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Simple Summary: Chronic inflammatory diseases account for up to 60% of deaths worldwide
and, thus, are considered a great threat for human health by the World Health Organization.
Nevertheless, acute inflammatory reactions are an integral part of the host defense against in-
vading pathogens or injuries. To avoid excessive damage due to the persistence of a highly reactive
environment, inflammations need to resolve in a coordinate and timely manner, ensuring for the im-
munological normalization of the affected tissues. Since post-transcriptional regulatory mechanisms
are essential for effective resolution, the present review discusses the key role of the RNA-binding
and post-transcriptional regulatory protein tristetraprolin in establishing resolution of inflammation.

Abstract: Inflammation is a crucial part of immune responses towards invading pathogens or tissue
damage. While inflammatory reactions are aimed at removing the triggering stimulus, it is important
that these processes are terminated in a coordinate manner to prevent excessive tissue damage due to
the highly reactive inflammatory environment. Initiation of inflammatory responses was proposed
to be regulated predominantly at a transcriptional level, whereas post-transcriptional modes of regu-
lation appear to be crucial for resolution of inflammation. The RNA-binding protein tristetraprolin
(TTP) interacts with AU-rich elements in the 3′ untranslated region of mRNAs, recruits deadenylase
complexes and thereby facilitates degradation of its targets. As TTP regulates the mRNA stability of
numerous inflammatory mediators, it was put forward as a crucial post-transcriptional regulator of
inflammation. Here, we summarize the current understanding of the function of TTP with a specific
focus on its role in adding to resolution of inflammation.

Keywords: RNA-binding protein; AU-rich element; post-transcriptional regulation; mRNA stability

1. Introduction

Effective immune responses towards pathogens or injury are characterized by acute
inflammations aimed at eliminating the inciting stimulus. To prevent inefficient removal
of the threat but also excessive damage to the host, inflammatory processes must be
tightly controlled. Thus, in addition to transcriptional regulation contributing to de novo
expression of inflammatory mediators, a strict post-transcriptional regulatory program
ensures the timely and quick adaptation of the responses to rapidly changing environmental
cues in the progress of inflammation [1,2].

2. Inflammation
2.1. The Course of Inflammation

Inflammatory reactions are important to combat invading pathogens [3,4].
Nevertheless, to prevent local tissue damage due to the sustained production of highly
reactive inflammatory mediators, including reactive oxygen species and nitric oxide [5],
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and to reduce the risk of systemic effects, inflammatory responses need to be resolved in
a timely manner [6]. In line, the course of acute inflammations is tightly regulated and
follows a common pattern (Figure 1). Bacterial or viral pathogens, i.e., pathogen-associated
patterns (PAMPs), are commonly detected by tissue-resident macrophages, which con-
stitute the first line of defense, via so-called pattern-recognition receptors (PRRs) [7,8].
Similarly, tissue damage elicits an inflammatory response in local phagocytes by acti-
vating PRRs via damage-associated molecular patterns (DAMPs), such as intracellular
components released upon necrotic cell death [9,10]. The most prominent family of PRRs
are the Toll-like receptors (TLRs). They activate intracellular signaling cascades includ-
ing kinases (e.g., mitogen-activated protein kinases (MAPKs)) and transcription factors
(e.g., nuclear factor κ B (NFκB)) to coordinate the inflammatory responses [11,12].
Upon activation, resident macrophages rapidly recruit neutrophils, which spear-head
the pro-inflammatory responses [13–15]. Neutrophils are closely followed by infiltrating
monocytes, which subsequently differentiate into macrophages within the respective tis-
sue [16]. In line with their versatile regulatory functions, macrophages are a highly plastic
cell type [17]. Upon activation, they present an inflammatory, classically activated phe-
notype, characterized by production of pro-inflammatory cytokines, such tumor necrosis
factor (TNF), interleukin 6 (IL6), or IL8 [18,19]. During the progression of the inflammatory
process and triggered by the phagocytosis of the rapidly dying neutrophils, they take on an
alternatively activated phenotype producing anti-inflammatory mediators, e.g., IL10 [20–23].
The last phase of an acute, transient inflammation is aimed at resolving the inflammatory
environment, both pro- and anti-inflammatory components, and reestablishing cellular
and humoral homeostasis at the site of inflammation [24,25]. Importantly, while resolution
was considered a rather passive event for a long time, it is now widely accepted to be a
highly regulated, complex process, which is initiated already early on during the course
of inflammation [26,27]. In fact, successful resolution is not the end of this dynamic pro-
cess, but recent reports indicate that it is followed by a prolonged post-resolution phase
characterized by an altered, immune suppressive environment [28,29].
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subtypes (MO: monocyte; Mφ: macrophage).

