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1 Introduction 

1.1 Calcium signalling 

Since the first description of “animal electricity” by Luigi Galvani in the second half of the 18PP

th
PP 

century, electrical phenomena have been recognized as a basic principle of life. All cells 

establish charge gradients to generate and store energy, to transduce information and to 

maintain their structural integrity. 

Underlying these electrical processes at the molecular level is an uneven distribution of ions 

across the lipid-water interface of cellular membranes. To allow for the movement of charges 

through the per se impermeable lipid bilayer, biological membranes contain specific proteins, 

ion channels, which are essential for the generation and maintenance of the cell’s electrical 

circuitry. 

Classical studies of ion channel physiology have focused on neurons and muscle cells as 

their functions, e.g. action potential generation, synaptic transmission, or contraction, are 

largely dependent on ion channel activity. It has been gradually recognized, however, that by 

regulating ion fluxes and membrane potentials, ion channels are involved in almost all 

aspects of cellular physiology. In addition to the “fast and furious” electrical responses in 

excitable cells there are many actions of ion channels that are more subtle, occur on a longer 

time scale and ultimately control adaptive processes like proliferation, differentiation and cell 

survival.  

Calcium, a small ion, has emerged as a key messenger that accompanies development of an 

organism from fertilization (acrosomal reaction) until death (apoptosis, necrosis). It translates 

membrane potential changes and ion channel activity into diverse enzymatic processes 

(Berridge, 1993). Calcium regulation is achieved by the Ca PP

2+
PP-dependent function of 

numerous proteins ranging from kinases, proteases and transcription factors to synaptic and 

contractile proteins. These either interact directly with the ion or they are indirectly modulated 

by specific Ca PP

2+
PP-binding proteins, such as calmodulin (CaM). In accordance with its pivotal 

role in signal transduction, the free intracellular cytosolic Ca PP

2+
PP concentration, [Ca PP

2+
PP] BBi BB, 

temporally and spatially is tightly regulated by ion channels, transporters, adenosine 

triphosphate (ATP)-driven pumps, and Ca PP

2+
PP-binding proteins. In quiescent cells, [Ca PP

2+
PP] BBi BB is 

much lower (around 50-100 nM) compared to the Ca PP

2+
PP concentration of internal stores (1 µM 

– 3 mM; Meldolesi & Pozzan, 1998) and the extracellular fluid (~2 mM; Clapham et al., 

2001). Sustained elevation of [Ca PP

2+
PP] BBi BB as observed under many pathophysiological conditions, 

e.g. in cardiac hypertrophy, heart failure, and ischemia, can induce maladaptive remodelling 

processes (Berridge, 2006; Dietrich et al., 2007) and will eventually lead to cell death 

(Clapham, 1995; Bano & Nicotera, 2007).  
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In line with the requirement for a tight control of [Ca PP

2+
PP] BBi BB cells possess numerous Ca PP

2+
PP-influx 

channels with diverse structures, biophysical properties, and regulation mechanisms. In 

excitable cells a main determinant of Ca PP

2+
PP influx is the membrane potential. These cells 

express voltage-dependent Ca PP

2+
PP channels that allow a large, action potential-driven Ca PP

2+
PP 

entry. Another important class of Ca PP

2+
PP permeable channels, mainly found in neuronal and 

muscle cells, are ligand-gated cation channels which are directly activated by hormones and 

neurotransmitters, thereby providing the basis for fast signal transduction at chemical 

synapses.  

Whereas the main Ca PP

2+
PP channels in excitable cells are well characterized, the importance 

and molecular identity of Ca PP

2+
PP entry channels in non-excitable cells, such as immune cells, 

endothelial and epithelial cells or hepatocytes, has long remained controversial. In general, 

these cells do not express voltage-dependent Ca PP

2+
PP channels and CaPP

2+
PP influx is much smaller 

than in neurons or muscle cells, making it difficult to functionally isolate and characterize the 

proteins involved. Work pioneered by Putney, Berridge and others established that store- 

and receptor-operated cation channels (SOCs and ROCs; reviewed by Parekh, 2006) 

represent the predominant routes of Ca PP

2+
PP entry into non-excitable cells. Despite great 

progress in this field, many aspects of SOC/ROC function and their regulation still remain 

poorly understood and continue to provide challenging topics for basic research as well as 

drug discovery. 

1.1.1 Store- and receptor-operated Ca PP

2+
PP influx 

SOCs initiate diverse cellular processes, e.g. enzyme activation (Fagan et al., 2000), gene 

transcription (Lewis, 2001), and replenishment of intracellular Ca PP

2+ 
PPstores, mainly the 

endoplasmic reticulum (ER; Putney, Jr. & Bird, 1993). The latter process, also referred to as 

capacitative Ca PP

2+
PP entry (CCE; Putney, Jr., 1986), is vital and ubiquitously present (Ambudkar 

& Ong, 2007). Store repletion after release is important to maintain the many physiological 

ER functions, e.g. protein folding, posttranslational modification and trafficking, stress 

response and initiation of cell death (Burdakov et al., 2005). Contrary, ROCs mainly mediate 

the integration of multiple extracellular stimuli, their amplification and translation into distinct 

signalling cascades and finally specific physiological responses. 

 

Receptor- and store-operated Ca PP

2+
PP entry is triggered by the activation of receptor tyrosine 

kinases (RTK) or G BBq/11 BB protein-coupled receptors (GPCR) which subsequently stimulate 

phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP BB2BB) into 

soluble inositol 1,4,5-trisphosphate (IP BB3BB) and membrane-bound 1,2-diacylglycerol (DAG). 

DAG is an important second messenger with diverse downstream effects such as activation 

of protein kinase C (PKC; reviewed by Bell & Burns, 1991). This enzyme in turn can 

phosphorylate channel proteins, thereby regulating their activity (Venkatachalam et al., 
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2003). IPBB3BB diffusion to the IPBB3BB-gated Ca PP

2+
PP-channel (IPBB3BBR) in the ER membrane causes 

opening of the IP BB3BBR and release of Ca PP

2+
PP from the ER to the cytosol. These signalling events 

are commonly termed the phosphatidylinositol (PI) response. The IP BB3BB-evoked depletion of 

intracellular Ca PP

2+
PP stores subsequently activates SOCs (Fig. 1; reviewed by Berridge, 1993). 

 

(8)
(8)

(7)

(1)

endoplasmic reticulum
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PLC

PIP2 DAG

IP3

ROC SOC

(2)

(3)

(6)

PKC

(7)
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phosphorylation

Ca2+

PM

cytosol

IP3-gated Ca2+ channel

(4) (5)

 
Figure 1: Receptor- and store-operated CaPP

2+
PP influx. Agonist stimulation of a receptor tyrosine 

kinase or a G BBq/11BB protein-coupled receptor (1) leads to activation of phospholipase C (PLC) (2). The 
enzyme cleaves phosphatidylinositol 4,5-bisphosphate (PIPBB2BB) into membrane-bound diacylglycerol 
(DAG) and soluble inositol 1,4,5-trisphosphate (IPBB3BB) (3). IPBB3BB diffusion to the IP BB3BB-gated CaPP

2+
PP-channel in 

the ER membrane evokes depletion of intracellular CaPP

2+
PP stores (4). In parallel, store depletion 

activates SOCs (5). DAG may directly activate certain ROCs (6) and also, cooperatively with CaPP

2+
TPTP, 

PKTTC (7). PKC phosphorylates diverse substrates like channel proteins (8).  
 

For a channel to be classified as store-operated, its direct activation by experimental store-

depletion has to be demonstrated (Bolotina & Csutora, 2005). Pharmacological agents like 

cyclopiazonic acid and thapsigargin inhibit the sarcoplasmic/endoplasmic reticulum Ca PP

2+ 

PPpumps (SERCA; Favre et al., 1996) that normally transport Ca PP

2+
PP against its electrochemical 

gradient into the ER. Inhibition of this active, ATP-consuming process results in passive CaPP

2+
PP 

leakage. Ultimately, Ca PP

2+
PP influx from the extracellular surrounding is mediated by SOCs, even 

in the absence of receptor stimulation or generation of IP BB3BB.  

ROCs are activated through the same signalling cascade but in contrast to SOCs they do not 

require store depletion. The phospholipase-derived second messenger DAG has been 

shown to directly activate ROCs (Hofmann et al., 1999). Furthermore, it is assumed that so 
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far unknown messengers and PLC-dependent mechanisms are also involved in ROC 

channel stimulation (Clapham et al., 2001). 

Hence, ROCs and SOCs can be activated simultaneously following stimulation of one 

receptor. But the underlying signalling cascades are definitely distinct.  

1.1.2 Activation of store-operated channels  

The elevation in [Ca PP

2+
PP] BBi BB caused by store-depletion, the PI response, is not sufficient to initiate 

store-operated Ca PP

2+
PP entry (Parekh, 2006). How does a store-operated channel in the plasma 

membrane then sense depletion of intracellular Ca PP

2+
PP stores? At least three general models 

were proposed (schematically depicted in Fig. 2) that strive to answer this question: 

 

1. Conformational coupling model: The IPBB3BBR (located in the ER membrane) is in close 

vicinity to the SOC (inserted in the plasma membrane) allowing direct protein-protein 

interaction. IPBB3BBR activation results in “conformational-coupled” stimulation of the 

channel (Irvine, 1990; Berridge, 1995). Since this model conflicts with the slow channel 

activation kinetics after store-depletion, it was revised to the “secretion-like coupling” 

hypothesis (Patterson et al., 1999). It is based on the assumption that SOCs and the 

IPBB3BBR of quiescent cells are physically separated, but the ER can move towards the 

channel following store depletion. Therefore, a temporal physical interaction between 

the SOC and the IPBB3BBR is possible but requires some time to build up. It depends on the 

peripheral cytoskeleton and stabilizing reagents might obstruct the coupling whereas 

disaggregation could facilitate it (Rosado et al., 2000; Venkatachalam et al., 2002). The 

participation of the IPBB3BBR at all stages of SOC activation in this model conflicts with the 

definition of store-operation (see above; Bolotina & Csutora, 2005; Parekh, 2006), but 

alternatively another ER component might interact with SOCs. An interesting candidate 

is the stromal interaction molecule 1 (STIM1) that will be introduced in greater detail 

below. 

 

2. Calcium influx factor model: Store depletion is thought to release a so far unknown 

“diffusible messenger”, termed calcium influx factor (CIF), from the ER. Alternatively, its 

de novo synthesis could be initiated by store depletion. CIF might directly (Takemura et 

al., 1989; Randriamampita & Tsien, 1993) and also indirectly activate SOCs. It is 

proposed to stimulate membrane-bound Ca PP

2+
PP-independent phospholipase A BB2 BB(iPLABB2BB) by 

releasing it from binding to the inhibitory protein calmodulin. Subsequently, 

lysophospholipids generated by iPLA BB2BB could activate the SOC directly (Smani et al., 

2003; Bolotina & Csutora, 2005). Besides CIF, other diffusible messengers have been 

suggested, e.g. 5,6-epoxyeicosatrienoic acid, nitric oxide, and sphingosine-1-
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phosphate (Parekh & Putney, Jr., 2005) and are controversially discussed (Bolotina & 

Csutora, 2005). 

 

3. Vesicle-fusion model: Functional SOCs are stored in cytoplasmic vesicles and 

recruited to and rapidly inserted into the plasma membrane following stimulation (Yao 

et al., 1999; Alderton et al., 2000). Exocytotic channel insertion was also observed after 

receptor stimulation (Cayouette et al., 2004; Bezzerides et al., 2004; Singh et al., 2004; 

Odell et al., 2005) thus demonstrating that the mechanism might not be exclusive for 

activation of SOCs but is important for TRP-mediated Ca PP

2+
PP influx in general.  

 

secretion-like
coupling

[Ca2+]ER

IP3

Ca2+

1.
SOC

IP3R

[Ca2+]ERactin 
network

2.
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[Ca2+]ER

[Ca2+]ER

Ca2+

3.

vesicular
fusion

[Ca2+]ER

[Ca2+]ER

CIF

store
depletion

store
depletion

store
depletion

Ca2+

 
Figure 2: Proposed activation models for store-operated channels (adapted from Parekh, 2006). 
See text for detailed information. 
 

Over the past two decades, the coupling mechanisms between the ER and store-operated 

Ca PP

2+
PP-influx channels and also the molecular identity of these channel proteins remained 

elusive and were intensely investigated. SOCs do not form a uniform group but have diverse 

biophysical properties. The best studied store-depletion responsive current is the calcium-

release-activated calcium (CRAC) current termed I BBCRACBB. First identified in mast cells (Hoth & 

Penner, 1992), it is found in many cell types, and several genes have been proposed to code 

for the CRAC channel-constituting proteins.  

Most recently, crucial progress was made with the identification of two proteins that function 

together in sensing store-depletion and subsequently mediating I BBCRACBB. Stromal interaction 

molecule 1 (STIM1) was discovered in two independent RNA interference (RNAi) screens 
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performed to elucidate the underlying signalling cascades of store-operated Ca PP

2+
PP influx (Liou 

et al., 2005; Roos et al., 2005). It has a single transmembrane domain and is found inserted 

in the PM and the ER membrane (Soboloff et al., 2006). Originally identified as tumor 

suppressor (Sabbioni et al., 1997), it is now also thought to control the ER Ca PP

2+
PP filling state 

with its luminal Ca PP

2+
PP-binding EF hand motif and to transduce the depletion signal to Orai1 

proteins (Liou et al., 2005; Zhang et al., 2005). These were named after Greek mythological 

characters (the gate keepers of heaven) by one group (Feske et al., 2006), whereas the term 

CRAC modulator 1 (CRACM1) was coined by another (Vig et al., 2006b). They are predicted 

to have four membrane-spanning domains and to constitute the ion channel pore subunit 

(Vig et al., 2006a; Prakriya et al., 2006; Yeromin et al., 2006). A single amino acid 

substitution (R91W) suppresses IBBCRACBB necessary for T- and B-lymphocyte activation thus 

causing a rare hereditary form of severe combined immunodeficiency (SCID; Feske et al., 

2005; Feske et al., 2006).  

While the interaction of STIM1 and Orai1 is generally accepted to be necessary and 

sufficient to mediate store-operated Ca PP

2+
PP entry, the question of how they communicate has 

not been unequivocally answered. Physical interactions have been demonstrated by co-

immunoprecipitation studies (Yeromin et al., 2006; Vig et al., 2006a; Ong et al., 2007), but 

neither study resolves whether these are direct or indirect and whether they occur between 

proteins both inserted in the PM or Orai1 and STIM1 in the ER (Hewavitharana et al., 2007). 

Three adapted “secretion-like coupling” models are currently discussed as Orai1 activation 

by one of the other proposed SOC activation mechanisms is less likely. Due to the physical 

interaction between STIM1 and Orai1, the existence of a diffusible messenger is at least not 

indispensable (Vig & Kinet, 2007). Moreover, Orai1 is constitutively expressed in the PM and 

activation does not seem to require exocytosis (Prakriya et al., 2006; Vig et al., 2006b). 

Nevertheless, exocytotic transport may be involved in STIM1 translocation to the PM (Vig & 

Kinet, 2007), and also an increased STIM1 pulldown after store depletion in biotinylation 

experiments has been reported (Zhang et al., 2005). Modulation of CRAC channel function 

by phosphorylation is discussed as well (Vig & Kinet, 2007). Further studies are required to 

ascertain which of the proposed mechanisms finally activates the CRAC channel. 

1.2 The TRP channel superfamily 

As mentioned above, the CRAC channel is the most prominent but not the only SOC 

(reviewed by Montell, 1997; Vazquez, et al., 2004b; Parekh, 2006). The involvement of store-

operated Ca PP

2+
PP entry in so many and diverse physiological processes like exocytosis, 

contraction, enzyme control, gene regulation, apoptosis, cell proliferation and migration 

(Parekh & Penner, 1997), motivated many investigators to search for the molecular 

correlates of these currents. In 1995, these efforts led to the discovery of a novel class of 

Ca PP

2+
PP-permeable cation channels in mammals, the TRP superfamily (Zhu et al., 1995; Wes et 
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al., 1995). It was named after a spontaneous Drosophila melanogaster mutant that has been 

isolated almost two decades earlier.  

 
 
Figure 3: TTElectroretinogram of trp 
D. melanogaster mutants.TT Dark-adapted 
flies were exposed to a five seconds pulse 
of white light (indicated by the event 
marker). The vertical line of the event 
marker represents 5 mV (Montell, 2004).  
 
 

 

Fruitfly mutants had been screened for defects in their electroretinogram (ERG) recordings in 

order to elucidate the visual transduction pathways (Cosens & Manning, 1969). Unlike in 

vertebrates, phototransduction in the fruitfly is coupled to PLC. Light-induced PLC activation 

results in Na PP

+
PP and Ca PP

2+
PP influx, thus depolarizing the photoreceptor cells (Montell, 1999; 

Hardie & Raghu, 2001). This Ca PP

2+
PP entry is defective in the above mentioned mutants, they 

abnormally respond with a transient rather than sustained depolarization to prolonged light 

exposure (Fig. 3) and were therefore named transient receptor potential (trp) (Minke et al., 

1975).  
After the trp gene had been cloned (Montell & Rubin, 1989), further studies confirmed that it 

codes for a novel light-activated, Ca PP

2+
PP-permeable cation channel (Hardie & Minke, 1992; 

Phillips et al., 1992; Niemeyer et al., 1996). Its Ca PP

2+
PP permeability and coupling to PLC 

sparked interest in TRPs beyond invertebrate phototransduction exploration as the channel 

was speculated to be a SOC (reviewed by Montell, 1997). Later on, TRP became evident to 

be the founding member of a novel channel superfamily. Two more TRP-related channels, 

TRPL and TRPγ, were found in Drosophila (Phillips et al., 1992; Tsunoda & Zuker, 1999; Xu 

et al., 2000) and up to date 29 mammalian orthologs of the Drosophila trp gene have been 

identified. Some of them are also candidates to form SOCs (Montell et al., 2002b; Montell, 

2005; Okuhara et al., 2007), whereas others constitute ROCs, tonically active or stretch-

activated channels (Dietrich et al., 2006).  

 

By sequence homology TRPs can be divided into seven families, named after their first 

recognized members (Pedersen et al., 2005; Ramsey et al., 2006): TRPC (classical), TRPV 

(vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (polycystin) and TRPML (mucolipin). 

TRP-related channels are found in every metazoan organism genetically studied so far 

(Montell et al., 2002a) with the seventh existing TRPN (no mechanoreceptor potential C) 

family containing members in Drosophila melanogaster, Caenorhabditis elegans and Danio 

rerio (Montell, 2001; Okuhara et al., 2007), but not in mammals (Fig. 4).  
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Figure 4: TTThe mammalian TRP family tree (adapted from Clapham, 2003).TT The branch length 
symbolizes the evolutionary distance and is graded in point accepted mutations units (PAM, mean 
number of mutations per 100 residues). 
 

At the time of its cloning, TRP showed no significant homology to known proteins (Montell, 

2004). Difficulties in crystallizing these integral membrane proteins so far prevented structure 

determination by X-ray analysis. A topology analysis of its primary sequence predicted seven 

hydrophobic, putatively membrane-spanning segments. By virtue of mutagenesis studies, 

determination of glycosylation sites and in analogy to known voltage-gated and second-

messenger-gated ion channels, it is now assumed that TRP channels (with the exception of 

TRPP1; Okuhara et al., 2007) have six transmembrane domains with cytosolic amino and 

carboxy termini (Montell & Rubin, 1989; Vannier et al., 1998). Functional channels are 

thought to be composed of homo- or heterotetramers (Kedei et al., 2001; Hoenderop et al., 

2003; Amiri et al., 2003), in which the pore is formed by the fifth and sixth membrane-

spanning domains and intervening segments (Fig. 5). They lack the complete voltage sensor 

formed by positively charged amino acids in the fourth transmembrane domain of many 

voltage-gated channels (Montell, 2001) and therefore, are only weakly voltage-sensitive. 

Whereas channels within a family share high amino acid sequence similarity, the families by 

themselves are quite different, but at least their transmembrane segments are significantly 

homologous to TRP (Montell, 2001).  
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Figure 5: TTProposed TRP channel topology (adapted from Li et al., 2002). See text for explanations 
(abbreviations: C, carboxy terminus; N, amino terminus; 1-6, membrane-spanning segments). TT 

 
The tissue distribution of TRP channels in mammals is commonly widespread, ranging from 

non-excitable cells to the nervous system. Activation mechanisms, ion selectivities and 

putative physiological and pathophysiological roles are strikingly versatile and diverse. Apart 

from two monovalent-selective exceptions (TRPM4 and -M5), TRP channels are CaPP

2+
PP-

permeable but rather non-selective to cations. They modulate [Ca PP

2+
PP] BBi BB and regulate membrane 

potential (Kwan et al., 2007). TRPV5 and -V6 are more Ca PP

2+
PP-selective but not as much as 

voltage-gated Ca PP

2+
PP-channels (Clapham et al., 2001).  

Currently, TRP channels are attracting growing attention due to their possible involvement in 

human physiology and disease. The ancestral Drosophila TRP channel is crucial for visual 

transduction and several mammalian relatives (especially of the TRPV family) are also 

important for sensory perception, e.g. of mechanical stimuli, osmolarity, pain, pheromones, 

taste and temperature. Others are involved in such distinct physiological processes as 

fertilization and vasorelaxation. TRP channels abnormally activated or dysfunctional due to 

pathologic mutations cause several channelopathies (for a recent review see Nilius, 2007). 

For instance, TRPs have been connected to polycystic kidney disease (Mochizuki et al., 

1996) and hereditary focal segmental glomerulosclerosis (FSGS; Winn et al., 2005), to the 

lysosomal storage disorder mucolipidosis IV (Bassi et al., 2000), to hypomagnesemia with 

secondary hypocalcaemia (HSH, Schlingmann et al., 2002) and to Guamanian amyotrophic 

lateral sclerosis and parkinsonism dementia (Hermosura et al., 2005; Hermosura & Garruto, 

2007).  

1.3 The TRPC family 

1.3.1 Structural features of TRPCs 

TRPCs were the first TRP proteins discovered in mammals (Wes et al., 1995; Zhu et al., 

1995). Seven proteins, referred to as TRPC1 – 7, constitute the canonical (or classical) TRP 

family that is the closest related to the Drosophila TRP protein (30-40% identity; Okuhara et 
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al., 2007). They are thought to share the topology described in Chapter 1.2. The structure of 

a TRPC channel monomer is schematically depicted in Figure 6 and some known TRPC-

interacting proteins are also shown next to their interaction sites within the channel. 

 

ANK3
ANK4 CI

RB

cytosol
PM1 2 3 4 5 6

potential 
glycosylation sites

TRPC
3,6,7

TRPC
5,6,7

TRPC
1

CC-N

ANK2

ANK1

dimerization
(TRPC1)

Stathmin

EWKFARY(X)4F(X)13W LPXPF(X)3PSPK

CC-C

PDZ-B
cytoskeleton

NHERF PLCß

IP3R/CaM (TRPC4)

Immunophilins
Homer

IP3R/CaM

CaM (TRPC1)

Caveolin-1

TRPC4/5

putative pore
region

MxA

 
Figure 6: Structure of TRPC monomers (adapted from Vazquez et al., 2004b). The box depicts the 
extended carboxy terminus that is unique to TRPC4 and -5 proteins. See text for description. The 
acronyms are: ANK, ankyrin-like repeats; CaM, calmodulin; CC-N, CC-C, coiled-coil domain (N- and 
C-terminal); CIRB, calmodulin/IP BB3BB receptor binding region; IPBB3BBR, IPBB3BB receptor; NHERF, NaPP

+
PP/H PP

+
PP 

exchanger regulatory factor; PDZ-B, PDZ binding domain; PLCß, phospholipase C ß; PM, plasma 
membrane. 
 
The cytosolic amino termini of TRPC channels contain three to four ankyrin repeats, a coiled-

coil domain and a putative caveolin 1-binding domain. A peptide sequence called TRP box 

(amino acids EWKFAR) is found C-terminal to the sixth transmembrane-spanning domain. 

This sequence is invariant in TRPC but less conserved in TRPV and TRPM (Clapham, 2003) 

and its function is not yet understood (Woodard et al., 2007). Moreover, the cytosolic carboxy 

termini contain a highly conserved proline-rich domain, the calmodulin/IP BB3BB receptor binding 

(CIRB) domain and another coiled-coil domain.  

Unique to TRPC4 and TRPC5 are extended C-termini with additional binding sites for the 

IPBB3BBR and CaM. They also contain a PDZ-binding motif that controls TRPC4 channel surface 

expression (Mery et al., 2002). It interacts with several PDZ domain containing proteins, e.g. 

the Na PP

+
PP/HPP

+
PP exchanger regulatory factor (NHERF; Tang et al., 2000) which links the channel 

to PLCß and the cytoskeleton (Tang et al., 2000).  

All domains mentioned above function in protein-protein interaction. Ankyrin repeats are 

common protein-binding motifs that participate in the assembly with cytoskeletal and 

regulatory proteins (Mosavi et al., 2004). They mediate TRPC channel interaction with MxA, 
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a member of the dynamin superfamily of GTPases (Lussier et al., 2005), and, as 

demonstrated for TRPC3 and -6, are required for correct trafficking to the PM (Hofmann et 

al., 2002; Wedel et al., 2003). The first ankyrin-like repeat was additionally identified as key 

structure for functional homo- and heteromerization of TRPC4 and -5 channels (Schindl et 

al., 2007). Coiled-coil domains have been reported to be involved in TRPC1 channel 

homomerization (Engelke et al., 2002; Lepage et al., 2006) and linkage with other proteins 

(Greka et al., 2003). An additional site of protein-protein interaction is the C-terminal proline-

rich region that was found to interact with FK506 binding proteins (FKBP; Sinkins et al., 

2004) and Homer (Yuan et al., 2003).  

Mutations within the highly conserved pore-region result in dominant-negative monomers 

that suppress the function of homo- and heteromeric channels (Hofmann et al., 2002). 

Furthermore, it was demonstrated that the N-glycosylation pattern can determine the 

channel’s constitutive activity. TRPC3 is a highly constitutive active channel and 

monoglycosylated in the first extracellular loop. By conversion into the TRPC6-like dually 

glycosylated form it becomes as tightly regulated by PLC-coupled receptors as TRPC6 and 

vice versa (Dietrich et al., 2003).  

1.3.2 TRPC-interacting proteins 

Drosophila TRP and other components of the fruitfly phototransduction cascade are 

clustered in a transducisome (reviewed by Montell, 2004), a macromolecular complex 

assembled by the scaffolding protein INAD ( UUi UUnactivation UUn UUo UUa UUfterpotential UUDUU; Shieh & Zhu, 

1996). Analogously, TRPCs are suggested to be organized within specific CaPP

2+
PP signalling 

complexes that facilitate their physical and/or functional coupling with accessory proteins 

participating in Ca PP

2+
PP signalling and also with proteins involved in vesicle trafficking, 

cytoskeletal interaction, and scaffolding (Ambudkar & Ong, 2007). For instance, some 

TRPCs have been shown to be associated with caveolae (Lockwich et al., 2000; Lockwich et 

al., 2001; Torihashi et al., 2002). These are detergent-insoluble, glycosphingolipid- and 

cholesterol-enriched membrane domains (so-called lipid rafts) that are assembled by the 

cholesterol-binding protein caveolin (Brazer et al., 2003). Several TRPC-associated proteins 

have been identified which might be involved in regulating channel function, stability, and 

cellular localization (Ambudkar & Ong, 2007). According to their proposed function as 

structural or regulatory proteins they are summarized in Table 1. 
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Table 1: TRPC-interacting proteins. 

TRPC1 TRPC2 TRPC3 TRPC4 TRPC5 TRPC6 TRPC7 
CaM CaM CaM CaM CaM CaM CaM 
TrkR  TrkR   TrkR  
GαBBq/11BB  GαBBq/11BB   GαBBq/11BB  
IPBB3BBR IPBB3BBR IPBB3BBR IPBB3BBR IPBB3BBR IPBB3BBR IPBB3BBR 
PLCß PLCß PLCß PLCß PLCß PLCß PLCß 
PMCA  PMCA PMCA PMCA PMCA  
SERCA  SERCA   SERCA  
STIM1 STIM1  STIM1 STIM1PP

1
PP   

Caveolin  Caveolin Caveolin Caveolin  
Enkurin Enkurin   Enkurin   
FKBP52 PP

2
PP
  FKBP12 PP

P

2 FKBP52 PP

2
PP FKBP52 PP

2
PP FKBP12 PP

2
PP FKBP12 PP

2
PP 

Homer1/2/3PP Homer 1 Homer 1 Homer 3PP

3
PP
 Homer 1/3PP

3
PP
   

MxA MxA MxA MxA MxA MxA MxA 
   NHERF NHERF   
  Orai1PP

4
PP
   Orai1PP

4
PP
  

 PLCγ PLCγ  PLCγ PLCγ  
RhoA    RhoA RhoA  
SNARES  SNARES  SNARES   
   ZO-1 ZO-1   

Only proteins common to at least two TRPCs are listed. Those involved in CaPP

2+
PP signalling are shown in 

the top half and those participating in scaffolding and trafficking in the bottom half of the table (adapted 
from Ambudkar & Ong, 2007; see also references therein). PP

1 
PPYuan et al., 2007; PP

2 
PPSinkins et al., 2004; PP

 

3 
PPYuan et al., 2003; PP

4 
PPLiao et al., 2007.  

 

1.3.3 Activation mechanisms 

All TRPCs can be activated by receptor stimulation and subsequent PLC activation 

(Ambudkar et al., 2007; Yuan et al., 2007), but available data is controversial whether and 

under which conditions they act as SOCs. None of the TRPCs shows the high selectivity for 

Ca PP

2+
PP over Na PP

+
PP, low single-channel conductance and pharmacological enhancement by 

1-5 µM 2-APB typical for the long sought after and most prominent store-operated CRAC 

channel (Clapham, 2003). While SOCs are ubiquitously expressed and have diverse 

characteristics in different cell types (Ambudkar et al., 2007), it is unlikely that they are 

formed by a single channel, thus some might indeed be constituted by TRPCs. Many studies 

investigating the activation mode of TRPC channels were therefore performed, resulting in 

an abundance of conflicting reports. For instance, TRPC3 has been reported to be solely 

receptor-operated by some groups (Zhu et al., 1998; Ma et al., 2000; McKay et al., 2000) but 

also to be store-operated in other laboratories (Boulay et al., 1999; Kiselyov et al., 2000). 

Similarly, different activation mechanisms have also been reported for TRPC4. Native 

TRPC4 proteins have been suggested to mediate store-operated Ca PP

2+
PP influx (Freichel et al., 

2001; Torihashi et al., 2002) and Philipp et al., 2000, observed that overexpressed TRPC4 

channels responded to store depletion. But later work could not confirm these data and 

showed receptor-dependent activation of heterologously expressed TRPC4 channels 

(Schaefer et al., 2000; Schaefer et al., 2002). Despite intensive work, the final channel 

stimulating step following G-protein activation has not been elucidated. It might be a so far 
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unknown PLC-dependent mechanism or a combination of messengers (Clapham et al., 

2001). Finally, basal activity of TRPC4 without stimulation has also been reported (McKay et 

al., 2000).  

Such discrepancies (Trebak et al., 2002) could stem from the different expression systems 

that might lack certain regulatory or auxiliary proteins necessary for complex formation and 

specific gating of ectopically expressed TRPCs. Observations could be further confounded 

by endogenous SOCs (Ambudkar et al., 2007), channel heteromultimerization (Poteser et al., 

2006), different channel expression levels (Vazquez et al., 2003), and species-dependent 

differences in the regulation of channel orthologs (Okada et al., 1999; Riccio et al., 2002).  

Despite intensive effort, a general mechanism of TRPC channel activation by store depletion 

has not been unravelled. Recently, several suggestions were made taking into account the 

identification of STIM1 and Orai1 as the IBBCRACBB-mediating proteins (see Chapter 1.1.2). A new 

molecular definition of “store operation” was suggested in which SOCs are plasma 

membrane channels that are regulated by rearrangement of the ER Ca PP

2+
PP-content sensor 

STIM1 (Yuan et al., 2007). By these criteria, TRPC1, -4, and -5 function as SOCs as they are 

directly activated by STIM1. TRPC3 and -6 can also function as SOCs due to STIM1-

dependent heteromultimerization of TRPC3 with TRPC1 and TRPC6 with TRPC4 (Huang et 

al., 2006; Yuan et al., 2007). The underlying mechanism of STIM1-dependent TRPC gating 

still remains to be elucidated. Another group has demonstrated that overexpressed TRPC3 

and -6 become store-sensitive by coexpression of any of the three existing Orai isoforms 

(Orai1-3). A novel activation model was deduced from this observation wherein SOCs are 

composed of TRPC pore-forming subunits and Orai regulatory ß-subunits. Orai would relay 

the store depletion signal from STIM1 to TRPC (Liao et al., 2007). A third candidate that was 

reported to be involved in TRPC store-dependent activation is the scaffolding protein Homer. 
It mediates the physical interaction of TRPC1 with the IP BB3BBR in HEK293 cells when the stores 

are replete. Depletion disrupts this association and the released channel mediates Ca PP

2+
PP influx 

to refill the stores (Yuan et al., 2003). This regulation mechanism could be restricted to 

certain cell types since contrary observations were reported for endothelial cells and 

platelets. In these cells, TRPC1-dependent store-operated Ca PP

2+
PP influx required channel 

association with the IP BB3BBR (Mehta et al., 2003; Rosado et al., 2005). Besides its involvement 

in TRPC1 gating by the IPBB3BBR, Homer 1 also seems to participate in receptor-mediated 

TRPC3 translocation to the PM and subsequent channel retrieval upon termination of the 

stimulation (Kim et al., 2006a; Worley et al., 2007).  

It is conceivable that all the proposed activation mechanisms exist in vivo and they might 

even be integrated in the same cell type. Further studies are required to determine their 

relation to each other.  
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1.3.4 TRPC subfamilies 

Based on amino acid sequence homology and functional similarities, TRPCs can be 

subclassified into four groups (Clapham et al., 2001; Montell, 2001). Being quite unique 

within the TRPC family, TRPC1 and TRPC2 each constitute a subfamily by themselves while 

TRPC4 and -5 are merged just as TRPC3, -6, and -7 (Fig. 7).  

 
 
 
 
 
 
 
 
 
 
Figure 7: Phylogenetic tree of the TRPC 
subfamily (adapted from Clapham et al., 2001) 
The branch length symbolizes the evolutionary 
distance and is graded in point accepted mutation 
units (PAM, mean number of mutations per 100 
residues). 

 
Heteromeric interactions within these subfamilies have been shown as well as coassembly of 

TRPC1 with either TRPC4/5- or TRPC3/6/7-subfamily members (Strubing et al., 2001; 

Hofmann et al., 2002). It was long thought that cross-association can not occur between the 

TRPC4/5 and TRPC3/6/7 subgroups, but recently an endogenous redox-sensitive TRPC3/4 

heteromer has been found in porcine aortic endothelial cells (Poteser et al., 2006) and 

STIM1-dependent TRPC4/6 heteromerization has been reported in an overexpression 

system (Yuan et al., 2007). Heteromers can have distinct biophysical properties compared to 

the respective monomeric channels (Lintschinger et al., 2000; Strubing et al., 2001; Liu et al., 

2005). This fact together with the expression of different TRPCs in a single cell type 

complicates the characterization of TRPC in vivo functions (Pedersen et al., 2005). 

