentives [6]. The willingness of people to share knowledge for non-monetary reasons
is already reflected in earlier research, for example because of a sense of belonging [11],
motivation through extrinsic appreciation [12] and the joy of helping and for reasons of
reciprocity [13].

Content-wise it is notable that previous research examines the comparability between
the recommendations make by professional analysts and recommendations that origin
from VICs. Barber et al. (2001) [14] find that purchasing stocks with the most favourable
consensus recommendations, in conjunction with daily portfolio rebalancing and a timely
response to recommendation changes, yield annual abnormal gross returns greater than 4%.
In contrast Barniv et al. [15] and Bradshaw et al. [16] arrive at the opposite results. Against
this background, it seems questionable whether it makes sense to equate the analysts’
classic work with the platforms’ collective system approach or in other words whether
data from VICs carry additional predictive value above and beyond the information that is
already in the market, e.g., which is reflected in the analysts’ recommendation.

Moreover, a central question that needs to be addressed in this context is the question
whether predictions are possible at all. The efficient market hypothesis by Fama [17]
leads to the question to what extent predictions of financial markets are possible at all.
The authors suggest that the current price of an asset is the sum of all available and relevant
information for market participants [17]. It can thereby be deduced that a pricing process
that feeds on new information establishes the price of an asset. The capital market thus
instantaneously incorporates new information. The efficiency market hypothesis thus
attributes the pricing process to the availability of market-relevant information. This work
makes a distinction between three forms of market efficiency: the strong-form efficiency,
the weak-form efficiency and the semi-strong-form efficiency.

Grossmann and Stiglitz [18] emphasize that the strong-form is only of theoretical
relevance but cannot be found in real markets. Further research shows that we can observe
a weak-form efficiency on real capital markets. For instance, the work by Oztekin et al. [19]
or Malkiel [20] provides evidence for this finding. However, Neely et. al [21] or Campbell
and Thompson [22] discuss the possibility of a semi-strong-form efficiency. In line with
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this discussion we follow the idea of Essendorfer et al. [2], that technological arms races
can make capital markets more efficient. That means that markets transform from one form
to another form. Based on these considerations, it is likely that information efficiency in
capital markets is undergoing a dynamic development towards the strong-form but has
not arrived there yet.

From a research perspective, it is essential to note that both forms allow meaningful
prediction models. The difference between the weak-form and the semi-strong-form is
the availability of information. We test if VICs information can be classified as a partially
private information source. With this assumption, even the semi-strong form would allow
for valuable prediction models.

3. Methods

The consideration of the market efficiency hypothesis allows meaningful prediction
models if the weak-form efficiency or the semi-strong-form is assumed. In this paper, we
start with the assumption that predictions on capital markets are possible. A plethora of
papers deal with prediction models in the context of capital markets and use traditional
time series analyses or methods from AI for this purpose [23].

In this paper, we compare a prediction model that uses data from VICs with a baseline
model that does not make use of this type of information. The two models are based on
Historical Consistent Neural Networks (HCNN) and we assess the impact of VIC data on
the performance of the two models. We call the two models Type A (baseline) and Type B
(extension). Therefore, Type B gets the additional VIC time series. Figure 1 shows the setup
that allows us to compare the two models.
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Figure 1. Our Prediction Comparison Model.
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According to Figure 1, this paper compares two structurally equivalent HCNN models
to identify the added value of VICs information in the context of stock market prediction.
Therefore, HCNN is at the center of both models. The advantage of HCNN, like all machine
learning methods, is the ability to learn [24] and these methods demonstrate a superior
performance with respect to predictions. The raise of computing power opens up new fields
of application for these methods [25], such as face recognition [26], vehicle control [27],
program code creation [28] and the ability to recognize human speech and to respond
appropriately [29]. Decision makers also use these methods increasingly for decisions on
capital markets [30].