As indicated above, macrophages fulfill a central role in the execution of inflammatory
responses. Interestingly though, macrophage populations change massively during in-
flammation, i.e., the original tissue resident macrophage population of mesodermal origin
is rapidly reduced upon influx of neutrophils, both by cell death and emigration [30],
and macrophages differentiating from infiltrating monocytes emerge to replenish the
resident macrophage pool [31,32].
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2.2. Post-Transcriptional Regulation in Inflammation

While typical transcriptional changes characterize inflammatory responses brought
about, e.g., by transcription factors of the STAT and NFκB families [33,34], expression of
many inflammatory mediators is subject to tight post-transcriptional control as well. The lat-
ter coordinates the emergence and, even more importantly, the timely termination of the
production of certain factors [33,35]. The specificity of such mechanisms is achieved by
intricate regulatory principles encoded within the sequence of individual mRNAs and by
a wealth of trans-acting factors such as non-coding RNA species [36] and RNA-binding
proteins (RBPs) [37,38]. For example, roquin-1 and regnase-1 (monocyte chemotactic
protein-induced protein 1 (MCPIP1)) have been shown to be induced in macrophages
by inflammatory stimuli and in turn regulate inflammatory responses in a coordinate
manner [39–41]. Specifically, regnase-1 is an early response gene, and via its endonucle-
ase function, cleaves actively translated inflammatory target mRNAs during the early
phase of inflammation to limit the extent of the inflammatory reactions [42–44]. In line,
mice deficient for regnase-1 develop spontaneous inflammatory syndromes, likely due to
uncontrolled immune responses to external pathogens as these could be these could be
attenuated by antibiotics treatment [45]. In contrast, roquin-1 was shown to degrade trans-
lationally inactive mRNAs stored in stress granules or processing bodies, thereby tuning
inflammatory gene expression during later phases to prevent chronification of inflamma-
tory process [46,47]. Interestingly, failure to localize to processing bodies due to mutational
inactivation of the respective domain provoked a hyperinflammatory phenotype in mice
and was even described for a human case [48]. Of note, recent studies further identified
a huge number of unconventional RBPs, many of which were primarily characterized as
metabolic enzymes (e.g., glyceraldehyde-3-phosphate dehydrogenase) carrying-out addi-
tional “moonlighting” functions [49,50], stressing the tight interplay between metabolism
and post-transcriptional regulation. Considering the elevated energetic demand in inflam-
matory settings [51,52], it can be speculated that some of the not yet characterized RBPs
might be involved in the post-transcriptional control of inflammatory mediators as well.

Amongst the classical RBPs, tristetraprolin (TTP) emerged as one of the most promi-
nent post-transcriptional regulators of immune functions. Here, we want to provide a brief
update of the role of TTP during the course of inflammation, specifically focusing on its
contribution to an effective resolution phase.

3. Tristetraprolin
3.1. TTP Structure and Function

TTP (or ZFP36) was first described in 1991 [53] and belongs to a highly conserved
family of zinc-finger proteins with RNA-binding properties [54]. In addition to domains
facilitating its nuclear-cytoplasmic shuttling, TTP contains a C-terminal NOT1 binding
domain and, alike other members of the TTP family, two tandem CCCH-type zinc-finger
domain structures. The activity of TTP is pre-dominantly regulated by post-translational
modifications, affecting stability, localization, and DNA binding properties of TTP [55–58].
The phosphorylation of TTP by p38-MAPK-activated protein kinase 2 (MK2) emerged as the
major regulator of TTP activity [59,60]. Specifically, MK2 phosphorylates TTP at two serine
residues (mouse: S52 and S178; human: S60 and S186), thereby creating binding sites for the
chaperone 14-3-3, which prevents localization of TTP to stress granules, thereby inhibiting
the mRNA destabilizing activity of TTP [61,62]. Activation of TTP can be achieved by
various phosphatases [63], while dual-specificity phosphatase 1 (DUSP1) was shown to
prevent TTP inactivation by inhibiting p38-MAPK [64,65], protein phosphatase 2A (PP2A)
dephosphorylates and thereby prevents interaction with 14-3-3 [66,67]. As a side note,
Dusp1 itself is a target of TTP-mediated destabilization. Consequently, inactivation of
TTP by p38-MAPK at the same time enhances expression of the p38-MAPK inhibitor
DUSP1, providing a negative feedback mechanism to ensure tight and rapid regulation of
inactivation and reactivation of TTP [68] (Figure 2a).
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Figure 2. Tristetraprolin (TTP) protein structure, activity regulation, and function. (a) p38-MAPK
activates MK2, which phosphorylates TTP at serines 52 and 178 (mouse), which allows for bind-
ing of 14-3-3 and inactivation of TTP. DUSP 1 inhibits p38-MAPK. (NES: nuclear export signal;
NOT1 BD: NOT1 binding domain) (b) TTP interacts with adenosine and uridine (AU)-rich elements
(AREs) in the 3′ untranslated region of target mRNAs and recruits the CCR4-NOT deadenylation
complex, facilitating rapid degradation of the target mRNA. (ORF: open reading frame).

