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Abstract
We study online secretary problems with returns in combinatorial packing domains

with n candidates that arrive sequentially over time in random order. The goal is

to determine a feasible packing of candidates of maximum total value. In the first

variant, each candidate arrives exactly twice. All 2n arrivals occur in random order.

We propose a simple 0.5-competitive algorithm. For the online bipartite matching

problem, we obtain an algorithm with ratio at least 0.5721− o(1), and an algorithm

with ratio at least 0.5459 for all n≥ 1. We extend all algorithms and ratios to k≥ 2

arrivals per candidate. In the second variant, there is a pool of undecided candidates.

In each round, a random candidate from the pool arrives. Upon arrival a candi-

date can be either decided (accept/reject) or postponed. We focus on minimizing

the expected number of postponements when computing an optimal solution. An

expected number of Θ(n log n) is always sufficient. For bipartite matching, we can

show a tight bound of O(r log n), where r is the size of the optimum matching. For

matroids, we can improve this further to a tight bound of O(r′ log(n/r′)), where r′ is

the minimum rank of the matroid and the dual matroid.
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1 INTRODUCTION

The secretary problem is a classic approach to study online optimization problems: A sequence of n candidates are arriving in

uniform random order. Each candidate reveals its value upon arrival and must be decided (accept/reject) before seeing any further

candidate(s). Every decision is final—once a candidate gets accepted, the process is over. Moreover, no rejected candidate can

be accepted later on. The goal is to accept the best candidate. An optimal solution is to discard the first (roughly) n/e candidates.

From the subsequent ones, we accept the first, that is, the best one among the ones seen so far. The probability to hire the best

candidate approaches 1/e≈ 0.37 when n tends to infinity.

The secretary problem and its variants have been popular since the 1960s. Significant interest in computer science emerged

about a decade ago due to new applications in e-commerce and online advertising markets [3, 14]. For example, the classic

secretary problem can be used to model a seller that wants to give away a single item, buyers arrive sequentially over time, and

the goal is to assign the item to the buyer with highest value. More generally, online budgeted matching problems arise when

search queries arrive over time, and the goal is to show the most profitable ads on the search result pages. The goal here is to

design algorithms with good competitive ratio.

More recently, progress has been made towards a general understanding of online packing problems with random-order

arrival, including matching [1, 18, 21], integer packing programs [19, 23], or independent set problems [13]. Most prominently,

the matroid secretary problem has attracted a large amount of interest [3, 6]. Here the elements of a matroid arrive in uniform

random order, and the goal is to construct an independent set with as high a value as possible. A central open problem in the area
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is the matroid secretary conjecture—is there a constant-competitive algorithm for every matroid in the random order model?

The conjecture has been proved for a variety of subclasses of matroids [6]. Currently, the best-known algorithms for the general

problem are 1/O(log log rank)-competitive [9, 22].

A strong assumption in the secretary problem is that every decision about a candidate must be made immediately without

seeing any of the future candidates. Instead, in many natural admission scenarios candidates appear more than once, or they

arrive and stay in the system for some time, during which a decision can be made. An interesting variant that captures this idea

is the returning secretary problem [26]. Here each candidate is assigned two random time points from a bounded time interval.

The earlier becomes the arrival time, the later the departure time. Equivalently, we can assume that each candidate arrives

exactly twice, and all 2n arrivals occur in random order. The decision about acceptance of a candidate can be made between the

first and the second arrival. More generally, for k≥ 2 each candidate chooses k random points, arrives at the earliest and leaves

at the latest point. In this case, there are kn arrivals in random order. Vardi [26] showed an optimal algorithm for the returning

secretary problem with k = 2, for which the probability of accepting the best candidate is about 0.768. For matroid secretary with

k = 2 arrivals, a competitive ratio of 0.5, and for matching secretary a ratio 0.5625− o(1) (with asymptotics in n) were shown.

In this paper, we significantly extend and broaden the results on the returning secretary problem to general packing domains.

We provide a simple algorithm that can be combined with arbitrary 𝛼-approximation algorithms and yields competitive ratios

of 0.5 ⋅ 𝛼 for all subadditive packing problems, including matroids, matching, knapsack, independent set, etc. Moreover, we

improve the guarantees for matching secretary and provide bounds that hold in expectation for all n. We extend all our bounds to

arbitrary k≥ 2. In addition, we study a complementary variant in which the decision maker is allowed to postpone the decision

about a candidate. In this case, the goal is to minimize the number of postponements to guarantee an optimal or near-optimal

solution in the end. These problems can be cast as a set of novel coupon collector problems, and we provide guarantees and

trade-offs for matroid, matching and knapsack postponement.

1.1 Results and contribution
In the secretary problem with k arrivals in Section 3, each candidiate arrives exactly k times. We propose a simple approach for

general subadditive packing problems with returns, which can be combined with arbitrary offline 𝛼-approximation algorithms.

It yields a competitive ratio of 𝛼 ⋅ 1

2
for k≥ 2. For general packing problems with XOS (maximum of sums) objective we show

a competitive ratio 𝛼 ⋅ (1− 2−(k− 1)).

For additive bipartite matching, we obtain a new algorithm with an improved competitive ratio of 0.5721− o(1) for k = 2

with asymptotics in n. Moreover, we present an algorithm with ratio 0.5459 for k = 2 for every n. Both algorithms rely on exact

solution of partial matching problems. The algorithms can be combined with faster 𝛼-approximations for partial matchings, by

spending at most an additional factor 𝛼 in the competitive ratio. For the previous algorithm in [26], the algorithm description

and proof of the ratio in the full version is slightly ambiguous.1 Our algorithm clarifies and slightly improves upon this by

including the twice-arrived and rejected candidates during a sampling phase when computing partial matchings. Their removal

yields free nodes in the offline partition for matching in later rounds.

In the postponing secretary problem in Section 4, there is a pool of n undecided candidates. In each round, a random

candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject) or postponed and returned into the

pool. We strive to minimize the expected number of postponements to compute an optimal or near-optimal solution. Postponing

everyone until all candidates are observed at least once is the coupon collector problem. Hence, with an expected number of

O(n log n) postponements one can reduce the problem to the offline optimization variant. For general XOS packing and an

𝛼-approximation algorithm, a simple trade-off shows an (1− 𝜀) ⋅ 𝛼-approximation using O(n ln 1/𝜀) postponements.

Based on a property we term exclusion-monotonicity, we show significantly improved results when the desired optimal

solution has small cardinality. A bound of O(r log n) for the expected number of postponements holds when obtaining optimal

solutions of size at most r in additive matroids and bipartite matching, and greedy 2-approximations for knapsack. For matroids,

we can further improve the bound to O(r′ ln n/r′), where r′ = min(r, n− r). This upper bound is at most n, and the worst-case

is attained for uniform matroids. We fully characterize the expected number of postponements of every candidate in uniform

matroids when the optimal solution is to be obtained. Finally, we conclude the paper with a lower bound—in general we might

need Ω(n log log n) postponements to obtain an optimal solution, even when this optimal solution has cardinality O(log n).

1.1.1 Further related work
The literature on secretary online variants of packing problems and online stochastic optimization has grown significantly over

the last decade. We restrict the review to the most directly related results. For a survey of classic variants of the secretary

problem, see [10].

1For example, the pseudo-code on page 12 does not become the algorithm for a single secretary when there is a single node in the offline partition. One would

always accept the best secretary that arrived once in the sampling phase. A better one arriving in later rounds is always rejected inside the for-loop. Also, the

proof of Claim 5.6 seems to require both sides of the bipartite graph must have size n.
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The bipartite secretary matching problem was first studied in the context of transversal matroids [1], where a decision

about accepting an arriving vertex into the matching needs to be taken directly, but matching edges can be decided in the end.

Later works required that the edges must also be decided upon arrival [21]. The best algorithm for both variants obtains a

competitive ratio of 1/e [18]. Most work in computer science has been devoted to the matroid secretary problem. Currently, the

best algorithms obtain a competitive ratio 1/O(log log rank) [9, 22]. It is an open problem if a constant competitive ratio can be

shown. For a survey of work on classes of matroids and further developments see [6].

While above results are all for maximizing additive objective functions, recent work has started to consider submodular

ones. For cardinality and matching constraints, constant-competitive algorithms exist for submodular secretary variants [17].

For matroids, there is a general technique to extend algorithms for additive objectives to submodular ones, which preserves

constant competitive ratios [8].

Beyond matroids and matching, there are constant-competitive algorithms for knapsack secretary [2]. Prominent graph

classes in networking applications allow good secretary algorithms for independent set [13]. The techniques for bipartite match-

ing have been extended to secretary variants of combinatorial auctions and integer packing programs [19, 23]. Moreover, there

are 1/O(log n)-competitive algorithms even in a general packing domain [24].

Additional model variants that have found interest are, for example, local secretary [5] (several decision makers try to

simultaneously hire candidates based on local feedback), temp secretary [11] (candidates are hired only for a bounded period

of time), or ordinal secretary [15, 25] (information available to the decision maker is only the total order of the candidates but

not their numerical values).

