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Are nearby places (e.g., cities) described by related words? In this article, we transfer this research question in the field of lexical
encoding of geographic information onto the level of intertextuality. To this end, we explore Volunteered Geographic Information
(VGI) to model texts addressing places at the level of cities or regions with the help of so-called topic networks. This is done to
examine how language encodes and networks geographic information on the aboutness level of texts. Our hypothesis is that the
networked thematizations of places are similar, regardless of their distances and the underlying communities of authors. To
investigate this, we introduce Multiplex Topic Networks (MTN), which we automatically derive from Linguistic Multilayer
Networks (LMN) as a novel model, especially of thematic networking in text corpora. Our study shows a Zipfian organization of
the thematic universe in which geographical places (especially cities) are located in online communication. We interpret this
finding in the context of cognitive maps, a notion which we extend by so-called thematic maps. According to our interpretation of
this finding, the organization of thematic maps as part of cognitive maps results from a tendency of authors to generate shareable
content that ensures the continued existence of the underlying media. We test our hypothesis by example of special wikis and
extracts of Wikipedia. In this way, we come to the conclusion that geographical places, whether close to each other or not, are

located in neighboring semantic places that span similar subnetworks in the topic universe.

1. Introduction

In this article, we explore crowd-sourced resources for
automatically characterizing geographical places with the
help of so-called topic networks. Our goal is to model the
thematic structure of corpora of natural language texts that
are about certain places seen as thematic frames. This is done
in order to automatically compare the thematic structures of
corpora of texts about these places, which will be represented
as topic networks. In this way, we want to investigate the
regularity or systematicity according to which geographical
objects (i.e., cities and regions) are dealt with, especially in
online communication.

Our work relates to what is described by Crooks et al. [1]
as a novel paradigm of modeling “urban morphologies.” We

not only add special wikis such as regional and city wikis as
candidates to the resources listed in [1] but also introduce a
novel method for modeling their content. This concerns
local media of collaborative writing about places (cf. [2]),
which contain everyday place descriptions [3] authored and
networked according to the wiki principle. The corre-
sponding wikis and the subgraphs of Wikipedia that we
additionally analyze manifest Volunteered Geographic In-
formation (VGI) [4-6] and thus relate to what is called the
wikification of Geographical Information Systems (GIS) [7].
VGI is “completing traditional authoritative geographic in-
formation” [8], an information source which is still
“underutilized” in geography [9] as a source of big textual
data [8] making natural language processing an in-
dispensable prerequisite for its analysis. According to Hardy
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etal. [6], authoring VGI has a spatial component in the sense
that people likely write about local content though this also
holds for Wikipedia for a minor degree [10]. This spatial
component can be accompanied by a lack of quality as-
surance, which makes VGI susceptible to deficiencies and to
a distorted resource of still unknown extent [5]. In any event,
the biased coverage of VGI is a characteristic of resources
like Wikipedia so that the same region can be displayed very
differently in its various language editions [11], a sort of
biasing which is typical for user-generated content. Nev-
ertheless, Hahmann and Burghardt [12] show that more
than 50% of the articles in the German Wikipedia contain
georeferenced data (at least indirectly via links to other
articles), so that such media can be regarded as rich re-
sources of VGI. Moreover, Goodchild and Li [5] point to the
fact that crowd-sourcing or, more precisely, crowd-curation
[13], as enabled by wikis, is a means of quality assurance.

We follow this concept and assume that geographic data,
as manifested linguistically in online media, are a valuable
resource to investigate how communities form a common
sense for addressing places of common interest. In line with
Clare ([14], 41), we additionally assume that “[a]s people
communicate more about a place, social consensus will create
increased similarity between and within people’s judgments of
it.” However, we also assume that the latter similarity can
affect communications of different communities about
different places. In this way, we assume a kind of horizontal
self-similarity [15] of the thematic structure of online media,
which is more or less independent of the underlying theme
and the community. That is, our hypothesis on the theming
of places is as follows.