The CCCH domains constitute the RNA-interaction interphase of TTP [41]. They allow
TTP to specifically interact with adenosine and uridine (AU)-rich elements (AREs) [69],
which are commonly found within 3′ untranslated regions (3′ UTRs) of mRNAs and
have been described as important RNA stability regulatory platforms for a broad group
of ARE-binding proteins [70,71]. While the ARE-binding properties of TTP have been
described early after its discovery [72,73], recently, global interaction mapping studies
suggested preferential binding of TTP to nonameric UUAUUUAUU motifs or heptameric
UAUUUAU motifs [74–76]. Upon binding to its target mRNAs, TTP recruits the CCR4-NOT
deadenylation complex via its C-terminal NOT1-binding domain [77–80], thereby allowing
for deadenylation and subsequent 3′-5′ exosomal degradation of the respective target
mRNA [81] (Figure 2b).

In addition to the mRNA destabilizing properties, TTP was also shown to inhibit
the translation of mRNAs [82–84]. The finding that TTP is able to regulate its targets
at various post-transcriptional levels underscores the notion that such regulatory and
redundant principles are required to rapidly and efficiently regulate the timely expression
of specific targets [75,85].

3.2. TTP in the Resolution of Inflammation

TTP activity is tightly regulated during the course of inflammation via the inhibitory
activity of p38-MAPK [59], but also by autoregulation [86]. To assess how TTP contributes
to the regulation of inflammation, various groups have used RNomics approaches to
identify mRNAs both directly bound and regulated by TTP in bone marrow-derived
macrophages (BMDM) in response to inflammatory stimulation with LPS [37,74,75]. In the
following, we will discuss the combined findings to provide an overview of TTP targets
from the onset (1 h LPS) via the peak (3 h LPS) to the early resolution of inflammation
(6 h LPS).

Since TTP is inactivated early during inflammatory simulation, Tiedje et al. determined
TTP targets under these conditions using an individual-nucleotide resolution crosslink-
ing and immunoprecipitation (iCLIP) approach using TTP-knockout (TTP-k/o) BMDMs
overexpressing either wildtype TTP (TTP-wt) or a phosphorylation-site (S52/178A) TTP
mutant (TTP-AA), which is inactivation-resistant [37]. Using this approach, they identified
4106 mRNAs to be bound by TTP within their 3′UTRs. Interestingly, only for a small pro-
portion of these TTP-interacting mRNAs enhanced LPS-induced expression was sensitive
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to expression of the constitutively active TTP-AA. Specifically, 8 mRNAs showed higher
expression in TTP-wt as compared to TTP-AA expressing BMDMs after 1 h LPS treatment
(Table 1; left columns). Amongst these, immediate early response 3 (Ier3), a feedback in-
hibitor of NFκB signaling [87], appeared to benefit most from TTP inactivation in TTP-wt
cells. In line, the authors identify altered NFκB activation signatures in TTP-AA expressing
macrophages. Similarly, urokinase-type plasminogen activator (Plau) mRNA appeared
to be stabilized when TTP was inactivated in TTP-wt cells. PLAU was previously shown
to act anti-inflammatory by suppressing fibrin-deposition induced inflammation [88] and
inflammatory osteoclastogenesis [89]. These findings suggest that inactivation of TTP,
rather than providing an additional boost to inflammatory targets, post-transcriptionally
derepresses feedback inhibitors of inflammation and anti-inflammatory targets, thereby set-
ting the stage for successful resolution already very early on during the inflammatory
process (Figure 1). In line, high levels of active TTP at this stage of inflammation have been
shown to enhance the stability of certain ARE-containing transcripts, such as Tnf and Cxcl2,
supporting the concept that a proper resolution phase requires an intact inflammatory
phase, also at the level of TTP activity regulation [90].

Table 1. Differential expression of TTP-bound mRNAs during different phases of inflammation.