Secretary postponement can be seen as a combinatorial extension of the coupon collector problem, a classic problem in

applied probability. The elementary problem and its analysis are standard and discussed in many textbooks. The problem has

many applications, and there is a plethora of variants that have been studied (see, e.g., [4, 12, 20]). To the best of our knowledge,

however, the results for combinatorial packing problems derived in this paper have not been obtained in the literature before.

An extended abstract of this paper has appeared in the proceedings of the 29th International Symposium on Algorithms and

Computation (ISAAC 2018) [16].

2 PACKING PROBLEMS

We consider a packing problem, in which there is a set N of n candidates, and a set 𝒮 ⊆ 2N of feasible solutions. 𝒮 is

downward-closed, that is, S ∈ 𝒮 and T ⊆ S implies T ∈ 𝒮 . For most parts, we assume that the objective function w : 2N →R≥0 is

additive, that is, there is a non-negative value w : N →R≥0 for each candidate, and w(S)=
∑

e∈ Sw(e) for all S⊆N. More generally,

we will sometimes assume the objective function w is in the class XOS. An XOS function is defined as w(S) = maxk
i=1 wi(S),

the maximum over some number k of additive functions wi(S) =
∑

e∈ Swi(e), for all S⊆N and i = 1, … , k. We also consider

functions that are monotone (w(S)≤w(T) for S⊆T ⊆N) and subadditive (w(S)+w(T)≥w(S∪T) for all S, T ⊆N). If a packing

problem has an 𝛼-approximation algorithm, then for any N′ ⊆N the algorithm guarantees an approximation ratio 𝛼 ≤ 1 for

maximizing w over 𝒮 ∩ 2N′
.

In a secretary variant, we know the number n upfront, and the candidates arrive in random order. Suppose a set Ni of

candidates has arrived in rounds 1, … , i and candidate e∈N∖Ni arrives in round i+ 1. Then e reveals all new feasible solutions

with previously arrived candidates (𝒮 ∩ 2Ni∪{e})∖(𝒮 ∩ 2Ni) and their corresponding weight. In the additive case, this reduces to

simply revealing the solutions and the weight w(e).

We consider several specific variants based on specific constraints. In matroid secretary, the set of candidates and the set of

feasible solutions form a matroid. Upon arrival, a candidate reveals the new feasible solutions and their weights. In the additive

variant with known matroid, all candidates and feasible solutions are known upfront. Candidates only reveal their weight upon

arrival.

In (bipartite) matching secretary, there is an undirected bipartite graph (N ∪V , E). The nodes in the offline partition V are

present upfront. The candidates in the online partition arrive sequentially. The feasible solutions are the matchings in the arrived

subgraph. Upon arrival, a candidate reveals its incident edges and weights of the new feasible solutions. In the additive version,

the arriving candidate reveals a weight per edge, and the weight of a matching M is w(M) =
∑

e∈Mw(e), that is, the sum of edge

weights of edges in M. Upon accepting a candidate, the algorithm also has to decide which matching edge to include into M.

For (additive) knapsack secretary, an arriving candidate e reveals its weight w(e) and a size b(e)≥ 0. The size B of the

knapsack is known upfront. The feasible solutions are all subsets of candidates such that their total size does not exceed B.

3 SECRETARIES WITH k ARRIVALS

Suppose that each candidate arrives exactly k times, and all these kn arrivals occur in uniformly random order. Consider a

secretary packing problem and the following simple algorithm. In the beginning, flip kn fair coins. The number of heads is the



4 HOEFER AND WILHELMI

length of an initial sampling phase. Reject all candidate arrivals during the sampling phase. Consider the set T of candidates that

has appeared at least once and at most k− 1 times in the sampling phase. Apply the 𝛼-approximation algorithm to the instance

based on 𝒮 ∩ 2T to choose a feasible solution. Accept each candidate in the solution by the time of its kth arrival.

Proposition 1. For any XOS packing problem with an 𝛼-approximation algorithm, the secretary problem with k arrivals
allows an algorithm with approximation ratio

𝛽 = 𝛼 ⋅
(

1 − 1

2k−1

)
.

For any monotone subadditive packing problem, the secretary problem with k≥ 2 arrivals allows an algorithm with
approximation ratio

𝛽 = 𝛼 ⋅
1

2
.

Proof. Due to random order of arrival, we can simulate generation of T by attaching each of the kn coins to one arrival

of one candidate. The arrival is in the sampling phase if and only if the coin turns up heads. Then, the probability is 1/2k for

each of the following events: (1) a given candidate never appears in the sampling phase, and (2) a given candidate appears

k times in the sampling phase. T is distributed as if we would include each candidate independently with probability

1 −
(

1

2

)k−1

.

Consider XOS packing problems. Once T is created, we apply the 𝛼-approximation algorithm to the instance based

on 𝒮 ∩ 2T to choose a feasible solution. Note that every candidate in T will appear at least once after the sampling phase

and therefore is available for acceptance by our algorithm. Each element in T is sampled independently from N. Linearity

of expectation shows that the optimum S* restricted to T has expected value E[wi(T ∩ S∗)] =
(

1 −
(

1

2

)k−1
)

⋅ wi(S∗),

for every i = 1, … , k. Hence, E[w(T ∩ S∗)] ≥
(

1 −
(

1

2

)k−1
)

⋅ w(S∗). Now the optimum S∗
T has value E[w(S∗

T )] ≥
E[w(T∩S∗)]. By applying the 𝛼-approximation algorithm to T , we obtain a feasible solution S of expected value E[w(S)] ≥
𝛼 ⋅ E[w(S∗

T )] ≥ 𝛼 ⋅
(

1 −
(

1

2

)k−1
)
⋅ w(S∗).

Now consider a monotone subadditive packing problem. Once T is created, for the sake of the analysis we assume

a second, hypethetical sampling step: For each candidate e∈ T flip an independent coin to remove e from T—candidate

e∈ T remains in T with a probability of 2k− 2/(2k− 1 − 1). Hence, at the end of the hypethetical sampling step, each

surviving element in T is sampled independently from N with probability(
1 −

(
1

2

)k−1
)
⋅

2k−2

(2k−1 − 1)
=

(
1 −

(
1

2

)k−1
)
⋅

1

2
⋅

1

1 −
(

1

2

)k−1
= 1

2
.

Due to subadditivity (see [7, Proposition 2]), the value of the best feasible solution S∗
T ⊆ T has expected value

E[w(S∗
T )] ≥ E[w(T ∩ S∗)] ≥ 1

2
⋅ w(S∗). The application of an 𝛼-approximation algorithm yields a feasible solution S of

value E[w(S)] ≥ 𝛼 ⋅E[w(S∗
T )] ≥ 𝛼

2
⋅w(S∗). Obviously the same bound holds when applying the 𝛼-approximation algorithm

to the set T directly without the hypothetical sampling step. ▪

The factor 1/2 in the analysis of our algorithm for monotone sudadditive functions is almost tight. The following example2

shows a deterioration by almost a factor of 2. Consider a subadditive function w where w(N) = 2 and w(S) = 1 for all S⊂N,

N = {1, … , n}, where all subsets S⊆N are feasible. The optimum is S* = N. However, when rejecting all candidates in the

sample phase, there is a high probability to reject at least one candidiate k times—at which point a reduction by a factor of 2

becomes unavoidable.

Based on this observation, we can very slightly improve the analysis for subadditive functions to obtain a bound that increases

monotonically with k. With probability

(
1 −

(
1

2

)k−1
)n

the set T contains all elements N. In this rare case, the solution of the

𝛼-approximation algorithm does not suffer from another 1/2-factor decrease in the approximation ratio. By incorporating this

insight into our analysis, the ratio becomes(
1 −

(
1

2

)k−1
)n

⋅ 𝛼 +
(

1 −
(

1 −
(

1

2

)k−1
)n)

⋅ 𝛼 ⋅
1

2
= 𝛼 ⋅

1

2
⋅
(

1 +
(

1 −
(

1

2

)k−1
)n)

,

2We thank an anonymous reviewer for providing the example.
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and this is tight for the algorithm in the example above.

For secretary matching, we improve upon this with a slightly more elaborate approach. The algorithm again samples and

rejects a number of candidates that is determined by kn independent coin flips with a suitable probability p< 1 (determined

below). Hence, the length of the sampling phase is distributed according to Binom(kn, p). At the end of the sampling phase it

computes a matching Ms using an 𝛼-approximation algorithm for all known candidates and offline vertices V . It accepts into

M the edges incident to candidates with at most k− 1 arrivals in the sampling phase. Each of them can be accepted upon their

last arrival after the sampling phase. The algorithm drops the edges from Ms incident to candidates that arrived k times in the

sampling phase. Let Vs ⊆V be the unmatched offline nodes.