The HCNN uses the basic mathematical operation of units to operationalize complex
systems. The HCNN premise is to look at a system as a multitude of smaller systems
and to anticipate their behaviors [31]. If we transfer this approach to a capital market,
it can be broken down as a sum of its individual capital market components in order to
explain it. The special feature is the closed modelling of systems according to the premise.
The advantage of this model concept is that not every element has to be modelled because
the necessary information is provided by the subsystems themselves. In contrast to other
approaches, such as multi-agent systems, this does not necessarily simulate a respective
capital market players and their trading interactions in a capital market. Starting from the
intended modelling of a closed system as sum of its partial systems, the system description
is the sum of its observables yτ [32]. The state variables can be understood as a vector
combination. Thus, the sum of the vectors produces the total system, in our case the capital
market. Also each vector is the result of the specific time series.

Each of these time series thus results in an observable yτ . The introduction of hidden
state variables hτ derives from the need to capture potential interactions that are not
described explicitly by the time series. The complexity of a system can be minimized
by the divide-and-conquer process in which the capital market is the complete system.
This complete system is also the sum of the interaction of various subsystems. However,
previous literature is relatively quiet on the determination of a suitable number of hidden
neurons which leaves some degrees of freedom for the modeller.

The combinations of yτ and hτ at any given time result in the total system Sτ in their
addition. Thus, the dynamics of the entire system derive from the historical observations
by the HCNN [33]. The state of the total system Sτ is the result of the combination of the
vectors yτ and hτ at a particular time. The next system state obtains by multiplying the
respective observable τ by the [(n + m) ∗ (n + m)]-dimensional weighting matrix A.

Sτ =



Y1
τ

Y2
τ
...

Yn
τ

h1
τ

h2
τ
...

hm
τ


(1)

We use the hyperbolic (Formula (2)) tangent as output function [34].

Sτ = tanh(A ∗ Sτ−1) (2)

Figure 2 illustrates the implementation of the system transitions at the neuron level.
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Figure 2. System Transitions at Neuron Level [35].

Figure 2 depicts that each system state results from the previous system states. Here,
we extract the explicit observables via the extended identity matrix [id, 0]. These individual
components make up the entire network architecture. We use this network architecture
for our prediction models. In the in-sample phase, this paper follows the standard pre-
processing to find caps or to reduce the estimation variance [36].

It is important to know that HCNN belongs to the family of Deep learning models.
Deep learning is a collective term for a particular type of machine learning method [37].
Deep learning is usually based on Artificial Neural Networks (ANNs) with multiple layers
of neurons. An ANN is a computer-simulated system of neurons connected by weighted
links [38] where the neurons are an elementary component. These neurons exchange
information with other neurons via direct connection after activation. Researchers and
business practitioners controversially discuss these new methods because their black box
approach often does not lead to theoretical or managerial insights. However, in this work,
we assume that if this deep learning yields an additional gain by incorporating VICs,
this will be reflected in better prediction values. This premise enables the automation of
the evaluation of large amounts of data.

Our study uses data from a VIC called “Sharewise”. We use recommendations from
“Sharewise” to see if they comprise information with additional predictive value. The rec-
ommendations can be “strong sell”, “sell”, "hold", “buy” and “strong buy” which we
transform to values between −2 and +2. Critical is the aggregation of all available opinions
about the totality of assets at a time in order to derive a general market sentiment from
them. On the one hand, subjective influence will be normalized. On the other hand,
this procedure aggregates the availability VICs-data to approximate the S&P 500 index.
The use of specific recommendations for this index is important for the prediction of the
S&P 500. However, these data are not available at the time of research because the aggre-
gated opinions on the S&P 500 are not saved according to the information provided by
“Sharewise”. Figure 3 shows the quantified and aggregated VICs information for all shares
in the S&P 500 index from “Sharewise”.
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Figure 3. Aggregated Sentiment based on VICs Recommendations of Trading Year 2010.
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The aggregated sentiment based on VICs recommendations starts to drop (t1) at the
beginning of the year and then it strives for an euphoric climax (t25). We observe a high
volatility and use the moving averages to depict the trend in the data. Overall the sentiment
appears to be getting worse over time. To understand the predictive value of the aggregated
sentiment based on VICs recommendations, we predict the S&P 500 for the year 2010. This
stock index includes the 500 relevant US companies. Users in the focal VICs discuss the
S&P 500 therefore intensively and make a sufficiently large number of recommendations
for the stocks in the S&P 500. Thus, the state variables used for this work result from the
time series information in the form of the continuous returns r directly. We use values from
literature to calibrate the HCNN-network. Table 1 shows the statistical key figures of the
data set on a return basis, Table 2 shows the chosen parameters for the HCNN-network
ensemble.