Inflammatory Onset 1 Peak Inflammation 2 Early Resolution 3

Gene ID log2FC
(TTP-wt vs. TTP-AA) Gene ID ∆ log2FC

(TTP-ko/ctr vs. TTP-wt/ctr) Gene ID ∆ log2FC
(TTP-ko/ctr vs. TTP-wt/ctr)

Ier3 0.91 Gdf15 1.73 Cxcl1 3.86
Plau 0.57 Eno2 1.26 Cxcl2 3.34
Lpl 0.56 Mllt11 1.23 Eno2 2.07

Mdm2 0.46 Cxcl1 1.00 Mllt11 1.73
Mat2a 0.44 Cxcl2 0.94 Ccl3 1.46
Plek 0.36 Rusc2 0.67 Il10 1.39
Canx 0.35 Ier3 0.45 Tnf 1.36
Actr2 0.26 Zeb2 0.26 Rusc2 0.87

Il10 0.25 Il27 0.74
Prdx1 0.20 Notch1 0.50
Notch1 0.14 Maf 0.35
Sfmbt1 0.13 Ccl4 0.35

Cish 0.03 Fam49b 0.33
Cflar 0.02 Cdkn1a 0.28

Zeb2 0.28
Ier3 0.23

Il10ra 0.21
Dusp1 0.05
Ccl2 0.05
Aff1 0.02

Green: feedback regulators; red: inflammatory TTP targets; blue: anti-inflammatory TTP targets. 1 Top 50 3′UTR-bound TTP targets,
filtered for targets with higher induction of mRNA expression in TTP-wt as compared to inactive TTP-AA expressing BMDM after 1 h LPS
(from [37]). 2 Top 50 3′UTR-bound TTP targets, filtered for targets with higher induction of mRNA expression in TTP-k/o as compared to
TTP-wt BMDM after 3 h LPS (from [74]). 3 Top 50 3′UTR-bound TTP targets, filtered for targets with higher induction of mRNA expression
in TTP-k/o as compared to TTP-wt BMDM after 6 h LPS (from [74]).

While TTP is inactivated during the onset of inflammation, it becomes gradually
reactivated during the progression of inflammation by autoregulatory feedback loops.
Specifically, as TTP destabilizes its own mRNA, inactivation of TTP allows for enhanced
expression of TTP [86]. At the same time, the TTP target DUSP1 increases, which inhibits
p38-MAPK, thereby allowing for activation of TTP [68]. Thus, the TTP-interacting targets
determined by Sedlyarov and colleagues using a photoactivatable- (PAR-) iCLIP approach
for TTP in BMDMs after 3 and 6 h of LPS served as indicators for later stages of the inflam-
matory course [74]. In line with the predicted TTP activation pattern, the number of TTP
targets responsive to changes in the availability of TTP (i.e., TTP-wt vs. TTP-k/o) increased.
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In addition to Ier3, which appeared to be a highly regulated TTP target throughout
the course of inflammation, Cxcl1 and Cxcl2 showed a strong increase in expression in
TTP-deficient (TTP-k/o) BMDM at peak inflammation (3 h LPS; Table 1, middle columns).
Cxcl1 and Cxcl2 are well-established TTP targets [91,92], both being important chemokines
contributing to early stage neutrophil recruitment [93]. The observation that the reduction
in neutrophil-attracting chemokines in the presence of active TTP in TTP-wt cells even
precedes the impact of TTP on early response pro-inflammatory cytokines, such as Tnf,
provides further evidence for a tightly regulated, TTP-controlled resolution program,
which is initiated already during the onset of inflammation [94]. The well-known anti-
inflammatory TTP target Il10 [95–97] appeared to be downregulated by TTP also already
during the presumed pro-inflammatory phase.

Moving on to early resolution of inflammation (6 h LPS), not only the number of
mRNAs bound and regulated by TTP but also the degree of TTP-dependent regulation mas-
sively increased (Table 1, right columns). In addition to the neutrophil-targeting chemokines
Cxcl1 and Cxcl2, further chemokines including Ccl2 [98], Ccl3 [99], and Ccl4 [100] were
down-regulated by TTP at the start of the resolution phase. While CCL3 attracts and acti-
vates neutrophils and also monocytes and macrophages, CCL2 rather recruits monocytes,
memory T cells, and dendritic cells, while CCL4 primarily attracts natural killer cells and
monocytes [101,102]. Thus, TTP appears to initiate the normalization of the cellular envi-
ronment at the site of inflammation very early during the resolution. Of note, while Tnf was
established as a TTP target early on [72,98,103–105], it only emerged as TTP-bound and
-responsive target after 6 h of LPS in the present studies, while it was not regulated by
TTP at 1 or 3 h of LPS. This is in line with previous reports showing that Tnf accumulates
maximally in BMDM at 3 h of LPS declining only thereafter [1,75].