In the second phase, the algorithm follows ideas from [18, 26]. Upon arrival of a new candidate e, the algorithm computes

an 𝛼-approximate matching Me among Vs and all candidates with first arrival after the sampling phase. If Me contains an edge

(e, v) incident to e, this edge is added into M if v is still unmatched. Otherwise the edge is discarded.

Since the algorithm can be combined with arbitrary 𝛼-approximation algorithms for matching, it also applies to many

additional model variants, such as, for example, a k-arrival variant of the ordinal secretary matching problem [15].

Theorem 2. For secretary matching with 2 arrivals and any 𝛼-approximation algorithm for offline matching with 𝛼 ≤ 1,
there is an algorithm with approximation ratio of 0.5721 ⋅ 𝛼 − o(1). For k arrivals, the ratio becomes at least

𝛼 ⋅
(

1 − 1

2k−1
+ 1

22k − 1

22k ⋅ (2k − 1)2

)
− o(1).

Proof. By similar arguments as above, for each arrival of a secretary we can assume to flip a coin independently with

probability p< 1 that determines if the arrival happens in the sampling phase. Hence, each candidate has probability pk

to arrive exactly k times in the sampling phase and (1− p)k to never arrive in the sampling phase. Let M be the matching

computed by the algorithm, M1 the matching obtained right after the sampling phase, M2 the matching composed in the

second phase and M* the optimum matching. It holds E[w(M)] = E[w(M1)] + E[w(M2)].
For M1 we interpret the random coin flips as a two-step process. First, for each candidate in N we flip a coin inde-

pendently with probability (1− (1− p)k) whether the candidate arrives at least once in the sampling phase. Then, we flip

another independent coin with probability pk/(1− (1− p)k) whether the candidate arrives k times in the sampling phase.

The first set of coin flips determines the matching Ms that evolves when we apply the 𝛼-approximation algorithm right

after the sampling phase. Since every candidate is included independently we have E[w(Ms)] ≥ (1−(1 − p)k) ⋅𝛼 ⋅w(M∗).
Afterwards, the second set of coin flips determines the candidates that are dropped from Ms. They are determined

independently, so E[w(M1)] =
(

1 − pk

1−(1−p)k

)
⋅ 𝛼 ⋅ E[w(Ms)]. In total, E[w(M1)] ≥ (1 − (1 − p)k − pk) ⋅ 𝛼 ⋅ w(M∗).

We denote by X the random number of candidates that arrived at least once during the sampling phase. In the second

phase of the algorithm, we consider all n−X candidates that have not arrived during the sampling phase. Standard argu-

ments [17, 18, 26] show that each of these newly arriving candidates contributes in expectation a value of (𝛼 ⋅ (w(M*))/n.

For the 𝓁th first arrival of a new candidate, the probability that the edge (e, v) suggested by the algorithm survives is the

probability that the offline node v∈V was not matched earlier, which is lower bounded by

pk

1 − (1 − p)k
⋅

𝓁−1∏
r=X+1

r − 1

r
= pk

1 − (1 − p)k
⋅

X
𝓁 − 1

.

Hence, the expected value for M2 is at least

E[w(M2)|X] ≥ 𝛼 ⋅ w(M∗) ⋅
n∑

𝓁=X+1

pk

1 − (1 − p)k
⋅

X
𝓁 − 1

⋅
1

n

≥ 𝛼 ⋅ w(M∗) ⋅ pk

1 − (1 − p)k
⋅

X
n
⋅ ln

n
X + 1

.

For constants p and k, standard Hoeffding bounds imply that X = n(1 − (1 − p)k) ± o(n) with probability at least

1 − 1∕nc for suitable constant c (see, e.g., [26]). Hence,

E[w(M)]∕w(M∗) ≥ 𝛼

(
(1 − (1 − p)k − pk) + pk ⋅ ln

(
1

1 − (1 − p)k

))
− o(1), (1)

where the asymptotics are in n. Numerical optimization shows that for k = 2 and p≈ 0.49085, the ratio becomes at least

0.57212 ⋅ 𝛼 − o(1). See Table 1 for more numerical results.

Intuitively, the algorithm benefits from the unseen candidates after the sampling phase and has a tendency to reduce

the sample size. On the other hand, the candidates that arrive k times within the sampling phase create the set of free nodes
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TABLE 1 Near-optimal parameters p for the sampling phase and resulting bounds for the competitive
ratio (assuming α = 1) derived by numerical optimization of function (1)

k 2 3 4 5 6 7

p 0.49085 0.498901 0.499826 0.499968 0.499994 0.499999

ratio 0.57212 0.766694 0.879033 0.938491 0.968995 0.984435

in V available for matching to later candidates. Overall, optimizing this trade-off leads to a small reduction in the sample

size. For larger k this effect vanishes since the number of candidates that appear never or k times during the sampling

phase both become exponentially small. The optimal sampling parameter quickly approaches p→ 0.5. This maximizes

the profit from candidates that are available for optimization immediately after the end of the sampling phase. Thereby,

the improvement over the simple procedure in Proposition 1 becomes smaller.

More formally, we use ln(1+ x)≥ x− x2 in (1) and obtain

E[w(M)]∕w(M∗) ≥ 𝛼

(
(1 − (1 − p)k − pk) + pk ⋅ (1 − p)k

1 − (1 − p)k
− pk(1 − p)2k

(1 − (1 − p)k)2

)
− o(1).

Note that ln(1+ x)≤ x, so we deteriorate the expression only by the last negative term. For growing k, the optimal value

of p approaches 0.5 very quickly. We see

E[w(M)]∕w(M∗) ≥ 𝛼

⎛⎜⎜⎜⎝
(

1 − 1

2k − 1

2k

)
+

1

2k ⋅
1

2k

1 − 1

2k

−
1

2k ⋅
1

22k(
1 − 1

2k

)2

⎞⎟⎟⎟⎠
− o(1)

= 𝛼

(
1 − 1

2k−1
+ 1

22k − 1

22k ⋅ (22k − 2k+1 + 1)

)
− o(1).

▪

In contrast to [26], our algorithm computes an optimal (or 𝛼-approximate) matching after the sampling phase for the set of

all candidates that arrived during that phase (instead of the ones that arrived only once). All candidates that arrived k times are

dropped. This creates free nodes of V to be matched to subsequently arriving candidates. The ratios depend asymptotically on

n, since the guarantee in the second phase relies on concentration bounds for X, the number of candidates that arrive at least

once in the sampling phase.

Alternatively, one can replace the second phase by recursively applying the sampling phase. More formally, after the sam-

pling phase is done and matching M1 is added to M, we apply the same sampling phase to Vs and the candidates that have not

arrived so far. In this way, we can iterate the sampling step and re-apply it to the unseen candidates and left-over nodes of the

offline partition. The resulting ratios do not require concentration bounds.

Corollary 3. For secretary matching with 2 arrivals and any 𝛼-approximation algorithm for offline matching with 𝛼 ≤ 1,
there is an algorithm with approximation ratio of 0.5459 ⋅ 𝛼 for every n≥ 1. For k arrivals, the ratio becomes at least(

1 − 1

2k−1 +
1

22k −
2k−1

22k⋅(22k−2k−1)

)
⋅ 𝛼 for every n≥ 1.

Proof. We apply the sampling phase recursively on the unknown candidates that have not arrived and the nodes Vs that

are still unmatched. In this way, we obtain more phases, and we denote the matching edges added in phase i by Mi. In total,

the matching M computed by the algorithm is composed of M = M1 ∪M2 ∪M3 ∪ … , and E[w(M)] =
∑∞

i=1 E[w(Mi)].
For the first phase, we already argued above that E[w(M1)] ≥ (1 − (1 − p)k − pk) ⋅ 𝛼 ⋅ w(M∗).

For the second phase, we consider the set of candidates that have not arrived during the first phase. For each such

candidate and each of its k arrivals, we can again assume to throw another random coin with probability p if at least

one arrival is in the second sampling phase. Thus, every candidate arrives at least once in the second sampling phase

with probability (1− p)k ⋅ (1− (1− p)k). For the offline partition, we can assume that each node survives the first phase

independently with a probability of at least (pk/(1− (1− p)k)). This value is exactly the probability of matching the node

to a candidate with k arrivals in the first phase. Thus, the 𝛼-approximate matching Ms, 2 based on the candidates that

arrive for the first time in the second sampling phase has value at least

E[w(Ms,2)] ≥ 𝛼 ⋅ w(M∗) ⋅ (1 − p)k ⋅ (1 − (1 − p)k) ⋅ pk

1 − (1 − p)k

= (1 − p)kpk ⋅ 𝛼 ⋅ w(M∗).
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TABLE 2 Near-optimal parameters p for the sampling phases and resulting bounds for the competitive
ratio derived by numerical optimization of function (2)

k 2 3 4 5 6 7

p 0.48638 0.498133 0.49968 0.499939 0.499988 0.499997

ratio 0.5459 0.763646 0.87866 0.938445 0.96898 0.984435

Now, each candidate that arrived at least once in the second sampling phase is dropped when he arrived k times during

the second sampling phase. This happens independently with probability pk/(1− (1− p)k). Thus, for the expected value

of M2 it holds

E[w(M2)] ≥
(

1 − pk

1 − (1 − p)k

)
⋅ E[w(Ms,2)]

≥ (1 − (1 − p)k − pk) ⋅ (1 − p)kpk

1 − (1 − p)k
⋅ 𝛼 ⋅ w(M∗).