Nevertheless, several patho- and physiological functions have been suggested for the seven 

TRPCs (summarized below) but definite proof of concept is lacking in most cases. Given 

their broad expression and multiplicity of activation mechanisms, the involvement of TRPC 

channels in essential physiological processes and therefore pathophysiology is most likely. 

Hence, they are attracting growing attention as potential drug targets (Li et al., 2003; Inoue et 

al., 2006; Hsu et al., 2007; Nilius, 2007; Okuhara et al., 2007; Kwan et al., 2007; Mukerji et 

al., 2007; Dietrich et al., 2007a). 

 

TRPC1 subfamily 

Functional investigation of the broadly expressed (Beech et al., 2003 and references therein) 

homomeric TRPC1 has been hampered by absent plasma membrane targeting of the 

ectopic protein in cell lines. Depending on the overexpression system used, reports range 
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from lack of robust TRPC1 signals (Strubing et al., 2001) due to retention in intracellular 

membranes (Wang et al., 1999) to detailed description of channel properties in Spodoptera 

frugiperda sf9 cells (Sinkins et al., 1998). Possible explanations are the absence of auxiliary 

subunits or interacting proteins in some overexpression systems as plasma membrane 

expression of the TRPC1 protein has been shown to depend on interaction with other 

proteins, e.g. TRPCs (Hofmann et al., 2002), caveolin-1 (Brazer et al., 2003), and RhoA 

(Mehta et al., 2003). Also it is not certain whether homo- or heteromeric expressed or even 

native channels, which could be stimulated by TRPC1, are measured in sf9 cells (Beech et 

al., 2003). TRPC1 might not be a pore-forming subunit at all, it could as well function as 

regulator of other pore-forming channels (Dietrich et al., 2007b) and the existence of a native 

TRPC1 homomer has not been unequivocally proven so far (Ambudkar et al., 2007).  

Whereas several reports have described TRPC1 to be a store-, receptor-, IPBB3BBR-, and/or 

stretch-activated channel (Ramsey et al., 2006), recent findings in vascular smooth muscle 

cells of TRPC1 PP

-/-
PP mice imply that the channel is not an essential component of store- and 

stretch-operated channels in these cells (Dietrich et al., 2007b). However, this study does not 

exclude TRPC1 contribution to such channels in other tissues.  

The native protein could be involved in neuronal plasticity, since it is required for the 

excitatory postsynaptic conductance in Purkinje cells (Kim et al., 2003). TRPC1 also interacts 

with TRPP2 (Tsiokas et al., 1999), a distantly related TRP protein involved in development of 

polycystic kidney disease. Moreover, the channel is up-regulated in neointimal hyperplasia 

(Bergdahl et al., 2004; Kumar et al., 2006) and cardiac hypertrophy (Ohba et al., 2007), 

interacts with a transcription factor important for myocyte development (Ma et al., 2003) and 

was proposed to play a role in Duchenne muscular dystrophy (Vandebrouck et al., 2007). In 

conclusion, TRPC1 may serve as developmental regulator of smooth muscle cells (SMC) 

and some of its functional roles might not be easily compensated by related TRPCs. It could 

be engaged in further patho- and physiological processes but its unique physiological 

functions are not known yet (Dietrich et al., 2007b).  

 

TRPC2 subfamily 

TRPC2 is a pseudogene in humans, old world monkeys and apes (Wes et al., 1995; Vannier 

et al., 1999; Liman & Innan, 2003), but functionally expressed in other mammalian species 

and essential for pheromone sensation in rodents. Male mice lacking this channel do not 

show typical male-male aggressive behaviour and court both females and males (Stowers et 

al., 2002). Antibodies directed to an extracellular domain of TRPC2 inhibit the acrosomal 

reaction pointing towards its importance in fertilization (Jungnickel et al., 2001). However, 

TRPC2 PP

-/-
PP mice show no defects in reproduction (Stowers et al., 2002). TRPC2 is activated by 

DAG (Lucas et al., 2003) and does not seem to heteromultimerize with other TRPC channels 

(Montell, 2005). 



 Introduction 16 

 

TRPC3/6/7 subfamily 

These channels share 70–80% amino acid identity and they can be directly activated by the 

PLC product DAG (Hofmann et al., 1999; Okada et al., 1999; Trebak et al., 2003). TRPC3 

and -6 activities are regulated by N-glycosylation (Dietrich et al., 2003) and phosphorylation 

through the non-receptor tyrosine kinases Src and Fyn (Hisatsune et al., 2004; Vazquez et 

al., 2004a).  

 

TRPC3 is highly expressed in human brain, smooth and cardiac muscle cells (Dietrich et al., 

2006 and references therein). It seems to be involved in axon growth guidance (Li et al., 

2005), synaptic plasticity around the time of birth (Li et al., 1999) and cardiac CaPP

2+
PP 

homeostasis. In cardiomyocytes, abnormal accumulation of intracellular Na PP

+
PP levels due to 

TRPC3 has been shown to reverse the Na PP

+
PP/Ca PP

2+
PP exchanger (NCX1) transport mode (Eder et 

al., 2007). This reverse mode transports Ca PP

2+
PP into the cell and might be involved in 

pathophysiological processes, e.g. heart failure and ischemia (Okuhara et al., 2007). As 

mentioned above, TRPC3 was also found to coassemble with TRPC4 into a redox-sensitive 

channel (Poteser et al., 2006). These heteromers could be activated by oxidative stress 

under pathological conditions. TRPC3 antagonists might be cytoprotective by preventing the 

uncontrolled Ca PP

2+
PP influx and subsequent cell damage (Montell, 2001; Okuhara et al., 2007). 

Furthermore, phosphorylation by protein kinase G (PKG) has been reported to inactivate 

TRPC3. This might provide an endogenous negative feedback regulation mediated by the 

nitric oxide/cyclic guanosine monophosphate/PKG pathway to protect vascular endothelial 

cells from excessive Ca PP

2+
PP influx (Kwan et al., 2004).  

 

TRPC6 is present in brain, platelets, vascular and airway SMCs (Inoue et al., 2001; Yu et al., 

2003; Pedersen et al., 2005; Dietrich et al., 2006 and references therein). This channel was 

shown to be an essential part of the α BB1BB-adrenoceptor-stimulated cation channel in rabbit 

portal vein myocytes (Inoue et al., 2001). TRPC6 stimulation by agonists or increasing 

intravascular pressure (Welsh et al., 2002) is postulated to depolarize the membrane, 

thereby activating L-type voltage-gated Ca PP

2+
PP channels that finally mediate smooth muscle 

contraction (Large, 2002; Soboloff et al., 2005; Estacion et al., 2006) and reflex 

vasoconstriction (Bayliss effect; Welsh et al., 2002). On the contrary, agonist-induced 

bronchoconstriction mainly depends on Ca PP

2+ 
PPinflux mediated by voltage-independent 

channels (such as TRPC6), hence, L-type Ca PP

2+ 
PPchannel blockers are not effective, e.g. in 

asthma and chronic obstructive pulmonary disease (COPD; Gudermann et al., 2004). 

Furthermore, TRPC6 is found in leukocytes probably mediating inflammatory responses in 

asthma and COPD (Li et al., 2004). Idiopathic pulmonary arterial hypertension (IPAH) is a 

progressive disease that can be life-shortening by resulting in right heart failure (Dietrich et 

al., 2006). A major cause for the elevated pulmonary vascular resistance in these patients is 
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excessive proliferation of pulmonary artery SMCs (PASMCs; Dietrich et al., 2005a). TRPC3 

and -6 expression is significantly increased in these cells (Yu et al., 2004), and treatment 

with TRPC6 small-interfering RNA (siRNA) markedly reduced hyperproliferation (Kunichika et 

al., 2004). In summary, TRPC6 inhibition seems to be an interesting therapeutic strategy for 

the treatment of IPAH and other chronic respiratory diseases. But TRPC6 also has 

physiological functions in airway SMCs that should rather not be blocked. It is essential for 

acute hypoxic pulmonary vasoconstriction (HPV), thus maintaining proper gas exchange 

under acute hypoxic conditions by directing blood flow from poorly to well ventilated areas 

(Weissmann et al., 2006). Disturbances in HPV as occurring in the adult respiratory distress 

syndrome, pneumonia, and liver failure, can cause life-threatening arterial hypoxemia 

(Dietrich et al., 2006 and references therein).  
Contrary to the proposed physiological functions of the channel described above, TRPC6 

deficient mice have an unexpected and surprising phenotype. These animals showed airway 

smooth muscle hyperreactivity in response to bronchoconstrictors, an elevated mean arterial 

blood pressure, and exaggerated reflex vasoconstriction. Also the basal and agonist-induced 

cation entry in SMC of TRPC6PP

-/- 
PPmice is higher (Freichel et al., 2005 and references therein; 

Dietrich et al., 2005b). Partly, this can be explained by an increased expression of the closely 

related TRPC3 channel (Dietrich et al., 2005b). It has a higher basal activity, is less tightly 

regulated by vasoconstrictors and has consequently overcompensated TRPC6 knock-out, 

demonstrating that both channels are not functionally redundant.  

The opposite approach revealed a role for TRPC6 in the pathogenesis of cardiac 

hypertrophy. Cardiac-specific TRPC6 overexpression in transgenic mice leads to an 

increased Ca PP

2+
PP influx that couples via calcineurin to the stimulation of NFAT (nuclear factor of 

activated T cells). Pathological heart remodelling is accelerated and these mice have a 

shortened life expectancy (Kuwahara et al., 2006). Whereas in vivo TRPC6 upregulation in 

cardiomyocytes participates in hypertrophy, it seems to have protective antifibrotic functions 

in cardiac fibroblasts in vitro (Nishida et al., 2007). Further in vivo studies are needed to 

estimate the therapeutic value of TRPC6 modulation and the involvement of TRPC3 

(Nakayama et al., 2006) and TRPC3/6 heteromers (Dietrich et al., 2007) in the pathogenesis 

of heart failure.  

Finally, convincing evidence for TRPC6 involvement in hereditary FSGS, a significant cause 

of end-stage renal disease, has been presented. Kidneys ultrafiltrate the plasma with their 

glomeruli and the glomerular filter is composed of a fenestrated capillary endothelium, the 

basement membrane and podocytes connected by the slit diaphragm (Gudermann, 2005). 

Structural damage of the glomerular filter results in proteinuria. TRPC6 PP

 
PP gain-of-function 

mutants found in FSGS patients lead to increased Ca PP

2+ 
PPand Na PP

+ 
PPinflux into podocyte foot 

processes (Winn et al., 2005; Reiser et al., 2005), but it is not known whether and how this is 

disease-causing. Recently, it was also demonstrated that TRPC6 expression is up-regulated 
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in complement-treated podocytes in vitro leading to actin cytoskeleton rearrangement, 

whereas channel overexpression in vivo leads to proteinuria in mice (Moller et al., 2007). 

 

TRPC7 is expressed in heart, lung and eyes and lower transcript levels are found in brain, 

spleen and testis (Dietrich et al., 2006 and references therein). The channel is constitutively 

active although it has two predicted glycosylation sites like TRPC6 (Okada et al., 1999). Its 

physiological function remains obscure (Okuhara et al., 2007). 

 

TRPC4/5 subfamily 

These channels share 64% identity and are most closely related to TRPC1 (persuading 

some groups to classify TRPC1 within this subfamily; Ramsey et al., 2006). A unique feature 

of this subfamily is the potentiation by micromolecular concentrations of the lanthanide 

cations gadolinium (Gd PP

3+
PP) PP

 
PPand PP

 
PPlanthanum (La PP

3+
PP) after GBBq/11 BB-coupled receptor mediated 

activation (Schaefer et al., 2000; Strubing et al., 2001). In contrast to TRPC2 and the 

TRPC3/6/7 subgroup, TRPC4 and -5 are not directly activated by the subsequently formed 

PIPBB2BB hydrolysis product DAG (Venkatachalam et al., 2003). 

Recently, lysophosphatidylcholine (LPC; Flemming et al., 2006) and sphingosine 

1-phosphate (S1P; Xu et al., 2006) were identified as endogenous TRPC5 activators. 

S-nitrosylation, e.g. by nitric oxide (NO), has been shown to activate both TRPC4 and 

TRPC5 (Yoshida et al., 2006).  

 

TRPC4 is widely expressed and also found in endothelial and smooth muscle cells (Freichel 

et al., 2001; Beech et al., 2004). The channel was the first TRP gene to be knocked out in 

mice and these animals provided insight into its biological roles. TRPC4 PP

-/-
PP mice are viable 

and reach maturation (Montell, 2001), but SOC-mediated Ca PP

2+
PP entry into endothelial cells 

(EC) is markedly reduced resulting in decreased endothelium-dependent vasorelaxation 

(Freichel et al., 2001). Further studies were performed with thrombin, an important 

inflammation mediator that is involved in the pathogenesis of vascular injury. In lungs, 

thrombin increases vascular permeability and thus tissue water content. Lung EC of TRPC4 PP

-/-
PP 

mice lack thrombin-induced actin stress fiber formation, cell retraction is impaired, and lung 

microvascular permeability subsequently reduced by about 50% (Tiruppathi et al., 2002). 

TRPC4 is furthermore expressed in different cells within the central nervous system and 

seems to be involved in neurotransmitter signalling. Release of γ-aminobutyric acid (GABA) 

following application of 5-hydroxytryptamine (5-HT, serotonin) is drastically reduced in 

thalamic interneurones from TRPC4 PP

-/-
PP mice, whereas GABA release upon stimulation of 

metabotropic glutamate receptors is not changed (Munsch et al., 2003). The thalamus 

regulates sleep and wakefulness and TRPC4 could participate in processing of visual 

information depending on the sleep/wake cycle (Pape et al., 2004). TRPC4 is also found in 
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pancreatic ß-islets and was suggested to be involved in insulin secretion (Qian et al., 2002). 

However, glucose-tolerance test results were similar in wild-type and TRPC4-deficient mice 

(Freichel et al., 2004). Finally, the channel could be involved in regulating the motility of the 

gastrointestinal tract by modulating the pacemaker activity of interstitial cells of Cajal (ICC), 

(Torihashi et al., 2002).  

 

TTTRPC5 TT is highly enriched in brain but also found peripheral, e.g. in SMC (Xu et al., 2005; 

reviewed in Dietrich et al., 2006). Interestingly, the gene is located on a region of the human 

X chromosome associated with non-syndromic mental retardation (Sossey-Alaoui et al., 

1999), and regulation of neurite outgrowth and growth cone morphology by TRPC5 

homomers has been demonstrated in rat hippocampal neurons. Functional channel 

suppression by transfection of a dominant-negative mutant led to abnormally prolonged 

neurites, and overexpression resulted in neurite outgrowth inhibition (Greka et al., 2003). 

Phosphatidylinositol 4-phosphate 5-kinase (PIP(5)Kα)-dependent channel insertion from 

vesicles into the plasma membrane was further reported to be crucial for neurite length 

regulation by TRPC5 (Bezzerides et al., 2004).  

TRPC5 may have multiple functions within the cardiovascular system. For example, SMC 

motility is crucial in physiological adaptive processes like wound healing but also involved in 

inflammatory occlusive diseases like atherosclerosis (Inoue et al., 2006). Cell motility of 

vascular SMC was evoked by the TRPC5 activator S1P and inhibited by a dominant-negative 

TRPC5 mutant or an anti-TRPC5 antibody (Xu et al., 2006). Furthermore, in failing hearts 

from patients with end-stage idiopathic dilated cardiomyopathy TRPC5 was found to be 

selectively upregulated, whereas the expression levels of TRPC1, -4 and -6 were unchanged 

and TRPC3 was not detectable (Bush et al., 2006). As Ca PP

2+
PP-ATPase SERCA2 is 

downregulated in cardiac hypertrophy, and siRNA-mediated SERCA2 downregulation in 

neonatal rat cardiac myocytes led to a compensatory upregulation of TRPC5, TRPC4 and 

NCX expression (Seth et al., 2004), an involvement of TRPC5 (and TRPC4) in cardiac 

hypertrophy is conceivable (Inoue et al., 2006). Increased TRPC5 expression and channel-

mediated CaPP

2+
PP influx in monocytes of hypertensive patients was reported as well (Liu et al., 

2006).  
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1.4 Aims 

The first aim of the present work was to identify new pharmacological tools that may be used 

to gain a better understanding of TRPC channel function in cells and beyond. There are 

many open questions regarding the native composition and activation mechanisms, 

physiological functions, and roles in pathophysiology and disease of TRPC proteins. In situ 

identification of native TRPC channels is complicated by their wide and partially overlapping 

distribution, potential heteromultimerization, similar electrophysiological properties and a 

paucity of tool compounds to unequivocally trace these channels (Moran et al., 2004). 

Compensatory effects have been observed in studies with transgenic mice (Dietrich et al., 

2005b), dominant negative channel subunits or when genes were silenced with small 

interfering RNA, but they are not expected to be seen when channels are instantaneously 

blocked with a selective tool compound (Beech et al., 2003). The fact that known organic 

inhibitors and inorganic blockers are not potent and specific enough herefore (Li et al., 2004), 

motivated us to search for further TRPC blockers. In preliminary in-house experiments the 

steroide norgestimate had been identified as novel TRPC6 channel inhibitor. Therefore, the 

present study was designed to test its applicability as selective TRPC channel blocker by 

evaluating its sensitivity and selectivity towards the TRPC4/5 and TRPC3/6/7 subfamilies in 

heterologous expression systems.CC As norgestimate is a synthetic progestin and the precursor 

of levonorgestrel, it should be further tested whether levonorgestrel itself and the natural 

hormone progesterone are as well active on TRPC channels. CCMoreover the effects of 

norgestimate should be validated in either cell lines or primary cells expressing endogenous 

TRPC6-containing channel complexes. Finally, we envisaged to use norgestimate for the 

study of native TRPC channel function in tissue preparations such as isolated aortic or 

tracheal rings. 

The second part of this study was directed towards the identification of novel regulators of 

native TRPC4 channel complexes. Dysregulation of endothelial calcium signaling is involved 

in many cardiovascular pathologies, such as atherosclerosis, coronary syndrome, heart and 

renal failure, hypertension and thrombosis (Kwan et al., 2007). Evidence from TRPC4-

deficient mice suggests its necessity for agonist-induced endothelium-dependent vascular 

relaxation and involvement in regulating endothelial barrier function (Freichel et al., 2001). 

Therefore, pharmacological modulation of TRPC4 may be a promising approach to treat the 

aforementioned pathophysiological conditions. Unfortunately, drug discovery for TRPC4 is 

hampered by difficulties to faithfully reconstitute native currents in heterologous expression 

systems. The reported gaps and discrepancies (Freichel et al., 2001; Schaefer et al., 2002) 

could originate from different channel heteromultimerization in vivo and in vitro, coupling to 

diverse cell type-specific signalling cascades or channel interaction with unknown accessory 

proteins. To search for such novel TRPC4-binding proteins that might modify channel 
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biophysics, activation and function, we wanted to perform a yeast two-hybrid (Y2H) screen of 

a human aorta cDNA library with the mTRPC4α-C-terminus as a bait. The physical 

interaction of identified preys should be biochemically validated with GST pulldown and co-

immunoprecipitation studies. Furthermore, the specificity of this interaction should be tested 

with regard to related channel proteins. If a specific interaction is detected, we wanted to 

investigate the functional consequences of this coupling on channel properties, activation, 

and if possible on in vivo function using different approaches including protein 

overexpression and knock-down experiments.  
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2 Materials and methods 

2.1 Materials 

2.1.1 Chemicals, enzymes, consumables 

Product Supplier 
Acetic acid Riedel-de Häen, Seelze, Germany 
Acetylcholine chloride Sigma, Munich, Germany 
Adenine Q-BIOgene, Carlsbad, USA 
Agarose BioRad, Munich, Germany 
Aluminium chloride (AlClBB3BB) Sigma, Munich, Germany 
2-Aminoethoxydiphenyl borate Sigma, Munich, Germany 
Ampicilline sodium salt Sigma, Munich, Germany 
[ArgPP

8
PP]-vasopressin acetate Sigma, Munich, Germany 

Bacto agar BD Biosciences, Heidelberg, Germany 
Bacto tryptone BD Biosciences, Heidelberg, Germany 
Bacto yeast extract BD Biosciences, Heidelberg, Germany 
BioTrace NT Pall, Dreieich, Germany 
Blasticidine S HCl Invitrogen, Karlsruhe, Germany 
Borosilicate glass capillaries Hilgenberg, Malsfeld, Germany 
Bovine serum albumine (BSA), essentially Sigma, Munich, Germany 

fatty acid-free  
Calcium chloride Sigma, Munich, Germany 
TTCalf intestine alkaline phosphatase (CIAP) TT GIBCO BRL, Gaithersburg, USA  
TTCarbacholTT Sigma, Munich, Germany 
TTCaesium hydroxide (CsOH)TT Sigma, Munich, Germany 
Cell scraper Greiner, Frickenhausen, Germany 
Complete (protease inhibitor mix) Roche, Mannheim, Germany 
Complete supplement mixture (CSM) Q-BIOgene, Carlsbad, USA 
Coomassie brilliant blue R-250 BioRad, Munich, Germany 
Cova-PIP specificity plates Echelon, Salt Lake City, USA 
Cryogenic vials Nalgene, Rochester, USA  
CsBB4BB-BAPTA Invitrogen, Karlsruhe, Germany 
CSM -Trp, -Leu, -Trp/Leu/His,  Q-BIOgene, Carlsbad, USA 

-Trp/Leu/His/Ade  
Deoxyribonucleic acid (from salmon sperm) Sigma, Munich, Germany 
Difco yeast nitrogen base w/o amino acids BD Biosciences, Heidelberg, Germany 
Dimethylformamide (DMF) Sigma, Munich, Germany 
Dimethyl sulphoxide (DMSO) Sigma, Munich, Germany 
Dithiotreitol (DTT) Sigma, Munich, Germany  
Deoxynucleotide (dNTP) mix  Sigma, Munich, Germany 
Doxycycline BD Biosciences, Heidelberg, Germany 
Dulbecco’s modified eagle medium (DMEM) Invitrogen, Karlsruhe, Germany 
DMEM/Nutrient F12 (with glutaMAX I) Invitrogen, Karlsruhe, Germany 
Dulbeccos’s phosphate buffered saline w/o CaPP

2+
PP, 

Mg PP

2+ 
PP(D-PBS) 

Invitrogen, Karlsruhe, Germany 
 

EDTA Merck, Darmstadt, Germany 
EGTA Sigma, Munich, Germany 
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Electroporation cuvettes BioRad, Munich, Germany 
Enhancer solution (for DELFIA) Perkin Elmer, Waltham, USA 
Ethanol Merck, Darmstadt, Germany 
EZ-link sulfo NHS-LC biotin Pierce, Rockford, USA 
EZ load molecular ruler (100 bp, 500 bp, 1 kb) BioRad, Munich, Germany 
Falcon tubes (15/50 mL) BD, Heidelberg, Germany 
Fetal bovine serum (FBS) PAA, Pasching, Austria 
Fetal bovine serum (FBS) Biochrom, Berlin, Germany 
Fluo-4, acetoxy methyl ester (AM) Invitrogen, Karlsruhe, Germany 
Fura-2, acetoxy methyl ester (AM) Invitrogen, Karlsruhe, Germany 
Gateway LR clonase enzyme mix Invitrogen, Karlsruhe, Germany 
Geneticine Invitrogen, Karlsruhe, Germany 
Glass cover slips Menzel, Braunschweig, Germany 
Glucose Sigma, Munich, Germany 
Glutamine (100 mM) Invitrogen, Karlsruhe, Germany 
Glutathione sepharose 4 fast flow Amersham, Munich, Germany 
Glycerol Sigma, Munich, Germany 
Glycine BioRad, Munich, Germany 
H-Abz-Cys-Ala-Pro-Ala-Cys-Ntr-NH BB2BB JPT Peptide Technologies, Berlin, Germany 
HEPES Sigma, Munich, Germany 
Hydrochloric acid (HCl) Riedel-de Häen, Seelze, Germany 
Hygromycine B Invitrogen, Karlsruhe, Germany 
ISCOVE medium Biochrom, Berlin, Germany 
Isopropyl ß-D thiogalactoside (IPTG) Roche, Mannheim, Germany 
Kanamycine Sigma, Munich, Germany 
Lanthanum chloride heptahydrate Sigma, Munich, Germany 
L-Glutathione, reduced Sigma, Munich, Germany 
Lipofectamine 2000 Invitrogen, Karlsruhe, Germany 
LL5-α (Multi PIP Grip) Echelon, Salt Lake City, USA 
L-NAME Sigma, Munich, Germany 
Lumi-LightPLUS Western blotting substrate Roche, Mannheim, Germany 
Lysozyme Sigma, Munich, Germany 
Magnesium chloride (MgCl BB2BB) Merck, Darmstadt, Germany 
Magnesium sulphate (MgSO BB4BB) Merck, Darmstadt, Germany 
ß-Mercaptoethanol (ß-ME) Sigma, Munich, Germany 
Methanol  Merck, Darmstadt, Germany 
Minimal essential medium (MEM) sodium  Invitrogen, Karlsruhe, Germany 

pyruvate  
MOPS SDS running buffer (20x) Invitrogen, Karlsruhe, Germany 
Norgestimate ChemPacific Corporation, Baltimore, USA 
Nucleic acid sample loading buffer (5x) BioRad, Munich, Germany 
NuPAGE LDS sample buffer (4x) Invitrogen, Karlsruhe, Germany 
NuPAGE Novex 4-12% Bis-Tris gels Invitrogen, Karlsruhe, Germany 
NuPAGE transfer buffer (20x) Invitrogen, Karlsruhe, Germany 
Odyssey blocking buffer LiCor, Lincoln, USA 
Odyssey protein molecular weight marker LiCor, Lincoln, USA 
Opti-MEM Invitrogen, Karlsruhe, Germany 
Paraformaldehyde Sigma, Munich, Germany 
PCR strips Eppendorf, Hamburg, Germany 
Permafluor mounting medium Invitrogen, Karlsruhe, Germany 
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Pfu and reaction buffer Stratagene, La Jolla, USA 
Phenol/chloroform/isoamylalcolhol (25:24:1) Roth, Karlsruhe, Germany 
Phenylephrine hydrochloride Sigma; Munich, Germany 
PIP strips Echelon, Salt Lake City, USA 
Pipette tips Eppendorf, Hamburg, Germany 
Pipette tips, aerosol-resistant (ART) MßP, San Diego, USA 
Poly-L-lysine (0.01%) Sigma, Munich, Germany 
Ponceau S solution Sigma, Munich, Germany 
Potassium chloride (KCl), dihydrogen Sigma, Munich, Germany 

phosphate (KHBB2BBPO BB4BB)  
Progesterone Sigma. Munich, Germany 
Protein A sepharose, Protein G sepharose Amersham, Munich, Germany 
Reaction vials (0.5/1.5/2 mL) Eppendorf, Hamburg, Germany 
Reagent packs Cambrex, East Rutherford, USA 
S.O.C. medium Invitrogen, Karlsruhe, Germany 
Select peptone 140 Invitrogen, Karlsruhe, Germany 
Sensoplates Greiner, Frickenhausen, Germany 
Sodium chloride (NaCl), dodecyl sulphate Sigma, Munich, Germany 

(SDS), fluoride (NaF), bicarbonate (NaHCO BB3BB)  
Streptavidin sepharose Amersham, Munich, Germany 
SYBR safe DNA gel stain concentrate Invitrogen, Karlsruhe, Germany 
T4 DNA ligase and buffer Invitrogen, Karlsruhe, Germany 
TAE buffer (50x) Invitrogen, Karlsruhe, Germany 
Tissue culture flasks Greiner, Frickenhausen, Germany 
Tris buffer GIBCO BRL, Gaithersburg, USA 
Triton X-100 Sigma, Munich, Germany 
Trypsin Sigma, Munich, Germany 
Trypsin/EDTA (0.05%/0.02%) Biochrom, Berlin, Germany 
Tween 20 Sigma, Munich, Germany 
6-, 24-, 96-, 384-Well plates Greiner, Frickenhausen, Germany 
96-Well plates, poly-D-lysine coated BD Biosciences, Heidelberg, Germany 
X-gal Sigma, Munich, Germany 
Zeocin Invitrogen, Karlsruhe, Germany 
 

2.1.2 Kits 

Product Supplier 
ABI BigDye terminator cycle sequencing ready  Applied Biosystems, Darmstadt, Germany 

reaction kit  
BCA protein assay kit Pierce, Rockford, USA 
iBlot transfer stack Invitrogen, Karlsruhe, Germany 
Clonetics EGM-2 BulletKit Cambrex, East Rutherford, USA 
Clonetics EGM-2 MV BulletKit Cambrex, East Rutherford, USA 
Clonetics SmGM-2 BulletKit Cambrex, East Rutherford, USA 
Endofree plasmid maxi kit Qiagen, Hilden, Germany 
Qiafilter plasmid maxi and giga kit Qiagen, Hilden, Germany 
QIAprep spin miniprep kit Qiagen, Hilden, Germany 
QIAquick gel extraction kit Qiagen, Hilden, Germany 
Zero blunt TOPO PCR cloning kit Invitrogen, Karlsruhe, Germany 
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2.1.3 Antibodies 

Product Supplier 
Alexa Fluor 488 goat anti-rabbit  Invitrogen, Karlsruhe, Germany 
Alexa Fluor 546 goat anti-mouse Invitrogen, Karlsruhe, Germany 
Alexa Fluor 546 goat anti-rabbit Invitrogen, Karlsruhe, Germany 
Alexa Fluor 546 goat anti-rat Invitrogen, Karlsruhe, Germany 
Alexa Fluor 680 goat anti-rabbit Invitrogen, Karlsruhe, Germany 
Alexa Fluor 680 goat anti-rat  Invitrogen, Karlsruhe, Germany 
Alexa Fluor 680 rabbit anti-mouse Invitrogen, Karlsruhe, Germany 
goat anti-rabbit horseradish peroxidase Pierce, Rockford, USA 

(HRP)-conjugated  
goat anti-rabbit, Eu-N1 labelled Perkin Elmer, Waltham, USA 
mouse anti-GAPDH  Chemicon, Wiesbaden, Germany 
mouse anti-GFP  Roche, Mannheim, Germany 
mouse anti-ZO-1  Invitrogen, Karlsruhe, Germany 
rabbit anti-FLAG  Rockland, Gilbertsville, USA 
rabbit anti-GST  Sigma, Munich, Germany 
rabbit anti-GST, Eu-N1 labelled Perkin Elmer, Waltham, USA 
rabbit anti-SESTD1 #147/148, 0.18 mg/mL Eurogentec, Seraing, Belgium 
rabbit anti-ß-catenin  Cell Signaling, Danvers, USA 
rabbit anti-TRPC4  Alomone, Jerusalem, Israel 
rat anti-HA  Roche, Mannheim, Germany 
 

2.1.4 Bacterial strains 

Strain Supplier 
One shot BL21 star (DE3) chemically  Invitrogen, Karlsruhe, Germany 

competent E. coli  
One shot TOP10 chemically competent E. coli Invitrogen, Karlsruhe, Germany 
One shot TOP10 electrocompetent E. coli Invitrogen, Karlsruhe, Germany 
 

2.1.5 Yeast strains 

Strain Supplier 
Saccharomyces cerevisiae AH 109 Clontech, Mountain View, USA 
 

2.1.6 Cell lines and primary cells 

Cells Supplier 
A7r5  ATCC, Rockville, USA 
human AoSMC (primary cells)    Cambrex, East Rutherford, USA 
CASMC (primary cells) Cambrex, East Rutherford, USA 
HAEC (primary cells)  Cambrex, East Rutherford, USA 
HEK293 (QBI-HEK 293A)  Q-BIOgene, Morgan Irvine, USA 
HEK293 Flp-In T-Rex cell line Invitrogen, Karlsruhe, Germany 
HM1 (Peralta et al., 1988) 
HM1-C5Y HM1 cells stably transfected with mTRPC5- 
 YFP (see Chapter 2.4.2) 
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HMVEC-d (primary cells) Cambrex, East Rutherford, USA 
TRPC3/4/5/6 HEK293 FITR  generated in-house (using the parental  
 HEK 293 Flp-In T-Rex cell line) 
 

2.1.7 Primers 

All primers were bought from Operon (Cologne, Germany). 

Cloning primers  5´->3´sequence 
hTRPC1c_f_NotI GCGGCCGCTCTGCTGGTGGCAATGCTT 
hTRPC1c_r_PstI CTGCAGTTAATTTCTTGGATAAAACATAGC 
hTRPC6c_f1 GCGGCCGCTATGTTAATTGCCATGATCAACAGTTCATTC 
hTRPC6c_r1 GTCGACTTGGTTTCCTCTTGATTTGGTTCC 
mTRP4a1_f_EcoRI GAATTCATGTTAATTGCTATGATGAATAATTCTTACCAAC 
mTRP4a1_r_BamHI GGATCCTTATGAACTCGCCGCGTTGGCTGA 
mTRP4a2_f_EcoRI GAATTCGCGGACTCCGACGAGAAGAG 
mTRP4a2_r_BamHI GGATCCTCACAATCTTGTGGTCACATAATCTTC 
mTRP4a3_f_EcoRI GAATTCTTGAGAAGACATCACCAATAC 
mTRP4a3_r_BamHI GGATCCTTAGTTATCAGCAGCACGCCGCCCAA 
mTRP4a4_r_BamHI GGATCCTTATTCGGTTTTTGCCT 
mTRP4a5_r_BamHI GGATCCTTATTGCTTTAGTTCCT 
mTRP4longc_f1 GCGGCCGCTATGTTAATTGCTATGATGAATAATTCTTACCAAC 
mTRP4longc_r1 CTGCAGTCACAATCTTGTGGTCACATAATCTTCGTG 
mTRP5c_f1 GCGGCCGCTATGCTCATCGCCATGATGAACAACTCCTAC 
mTRP5c_r1 CTGCAGTTAGAGCCGAGTTGTAACTTGTTCTTCCTGTC 
SESTD1_f_BamHI GGATCCATGGAGGCCTCAGTAATATT 
SESTD1_f_SalI GTCGACCATGGAGGCCTCAGTAATATT 
SESTD1_f_XhoI AAAGCTCGAGTCATGGAGGCCTCAGTAATATTACC 
SESTD1_f1_BamHI GGATCCGAATGGAGGCCTCAGTAATATTACCCATT 
SESTD1_f2_BamHI GGATCCGAGAAAGGTCTGTGGATTTAAACT 
SESTD1_f3_BamHI GGATCCGACCAGCTGATGGAGCATCGAT 
SESTD1_r_BamHI CTAAGGATCCAAGCTCTCTGTGGTCACCATTTC 
SESTD1_r_XhoI CTCGAGTTAGCTCTCTGTGGTCACCAT 
SESTD1_r1_XhoI CTCGAGTTATTTCTCTTGCTGATTTCCTTTATCA 
SESTD1_r2_XhoI CTCGAGTTATGCTACATCTACGCACAACATCCCT 
SESTD1_r3_XhoI CTCGAGTTAGCTCTCTGTGGTCACCATTTCAGGA 
 

Sequencing primers 5´->3´sequence  
BGH_rev TAGAAGGCACAGTCGAGG 
GAL4-AD_for TACCACTACAATGGATG 
GAL4-AD_rev AGATGGTGCACGATGCACAG 
GAL4-BD_ISA_for TCATCGGAAGAGAGTAG 
GAL4-BD_rev TAAGAGTCACTTTAAAATTTGTAT 
GAL4-BD_ISA_rev GTCACTTTAAAATTTGTATAC 
M13_for GTAAAACGACGGCCAG 
M13_rev CAGGAAACAGCTATGAC 
pCMV_HA_for GATCCGGTACTAGAGGAACTGAAAAAC 
pEYFP_f_521 CAAATGGGCGGTAGGCGTG 
pGEX-4T-1_for GGGCTGGCAAGCCACGTTTGGTG 
pGEX-4T-1_rev CCGGGAGCTGCATGTGTCAGAGG 
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SESTD1_f_471 ACAGAAGATTTTGGTGGGAGT 
SESTD1_f_1071 AATGCTGGCGATGAGGAAGA 
SESTD1_f_1631 CGATGATGCTCAAGAAACGA 
SP6 ATTTAGGTGACACTATAG 
T7 TAATACGACTCACTATAGGG 
mTRP4l_int_for CTACAATACAGTCAGCCAACGC 
mTRP4l_int_rev ACCAGGGCGGAACCATTG 
mTRP5_int_for GAAACATCCAAGAAGAAGCCTC 
mTRP5_int_rev CTTGGCACGGTTCTGATGAG 
 

2.1.8 siRNA  

siRNA Supplier Catalogue no. 
siGENOME SMARTpool set of 4, 

siRNA duplexes, human SESTD1 
Dharmacon, Lafayette, USA 
 

D-018379 
 

siGENOME set of 4, 
human SESTD1, duplex 1  

Dharmacon, Lafayette, USA 
 

D-018379-01 
 

siGENOME set of 4, 
human SESTD1, duplex 2  

Dharmacon, Lafayette, USA 
 

D-018379-02 
 

siGENOME set of 4,  
human SESTD1, duplex 3 

Dharmacon, Lafayette, USA 
 

D-018379-03 
 

siGENOME set of 4, 
human SESTD1, duplex 4  

Dharmacon, Lafayette, USA 
 

D-018379-04 
 

siGLO red transfection indicator Dharmacon, Lafayette, USA D-001630-02-05 
 SilencerR negative control #2 Ambion, Austin, USA 4613 
 

2.1.9 Genetic constructs 

Standard molecular biological procedures (Sambrook et al., 1989) described in Section 2.2 

were applied to insert cDNA in vectors, thus constructing plasmids for heterologous 

expression in yeast, bacteria and mammalian cells. The deployed vectors contain a multiple 

cloning site (MCS) with recognition sequences for restriction endonucleases, replication 

origins (ori) and genes for selection in pro- and eukaryotic cells. The constructs that have 

been used in this work are listed in the appendix. 