Hypothesis 1. Thematizations of different places at a certain
level of thematic abstraction tend to be similar among each
other (rather than being dissimilar) (1) in the sense that they
focus on similar topics and (2) the way these topics are
networked and (3) with respect to the skewness of this focus,
regardless of whether the underlying media are generated by
different communities and whether these communities
address related or unrelated places at near or distant spaces.

The intuition behind Hypothesis 1 is that thematizations
of places in web-based communication are seemingly
somehow thematically redundant: in reporting, for example,
on the cities in which people live, they may aim to emphasize
the special character of these places. It seems, however, as if a
thematic trend is breaking ground that ultimately makes
such reports appear thematically very similar. Whether or
not this intuition is actually a trend that can be observed
specifically in the field of wiki-based media is something this
study is intended to clarify. From this point of view, it is
obvious that Hypothesis 1 is only a starting point which in
itself needs further clarification in order to be testable:
similarity, for example, is a highly context-sensitive attribute
[17] that needs further definitional specifications in order to
be computable. Likewise, the concept of thematization
(theme or topic)—a concept which according to Adamzik
[18] has so far found comparatively less attention in lin-
guistics—is not yet specified in Hypothesis 1. Thus, an
appropriate elaboration and concretization of Hypothesis 1
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is one of the main tasks of the present paper. To this end, it is
developing a generic topic network model in conjunction
with a measurement procedure which will specify both the
notion of similarity (which will be defined in terms of the
graph similarity of topic networks) and of the thematization
of places (which will be defined in terms of topic labeling and
topic networking). This topic network model will allow
Hypothesis 1 to be reformulated and concretized in the form
of variants (i.e., Hypotheses 2-4), which will be presented in
Section 3.2.7 and whose formulations presuppose the topic
network model that this paper develops in the preceding
sections.

The skewness that is mentioned by Hypothesis 1 reminds
one of a Zipfian process, according to which a few topics
dominate, while the majority of candidate topics are un-
derrepresented or disregarded. Therefore, we speak of
Zipfian thematic universes, which are spanned by the the-
matization of the same places in online media such as special
wikis of the sort studied here. By the term topic, we refer to
the notion of aboutness of texts [18, 19]. From a linguistic
point of view, the terminology of Hypothesis 1 seems to be
confusing when referring to places as what is given and with
topic to what is said about these places. The reason is that
linguistics distinguishes between what is given (theme or
topic) and what is said about it (rheme, comment, or focus) in
a given piece of text [18, 20-22]: a mention of a city like
Vienna, for example, can be connected with certain sub-
topics (e.g., classical music), which characterize this place
rhematically by providing new information about it. The
latter distinction is meant when we relate subtopics in the
role of rhemes to places in the role of topics in the linguistic
sense. Thus, when talking about topics as part of a com-
putational model, we will use the term topic (topic,), while
when talking about places as topics in the linguistic sense
(topic;), we will use the term theme and speak about its
rhemes as its subtopics modeled by topics (topic,) as units of
our model. This scenario and its relation to Hypothesis 1 are
depicted in Figure 1. It shows a generalization of a hy-
pothesis of Louwerse and Zwaan [16] according to which
language encodes geographical information: the places p and
q> which are understood as conceptual units (i.e., mental
models), are described by or expressed in two discourse units
(texts, dialogs, etc.) x and y. From the latter units, the topic
representations « and f are derived by means of a com-
putational model (e.g., Latent Dirichlet Allocation (LDA)
[23] or the topic network model introduced in Section 3).
While such derived topics are part of the computational
model, the underlying discourses belong to the modeled
system. We assume that the conceptual unit p (gq) is
structured into a system of networked rhemes or subtopics
pi (g,,,)- Ideally, the derived topic « in Figure 1 is a valid
model of one of the rhemes of place p (e.g., p;) and f3 of one
of the rhemes of place g (e.g., g,,,). If we assume now that p
and ¢ are conceptually related (e.g., similar) to each other,
then the linguistic encoding hypothesis implies that this is
possibly reflected by a relatedness (e.g., similarity) relation
among some rhemes of these places (e.g., by the relatedness
of p; and g,,). From the point of view of modeling, this
relation is ideally mapped by the relatedness (e.g., similarity)
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FIGURE 1: Schematic depiction of a generalization of a hypothesis of Louwerse and Zwaan [16] saying that language encodes geographical
information: the places pand g are expressed in the discourses x and y, respectively, from which the topic representations a and 8 are
computationally derived. Places are structured into systems of networked rhemes or subtopics. The conceptual relatedness of p and q is
grounded in the relatedness of the rhemes p; and g,, and modeled by the relatedness of the derived topics « and f modeling these rhemes.
According to the semiotic triangle, we assume that the relation of signs (here, texts) to their referents (here, spaces) is mediated by sign
processes. We use dashed arcs to express the indirect relation of the former to the latter. In lexical variants of this approach, p and g are
preferably denoted or described by some words wy, and wy,; of the underlying lexis, which are syntagmatically or paradigmatically associated
and modeled by some types vand w. Framed numbers indicate relations that potentially parallelize each other. s.r. means statistically related.