Iterating this argument for the subsequent recursions, we see that

E[w(M)] =
∞∑

i=1

E[w(Mi)]

≥ 𝛼 ⋅ w(M∗) ⋅ (1 − (1 − p)k − pk) ⋅
∞∑

i=0

(
pk(1 − p)k

1 − (1 − p)k

)i

= 𝛼 ⋅ w(M∗) ⋅ (1 − (1 − p)k − pk) ⋅ 1 − (1 − p)k
1 − (1 − p)k − pk(1 − p)k

. (2)

Numerical optimization shows that for k = 2 and p = 0.48638 we obtain a ratio of at least 0.5459. More numerical

results are shown in Table 2.

For large k, the optimal value for p rapidly approaches 1/2. For p = 1/2 we obtain

E[w(M)]∕w(M∗) ≥ 𝛼 ⋅
(

1 − 1

2k−1

)
⋅

1 − 1

2k

1 − 1

2k −
1

22k

= 𝛼 ⋅
(

1 − 1

2k−1
+ 1

22k − 2k − 1

22k ⋅ (22k − 2k − 1)

)
.

Note that these ratios do not require concentration bounds. They apply for the expected value of the matching for any

number n of candidates. ▪

4 POSTPONING SECRETARIES

In the postponing secretary problem, for each arriving candidate the algorithm can decide (accept/reject) or postpone it. The

goal is to compute an optimal or near-optimal solution with a small expected number of postponements. Consider any algorithm

for the postponement problem. We cluster the execution into rounds. Round i are the arrivals from and including the ith unique
arrival (i.e., the ith time a candidate arrives for the first time) and before the (i+ 1)th unique arrival. Clearly, there are always

n− 1 rounds in the execution of any algorithm. If we simply postpone every candidate until we have seen all n candidates, we

have full information to make accept/reject decisions for all candidates. Then the problem reduces to the classic coupon collector

problem, and the expected number of returns is Θ(n log n). Our goal is to examine how we can improve upon this baseline.

We first consider a general result for XOS packing. To reduce the expected number of postponements to Θ(n), it is suffi-

cient to sacrifice a small constant factor in the approximation ratio. We obtain the following FPTAS-style trade-off between

postponements and solution quality.

Proposition 4. For any3 𝜀> 2/n and any XOS packing problem with 𝛼-approximation algorithm, there is an
𝛼 ⋅ (1− 𝜀)-approximation algorithm with an expected number of postponements of E[R] < n ⋅ ln(2∕𝜀).

3For 𝜀≤ 2/n, the bound on the expected number of postponements remains Θ(n log n) by simply observing all applicants and computing an 𝛼-approximation.
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Proof. We postpone every candidate until round ⌈n (1−𝜀)⌉. Then, we run the 𝛼-approximation algorithm on the subset

of arrived candidates to compute an approximate solution S. By the same arguments as in Proposition 1, this yields an

𝛼(1− 𝜀)-approximation. Subsequently, there is no more postponement—for each candidate we decide upon arrival to

accept (if contained in S) or reject (otherwise).

Let Ri be the number of postponements in round i. Clearly, by linearity of expectation, E[R] =
∑n−1

i=1 E[Ri]. In each

round, the number of postponements is the number of rounds until we see the next unique arrival. Hence, the number of

postponements is distributed according to a negative binomial distribution. The expected number is

E[R] ≤
⌈n (1−𝜀)⌉∑

i=1

( n
n − i

− 1
)
= n ⋅

⌈n (1−𝜀)⌉∑
i=1

1

n − i
− n ⌈(1 − 𝜀)⌉

≤ n ⋅ (ln(n) − ln(n𝜀 − 1) − 1 + 𝜀) ≤ n ⋅ (− ln(𝜀 − 1∕n)) < n ln
(

2

𝜀

)
.

▪

A similar (but not exactly FPTAS-style) analysis applies to monotone subadditive packing problems. We can sample can-

didates until round ⌈n∕k⌉, for an integer k = 2,3,4, … . Applying the 𝛼-approximation algorithm to the subset of arrived

candidates we compute the approximate solution S. Based on [7, Proposition 2], this solution represents an 𝛼/k-approximation.

The expected number of postponements is

E[R] ≤
⌈n∕k⌉∑
i=1

( n
n − i

− 1
)
= n ⋅

⌈n∕k⌉∑
i=1

1

n − i
− ⌈n∕k⌉ ≤ n ⋅ ln

( k
k − 1

)
.

4.1 Exclusion–monotone algorithms
Significantly better guarantees can be obtained for packing problems and algorithms with a monotonicity property. Consider a

packing problem and any algorithm 𝒜 . We denote by 𝒜 (T) the solution computed by 𝒜 when applied to T ⊆N.

Definition 1. A sequence of subsets (Ni)i∈N with Ni ⊆N is called inclusion-monotone if Ni ⊆Nj for all i≤ j. An

algorithm 𝒜 is called r-exclusion-monotone if for every inclusion monotone sequence there is a sequence of subsets

(Di)i∈N with 𝒜 (Ni) ⊆ Di ⊆ Ni, ∣Di ∣ ≤ r and Ni∖Di ⊆Nj∖Dj for all i≤ j.

Intuitively, to determine its solution for any subset of available elements Ni, an r-exclusion-monotone algorithm 𝒜 can

restrict attention to a set Di of at most r elements. Moreover, 𝒜 is such that any element e∈Ni∖Di that is discarded must never

be reconsidered when more elements become available.

This property is fulfilled in a variety of important packing domains. For these problems we can obtain more fine-grained

and significantly improved guarantees based on solution size.

Proposition 5. The following algorithms are r-exclusion-monotone.

• Optimal algorithm Opt for matroids. r is the rank of the matroid.

• Optimal algorithm Opt for bipartite matching. r is the maximum cardinality of any matching.4

• Greedy 0.5-approximation algorithm for knapsack. Here r = ∣ S ∣ + 1 with S a feasible packing of the knapsack with
maximum cardinality.

Proof. For matroids, upon arrival of an additional element, the new element forms a fundamental circuit with respect

to the current optimal basis. A new optimal basis can be computed by discarding the element of smallest weight from the

circuit. Since the new optimum can be computed from the old optimum and the newly arrived element, we never have to

return discarded elements into the optimal solution. We can use Di as the set of elements in the optimum.

For matching, upon arrival of an additional node v, consider the symmetric difference between the old optimal match-

ing M and the new optimal matching M′. There is exactly one augementing path starting with the newly arrived node and

ending with a node from the offline partition or a node from the online partition that is in the current optimal matching.

Hence, we can use Di as the set of online nodes in the optimal matching.

For knapsack, upon arrival of an additional element e, Greedy composes a feasible subset S of elements by greedily

packing elements in non-increasing order of ratio weight/size. In the end, the solution is either S or the element of

4Recall that vertices in one partition arrive and get postponed, along with their incident edges. If single edges arrive and must be postponed individually, the

property might not hold (c.f. Example 1).
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maximum weight emax, whichever gives more value. Hence, Di can be restricted to the new element e, the arrived element

of maximum-weight emax, and the greedy set S. ▪

Now consider candidates arriving in random order with postponements. Obviously, the set of arrived candidates forms an

inclusion-monotone sequence. In our algorithm Maintain-𝒜 , we apply the r-exclusion-monotone algorithm 𝒜 in the beginning

of round i to the set Ni of arrived candidates. Maintain-𝒜 immediately rejects any candidate as soon as it is not contained in Di.

It keeps postponing the candidates in Di. Finally, Maintain-𝒜 accepts the candidates in 𝒜 (N) after the last round. Note that for

the following result, Maintain-𝒜 does not have to know n, r or any properties of the unseen candidates. The following guarantee

significantly improves over the simple bound given in Proposition 4 when the solution is drawn from a small subset of elements.

Theorem 6. Consider a packing problem with an r-exclusion-monotone 𝛼-approximation algorithm𝒜 . The correspond-
ing algorithm Maintain-𝒜 computes an 𝛼-approximation with an expected number of postponements E[R] = Θ(r ln n∕r′),
where r′ = min(r, n− r).

Proof. Consider the execution of the algorithm in rounds as discussed above. In each round, let Ui denote the number

of candidates that are still undecided (i.e., either have not arrived or have been left undecided in earlier rounds). In

round i we have seen exactly i candidates. Thus, given a number of Ui undecided candidates, the expected number of

postponements Ri in round i is given by a negative binomial distribution and amounts to

E[Ri|Ui] =
( Ui

n − i
− 1

)
.