Corroborating the importance of TTP for the onset of resolution, Joe et al. recently
showed that CD38 induces TTP expression already during early inflammation via its
products nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP ribose
(cADPR). As part of a feedback loop, increasing TTP levels destabilize Cd38, which results
in the accumulation of nicotinamide adenine dinucleotide (NAD+), the pre-cursor of
the abovementioned second messengers. Elevated NAD+ concentrations then activate
SIRT1, which enhances TTP activity by deacetylation during the onset of resolution. In
addition to the regulation of cytokines, TTP inhibits the expression of the mTOR-activator
RHEB, thereby inducing autophagolysosome formation, which is crucial for bacterial
clearance [106]. In contrast, deletion of TTP was recently shown to protect neutrophils
from apoptosis, which enhanced their anti-microbial activity [107].

Taken together, TTP emerges as a regulator of resolution, by coordinating the reg-
ulation of the early phases of resolution, which are initiated already immediately after
inflammatory stimulation (Figure 3).
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Nevertheless, while in vitro studies provide important mechanistic and regulatory
insights regarding the function of TTP, various mouse models have been generated to
study the impact of TTP in vivo. In line with the inflammation-regulatory function of
TTP, mice with a global TTP-knockout develop a severe inflammatory disease pheno-
type soon after birth [108,109]. In contrast, mice with a myeloid-specific depletion of
TTP exhibit only a minimal spontaneous phenotype but appear hypersensitive against
inflammatory challenge [110]. Furthermore, mice expressing only the non-phosphorylatable,
constitutively active TTP-AA mutant showed a strongly attenuated inflammatory response
to LPS [111]. Nevertheless, these mice were also not able to develop a desired inflammatory
immune response against infections with Salmonella typhimurium [112], indicating that tunable
TTP is crucial for the regulation of appropriate immune responses. Interestingly, deletion of
the AREs within the TTP 3′UTR sufficed to increase the expression of TTP and protected re-
spective mice against a number of murine models of human diseases, including rheumatoid
arthritis, psoriasis, and multiple sclerosis [113].

4. Conclusions and Future Directions

TTP has been extensively studied with respect to its role in inflammation and has
long been assumed to be an exclusively anti-inflammatory factor, based both on the severe
inflammatory phenotype of the respective knockout mice and its wealth of inflammatory
targets. Nevertheless, in the meantime, it has been acknowledged that its function is
not quite that unambiguous as TTP also attenuates the expression of anti-inflammatory
mediators. Considering its tight regulation throughout the course of inflammation and
its broad spectrum of targets, TTP might rather be assigned as a master regulator of the
resolution of inflammation ensuring a well-coordinated and timely return to homeostasis
after an inflammatory insult.

Consequently, modulating TTP might provide a promising avenue for the development
of inflammation regulatory therapies. Specifically, therapeutic approaches to increase the
TTP activity can be expected to ameliorate the course of numerous chronic inflammatory dis-
eases with a previously shown connection to TTP, such as rheumatoid arthritis [108,114,115],
atherosclerosis [116], diabetes [117], inflammatory bowel disease [118], chronic obstructive
pulmonary disease [119], and autoimmune diseases [108,120]. Since chronic inflammatory
diseases are a major health care burden, such approaches appear extremely appealing.
For example, PP2A agonists were shown to activate TTP and consequently reduced inflam-
mation and bone loss in a murine rheumatoid arthritis model [121]. Further, small molecules
could be screened for their potential to enhance TTP activity either by increasing its transcrip-
tion or its mRNA stability or by preventing its inactivation. Nevertheless, such approaches
commonly are limited by off-target effects. Considering the self-regulatory properties of
TTP, the design of steric-blocking oligonucleotides to prevent the interaction of TTP with its
own mRNA should enhance TTP expression [122]. In contrast, TTP-inhibitory approaches
should intensify and prolong inflammatory processes and therefore are predicted to favor
acute anti-bacterial reactions [107]. Nevertheless, considering the important function of
TTP in the resolution of inflammation, TTP-inhibitory anti-infectious therapies should be
developed with caution. Irrespective of the direction, potential therapeutic endeavors will
have to factor in the cell type-specificity of TTP targets and the so far largely neglected
interplay between TTP and other trans-acting regulators including RBPs and miRNAs.

It will further be of great interest to see if polymorphisms in TTP exist in humans,
which might serve as markers for the individual susceptibility to certain chronic inflamma-
tory diseases.
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