Table 1. Statistical Key Figures of the Data set on a Return Basis. IQR = Interquartile range (0.75-
quartiles—0.25-quartiles).

Measure S & P 500 Dow J. US-Bonds Copper Ex. Rate

Average 0.0005 0.0004 0.0000 0.0010 −0.0001
Median 0.0006 0.0005 0.0000 0.0028 −0.0004
Variance 0.0001 0.0001 0.0000 0.0003 0.0000

Stand. Dev. 0.0112 0.0100 0.0030 0.01789 0.0062
Minimum −0.0398 −0.0367 −0.0108 −0.0688 −0.0194
Maximum 0.0430 0.0383 0.0084 0.0610 0.0205

Span 0.0828 0.0749 0.0191 0.1297 0.0399
IQR 0.0101 0.0080 0.0041 0.0210 0.0079

Skew −0.2106 −0.1762 −0.1566 −0.5756 0.1145
Curvature 5.1161 5.2600 3.3686 4.4937 3.4821

Table 2. HCNNs Parametrization.

Used Parameterization for the HCNNs

Parameter Configuration Source

Occupancy rate A 12.5% Analogous to [33]
Learning period 20 days Analogous to [39] und [33]

Tolerance condition 1× 10−7 (own research)
learning iterations 1000 (own research)

Input neurons 6 (expanded) bzw. 5 (own research)
Hidden neurons 60 (own research)

Bias neurons yes (own research)
Ensemble members 100 (based on computer power)

To determine the accuracy of the forecasts in the out-of-sample phases, we use the
following goodness-of-fit measures. The first measure is the mean square error (MSE)
which is given by Formula (3) [40].

MSE =
1
T

T

∑
t=1

(yt − ŷt)
2 (3)

Second, we examine the hit ratio which reflects the number of correctly predicted up
and down movements.

HR =
Hits

Total Number
(4)

The correlation coefficient r according to Bravais and Pearson is a normalized measure
and lies in the interval between [−1 and +1]. This metric indicates the degree of linear
relationship between the predicted values and the true values [41]. We also used the
travel-distance as standardized measure in the interval from −1 to +1, thus providing a
suitable interpretation of price prediction value (ŷt) and the observation y.
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TD =
∑T

t=1(sign (ŷt) ∗ yt)

∑T
t=1|yt|

(5)

A travel-distance of +1 indicates a “perfect” forecast model, which exactly forecasts
every future value. A value of −1 indicates a “contra model”. A value of 0 indicates that
there is no correlation between prediction and actual movement [42]. The focus of this
metrics are the signs of prognosis and the true market values.

We determine these measures with the help of a rolling time window which is the
typical learning process using historical data. Subsequently, the generation of the forecast
path for the next time t + 1 and the above-mentioned quality measures are determined.
After the forecast is completed, the window scrolls one time step further. This starts the
next evaluation step of the forecast. The choice of a suitable window length is not easy.
The use of a window that is rather small could lead to inaccurate results because too few
learning data points are available. However, if the window is too large, it can lead to an
increasing degree of persistence [43]. This problem is also referred to as “overfitting”. We
use 20 days to predict the next time step in line with [33,35,39].

4. Results

The following Table 3 presents the results. Subsequently, the first prediction period
is used as an example to introduce some characteristics and explain the further results
over time.