The yeast two-hybrid screen bait was constructed by integrating the C-terminus of murine 

TRPC4α (NM_016984) into pGBKT7, leading to its fusion with the DNA binding domain of 

the transcription factor GAL4. Since TRPC channels are thought to consist of tetramers, a 

mutated GCN4-leucine zipper (Harbury et al., 1993; Zerangue et al., 2001) was inserted 

between the C-terminus and the GAL4-DNA binding domain (mTRPC4α (615-974)/leucine 

zipper/pGBKT7). The amino acid sequence of the zipper (underlined) and flanking 

sequences was GGGSG S UURMKQ IEDKL EEILS KLYHI ENELA RIKKL LGERUUG GSGSA AA. 

Other baits for directed yeast two-hybrid screens were constructed in the same way with the 

C-termini from human TRPC1 (NM_003304), murine TRPC5 (NM_009428), and human 

TRPC6 (NM_004621). For control experiments, the channels’ C-termini were replaced by an 
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enhanced variant of the jellyfish Aequorea victoria green fluorescent protein (EGFP/leucine 

zipper/pGBKT7). To map the SESTD1 interaction site on TRPC4, monomeric truncation bait 

constructs were generated (lacking the zipper). This facilitated cloning as the TRPC4 

C-terminal fragments could be inserted into pGBKT7 with a double instead of a triple ligation. 

Constructs for recombinant expression of glutathione S-transferase (GST) fusion proteins in 

bacteria were prepared by inserting full length human SESTD1 (NM_178123) or cDNA 

fragments in pGEX vectors leading to their N-terminal fusion with GST: GST-

SESTD1 (1-696)/pGEX-4T-1, GST-Sec 14 (1-192)/pGEX-5X-3, GST-Spec 1 (193-

406)/pGEX-5X-3, and GST-Spec 2 (407-696)/pGEX-5X-3. 

Human SESTD1 was also inserted in the vectors pCMV-HA and pEYFP-N1. When 

transfected into mammalian cells it was expressed N-terminally fused to the hemagglutinin 

antigenic epitope of human influenza virus (HA tag: YPYDV PDYA) or C-terminally to a 

yellow-green EGFP mutant protein (EYFP), respectively (Chalfie et al., 1994). DNA 

constructs were confirmed by sequencing. 

2.1.10 Apparatus 

Product Supplier 
ABI 3100 genetic analyzer  Applied Biosystems, Foster City, USA 
ALA BPS-8 (8-channel valve perfusion  ALA Scientific Instruments, Westbury, USA 

system)  
Axiovert 200 Zeiss, Göttingen, Germany 
Biofuge pico, Biofuge fresco Heraeus, Hanau, Germany 
BioPhotometer Eppendorf, Hamburg, Germany 
iBlot gel transfer device Invitrogen, Karlsruhe, Germany 
Casy counter Schärfe System, Reutlingen, Germany 
Cryo 1°C freezing container Nalgene, Rochester, USA 
Dissecting instruments WPI, Berlin, Germany 
DMZ universal puller Zeitz-Instruments, Munich, Germany 
EPC-10 HEKA, Lambrecht, Germany 
FLEX station Molecular Devices, Munich, Germany 
Fluorometric imaging plate reader (FLIPR) Molecular Devices, Munich, Germany 
Gel documentation system Intas, Göttingen, Germany 
Gene pulser BioRad, Munich, Germany 
Hera safe working bench  Heraeus, Hanau, Germany 
Imaging system T.I.L.L. Photonics, Gräfeling, Germany 
Leica DM IRE2 Leica, Wetzlar, Germany 
Lumi imager Roche, Mannheim, Germany 
Milli-Q water purification system Millipore, Billerica, USA 
Multidrop plate washer Thermo Scientific, Milford, USA 
Novex Xcell 2 blotmodul Invitrogen, Karlsruhe, Germany 
Odyssey infrared imaging system LiCor, Lincoln, USA  
Rotator SB2, Stuart VWR, Darmstadt, Germany 
T3 thermocycler Biometra, Göttingen, Germany 
Tecan safire 2, Tecan ultra Tecan, Crailsheim, Germany 
TI1 UV transilluminator Biometra, Göttingen, Germany 
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2.1.11 Buffers, media and solutions 

UUBlocking buffer:  

• for Western blots    50%  Odyssey blocking buffer 

50%   TBS (with 0.6% Tween 20) 

• for PIP strips    90 mL  TBST (pH 8) 

10 mL  30% BSA (essentially fatty acid-free) 

 

UUCoomassie blue solution: UU   0.1%  Coomassie brilliant blue R-250  

       10%  Acetic acid 

40%  Ethanol 

 

UUIntracellular solution (pH 7.4 with NaOH): 

120 mM CsOH 

120 mM  Gluconic acid 

2 mM MgCl BB2BB 

3 mM CaCl BB2 BB(200 nM free Ca PP

2+
PP) 

5 mM  Cs BB4BB-BAPTA 

10 mM  HEPES 

 

UULuria Bertani (LB) medium/plates: UU  1.5% (w/v) Bacto agar (only for plates) 

       1% (w/v) Bacto tryptone 

0.5% (w/v) Bacto yeast extract 

1% (w/v) NaCl 

Medium was autoclaved at 120°C for 20 min. Selective media were prepared by adding 

100 µg/mL ampicilline (LB/amp) or 50 µg/mL kanamycine (LB/kana).  

 

UULysis buffer (pH 7.4): UU     1 mM  EDTA 

       150 mM  NaCl 

50 mM  Tris-HCl 

1%  Triton X-100 

 

UUPhysiological phosphate-buffered salt solution (PSS): 

119 mM NaCl 

4.7 mM  KCl 

1.2 mM  KHBB2BBPOBB4BB 

1.2 mM MgSOBB4BB 

1.6 mM CaCl BB2  
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25 mM NaHCOBB3BB 

11 mM  Glucose 

 

UUStandard extracellular solution (pH 7.35 , ~275 mosm): 

135 mM NaCl 

1 mM  MgCl BB2BB 

5.4 mM KCl 

2 mM  CaCl BB2 

10 mM HEPES 

10 mM Glucose 

(2 mM CaCl BB2BB were replaced by 0.5 mM EGTA for calcium-free standard extracellular 

solution). 

 

UUTBS (pH 8) for PIP strips: UU    150 mM  NaCl 

10 mM  Tris-HCl 

 

• 2.5 µM free Ca PP

2+
PP     150 mM  NaCl 

10 mM  Tris-HCl 

1 mM  EGTA 

1 mM  MgCl BB2 

1 mM  CaCl BB2 

 

• 0.06 µM free Ca PP

2+
PP    150 mM  NaCl 

10 mM  Tris-HCl 

1 mM  EGTA 

1 mM  MgCl BB2 

0.9 mM CaCl BB2 

Free Ca PP

2+
PPconcentrations were calculated using CaBuf software (Droogmans, 2007).  

 

UTBST (pH 8) for PIP strips: UU    0.1%  Tween 20 in TBS 

 

UUTBS (pH 7.4) for Western blots:UU  500 mM  NaCl 

20 mM  Tris-HCl 

 

UUTBST (pH 7.4) for Western blots:UU  0.05%  Tween 20 in TBS 

 
UU 
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Yeast breaking buffer (pH 8): UU   1 mM  EDTA 

100 mM NaCl 

1% (w/v) SDS 

10 mM  Tris-HCl 

2% (w/v)  Triton X-100  

 

UUYeast complete supplemented medium: UU 30 mg Adenine (final concentration 40 mg/L) 

0.65 g Complete supplement mixture (CSM) 

6.7 g  Difco yeast nitrogen base w/o amino  

  acids 

2% (w/v) Glucose 

       add 1 L sterile, deionized water, sterile filtrate 

 

UUYeast complete supplemented agar plates: 

20 g Bacto agar were dissolved in 500 mL H BB2BBO, autoclaved and mixed (after cooling down) 

with the same volume of 2x yeast complete supplemented medium. 

 

UUYeast dropout media and agar plates: -Trp, -Leu, -Trp/Leu, -Trp/Leu/His, -Trp/Leu/His/Ade: 

Same recipe as for complete supplemented medium but CSM was replaced by CSM -Trp 

etc. (in concentrations as suggested by the manufacturer). 

 

UUYPAD medium: UU    1% (w/v)  Bacto yeast extract 

2% (w/v)  Select peptone 140 

2% (w/v)  Glucose 

40 mg/L  Adenine 

 

UUYPAD agar plates: 

20 g Bacto agar were dissolved in 500 mL H BB2BBO, autoclaved and mixed (after cooling down) 

with the same volume of 2x YPAD medium (sterile filtered). 

 

All buffers, media and solutions were prepared with Milli-Q water.  
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2.2 Molecular biological methods 

2.2.1 Determination of nucleic acid concentrations and cell density 

Absorbance at 260 nm (ABB260BB) was determined in a photometer to calculate the concentration 

of nucleic acid solutions based on A BB260 BB= 1 for 50 µg/mL double stranded DNA. Contaminants 

such as aromatic substances, proteins, and RNA absorb at 280 nm (A BB280BB). Thus, ABB280BB was 

determined to estimate plasmid purity and A BB260BB/ABB280 BBratios of 1.8-2.0 were considered as pure. 

Turbidity of bacteria and yeast cell suspensions was measured as absorbance at 600 nm 

(ABB600BB). 

2.2.2 Primer construction 

Specific synthetic oligonucleotide primers for sequencing and polymerase chain reactions 

were derived from GenBank entries (National Center for Biotechnology Information – NCBI, 

Bethesda, USA) and vector sequences using Lasergene Primer Select software (DNAstar, 

Madison, USA). 

2.2.3 Polymerase chain reaction (PCR) 

Polymerase chain reactions allow primer-mediated enzymatic in vitro amplification of specific 

DNA sequences (Saiki et al., 1985) and were performed to introduce specific restriction sites 

and/or to truncate DNA sequences. They were carried out in a final volume of 50 µL 

containing 2 µL dNTPs (10 mM), 1 µL of each primer (10 µM), 100-300 ng template DNA, 

2 µL Pyrococcus furiosus (Pfu) DNA polymerase (2.5 units/µL), and 5 µL tenfold Pfu reaction 

buffer. Amplification was processed in a thermocycler using the basic programme depicted in 

Table 2. PCR products were analyzed by gel electrophoresis and purified using the QIAquick 

gel extraction kit. 

Table 2: PCR conditions. 

Number of cycles Reaction step Duration Temperature (°C) 
1 denaturation 3 min 95 
25 denaturation 30 sec 95 
 annealing 30 sec 50-60PP

1
PP  

 elongation 1 min/kb 72 
1 termination 10 min 72 
1 cooling indefinite 4 

PP

1 
PPAnnealing temperatures were adapted to the primer features. 

2.2.4 DNA restriction digest 

Type II restriction endonucleases are bacterial enzymes that cut double-stranded DNA at 

short specific sequences that are mostly palindromic. The resulting DNA fragments either 

end in paired nucleotides (blunt ends) or overhanging, unpaired nucleotides (sticky ends). 
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For analytical digestions, 10 to 20 U restriction enzyme (New England Biolabs, Frankfurt, 

Germany) were added to 1 µg DNA in a final volume of 30 µL 1x NEBuffer (New England 

Biolabs). The DNA amount was increased up to 5 µg in 50 µL 1x NEBuffer for preparative 

digestions. Buffer, addition of BSA, reaction temperature and time were applied as 

suggested by the manufacturer depending on the enzyme(s) and the amount of DNA used. 

The resulting DNA fragments were separated by gel electrophoresis and purified using the 

QIAquick gel extraction kit.  

Restriction maps were generated with Lasergene software (DNAstar, Madison, USA). 

2.2.5 Dephosphorylation of linearized vectors 

Removal of TT5´-phosphate groups prevents self-ligation of linearized vectors. TT1 UTT calf intestine 

alkaline phosphatase (CIAP) was added TTto the restriction reaction TTand i TTncubated at 37°C for 

5 min. The vector DNA was subsequently purified by gel electrophoresis and gel extraction. 

2.2.6 DNA gel electrophoresis 

DNA molecules have a net negative charge due to their phosphate backbone. They can thus 

be forced to migrate through a gel by an electrical field resulting in their size-dependent 

separation as shorter fragments migrate faster than longer ones. DNA samples were mixed 

with 5x nucleic acid sample loading buffer and separated in gels of 1% agarose in TAE buffer 

(prestained with SYBR safe DNA gel stain concentrate). Fragments were separated at 100-

120 V for 30-60 min and analyzed on a UV transilluminator by comparing their size with 

molecular rulers. Pictures were taken with a digital gel documentation system before 

fragment band excision and DNA elution with the QIAquick gel extraction kit. 

2.2.7 Ligation 

To join linearized DNA fragments, a final volume of 20 µL T4 DNA ligase buffer containing 

50-100 ng linearized vector, the insert in a 3 molar excess and 1 U T4 ligase was incubated 

for 16 hr at 16°C. The reaction was terminated by denaturating the enzyme for 10 min at 

65°C. 2 µL of the reaction were transformed into electrocompetent E. coli.  

2.2.8 TOPO cloning 

For general subcloning, purified PCR products were inserted into the pCR-Blunt II-TOPO 

vector using the zero blunt TOPO PCR cloning kit according to the manufacturer’s 

instruction. This technique is based on topoisomerase I from Vaccinia virus that acts both as 

restriction endonuclease and ligase. The vector is provided linearized with topoisomerase I 

covalently attached to the 3’ phosphate residues. This bond can be attacked by the 

5’ hydroxyl groups of an added PCR product that is consequently ligated into the vector. 1 µL 

of the reaction was transformed into electrocompetent E. coli. 
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2.2.9 Gateway cloning 

The Gateway technology (Invitrogen, Karlsruhe, Germany) was used to generate an 

N-terminal FLAG-tagged mTRPC4ß construct for expression in mammalian cells (FLAG tag 

amino acid sequence: DYKDDDDK). This system uses lambda (λ) phage-based site-specific 

recombination (Landy, 1989) to insert a gene into a vector. mTRPC4ß (U50921), obtained 

from the internal Genomic Sciences department, was already inserted in the entry vector 

pDONR221 and thus flanked by λ phage attachment (att) sites. The destination vector 

pcDNA3.1-nFLAG-DEST contains equivalent att sites. Site specific recombination was 

initiated by mixing with mTRPC4ß/pDONR221 and the LR clonase enzyme mix and resulted 

in the expression clone. The LR reaction was performed and terminated by incubation with 

proteinase K according to the manufacturer’s instruction. 2 µL of the reaction were 

transformed into electrocompetent E. coli. 

2.2.10 Transformation of chemically competent bacteria 

5–10 ng plasmid were added to a vial of thawed chemically competent E. coli, mixed gently 

and incubated on ice for 10 min. Cell membranes were made permeable by heat shock (30 

sec, 42°C) and immediately transferred to ice. After addition of 1 mL S.O.C. medium, cells 

were incubated for one hr at 37°C and 250 rpm. 5 µL suspension of transformed bacteria 

were diluted with 95 µL S.O.C. medium, spread on a selective LB agar plate and incubated 

overnight at 37°C. 

2.2.11 Electroporation of bacteria 

2 µL ligation reaction were added usually into a vial of thawed electrocompetent E. coli, 

mixed gently and transferred to a chilled 0.2 mm cuvette. The electroporator was charged by 

2 kV with a load resistance of 400 Ω and 25 µFD capacity and bacteria were transformed 

with a pulse of approximately 8 sec length. This electrical pulse disturbs the cell membrane 

momentary thus allowing uptake of exogenous DNA. After addition of 1 mL S.O.C. medium, 

cells were incubated for one hr at 37°C and 250 rpm. 100 µL of the bacteria suspension were 

spread on a selective LB agar plate and incubated overnight at 37°C. 

2.2.12 Plasmid amplification and purification 

Bacteria, transformed with the corresponding plasmid, were plated on selective LB agar 

plates and incubated overnight at 37°C. Next day, single colonies were used as inoculum for 

liquid cultures in selective LB medium. Cells were grown overnight at 37°C and 250 rpm, 

harvested by centrifugation and treated according to the manufacturer’s instruction (QIAprep 

spin miniprep kit, Qiafilter plasmid maxi kit). Plasmids intended for transfection of mammalian 

cells were harvested and purified with the endofree plasmid maxi kit. The human aorta cDNA 
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library used for the yeast two-hybrid screen was amplified on agar plates and prepared with 

the Qiafilter plasmid giga kit (see Chapter 2.3.1). 

2.2.13 DNA sequencing 

Sequencing was done in-house by the Genomic Sciences department. DNA cycle 

sequencing reactions were performed based on the dideoxy terminator method (Sanger et 

al., 1977) with four differentially fluorescent-labelled dideoxynucleotides (Parker et al., 1996). 

PCR fragments, generated by using the ABI PRISM BigDye terminator cycle sequencing 

ready reaction kit, were electrophoretically separated, detected, and analyzed on an ABI 

PRISM 3100 genetic analyzer.  

2.2.14 Analysis of nucleotide and protein sequences 

Nucleotide and protein sequences were imported from GenBank (NCBI, Bethesda, USA) and 

analyzed and compared with Lasergene software (DNAstar, Madison, USA). The NCBI Basic 

Local Alignment Search Tool (BLAST) was used to identify unknown sequences. Conserved 

protein domains and motifs were searched with NCBI CD (Marchler-Bauer & Bryant, 2004) 

and PROSITE (Swiss Institute of Bioinformatics, Basel, Switzerland).  

2.2.15 Expression and purification of GST fusion proteins 

Glutathione S-transferase (GST) fusion proteins were constructed by inserting a gene or 

gene fragment in-frame into the MCS of a pGEX vector in which protein expression is under 

control of the tac promoter and inducible by the lactose analogue isopropyl 

ß-D thiogalactoside (IPTG). The resulting plasmid was transformed into protease-deficient 

and chemically competent BL21 star (DE3) E. coli. Bacteria were plated on selective LB agar 

plates and incubated overnight at 37°C. Next day, single colonies were used as inoculum for 

a liquid overnight culture in selective LB medium (containing 0.2% (m/v) glucose to repress 

protein expression). This starter culture was diluted in 100 mL selective LB medium (with 

0.2% (m/v) glucose) resulting in ABB600 BB= 0.1. The culture was grown at room temperature (RT) 

and agitated at 250 rpm. Protein expression was induced at A BB600 BB= 0.6–0.8 by adding 10 mM 

(GST) or 20 mM (GST-SESTD1, GST-SESTD1-fragments) IPTG and incubation was 

continued for 6 hr. The bacteria suspension was pelleted in 5 mL portions by centrifugation 

(1 min, 16,000 x g, RT), pellets were washed once with 2 mL D-PBS (w/o Ca PP

2+
PP, Mg PP

2+
PP) and 

stored at -80°C or lysed immediately. Each pellet was resuspended in 250 µL lysis buffer 

(containing 1 mg/mL lysozyme) and incubated on ice for 20 min. After sonication (1x 5 sec) 

the lysate was centrifuged 30 min at 16,000 x g and 4°C and the supernatant was transferred 

to a fresh vial. 50 µL glutathione sepharose were washed three times with 500 µL lysis buffer 

using a 27 gauge (G27) needle before the supernatant was added and filled up to 1 mL with 

lysis buffer. After incubation on a rotator (1 hr, RT) the beads were washed three times with 
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500 µL lysis buffer. GST fusion proteins bound to glutathione sepharose were used for the 

GST pulldown assay (see Chapter 2.5.5) or eluted with 100 µL elution buffer (20 mM 

glutathione, 50 mM Tris-HCl, pH 8). Sepharose was vortexed and centrifuged for 1 min at 

380 x g and 4°C. The supernatant was carefully transferred to a slide-a-lyzer MWCO 10,000 

unit (Pierce, Rockford, USA) and dialyzed overnight against 50 mM Tris-HCl buffer (pH 8). 

The protein concentration was subsequently determined using the BCA protein assay kit. 

2.3 Yeast two-hybrid (Y2H) system 

The MATCHMAKER two-hybrid system 3 (Clontech, Mountain View, USA) was used as a 

transcriptional assay to screen for novel proteins that interact with the cytosolic C-terminus of 

mTRPC4α (aa 615-974) in yeast strain AH109. The system is based on binding of the 

transcription factor GAL4 upstream of four reporter genes (ADE2, HIS3, lacZ, MEL1) 

activating their translation and protein expression. GAL4-DNA binding and activation are 

mediated by two different protein domains which can be physically separated (Fields & Song, 

1989).  

The bait mTRPC4α (aa 615-974) was cloned into yeast expression vector pGBKT7 leading 

to its nuclear expression as a fusion protein with the GAL4 DNA-binding domain (DNA-BD). 

A mutated GCN4-leucine zipper (Harbury et al., 1993; Zerangue et al., 2001) was also 

inserted between the C-terminus and the GAL4-DNA binding domain (mTRPC4α (615-

974)/leucine zipper/pGBKT7) to mimick the proposed tetrameric TRPC4 topology. A human 

aorta cDNA library cloned into yeast expression vector pACT2 was screened with this bait. 

The library proteins are expressed as fusion proteins with the GAL4 activation domain 

(GAL4-AD) and also contain a nuclear localization sequence. When library and bait were 

cotransfected into the auxotroph yeast strain AH109, the TRP1 gene of pGBKT7 and the 

LEU2 gene of pACT2 served as selection markers allowing survival of cotransformants on 

medium lacking the otherwise essential amino acids tryptophane (Trp) and leucine (Leu). But 

only physical interaction of the bait with a library protein brought DNA-BD and GAL4-AD into 

sufficient spatial proximity reconstituting the functional GAL4 and thus leading to the 

expression of the reporter genes. These allowed survival on selective media additionally 

lacking adenine (Ade) and histidine (His) and conversion of X-gal into a blue stain 

(ß-galactosidase assay, lacZ-test). Prey plasmids were isolated from clones surviving on 

-Trp/-Leu/-His/-Ade agar plates and positive reacting in the ß-galactosidase assay. First they 

were analytically digested with the restriction endonucleases EcoRI/XhoI that cut the cDNA 

inserts out of the vector MCS. The resulting fragments were separated by gel electrophoresis 

whereby fragments of identical size pointed towards identical preys. Subsequently, the preys 

were tested for intrinsic DNA-binding and/or transcriptional activity. Yeast was cotransformed 

with the prey plasmid and a plasmid coding for the unrelated enhanced green fluorescent 

protein (EGFP) from Aequorea victoria that was also tetramerized and fused to the DNA-BD 
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(EGFP/leucine zipper/pGBKT7). Only yeast cells cotransformed with preys that did interact 

unspecifically with EGFP did survive on -Trp/-Leu/-Ade/-His plates. In parallel, prey plasmids 

had been cotransformed with the bait and were retested for growth on -Trp/-Leu/-His/-Ade 

agar plates. Prey plasmids from clones surviving one these plates, that also showed no 

intrinsic DNA-binding and/or transcriptional activity, were finally sequenced. The sequences 

were compared with Genbank data by using BLAST software. The Y2H screening process is 

schematically depicted in Figure 8 and described in more detail in the following chapters 

(2.3.2-2.3.4).  

transformation efficiency
( test on -Trp/-Leu)

small scale bait transformation in yeast
(plating on -Trp)

large scale library transformation
(plating on -Trp/-Leu)

transfer grown colonies to 
-Trp/-Leu/-Ade/-Leu

lacZ-test

retest grown colonies
(on -Trp/-Leu/-Ade/-Leu)

retest grown colonies
(on -Trp/-Leu/-Ade/-Leu)

plasmid preparation, 
amplification in E. coli

growth

growth no growth

analytical digest to identify identical
preys

cotransformation bait/prey, 
retest on -Trp/-Leu/-Ade/-Leu

cotransformation bait/EGFP, 
test on -Trp/-Leu/-Ade/-Leu

sequencing of prey constructs

+

 
Figure 8: Schematic depiction of the Y2H screening process. 

 

2.3.1 cDNA library titering and amplification 

 A human aorta MATCHMAKER cDNA library (Clontech, Mountain View, USA) was 

transformed into E. coli BNN132 and amplified to gain enough plasmid for screening in yeast. 

First its titer was determined by plating dilutions of 1x 10PP

-6
PP, 1x 10PP

-7
PP, and 2x 10 PP

-7
PP on LB/amp 

agar plates. After incubation for 2 days (30°C), the number of grown colonies was counted 

and resulted in 1.8x 10 PP

8 
PPcolony forming units (cfu) per mL. The 2.1-fold amount of 

independent clones present in the library before amplification (which was 3.5x 10 PP

6
PP as 

provided by the manufacturer) was amplified by spreading 45,000 cfu/150-mm plate on 
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160 LB/amp agar plates. After 36 hr incubation at 30°C, cells were scraped into liquid 

LB/amp (final volume ~2.1 L), pooled, partitioned into 4 aliquots, and pelleted by 

centrifugation. Bacteria were lysed and plasmids purified using the QIAfilter plasmid giga kit. 

The plasmid preparation protocol was adapted accordingly to the high cell density, starting 

with the resuspension of each pellet in 400 mL buffer P1. Lysis and neutralization were 

carried out by adding 400 mL buffer P2 and P3, respectively. An additional filtration step was 

performed to preclear the lysates before loading onto two equilibrated QIAGEN-tips. Bound 

DNA was washed, eluted and precipitated with isopropanol. The resulting DNA pellet was 

washed with ethanol, dried in a vacuum centrifuge and resuspended in TE buffer.  

2.3.2 Transformation of yeast 

The DNA-BD/bait and the library were sequentially transformed into Saccharomyces 

cerevisae using the polyethylene-glycol/lithium acetate (PEG/LiAc) method (Ito et al., 1983). 

Through a small-scale transformation, the DNA-BD/bait was introduced into yeast and plated 

on selective -Trp agar plates. Single transformants were used as inoculates for the following 

large-scale transformation with the AD fusion library. It was verified that the bait is not 

intrinsic DNA-binding and/or transcriptionally active by cotransformation with the negative 

control vector pGADT7. pGADT7 is an empty vector leading to sole expression of the GAL4-

AD in yeast. Since this plasmid does not express a TRPC4-interacting protein, 

cotransformation with the bait is not sufficient to reconstitute GAL4, thus yeast did not survive 

on -Trp/-Leu/-Ade/-His plates. 

 

Small-scale transformation 

An overnight culture of Saccharomyces cerevisae AH109 grown at 30°C in 2 mL liquid YPAD 

medium was transferred to 10 mL YPAD medium resulting in an ABB600 BB= 0.1. The cell 

suspension was grown at 30°C until reaching the logarithmic growth phase (A BB600 BB= 0.5), 

pelleted by centrifugation (5 min, 2,000 x g, RT), washed with sterile deionized water and 

resuspended in 200 µL lithium acetate buffer (100 mM LiAc, 10 mM Tris-HCl, 1 mM EDTA). 

18 µL carrier DNA from salmon sperm (10 mg/mL) were prepared by boiling for 40 sec, and 

immediately transferred to ice. 1.5 µg DNA-BD/bait (3 µg plasmids for coexpressions) were 

first mixed with the heat-denaturated carrier DNA and then added to 200 µL of the yeast 

suspension. 1.2 mL PEG/LiAc-solution (40% PEG, 100 mM LiAc, 10 mM Tris-HCl, 1 mM 

EDTA) were subsequently added and the cell suspension was incubated for 30 min at 30°C. 

Cells were heat-shocked at 42°C for 15 min, centrifuged, resuspended in 100 µL TE-Buffer 

(10 mM Tris-HCl, 1 mM EDTA, pH 8), spread on selective media, and incubated at 30°C for 

at least 2 days. Yeast transformed with the DNA-BD/bait grew on -Trp medium, 

cotransformants with a prey on -Trp/-Leu medium. 
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Large-scale transformation  

Three overnight cultures of single yeast colonies transformed with the DNA-BD/bait were 

transferred to 150 mL -Trp medium, subdivided onto twelve 50 mL-tubes and incubated 

overnight at 30°C. Next day these starter cultures were pooled, pelleted by centrifugation 

(3 min, 2,000 x g, RT) and resuspended in 10 mL -Trp medium. This suspension was added 

to 900 mL -Trp medium (ABB600 BB= 0.15-0.25) and cells grew until the logarithmic growth phase 

was reached (ABB600 BB= 0.45-0.75). The suspension was subdivided onto several 50 mL-tubes, 

pelleted by centrifugation (5 min, 2,000 x g, RT), washed with 300 mL sterile deionized water 

and pooled in 10 mL water. After washing with 50 mL lithium acetate buffer (100 mM LiAc, 

10 mM Tris-HCl, 1 mM EDTA), cells were resuspended in 4 mL lithium acetate buffer.  

In triplicates, 40 µg cDNA of the library were mixed with 145 µL heat denaturated carrier DNA 

(from salmon sperm), 1.2 mL cell suspension and 8.6 mL PEG/LiAc-solution (40% PEG, 

100 mM LiAc, 10 mM Tris-HCl, 1 mM EDTA) and incubated for 30 min at 250 rpm and 30°C. 

After addition of 1 mL dimethyl sulphoxide (DMSO) per tube, cells were heat shocked 

(15 min, 42°C), cooled down on ice and pelleted by centrifugation (5 min, 2,000 x g, RT). 

Each pellet was resuspended in 25 mL -Trp/-Leu medium before they were pooled and 

incubated for one hr at 250 rpm and 30°C. After centrifugation (5 min, 2,000 x g, RT), cells 

were resuspended in 12 mL -Trp/-Leu medium, plated in 300 µL aliquots on -Trp/-Leu/-His 

agar plates (150 mm diameter), and incubated for 2 to 5 days at 30°C. Grown colonies were 

transferred to -Trp/-Leu/-His/-Ade agar plates and incubated for 2 to 3 more days. Surviving 

colonies were tested with the ß-galactosidase assay and plasmids of positive reacting clones 

were isolated.  

To test the transformation efficiency, dilutions of 10 PP

-3
PP to 10 PP

-6
PP were plated on -Trp/-His agar 

plates in parallel and the number of cfus was counted after incubating the plates for 2 days at 

30°C. The library was considered to be screened completely, when the 4-fold number of 

independent clones had been plated in total.  

2.3.3 ß-galactosidase assay 

Clones grown on -Trp/-Leu/-His/-Ade agar plates were top-layered with X-gal agar (0.5% 

agarose, 500 mM NaPOBB4BB buffer (pH 7), 1% SDS, 2% X-gal in dimethylformamide (DMF)). 

The agar was prepared by cooling down melted agarose to 50°C, addition of prewarmed 

SDS and DMF, and immediate application to the yeast colonies. The yeast colonies were 

incubated at 30°C up to 12 hr and generation of a blue stain was regularly checked. 

2.3.4 Plasmid preparation from yeast 

Clones surviving on -Trp/-Leu/-His/-Ade agar plates and positive reacting in the 

ß-galactosidase assay were resuspended in 2 mL -Leu medium and grown overnight at 

250 rpm and 30°C. They were pelleted by centrifugation, and resuspended in 200 µL lysis 
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buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris-HCl (pH 8), 1 mM EDTA). 

200 µL phenol/chloroform/isoamylalcolhol (25:24:1) and 100 µL acid-treated glass beads 

were added and the cell walls were broken by vortexing this mixture. After centrifugation 

(5 min, 10,000 x g, RT) 135 µL of the aqueous phase were transferred to a new tube, mixed 

with 15 µL sodium acetate solution (10%) and 375 µL ethanol, and DNA was subsequently 

precipitated by centrifugation (30 min, 10,000 x g, RT). The DNA pellet was washed with 

ethanol (75%), dried at 37°C for 30 min, and resuspended in 10 µL Tris-HCl (10 mM, pH 8.5). 

2 µL DNA were transformed by electroporation into E.coli and transformed bacteria were 

grown on selective LB/kana agar plates. Next day, single colonies were grown in liquid 

overnight cultures and the plasmids were purified using the QIAprep spin miniprep kit. 

2.4 Culture of mammalian cells 

To avoid contamination, all critical steps were carried out in a working bench under laminar 

air flow. Cells were stored in liquid nitrogen until usage. A cryogenic vial containing 1.8 mL 

cell suspension was thawed in a water bath (37°C). Cells were immediately and carefully 

transferred to 10 mL prewarmed medium and pelleted by centrifugation (3 min, 300 x g, RT) 

to remove DMSO. The cell pellet was resuspended in 15 mL fresh medium and cells were 

grown in plastic tissue flasks of appropriate size at 37°C in a humified atmosphere (5 or 7% 

COBB2BB). Media was replaced one day after thawing and then routinely twice a week. They were 

split at 90% confluency by washing them once with D-PBS (w/o Ca PP

2+
PP, Mg PP

2+
PP) and adding 

0.05% trypsin/0.02% EDTA for approx. 1 min. The protease solution was removed and cells 

were detached by gently tapping the flask and rinsing the cells with medium. After counting 

the cell number with a Casy cell counter, the desired density was adjusted with medium 

before cells were seeded. For some applications (e.g. Ca PP

2+ 
PPimaging) glass cover slips had to 

be coated before cells were seeded. The cover slips were incubated 5 min with poly-L-lysine 

(0.01% stock solution diluted 1:5 in sterile deionized water), washed twice with water and air-

dried overnight. When cells were frozen for long term storage, cryogenic vials and media 

were kept on ice. Cell pellets were resuspended in cold medium, the resulting cell 

suspension was diluted with an equivalent volume of DMSO:FBS (1:5) freezing medium and 

transferred to cryogenic vials. After cooling down in a Cryo 1°C freezing container (with 

-1°C/min) that was placed in a -80°C freezer, they were transferred to liquid nitrogen on the 

next day. 