To bound Ui we note that, trivially, Ui ≤ n. Moreover, the number of candidates that have arrived and are undecided

is Ui − (n− i). Since Maintain-𝒜 postpones only candidates in the set Di, we have that Ui − (n− i)≤ r. This implies

Ui ≤min(n, n− i+ r) and yields

E[R] ≤
r−1∑
i=1

( n
n − i

− 1
)
+

n−1∑
i=r

(n − i + r
n − i

− 1
)

= n
r−1∑
i=1

1

n − i
− r + r

n−1∑
i=r

1

n − i

≤ n
(

1

n − r + 1
+ ln

( n − 1

n − r + 1

))
+ r

(
1

r
− 1 + ln

(n − 1

r

))
=

(
2 + r − 1

n − r + 1
− r

)
+ n ln

( n − 1

n − r + 1

)
+ r ln

(n − 1

r

)
.

Clearly, the first term in the bracket is at most 1. For r ≥ n− r + 1, the second term is larger than the third term and

amounts to O(r ln n/r′). For r ≤ n− r + 1, we upper bound

n ln
( n − 1

n − r + 1

)
= n ln

(
1 + r − 2

n − r + 1

) ≤ (r − 2) + (r − 2)(r − 1)
n − r + 1

< 2r − 4.

Thus, the asymptotics are dominated by the third term, and E[R] = O(r ln n∕r′). A similar calculation using

elementary lower bounds shows that E[R] = Ω(r ln n∕r′). ▪

4.2 Matroids
We adjust Maintain-𝒜 for known matroids, that is, when the structure of the matroid is known upfront (only the weights of the

elements are revealed). In this case, we can assume r ≤ n/2, since for r ≥ n/2 we can consider finding a minimum-weight basis

in the dual matroid. We adjust algorithm Maintain-𝒜 in the following way and denote the resulting algorithm by MaintainOPT.

Instead of postponing all elements in the current optimum until the end, we can accept some elements earlier. In particular,

we can directly accept an element e as soon as there is no unseen element that can force e to leave the optimum solution. This

allows to significantly improve the number of returns to below n for any rank of the matroid.

Theorem 7. For the class of all matroids with rank r, the expected number of postponements R in MaintainOPT with
known matroid is maximized for the uniform matroid. It is bounded by E[R] = Θ(r′ ln n∕r′), where r′ = min(r, n− r).
For every matroid it holds that E[R] < n.

Proof. Again we analyze the process in rounds as above. Given Ui undecided candidates, the expected number of

postponements Ri in round i is given by a negative binomial distribution and amounts to E[Ri|Ui] =
(

Ui
n−i

− 1
)

. We
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obtain the bounds Ui ≤ n and Ui − (n− i)≤ r as in the proof of Theorem 6. Due to the matroid property, if there are at

most x unseen candidates, they can cause at most a set of x candidates to leave the optimum solution. This set can be

determined in polynomial time (see Proposition 10 in the Appendix for a proof of this fact). Hence, MaintainOPT must

keep at most (n− i) arrived candidates undecided, that is, Ui − (n− i)≤ (n− i). Overall, this implies

Ui ≤ min{n, n − i + r, 2(n − i)}.

This upper bound can be used to divide the process into three phases. Phase 1 consists of the rounds i = 1, … , r − 1 where

Ui ≤ n. Phase 2 consists of the rounds i = r, … , n− r, where Ui ≤ n− i+ r. Finally, Phase 3 are the rounds i = n− r + 1,

… , n− 1, in which Ui ≤ 2(n− i).
Observe that all three upper bounds on Ui are tight when we apply MaintainOPT in the uniform matroid. In Phase 1, no

candidate can be accepted or rejected and all arriving candidates get postponed. The number of undecided candidates stays

Ui = n. In Phase 2, only the r candidates in the current optimum solution are both arrived and undecided, so Ui = n− i+ r.

In Phase 3, upon each arrival of a previously unseen candidate, the algorithm makes accept/reject decisions. It can accept

exactly one candidate and reject exactly one other candidate in each of the rounds of Phase 3, and thus Ui = 2(n− i).
This proves that the uniform matroid results in the largest expected number of postponements, which is given by

E[R] =
r−1∑
i=1

( n
n − i

− 1
)
+

n−r∑
i=r

r
n − i

+
n−1∑

i=n−r+1

1

= n
r−1∑
i=1

1

n − i
+ r

n−r∑
i=r

1

n − i

≤ n
(

1

n − r + 1
+ ln

( n − 1

n − r + 1

))
+ r

(
1

r
+ ln

(n − r
r

))
≤ (

2 + r − 1

n − r + 1

)
+ n(r − 2)

n − r + 1
+ r ln

(n
r
− 1

)
= (r − 1)2

n − r + 1
+ r

(
1 + ln

(n
r
− 1

))
.

For r ≤ n/2, this clearly shows E[R] = O(r ln n∕r). The expression is monotone in r, and for r = n/2 we obtain E[R] ≤
(n∕2−1)2

n∕2+1
+ n

2
< n. By lower bounding

∑y
i=x

1

n−i
≥ ln

(
n−y

n−x+1

)
and ln(1+ x)≥ x/ln(2) for x∈ [0, 1], a very similar calculation

shows E[R] = Ω(r ln n∕r). ▪

Note that for any postponement problem, a simple calculation shows that the expected number of postponements of any

single candidate can always be upper bounded by ln n+ 1. In the worst case, a candidate arrives in the very first round, gets

accepted or rejected only in the very end, and no candidate is accepted and rejected before the last round (so for every round

the number of undecided candidates is Ui = n). From the postponements in round i, candidate j receives in expectation an equal

share. Hence, the expected number of postponements of j in this case is E[Rj] =
∑n−1

i=1 1∕i ⋅E[Ri|Ui] ≤ ∑n−1

i=1 1∕n− i ≤ 1+ ln n.
In contrast, the previous theorem shows that, on average, we need less than one postponement per candidate to compute even

an optimal solution in matroids. However, they can be quite unbalanced over the candidates. We fully characterize the expected

number of postponements in the uniform matroid with r ≤ n/2. The worst candidate in the optimal solution (i.e., the rth best

candidate) asymptotically gets the largest expected number of postponements. The expected number is decreasing quickly for

better and worse candidates.

Theorem 8. For MaintainOPT with known uniform matroid of rank r ≤ n/2, the expected number of postponements Rj
of the jth best candidate is bounded by

E[Rj] ≤
⎧⎪⎨⎪⎩

ln
(

n−j
r−j+1

)
+ O(1), for j = 1, … , r,

ln
(

j−1

j−r

)
+ O(1), for j = r + 1, … , n.

Proof. We again consider the process in rounds. Let us first concentrate on the top candidates.

Top-r candidates: For the top r candidates, we again consider three phases (phase 1: every candidate is postponed,

rounds 1, … , r − 1; phase 2: exactly the top r candidates that have arrived so far are postponed, rounds r, … , n− r;

phase 3: one candidate is accepted and one is rejected, rounds n− r + 1, … , n− 1).

For simplicity, we number the candidates according to their value, that is, the jth best candidate is simply candidate j,
for j = 1, … , r. None of the best r candidates will ever be rejected, since they are part of the optimum that is accepted in
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the end. Hence, they will just be postponed or accepted. Let Ri
j be the number of postponements of candidate j in round

i. By linearity of expectation, E[Rj] = E

[∑n−1

i=1 Ri
j

]
=

∑n−1

i=1 E[Ri
j].

We start by analyzing each of the rounds i = 1, … , r − 1 in Phase 1. If j has not arrived until round i, then E[Ri
j] = 0.

If j arrives before round i, then the postponements E[Ri
j] are a fair share of the number of nonunique arrivals of round i.

Hence, if j arrives before round i, then

E[Ri
j| jarrives newly before round i] = 1

i
⋅
( n

n − i
− 1

)
= 1

n − i
.

If j is the ith unique arrival, he will be postponed once more at the time of his unique arrival:

E[Ri
j| jarrives newly in round i] = 1 + 1

i
⋅
( n

n − i
− 1

)
= 1 + 1

n − i
.

Clearly, j is the ith unique arrival with probability 1/n, for every i = 1, … , r − 1, so

E[Ri
j] =

1

n

(
1 + 1

n − i

)
+ i − 1

n
⋅

1

n − i
= 1

n
+ i

n(n − i)
= 1

n − i
.

Let us now analyze the rounds i = r, … , n− r in Phase 2. Candidate j will not be accepted during any of these rounds.

If j has not arrived until round i, then E[Ri
j] = 0. If j arrives before round i, then Ri

j is a fair share of the non-unique

arrivals of round i. Thus, if j arrives before round i, then

E[Ri
j| jarrives newly before round i] = 1

r
⋅
(n − i + r

n − i
− 1

)
= 1

n − i
.

If j is the ith unique arrival, he will be postponed once more at the time of his unique arrival:

E[Ri
j| jarrives newly in round i] = 1 + 1

r
⋅
(n − i + r

n − i
− 1

)
= 1 + 1

n − i
,

so, as above,

E[Ri
j] =

1

n − i
.