Table 3. Evaluation of Prediction Models. Rolling out-of-sample forecasts measured by MSE = mean square error, HR = hit
rate, TD travel-distance and r = correlation coefficient. 1 The period in trading days of the record is divided into the start of
the initial start of the learning process in the respective in-sample phase (IS) and the actual out-of-sample phase (OOS) for
prediction using a rolling time window with a length of 20 periods.

Out-of-Sample Prediction

Extended HCNN (Type B) HCNN (Type A)

Period (IS|OOS) 1 MSE HR TD r MSE HR TD r

2010 (1) 1–20|20–40 0.0088 0.5238 0.2392 0.1484 0.0004 0.4286 0.3300 0.1330
2010 (2) 20–40|40–60 0.0157 0.2857 −0.5086 −0.3230 0.0003 0.4762 0.4608 0.1563
2010 (3) 40–60|60–80 0.0094 0.3333 −0.5370 −0.4160 0.0001 0.5714 0.3434 0.2006
2010 (4) 60–80|80–100 0.0099 0.5238 0.3121 0.1444 0.0001 0.6190 0.1489 0.4267
2010 (5) 80–100|100–120 0.0213 0.4286 −0.0963 −0.2034 0.0013 0.6190 −0.0883 −0.0810
2010 (6) 100–120|120–140 0.0093 0.5238 0.2019 0.1416 0.0010 0.4762 −0.1242 −0.3396
2010 (7) 120–140|140–160 0.0130 0.4286 −0.4256 −0.1368 0.0005 0.4286 −0.0706 −0.1523
2010 (8) 140–160|160–180 0.0193 0.4762 0.2155 0.2467 0.0005 0.6667 −0.1408 0.1311
2010 (9) 1160–180|180–200 0.0182 0.4762 −0.1407 −0.3107 0.0004 0.1905 −0.3735 −0.1920
2010 (10) 180–200|200–220 0.0183 0.4762 0.0038 −0.0578 0.0001 0.4762 0.3992 0.1809
2010 (11) 200–220|220–240 0.0202 0.6667 0.5214 0.0046 0.0001 0.5714 0.1333 0.1409
2010 (12) 220–240|240–260 0.0148 0.5714 0.1526 0.1793 0.0002 0.4762 −0.0232 −0.1974

Average 0.0148 0.4762 −0.0051 −0.0485 0.0004 0.5000 0.0829 0.0339

Figure 4 compares the two prediction models with respect to quality of the ensembles
of network Type A (baseline HCNN) and network Type B (extended network considering
additional VICs data) for the first trading month based on Table 3.
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Figure 4. Comparison of the Forecast Results of the Ensembles from Network Type A (HCNN
Baseline) and the Network Type B (Extended Network with the Data of the VICs).

The MSE is narrowly distributed around zero. These values coincide with the mea-
surement results in [1] (2008). However, the analysis of the MSE distribution of the Type
B shows a slightly increased value. From this, a higher adjustment error can be derived.
This adjustment error is a bit smaller for Type A HCNN. The MSE results of type A seem
better, but the differences are minimal. The comparison shows that there is no significant
difference between the MSEs. In the first period, the hit rate of the ensemble with the addi-
tional information is higher (Type B (HR ≈ 0.5238%) than the hit rate from the ensemble
without these pieces of information (Type A HR ≈ 0.4286%). The much smaller distance of
the Type B (≈ 0.2392%) is also a sign for a smaller deviation from the true values. Figure 5
shows the hit rate for each model.
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Figure 5. Comparison Hit Rate.
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Here, the strength of the Type B in 6 of 12 months, compared to the Type A prediction
model, is emphasized. Especially in the first month, it turns out that the sentiment index is a
helpful indicator for trend recognition. However, a diametrical picture emerges afterwards.
Periods 3, 4 and 5 seem to be particularly problematic for the Type B, as the forecast results
in the form of the hit rate of the HCNN without VICs data show on average a 10% higher
prediction quality. Only later in the time series forecast (periods 10, 11, 12) is the hit rate of
the Type B better by about 6.33%. The analysis of the distance results in a relative view of
the hit rate (Figure 6).
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Figure 6 shows a relation of the seemingly high performance. Due to the routes,
false forecasts (1-hit rate) weight significantly higher in the context of a practice-oriented
forecast. The distances of the Type A (HCNN TD ≈ 0.34% and TD ≈ 0.15%) are the
shortest. The Type B model beats the other model for this period (HCNN TD ≈ −0.51%
and TD ≈ −0.54%). The circumstance of the negative sign of the route quantifies the
prediction of a wrong trend direction. This is particularly devastating for a practice-
oriented application