Primary cells (human AoSMC, CASMC, HAEC, HMVEC-d) were cultivated according to the 

provider’s instruction. 

 

Some stable cell lines (TRPC3/4/5/6 HEK293 FITR) were used that express recombinant 

TRPC channels in a tetracycline-inducible manner from a specific genomic location. They 

were generated in-house by using the Flp-In T-Rex system (Invitrogen, Karlsruhe, Germany) 
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and thus named FITR. This system is based on Flp recombinase that mediates site specific 

recombination. The parental HEK293 Flp-In T-Rex cell line contains a Flp recombination 

target (FRT) site and constitutively expresses the Tet repressor (TetR) controlled by the 

human cytomegalie virus (CMV) promoter. This cell line is transfected with two plasmids. The 

first contains the respective TRPC channel gene (flanked by a FRT site) whose protein 

expression is controlled by a tetracycline-regulated hybrid CMV/tet operator 2 (TetOBB2 BB) 

promoter. A cotransfected plasmid constitutively expresses Flp that mediates homologous 

recombination between the FRT sites leading to integration of the TRPC gene into the cell’s 

genome. TetR binds with high affinity to TetOBB2BB and represses TRPC channel expression. 

When tetracycline (or its derivative doxycycline) is added, it binds to TetR leading to a 

conformational change that prevents binding to TetO BB2BB. Therefore, the promoter that controls 

TRPC expression is derepressed.  

18 to 24 hr prior to the experiments, protein expression was induced in these cell lines by 

adding 1 µg/mL doxycycline to the medium. 

 

The following media were used for the indicated cell types:  

• A7r5 cells (smooth muscle cells derived from embryonic rat thoracic aorta): DMEM (with 

glutaMAX I, 4.5 g/L glucose and 110 mg/mL sodium pyruvate) supplemented with 10% 

(v/v) FBS (from PAA). 

• HAEC: Clonetics EGM-2 BulletKit 

• Human AoSMC, CASMC: Clonetics SmGM-2 BulletKit 

• HEK293 cells: ISCOVE medium supplemented with 10% (v/v) FBS (Biochrom) and 

2 mM glutamine. 

• HM1 cells (HEK293 cells stably expressing the human muscarinic receptor type 1): 

DMEM/Nutrient F12 (with glutaMAX I) supplemented with 10% (v/v) FBS (PAA), 1 mM 

glutamine and 400 µg/mL geneticine. 50 µg/mL zeocin were added for selection and 

culture of clones stably expressing mTRPC5-YFP (HM1-C5Y cells).  

• HMVEC-d: Clonetics EGM-2 MV BulletKit 

• TRPC3/4/5/6 HEK293 FITR cells (HEK293 FITR cells expressing hTRPC3 

(NM_003305)/mTRPC4ß (AAC05178)/mTRPC5 (NM_009428)/hTRPC6 (AF080394) 

under the control of an inducible promoter as described above): DMEM (with glutaMAX I, 

4.5 g/L glucose and 110 mg/mL sodium pyruvate) supplemented with 10% (v/v) FBS 

(Biochrom), 1 mM glutamine, 1 mM MEM sodium pyruvate, 40 µg/mL hygromycine 

(50 µg/mL for mTRPC5 FITR cells), and 15 µg/mL blasticidine S HCl. 
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2.4.1 Transfection of mammalian cells 

Since FBS had no significant effect on transfection efficiency, cells were transfected in full 

medium using Lipofectamine 2000. Only the liposomes were formed and loaded in 

transfection medium (Opti-MEM). For co-immunoprecipitation experiments 3x 10 PP

6
PP HM1 cells 

(in 10 mL) were seeded in dishes of 9.4 cm diameter and grown to 80-90% confluency until 

the next day. 4 µg of each plasmid were mixed in 1 mL transfection medium and incubated 

for 20 min (RT) with 20 µL Lipofectamine 2000 (also diluted in 1 mL Opti-MEM). The mixture 

was applied to the cells. For siRNA and plasmid cotransfections, 3x 10PP

5
PP HM1 cells/2 mL/well 

were seeded in a 6-well plate, growing to 30-50% confluency next day. 4 µg plasmid were 

mixed with 2.5 µL 20 µM siRNA stock solution in 250 µL transfection medium and incubated 

for 20 min (RT) with 5 µL Lipofectamine 2000 (also diluted in 250 µL Opti-MEM). The mixture 

was applied to the cells leading to a final siRNA concentration of 20 nmol/L. These protocols 

are exemplary and were adapted to the individual experimental conditions.  

Success and efficiency of transfection were determined either by Western blot or by 

additionally transfecting cells with the same amount of plasmid or siRNA and a small amount 

(0.4 µg/well in a 6-well plate) of plasmid coding for GFP. 18 to 24 hr post transfection GFP 

fluorescence was excited with an UV lamp and the number of transfected cells was 

estimated. Transfection rates of 80% and more were defined as mandatory for functional 

experiments with cell populations. 

2.4.2 Generation of a HM1 cell line stably expressing mTRPC5-YFP  

HM1 cells seeded in a 6-well plate and grown to approximately 80% confluency were 

transfected with 4 µg of the mTRPC5-YFP construct using Lipofectamine 2000 as described. 

The construct was generated by inserting an XbaI/NotI fragment of mTRPC5-GFP (Strubing 

et al., 2003) into pcDNA3.1(-)zeo. The YFP fusion was obtained by joining a NotI/EcoRI cut 

YFP-PCR fragment to the channel C-terminus. 24 hr post transfection clonal selection 

started by cultivating the cells in complete medium supplemented with 50 µg/mL zeocin. 

Cells were trypsinized and transferred to a new dish (94 mm diameter). Several days later 

single clones were isolated by manual picking from grown colonies. During expansion, 

expression of the construct was visually checked by exciting its YFP fluorescence at 515 nm. 

Clones were functionally characterized in FLIPR assays and patch clamp experiments. One 

clone was selected for further studies.  

2.5 Protein biochemical methods 

2.5.1 Preparation of cell lysates 

Cells grown in tissue culture flasks were placed on ice (10 min) and washed twice with ice-

cold D-PBS (w/o Ca PP

2+
PP, Mg PP

2+
PP) before detaching them with a cell scraper in lysis buffer. They 
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were placed 1 hr on ice before centrifugation (15 min, 16,000 x g, 4°C). The supernatant was 

frozen at -20°C (for GST-pulldown assays stabilized with 1 mM dithiotreitol and 10% glycerol) 

or mixed with NuPAGE LDS sample buffer (4x) and 5% ß-mercaptoethanol (ß-ME), heat-

denaturated (95°C, 3 min) and centrifuged (16,000 x g, 2 min) before they were stored at 

4°C.  

2.5.2 Determination of protein content 

The amount of total protein was colorimetrically detected and quantified with the 

bicinchoninic acid (BCA) protein assay that is based on a biuret reaction. The absorbance of 

the purple-coloured reaction product was measured at 562 nm with a Tecan safire 2 plate 

reader and the protein concentration was determined based on a bovine serum albumin 

(BSA) standard curve. The reaction was set up in a flat-bottom, transparent 96-well plate by 

mixing  

• 5 µL of each standard dilution (unknown samples were diluted 1:5 in lysis buffer) 

• 150 µL of working reagent (prepared by mixing BCA reagent A with BCA reagent B  

 (50:1)) 

and incubating the plate at 37°C for 30 min before measuring the absorbance.  

2.5.3 SDS-PAGE 

This technique, called sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS 

PAGE), allows separation of proteins. In samples treated as described in 2.5.1, proteins are 

denaturated and negatively charged by SDS in proportion to their mass. When loaded on 

Bis-Tris-HCl gradient gels (4-12%), they can thus be electrophoretically separated according 

to their molecular weight. Electrophoresis was carried out in NuPAGE MOPS SDS running 

buffer for 75 min at 150 V. Gels were blotted (see Section 2.5.4) or stained for 15 min with 

Coomassie blue solution. Excess dye was removed by washing with a solution containing 

10% acetic acid and 40% ethanol. 

2.5.4 Western blot 

After proteins have been separated by size with SDS PAGE they were transferred to a 

nitrocellulose membrane (Bio TraceNT) using NuPAGE Transfer Buffer and a Novex Xcell 2 

blotmodul or the iBlot gel transfer system according to the manufacturer’s instruction. To 

verify transfer, the blotted proteins were stained with 0.1% Ponceau S Solution for 1 min and 

excessive dye was removed by washing with water. The membrane was blocked with 

blocking buffer (1 hr, RT) before incubating it with the primary antibody (1 hr, RT). After 

washing it four times with TBST, it was incubated with the fluorescent-labelled or HRP-

conjugated secondary antibody (45 min, RT) and washed again four times with TBST. 

Membranes were analyzed using the Odyssey infrared imaging system or the Lumi imager. 
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2.5.5 GST pulldown assay 

HEK293 cells transiently transfected with the mTRPC4α-C-terminus or full length mTRPC4α, 

mTRPC4ß or mTRPC5 channel were lysed and protein concentration determined using the 

BCA protein assay kit. An equivalent of 50 µg total protein was added to GST or the GST 

fusion proteins bound to glutathione sepharose (see 2.2.15), filled up to 1 mL with lysis buffer 

and incubated on a rotator (2 hr, RT). Sepharose was washed three times with 500 µL lysis 

buffer and a G27 needle before 20 µL 1x LDS sample buffer (containing 5% ß-ME) were 

added. Samples were denaturated (95°C, 3 min), centrifuged and analyzed by Western blot. 

2.5.6 Co-immunoprecipitation 

24 hr after transfection, cells were harvested by placing on ice for 10 min before washing 

twice with 10 mL ice-cold D-PBS (w/o Ca PP

2+
PP, Mg PP

2+
PP).  

Cell membranes were isolated by scraping cells from one dish into 600 µl homogenization 

buffer (320 mM sucrose, 5 mM HEPES, pH 7.4, supplemented with Complete protease 

inhibitor). The cell suspensions from four dishes per transfection condition were pooled, 

sonicated (1x 5 sec), centrifuged (100 x g, 10 min) and the resulting supernatant was 

partitioned onto three vials and further centrifuged (100,000 x g, 30 min). Membrane proteins 

were lyzed from the resulting pellet with 600 µL lysis buffer (supplemented with Complete 

protease inhibitor) per pellet, incubated on ice for 1 hr and centrifuged (15 min, 16,000 x g, 

4°C). The supernatants were transferred to a fresh vial and pooled. An aliquot was kept as 

input control and the rest of the lysate was divided onto two vials. 4 µg of the primary 

antibody were added to each sample and they were incubated overnight at 4°C on a rotator.  

Cell lysates were gained by directly scraping cells from one dish into 600 µL lysis buffer 

(supplemented with Complete protease inhibitor), incubation on ice for 1 hr and 

centrifugation (15 min, 16,000 x g, 4°C). The supernatant was transferred to a fresh vial, 

pooled with the lysates of the 3 remaining dishes that were equally transfected, and treated 

as described above.  

The next day, 30 µL protein A-sepharose or protein G-sepharose suspension, respectively, 

were washed and added to the samples. Samples were incubated for 2 hr at 4°C. Sepharose 

was washed three times with a G27 needle and 500 µL lysis buffer before 20 µL 2x LDS 

sample buffer (containing 10% ß-ME) were added. Samples were denaturated (95°C, 3 min), 

centrifuged and analyzed by Western blot.  

2.5.7 Surface expression analysis 

1.2x 10 PP

6 
PPHM1 cells stably transfected with mTRPC5-YFP were plated in dishes with 94 mm 

diameter. The next day, they were transfected with 40 nM siRNA or treated with liposomes 

only. 48 hr post transfection, cells were washed with D-PBS. Surface proteins were 

biotinylated by incubation with a membrane-impermeable form of biotin (1 mg/mL EZ-link 
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sulfo NHS-LC biotin in D-PBS) for 30 min. Excess biotin was quenched by washing twice 

with 100 mM glycine. Cells were scraped into 100 µL lysis buffer (supplemented with 

Complete protease inhibitor), incubated on ice for 1 hr and centrifuged (15 min, 16,000 x g, 

4°C). A BCA test was performed with the supernatant. An aliquot was kept to test SESTD1 

siRNA knock-down. 50 µL streptavidin sepharose per sample were washed and equal 

protein amounts were added. After overnight incubation on a rotator (4°C), the sepharose 

was washed before 15 µL 2x LDS sample buffer (containing 10% ß-ME) were added. 

Samples were denaturated (95°C, 3 min), centrifuged and analyzed by Western blot. 

2.5.8 Peptidyl-prolyl cis-trans isomerization assay 

Peptidyl-prolyl cis-trans isomerase (PPIase) activity is measured classically in a coupled 

assay, where chymotrypsin hydrolyses the anillide bond of the trans (but not cis) isomer of 

succinyl-Ala-Ala-Pro-Phe-4-nitroanilide. The absorbance of the subsequently formed 

4-nitroanillide is monitored (Harding et al., 1989). We also tested whether SESTD1 acts as 

PPIase but employed a simplified, fluorescence-based assay whose principle is 

schematically depicted in Figure 9. The amino acid proline (part of cys-bridged H-Abz-Cys-

Ala-Pro-Ala-Cys-Ntr-NH BB2BB) spontaneously isomerizes from cis to trans (approx. 65% of the 

cys-bridged peptides are trans already). As long as the two cysteines are bridged by a 

disulfide bond, the conversion of the remaining 35% is inhibited. Reducing agents such as 

dithiotreitol (DTT) break the bond. This leaves proline in a flexible state from which it 

isomerizes resulting in formation of fluorescent H-Abz-Cys-Ala-Pro BBtransBB-Ala-Cys-Ntr-NHBB2BB that 

can be measured in a plate reader (Tecan safire 2). This spontaneous isomerization is 

accelerated in presence of a PPIase, characterized by a steepening of the slope of the 

fluorescence curve.  

H-Abz-Cys-Ala-Procis-Ala-Cys-Ntr-NH2

+ 125 mM DTT

H-Abz-Cys-Ala-Procis-Ala-Cys-Ntr-NH2

spontaneous catalyzed (PPIase)

H-Abz-Cys-Ala-Protrans-Ala-Cys-Ntr-NH2

λexc= 320 nm/ λem = 420 nm

S-S

SH

HSSH

HS

 
 

Figure 9: Scheme of the cis-trans isomerization assay. 
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The assay was performed in a 384-well plate. Equal volumes (10 µL each) of 50 µM 

substrate (cys-bridged H-Abz-Cys-Ala-Pro-Ala-Cys-Ntr-NH BB2BB), 125 mM DTT and 1 µM 

FKBP12.6 or 4.76 µM GST-SESTD1, respectively, were mixed manually on ice before 

fluorescence measurement was started. All solutions were prepared in 50 mM HEPES (pH 

7.2), except GST-SESTD1 that was dialyzed against 50 mM Tris (pH 8).  

2.5.9 Phospholipid overlay assay 

PIP strips are commercially available nitrocellulose membranes containing 100 pmol 

samples of 15 different phospholipids and a blank sample. They were blocked with blocking 

buffer for PIP strips (1hr, RT) and incubated with blocking buffer containing 500 ng/mL 

purified GST or GST-SESTD1 (4 hr, RT). After washing (3 times with blocking buffer), they 

were incubated at 4°C overnight with the primary antibody anti-GST (1:2,000 in blocking 

buffer). Three wash steps with TBST (pH 8) were followed by 45 min incubation with the 

secondary HRP-conjugated anti-rabbit antibody (1:20,000 in blocking buffer). The 

membranes were washed again three times with TBST (pH 8), incubated with 1 mL Lumi-

LightPLUS Western blotting substrate (5 min) and the chemiluminescent signals were 

analyzed with a Lumi imager.  

2.5.10 Cova-PIP specificity plate assay 

The GST-tagged PH-domain of LL5-α, GST alone or GST-SESTD1 were diluted in blocking 

buffer for PIP strips. Cova-PIP specificity plates loaded with 10 or 100 pmol PIP BBnBB per well 

were incubated with 100 µL protein solution/well (3 hr, gentle agitation, RT). Plates were 

washed manually 3 times with blocking buffer for PIP strips before incubation with 100 µL 

anti-GST (1:1,000 in blocking buffer) for 1hr (gentle agitation, RT). Plates were washed 

4 times with TBST for PIP strips using an automatic plate washer. For dissociation-enhanced 

lanthanide fluorescence immunoassays (DELFIA), 100 µL secondary Eu-N1-labelled anti-

rabbit antibody (500 ng/mL in blocking buffer) were added per well and incubated 1 hr (gentle 

agitation, RT). Plates were washed 4 times with TBST and an automatic plate washer before 

100 µL enhancer solution were added per well. After 20 min incubation, fluorescence of the 

lanthanide was excited (λ BBexc BB = 340 nm) and read (λ BBemBB = 620 nm) in a Tecan ultra plate reader. 

2.5.11 Immunofluorescence  

Five coverslips/well were placed in a 6-well plate and coated with poly-L-lysine (see Chapter 

2.4.1). 5x 10 PP

5
PP cells were plated per well in a volume of 2 mL. Next day they were transfected 

with siRNA (see Chapter 2.4.1). 24 hr post transfection, the coverslips were transferred into a 

24-well plate, washed twice with PBS (137 mM NaCl, 2.7 mM KCl, 10.1 mM Na BB2BBHPOBB4 BB, 

1.4 mM KHBB2BBPOBB4BB) and fixed 15 min with 4% paraformaldehyde (in PBS). After washing with 

PBS, cells were permeabilized with 0.1% Triton X-100 (in PBS) for 15 min and washed 
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again. They were blocked 1 hr with LiCor blocking buffer and thereafter incubated with the 

primary antibody (diluted in LiCor blocking buffer:PBS = 1:1) for 1 hr. After washing, they 

were incubated with the secondary fluorescent-labelled antibody (diluted in LiCor blocking 

buffer:PBS = 1:1) for another hour. Four wash steps were followed by incubation with 

Hoechst 33258 (1:10,000 in PBS) for 1 min and two additional wash steps. The coverslips 

were mounted in Permafluor mounting medium and air-dried overnight. Probes were 

analyzed with an inverted microscope (DM IRE2, Leica) and Leica Confocal Software (Leica, 

Solms, Germany). 

2.6 Fluorometric [CaPP

2+
PP] BBi BB measurements 

Changes in cytosolic calcium [Ca PP

2+
PP] BBi BB were measured using the Ca PP

2+
PP-sensitive fluorescent 

dyes fluo-4 AM and fura-2 AM. The latter is a widely used indicator, whose fluorescence 

excitation maximum shifts towards shorter wavelengths upon Ca PP

2+
PP binding, while the 

fluorescence emission maximum is relatively unchanged. Typically, the fluorescence 

intensities excited at 340 nm (F BB340BB) and 380 nm (F BB380BB) are measured and the F BB340BB/F BB380BB ratio is 

calculated. While FBB340 BBincreases upon binding of Ca PP

2+
PP, FBB380 BBdecreases and an increase in 

[Ca PP

2+
PP] BBi BB consequently results in a rising FBB340BB/F BB380BB ratio. Factors that influence fluorescence 

intensity, such as cell thickness, camera sensitivity, dye concentration and loss by leakage 

and photobleaching, should affect measurements at both excitation wavelengths to the same 

extent (Grynkiewicz et al., 1985). Thus, ratiometric measurements are less disturbed by 

these effects. They were performed with single cells (CaPP

2+
PP imaging) as well as cell 

populations (FLEX experiments). 

 

Ca PP

2+
PP imaging 

Cells grown on poly-L-lysine-coated 24-mm glass coverslips were loaded in cultivation 

medium supplemented with 2 µM fura-2, acetoxy methyl ester (AM; 30 min, 37°C) and 

subsequently allowed to de-esterify (through intracellular esterases cleaving off the acetate 

residue) in standard extracellular solution (15 min, 37°C). Changes in [Ca PP

2+
PP] BBi BB were measured 

using an imaging system that consists of a xenon arc lamp, a monochromator, an inverted 

microscope (Axiovert 200) and a charge-coupled device (CCD) camera. Fluorescence was 

excited alternating at 340 nm and 380 nm, long-pass filtered at 440 nm and captured at 2 sec 

intervals. The 340/380 nm excitation ratio of selected cell areas was calculated with T.I.L.L. 

vision 4.0 software (T.I.L.L. Photonics, Gräfelfing, Germany) after correction for background 

fluorescence. All experiments were performed in a recording chamber with approximately 

1 mL volume. 
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FLEX experiments 

20,000-40,000 cells/well were seeded in black poly-L-lysine-coated glass bottom 96-well 

plates (Sensoplates) and grown overnight to an almost confluent monolayer. They were 

loaded in 100 µL standard extracellular solution supplemented with 2 µM fura-2 AM (30 min, 

37°C) and allowed to de-esterify (15 min, 37°C). Intracellular calcium signals were 

ratiometrically measured in a benchtop scanning fluorometer (FLEX). Fluorescence was 

excited alternating at 340 nm and 380 nm, long-pass filtered at 495 nm and captured at 4 sec 

intervals. The FBB340BB/F BB380BB ratio was calculated using SoftMax Pro software (Molecular Devices, 

Munich, Germany). Baseline fluorescence was detected for 30 sec, before an agonist was 

applied with the FLEX pipettor. Since the FLEX station has an 8-channel pipettor, it takes 

more time for reading a 96-well plate than a fluorometric imaging plate reader (FLIPR) with a 

96-channel pipettor. Therefore, a FLIPR was used for standard inhibition assays in well 

characterized FITR cell lines. 

 

In HM1-C5Y cells, CaPP

2+ 
PPrelease was calculated as area under the curve in Ca PP

2+
PP free standard 

extracellular solution. TRPC5-mediated Ca PP

2+
PP influx was calculated by subtracting Ca PP

2+ 

PPrelease from the area under the curve in standard extracellular solution.  

 

FLIPR measurements 

Cells grown to an almost confluent monolayer on black poly-D-lysine coated 96-well plates 

were washed once with standard extracellular solution (E) and incubated (30 min, RT) with 

dye solution (2 µM fluo-4 AM, 0.02% Pluronic F127, 0.1% BSA in E). After washing three 

times with E, induced and non-induced HEK293 FITR cells were either incubated with buffer 

only or with different concentrations of steroid (10 min). Fluo-4 fluorescence was excited at 

488 nm with an argon laser, measured and imaged in the FLIPR and activators were applied 

by the FLIPR pipettor. Signals were analyzed with the software provided by the 

manufacturer.  

The half maximal inhibitory concentrations (IC BB50BB) of norgestimate, progesterone and 

levonorgestrel on TRPC3 and TRPC6 HEK293 FITR cells were calculated based on area 

under the curves. Ca PP

2+
PP influx following activation into induced cells that were not incubated 

with steroid was definded as 0% inhibited. Ca PP

2+
PP influx into induced cells that were neither 

incubated with steroid nor activated with OAG was set to 100% inhibition.  

The ICBB50BB values on TRPC4 and TRPC5 HEK293 FITR cells were calculated at t = 62 sec, the 

time point of the channel signal maximum. The raw TRPC4 and TRPC5 channel signals 

were calculated by subtracting the curve of non-induced, stimulated cells from induced, 

stimulated cells. CaPP

2+
PP influx following activation into induced cells not treated with steroid was 
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defined as 0% inhibited. Ca PP

2+
PP influx into non-induced, stimulated cells was set to 100% 

inhibition.  

 

All fluorometric [CaPP

2+
PP] BBi BB measurements were performed at room temperature. 

2.7 Patch clamp recordings 

Whole-cell currents of endogenous or recombinant channel proteins were measured with the 

patch clamp technique (Neher & Sakmann, 1976). A heat-polished patch pipette with 

resistances of 2–4 MΩ was pulled from a borosilicate glass capillary with filament by using a 

DMZ-Universal puller. It was filled with standard intracellular solution and pressed against the 

surface of a single cell that had no contact to its neighbours. The cell-attached configuration 

was obtained by applying a negative pressure that sealed the cell membrane tightly to the 

glass wall of the pipette (seal resistance above 1 GΩ) thus electrically isolating it from its 

surroundings. When more suction was applied, it destructed the membrane patch under the 

pipette while the high resistance seal between cell membrane and patch pipette remained 

intact. Electrical access to the cell’s interior was gained via a silver/silver chloride electrode 

coupled to the electrical circuit depicted in Figure 10. This so called whole-cell configuration 

allowed measuring the current flow through all ion channels in the cell membrane of a single 

cell that are opened under defined conditions.  

 

bath electrode

cell

Ag/AgCl
electrode

glass capillary

cover slip

- +

- +

Rf

Vout Vh

Vh
Vm

Vout

 
Figure 10: Schematic patch clamp circuit in the whole-cell configuration (adapted from 
Numberger & Draguhn, 1996). The Ag/AgCl electrode is connected to the inverting (-) input of an 
operational amplifier that measures the cell membrane potential (VBBm BB). The non-inverting (+) input of 
the amplifier is connected to the signal generator that determines the holding potential (VBBhBB). By 
subtracting the membrane from the holding potential (V BBhBB – VBBm BB= VBBout BB) the operational amplifier detects 
when ionic currents pass the cell membrane as the cell thus deviates from the holding potential. To 
readjust the cell to VBBhBB (“voltage clamp”), VBBout BBis directed to a feedback resistor (RBBfBB) generating a current 
that is opposite and equal to the ionic current and injectedBB BBinto the cell (resulting in VBBm BB = VBBhBB). The 
current through the patch is not measured directly but can be calculated as RBBfBB is known and VBBout BB 
measured by a differential amplifier. 
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24 hr prior to experiments, coverslips were placed in a 24-well plate, coated with poly-L-

lysine (see Chapter 2.4) and 10-20,000 cells/well were plated in a volume of 0.5-1 mL. 

1 µg/mL doxycycline was added to FITR cells to induce TRPC channel protein expression 

(see Chapter 2.4). Next day, coverslips were transferred to a recording chamber and cells 

were continuously superfused with standard extracellular solution and low pressure (approx. 

10 kPa, 8-channel valve perfusion system). For A7r5 cells a modified extracellular solution 

with 200 µM Ca PP

2+
PP was used. Whole-cell recordings were performed with an EPC-10 amplifier 

and Pulse software (HEKA, Lambrecht, Germany). Cells were held at a potential of -70 mV, 

and current-voltage (I-V) relationships were routinely measured every 3 sec from voltage 

ramps (-100 mV to +80 mV) lasting 200 msec. 

Data was acquired at 6.67 kHz and filtered with 2.22 kHz. The series resistance was 

compensated. In some experiments channels were activated by intracellular application of 

AlF BB4PBPB

-
PP. For its infusion, 2 µL 3 mM AlCl BB3BB were mixed with 4 µL 0.5 M NaF and diluted in 200 µL 

standard intracellular solution. All experiments were performed at room temperature. 

Currents were leak-corrected by subtracting completely blocked currents from currents of 

activated cells. As TRPC mediated currents decay over time they were interpolated before 

and after application of a modulator. Current data obtained with the modulator were 

subsequently normalized to the interpolated values. Mean current densities were calculated 

by normalizing current amplitudes to the cell capacitance. 

2.8 In vitro vascular function 

Adult male Wistar-Unilever rats (8–11 weeks old; Harlan Winkelmann, Borchen, Germany) 

were sacrificed by decapitation. Thoracic aortas were excised quickly, transferred to cold 

physiological salt solution (PSS) and rinsed. After connective tissue and perivascular fat had 

been carefully removed, aortas were dissected in 5 mm rings and hung on special hooks 

(Hugo Sachs, March-Hugstetten, Germany) by inserting two parallel wires into the lumen. 

The upper hook was connected to a force transducer and the lower hook fixed the aortic 

rings to the bottom of an organ bath thus allowing isometric tension recording. The aortic 

rings were equilibrated in PSS (37°C, 15 min) and bath solutions were continuously gassed 

with carbogen (95% OBB2BB and 5% COBB2BB) to provide oxygenation and pH of 7.4. To mimick the 

physiological state, the rings were set at 1000 mg passive tension (in 200 mg steps). Vessels 

strongly contracting after application of 60 mM KCl were defined as intact. They were 

washed out and further used to measure cumulative dose-response curves for norgestimate. 

Relaxation was expressed as a percentage of the steady-state tension produced by 

preceding phenylephrine application. 
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2.9 Statistics 

Averaged data is expressed as means ± SEM and number of experiments is indicated as “n”. 

For statistical analysis, Wilcoxon test was performed with SAS 9 software. P values less than 

0.05 were considered as statistically significant and depicted as: P < 0.05: *; P < 0.01: **; 

P < 0.001: ***.  

The half maximal inhibitory concentration (ICBB50BB) was calculated with SigmaPlot (Systat 

software, San Jose, USA) and the sigmoidal Hill-model: f = ax PP

b
PP/(c PP

b
PP+xPP

b
PP). The half maximal 

effective concentration (ECBB50BB) was calculated analogously with f = yBB0BB+axPP

b
PP/(c PP

b
PP+xPP

b
PP).  
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3 Results 

3.1 Differential inhibition of TRPC channels by norgestimate 

According to the World Health Organization (WHO), 30% of all deaths worldwide were 

caused by various cardiovascular (CV) diseases in 2005 (WHO, 2007). TRPC channels are 

considered important pharmacological targets for the development of novel medicines for 

several CV pathologies including cardiomyopathy, vascular remodelling, hypertension and 

high endothelial permeability (Dietrich et al., 2007a). So far, characterization of native TRPC 

channels in cardiovascular tissues is hindered by the lack of specific tool compounds that 

discriminate well between and within the TRPC subfamilies. Cloned channels were at first 

investigated in heterologous overexpression systems generating controversial data in terms 

of channel properties and regulation. Valuable insight into native channel properties was 

gained by their down-regulation in primary cells as well as studying gene-deficient mouse 

models. Nevertheless, specific pharmacological TRPC inhibitors would be very useful to 

further elucidate the channels’ roles under physiological as well as pathophysiological 

conditions. Preliminary tests of ion channel-modulating compounds had identified 

norgestimate as a putative inhibitor of TRPC-mediated Ca PP

2+
PP-influx. S 

The following studies were performed to evaluate in detail the potential of this compound as 

a specific pharmacological TRPC6 modulator.  

3.1.1 FLIPR measurements 

Differential inhibition of TRPC channels by norgestimate 

Our initial experiments were aimed to determine the activity of norgestimate towards different 

members of the TRPC family. HEK293 cell lines heterologously expressing homomeric 

channels under the control of an inducible promoter (Flp-In T-Rex system, see Chapter 2.4) 

were used throughout these studies. TRPC3 and TRPC6, two representative members of the 

DAG-sensitive TRPC3/6/7 subfamily, were tested as well as the DAG-insensitive TRPC4 and 

TRPC5. TRPC1 was not tested since its expression does not result in measurable ion 

currents (Strubing et al., 2001).  

Fluorometric measurements of Ca PP

2+
PP entry using FLIPR showed that application of oleoyl-2-

acetyl-sn-glycerol (OAG), a membrane permeable diacylglycerol analogue, to induced 

HEK293 Flp-In T-Rex  (FITR) cells expressing TRPC3 or TRPC6 resulted in a robust 

increase in the intracellular Ca PP

2+
PP concentration (see Fig. 11). This increase was completely 

absent in non-induced cells indicating that the measured responses were solely due to 

TRPC3 and TRPC6 activity (data not shown). Ca PP

2+
PP influx following application of 30 µM OAG 

was strongly reduced in cells preincubated with 30 µM norgestimate (Fig. 11 A, C). The ICBB50BB 
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value of norgestimate on TRPC3 was 2.8 ± 0.4 µM (n = 2, Fig. 11 B). Norgestimate was 

similarly active on TRPC6 with an IC BB50BB of 5.2 ± 0.4 µM (n = 4, Fig. 11 C). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Norgestimate inhibits TRPC3- and TRPC6-mediated CaPP

2+ 
PPinflux. (A, C) Time-

dependent changes of [Ca PP

2+
PP]BBi BB in fluo-4-loaded induced TRPC3 HEK293 FITR cells (A) and TRPC6 

HEK293 FITR cells (C). TRPC-mediated CaPP

2+
PP influx following application of 30 µM OAG was strongly 

reduced in cells preincubated with 30 µM norgestimate (NG). Representative traces are shown. Time 
scale bar 1 min. (B, D) Determination of norgestimate IC BB50 BBvalues on TRPC3 (B) and TRPC6 (D). Data 
is shown as means of 2 wells (B) and 4 wells (D) with 45,000 cells per well.  
 
When these experiments were performed, no direct physiological stimuli of TRPC4 and 

TRPC5 were known. Therefore, both channels had to be stimulated indirectly, e.g. by 

application of trypsin, a protease-activated receptor (PAR) stimulating protease. Trypsin is 

able to activate all four known PAR subtypes and the messenger RNA (mRNA) of three of 

them (PAR BB1BB, PARBB2BB and PARBB3BB) was shown to be endogenously present in HEK293 cells 

(Kawabata et al., 1999). PAR activation leads to the depletion of calcium stores in the ER. 

This PI response (see Chapter 1.1.1) is independent of the channel’s presence but 

consequently leads to activation of receptor-operated channels like TRPC4 and TRPC5. 

Comparison of trypsin-activated Ca PP

2+
PP entry into induced and non-induced TRPC4 and 

TRPC5 HEK293 FITR cells showed that channel induction significantly increased Ca PP

2+
PP entry. 

Basic prerequisite to measure the effect of norgestimate on both channels under these 

conditions is to exclude PAR antagonism of the compound. Hence, calcium release from ER 

was compared in non-induced TRPC5 HEK293 FITR cells preincubated with 30 µM 
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norgestimate or buffer only (10 min). Kinetics and quantity of calcium store release in cells 

treated with 30 µM norgestimate were not changed compared to untreated cells. Therefore, 

norgestimate is not a PAR antagonist (Fig. 12) and TRPC4 and TRPC5 activation via PAR 

stimulation is suitable to measure the channel’s inhibition by norgestimate. 

 

 
Figure 12: Norgestimate is not a PAR-
antagonist. Time-dependent changes in 
[CaPP

2+
PP]BBi BB of fluo-4-loaded TRPC5 HEK293 FITR 

cells. Rise in [CaPP

2+
PP]BBi BB following application of 

200 nM trypsin (PI response) in non-induced 
TRPC5 HEK293 FITR cells was not 
suppressed in cells preincubated with 30 µM 
norgestimate (NG). Representative traces are 
shown. Time scale bar 1 min.  
 

 

In contrast to TRPC3 and TRPC6, application of norgestimate to TRPC4 or TRPC5 

expressing cells only caused a minor decrease of channel-mediated Ca PP

2+
PP entry (Fig. 13 A, 

C). ICBB50BB values of > 30 µM were determined for both TRPC4 (n = 2, Fig. 13 B) and TRPC5 

(n = 4, Fig. 13 D). Channel inhibition by 30 µM norgestimate was amounted to 12.7% and 

32.0% for TRPC4 and TRPC5 respectively. 
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Figure 13: Small effects of norgestimate on TRPC4- and TRPC5-mediated CaPP

2+ 
PPinflux. (A, C) 

Time-dependent changes in [CaPP

2+
PP]BBi BB of fluo-4-loaded induced TRPC4 (A) and TRPC5 HEK293 FITR 

cells (C). TRPC-mediated CaPP

2+
PP influx following application of 200 nM trypsin was only slightly reduced 

in cells preincubated with 30 µM norgestimate (NG). Representative traces are shown. Time scale bar 
1 min. (B, D) Determination of norgestimate ICBB50 BBvalues on TRPC4 (B) and TRPC5 (D). Data is shown 
as means of 2 wells (B) and 4 wells (D) with 47,000 cells per well. 
 