In Phase 3, matters get slightly more complicated. Candidate j gets accepted at the beginning of round i if there are

at most k = i− (n− r)− 1 strictly better candidates than j that have arrived so far. Hence, candidate j gets accepted at the

latest in the beginning of round n− r + j, and therefore E[Ri
j] = 0 for every i = n− r − j, … , n− 1. However, j is quite

likely to be accepted earlier, especially if j is bounded away from 1 and r.

In particular, the probability that j has arrived before round i is again (i− 1)/n. Conditioned on the fact that j has

arrived in this way, let Xj be the number of candidates from the set of the best j− 1 candidates that are among the first i
unique arrivals. Xj is distributed according to a hypergeometric distribution—we draw j− 1 times (positions of j− 1 top

candidates) out of an urn of n− 1 balls (remaining unique arrivals except the one chosen for i), where we have i− 1 blue

balls (unique arrivals up to and including round i, excluding the one chosen for j) and (n− 1)− (i− 1) = n− i remaining

red balls. Xj is the number of blue balls we draw.

If Xj ≤ k = i− (n− r)− 1, then j is accepted before round i, that is. Ri
j = 0. Otherwise, j is undecided in round j and

gets postponed further in round i. In round i there are n− i undecided candidates and n− i unseen ones. Thus, the number

of postponements until the (i+ 1)th unique candidate arrives is distributed according to a negative binomial distribution

with probability 1/2. From these postponements, candidate j is drawn a fair share of times. Thus, if j arrives before round

i, then

E[Ri
j|jarrives newly before round i] = Pr(Xj > 𝓁) ⋅ 1

n − i
⋅ 1 = Pr(Xj ≥ k + 1) ⋅ 1

n − i
.

If j arrives newly in round i, then similar to the arguments above

E[Ri
j|jarrives newly in round i] = Pr(Xj ≥ k + 1) ⋅

(
1 + 1

n − i

)
,

which implies

E[Ri
j] = Pr(Xj ≥ k + 1) ⋅ 1

n − i
.

Now, if k + 1 = i− (n− r) ≤ E[Xj], it is quite likely that Xj ≥ k+ 1 is true. Intuitively, this is true for the rounds in which

i is smallest, that is, for rounds i with

i − (n − r) ≤ E[Xj] =
i − 1

n − 1
⋅ (j − 1)
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or, equivalently, i≤ n− r +𝓁*, where

𝓁∗ = (n − r − 1)
n − j

⋅ (j − 1).

For the rounds i = n − r + 1, … , n − r + ⌊𝓁∗⌋ we will upper bound the probability by 1 and hence

E[Ri
j] = Pr(Xj ≥ k + 1) ⋅ 1

n − i
≤ 1

n − i
.

Phases 1, 2 and the first part of Phase 3 can be combined. This yields

E[Rj] =
n−1∑
i=1

E[Ri
j] =

n−r+j−1∑
i=1

E[Ri
j] =

n−r+⌊𝓁∗⌋∑
i=1

E[Ri
j] +

n−r+j−1∑
i=n−r+⌊𝓁∗⌋+1

E[Ri
j].

For the first term, we bound as follows:

n−r+⌊𝓁∗⌋∑
i=1

E[Ri
j] ≤

n−r+⌊𝓁∗⌋∑
i=1

1

n − i
≤ 1

r − ⌊𝓁∗⌋ + ∫
n−r+𝓁∗

x=1

1

n − x
dx

≤ 1

r − ⌊𝓁∗⌋ − ln(n − (n − r + 𝓁∗)) + ln(n − 1)

= 1

r − ⌊𝓁∗⌋ + ln
( n − 1

r − 𝓁∗

)

= 1

r − ⌊𝓁∗⌋ + ln

⎛⎜⎜⎝
n − 1

r − (n−r+1)(j−1)
n−j

⎞⎟⎟⎠
≤ 1

r − ⌊𝓁∗⌋ + ln

(
(n − 1)(n − j)

r(n − j) − (n − r + 1)(j − 1)

)

≤ 1

r − ⌊𝓁∗⌋ + ln

(
n − j

r − j + 1

)

≤ 1

r − j + 1
+ ln

(
n − j

r − j + 1

)
.

For the last term, in rounds n− r+ ⌊𝓁∗⌋+ 1, … , n− r+ j− 1 we note that the improvement is small since j≤ r ≤ n/2.

By simply upper bounding Pr(Xj ≥ k+ 1)≤ 1 again, we obtain an overall bound of

E[Rj] =
n−r+j−1∑

i=1

E[Ri
j] ≤

n−r+j−1∑
i=1

1

n − i
≤ 1

r − j + 1
+ ∫

n−r+j−1

x=1

1

n − x
dx

≤ 1

r − j + 1
+ ln

(
n − 1

r − j + 1

)
.

Note that the bound ln
(

n−j
r−j+1

)
is arguably more accurate, since the rounds i > n+ r + ⌊𝓁∗⌋ have significantly decreased

probability for j to get postponed until round i. The rather direct bound ln
(

n−1

r−j+1

)
differs only by an additive term of at

most ln(2)< 1.

Bottom-(n− r) candidates: The jth best candidates with j = r + 1, … , n are never accepted, only postponed and

rejected. We again consider the algorithm in phases. The first phase is composed of rounds i = 1, … , r, in which no

candidate gets rejected. By repeating the analysis above, we see that for these rounds

E[Ri
j] ≤ 1

n − i
.

The second phase now consists of the remaining rounds r + 1, … , n. If it has arrived, then candidate n will definitely

get rejected in the beginning of round r + 1, candidate n− 1 in round r + 2, and candidate j in round (n− j)+ (r + 1).

However, candidate j is much more likely to get rejected earlier. Here our analysis must take this fact into consideration

and extend the arguments made for Phase 3 above.

For candidate j, we condition on the fact that i has arrived in the first i rounds. Then it gets rejected before or in the

beginning of round i if at least r strictly better candidates have arrived. Let Yj be the number of candidates from the set of

the best j− 1 candidates that are among the first i unique arrivals. Yj is again distributed according to a hypergeometric
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distribution—we draw j− 1 times out of an urn of n− 1 balls, where we have i− 1 blue balls and n− i red balls. Yj is the

number of blue balls we draw.

If Yj ≥ r, then j does not get postponed in round i, that is, Ri
j = 0. Otherwise, j is undecided in round i and gets

postponed. Following the analysis for Phase 2 above, we see that for rounds i = r + 1, … , n− r

E[Ri
j] = Pr(Yj ≤ r − 1) ⋅ 1

n − i
.

Moreover, following the analysis for Phase 3 above, the same holds for rounds i = n− r + 1, … , n.

Now, if r − 1 ≥ E[Yj], it is quite likely that Yj ≤ r − 1 is true. Intuitively, this is true for the rounds in which i is

smallest, that is, for rounds with

r − 1 ≥ i − 1

n − 1
⋅ (j − 1)

or, equivalently, i≤ r +𝓁*, where

𝓁∗ = (n − j) r − 1

j − 1
.

Note that this implies r +𝓁* < n− j+ r. For the rounds i = r + 1, … , r + ⌊𝓁∗⌋, we upper bound the probability by 1 and

hence

E[Ri
j] = Pr(Yj ≤ r − 1) ⋅ 1

n − i
≤ 1

n − i
.

Thus, combining Phase 1 and the first part of Phase 2, we get

r+⌊𝓁∗⌋∑
i=1

E[Ri
j] ≤

r+⌊𝓁∗⌋∑
i=1

1

n − i
≤ 1

n − r − ⌊𝓁∗⌋ + ∫
r+𝓁∗

x=1

1

n − x
dx

≤ 1

n − r − ⌊𝓁∗⌋ − ln(n − (r + 𝓁∗)) + ln(n − 1)

≤ 1

n − r − ⌊𝓁∗⌋ + ln
( n − 1

n − r − 𝓁∗

)

= 1

n − r − ⌊𝓁∗⌋ + ln

⎛⎜⎜⎝
n − 1

n − r − r−1

j−1
(n − j)

⎞⎟⎟⎠
= 1

n − r − ⌊𝓁∗⌋ + ln

(
(n − 1)(j − 1)

(n − r)(j − 1) − (r − 1)(n − j)

)

= 1

n − r − ⌊𝓁∗⌋ + ln

(
j − 1

j − r

)

≤ 1

j − r
+ ln

(
j − 1

j − r

)
.

For the rounds i = r+⌊𝓁∗⌋+1, … , n−j+r, we first consider r = 1. Here we have Pr(Yj ≤ 0) =
(

n − i
j − 1

)
∕
(

n − 1
j − 1

)
≤(

n−i
n−1

)j−1

, where the latter is the probability of getting no blue balls when we draw with replacement. This probability is

obviously higher, since we replace the red balls upon drawing them. Now we know j≥ r + 1 = 2, which gives

n−j+r∑
i=r+⌊𝓁∗⌋+1

E[Ri
j] ≤

n−j+r∑
i=r+⌊𝓁∗⌋+1

( n − i
n − 1

)j−1

⋅
1

n − i
≤

n−j+r∑
i=r+⌊𝓁∗⌋+1

1

n − 1
< 1.