The correlation coefficient shows an amazing picture. In contrast to the Type B model,
the correlation coefficient of Type A is positive. This suggests that this model can best
cope with this data set as the market phases change. However, the value interval of
r is highlighted critically. The values between the lower quartiles (0.25-quantile) and
the upper quartiles (0.75-quantile) move with asymmetric variance around a zero value.
Against this background, these correlation values are only interpretable conditionally based
on the theoretical advantages of HCNN according to Zimmermann et al. [35]. Based on
these results, we use a simple trading strategy to illustrate the prediction performance.
The underlying trading strategy is a naive strategy. When the predicted market situation
is “long”, than the system will buy shares. In the case of a predicted market situation
“short”, the system will sell the shares. Figure 7 shows the result of each model in a trading
simulation.

The results may be interpreted to indicate that VICs have the ability to improve the
prediction models. Our findings strongly support the view that VICs contain a temporary
informational content and can therefore be valuable to predict stock price series.

The HCNNs functionality, with or without the VICs data as a prediction model, should
be emphasized. The results show a certain punctual form of the superiority of the type B
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model. However, the results are not systematically better when compared to the selected
type A model. However, Figure 7 shows the advantages of the type B model in a trading
strategy in the second part of the year.
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Figure 7. The VICs Prediction Information in a Trading Strategy.

The unsystematic results can have different reasons. Presumably, the aggregation
of a mood picture in the form of the sentiment index formed here is only an indicator
and maybe subject to a certain error rate due to human subjectivity and the general
market uncertainty. Thus, we assume that the overall opinion over time by the underlying
particular assessments makes insufficient statements for the respective future market phase.
The problem derives from the results in highly volatile market phases. The type B model
shows weaker prediction performance than the type A model, especially in the market
phases with very high uncertainty. However, this circumstance revolves in the other
periods when the opinion index stabilizes too. This stabilization of the index, with the
increase in the prediction quality of the type B, suggests a potential useful informational
content. Based on the findings, the HCNN is a sufficient prediction model for practical
application. The term “sufficient” is chosen here because the VICs data contribute to the
prediction in the context of machine processing in particular market phases. However,
in this selected set of time series, there are periods that cannot be better predicted by
incorporating data from a VIC. The HCNN sensitivity seems to be higher than that of the
classical mean model. This speaks for a potential for adaptation to the chosen markets.

The challenge of prediction bases on the complexity of the capital markets. The premise
of the HCNN, however, gives the possibility to minimize the complexity by the divide-
and-conquer process, in which the capital markets is regarded as a complete system and
understood as the interaction of various subsystems. Based on the premise, the HCNN,
as a neural network offers the property of approximating various functions. Additionally,
this approach is realized in this work as part of a practical implementation.

The results indicate the possibility of time series prediction based on an HCNN model.
Adding additional information from VICs can potentially provide added value. The analy-
sis shows this marginal utility for some trading periods. The type B (HR ≈ 0.5238%) model,
which makes use of additional time series information from VICs, arrives at better results
than the type A (HR ≈ 0.4286%) and the classical mean value model (HR ≈ 0.3010%).
This result indicates that VICs can serve as an additional source of information and can
selectively improve forecasts.
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5. Implications

Our findings have important consequences for theory and practices. From a theoretical
view, this paper offers a deeper understanding of the information benefit from VICs data for
prediction purposes. We illustrate in our paper that VICs can improve the predictions under
certain circumstances. Previous studies of VICs in IS research have scarcely considered
whether the data can be used to create meaningful prediction models. This paper is, to the
best of our knowledge, the first to use VICs data for prediction. It thus contributes to
literature by studying prediction in a yet underexplored context and advance the VICs
literature by highlighting the possibilities as a prediction source. More broadly, our findings
point towards the potential of the data from VICs to improve financial market predictions.