Inhibition of TRPC channels by progesterone 

Norgestimate is a gestagen (a synthetic form of the naturally occurring female sex hormone 

progesterone). Therefore, it was tested whether progesterone itself inhibits TRPC channels. 

After PAR antagonism of progesterone was excluded (Fig. 14), experiments were performed 

similarly to the norgestimate measurements. 

 

 
Figure 14: Progesterone is not a PAR-
antagonist. Time-dependent changes in 
[CaPP

2+
PP]BBi BB of fluo-4-loaded TRPC5 HEK293 FITR 

cells. Rise in [CaPP

2+
PP]BBi BB following application of 

200 nM trypsin (PI response) in non-induced 
TRPC5 HEK293 FITR cells was not 
suppressed in cells preincubated with 30 µM 
progesterone (PG). Representative traces are 
shown. Time scale bar 1 min. 
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Progesterone inhibited all three channels tested. While it was much more potent than 

norgestimate on TRPC4 (ICBB50BB of 6.9 ± 0.5 µM, n = 2; Fig. 15 B) and TRPC5 (ICBB50BB of 

11.1 ± 0.4 µM, n = 4, Fig. 15 D), TRPC6 was less potently inhibited by progesterone (ICBB50BB of 

18 ± 3 µM, n = 4, Fig. 15 F) than by norgestimate.  

 

 

 
Figure 15: Progesterone inhibits TRPC-mediated CaPP

2+ 
PPinflux. (A, C, E) Time-dependent changes in 

[CaPP

2+
PP]BBi BB of fluo-4-loaded induced TRPC4 (A) and TRPC5 (C) and TRPC6 (E) HEK293 FITR cells. 

TRPC-mediated CaPP

2+
PP influx following application of 200 nM trypsin or 30 µM OAG was reduced in cells 

preincubated with 30 µM progesterone (PG). Representative traces are shown. Time scale bar 1 min. 
(B, D, F) Determination of progesterone IC BB50 BBvalues on TRPC4 (B), TRPC5 (D) and TRPC6 (F). Data 
is shown as means of 2 wells (B) and 4 wells (D, F) with 45,000-47,000 cells per well. 
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Effect of progesterone, norgestimate and levonorgestrel on TRPC6 

Whether or not norgestimate itself is active in vivo or merely serves as levonorgestrel 

prodrug is controversially discussed (Stanczyk, 1997). Therefore, the effect of levonorgestrel 

was also exemplarily tested on TRPC6-mediated Ca PP

2+
PP-influx.  
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Figure 16: Chemical structures of progesterone (left), norgestimate (middle) and levonorgestrel 
(right). 
 
In contrast to norgestimate (Fig. 13 B, D) and progesterone (Fig. 15 E, F) that both inhibited 

TRPC6, levonorgestrel was not active on the channel (Fig. 17 B). Even at 30 µM, the highest 

levonorgestrel concentration tested, TRPC6 channels were not inhibited (Fig. 17 A).  

 

 
Figure 17: TRPC6 is not inhibited by levonorgestrel. (A) Time-dependent changes in [CaPP

2+
PP]BBi BB of fluo-

4-loaded induced TRPC6 HEK293 FITR cells. TRPC-mediated CaPP

2+
PP influx following application of 

30 µM OAG was not reduced in cells preincubated with 30 µM levonorgestrel (LG). Representative 
traces are shown. Time scale bar 1 min. (B) Determination of levonorgestrels IC BB50 BBvalue on TRPC6. 
Data is means of 4 wells with 45,000 cells per well.  
 
In summary, these FLIPR measurements showed that certain gestagens (norgestimate and 

progesterone) inhibit channels of the TRPC3/6/7 subfamily as well as of the TRPC4/5 

subfamily when applied at micromolar concentrations. However, this is not a general effect of 

gestagens since the norgestimate metabolite levonorgestrel was completely inactive on 

TRPC6.  

Norgestimate was more active on the TRPC3/6/7 than on the TRPC4/5 subfamily, whereas 

progesterone showed similar effects on the two subfamilies. 
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3.1.2 Patch clamp recordings 

Differential effect of norgestimate on recombinant homomeric TRPC5 and TRPC6 channels  

The inhibition of TRPC6- and TRPC5-mediated Ca PP

2+
PP-influx by norgestimate, which has been 

monitored in cell populations with fluorometric experiments, was then validated by whole-cell 

patch clamp recordings of single cells. Channels were indirectly excited with aluminium 

tetrafluoride (AlF BB4PBPB

-
PP) that was applied intracellularly via the patch pipette. The same stimulus 

was used to activate both channels for better comparability of the norgestimate effect. AlFBB4PBPB

-
PP 

activates G proteins by mimicking guanosine triphosphate (GTP; Sternweis & Gilman, 1982; 

Bigay et al., 1985). Activated GBBq/11 BB proteins stimulate PLC activity and in turn opening of 

TRPC channels (Fig. 18 A, B). When 10 µM norgestimate were applied to activated TRPC6 

channels, the current measured at resting membrane potential was reduced to 10.1 ± 3.1% 

(n = 15, Fig. 18 C). This inhibition was reversible as the current amplitude increased again 

after norgestimate wash out. The subsequent block by 10 µM lanthanum (LaPP

3+
PP) was complete 

and reversible (Fig. 18 A) and thus used for background (leak) calculation. By contrast, 

application of 10 µM norgestimate to stimulated TRPC5 channels only had a minor effect 

with a current reduction to 74.1 ± 5.7% (n = 20, Fig. 18 C). Since these channels are 

potentiated by micromolar LaPP

3+ 
PPconcentrations (Jung et al., 2003), 2-aminoethoxydiphenyl 

borate (2-APB), a known TRPC5 blocker (Xu et al., 2005) that completely and reversibly 

blocked the channel at 10 µM, was used for leak correction (Fig. 18 B). 
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Figure 18: Norgestimate selectively blocks TRPC6 and TRPC5-mediated currents. Effect of 
10 µM norgestimate (NG) on whole-cell currents evoked by AlFBB4PBPB

-
PP infusion into induced TRPC6 (A) and 

TRPC5 (B) HEK293 FITR cells. Whole cell currents recorded at -70 mV (left panels) and the 
corresponding current-voltage (I-V) relationships are shown (right panels). For background correction 
channels were completely blocked with 10 µM LaPP

3+
PP (A) or 10 µM 2-APB (B). The curves were obtained 

during voltage ramps from -100 to +80 mV. (C) Statistical analysis of the norgestimate effects. 
TRPC5-mediated currents were reduced to 74.1 ± 5.7% (n = 20) and TRPC6-mediated currents were 
reduced to 10.1 ± 3.1% (n = 15) by 10 µM norgestimate (P < 0.001, Wilcoxon test, two-sided). 
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Norgestimate blocks native heteromeric TRPC6/7 channels  

So far norgestimate was tested on homomeric channels heterologously expressed in 

HEK293 cells. It is well known that TRPC channels can heteromultimerize in vivo (reviewed 

by Schaefer, 2005), whereas the exact composition of native channel complexes is still 

elusive. Therefore, it was interesting to see whether norgestimate also inhibits endogenous 

TRPC channels.  
 
 
 
Figure 19: Norgestimate is not a VBB1BB receptor 
antagonist. Time-dependent changes in [CaPP

2+
PP]BBi BB 

of fura-2-loaded A7r5 cells. Cells were 
preincubated with or without (control) 10 µM 
norgestimate (NG) in calcium-free standard 
extracellular solution (1 mM EGTA) for 5 min 
before stimulating the VBB1BB receptor by application 
of 100 nM [ArgPP

8
PP]-vasopressin (AVP). Data is 

shown as means of 33 cells (control) and 
36 cells (10 µM NG). Time scale bar 1 min. 

 
The A7r5 cell line (derived from rat thoracic aorta SMCs) is a model system expressing 

native TRPC6-containing channel complexes (Jung et al., 2002; Soboloff et al., 2005). These 

channels were indirectly stimulated by [Arg PP

8
PP]-vasopressin (AVP), a vasoconstricting peptide 

that activates the endogenous vasopressin VBB1ABB receptor in these cells (Thibonnier et al., 

1991). Before whole-cell patch clamp recordings were performed, it was shown first in 

calcium imaging experiments that norgestimate does not generally suppress V BB1ABB receptors 

(Fig. 19). Subsequently, A7r5 cells were superfused with 100 nM AVP stimulating non-

selective cationic currents that displayed the biophysical properties of TRPC6 channels 

(Fig. 20).  

 

 
Figure 20: Norgestimate blocks AVP-activated non-selective cation currents in A7r5 cells. Effect 
of 10 µM norgestimate (NG) on whole-cell currents evoked by 100 nM AVP in A7r5 cells. Currents 
were recorded at -60 mV (left panels) and the corresponding I-V relationships are shown (right 
panels). The curves were obtained during voltage ramps from -100 to +80 mV. L-type voltage-gated 
CaPP

2+
PP channels were blocked by 5 µM nimodipine (ND) during the whole experiment. 
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The doubly rectifying I-V relationship was similar to that of heterologously expressed TRPC6 

homomers (Fig. 18 A). When 10 µM norgestimate were applied to AVP-stimulated A7r5 cells, 

the native current measured at resting membrane potential was reversibly reduced to 

13.5 ± 6.0% (n = 8, Fig. 20), which is in good agreement with its effect on recombinant 

TRPC6 channels (Fig. 18 A, C). 

3.1.3 Isometric tension recording of aortic rings 

It was postulated that TRPC6 activation leads to depolarization of smooth muscle cell 

membranes (Soboloff et al., 2005). Consequently, L-type voltage-gated Ca PP

2+
PP channels are 

activated and finally mediate muscle contraction. Hence, inhibition of TRPC6 by 

norgestimate in vessels should lead to relaxation. We tested the endothelium-independent 

effect of norgestimate on the vascular reactivity of male rat thoracic aorta by isometric 

tension recording in an organ bath. Endothelial nitric oxide synthases (eNOS, iNOS) were 

inhibited by application of 300 µM N-nitro-L-arginine methyl ester (L-NAME; Moncada et al., 

1991). Effective suppression of the endothelium was demonstrated by absent relaxation of 

vessel rings precontracted with 100 nM phenylephrine in response to 10 µM acetylcholine 

(Fig. 21). Application of increasing concentrations of norgestimate to precontracted aortic 

rings led to their relaxation. The half maximal effective dose (EC BB50BB) value for norgestimate 

relaxation averaged 15.1 µM (n = 6). The solvent for norgestimate used in this study was 

DMSO which by itself had no significant effect on tension, the maximal DMSO concentration 

of 0.33% resulted in 3.7% ± 8.3% (n = 3) relaxation of phenylephrine-induced contraction 

(data not shown). 
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Figure 21: Endothelium-independent relaxation of precontracted rat aortic rings by 
norgestimate. (A) Application of norgestimate induced significant relaxation of L-NAME treated aortic 
rings precontracted with phenylephrine. (B) Concentration-relaxation curve of norgestimate (n = 6). 
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3.2 Physical interaction of SESTD1 and TRPC channels 

3.2.1 Y2H results 

The second part of the present work was designed to identify novel TRPC4-interacting 

proteins. Endothelial dysfunction is believed to be a major cause of various cardiovascular 

diseases (Kwan et al., 2007) and evidence indicates that TRPC4 plays a critical role in 

endothelial function. It is associated with regulation of endothelium-dependent vascular 

relaxation (Freichel et al., 2001), may contribute to oxidative-stress induced endothelial 

damage (Balzer et al., 1999; Poteser et al., 2006) and is necessary for endothelial barrier 

function (Tiruppathi et al., 2002). TRPC4 expression in aortic endothelial cells has been 

reported by several groups (Chang et al., 1997; Garcia & Schilling, 1997; Poteser et al., 

2006; Antoniotti et al., 2006). In search of novel proteins that interact with the cytosolic 

C-terminus of mTRPC4α (aa 615-974), a human aorta cDNA library was screened with a 

modified yeast two-hybrid system (Fields & Song, 1989). So far, no X-ray structures of TRPC 

channels exist but due to similarity with voltage-gated K PP

+
PP channels (Clapham et al., 2001), 

they are expected also to form tetramers. Although our TRPC4 bait contained a putative 

TRPC tetramerization domain (Lepage et al., 2006), we wanted to assure the protein 

assembly in the physiological multimeric state. Therefore, the C-terminus of TRPC4 was 

fused to a leucine zipper domain that has been shown previously to direct protein 

tetramerization. Eleven proteins (listed in Table 3) were found to physically interact with the 

mTRPC4α-C-terminus in this transcriptional assay. 

 
Table 3: Y2H preys. 

Definition Gene name Gene Bank accession no. 
Ankyrin repeat domain 35 ANKRD35 NM_144698 
Apolipoprotein A-I binding protein                               APOA1BP NM_144772 
Bromodomain adjacent to zinc finger domain BAZ1B AB032253     
High-mobility group protein 2-like1 isoform b   HMG2L1 CR456504 
Makorin RING finger protein 1 MKRN1 NM_013446   
Pre-B-cell leukemia homeobox interacting protein 1 PBXIP1 NM_020524                
Sarcoma antigen NY-SAR-48   NM_033417 
SEC14 and spectrin domains 1 SESTD1 NM_178123 
Spectrin, alpha, non-erythrocytic 1  SPTAN1 U83867 
Structural maintenance of chromosomes 3 SMC3 AF067163 
Talin 2                                                                           TLN2 NM_015059 

 
None of these proteins has been described before to interact with the TRPC4 channel. 

SESTD1 seemed to be the most interesting potential interaction partner because a domain 

search (Marchler-Bauer & Bryant, 2004) revealed the presence of an N-terminal Sec14p-like 

lipid-binding domain (Fig. 22) in SESTD1. The conserved Sec14-motif is known to bind and 

transport cellular phospholipids (Saito et al., 2007). Several reports have shown regulation of 
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TRP channels by phospholipids, in particular PIP BB2BB (Rohacs, 2007). Thus, it was tempting to 

speculate that SESTD1 is involved in the regulation of TRPC4. In addition to the Sec14p-like 

lipid-binding domain, two helical structures called spectrin repeats were found in SESTD1. 

These domains are known to mediate protein-protein interactions (Djinovic-Carugo et al., 

2002) and are found in several cytoskeletal proteins. The full length SESTD1 clone was 

isolated from the human aorta cDNA library and its deduced amino acid sequence is identical 

to GenBank accession no. NP_835224 except for one exchange (H508Q). It is based on a 

single point mutation at nucleotide 1571 (NM_178123) that can also be found in the genomic 

sequence. Another point mutation found at nucleotide 1748 is silent. 

 
Figure 22: Topology of SESTD1. The full length protein consists of 696 amino acids (expected 
molecular weight 79 kDa) and is composed of three structural domains.  
Sec 14 (aa 8-147): Sec14p-like lipid-binding domain; Spec 1 (aa 233-381), Spec 2 (aa 430-605): 
spectrin repeats 

3.2.2 Mapping of the TRPC4-SESTD1 interaction site 

In order to verify the results of our initial screen and to define the interaction site of TRPC4 

with SESTD1 in more detail a directed yeast two-hybrid analyses was performed. Yeast was 

cotransformed with SESTD1 as prey and various C-terminal mTRPC4α protein fragments as 

baits and plated on selective media. By iterative shortening of the TRPC4-C-terminus we 

identified that a small stretch of 29 amino acids (aa 700-728) was sufficient to mediate the 

interaction with full length SESTD1 (Fig. 23). Interestingly, the identified SESTD1 binding site 

in TRPC4 is highly conserved in TRPC5 and overlaps with the previously described 

CaM/IPBB3BBR binding (CIRB) site (Tang et al., 2001), indicating that SESTD1 might also interact 

with TRPC5. Analogous to our above approach we next tried to define the TRPC4 binding 

site on SESTD1. Three SESTD1 constructs, SESTD1-Sec 14 (aa 1-192), SESTD1-Spec 1 

(aa 193-406) and SESTD1-Spec 2 (aa 407-696) as depicted in Figure 24 were constructed 

by inserting the respective SESTD1 gene fragments into the yeast expression vector pACT2 

leading to their expression as a fusion to the GAL4 activation domain (GAL4-AD). These 

constructs were co-transformed in yeast with the C-terminus of mTRPC4α as bait and 

survival of yeast colonies was assayed. To test the hypothesis that TRPC5 might also 

interact with SESTD1 the same experiments were performed with the C-terminus of 

mTRPC5 (aa 619-975). 
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Figure 23: Mapping of the SESTD1-binding site on the mTRPC4α-C-terminus. (A) Truncation of 
mTRPC4α-C-terminus. (B) Yeast colonies cotransformed with truncation mutants of mTRPC4α-
C-terminus (bait) and full length hSESTD1 (prey) were plated on selective -Trp/-Leu/-Ade/-His agar 
plates. Growth indicates protein-protein interaction. (C) The identified SESTD1 binding site is identical 
in both mTRPC4α and mTRPC4β and highly conserved in TRPC5. 
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Figure 24: GAL4-AD-SESTD1 constructs. Schematic description of GAL4-AD fusion constructs 
containing different portions of SESTD1 that were used in directed Y2H assays to detect interaction 
with TRPC4 and TRPC5 in yeast. 
 



 Results 66 

 

SESTD1-Spec 2

SESTD1-Spec 1

SESTD1-Sec 14

mTRPC4α-C-
terminus

mTRPC5-C-
terminus

SESTD1 full length

50

37

75
100
150

10
% In

put

GST-S
ESTD1

GST
kDa Mark

er

The experimental results depicted in Figure 25 confirmed that TRPC5 also interacts with 

SESTD1. Both TRPC4 and TRPC5 bind to the first spectrin domain of SESTD1 but not to the 

Sec14p-like lipid-binding domain. Moreover, the mTRPC5-C-terminus independently 

interacts with the Spec 2 domain in this directed Y2H assay.  

 
 
 
 
 
 
 
Figure 25: Identification of Spec 1 as 
interaction site in SESTD1. Yeast colonies 
cotransformed with the mTRPC4α-C-terminus 
(positive control) or mTRPC5-C-terminus and full 
length SESTD1 or the SESTD1-Sec 14, -Spec 1, 
or -Spec 2 domains plated on -Trp/-Leu/-His/-Ade 
agar plates. Growth indicates protein-protein 
interaction. 

 

3.2.3 Biochemical verification of SESTD1-TRPC4/5 binding by GST pulldown  

GST pulldown assays were performed to confirm the physical interaction between SESTD1 

and mTRPC4 by a more direct method. In E. coli expressed and purified recombinant GST-

SESTD1 was used to pull down the overexpressed mTRPC4α-C-terminus (aa 615-974). In 

accordance with the yeast two-hybrid data, Figure 26 demonstrates that SESTD1 and the 

mTRPC4α-C-terminus can physically interact.  

 
 
 
 
 
 
Figure 26: GST-SESTD1 pulldown of mTRPC4α-C-terminus 
(aa 615-974). Lysates from HEK293 cells overexpressing mTRPC4α-
C-terminus (aa 615–974) were either incubated with GST-SESTD1 
(lane 3) or GST (negative control, lane 4). Lane 2 shows 10% of the 
lysate input. Samples were separated by SDS-PAGE and blotted onto 
nitrocellulose. The blot was developed with anti-TRPC4 (1:200) and 
secondary Alexa Fluor (AF) 680 goat anti-rabbit (1:2,500) antibody. 
 

We also tried to pull-down full length mTRPC4α protein with GST-SESTD1 fusion protein. 

However, as both proteins have a similar size, unspecific binding to SESTD1 interfered with 

the signal detected by anti-TRPC4 antibody. To study the interaction of the full length 

proteins we, therefore, carried out co-immunoprecipitation experiments (see Chapter 3.2.4). 
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Having shown that TRPC4 and SESTD1 physically interact in the pulldown assay, this 

approach was further adapted to investigate the interaction sites between mTRPC4α, 

mTRPC5 and SESTD1. We also included the shorter mTRPC4ß splice variant into these 

experiments. Compared to mTRPC4α, it is lacking 84 C-terminal amino acids outside the 

CIRB site (Schaefer et al., 2002). The same three SESTD1 domain constructs as depicted in 

Figure 24 were used in these studies but they were cloned into pGEX-5X-3 instead of pACT2 

and thus expressed as GST fusion proteins in the protease-deficient E. coli strain BL21 de3. 

Under the chosen conditions, it was not possible to purify enough amounts of GST-Sec 14 

(aa 1-192) with the Sec14p-like lipid-binding domain from bacteria. Induction of its 

expression seemed to be toxic as these transformants grew much slower than bacteria 

transformed with GST-Spec 1 (aa 193-406), GST-Spec 2 (aa 407-696) or full length GST-

SESTD1.  
 
 
 
 
 
 
 
Figure 27: Confirmation of Spec 1 as interaction 
site in SESTD1. (A, B) Anti-TRPC4 (1:200) 
immunoblot of samples precipitated with the indicated 
GST fusion proteins or GST from HEK293 cells 
overexpressing mTRPC4α (A) or mTRPC4ß (B). 
Lane 1 showing 10% of the lysate input (A, B, C) is 
stained turquoise (B) due to an artefact resulting from 
camera oversaturation. (C) Anti-TRPC5 (1:200) 
immunoblot of a similar experiment with HEK 293 
cells overexpressing mTRPC5. Blots were developed 
with secondary AF 680 goat anti-rabbit (1:2,500) 
antibody. 
 

 

All three channel proteins strongly interacted with the first spectrin domain (Fig. 27). In some 

blots, a weak binding to the second domain could also be observed. Thus, the combined 

results from the directed Y2H analyses (Chapter 3.2.2) and the GST pulldown studies 

confirmed that the first spectrin domain of SESTD1 is the main site of interaction with 

TRPC4α, TRPC4ß, and TRPC5. 

3.2.4 Co-immunoprecipitation 

Characterization of two polyclonal anti-SESTD1 antibodies  

Co-immunoprecipitations allow to investigate protein-protein interactions of native or 

recombinant proteins in vivo. As there were no commercial antibodies available against 

SESTD1, two polyclonal peptide antibodies were custom-made by Eurogentec. Anti-SESTD1 



 Results 68 

 

#147 antibody was directed against a sequence within the first spectrin domain (aa 265-280, 

CRQRSKRTQLEEIQQK) and anti-SESTD1 #148 was directed against the SESTD1-C-

terminus (aa 682-696, KRQQLRHPEMVTTES). Antibodies were affinity-purified on the 

respective peptides. 

When tested on Western blot, both antibodies detected overexpressed HA-tagged SESTD1 

in HM1 cell lysates (expected size 79 kDa). In addition, in non-transfected cells an 

endogenous protein co-migrating with HA-SESTD1 was recognized by both antibodies. 

Transfecting HM1 cells with siRNA duplexes directed against SESTD1 (see Chapter 3.3.3) 

specifically suppressed the band at 79 kDa, strongly supporting the notion that this protein is 

endogenous SESTD1. 
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Figure 28: Polyclonal SESTD1 antibodies detect endogenous and overexpressed SESTD1. (A) 
A Protein marker (M) and lysates from HM1 cells either not transfected (N) or transfected with HA-
tagged SESTD1 (T) were probed on Western blots with anti-HA and secondary Alexa Fluor 680 goat 
anti-rat (1:2,500) or anti-SESTD1 #147 and secondary AF 680 goat anti-rabbit (1:2,500). Anti-SESTD1 
#147 detected HA-SESTD1 as well as endogenous SESTD1 (in non-transfected cells) as proteins with 
an apparent mass around 80 kDa but additionally bound to several unrelated proteins with highest 
affinity to a protein of ~130 kDa. (B) Similar samples as in (A) were probed on Western blots with anti-
HA and secondary AF 680 goat anti-rat (1:2,500) or anti-SESTD1 #148 and secondary AF 680 goat 
anti-rabbit (1:2,500) antibodies. Anti-SESTD1 #148 detected HA-SESTD1 as well as endogenous 
SESTD1 (in non-transfected cells) but also unspecifically cross-reacted to an unrelated protein of 
~50 kDa. 
 
As depicted in Figure 28, anti-SESTD1 #147 recognized several proteins on Western blot 

independent of the dilution used. In addition to SESTD1, anti-SESTD1 #148 detected 

another protein with an apparent mass of 50 kDa. This protein was neither suppressed with 

anti-SESTD1 siRNA (see Chapter 3.3.3) nor detected with anti-SESTD1 #147 (Fig. 28 A), 

thus the antibody is cross-reacting with an unrelated protein.  

Unless stated otherwise the anti-SESTD1 antibody used in the following experiments was 

anti-SESTD1 #148. 
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Co-immunoprecipitation of heterologously expressed SESTD1 and mTRPC4ß or mTRPC5 

Our GST pulldown experiments (see Chapter 3.2.3) had shown that SESTD1 interacts with 

mTRPC4ß and mTRPC5. Functional epitope-tagged constructs of these two channels were 

available and thus used for co-immunoprecipitation experiments. HM1 cells were 

cotransfected with HA-tagged SESTD1 and FLAG-tagged mTRPC4ß or GFP-tagged 

mTRPC5, respectively. Cotransfection of the empty vector pcDNA3.1 served as negative 

control. The ion channels were precipitated from the cells lysates with anti-TRPC4 or anti-

GFP antibody (mTRPC5) and precipitates were separated by SDS-PAGE, blotted onto 

nitrocellulose membranes and then probed with anti-SESTD1 antibody. When mTRPC4ß 

and mTRPC5 were precipitated from HM1 cell lysates, SESTD1 was found in the 

precipitated samples (Fig. 29). 
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Figure 29: SESTD1 co-immunoprecipitates with mTRPC4ß and mTRPC5. (A) Western blot of anti-
TRPC4 immunoprecipitates (P) and the corresponding lysates (L) from membranes of HM1 cells 
cotransfected with HA-tagged SESTD1 and FLAG-tagged mTRPC4ß or pcDNA3.1. (B) Western blot 
of anti-GFP immunoprecipitates (P) and the corresponding lysates (L) from HM1 cells cotransfected 
with HA-tagged SESTD1 and GFP-tagged mTRPC5 or pcDNA3.1. Both blots (A, B) were probed with 
anti-SESTD1 #148 (1:5,000) and secondary AF 680 goat anti-rabbit (1:2,500) antibodies. 
 
A very small amount of SESTD1 was also precipitated by anti-TRPC4 and anti-GFP 

antibodies from control HM1 cell lysates that only expressed HA-SESTD1. This unspecific 

binding was seen under different precipitating conditions. However, it was always much 

lower than the co-immunoprecipitation with the ion channel proteins.  

 
We also tried to identify naturally occurring channel-SESTD1 complexes. TRPC4 and -5 

have been reported to be expressed in rat brain (Strubing et al., 2001) where we also found 

SESTD1 (see Chapter 3.4.1 below). Unfortunately, using this tissue and commercially 

available antibodies, we were not able to precipitate these TRPC channels efficiently (data 

not shown). Therefore, we could not prove yet that TRPC and SESTD1 interact in native 

cells and tissues.  
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3.2.5 Interaction of SESTD1 and TRPC subfamilies 

The putative SESTD1 binding sequence of mTRPC4α is conserved in the shorter TRPC4ß 

isoform as well as TRPC5 but not in other TRPC channels. To verify the specificity of the 

interaction between SESTD1 and TRPC4/5, yeast was cotransformed with SESTD1 and the 

individual C-termini of hTRPC1, mTRPC4ß, mTRPC5 or hTRPC6 and plated on selective 

media. SS 

 
 
 
 
 
 
Figure 30: Yeast two-hybrid assay 
of the interaction between the 
C-terminus of different TRPCs and 
SESTD1. Yeast colonies 
cotransformed with C-termini of the 
indicated TRPC channels (bait) and 
full length hSESTD1 (prey) were 
plated on selective -Trp/-Leu/ 
-Ade/-His agar plates. 

 
Indeed, the results shown in Figure 30 confirm a specific interaction of SESTD1 with TRPC4 

and TRPC5. 

 

Whereas Y2H experiments with SESTD1 and the channel C-termini point to a specific 

interaction of SESTD1 with the TRPC4/5 subfamily, subsequent co-immunoprecipitation 

studies led to a different result.  

HM1 cells were cotransfected with HA-tagged SESTD1 and YFP-tagged versions of 

hTRPC6, the distantly related TRP channel TRPM8, the unrelated K PP

+
PP channel Kir2.1, or 

pcDNA3.1 vector as a negative control. The ion channels were first precipitated from cell 

lysates with anti-GFP antibody and immunoprecipitates were then separated by SDS-PAGE, 

blotted onto nitrocellulose membranes and probed with anti-SESTD1 antibody for co-

precipitation of SESTD1. When hTRPC6 and TRPM8 were precipitated from HM1 cell 

lysates, SESTD1 was found in the precipitated samples. A very small amount of SESTD1 

was also precipitated by the anti-GFP antibody from control HM1 cell lysates that only 

expressed HA-SESTD1. This unspecific binding was lower than co-immunoprecipitation with 

hTRPC6 and TRPM8 and also seen in Kir2.1 precipitates (Fig. 31). 
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Figure 31: SESTD1 co-immunoprecipitates with hTRPC6 and TRPM8. Western blot of anti-GFP 
immunoprecipitates (P) and the corresponding lysates (L) of HM1 cells cotransfected with HA-tagged 
SESTD1 and YFP-tagged hTRPC6, TRPM8 or Kir 2.1. Blot was probed with anti-SESTD1 # 148 
(1:5,000) and AF 680 goat anti-rabbit (1:2,500) antibodies. 
 

3.3 Functional interaction of SESTD1 and TRPC5 

3.3.1 Characterization of a HM1 clone stably expressing mTRPC5-YFP 

Having shown that SESTD1 biochemically binds to TRPC4 and TRPC5, we set out to 

investigate the functional consequences of this interaction. As there are no established 

cellular models that allow an easy functional assessment of TRPC4 or TRPC5 channels, we 

decided to generate a HM1 cell line stably expressing mTRPC5-YFP (HM1-C5Y cells). HM1 

cells were chosen because activation of recombinant TRPC channels had previously been 

described in these cells (Strubing et al., 2003). TRPC5 was used as its overexpression 

generated much more robust receptor-activated cation currents than TRPC4. 

The stable functional expression of TRPC5-YFP in HM1-C5Y cells was verified by 

fluorometric [Ca PP

2+
PP] BBi BBand electrophysiologicalBB BBmeasurements. First it was tested, if the parental 

HM1 cell line showed trypsin- and carbachol-induced Ca PP

2+
PP entry. Cells were either 

challenged with carbachol, which stimulates muscarinic type 1 receptors (MBB1BBR) present in 

HM1 cells, or trypsin, that stimulates endogenous protease-activated receptors (PAR). 

Stimulation of both receptor types in the absence of extracellular Ca PP

2+
PP led to the PI response 

(see Chapter 1.1.1), a transient rise in intracellular Ca PP

2+
PP due to its release from internal stores 

(Fig. 32 A, B). In the presence of extracellular Ca PP

2+
PP, both agonists activated a small Ca PP

2+
PP 

influx that was most likely mediated by endogenous ROCs and/or SOCs. Nevertheless, the 

Ca PP

2+
PP influx into HM1-C5Y cells evoked by either carbachol or trypsin was significantly larger 

than in parental HM1 cells demonstrating functionality of the channel (Fig. 32 C, D). To 

substantiate the results of the fluorometric assays, whole-cell patch clamp recordings of 

single HM1-C5Y cells were performed. Upon application of carbachol or trypsin both agonists 

induced currents with double-rectifying I-V relationships characteristic for recombinant 

TRPC5 channels (Fig. 32 E, F) that could be inhibited by 10 µM 2-APB and stimulated by 

100 µM lanthanum in accordance with reported TRPC5 pharmacology (data not shown). The 

current densities at -70 mV amounted to 15.9 ± 5.5 pA/pF (n = 10, carbachol) and 127.8 ± 

57.6 pA/pF (n = 6, trypsin), whereas no obvious currents were induced by carbachol or 

trypsin in parental HM1 cells (data not shown).  
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Figure 32: Functional characterization of a mTRPC5-YFP-HM1 cell line. (A, B) Time-dependent 
changes in [CaPP

2+
PP]BBi BB of fluo-4-loaded HM1 cells. CaPP

2+
PP influx (2 mM extracellular CaPP

2+
PP) or release from 

internal stores (0 mM extracellular CaPP

2+
PP) was evoked by application of 10 µM carbachol (A) or 100 nM 

trypsin (B). Data is means of 40-48 wells (20,000-25,000 cells per well). Time scale bar 1 min. (C, D) 
Time-dependent changes in [CaPP

2+
PP]BBi BB of fluo-4-loaded HM1 cells stably-transfected with mTRPC5-YFP 

(HM1-C5Y cells). CaPP

2+
PP influx (2 mM extracellular CaPP

2+
PP) or release from internal stores (0 mM 

extracellular CaPP

2+
PP) was evoked by application of 10 µM carbachol (A) or 100 nM trypsin (C). Data is 

means of 8 wells (20,000 cells per well). Time scale bar 1 min. (E, F) Whole-cell patch clamp 
recordings of HM1-C5Y cells. The agonists carbachol (10 µM, E) and trypsin (100 nM, F) induce 
currents with characteristic doubly rectifying I-V relationships.  
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3.3.2 Overexpression of SESTD1 in HM1-C5Y cells  

In a first attempt to modulate the interaction between TRPC5 and SESTD1, we transiently 

overexpressed HA-tagged SESTD1 in HM1-C5Y cells. Since no information was available 

about the cellular function of SESTD1, experimental readouts were restricted to measuring 

TRPC5 function at elevated (or decreased, see Chapter 3.3.3) levels of SESTD1. TRPC5-

mediated CaPP

2+
PP influx following application of carbachol or trypsin (Fig. 33 A, C) in HM1-C5Y 

cells coexpressing HA-SESTD1 did not differ significantly from control cells cotransfected 

with an unrelated protein (ß-galactosidase, bGAL). Ca PP

2+
PP releases from internal stores were 

also not significantly changed in the presence or absence of HA-tagged SESTD1 (Fig. 33 B, 

D).  
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Figure 33: TRPC5-mediated CaPP

2+
PP-entry is unaltered in HM1-C5Y cells overexpressing 

heterologous HA-SESTD1. (A-D) Time-dependent changes in [Ca PP

2+
PP]BBi BB of fura-2-loaded HM1-C5Y cells 

transiently transfected with HA-tagged SESTD1 or an unrelated protein (ß-galactosidase, bGAL). 
TRPC5-mediated CaPP

2+
PP influx following application of 10 µM carbachol (A) or 100 nM trypsin (C) was 

the same in presence and absence of HA-tagged SESTD1. Also Ca PP

2+
PP release from internal stores was 

not significantly changed in the presence or absence of HA-tagged SESTD1 after application of 10 µM 
carbachol (B) and 100 nM trypsin (D). Data is shown as means of 5-6 wells (40,000 cells per well). 
Time scale bar 1 min. (E) Statistical analysis of data presented in A-D (n = 5-6 wells per data point). 
CaPP

2+
PP release was calculated as area under the curve (AUC; B, D) and CaPP

2+
PP influx was calculated by 

their subtraction from the AUCs of (A) and (C), respectively. 
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3.3.3 siRNA knock-down of SESTD1 

As shown above, overexpression of exogenous HA-SESTD1 had no effect on TRPC5-

mediated CaPP

2+
PP influx in our cell model. However, since HM1 cells express SESTD1 

endogenously (see Fig. 28), it may not be possible to further enhance SESTD1 function in 

these cells. Therefore, it was tested whether knock-down of SESTD1 protein expression in 

HM1 cells had an influence on TRPC5 activity.  
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Figure 34: CaPP

2+
PP release from internal stores is suppressed by SESTD1 siRNA duplex 2. (A) 

Time-dependent changes in [CaPP

2+
PP]BBi BB of fluo-4-loaded HM1 cells transiently transfected with mTRPC5-

GFP and 40 nM single (duplex 1 to 4, D1 to D4) or pooled (SMARTpool, D1234) specific siRNA 
against SESTD1. 48 hr post transfection, CaPP

2+
PP release from internal stores activated by application of 

100 nM trypsin is significantly reduced in cells transfected with D2 or the complete SMARTpool 
(D1234). Data is shown as means of 6 wells (42,000 cells per well). Time scale bar 1 min. (B) 
Statistical analysis of data presented in A (n = 5-6 wells, P < 0.01, Wilcoxon two-sample test). (C) 
Western blot of HM1 cells transfected with GFP only (mock control) or mTRPC5-GFP plus 40 nM 
SMARTpool (D1234) or an siRNA pool lacking duplex 2 (D134). Blot was cut and incubated with anti-
GFP (1:5,000)/AF 680 rabbit anti-mouse (1:2,500), anti-SESTD1 (1:5,000)/AF 680 goat anti-rabbit 
(1:2,500) and anti-GAPDH (1:10,000)/AF 680 rabbit anti-mouse (1:2,500) antibodies. 
 