This proves the theorem for r = 1.

When r > 2 we bound the sum using a tail bound5 for the hypergeometric distribution

Pr(Yj ≤ E[Yj] − t(j − 1)) ≤ exp(−(j − 1) ⋅ KL(p − t||p))
where

KL(a, b) = a ln
(a

b

)
+ (1 − a) ln

(
1 − a
1 − b

)
.

5Interestingly, when applying the same analysis using the more prominent but more coarse tail bound Pr(Yj ≤ E[Yj] − t(j − 1)) ≤ exp(−2t2(j − 1)) it seems

impossible to obtain a constant bound.
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Here we use p = i−1

n−1
, t = i−1

n−1
− r−1

j−1
, which implies for round i that r− 1 = E[Yj]− t(j− 1). Note that t< p since r ≥ 2.

Now we define 𝛼 = (r − 1)/(j− r). With j≥ r + 1 and r ≥ 2 we have
1

n−2
≤ 𝛼 ≤ n − 2 and

Pr(Yj ≤ r − 1) ≤ exp(−(j − 1) ⋅ KL(p − t||p))
= exp

(
−(j − 1) ⋅ r − 1

j − 1
ln

(r − 1)(n − 1)
(j − 1)(i − 1)

− (j − 1) ⋅ j − r
j − 1

⋅ ln
(j − r)(n − 1)
(j − 1)(n − i)

)

= ((1 + 𝛼)(j − r))(1+𝛼)(j−r)

(𝛼(j − r))𝛼(j−r) ⋅ (j − r)j−r ⋅
( i − 1

n − 1

)𝛼(j−r)
⋅
( n − i

n − 1

)j−r

=
(
(1 + 𝛼)(1+𝛼)

𝛼𝛼
⋅
( i − 1

n − 1

)𝛼

⋅
n − i
n − 1

)j−r

≤
(

e ⋅ (1 + 𝛼) ⋅
( i − 1

n − 1

)𝛼

⋅
n − i
n − 1

)j−r

.

Note that

r + ⌊𝓁∗⌋ + 1 ≥ r + ⌈𝓁∗⌉ ≥
⌈

n ⋅
r − 1

j − 1

⌉
=

⌈
n ⋅

𝛼

1 + 𝛼

⌉
.

Hence,
n−j+r∑

i=r+⌊𝓁∗⌋+1

E[Ri
j] ≤

n−j+r∑
i=⌈n𝛼∕(1+𝛼)⌉

(
e ⋅ (1 + 𝛼) ⋅

( i − 1

n − 1

)𝛼

⋅
n − i
n − 1

)j−r

⋅
1

n − i
. (3)

To provide a constant upper bound on (3), we first consider the case when j = r + 1. Observe that in this case j− r = 1

and 𝛼 = r − 1. The formula simplifies to

n−j+r∑
i=r+⌊𝓁∗⌋+1

E[Ri
j] ≤ e ⋅ r ⋅ 1

n − 1
⋅

n−1∑
i=⌈n(1−1∕r)⌉

( i − 1

n − 1

)r−1

≤ e ⋅ r
n − 1

⋅
((n − 2

n − 1

)r−1

+ ∫
n−1

x=n(1−1∕r)

n − 1

r

( x − 1

n − 1

)r
dx

)

≤ e ⋅ r
n − 1

⋅
(

1 + n − 1

r

((
n(1 − 2∕n)

n − 1

)r

−
(

n(1 − 1∕r)
n − 1

)r))
< e ⋅ r

n − 1
+ e ⋅

(
1 + 1

n − 1

)r (
1 − 1

e

)
≤ e ⋅

( r
n − 1

+ e − 1
) ≤ e2.

This proves the theorem for r ≥ 2 and j = r + 1.

Finally, for r ≥ 2 and j≥ r + 2, we split up the sum using values n𝛼/(1+ 𝛼) = a0 ≤ a1 ≤ · · ·≤ ak ≤ ak+ 1 ≤ … with

ak = n ⋅
(

1 − 1

ek(1 + 𝛼)

)
.

Note that ak are chosen such that over the interval [ak, ak+ 1] the function
1

n−i
at most differs by a factor of e, that is,

e
n−ak

= 1

n−ak+1

.

For the rounds i∈ [a0, a1] we again use an upper bound Pr(Yj ≤ r − 1)≤ 1 and obtain

n−j+r∑
i=r+⌊𝓁∗⌋+1

E[Ri
j] ≤

⌊a1⌋∑
i=⌈a0⌉

1

n − i
+

∞∑
k=1

⌊ak+1⌋∑
i=⌊ak⌋

(
e ⋅ (1 + 𝛼) ⋅

( x − 1

n − 1

)𝛼

⋅
n − x
n − 1

)j−r

⋅
1

n − i

≤ 1

j − r
+ 1 +

∞∑
k=1

⌊ak+1⌋∑
i=⌈ak⌉

(
e ⋅ (1 + 𝛼) ⋅

( x − 1

n − 1

)𝛼

⋅
n − x
n − 1

)j−r

⋅
1

n − i
.

For the remaining sum, we bound each term for k = 1, 2, … separately by

⌊ak+1⌋∑
i=⌈ak⌉

(
e ⋅ (1 + 𝛼) ⋅

( i − 1

n − 1

)𝛼

⋅
n − i
n − 1

)j−r

⋅
1

n − i

≤
⌊ak+1⌋∑
i=⌈ak⌉

1

n − i
⋅
(

e ⋅ (1 + 𝛼) ⋅
(ak+1 − 1

n − 1

)𝛼

⋅
n − ak
n − 1

)j−r
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FIGURE 1 Number of postponements of MaintainOPT in a uniform matroid with n = 10 and r = 3 (left), n = 100 and r = 30 (middle), and n = 1000 and

r = 300 (right). The x-axis is the index of the candidate in the sorted order. The y-axis shows the average number of postponements over 5000 runs. The

O(1)-terms in Theorem 4.2 turn out to be small. They appear to be maximal for candidates r and r + 1, but seem to vanish for growing n

≤
⌊ak+1⌋∑
i=⌈ak⌉

1

n − i
⋅
(
(1 + 𝛼) ⋅ e ⋅ n − ak

n − 1

)j−r

=
⌊ak+1⌋∑
i=⌈ak⌉

1

n − i
⋅
(

e ⋅
(

n
(n − 1)ek

))j−r

≤ e
e(k−1)(j−r) ⋅

⌊ak+1⌋∑
i=⌊ak⌋

1

n − i
.

Now using a standard upper bound via the integral,

⌊ak+1⌋∑
i=⌈ak⌉

1

n − i
≤ 1

n − ⌊ak+1⌋ + ∫
ak+1

x=ak

1

n − x
dx ≤ ek+1(1 + 𝛼)

n
+ 1.

Since j− r ≥ 2 we obtain

∞∑
k=1

⌊ak+1⌋∑
i=⌈ak⌉

(
e ⋅ (1 + 𝛼) ⋅

( i − 1

n − 1

)𝛼

⋅
n − i
n − 1

)j−r

⋅
1

n − i

≤
∞∑

k=1

e
e(k−1)(j−r) ⋅

(
ek+1(1 + 𝛼)

n
+ 1

)

<

∞∑
k=1

e3∕2

e(k−1)(j−r−1) +
e

e(k−1)(j−r)

=
∞∑

k=0

e3∕2

ek(j−r−1) +
e

ek(j−r)

= e3

2

(
1 + 1

ej−r−1 − 1

)
+ e

(
1 + 1

ej−r − 1

)
.

Hence, overall for the case j− r ≥ 2

n−j+r∑
i=r+⌊𝓁∗⌋+1

E[Ri
j] <

e3

2

(
1 + 1

ej−r−1 − 1

)
+ e

(
1 + 1

ej−r − 1

)
+ 1 + 1

j − r
.

The term is constant and the theorem follows. For the sake of clarity in the analysis we did not attempt to optimize any

constants. Based on our experiments (see Figure 1), it seems possible to reduce the term O(1) significantly by increasing

the technical overhead in the analysis. ▪

Based on our experiments in Figure 1 the O(1) terms are small and even seem to vanish for large n. The logarithmic function

captures the number of postponements rather precisely.

For matroids, the number of postponements of MaintainOPT with known matroid is always at most n. Instead, for bipartite

matching the number of postponements of MaintainOPT must grow to Θ(n log n) when r becomes large, even if the graph is

known.
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Example 1. Consider a simple cycle of length 2n and number the vertices consecutively around the cycle. Suppose the

r = n even vertices form the offline partition V , and the n odd vertices arrive in random order. The edge weights can be

arbitrary, but an adversary chooses them to be in [1, 1+ 𝜀]. Then, unless we see all vertices, we cannot decide which of

the two perfect matchings will be the optimal one. MaintainOPT needs to see all vertices to be able to decide the matching

edges. We recover the coupon collector problem.