Based on the presented concept, HCNNs can be used to create useful prediction
systems. Data from VICs can be a valuable addition but our results indicate that this type
of data is only helpful in certain market phases. However, our results also reveal that
there are market phases that cannot be better predicted using VICs data. In phases of high
market uncertainty, the sensitivity of HCNN models seems to be higher than that of the
classical mean value model. Future research needs to better understand this relationship.

Given that predicting stock prices is key for investment decisions by institutional
investors [3], our results have also important implications for practice. In prediction
models, it is important to use adequate information sources. Moreover, the benefits of
new information need to outweigh the costs for acquiring the information. For example
information from providers such as Bloomberg or analysts’ reports are very expensive
while data from VICs can constitute a cheap but yet valuable alternative. In summary,
our results indicate that HCNN with and without access to data from VICs can serve
as a promising prediction instrument for financial markets. The results thus show that
both approaches are complementary and should be used together. The HCNN thus offers
potential for further practical application, with appropriate further development.

6. Limitations, Conclusions and Future Research

As with any study, there are some limitations that provide opportunities for future
research. First, based on our proposed prediction model, we use an aggregation approach
to collect the VICs information for the S&P 500 index which potentially limits the predictive
power of the VICs data. For IS research, the information pre-process part is a particularly
interesting point for further research. For example, the aggregation of data from VICs could
be adapted and other means of aggregation could be used. Second, we use the typical
rolling window back test, which is a commonly used scientific approach but which is not
used very often in business practice. Future research could verify our findings in a more
realistic setting and could consider a longer time frame. Finally, future work may extend
our research prediction models by using elaborate methods for the network architecture of
HCNN. Parameters such as the number of learning epochs, the number of neurons and
layers used, would be a promising starting point.

As [1] shows, predicting financial markets is a complex undertaking. The premise
of the HCNN to minimize the complexity of a given financial market by using a divide
and conquer approach is useful and gives new opportunities. This approach is therefore
valuable by delivering an understanding of different subsystems in a complex system such
as the financial market [35] and an understanding of the time series. Thus, the processes on
the financial markets can theoretically be simulated based on such an approach. HCNN as
a special form of ANN are the proper instrument for such an analysis.

The results show the possibility of time series prediction with the HCNN model.
The advantage of additional information from the VICs can offer a potential added value.
This is shown in some trading periods in direct comparison with the chosen reference mod-
els. The extended HCNN (TQ ≈ 0.5238%), which has additional time series information,
delivers better results than the HCNN (TQ ≈ 0.4286%) and the classic mean value model
(TQ ≈ 0.3010%) on average. Thus, the VICs offer the potential to serve as an additional



Mach. Learn. Knowl. Extr. 2021, 3 12

source of information and can lead to improvements with regards to forecasts at least in
relatively stable market phases.

However, HCNN and data from VICs do not perform significantly better in general.
Therefore, we advise to be cautious. The high variance of prediction accuracies should be
evaluated systematically before the model can be applied in business practice. A further
circumstance is the complexity of the HCNN as a prediction instrument in this context.
However, the listed imitations of this paper could be a great start for future work. An aspect
for future investigation is the modelling of other time series such as stock prices of different
stocks instead of an index price. In the context of model training, it would be useful to
carry out analysis of the hyperparameters of the HCNN to get a deeper understanding,
for example concerning the learning epochs, number of neurons, and layers.

To conclude, we believe that VICs have a great potential as a prediction source.
We hope that this paper gives fresh impetus to researchers to focus on these interesting plat-
forms. This work offers an interesting technological approach and may perhaps counteract
the neo-phobia and the aversion to new technologies.
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