A pool of four siRNA duplexes (D1234, SMARTpool) directed against different sequences of 

SESTD1 was purchased from Dharmacon and tested for its ability to decrease SESTD1 

protein levels. 48 hr post transfection, SESTD1 expression was almost completely knocked 

down by 40 nM siRNA whereas expression of an unrelated protein (GAPDH) was not altered 

(Fig. 34 C). HM1 cells cotransfected with 40 nM of either pooled or single siRNA duplexes 

and mTRPC5-GFP were then functionally analyzed by fluorometric [Ca PP

2+
PP] BBi BB measurements.  
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While investigating TRPC5-independent Ca PP

2+
PP release from internal stores that may serve as 

a control for unspecific siRNA effects, we noted that the SMARTpool and duplex 2 

significantly reduced Ca PP

2+
PP release compared to duplex 1, 3 or 4 (Fig. 34 A, B). This 

observation prompted us to check a new siRNA pool lacking duplex 2 (D134). Indeed, this 

pool was as efficient as the SMARTpool in silencing SESTD1 expression (Fig. 34 C), but 

without having an effect on Ca PP

2+
PP release (see Fig. 36 A, B). Thus, it is likely that the 

suppression of Ca PP

2+
PP release by duplex 2 is an unspecific effect, not related to the SESTD1 

protein knock-down. Consequently HM1-C5Y were treated with specific SESTD1 siRNA 

(new pool of three duplexes, D134), unspecific non-silencing control siRNA or liposomes only 

(mock). SESTD1 protein expression in suchlike treated cells was reduced by 85.5 ± 5.5% 

(n = 4, compared to mock-transfected cells) or 82.3 ± 5.3% (n = 4, compared to cells treated 

with unspecific, non-silencing siRNA; Fig. 35). 
 
 
 
 
 
Figure 35: SESTD1 is efficiently knocked-down by 20 nM 
specific SESTD1 siRNA. Western blot of HM1-C5Y cells 
transfected with liposomes only (mock control), 20 nM unspecific 
control siRNA or 20 nM pooled specific SESTD1 siRNA (duplex 
1, 3 and 4). Blot was cut and incubated with anti-SESTD1 
(1:5,000)/AF 680 goat anti-rabbit (1:2,500) and anti-GAPDH 
(1:10,000)/AF 680 rabbit anti-mouse (1:2,500) antibodies. 
 

 

M1 receptor- or PAR-induced Ca PP

2+
PP release from internal stores was not different between the 

three groups (Fig. 36 A, B). In contrast, TRPC5-mediated Ca PP

2+
PP influx following application of 

carbachol or trypsin (Fig. 36 C, D) was significantly reduced in cells treated with specific 

SESTD1 siRNA. TRPC5-mediated Ca PP

2+
PP influx following carbachol stimulation was reduced to 

45.4 ± 2.8% (compared to mock transfected cells) or 49.6 ± 3.1% (compared to cells 

transfected with control siRNA, Fig. 36 E). When cells were activated with 100 nM trypsin, 

TRPC5-mediated Ca PP

2+
PP influx was reduced to 51.4 ± 3.7% (compared to mock transfected 

cells) or 58.0 ± 4.2% (compared to cells transfected with control siRNA, Fig. 36 F). 
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Figure 36: TRPC5 activity is reduced in HM1-C5Y cells transfected with specific SESTD1 siRNA. 
Time-dependent changes in [CaPP

2+
PP]BBi BB of fura-2-loaded HM1-C5Y cells transfected with 20 nM pooled 

specific SESTD1 siRNA (duplex 1, 3 and 4), unspecific control siRNA or liposomes only (mock) (A, B). 
48 hr post transfection, CaPP

2+
PP release from internal stores activated by application of 10 µM carbachol 

(A) or 100 nM trypsin (B) is not different under the tested conditions. In contrast, TRPC5-mediated 
CaPP

2+
PP influx following application of 10 µM carbachol (C) or 100 nM trypsin (D) was significantly 

reduced in cells transfected with specific SESTD1 siRNA. Shown are means ± SEM of three 
independent experiments (each performed with n = 5–6 wells per experimental condition). Time scale 
bar 1 min.  
(E) Statistical analysis of data presented in A and C (P < 0.001, Wilcoxon test, two-sided). (F) 
Statistical analysis of data presented in B and D (P < 0.001, Wilcoxon test, two-sided).  
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The mechanisms by which SESTD1 modulates TRPC5 activity are unknown. Besides direct 

effects on channel gating, SESTD1 may act as a molecular chaperone that regulates 

channel biosynthesis or cellular targeting. In the latter case, the reduced TRPC5-mediated 

Ca PP

2+
PP influx in cells treated with specific SESTD1 siRNA could be due to diminished levels of 

channel protein at the plasma membrane. To test this hypothesis, membrane expression of 

TRPC5-YFP in HM1-C5Y cells was investigated by a surface biotinylation assay. 

Comparable amounts of TRPC5 protein were detected at the plasma membrane of mock, 

control and SESTD1 siRNA transfected cells (Fig. 37) suggesting that SESTD1 does not 

modify TRPC5 processing. 

 
Figure 37: TRPC5 membrane expression is not changed 
in SESTD1 siRNA-treated cells. Surface proteins of HM1-
C5Y cells stably expressing mTRPC5-YFP were biotinylated 
48 hr post transfection with liposomes only (Mock), 20 nM 
unspecific control siRNA or 20 nM specific SESTD1 siRNA. 
Streptavidin-sepharose precipitates were analyzed by 
Western blotting with anti-GFP (1: 1,000) and AF 680 rabbit 
anti-mouse (1:2,500) antibodies. 
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3.4 SESTD1 

3.4.1 Expression 

Beyond the described interaction with TRPC4 and TRPC5, there was no data available on 

the function of SESTD1. In order to gain first insights into possible physiological roles of 

SESTD1, we studied its expression in tissues and cells. Real-time quantitative PCR 

(TaqMan; Livak et al., 1995) of different tissues showed that SESTD1 mRNA is ubiquitously 

expressed in human tissues (Fig. 38). 

 
Figure 38: SESTD1 mRNA is ubiquitously expressed in human tissue. SESTD1 mRNA 
expression was determined in different human tissues with qRT-PCR and normalized to expression of 
the housekeeping gene RPL37a. Data shown is the mean of duplicates. 
1 brain; 2 cerebellum; 3 hippocampus; 4 cortex; 5 spinal cord; 6 adrenal gland, 7 heart; 8 aorta; 9 
adipose; 10 spleen; 11 bone marrow; 12 skeletal muscle; 13 skin; 14 trachea; 15 lung; 16 stomach; 17 
small intestine; 18 colon; 19 liver; 20 pancreas; 21 kidney; 22 breast; 23 ovary; 24 uterus; 25 placenta; 
26 testis; 27 prostate; 28 AoSMC; 29 HUVEC. Asterisks denote tissues in which significant expression 
of TRPC4 or TRPC5 has been reported. Data kindly provided by the Genomic Sciences department. 
 

Since we found SESTD1 in a cDNA library made from human aorta we were interested to 

see in which vascular cell type the protein is expressed. Hence, lysates of primary human 

smooth muscle and endothelial cells were analyzed by Western blot for SESTD1 expression. 

As depicted in Figure 39, SESTD1 was present both in aortic (AoSMC) and coronary 

(CASMC) smooth muscle cells, and also in aortic (HAEC) and microvascular (HMVEC-d) 

endothelial cells.  
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Figure 39: SESTD1 expression in human primary cells. 
Western blot of the indicated cell samples developed with 
anti- SESTD1 #148 (1:5,000) and secondary AF 680 goat 
anti-rabbit antibody (1:2,500). Each lane was loaded with 
15 µg protein (BCA test) and equal loading was visualized 
by blotting with anti-GAPDH (1:10,000) and secondary AF 
680 rabbit anti-mouse antibody (1:2,500).  
 

In addition to human, SESTD1 expression was also tested in rat and mouse tissues. Here, 

SESTD1 was found in microsomes from rat brain and in the vascular A7r5 cell line. It is also 

expressed in mice ventricle as well as in HL-5, a cell line derived from murine atrial 

cardiomyocytes (Fig. 40).  
 
 
 
 
 
 
Figure 40: SESTD1 expression in 
different rodent tissue and cell 
samples. Varying amounts of rat 
brain microsomes, A7r5 and HL-5 
cells, and mouse left ventricle were 
separated by SDS PAGE, blotted 
onto nitrocellulose membranes and 
stained with anti-SESTD1 #148 
(1:5,000) and secondary AF 680 
goat anti-rabbit(1:2,500) antibodies. 
HL-5 and left ventricle lysates were 
kindly provided by Dr. K. Engel. 
 
 

 

3.4.2 Subcellular localization  

Identification of SESTD1’s subcellular location could give further hints towards its 

physiological function. Therefore, immunofluorescence experiments were performed with the 

two antibodies (characterized in Chapter 3.2.4) directed against endogenous SESTD1. Both 

antibodies detected overexpressed HA-tagged SESTD1 (Fig. 41 A, B) that was found to be 

evenly distributed within the cells with no apparent preference for a certain subcellular 

structure. We also investigated C-terminally YFP-tagged SESTD1 (data not shown) to 

exclude localization artefacts due to the N-terminal HA-tag, but there were no differences 

detectable. We moved on to determine the localization of endogenous SESTD1 in HM1 cells. 

Our two antibodies against different SESTD1 epitopes showed very distinct staining patterns. 

Whereas anti-SESTD1 #148 strongly stained tubular structures that are most likely tubulin 

(characteristic mitotic cell spindle pooles were highlighted, Fig. 41 B), anti-SESTD1 #147 
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stained vesicular structures (Fig. 41 A). It was already seen in Western blots (Fig. 28) that 

both antibodies also have high affinities for proteins not related to SESTD1. This might 

explain our immunocytochemical findings. To further elucidate the location of native 

SESTD1, better antibodies will be necessary that specifically recognize the protein without 

unspecific binding to unrelated structures.  
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Figure 41: Subcellular localization of overexpressed SESTD1. (A, B) HA-tagged SESTD1 is found 
evenly distributed within HM1 cells that were stained with anti-HA (1:500) and secondary AF goat 546 
anti-rat (1:250) antibody. Cells were stained in parallel with (A) anti-SESTD1 #147 (1:25) and (B) anti-
SESTD1 #148 (1:100) and secondary AF 488 goat anti-rabbit (1:250) antibodies in order to 
additionally visualize endogenous SESTD1. Better antibodies are needed to further elucidate the 
subcellular localization of native SESTD1 as anti-SESTD1 #147 stained vesicular structures in 
contrast to anti-SESTD1 #148 that predominantly preliminary stained tubular structures in 
untransfected cells. Scale bar is 20 µm. 
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3.4.3 Cis-trans isomerase signature 

A PROSITE motif search of SESTD1 indicated a FKBP-type peptidyl-prolyl cis-trans 

isomerase signature 2 (Pattern-ID PS00454) starting from aa 427 (VDV GLQ GLR EKG QGL 

LDQ ISN QAS WAY G). Peptidyl-prolyl cis-trans isomerases (PPIases) catalyze cis-trans 

isomerization of proline peptide bonds thus accelerating protein folding. A possible PPIase 

activity of SESTD1 was tested using a fluorescence assay and the cys-bridged peptide 

H-Abz-Cys-Ala-Pro-Ala-Cys-Ntr-NH BB2BB as a substrate (see Chapter 2.5.8 for assay principle).  

The known PPIase activity of FKBP12.6 (Sewell et al., 1994) served as a positive control. 

Substrate isomerization by FKBP12.6 is a rapid reaction that was completed almost within a 

minute. It is indicated by a steepening of the slope of the fluorescence curve compared to the 

spontaneous reaction. In contrast, the slope in presence of GST-SESTD1 did not differ from 

the spontaneous isomerization (Fig. 42). Hence, in this experiment GST-SESTD1 did not act 

as PPIase on bridged H-Abz-Cys-Ala-Pro-Ala-Cys-Ntr-NHBB2. 

 

 
Figure 42: Cis-trans isomerization assay of cys-bridged H-Abz-Cys-Ala-Pro-Ala-Cys-Ntr-NHBB2 BB. 
Isomerization results in a fluorescent trans-form. When the substrate is not cleaved (no isom.) 
baseline fluorescence is not changed. Addition of 125 mM DTT cleaves the cys-bridge resulting in 
spontaneous prolyl cis-trans conversion (spontan. isom.). In presence of 1 µM FKBP12.6 (and 
125 mM DTT), isomerization is accelerated (FKBP12.6-catal. isom.). 4.79 µM GST-SESTD1 (in 
presence of 125 mM DTT) have no influence on isomerization velocity (SESTD1-catal. isom.). Data is 
means of 2 wells and was kindly provided by K. Sicka.  
 

3.4.4 In vitro phospholipid binding 

SESTD1 belongs to the eukaryotic Sec14 protein superfamily that was named after the 

N-terminal Sec14p-like lipid-binding domain. Due to this domain its members are assumed to 

specifically bind and transfer different phospholipids (Mousley et al., 2007), but some have 

also been reported to bind other hydrophobic ligands than phospholipids, e.g. α-tocopherol 
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and 11-cis-retinal (Allen-Baume et al., 2002). In light of the dependence of TRPC channels 

on phospholipid hydrolysis, it was particularly interesting to test SESTD1’s phospholipid 

binding capability.  
 
PIP strip phospholipid overlay assay 

Specific binding of SESTD1 to all physiologically relevant phosphatidylinositol mono- and 

bisphosphates (PIP and PIPBB2BB) as well as to phosphatidic acid was studied in a phospholipid 

overlay assay. In the presence of 60 nM Ca PP

2+
PP, the approximate physiological concentration in 

quiescent cells, SESTD1 bound strongly to PIPs and to a lesser degree to phosphatidic acid. 

Notably, the affinity of SESTD1 to the phospholipid substrates changed depending on the 

Ca PP

2+
PP concentration. Raising the Ca PP

2+ 
PPconcentration to 2.5 µM led to increased binding of 

PI(3,5)PBB2BB and PI(4,5)PBB2BB, phosphatidic acid as well as PI(3,4)P BB2BB, PI(3)P and PI(4)P (Fig. 43). 

 

GST-SESTD1 GST 

60 nM 2.5 µM Ca2+

S1P
PI(3,4)P2
PI(3,5)P2
PI(4,5)P2

PI(3,4,5)P3
PA
PS
Blank

LPA
LPC

PI
PI(3)P
PI(4)P
PI(5)P

PE
PC

 
Figure 43: SESTD1 binding of phospholipids is CaPP

2+
PP-dependent. GST-SESTD1 bound PIPs, PIPBB2BBs 

and PA immobilized on membranes. PIP strips (Echelon) were probed with GST-SESTD1 in blocking 
buffer containing 60 nM or 2.5 µM free CaPP

2+
PP, or with GST in blocking buffer followed by anti-GST 

antibodies (1:2,000) and goat anti-rabbit HRP-conjugated antibodies (1:20,000). Signals were 
detected by enhanced chemiluminescence (ECL).  
 

Cova-PIP plate binding assay 

To better quantify the phospolipid binding of SESTD1, it was tested whether SESTD1 binds 

phospholipids covalently attached to 96-well microtiter plates. These plates (Cova PIP 

Specificity Plates) coated with 10 pmol substrate/well were provided by Echelon Biosciences. 

The GST-tagged PH-domain of LL5-α is suggested as a control reagent that recognizes all 

phosphoinositides (Echelon, 2007). Therefore, a DELFIA binding assay with the LL5-α PH-

domain was first established. Our results confirmed that the protein bound to all 

phosphoinositides but with higher affinity to PI(3,4)PBB2 BBand PI(3,4,5)P BB3 BB(Fig. 44). This 

preferential binding has also been observed in overlay assays (Echelon, 2007).  
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Figure 44: DELFIA of LL5-α binding to Cova-
PIP Specificity Plates (Echelon). Polystyrene 
microtiter wells each loaded with 10 pmol PIPBBnBB 
were incubated 3 hr with 1 µg/mL GST-tagged 
PH-domain of LL5-α or buffer only. Bound protein 
was detected with Eu-N1-labelled anti-GST 
(100 ng/well). Lanthanide fluorescence (λBBexc BB= 340 
nm, λBBem BB= 620 nm) was measured. 
 
 

Binding of varying amounts of SESTD1 was analogously tested. However, no binding could 

be detected on plates loaded with 10 pmol substrate per well (data not shown). One reason 

could have been a lower binding affinity of SESTD1 to its substrates. Hence, the experiments 

were repeated with new plates loaded with 100 pmol substrate per well. Indeed, under these 

conditions SESTD1 specifically bound to phosphoinositides with highest affinity to PI(4,5)P BB2 BB 

and PI(3,4)P BB2BB (Fig. 45).  

 
Figure 45: DELFIA of LL5-α and SESTD1 
binding to Cova-PIP Specificity Plates 
(Echelon). Polystyrene microtiter wells each 
loaded with 100 pmol PIPBBnBB were incubated 3 hr 
with 1µg/mL GST-tagged PH-domain of LL5-α, 
100 µg/mL GST-SESTD1 or GST, respectively, 
or buffer only. Bound protein was detected with 
anti-GST (1:1,000) and secondary Eu-N1-
labelled anti-rabbit antibody (50 ng/well). 
Lanthanide fluorescence (λBBexc BB= 340 nm, 
λBBem BB= 620 nm) was measured. 
 

 
Furthermore, we showed that binding of SESTD1 to phospholipids is dose-dependent 

(Fig. 46) and the apparent binding affinityBB BBvaries between the different phosphoinositide 

species. These findings support the assumption that SESTD1, like other SEC14-domain 

containing proteins (Ile et al., 2006), may regulate cellular signalling by specifically binding 

and transporting phospholipids. 

 
 

Figure 46: DELFIA of SESTD1 binding to Cova-
PIP Specificity Plates (Echelon). Polystyrene 
microtiter wells each loaded with 100 pmol PIPBBnBB 
were incubated 3 hr with the given concentrations 
of GST-SESTD1 or buffer only. Bound protein 
was detected with anti-GST (1:1,000) and 
secondary Eu-N1-labelled anti-rabbit antibody 
(50 ng/well). Lanthanide fluorescence 
(λBBexc BB= 340 nm, λ BBem BB= 620 nm) was measured. 
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3.4.5 SESTD1 siRNA knock-down in HM1 cells changes β-catenin distribution 

A circumstantial observation prompted us to investigate another possible function of 

SESTD1. We noted that the morphology of HM1 cells transfected with specific SESTD1 

siRNA seemed to differ from cells transfected with unspecific, non-silencing control siRNA or 

liposomes. They appeared more spindle-shaped. To visualize this subjective impression, 

protein markers for cellular junctions were tested in immunofluorescence experiments. To 

evaluate the validity of this cell-based approach, we first determined the siRNA transfection 

efficiency in this assay. For this purpose, functional siRNA was replaced by siGLO red 

transfection indicator (Dharmacon), a fluorescent-labelled non-functional control siRNA that 

localizes to the nucleus. One day post transfection, siRNA intake was reviewed by exciting 

its fluorescence. Almost all treated cells were successfully transfected (Fig. 47). Thus, 

analysis of such a homogenous cell population by immunofluorescence microscopy is 

feasible. 

 

A B C

 
Figure 47: siRNA transfection protocol results in high transfection rate. (A) Transmission of HM1 
cells cotransfected with 20 nM siGLO red transfection indicator (B) and GFP (C). Pictures were taken 
24 hr post transfection with 20x magnification.  
 
Tight junctions were visualized by staining zona occludens 1 (ZO-1), a non-transmembrane 

protein that is found on the cytoplasmic leaflet of tight junctions. The resulting staining was 

ambiguous (Fig. 48 A). In some areas there were no obvious differences under all three 

conditions (as depicted below) but in others (with lower cell density), ZO-1 staining seemed 

to be weaker in SESTD1 siRNA treated cells. By comparison, localization of ß-catenin, a 

protein associated with E-cadherin in adherens junctions, was clearly changed in cells 

treated with specific SESTD1 siRNA. Whereas control cells displayed a distinct membrane-

associated localization of ß-catenin, an increased intracellular accumulation of the protein 

was observed in cells transfected with the SESTD1-specific D134 siRNA pool (Fig. 48 B). 

Although, obviously, the regulation of ß-catenin distribution by SESTD1 requires further 

investigation, these results provide a potential novel link between lipid- and cell-cell 

signalling. 
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Figure 48: ß-catenin distribution is changed in HM1 cells treated with SESTD1 siRNA. 48 hr post 
transfection, HM1 cells treated with liposomes only (mock-transfected), 20 nM unspecific, non-
silencing control siRNA or 20 nM specific SESTD1 siRNA (pool D134) were fixed with 
paraformaldehyde, permeabilized with Triton X-100, and stained (A) with anti-ZO 1 (1:100) and 
AF 546 goat anti-mouse (1:250) antibodies or with anti-β-catenin (1:250)  and AF 546 goat anti-rabbit 
(1:250) antibodies. Scale bar is 20 µM. 
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4 Discussion 

4.1 Norgestimate is a selective inhibitor of the TRPC3/6/7 subfamily 

In this work, we used complementary pharmacological and molecular biological approaches 

to gain a better understanding of the physiology of TRPC channels. Our search for new 

pharmacological tools led to the discovery of two steroids, namely norgestimate and 

progesterone, which differentially inhibit TRPC channels. While progesterone showed almost 

equal activity towards all studied TRPC channels with ICBB50BB values of ~10-20 µM, 

norgestimate selectively inhibited the TRPC3/6/7 subfamily with IC BB50BB values of ~5 µM. This 

selectivity distinguishes norgestimate from most known TRPC channel modulating 

compounds. 

Based on the calculated inhibition at 10 µM, norgestimate was 4 to 5-fold more potent on 

Ca PP

2+ 
PPinflux mediated by TRPC3 and TRPC6 compared to TRPC5. These results obtained by 

fluorometric measurements were further validated by patch clamp recordings in the whole-

cell configuration. Again, 10 µM norgestimate were 3.5-fold more effective on AlF BB4PBPB

-
PP-evoked 

TRPC6-mediated currents compared to TRPC5, thus confirming its selective block of the 

TRPC3/6/7 subfamily. Norgestimate rapidly inhibited TRPC6 channel function both after 

direct stimulation by OAG in FLIPR measurements and also after indirect stimulation by AlFBB4PBPB

-
PP 

in patch clamp recordings suggesting that it directly blocked the channel. The highest applied 

norgestimate concentration did not influence calcium store depletion following activation of 

PAR in HEK293 cells or following stimulation of the V BB1ABB receptor in A7r5 cells, therefore 

excluding IPBB3BBR antagonism or inhibition of the GBBq/11 BB/PI signalling cascade as mechanism of 

channel inhibition. Moreover, genomic effects of steroids that occur on an hours time scale 

can be excluded as channel inhibition started immediately after norgestimate application and 

was rapidly and completely reversed upon washout. Taken together, these data suggest that 

norgestimate inhibits TRPC6 activity by a direct interaction with the channel protein, although 

single channel recordings, that would provide the most stringent proof, have not been 

performed. 

 

Compared to known TRPC channel blockers, norgestimate offers the advantage of being 

reasonably selective for DAG-sensitive TRPCs by inhibiting them at low micromolar 

concentrations without having an effect on the upstream PI signalling components.  

Perhaps the most specific TRPC inhibitor described so far is [1-(5-chloronaphthalene-1-

sulphonyl) homopiperazine, HCl] (ML-9) which has been shown to block TRPC6 with an ICBB50BB 

value of 7.8 µM but has no effect on isolated, single TRPC5 channels (Shi et al., 2007). Yet, 

ML-9 is a commonly used blocker of myosin light chain kinase (MLCK; Saitoh et al., 1987) 

and ML-9-mediated dephosphorylation of myosin light chains modulates the activity of many 



 Discussion 89 

 

membrane proteins, e.g. the Na PP

+
PP/HPP

+ 
PPexchanger NHE3 (Szaszi et al., 2000), and voltage-

dependent potassium channels like K BBvBB4.2 and KBBvBB4.3 (Wu et al., 1998). In whole cell patch 

clamp experiments, TRPC5 was shown to be indirectly modulated by ML-9 (Shimizu et al., 

2006; Kim et al., 2006b) as cytoskeletal rearrangements following MLC-dephosphorylation 

led to internalization and thus apparent inhibition of the channel. These MLCK-dependent 

actions of ML-9 make the interpretation of its effects on TRPC channels in intact cells and 

tissues difficult.  

Another compound widely used for the pharmacological characterization of TRPC channels 

is 2-aminoethoxydiphenyl borate (2-APB). It was introduced as a IPBB3BBR blocker originally 

(Maruyama et al., 1997), but later also shown to inhibit the SERCA pump (Missiaen et al., 

2001; Bilmen et al., 2002), voltage-gated potassium channels (Wang et al., 2002), volume-

regulated anion channels (Lemonnier et al., 2004), and the mitochondrial permeability 

transition pore (Chinopoulos et al., 2003). Moreover, the compound has been demonstrated 

to inhibit native SOCs (Bootman et al., 2002; Flemming et al., 2003) and several members of 

the TRP superfamily, e.g. TRPM8 (Hu et al., 2004). Some groups have shown that 2-APB 

blocked receptor-dependent activation of TRPC3 (Ma et al., 2000), TRPC5 (Lee et al., 

2003b) as well as of TRPC6 (Xu et al., 2005). However, the block of TRPC3 is likely indirect 

as DAG-stimulated channels were insensitive to 2-APB (Ma et al., 2000). Thus, the 

mechanism of action of 2-APB on TRPCs is currently unclear and may be more complex 

than simple binding to the channel proteins.  

An old generation blocker of ROCs (Merritt et al., 1990) and SOCs (Demaurex et al., 1992) is 

the imidazole SK&F 96365, which is an optimized derivative of a compound originally 

synthesized as a thromboxane synthetase inhibitor. Due to its insufficient potency (Li et al., 

2004 and references therein) and its side-effects on L-type Ca PP

2+
PP channels (Merritt et al., 

1990), KPP

+
PP channels (Schwarz et al., 1994) and Cl PP

-
PP channels (Franzius et al., 1994), the 

compound is not therapeutically suitable. The poor selectivity of SK&F with reported half 

maximal inhibitory effects on mast cell IBBCRACBB at 4 µM (Franzius et al., 1994) as well as on 

TRPC3 (Zhu et al., 1998) and TRPC6 (Estacion et al., 2004) at 5 µM further limits its use in 

TRPC channel exploration.  

Apart from the above mentioned organic blockers, lanthanides are used to distinguish the 

TRPC4/5 from the TRPC3/6/7 subfamily and other non-selective cation channels. TRPC4 

and -5 homomers and TRPC1/5 heteromers are potentiated by micromolar concentrations of 

La PP

3+
PP and Gd PP

3+
PP (Schaefer et al., 2000; Strubing et al., 2001; Jung et al., 2003; Plant & 

Schaefer, 2003), and human TRPC5 is activated by Gd PP

3+
PP when other stimuli are absent 

(Zeng et al., 2004). Currents mediated by TRPC1 (Zitt et al., 1996), TRPC3 (Zhu et al., 1996; 

Kamouchi et al., 1999; Halaszovich et al., 2000), TRPC6 (Inoue et al., 2001; Basora et al., 

2003), and TRPC7 (Okada et al., 1999; Riccio et al., 2002) are blocked at these lanthanide 
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concentrations. But there are also contradictory reports of TRPC5 inhibition by micromolar 

lanthanide concentrations (Okada et al., 1998; Lee et al., 2003b), and an endothelial store-

operated Ca PP

2+
PP current that is absent in TRPC4 knock-out mice is also highly susceptible to 

inhibition at 1 µM La PP

3+
PP (Freichel et al., 2001). Therefore, the unique feature of TRPC4/5 

potentiation by lanthanides might depend on the individual expression system and thus only 

has limited value for the investigation of native currents. Moreover, due to their toxicity and 

rather unspecific ion channel blocking activities, the use of lanthanides in many tissue 

models such as brain slices is not possible.  

 

Norgestimate is a progestin (a synthetic gestagen). Combined with ethinyl estradiol it is a 

component of oral contraceptives (CilestPP

®
PP, Pramino PP

®
PP). We examined in fluorometric CaPP

2+
PP 

influx tests whether the natural pregnancy-maintaining hormone progesterone, which is 

structurally related to norgestimate, also inhibits TRPC channels. In fact, progesterone was 

less active on TRPC6 compared to norgestimate, but TRPC4 and -5 were more effectively 

inhibited by the hormone. Its overall effect on the TRPC4/5 and the TRPC3/6/7 subfamily 

was quite comparable. Hence, progesterone does not discriminate between different 

members of the TRPC family and was therefore not further investigated. Nevertheless, the 

observed inhibition of TRPC channels may contribute to the reported cardiovascular effects 

of progesterone. Several studies have shown that progesterone rapidly relaxed vessels, e.g. 

pig coronary arteries (Crews & Khalil, 1999), rat aorta (Glusa et al., 1997; Mukerji et al., 

2000), and also guinea pig airway smooth muscles (Perusquia et al., 1997). This 

vasorelaxant effect is endothelium-independent and mediated at least partly through 

inhibition of L-type Ca PP

2+
PP channels (Barbagallo et al., 2001; Zhang et al., 2002). Involvement 

of SOCs and ROCs (Glusa et al., 1997; Mukerji et al., 2000) and opening of potassium 

channels (Mukerji et al., 2000 and references therein) has been further proposed. Our study 

provides first evidence that progesterone is active on TRPC channels which constitute SOCs 

(Philipp et al., 1996; Philipp et al., 1998; Kiselyov et al., 1998) and ROCs (Zitt et al., 1997; 

Boulay et al., 1997; Schaefer et al., 2000) in vascular SMC (Dietrich et al., 2006) and EC 

(Yao & Garland, 2005). Some of them are believed to be involved in vessel constriction, like 

TRPC6 (Inoue et al., 2001; Estacion et al., 2006). TRPC channel inhibition could thus 

participate in the progesterone-mediated vasorelaxation observed in these reports.  

It remains to be shown whether this hormone also modulates TRPC channels in vivo. Even 

the elevated progesterone plasma levels in pregnant women (≈1 µM, Barbagallo et al., 2001 

and references therein) are still lower than the effective concentrations for TRPC channel 

inhibition in vitro (10-20 µM). However, progestins are highly lipophilic and have a large 

volume of distribution, therefore resulting in a higher tissue than plasma concentration 

(Lindenmaier et al., 2005). Hence, it cannot be ruled out that local progesterone 
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concentrations are high enough to block TRPC channel function. In this regard, reports of 

TRPC1, -3, -4, and -6 proteins found in term human pregnant myometrium are of interest. 

They are believed to form SOCs though their exact physiological roles in this tissue are not 

yet known (Dalrymple et al., 2002; Yang et al., 2002). It is conceivable that TRPC channels 

would be blocked in vivo by the high gestational progesterone concentrations to limit uterine 

contractibility during pregnancy (Yang et al., 2002; Dalrymple et al., 2007) but further studies 

are needed to investigate this possibility.  

 

Reports about the metabolic fate of norgestimate are sparse (Stanczyk, 1997). It appears to 

be a precursor (Alton et al., 1984; Kuhnz et al., 1994) that is rapidly converted to the active 

metabolite in vivo. When we tested the proposed active metabolite, levonorgestrel (Fig. 49), 

to our surprise even the highest concentration applied (30 µM) had no effect on the Ca PP

2+
PP-

influx mediated by TRPC6. 
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Figure 49: Proposed norgestimate metabolism (Juchem et al., 1993). 

 
This finding could be a promising starting point for the optimization of TRPC6 channel 

antagonists. Inactive levonorgestrel differs only slightly from active progesterone and 

norgestimate in its free hydroxyl group at position 17 (steroid numbering according to IUPAC, 
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1969). In norgestimate this group is less hydrophilic due to esterification and in progesterone 

it is replaced by a carbonyl function that is attached to position 17 (Fig. 16). Unfortunately, 

the structural basis for the differential effects of norgestimate, progesterone, and 

levonorgestrel, on the same molecular target is unknown. However, the insensitivity of 

TRPC6 to levonorgestrel strongly supports the notion that current inhibition by norgestimate 

and progesterone is unlikely due to unspecific cellular effects. 

 

Besides recombinant channels we also investigated the modulation of native TRPCs by 

norgestimate. The A7r5 cell line, which was derived from rat embryonic thoracic aorta SMC, 

is a validated model system for the study of native TRPC channels (Jung et al., 2002; 

Soboloff et al., 2005; Maruyama et al., 2006). By means of either siRNA-mediated protein 

knock-down (Soboloff et al., 2005) or overexpression of dominant negative channel subunits 

(Maruyama et al., 2006), functional evidence was provided for the contribution of TRPC6 

proteins to AVP-induced cationic currents in these cells. The underlying channels are most 

likely heteromers, and their exact subunit composition seems to depend on the investigated 

A7r5 strain and cell passage number (Moneer et al., 2005). TRPC channel expression may 

in addition depend on cultivation conditions (Dietrich et al., 2007) and cell seeding density 

(own observation). In our hands, more cells responded to AVP when cells were plated at a 

low density. In the study of Maryuama et al., 2006, clear functional discrepancies between 

expressed TRPC6 homomers and native channels pointed to TRPC6/7 heteromers 

underlying the AVP-evoked currents. The endogenous current displayed a similar 

extracellular Ca PP

2+
PP dependency as heterologously expressed TRPC6/7 heteromers, and 

native TRPC6/7 complexes were detected by co-immunoprecipitation studies. However, 

TRPC7 protein was not found in A7r5 cells by another group (Soboloff et al., 2005). We did 

not investigate the subunit composition of TRPC6-containing channels in our A7r5 cells but 

confirmed the dependency of AVP-induced currents on extracellular Ca PP

2+
PP described by 

Maruyama et al., 2006 (data not shown), indicating the presence of TRPC6/7 heteromers. 

Hence, the comparable norgestimate effect on AVP-stimulated currents in A7r5 cells and on 

homomeric TRPC6-mediated currents observed in our study may indicate a similar sensitivity 

of TRPC6 and TRPC7 subunits to norgestimate.  