The example also applies when the edges of the bipartite graph are candidates that arrive in random order (rather than the

vertices). In order to guarantee that an optimal solution is returned with probability 1 in the end, all 2n candidate edges need

to remain undecided until the last unique arrival. This shows, in particular, that the bound of O(r′ ln n/r′) for MaintainOPT for

known matroids cannot be extended to known intersections of matroids.

4.3 Exclusion-monotonicity and solution size
For r-exclusion-monotone algorithms𝒜 the algorithm Maintain-𝒜 needs at most O(r ln n) postponements. One might hope that

for any r-exclusion-monotone algorithm the parameter r is tied closely to the solution size of the algorithm. Then a large number

of returns in Maintain-𝒜 would be caused by 𝒜 returning a solution with many elements. This, however, is not the case—even

if we are guaranteed that the size of the optimal solution is Θ(log n), an expected number of Ω(n log log n) postponements for

MaintainOPT can be required.

Theorem 9. There is a class of instances of the independent set problem with every optimal solution of size ∣I* ∣ = 3 ln

n, for which the expected number of postponements R in MaintainOPT is E[R] = Ω(n ln ln n).

Proof. For any 𝜀> 0, consider a complete m-partite graph with m = n/(3 ln n). The nodes arrive sequentially in random

order, and every node has an arbitrary positive but otherwise unknown value. Clearly, the optimum independent set I*

consists of the nodes of exactly one partition, and ∣I* ∣ = n/m = 3 ln n.

The adversary assigns the values of nodes in a small but unknown interval [1, 1+ 𝛿]. Thus, unless every node of a

partition has arrived, the nodes in that partition cannot be rejected by MaintainOPT, since the last node could result in

that partition becoming the optimal one. The nodes of the optimal partition can only be accepted in the very end when

all nodes have been seen. A partition of nodes can be rejected only if it has fully arrived, and only if there is at least one

other partition for which the arrived nodes have larger total value.

We again analyze MaintainOPT in rounds based on the unique arrivals as in the previous proofs. Consider the status

at the end of round k = n− 1−m. There are m unseen candidates. Our idea is to determine these candidates by throwing

m balls (unseen candidates) into n1− 𝜀 bins (partitions). Then in each partition we pick the subset of candidates from that

partition randomly. Note that the equivalence between our arrival process and the balls-and-bins process breaks only if

we throw too many balls into a bin. After all, each partition (bin) contains only ln n many candidates (space for balls).

However, if we throw m = n/(3 ln n) balls into m bins, standard calculations show that (1) with probability at most
2

m
,

there is at least one bin with load at least (3 ln m)/(ln ln m); and (2) with probability at most
2

m
the number of empty

bins 𝓁e is ∣ 𝓁e − m
e
∣>

√
m ln m. Thus, by a simple union bound, we have that with probability 1 − 4

m
, the balls-and-bins

process returns an assignment where every bin contains at most 3 ln m = 3 ln (n/(3 ln n))< 3 ln n balls and the number

of empty bins is at most
m
e
+
√

m ln m.

Therefore, in our arrival process at the end of round k with probability 1− 4

m
there are at least 𝑑 = m− m

e
+
√

m ln m
partitions, for which there is at least one unseen candidate. Since all candidates in these partitions must remain undecided,

there are at least 𝓁 = n∕m ⋅ 𝑑 =
(

1 − 1

e

)
⋅ n − o(n) undecided candidates at the end of round k.

Hence, with probability 1 − 12 ln n
n

, there are 𝓁 undecided candidates throughout the first k rounds, in which case the

expected number of postponements in rounds i = 1, … , k is at least

k∑
i=1

E[Ri] ≥
k∑

i=1

(
𝓁

n − i
− 1

)
≥ 𝓁 ⋅ ln

( k
n − k

) ≥ 𝓁 ⋅ ln(3 ln n − 2) = Ω(n ln ln n).
▪

5 CONCLUSION AND OPEN PROBLEMS

In this paper, we have studied two variants of secretary problems with multiple arrivals per candidate. For the secretary problem

with 2 arrivals, we propose a simple 0.5-competitive algorithm that can be combined with arbitrary approximation algorithms
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in general subadditive packing domains. For the popular and prominent case of bipartite matching, we propose algorithms that

improve about this guarantee. Moreover, the algorithms are easily applicable to the case with k> 2 arrivals, and for growing k
the competitive ratio approaches 1 in an exponential fashion. For secretary postponement, we study algorithms that obtain the

optimal solution by making only a small number of postponements. This problem can be seen as a combinatorial generaliza-

tion of the coupon collector problem. We consider a natural property of exclusion monotonicity that is fulfilled in a number of

prominent applications. This property can be exploited to reduce the expected number of postponements to O(r′ log n) or even

O(r′ log n/r′), where r is the cardinality of the solution and r′ = min(r, n− r). There are a number of interesting open problems

that stem from our work. It remains a fascinating open problem whether the ratio of 0.5 can be improved in the general subad-

ditive packing case with 2 arrivals. Moreover, the optimal ratio for the classic secretary problem with 2 arrivals is around 0.768

[26]. It would be interesting to see if there are algorithms that achieve this ratio even for bipartite matching. In a different direc-

tion, are there better algorithms for other secretary problems with 2 arrivals based on, for example, special classes of matroids

or independent sets? For secretary postponement, we identify exclusion monotonicity as a property that allows to drastically

decrease the expected number of postponements over the simple guarantee stemming from coupon collection. Are there other

structural properties that allow to show similar results? Can improved results be shown in other domains, such as maintaining

approximate solutions in variants related to independent set or integer programming?
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APPENDIX A: WEIGHT REVELATION AND BASIS ADJUSTMENT

For completeness, we analyze the size and structure of the set of elements that can be forced to leave an optimum solution upon

addition of other elements. Consider any weighted matroid of rank r. Let K denote the set of elements with known weight, and

let U be the set of elements with unknown weight. W.l.o.g. we assume all weights are pairwise distinct and strictly positive.

Let I∗K ⊆ K be an independent set of maximum weight. For any vector of weights (w(u))u∈U , consider the set of elements

Iw ⊆ I∗K that are not part of the optimal basis after the weights w(u) are revealed. We show that 𝒦 = ∪
w∈R

∣U∣Iw has cardinality

∣ 𝒦 ∣= min(∣ U ∣, ∣ I∗K ∣).

Proposition 1. The set 𝒦 of elements that can be forced to leave the optimal independent set I∗K upon revelation of the

unknown weights for elements in U has cardinality at most min(∣ U ∣, ∣ I∗K ∣).

Proof . If I∗K is not a basis of the matroid, then for convenience we add enough dummy elements (e.g., copies of the elements

in U) with tiny weight so that I∗K is a basis. Suppose we now reveal the weights of elements in U one by one. Upon revelation of

its weight, an element e∈U enters the optimal basis if and only if w (e) > mine′∈Cw
(
e′
)
, where C is the unique fundamental

circuit formed by e and the current optimal basis. It forces the unique weight-minimal element in C to leave the basis. Hence,

when considering the sets Iw that can be forced to leave the optimal basis, we can assume that all elements e∈U have either

weight w(e) = 0 or w (e) > maxe′∈Kw
(
e′
)
.

Consider some maximal set of elements U′ ⊆U that can enter the optimal basis. The above observation implies that U′

forces a unique set K′ ⊆K with ∣ K′ ∣= min(∣ U′ ∣, ∣ I∗K ∣) many elements to leave the basis. We will show that 𝒦 = K′, i.e.,

this is the unique (super-)set of elements that can be forced to leave the basis by any subset of elements from U.

Suppose only U′′ ⊂U′ enters the optimal basis. We reveal the weights of U′′ first, and assume they all enter the basis.

Suppose for contradiction that a set K′′�⊂ K′ leaves the optimal basis. We could go on and reveal the weights of U′′∖U′, and they

could subsequently enter the basis as well – but by the updates via fundamental circuits we would never recover any element

from K′′∖K′. This would contradict the fact that U′ forces the set K′ to leave. Hence, addition of U′′ forces a set K′′ ⊂K′ to

leave I∗K .

Consider a different maximal set U′′ ⊆U that can enter the optimal basis. We construct the optimal basis containing U′′

as follows. We first reveal the weights of U′, and we assume they all enter the optimal basis. Every element u∈U∖U′ forms

a unique fundamental circuit with the optimal basis
(
I∗K ∪ U′) ∖K′. Since U′ is maximal, none of these circuits contains an

element from K. Now we reveal the weights from U′′∖U′ one by one. We assume they are large enough, so all elements enter

the optimal basis. Since initially none of the circuits contains an element from K, the strong circuit elimination axiom shows

that over the course of the revelation process, no circuit with an element from K can evolve. The elements in U′′∖U′ only force

elements from U′∖U′′ to leave the optimal basis. Hence, addition of U′′ forces the set K′ to leave I∗K . ■
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