 

With the demonstration of norgestimate being more potent on the TRPC3/6/7 than on the 

TRPC4/5 subfamily, we identified a novel pharmacological tool compound that can be added 

to the list of already known TRP channel blockers. To further prove the potential value of 

norgestimate, it would be highly interesting to see to which extent norgestimate affects native 

TRPC4 or TRPC5 channels. Unfortunately, none of the described cellular models expressing 

TRPC4 or TRPC5 endogenously, e.g. gastric smooth muscle cells (Lee et al., 2005) or 
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hippocampal growth cones (Greka et al., 2003), is easily accessible and, therefore, a 

comparative investigation of native TRPC channel inhibition by norgestimate could not be 

accomplished within the framework of this study. 

 

Nevertheless, we provide further support for the use of norgestimate as a tool compound in 

vascular tissue. TRPC6 is a non-selective cation channel and permeable both to monovalent, 

such as Na PP

+
PP, and divalent ions like Ca PP

2+
PP. It has been proposed that TRPC6 mainly mediates 

Na PP

+
PP entry in vascular smooth muscle cells, and that the subsequent membrane 

depolarization results in activation of L-type Ca PP

2+
PP channels that finally mediate vessel 

constriction (Soboloff et al., 2005). As TRPC6 has been shown to be an essential component 

of α BB1BB-AR-activated cation channels in rabbit portal vein smooth muscles (Inoue et al., 2001), 

and to be present in rat aorta smooth muscle cells (Facemire et al., 2004; Lemos et al., 

2007), we tested the effect of norgestimate on isolated vessel rings from rat thoracic aorta 

precontracted with the α BB1BB-AR agonist phenylephrine. The vessel rings dose-dependently 

responded with relaxation to cumulative norgestimate concentrations. Norgestimate had an 

ECBB50 BBvalue of 15.1 µM and the response was endothelium-independent, as both endothelial 

and inducible nitric oxide synthase were pharmacologically inhibited by L-NAME. Complete 

vessel relaxation was not achieved even at high micromolar concentrations most likely due to 

the observed limited solubility of norgestimate in the organ bath solution. Consistent with its 

suggested role in αBB1BB-adrenergic vessel constriction (Inoue et al., 2001; Soboloff et al., 2005), 

this relaxation might be mediated by inhibition of the TRPC6 channel. However, possible 

additional effects of norgestimate in the vessel preparation need to be evaluated before the 

exact contribution of TRPC6 to the observed vessel relaxation can be finally determined. S 

4.2 Identification of SESTD1 – a novel TRPC-interacting protein 

More than a decade after the cloning of TRPC4 and its first functional description as 

capacitative Ca PP

2+
PP entry channel (Philipp et al., 1996), there are still open questions regarding 

its activation mechanism and the constitution of native TRPC4 channel complexes. For 

example aortic endothelial cells from TRPC4PP

-/-
PP mice lack an inwardly rectifying, LaPP

3+
PP-sensitive 

current that is activated by store depletion and is highly Ca PP

2+
PP selective (PBBCaBB/PBBNaBB = 159.7; 

Freichel et al., 2001). In contrast sole TRPC4 expression, for example in HEK293 cells, is not 

sufficient to reproduce these current properties. Instead, TRPC4 homomers are non-

selective (P BBCaBB/PBBNaBB = 1.05), insensitive to store depletion and La PP

3+
PP, and generate currents with 

a doubly rectifying current-voltage relationship (Schaefer et al., 2002).  

These inconsistencies motivated us to search for novel TRPC4-interacting proteins by 

screening a human aortic cDNA library with a GAL4-based yeast two-hybrid (Y2H) system. 

The applicability of this transcriptional assay is largely limited to hydrophilic proteins since the 

monitored interactions take place in the cell nucleus. As the transmembrane-spanning 
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segments of ion channels are hydrophobic, we could not employ the complete TRPC4 as a 

bait for our screen but instead used the soluble C-terminus of the longer mTRPC4α isoform. 

It was preferred to the N-terminus as all TRPC channels including TRPC4 contain N-terminal 

ankyrin repeats, which mediate protein-protein interactions and are among the most common 

structural motifs found in proteins (Mosavi et al., 2004). Therefore, we expected to find a 

significant number of ankyrin repeat-binding proteins that may not be specific for TRPC4 

when using the N-terminal part of TRPC4 as bait. TRP channels are generally assumed to 

be tetramers, although the molecular determinants of TRPC4 channel oligomerization had 

not been defined when this study was performed. We therefore wanted to make sure that the 

mTRPC4α-C-terminus expressed in our assay mimics its native structure as closely as 

possible. Hence, the channel fragment was covalently linked with an N-terminal leucine 

zipper domain, a peptide bearing a coiled-coil structure that mediates tetrameric assembly 

(Zerangue et al., 2001). We reasoned that this modification favours identification of 

accessory proteins that require a native, tetrameric TRPC4 channel for their physical 

interaction.  

 

Six of the eleven found mTRPC4-interacting proteins expressed transcription factors 

(BAZ1B, HMG2L1) and other nuclear (SMC3, MKRN1) or cytoskeletal (TLN2, SPATN1) 

proteins. Another identified protein, the pre-B-cell leukemia homeobox interacting protein 1, 

is believed to regulate the homeodomain protein PBX1 during hematopoiesis and leukemic 

transformation (Abramovich et al., 2000) and to modulate the estrogen receptor α-dependent 

rapid estrogen signalling in a microtubule complex (Manavathi et al., 2006). Furthermore, the 

sarcoma antigen NY-SAR 48 (Lee et al., 2003a) and the apolipoprotein A-I binding protein, 

which is presumably involved in resorption and degradation of apoA-I (Ritter et al., 2002), 

were found. None of the above mentioned proteins was further analyzed by us. 

Two more proteins, the ANKRD35 and SESTD1 gene products, have not been described so 

far. Of these two, SESTD1 appeared as promising candidate for further investigation for the 

following reasons: (1) A domain motif search revealed the presence of an N-terminal 

Sec14p-like lipid binding domain that has been described to bind phospholipids (Saito et al., 

2007). As TRPC channels are activated by phospholipid hydrolysis (Hofmann et al.; 1999; 

Schaefer et al., 2000; Trebak et al., 2003), SESTD1 could potentially be involved in the 

regulation of TRPC channel function. (2) Two spectrin repeats, that are multivalent binding 

sites for cytoskeletal and signal transduction proteins (Djinovic-Carugo et al., 2002), were 

also predicted to be present in SESTD1. Multiprotein complex assembly, a process 

potentially relevant for localization and anchoring of TRPC4 in caveolae, could be mediated 

by these domains. The presence of these structural features of SESTD1 finally motivated us 

to examine its binding to the channel and the functional consequences in more detail. 
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4.2.1 SESTD1 interacts with TRPC4 via the channel’s CIRB domain 

The first set of experiments was aimed towards identifying the interaction site between 

SESTD1 and the mTRPC4α-C-terminus. For this purpose we conducted binary Y2H tests 

with SESTD1 as prey and stepwise truncated fragments of the TRPC4-C-terminus as baits. 

As construction of the leucine zipper-linked baits required a more complex cloning procedure 

we first tested whether this assay could be done with monomeric instead of tetrameric 

TRPC4 fragments. Indeed, an interaction between SESTD1 and the complete mTRPC4α-C-

terminus could also be detected when the channel fragment was cloned into the standard 

Y2H bait vector pGBKT7 (Clontech, Mountain View, USA). Although we cannot exclude the 

possibility that this C-terminal TRPC4 fragment itself oligomerized in yeast, studies in 

mammalian cells clearly showed that the C-terminus alone is not sufficient to cause 

homophilic assembly of TRPC4 channels (Lepage et al., 2006; Schindl et al., 2007). Thus, 

this result indicates that SESTD1 also is able to bind the C-terminal TRPC4 tail in its 

monomeric form.  

Using the directed Y2H assay, we identified a short peptide sequence of 29 amino acid 

length (aa 700-728) in the TRPC4-C-terminus that was sufficient to mediate the interaction 

with full length SESTD1. Most notably, this section overlaps with the CaM/IPBB3BBR binding 

(CIRB) domain (aa 695-724 of TRPC4) that is conserved in all TRPC channels (Tang et al., 

2001). Although the amino acid homology of this region within the TRPC family is only 

moderate, binding of CaM and the IP BB3BBR to the respective sequences of hTRPC1, mTRPC2, 

hTRPC3, mTRPC4-7 was demonstrated by GST pulldown (Boulay et al., 1999; Tang et al., 

2001). On the functional level, binding of the IP BB3BBR at the CIRB site activates TRPC4 (Tang et 

al., 2001) and TRPC3 (Zhang et al., 2001). In contrast, competitive, Ca PP

2+
PP-dependent binding 

of CaM exerted an inhibitory effect (Tang et al., 2001; Zhang et al., 2001). More recently, the 

CIRB site has also been shown to be indispensable for receptor-induced activation of TRPC5 

(Ordaz et al., 2005). SESTD1 thus might play a role as an additional competitor at this 

domain in TRPC channels. However, when tested only TRPC4 and TRPC5, but not TRPC1 

and TRPC6, were able to interact with SESTD1 in the Y2H assay, suggesting that, unlike 

CaM and IP BB3BBR, SESTD1 binds specifically to the TRPC4/5 subfamily. Alignment of all TRPC 

CIRB domains reveals two non-conservative amino acid substitutions (Glu PP

708
PP and Asn PP

712
PP in 

mTRPC4) in TRPC4/5 compared to the DAG-sensitive TRPCs and TRPC1. These amino 

acids may be promising starting points for further analysis of the SESTD1-TRPC interaction 

by site-directed mutagenesis. 

 

Having delineated the SESTD1-binding motif in TRPC4, we further used the Y2H approach 

to define the binding region in SESTD1. Whereas the Sec14p-like lipid-binding domain of 

SESTD1 did not interact with either TRPC4 or TRPC5, the Spec 1 domain of SESTD1 
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promoted growth of yeast colonies on selective -Trp/-Leu/-His/-Ade plates when 

cotransfected with the mTRPC4α- or mTRPC5-C-terminus as a bait. Interaction between the 

second spectrin domain and the mTRPC4α-C-terminus was not strong enough to allow 

survival of yeast, but was sufficient after cotransformation with the mTRPC5-C-terminus.  

Later GST pulldown experiments confirmed the interaction of TRPC4 and TRPC5 with the 

Spec 1 domain. Binding of TRPC5 to the Spec 2 domain was only observed in some blots 

suggesting that this interaction is very weak. Although it can still be picked up by the highly 

sensitive Y2H assay, the physiological relevance of this interaction is questionable. In 

summary, the first spectrin repeat of SESTD1 was found with two independent methods to 

mediate binding to mTRPC4 as well as mTRPC5. Participation of the second spectrin 

domain in binding is possible but not clearly supported by our protein biochemical studies.  

Interestingly, our primary Y2H screen identified the spectrin α−chain as a binding partner of 

the mTRPC4-α C-terminus, while binding of non-erythrocytic ß-spectrin to TRPC5 in rat 

cerebral cortex was demonstrated by using a proteomics approach (Goel et al., 2005). 

Although the binding sites on ß-spectrin and TRPC5 were not further defined in this study, 

this interaction could involve the same structural elements as the TRPC4/5–SESTD1 

interaction. However, the currently available data does not explain how the spectrin repeats 

bind to the SESTD1 binding-sequence of TRPC4 and TRPC5. As the identified binding 

region carries a positive charge at physiological pH, the interaction may involve electrostatic 

forces. In this regard, it would be informative to study the salt dependency of the SESTD1-

channel binding, as high salt conditions weaken electrostatic but strengthen hydrophobic 

interactions (Cioffi et al., 2005). 

 

Y2H screens are sensitive in vivo assays that allow for a relatively fast identification of 

protein-protein interactions (Auerbach et al., 2002). Nonetheless, they have intrinsic caveats 

as they are transcriptional assays and the investigated interactions take place in the cell 

nucleus. It is therefore obligatory to validate the observed physical interactions. For this 

purpose, we used two protein biochemical methods, namely GST pulldown and co-

immunoprecipitation. 

Full length SESTD1 N-terminally fused to GST was able to pull down the ectopically 

expressed mTRPC4α-C-terminus from HEK293 cell lysates and thus confirmed the protein-

protein interaction found in the Y2H assay. We further adapted this assay to confirm the 

Y2H-based interaction site mapping on SESTD1. The SESTD1 protein was divided into three 

fragments that were named after the respective included domain: GST-Sec 14 (aa 1-192), 

GST-Spec 1 (aa 193-406), and GST-Spec 2 (aa 407-696). Unfortunately, GST-Sec 14 could 

not be purified from E. coli. We assume that overexpression of the Sec14p-like lipid binding 

domain is toxic for bacteria as induction of recombinant protein expression also reduced their 
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growth noticeably. Similar difficulties were reported by another group (D’Angelo et al., 2006), 

who was not able to purify the Sec14p-like lipid binding domain of neurofibromatosis type 1 

protein. Three full-length channel proteins were tested, mTRPC4α, mTRPC4ß and mTRPC5, 

and were significantly bound only by the GST-Spec 1 construct.  

The most stringent test for protein-protein interaction in vivo is co-immunoprecipitation of the 

respective binding partners from cells or tissues. Due to the lack of available cell lines 

expressing native TRPC4 or TRPC5 channels (Greka et al., 2003; Flockerzi et al., 2005) we 

investigated first whether SESTD1 co-immunoprecipitates with TRPC4 and TRPC5 when 

overexpressed in HM1 cells. In fact, we detected HA-SESTD1 in precipitates from cells 

transfected with FLAG-tagged mTRPC4ß as well as GFP-tagged mTRPC5 channels. A small 

fraction of SESTD1 was unspecifically precipitated by anti-TRPC4 and anti-GFP antibodies 

from control HM1 cell lysates that only expressed HA-SESTD1 but no channel proteins. This 

background binding was seen under different precipitating conditions and was always much 

lower than in the presence of ion channel proteins. We, therefore, concluded that SESTD1 

can interact with TRPC4 and TRPC5 in vivo.  

Our Y2H experiments indicated that SESTD1 specifically interacts with the C-terminal parts 

of TRPC4 and TRPC5, but not TRPC1 or TRPC6 (see Chapter 3.2.5). When we tested the 

specificity of the SESTD1-channel interaction using co-immunoprecipitation, we 

unexpectedly found that SESTD1 and full length TRPC6 precipitated together. Although the 

fraction of SESTD1 that immunoprecipitated with TRPC6 was smaller compared to TRPC4 

or TRPC5, binding was clearly above the unspecific background. Moreover, a distantly 

related TRP channel, TRPM8, which is lacking the SESTD1 binding domain, also interacted 

with SESTD1 in this assay. The amount of SESTD1 binding to TRPM8 was comparable to 

TRPC4/5. It is unlikely that these observations result from unspecific interactions of the used 

antibodies with overexpressed membrane proteins as overexpressed Kir2.1 channels did not 

immunoprecipitate with SESTD1. Apparently another SESTD1-binding site must be present 

in TRPC6 and TRPM8 in addition to the one delineated in this work for TRPC4 and TRPC5, 

the position of which is currently unknown. Sequence alignment of TRPC6 with TRPM8 does 

not reveal conserved regions outside the TRP-box, which, at least in the TRPC channels 

studied, is not interacting with SESTD1. Although the binding mode of SESTD1 to TRPC6 

and TRPM8 is unclear, it is noteworthy that TRPC6 as well as TRPM8 are functionally 

regulated by phosphatidylinositol phosphates (Rohacs et al., 2005; Kwon et al., 2007). 

Hence, it is conceivable that SESTD1 may control TRPC6- and TRPM8-mediated currents 

via PIP-binding.  

 

Having demonstrated co-immunoprecipitation of SESTD1 with both TRPC4 and TRPC5 in 

overexpressing cells, the next important step to verify the physiological relevance of this 
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interaction would be to verify native channel-SESTD1 complexes. As source of TRPC4 and 

TRPC5 protein we used rat brain, which was the only tissue for which immunoprecipitation of 

both channel proteins had been confirmed (Strubing et al., 2001; Bezzerides et al., 2004; 

Sinkins et al., 2004; Goel et al., 2005) at the time of our study. Unfortunately, using this 

tissue and commercially available antibodies we were unable to develop a suitable protocol 

for efficient precipitation of TRPC channels (data not shown). Thus, the final proof of TRPC-

SESTD1 complexes in native cells and tissues remains a challenge for future studies.  

4.2.2 Functional effects of SESTD1 knock-down on TRPC5  

The physical interaction of SESTD1 with TRPC4 and TRPC5 could potentially modulate 

function of the channel proteins as well as of SESTD1. As the function of SESTD1 was 

unknown and thus could not be measured, we decided to investigate the effect of SESTD1 

on TRPC4- or TRPC5-mediated currents. Because of the above mentioned lack of cells 

reliably expressing either native TRPC4 or TRPC5, we established a HEK293 cell line stably 

expressing TRPC5 (HM1-C5Y cells) for this purpose. TRPC5 was chosen since expression 

of mTRPC4α or mTRPC4ß generated only variable and relatively small currents (data not 

shown). 

Since SESTD1 co-immunoprecipitated with TRPC5-GFP, we assumed that a C-terminal 

YFP-tag also should not interfere with interaction of both proteins. Selection of single 

HM1-C5Y clones was guided by identification of fluorescent TRPC5-expressing cells, and 

functional channel expression was tested by stimulation of endogenous GBBq/11BB-coupled 

receptors (PAR) or stably overexpressed M BB1BBR in HM1 cells. Patch clamp experiments 

confirmed that both PAR- and MBB1BBR-agonists activated robust TRPC5-currents in the selected 

HM1-C5Y clone. As readout for TRPC5 function we used ratiometric measurements of Ca PP

2+
PP 

influx in HM1-C5Y cells, which allowed a fast and sensitive evaluation of many cells. With 

this method we also observed endogenous carbachol- and trypsin-sensitive channels in 

parental HM1 cells, but their contribution to the TRPC5-mediated Ca PP

2+
PP influx signal is 

negligible (see Figure 32 A–D).  

The most straightforward way to test for a SESTD1 effect on TRPC5 function was to 

overexpress SESTD1 in HM1-C5Y cells. These experiments, however, did not reveal any 

effect of SESTD1 on agonist-induced Ca PP

2+
PP influx. SESTD1 antibodies detected a protein of 

expected size suggesting that HM1-C5Y cells also contain native SESTD1 protein. If the 

endogenous protein is already sufficiently expressed, further expression may not have 

additional effects on TRPC5.  

Hence, we chose an siRNA-based knock-down strategy to investigate the effect of reduced 

SESTD1 protein levels on TRPC5. The used siRNA-pool decreased the endogenous protein 

levels by approx. 85% without apparent effects on general gene expression (see Figure 35). 

SESTD1 knock-down significantly and comparably reduced both carbachol- and trypsin-
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activated Ca PP

2+
PP influx by approx. 50% compared to control cells that were only treated with 

liposomes or unspecific non-targeting siRNA. Since a small portion of the investigated Ca PP

2+
PP 

influx into HM1-C5Y cells is mediated by the endogenous trypsin- and carbachol-sensitive 

channels mentioned above, their function might as well be impaired due to reduced SESTD1 

protein levels. Nevertheless, we did not further investigate this possibility since they only 

mediate a small fraction of the Ca PP

2+
PP influx. 

Importantly, no differences in CaPP

2+
PP release from internal stores between the various siRNA- 

and mock-treated groups were observed indicating that the complex signalling cascade 

leading from PAR/MBB1BBR via PLC to IP BB3BBR opening is not affected by SESTD1. In contrast, the 

function of the TRPC5 channel, which is involved in the same enzymatic signalling cascade, 

is significantly impaired by SESTD1 protein knock-down pointing to a specific regulation of 

TRPC5 channels by SESTD1. How this regulation is accomplished remains to be clarified.  

 

Initial patch-clamp analyses also did not reveal substantial changes in the 

electrophysiological properties of TRPC5-mediated currents in SESTD1-siRNA transfected 

cells (data not shown). We also tested the idea that SESTD1 is involved in the assembly 

and/or transport of TRPC5 to the plasma membrane by surface biotinylation experiments. 

These studies demonstrated similar surface expression of the channel protein independent 

of the treatment with liposomes, unspecific or specific siRNA. Therefore, interaction is likely 

to directly modulate the activity of the channel complexes at the plasma membrane. Further 

insights into the mechanism of SESTD1 regulation may be obtained from mutagenesis of the 

SESTD1 binding region. In this regard it is notable that mutations in the CIRB domain that 

overlaps with the SESTD1 binding sequence render TRPC5 insensitive to agonist stimulation 

(Ordaz et al., 2005). Moreover, the effect of calmodulin and possibly IPBB3BBR binding on the 

SESTD1-TRPC5 interaction will be of interest. As all three proteins share a common binding 

domain, competition or allosteric modulation may occur. Clearly, the indicated complex 

interactions with the CIRB site will make elucidation of the molecular events leading to 

functional regulation of TRPC5 a formidable task.  

4.3 Cell biology of SESTD1 

4.3.1 Tissue expression and subcellular localization 

Modulation of TRPC channel function by SESTD1 raised the question whether channel 

activity vice versa may also influence SESTD1 function. Apart from the described domain 

structure and related information, we could not find any published data regarding SESTD1 

function. To obtain first hints about its possible physiological roles we investigated SESTD1’s 

expression pattern. Analysis of a human tissue panel revealed that SESTD1 transcripts are 

ubiquitously expressed and thus also found in tissues which express TRPC4 and/or TRPC5, 
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e.g. cerebellum, hippocampus, cortex, heart, aorta and AoSMC (Okada et al., 1998; McKay 

et al., 2000; Schaefer et al., 2002; Facemire et al., 2004; Soboloff et al., 2005; Fowler et al., 

2007).  

We extended the expression studies to SESTD1 protein, focusing on tissues that may also 

contain TRPC4 or TRPC5. Western blots confirmed the expression of SESTD1 protein in 

human endothelial and smooth muscle aortic cells. Because our antibodies were raised 

against conserved antigenic epitopes, they were predicted to recognize also mouse and rat 

SESTD1. Indeed, SESTD1 was detected in lysates from murine cardiomyocyte HL-5 cells, 

rat aortic smooth muscle A7r5 cells, mouse ventricle, and at least a fraction of the native 

protein is membrane-associated as it was found in the microsomal fraction of rat brain.  

 

Unfortunately, apart from rat brain, we could not demonstrate expression of native TRPC 

channels in any of the tissues investigated. In brain microsomes we were able to identify 

TRPC5 (but not TRPC4) only after immunoprecipitation of significant amounts of tissue, but 

not directly on Western blots indicating a low expression level and/or low affinity to the 

antibodies used (data not shown). The low detection sensitivity, compared to other studies, 

may be due to different antibodies employed or differences in the origin and preparation of 

brain tissue. In light of these technical difficulties we were unable to perform meaningful co-

immunoprecipitation studies of TRPC4 or -5 channels with SESTD1. Nevertheless, our 

preliminary experiments provide a solid basis for further immunocytochemical analysis of 

putative SESTD1-TRPC protein complexes in brain. The use of new specific antibodies or 

the isolation of particular brain areas such as hippocampus containing substantial amount of 

TRPC channels (Strubing et al., 2001; Greka et al.,2003; Fowler et al., 2007) are promising 

options for improving the sensitivity of the co-immunoprecipitation assay. 

To gain more insight into the function of SESTD1 and to investigate whether it colocalizes 

with TRPC channels, we determined its subcellular localization.  

As evidenced by co-staining with anti-HA, our two anti-SESTD1 antibodies recognized 

overexpressed HA-SESTD1 in HM1 cells. Immunoreactivity was evenly distributed inside the 

cells. This localization was further confirmed by observation of C-terminally YFP-tagged 

SESTD1 that showed a similar distribution in HM1 cells (data not shown). 

Although anti-SESTD1 #147 and #148 displayed a corresponding staining pattern of 

overexpressed HA-SESTD1, the two antibodies yielded different results when endogenous 

SESTD1 was studied by indirect immunofluorescence microscopy. Anti-SESTD1 #147 

highlighted a vesicular pattern whereas anti-SESTD1 #148 predominantly visualized a 

tubular subcellular structure. The latter most likely reflects cross-reactivity with the 

abundantly expressed cytoskeletal protein tubulin as in some cells mitotic spindle poles were 

clearly stained. In agreement with this, on Western blots the anti-SESTD1 #148 recognized a 
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protein with the expected size of tubulin (~50 kDa). Although anti-SESTD1 #147 also 

unspecifically cross-reacted with an unrelated protein on Western blots, the vesicular pattern 

stained in immunofluorescence experiments with anti-SESTD1 #147 could indeed visualize 

the endogenous protein. It might be associated with vesicles due to binding of a specific 

phospholipid substrate (see 4.3.2 below). The abundance of this substrate in turn could be 

limiting for the anchoring and localization of SESTD1, thus, leading to the observed cytosolic 

distribution of heterologously overexpressed protein. In summary, although we could 

demonstrate that both anti-SESTD1 #147 and anti-SESTD1 #148 recognize overexpressed 

SESTD1 in immunofluorescence studies, more specific antibodies are needed to definitely 

elucidate the subcellular localization of endogenous SESTD1 and subsequently perform 

colocalization studies with TRPC5. 

4.3.2 Enzymatic function of SESTD1 

We identified two structural motifs in SESTD1 that share homology with known, catalytically 

active protein domains. The first of these motifs resembles a FKBP-type peptidyl-prolyl cis-

trans isomerase (PPIase) signature (PROSITE pattern ID PS00454). PPIases accelerate 

protein folding by catalyzing cis-trans isomerization of proline peptide bonds. An additional 

regulatory role of prolyl isomerization in already folded, functional proteins has been 

proposed recently (Andreotti, 2006). This mechanism is also based on the isomerization of 

proline peptide bonds and leads to structural rearrangements, e.g. in the 5-HT BB3 BBreceptor, that 

regulate opening of the neurotransmitter-gated cation channel (Lummis et al., 2005). 

Immunophilins like FKBP12 and -52 are PPIases (Davies & Sanchez, 2005) and their 

specific and selective interaction with TRPC3, -6, -7 (FKPB12) and TRPC1, -4, -5 (FKPB52) 

has been reported (Sinkins et al., 2004). Pharmacological disruption of the FKPB12/TRPC6 

interaction by the immunosuppressive drug FK506 attenuated TRPC6 current densities after 

receptor stimulation. The homology of SESTD1 with the PPIase motif was confined to a short 

(28 aa) peptide starting from aa 427. When tested for PPIase activity, we were not able to 

demonstrate this. This finding might be explained by the fact that SESTD1 does not contain 

the complete (89 aa) PPIase domain (PROSITE pattern ID PS50059) that is present in 

FKBP12 and -52 (Davies & Sanchez, 2005).  

 

SESTD1 also contains a Sec14p-like lipid binding domain (Smart entry: smart00516), a 

structural motif named after the prototypic yeast Sec14p protein (Saito et al., 2007). The 

SEC14 gene was originally identified in a complementation group of temperature-sensitive 

secretion (sec) mutants (Novick et al., 1980) and encodes the major phosphatidylinositol 

(PI)/phosphatidylcholine (PC) transfer protein in Saccharomyces cerevisiae (Bankaitis et al., 

1990). It is essential for cell viability and necessary for a certain trafficking pathway from the 

trans-Golgi network to the membrane (Bankaitis et al., 1989). The crystal structure of the 
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globular Sec14p protein reveals two lobes, the larger constituting a hydrophobic PI-binding 

pocket (Sha et al., 1998). A homologous domain is found only in eukaryotes and to date 

more than 500 Sec14-like proteins have been identified (Mousley et al., 2007). In most cases 

the function of these proteins is unknown. However, in higher eukaryotes Sec14-like proteins 

are likely to have more specialized functions than just PI transport which is mainly carried out 

by a structurally unrelated class of proteins, the phosphatidylinositol transfer proteins (PITP; 

Hsuan & Cockcroft, 2001; Saito et al., 2007). 

 

Although Sec14 domains are quite homologous, two main differences exist: a) some are 

devoid of the smaller lobe, and b) the amino acids forming the proposed binding pocket for 

the phospholipid head group are variable. Based on this, the ligands of a certain Sec14 

domain are not predictable from protein structure alone (Saito et al., 2007). We therefore 

tested whether SESTD1 acts as a PI binding protein in vitro. Indeed, we demonstrated 

specific binding of SESTD1 to phosphatidic acid (PA) and all naturally occurring 

phosphatidylinositol mono- and bisphosphates (Fruman et al., 1998), whereas 

phosphatidylinositol 3,4,5-trisphosphate was not bound. Most remarkably, binding to 

phospholipids increased when the Ca PP

2+
PP concentration was raised from resting physiological 

values (60 nM; Meldolesi & Pozzan, 1998) to a level (2.5 µM) that can be achieved locally by 

opening of Ca PP

2+
PP influx channels (McCarron et al., 2006). Given the close physical association 

of SESTD1 with TRPC4 and -5 it can be presumed that the fractional CaPP

2+
PP-influx mediated by 

the channels is sufficient to regulate SESTD1 phospholipid binding. The consequences of an 

increased association of SESTD1 with phosphatidylinositol bisphosphates, however, are 

unclear. 

 

A recent report demonstrated that TRPC channels can also bind phospholipids directly with a 

specificity that is strikingly similar to that observed for SESTD1 (Kwon et al., 2007). The PIP 

binding site was mapped to amino acids 842-873 in hTRPC6, a region overlapping with the 

CIRB domain (Tang et al., 2001). For TRPC5, PIP binding to the C-terminus was also 

detected but the binding site was not further mapped and it is also not known whether PIP 

binding activates or inhibits the channel’s activity. Based on this data, it is tempting to 

speculate about possible mechanisms of TRPC5 regulation by SESTD1. The observation 

that SESTD1 knock-down inhibits TRPC5 suggests an activating effect of SESTD1 binding to 

TRPC5. Thus, it is conceivable that competition of SESTD1 with phospholipid-binding to the 

CIRB site stimulates TRPC4/5. Upon initial activation of the channel, a Ca PP

2+
PP-induced 

increase in the affinity of SESTD1 for PIPs may displace phospholipids from the channel 

leading to conformational changes and further channel activation. On the other hand, 

SESTD1 may not only bind but also transport phospholipids like many of its yeast 
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homologues (Bankaitis et al., 1990). Ca PP

2+
PP entry could thus facilitate localized delivery of 

specific PIPs to the channel’s C-terminus. This could then enhance channel activity either 

through direct conformational coupling or by providing a substrate for PLC-mediated 

activation. Obviously, there are many more possible scenarios for a mechanistic explanation 

of the SESTD1-TRPC4/5 interaction. The involvement of PIP-binding or -signalling seems to 

be a sensible key element of such models.  

There are some crucial questions that need to be answered in order to refine our current 

understanding of the putative TRPC-SESTD1-PIP connection. For instance, it would be 

important to know how TRPC4/5 gating is modulated by PIPs and whether SESTD1 has a 

PIP-transfer activity. 

 

In order to allow a better quantification of SESTD1 phosholipid binding and to design an 

assay that may be used to screen for modulators of SESTD1-phospholipid interaction, we 

tested SESTD1 binding to phospholipid-loaded 96 well polystyrene plates (Cova-PIP 

Specificity Plates). After modifying the amount of bound PIPs, we found that this assay was 

suitable to measure SESTD1 binding. The plate assay confirmed the results of the overlay 

assay by demonstrating selective binding of SESTD1 to PIPs. The highest affinity was 

observed for PI(4,5)P BB2BB, the most abundant cellular PIPBB2BB that is also hydrolyzed by PLC. Thus, 

one may assume that channel regulation by SESTD1 involves PI(4,5)P BB2BB. 

In contrast to the overlay assay, we also detected binding of SESTD1 to PI(3,4,5)P BB3BB in PIP 

plates. Although this result is interesting in the context of the suggested role of PI(3,4,5)PBB3BB in 

TRP channel regulation (Kwon et al., 2007), it needs to be treated with caution. The 

phospholipids spotted onto PIP strips and covalently attached to the polystyrene plates (Hy-

PIPs) do not differ in terms of their lipids, they possess naturally occurring diC16 acyl chains. 

Yet, their physiological glycerol backbone is replaced by 1,2,3,4-butanetetraol in Hy-PIPs. 

This modification introduces an additional hydroxyl group that is further linked to 

phosphatidylethanolamine and covalently bound to the plate via this amine (information 

provided by Michael Landward, Echelon Biosciences Inc.). Therefore, the substrates in these 

two assays are not exactly the same what might explain the different binding observed to 

PI(3,4,5)P BB3BB.  

 

Independent of TRPC channel regulation, the lipid binding activity of SESTD1 may hint to 

other functions of the protein. PI(3)P is involved in the membrane trafficking pathway to the 

lysosome where proteins are degraded. It is present on early endosomes, and it is also a 

precursor of PI(3,5)P BB2BB that is found on later endocytotic compartments. PI(4)P is located at 

the Golgi but also at the PM, where it serves as a substrate for the synthesis of PI(4,5)P BB2BB. 

PI(5)P was found in the nucleus, the Golgi network and the PM, and is thought to be involved 
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in bacterial invasion and the control of cell morphology and actin assembly (Behnia & Munro, 

2005; Pendaries et al., 2005). PA, that is also bound by SESTD1, serves as a precursor of 

other phospholipids and triacylglycerol but also as a signalling lipid (Stace & Ktistakis, 2006), 

e.g. by stimulating  cardiac K BBATPBB channels (Fan et al., 2003). BB BBThe involvement of SESTD1 in 

any of these processes needs to be established.  

 

Finally, the Sec14p-like domain could regulate SESTD1’s spatial distribution as has been 

demonstrated for some multi-domain proteins with Sec14p-like and spectrin domains like 

Dbl, Duo and Trio (Ueda et al., 2004; Kostenko et al., 2005; Saito et al., 2007). These 

proteins contain further functional domains (e.g. RhoGEF and PH domains) and constitute 

guanine-nucleotide-exchange factors (GEFs) specific for the reactivation of Rho family 

GTPases. They in turn modulate different downstream effectors that alter actin dynamics 

and/or localization, cell adhesion, and gene transcription (O'Brien et al., 2000; Bateman & 

Van Vactor, 2001).  

4.3.3 Regulation of ß-catenin  

HM1 cells, which were depleted of SESTD1 by the use of siRNA, seemed to differ slightly in 

their morphology compared to control cells treated with unspecific, non-silencing siRNA or 

liposomes only. Cells appeared more slender and less clustered, but it was difficult to 

quantify these changes by light microscopy. Therefore, we tried to visualize the 

morphological changes in siRNA-treated cells by immunostaining of cell adhesion markers. 

Direct contacts between epithelial cells are formed by tight, gap and anchoring junctions. The 

latter are subclassified in adherens junctions and desmosomes (Lodish et al., 2003). HM1 

cells used for immunofluorescence experiments are of epithelial origin (Peralta et al., 1988; 

Thomas & Smart, 2005) and express the scaffolding protein zona occludens 1 (ZO-1) that is 

associated with tight junctions (Stevenson et al., 1986). ZO-1 was shown to colocalize with 

hTRPC4 in fetal astrocytes, and this interaction was mediated by the PDZ-binding domain at 

the distal C-terminus of the channel (Song et al., 2005). This motif is unique to TRPC4 and -5 

within the TRPC subfamily, but binding of ZO-1 to TRPC5 has not been tested. We 

compared ZO-1 staining in permeabilized SESTD1 siRNA-treated HM1 cells with control-

treated HM1 cells. The results were not unambiguous. Overall ZO-1 distribution was similar 

in both cell types, but we frequently observed areas with decreased ZO1-staining only in 

cells with SESTD1 knock-down. Since we did not find conditions under which this effect 

could be further enhanced, modification of tight junctions by siRNA-mediated SESTD1 

protein knock-down remains an open issue.  

 

In contrast to ZO-1, we discerned a clear effect of SESTD1 knock-down on the localization of 

β-catenin, a protein that connects the adherens junction component E-cadherin to α-catenin. 
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This cadherin/catenin complex is linked to the actin cytoskeleton by direct binding of α-

catenin to actin (Rimm et al., 1995) or to α-actinin (Knudsen et al., 1995). In cells treated with 

specific siRNA against SESTD1 ß-catenin distribution shifted from an almost exclusive 

plasma membrane-association to a predominantly intracellular localization with some 

residual staining at cell-cell contacts. 

The most plausible explanation for the observed redistribution of ß-catenin is that SESTD1 is 

somehow involved in the formation or maintenance of adherens junctions. If less adherens 

junctions are formed, less ß-catenin in turn is recruited to the PM by binding to E-cadherin. 

This would also fit to the observed slight changes in cell shape. Direct visualization of 

E-cadherin could provide further evidence for such a mechanism, but we were unable to 

detect E-cadherin by immunofluorescence microscopy using commercially available 

antibodies. Even less clear than the mechanism of ß-catenin redistribution itself are the 

consequences of this process. In addition to being a structural protein, β-catenin serves as 

intracellular effector of both the integrin-linked kinase (ILK) pathway (Novak et al., 1998) and 

the Wnt signalling pathway (Miller et al., 1999 and references therein). In the latter, cytosolic 

ß-catenin translocates to the nucleus in a phosphorylation-dependent way, where it acts as 

cofactor of the lymphoid enhancer factor/T cell factor (LEF/TCF) family of DNA-binding 

proteins to regulate the transcription of diverse genes (Chesire & Isaacs, 2002 and 

references therein). The dual role of ß-catenin as structural protein and gene transcription-

modulating element further complicates the interpretation of our observation. 

We have not tested whether SESTD1 knock-down alters expression of other genes. Given 

the known caveats of siRNA technology a thorough testing of the used siRNAs and the 

development of appropriate controls are necessary before such experiments can be 

considered. Undoubtly, however, such studies hold the potential to reveal many novel 

aspects of SESTD1 function.  
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5 Summary  

TRPC channels mediate non-selective cation currents and are considered as promising drug 

targets for the treatment of cardiac, pulmonary and renal diseases. Nevertheless, many 

questions regarding their native constitution, activation mechanisms, and (patho) 

physiological roles remain open. CCGaining a better understanding of TRPC channel function is 

complicated CCby their broad and partially overlapping distribution, possible 

heteromultimerization and similar electrophysiological properties (Moran et al., 2004). 

Moreover, available TRPC channel blockers, e.g. 2-APB, SK&F 96365 and lanthanides, are 

not specific and potent enough to allow an unambiguous pharmacological distinction of 

TRPC-mediated conductances in vivo. 

 

In the first part of this study, we have identified two steroid hormones, the natural hormone 

progesterone and the synthetic progestin norgestimate, as novel TRPC channel blockers. In 

fluorometric measurements of TRPC-mediated CaPP

2+
PP influx both substances blocked the 

investigated TRPC channels with micromolar activities. TRPC channel inhibition did not 

seem to be a general steroid effect since another progestin, the norgestimate metabolite 

levonorgestrel, was not effective. Norgestimate was 4- to 5-fold more active on the 

TRPC3/6/7 subfamily compared to TRPC4/5, whereas progesterone was similarly potent. 

This selectivity of norgestimate was confirmed by patch clamp recordings from members of 

the two TRPC subfamilies. As norgestimate blocked channels directly gated by DAG with a 

fast kinetic, we assume the compound acts on the channel protein itself. This view is further 

substantiated by the lack of effects on IPBB3BBR-mediated Ca PP

2+ 
PPrelease from the ER which is 

activated in parallel with TRPCs by GBBq/11 BB-coupled receptor stimulation. Norgestimate did not 

only block ectopically expressed TRPC channels but also native, TRPC-mediated currents in 

rat A7r5 aortic smooth muscle cells with similar activity. To test the usefulness of 

norgestimate as a tool compound for the investigation of physiological TRPC functions, we 

applied it to isolated vessel rings. Consistent with TRPC6 being an essential component of 

the α BB1BB-AR-activated cation channel, we demonstrated a direct vasorelaxant, endothelium-

independent effect of norgestimate on rat aortic rings precontracted with phenylephrine. 

Thus, our results provide further experimental support for a role of TRPC6 in α BB1BB-adrenergic 

vessel constriction.  

 

In the second part of this study we screened a human aorta cDNA-library for novel TRPC4-

interacting proteins with a modified Y2H system in which the TRPC4-C-terminus was 

expressed as tetrameric bait protein, thereby mimicking the native channel conformation. 

Eleven interacting proteins were found, none of which has been described before to interact 

with TRPC4. From these, SESTD1 was chosen for further analyses since it contains a 
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phospholipid-binding Sec14p-like domain and therefore could be involved in regulation of 

TRPC channels by phospholipids. First, the found interaction was biochemically validated by 

GST pulldown and co-immunoprecipitation studies. Employing different parts of SESTD1 in 

directed Y2H tests, the first spectrin domain was then identified to interact with the CIRB 

domain of TRPC4. Consistent with this result, SESTD1 co-immunoprecipitated with the 

closely related TRPC5 protein in which the SESTD1-binding domain is highly conserved. 

Independent of the CIRB site, co-immunoprecipitation with TRPC6 and the distantly related 

TRPM8 channel was observed indicating the existence of other sites in these channel 

proteins that mediate interaction with SESTD1. 

Analysis of SESTD1 gene expression in human tissues showed that its transcripts are 

ubiquitously expressed and tissues with significant coexpression with TRPC4 and -5 were 

identified. We have generated two polyclonal antisera directed against SESTD1 that 

consistently detected SESTD1 protein in brain, aorta, heart, and in smooth muscle and 

endothelial cells.  

The functional consequences of the found interaction were investigated by examination of 

the TRPC5-mediated CaPP

2+
PP influx in a clonal HM1 cell line stably expressing the channel. 

Since SESTD1 overexpression had no detectable effects on TRPC5 currents, most likely due 

to expression of endogenous SESTD1, we knocked-down the native protein with specific 

siRNA. This procedure reduced TRPC5-mediated Ca PP

2+
PP influx following receptor stimulation 

by 50%. Parallel biotinylation experiments did not reveal any differences in cell surface 

expressed TRPC5-protein, suggesting that reduction of TRPC5 activity resulted from a loss 

of a direct SESTD1 effect on the channel. In addition, we observed that reduced SESTD1 

protein levels resulted in a redistribution of the multifunctional protein ß-catenin from the 

plasma membrane to the cytosol. This result may point to an involvement of SESTD1 in 

formation and maintenance of adherens junctions. 

SESTD1 contains a phospholipid-binding Sec14p-like domain and we were the first to 

demonstrate its Ca PP

2+
PP-dependent binding to phosphatidic acid and all physiological 

phosphatidylinositol mono- and bisphosphates in vitro. The physiological function of this 

binding activity is not known at present, but might play a role in regulation of associated 

TRPC channels. TRPC5 channels also directly bind phospholipids although the functional 

consequences of this binding remain speculative. The TRPC3/6/7 subfamily is directly 

stimulated by the PIPBB2 BBhydrolysis product DAG and CCthe reduction of the PIP BB2BB concentration 

has been proposed to facilitate channel activation in parallel. CCThe presented phospholipid-

binding and putative -transferring activity of SESTD1 seems to be involved in this complex 

channel regulation. The identification of SESTD1 as novel TRPC-interacting protein could 

thus be an important step forward in the investigation and CCbetter comprehension CCof the 

molecular mechanisms of TRP channel regulation by lipids. 
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6 Zusammenfassung 

TRPC-Proteine formen Ionenkanäle mit variabler Selektivität für Kationen und erweckten 

zunächst Interesse als mögliche Vermittler des kapazitativen Ca PP

2+
PP-Einstroms in elektrisch 

nicht-erregbare Zellen. Aufgrund ihrer Aktivität kontrollieren TRPC-Kanäle viele zelluläre 

Vorgänge, wie G-Protein vermittelte Rezeptoraktivierung, intrazelluläre Kalziumspeicherung, 

Phospholipid-Signalweg, Zellwachstum sowie andere wichtige Funktionen. Inzwischen 

werden sie aber auch als interessante mögliche Angriffsziele zur Behandlung von Herz-, 

Lungen- und Nierenerkrankungen untersucht.  

Über die genaue molekulare Struktur und Wirkungsweise der TRPC-Kanäle ist noch wenig 

bekannt, was das Verstehen ihrer physiologischen Funktion und ursächlichen Beteiligung an 

Krankheiten erschwert. Die Gründe hierfür sind, dass die sieben in Säugern vorkommenden 

TRPC-Proteine eine sehr breite und zum Teil überlappende Gewebsexpression aufweisen, 

miteinander heteromere Kanalkomplexe bilden können, ähnliche elektrophysiologische 

Eigenschaften besitzen und bereits bekannte TRPC-Blocker nicht selektiv und spezifisch 

genug für die Unterscheidung nativer TRPC-Kanäle sind.  

 

Aus diesem Grund haben wir in der vorliegenden Arbeit nach neuen pharmakologischen 

TRPC-Modulatoren gesucht und zwei Steroide, das natürliche Hormon Progesteron und das 

synthetische Gestagen Norgestimat, als Inhibitoren identifiziert und näher charakterisiert. 

Beide Substanzen hemmten die untersuchten TRPC-Kanäle im mikromolaren 

Konzentrationsbereich. Ein aktiver Metabolit des Norgestimats, das Levonorgestrel, war 

hingegen nicht wirksam. Diese unterschiedliche Wirkung der strukturell nahe verwandten 

Substanzen schließt eine unspezifische Hemmung von TRPC-Kanälen durch diese Steroide 

aus. 

In fluorometrischen Messungen des TRPC-vermittelten Ca PP

2+
PP-Einstroms hemmte Norgestimat 

die Vertreter der TRPC3/6/7-Unterfamilie vier- bis fünfmal stärker als TRPC4 und -5. Im 

Gegensatz dazu war die Wirkung von Progesteron auf beide Unterfamilien vergleichbar. Die 

IPBB3BBR-vermittelte CaPP

2+
PP-Freisetzung aus dem ER, die an der Aktivierung der Kanäle nach 

Rezeptorstimulation beteiligt ist, war in diesen Experimenten nicht durch die Steroide 

beeinflusst worden. Dies deutet auf eine direkte Wirkung der Hormone auf die Funktion der 

Kanäle hin.  

Aufgrund seiner selektiven Wirkung wurde Norgestimat hinsichtlich seiner Eignung als 

potentieller Standardblocker von TRPC-Kanälen näher untersucht. Zunächst konnte seine 

selektive Wirkung auf die beiden TRPC-Unterfamilien durch Patch Clamp Messungen der 

entsprechenden Ströme in Zellen bestätigt werden, die stabil mit den Kanälen transfiziert 

waren. Die Applikation der Substanzen bewirkte eine rasche Hemmung der Kanäle, welche 



 Zusammenfassung 109 

 

durch Auswaschen der Blocker ebenso schnell reversibel war. Diese schnelle Kinetik ist ein 

weiterer Hinweis dafür, dass eine indirekte, für Steroidhormone charakteristische 

genomische Wirkung als Ursache für die Kanalblockade ausgeschlossen werden kann. Die 

Steroide hemmten zudem nicht nur die Aktivität der heterolog exprimierten Kanäle, sondern 

auch native, TRPC-vermittelte Ströme in glatten Gefäßmuskelzellen aus Rattenaorten. 

Aufgrund dieser Eigenschaften verwendeten wir Norgestimat, um die Beteiligung der TRPC-

Kanäle bei der Gefäßrelaxation näher zu untersuchen. Tatsächlich konnte an 

vorkontrahierten Aortenringen aus der Ratte nach Gabe von Norgestimat eine endothel-

unabhängige Relaxation beobachtet werden. In Übereinstimmung mit bekannten 

Literaturdaten legt auch dieses Ergebnis nahe, dass TRPC6-Kanäle an der Regulation des 

Gefäßtonus beteiligt sind und damit eine wichtige Rolle bei der Kontrolle des Blutdrucks 

spielen könnten. Zusammenfassend zeigen die vorgestellten Resultate, dass mit 

Norgestimat ein geeignetes pharmakologisches Werkzeug gefunden wurde, das die weitere 

Erforschung der physiologischen Funktionen von TRPC-Proteinen und ihrer Rolle bei 

humanen Krankheiten erleichtern könnte. Zudem stellt es möglicherweise auch einen ersten 

Ansatzpunkt für die weitere Entwicklung therapeutisch nützlicher Substanzen dar. 

 

Die Suche nach TRPC-modulierenden Wirkstoffen für die therapeutische Nutzung wird auch 

dadurch erschwert, dass sich die Eigenschaften von heterolog exprimierten Kanälen von 

denen der nativen Kanäle unterscheiden können wie es beispielsweise für den TRPC4-Kanal 

beschrieben wurde. Dies lässt darauf schließen, dass native TRPC4-Kanalkomplexe eine 

andere molekulare Zusammensetzung aufweisen als heterolog exprimierte TRPC4-

Homotetramere und außerdem bislang noch unbekannte Interaktionspartner oder 

regulatorische Untereinheiten existieren. Ein weiteres Ziel dieser Arbeit war es deshalb, neue 

Interaktionspartner von TRPC4-Kanälen zu finden und diese anschließend funktionell zu 

untersuchen. Zu diesem Zweck wurde zunächst eine cDNS-Bibliothek aus menschlichen 

Aorten mit Hilfe eines modifizierten Hefe Zwei-Hybrid Systems durchmustert. Als 

Köderprotein diente der C-Terminus des TRPC4-Kanalproteins. Die Besonderheit des 

verwendeten Hefe Zwei-Hybrid Systems bestand darin, dass das Köderprotein als 

tetrameres Fusionsprotein, d.h. in seiner nativen Konformation, vorlag.  

Nach mehrmaligem Durchmustern der cDNS-Bibliothek wurden insgesamt 

elf Interaktionspartner des TRPC4-Kanals isoliert, von denen keiner zuvor als 

Interaktionspartner für TRPC4-Kanäle beschrieben worden ist. Aus diesen wurde das 

SESTD1-Protein aufgrund seiner Struktur für weitergehende Untersuchungen ausgewählt. 

Es besitzt eine phospholipidbindende Sec14p-Domäne sowie zwei Spektrindomänen. Da 

TRPC-Kanäle in ihrer Aktivität durch Phospholipide reguliert werden und Spektrindomänen 
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an der Bildung von Multiproteinkomplexen beteiligt sind, erschien SESTD1 vielversprechend 

für eine detailliertere Charakterisierung. 

Die in den Hefezellen beobachtete Interaktion von SESTD1 und TRPC4 wurde zunächst 

durch zwei unabhängige proteinbiochemische Methoden bestätigt. Bakteriell exprimierte und 

gereinigte GST-SESTD1-Fusionsproteine waren in Pulldown-Experimenten in der Lage, 

TRPC4-Proteine aus Säugerzellextrakten zu binden. Ebenso wurde die 

Koimmunopräzipitation beider Proteine aus Lysaten transfizierter Säugerzellen 

nachgewiesen.  

Unter Verwendung von SESTD1-Proteinfragmenten wurde anschließend in direkten 

Interaktionsstudien in Hefezellen und in GST-Pulldown-Experimenten die erste 

Spektrindomäne von SESTD1 als notwendig und ausreichend für die Bindung an das 

TRPC4-Protein identifiziert. Umgekehrt konnte durch den Einsatz von C-terminal verkürzten 

TRPC4-Köderproteinen die CIRB-Domäne des Kanalproteins als Bindungspartner für die 

SESTD1-Spektrindomäne bestimmt werden. SESTD1 war auch in der Lage, das nahe 

verwandte TRPC5-Protein zu binden, da in diesem Kanal die SESTD1-Interaktionssequenz 

hoch konserviert ist. Die erfolgreiche CIRB-unabhängige Koimmunopräzipitation von 

SESTD1 mit TRPC6 und dem entfernter verwandten TRPM8-Kanalprotein weisen jedoch 

darauf hin, dass diese TRP-Kanäle noch weitere SESTD1-Bindungsstellen besitzen müssen.  

 

Nachdem wir die in dem transkriptionellen Hefeassay beobachtete Interaktion zwischen 

SESTD1 und TRPC4 bzw. -5 mit biochemischen Methoden verifiziert hatten, untersuchten 

wir die Expression von SESTD1-Transkripten in verschiedenen Geweben. Es stellte sich 

heraus, dass SESTD1 ubiquitär und damit beispielsweise in Gehirn, Herz und Aorta 

überlappend mit TRPC4 bzw. -5 exprimiert wird. Für den Nachweis des SESTD1-Proteins 

wurden zudem polyklonale Antikörper hergestellt. Als Antigene für die Immunisierung von 

Kaninchen wurden zwei Peptide eingesetzt, deren Aminosäuresequenzen in den SESTD1-

Proteinen von Mensch, Maus und Ratte konserviert sind. Beide Antiseren erkannten in 

Western Blot Analysen von stabil-transfizierten Zelllinien das SESTD1-Protein. Mithilfe dieser 

Antikörper konnte das Vorkommen von SESTD1 in verschiedenen primären menschlichen 

Gefäßmuskel- und Endothelzellen nachgewiesen werden. Außerdem wurde SESTD1-

Proteinexpression auch im Gehirn von Ratte und im Herz von Maus bestätigt.  

Um die subzelluläre Lokalisation des endogenen SESTD1-Proteins und seine mögliche 

Kolokalisation mit dem TRPC5-Kanal zu untersuchen, wurden Immunfluoreszenzstudien an 

HM1-Zellen durchgeführt. Das Antiserum #148 färbte vorwiegend tubuläre Strukturen an. 

Dieses Muster beruht sehr wahrscheinlich auf der bereits in der Western Blot Analyse 

angedeuteten Kreuzreaktivität mit Tubulin. Mit dem Antiserum #147 ergab sich dagegen ein 

hauptsächlich vesikuläres Verteilungsmuster. Da auch dieses Antiserum im Western Blot ein 
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weiteres Protein erkannte, kann nicht mit Sicherheit angenommen werden, dass dies die 

wirkliche subzelluläre Lokalisation von SESTD1 widerspiegelt. Für den eindeutigen 

Nachweis einer Kolokalisation von SESTD1 mit TRPC5 waren unsere beiden Antiseren 

aufgrund der zu geringen Spezifität ebenfalls nicht geeignet. Da bisher auch keine weiteren 

Antiseren beschrieben oder kommerziell erhältlich sind, muss die letztliche Bestimmung der 

SESTD1 Lokalisation in Zellen zukünftigen Untersuchungen vorbehalten bleiben. 

 

Zur funktionellen Charakterisierung der gefundenen Interaktion wurden mögliche Wirkungen 

von SESTD1 auf den TRPC5-vermittelten CaPP

2+
PP-Einstrom exemplarisch untersucht. Dafür 

wurde eine HM1-C5Y-Zelllinie hergestellt, die zusätzlich zu dem TRPC5-Kanal auch den 

MBB1BB-Acetylcholinrezeptor stabil exprimiert, dessen Stimulierung zur TRPC5-Aktivierung 

genutzt werden kann. Die Überexpression von SESTD1 in dieser Zelllinie hatte jedoch 

keinen signifikanten Effekt auf den TRPC5-vermittelten Ca PP

2+
PP-Einstrom. Western Blot Studien 

ergaben allerdings, dass SESTD1 endogen von diesen Zellen exprimiert wird. Wir vermuten 

deshalb, dass die Menge des endogenen SESTD1-Proteins bereits ausreichend für eine 

maximale Wirkung auf den TRPC5-vermittelten Ca PP

2+
PP-Einstrom ist. Deshalb wurde in einer 

weiteren Studie die Menge des endogenen SESTD1-Proteins mittels spezifischer siRNA 

stark reduziert. Durch die erzielte Hemmung der SESTD1-Expression war der TRPC5-

vermittelte Ca PP

2+
PP-Einstrom nach Rezeptorstimulation um etwa die Hälfte verringert. 

Biotinylierungsstudien zeigten aber, dass die Menge des TRPC5-Proteins an der 

Plasmamembran nicht verändert war. Diese Ergebnisse legen wiederum einen direkten 

Einfluss von SESTD1 auf die Kanalaktivität nahe. Immunofluoreszenzstudien zeigten 

außerdem, dass die siRNA-vermittelte Reduzierung der SESTD1-Proteinexpression zu einer 

Umverteilung des multifunktionellen ß-Catenin-Proteins führte. In Kontrollzellen war es vor 

allem an der Plasmamembran lokalisiert, wo es an der Vermittlung von Zell-Zell-Kontakten 

beteiligt ist, während es sich in SESTD1-siRNA-behandelten Zellen vor allem im Zytosol 

befand. SESTD1 ist also möglicherweise an der Bildung und/oder Aufrechterhaltung von 

Zell-Zell-Kontakten beteiligt. 

 

Um erste Hinweise auf den molekularen Mechanismus der Interaktion zwischen SESTD1 

und TRPC5 zu erhalten, untersuchten wir abschließend, ob SESTD1 Phospholipide binden 

kann, wie es das Vorhandensein der Sec14p-Domäne andeutet. Wir fanden, dass 

rekombinantes GST-SESTD1-Fusionsprotein tatsächlich Phospholipide binden konnte, die 

auf Nitrocellulose-Membranen immobilisiert waren. Neben Phosphatidylsäure wurden auch 

alle physiologisch vorkommenden Phosphatidylinositolmono- und -diphosphate gebunden. 

Interessanterweise wurde diese Bindung Ca PP

2+
PP-abhängig moduliert. Diese Calciumsensitivität 
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eröffnet die faszinierende Möglichkeit einer dualen Regulation sowohl von TRPC4/5 durch 

SESTD1 als auch von SESTD1 durch TRPC-vermittelten Ca PP

2+
PP-Einstrom.  

Für mögliche zukünftige nichtradioaktive SESTD1-Substratbindungsstudien haben wir einen 

Bindungsassay etabliert, der diese Untersuchungen in 96-Wellplatten und damit die effiziente 

Identifizierung von SESTD1-Modulatoren ermöglichen könnte. S 

Phospholipide sind in komplexer Weise an der Regulation von TRPC4 und TRPC5 beteiligt. 

Sie stellen das Substrat für die zur Kanalaktivierung essentiellen Hydrolysefunktionen von 

PLC dar und binden darüber hinaus direkt an die Kanalproteine. Die Identifizierung von 

SESTD1 als TRPC-interagierendes Protein könnte ein wichtiger Schritt zur mechanistischen 

Aufklärung der Kanal-Lipid-Wechselwirkung sowie ihrer funktionellen Konsequenzen sein. 
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8 Appendix 

8.1 Vectors 

Vector Supplier 
pGEX-4T-1 Amersham, Munich, Germany 
pGEX-5X-3 Amersham, Munich, Germany 
pACT2 Clontech, Mountain View, USA 
pcDNA3.1 Invitrogen, Karlsruhe, Germany 
pCMVbeta Invitrogen, Karlsruhe, Germany 
pCMV-HA Invitrogen, Karlsruhe, Germany 
pCR-Blunt II-TOPO Invitrogen, Karlsruhe, Germany 
pGADT7 Clontech, Mountain View, USA 
pGBKT7 Clontech, Mountain View, USA  
pGreen Lantern  GIBCO BRL, Gaithersburg, USA 
pEYFP-N1 Clontech, Mountain View, USA 
  

8.2 Constructs for expression in yeast  

Construct Primers Restriction sites 

EGFP/leucine zipper/pGBKT7 

kindly provided by PD Dr. B. 
Schwappach, Rupprecht-Karls 
Universität Heidelberg, 
Germany) 

 

hTRPC1 (640-759)/leucine zipper/pGBKT7 hTRPC1c_f_NotI 
hTRPC1c_r_PstI EcoRI/NotI/PstI 

hTRPC6 (722-931)/leucine zipper/pGBKT7 hTRPC6c_f1 
hTRPC6c_r1 EcoRI/NotI/SalI 

mTRPC4α (615-974)/leucine zipper/pGBKT7 mTRPC4longc_f1 
mTRPC4longc_r1 EcoRI/NotI/PstI 

wt: mTRPC4α (615-974)/pGBKT7 mTRPC4α1_f_EcoRI 
mTRPC4α2_r_BamHI EcoRI/BamHI 

C204: mTRPC4α (771-974)/pGBKT7 mTRPC4α2_f_EcoRI 
mTRPC4α2_r_BamHI EcoRI/BamHI 

∆C204: mTRPC4α (615-770)/pGBKT7 mTRPC4α1_f_EcoRI 
mTRPC4α1_r_BamHI EcoRI/BamHI 

∆C275: mTRPC4α (615-699)/pGBKT7 mTRPC4α1_f_EcoRI 
mTRPC4α3_r_BamHI EcoRI/BamHI 

C700-C770: mTRPC4α (700-770)/pGBKT7 mTRPC4α3_f_EcoRI 
mTRPC4α1_r_BamHI EcoRI/BamHI 

C700-C741: mTRPC4α (700-741)/pGBKT7 mTRPC4α3_f_EcoRI 
mTRPC4α5_r_BamHI EcoRI/BamHI 

C700-C728: mTRPC4α (700-728)/pGBKT7 mTRPC4α3_f_EcoRI 
mTRPC4α4_r_BamHI EcoRI/BamHI 

mTRPC5 (619-975)/leucine zipper/pGBKT7 mTRPC5c_f1 
mTRPC5c_r1 EcoRI/NotI/PstI 

hSESTD1 (1-696)/pACT2 prey from Y2H screen  

hSESTD1 (1-192)/pACT2 SESTD1_f1_BamHI 
SESTD1_r1_XhoI BamHI/XhoI 

hSESTD1 (193-406)/pACT2  SESTD1_f2_BamHI 
SESTD1_r2_XhoI BamHI/XhoI 

hSESTD1 (407-696)/pACT2 SESTD1_f3_BamHI 
SESTD1_r3_XhoI BamHI/XhoI 
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8.3 Constructs for expression in bacteria  

Construct Primers Restriction sites 

GST-SESTD1 (1-696)/pGEX-4T-1 SESTD1_f_BamHI 
SESTD1_r_XhoI BamHI/XhoI 

GST-Sec 14 (1-192)/pGEX-5X-3 SESTD1_f1_BamHI 
SESTD1_r1_XhoI BamHI/XhoI 

GST-Spec 1 (193-406)/pGEX-5X-3 SESTD1_f2_BamHI 
SESTD1_r2_XhoI BamHI/XhoI 

GST-Spec 2 (407-696)/pGEX-5X-3 SESTD1_f3_BamHI 
SESTD1_r3_XhoI BamHI/XhoI 

   

8.4 Constructs for expression in mammalian cells  

Construct Primers Restriction sites 

mTRPC4α (615-974)/pcDNA3.1(+) cut from Y2H bait BamHI/NotI 

mTRPC4ß/pcDNA3.1-nFLAG-DEST GATEWAY cloning (see 
methods)  

hSESTD1/pcDNA3.1(+) cut from Y2H prey  XhoI/BamHI 

hSESTD1/pCMV-HA SESTD1_f_SalI 
SESTD1_r_XhoI SalI/XhoI 

hSESTD1/pEYFP-N1 SESTD1_f_XhoI 
SESTD1_r_BamHI  XhoI/BamHI 

Constructs not listed above were kindly provided by Dr. Vladimir Chubanov (Philipps-Universität 
Marburg, Germany), PD Dr. Niels Decher (Philipps-Universität Marburg, Germany) and Dr. Carsten 
Strübing (Sanofi-Aventis Deutschland GmbH). 
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8.5 Abbreviations 

A7r5 clonal cell line (derived from rat thoracic aortic smooth muscle cells)  
α BB1BB-AR α BB1BB-adrenergic receptor 
2-APB 2-aminoethoxydiphenyl borate 
Ade adenine 
ANKRD35 ankyrin repeat domain 35 
APOA1BP apolipoprotein A-I binding protein 
AoSMC aortic smooth muscle cells 
ATP adenosine triphosphate 
att attachment 
AVP [Arg PP

8
PP]-vasopressin 

BAZ1B bromodomain adjacent to zinc finger domain 
BCA bicinchoninic acid 
BSA bovine serum albumine 
CaM calmodulin 
CASMC coronary artery smooth muscle cells 
CCE capacitative Ca PP

2+
PP entry 

cDNA copy DNA 
cfu colony forming units 
CIF Ca PP

2+
PP influx factor 

CIRB domain CaM/IPBB3BBR-binding domain 
CMV cytomegalie virus 
COPD chronic obstructive pulmonary disease 
CRAC calcium-release-activated calcium channel 
CRACM1 CRAC modulator 1 
CSM complete supplement mixture 
Cs BB4BB-BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid 
C-terminal carboxy terminal 
DAG diacylglycerol 
DELFIA dissociation-enhanced lanthanide fluorescence immunoassay 
DMEM Dulbecco’s modified eagle medium 
DMF dimethylformamide 
DMSO dimethyl sulphoxide 
DNA deoxynucleic acid 
DNA-BD DNA binding domain of transcription factor GAL4 
dNTP deoxynucleotide 
D-PBS Dulbecco’s phosphate buffered saline 
DTT dithiotreitol 
E. coli Escherichia coli 
EC endothelial cells 
ECBB50BB half maximal effective concentration 
ECL enhanced chemiluminescence 
EDTA  ethylenediaminetetraacetic acid  
EGFP enhanced green fluorescent protein 
EGTA ethylene glycol-bis(ß-aminoethylether)-N,N,N´,N´-tetraacetic acid  
eNOS endothelial nitric oxide synthase 
ERG electroretinogram 
EYFP enhanced yellow-green GFP mutant protein 
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FBS fetal bovine serum 
FITR Flp-In T-Rex (inducible expression system) 
FKBP F506 binding protein 
FLIPR fluorometric imaging plate reader 
FRT site Flp recombination target site 
FSGS focal segmental glomerulosclerosis 
GAL4 transcription factor 
GAL4-AD activation domain of transcription factor GAL4 
GAPDH glyceraldehyde-3-phosphate dehydrogenase 
GCN4 general control nondepressible 4 (transcriptional activator protein) 
GFP green fluorescent protein 
GST glutathione S-transferase 
GTP guanosine triphosphate 
5-HT 5-hydroxytryptamine (serotonin) 
5-HT BB3BB receptor subtype of the 5-hydroxy tryptamine (serotonin) receptor 
HA antigenic epitope of human influenza virus hemagglutinin protein 
HAEC human aortic endothelial cells 
HEK293 human embryonal kidney cells  
HL-5 a cell line derived from murine atrial cardiomyocytes 
HMG2L1 high-mobility group protein 2-like1 isoform b   
HMVEC-d human dermal microvascular endothelial cells 
HPV hypoxic pulmonary vasoconstriction 
HRP horseradish peroxidase 
ICBB50BB half maximal inhibitory concentration 
I BBCRACBB calcium-release-activated calcium current 
iNOS inducible nitric oxide synthase 
IPBB3BB inositol-1,4,5-trisphosphate 
IPBB3BBR IPBB3 BBreceptor 
IPBB6BB inositol hexaphosphate 
IPAH idiopathic pulmonary arterial hypertension 
iPLABB2BB inducible phospholipase 2 
IPTG isopropyl ß-D thiogalactoside 
I-V current-voltage 
Kir inwardly rectifying K PP

+
PP channel 

Kv voltage-dependent K PP

+
PP channel 

LB medium Luria Bertani medium 
LiAc lithium acetate 
L-NAME N-nitro-L-arginine methyl ester 
ß-ME ß-mercaptoethanol 
MBB1BBR muscarinic type 1 receptor 
MAEC mouse vascular endothelial cells 
MCS multiple cloning site 
MEM minimal essential medium 
MKRN1 makorin RING finger protein 1 
ML-9 [1-(5-chloronaphthalene-1-sulphonyl) homopiperazine, HCl] 
MLCK myosin light chain kinase 
mRNA messenger RNA 
NCBI National Center for Biotechnology Information 
NCX Na PP

+
PP/Ca PP

2+
PP exchanger 

NHE Na PP

+
PP/HPP

+ 
PPexchanger 
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NHERF Na PP

+
PP/HPP

+
PP exchanger regulatory factor 

NO nitric oxide 
N-terminal amino terminal 
OAG oleoyl-2-acetyl-sn-glycerol 
PA phosphatidic acid 
PAGE polyacrylamide gel electrophoresis 
PAR protease-activated receptor 
PBXIP1 pre-B-cell leukemia homeobox interacting protein 1 
PCR polymerase chain reaction 
PDZ domain protein-protein interaction mediating domain 
PDZ-B PDZ-binding motif that interacts with PDZ domains 
PEG polyethylene-glycol 
Pfu Pyrococcus furiosus 
pH negative decadic logarithm of the concentration of hydrogen ions 
PH domain pleckstrin homology domain 
PI, PIP, PIPBB2BB, PIPBB3BB phosphatidylinositol, mono-/bis-/trisphosphate 
PKC protein kinase C 
PKG protein kinase G 
PLC phospholipase C 
PM plasma membrane 
PPIase peptidyl-prolyl cis-trans isomerase  
PSS physiological phosphate-buffered salt solution 
RNA ribonucleic acid 
ROC receptor-operated channel 
rpm rotations per minute 
RT room temperature 
S1P sphingosine 1-phosphate 
SCID severe combined immunodeficiency 
SDS sodium dodecyl sulphate 
SDS PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis 
SEM standard error of the mean 
Sec 14 Sec14p-like lipid-binding domain 
SERCA sarcoplasmic/endoplasmic reticulum Ca PP

2+ 
PPpump 

SESTD1 SEC14 and spectrin domains 
siRNA small interference RNA 
SK&F 96365        1-(ß-[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl)-1H-
 HCl 
SMC smooth muscle cells 
SMC3 structural maintenance of chromosomes 3 
Spec 1, Spec 2 spectrin repeats 
SPTAN1 spectrin, alpha, non-erythrocytic 1 
SOC store-operated channel 
STIM1 stromal interaction molecule 1 
TetOBB2BB tet operator 2 
TetR Tet repressor 
TLN2 talin 2                                                                                  
tBHQ tert-butyl-benzohydrochinone 
Tris-HCl Tris(hydroxymethyl)aminomethane hydrochloride 
TRP transient receptor potential 
Tween 20 polyethylene glycol sorbitan monolaurate 
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U unit 
UV ultraviolet 
v/v volume per volume 
VBB1A BB vasopressin receptor 
w/v weight per volume 
wt wild type 
X-gal 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside  
Y2H yeast two-hybrid 
YFP yellow-green GFP mutant protein 
ZO-1 zona occludens 1 
 
amino acids:  
alanine, Ala, A; arginine, Arg, R; aspartic acid, Asp, D; asparagine, Asn, N; cysteine, Cys, C; 
glutamic acid, Glu, E; glutamine, Gln, Q; glycine, Gly, G; histidine, His, H; isoleucine, Ile, I; 
leucine, Leu, L; lysine, Lys, K; methionine, Met, M; phenylalanine, Phe, F; proline, Pro, P; 
serine, Ser, S; threonine, Thr, T; tryptophane, Trp, W; tyrosine, Tyr, Y; valine, Val, V. 
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