of the derived topics a and 3. We assume that conceptual
relations between places can be parallelized by relations of
physical proximity or distance between spaces that are
mentally modeled by these places. If one additionally as-
sumes that proximity in space correlates with relatedness in
conceptual space (the less the distant, the more the similar,
for example), one obtains a linguistic variant of Tobler’s so-
called first law (see Section 2). If we look at the literature (see
Section 2), we find that the approaches in this area differ in
terms of the linguistic level at which they observe the lin-
guistic encoding of platial [13] relations: for example, at the
level of intertextually linked texts, at the level of the topics
these texts are about, or at the level of lexical elements used
by these and other texts to deal with the latter topics.
In lexical variants of this approach, the places p and ¢, for
which we assume that they are conceptually related, are
preferably referred to or described by means of lexical items
wyand wy,; (see Figure 1) of the underlying lexis that are
syntagmatically or paradigmatically associated. From the
point of view of modeling, we have to then assume the two
types v and w (as models of the words w; and wy,,) for which

we automatically detect, for example, their (paradigmatic)
closeness in semantic space (cf. [24, 25]) or the similarity of
their (syntagmatic) co-occurrence statistics (cf. [26]).

From this analysis, we obtain a series of reference points
or means for encoding geographical information about
conceptual relations (see [1] in Figure 1) of places. This
concerns more precisely a series of possible parallelizations
of such relations, which may ultimately be parallelized by
relations between the spaces designated by these places (for
the numbers in brackets, see Figure 1): at the level of the
modeled system, this refers to thematically linked rhemes,
intertextually linked discourse units (e.g., texts), and syn-
tagmatically or paradigmatically linked words ([1]). From a
modeling point of view, we distinguish the statistical re-
latedness of types or of topics as candidate parallelizations
([1]). Beyond that, we find the parallelization of the re-
latedness of rhemes and words on the one hand and of types
and topics on the other ([2], [3]), as well as that of the
relatedness of words on the one hand and of types on the
other ([4]). The parallelization of the relatedness of rhemes
of the same place ([0]) by the relatedness of the rhemes of



another place concerns the core of our network approach.
Such relations among rhemes constitute rhematic networks
or networks of rhemes on both sides of the affected places.
Our main assumption is now that any such rhematic net-
work, which manifests the thematic structure of a place, can
be related as a whole to that of another place. In doing so, it
is, from a modeling point of view, ideally parallelized by the
structural relatedness (e.g., similarity or complementarity) of
topic networks, which are derived from corpora of texts, each
of which describes one of these places ([5]). This type of
parallelization affects entire networks of linguistic objects
and yet offers a means of encoding the conceptual re-
lationship of places ([1]) or the proximity of spaces, re-
spectively. In the present paper, we explore relations of Type
[5] in order to learn about the encoding of geographical
information in natural language texts, that is, about relations
of Type [1]. To this end, we develop, instantiate, and em-
pirically test a formal model of multiplex topic networks
derived from so-called linguistic multilayer networks as a
model of relations of Type [5].

From this point of view, Hypothesis 1 means that certain
rhemes of places and the structure they span resemble each
other, regardless of how far the quantified distances of the
spaces represented by these places are and regardless of the
fact that the texts in which these rhemes are described are
written by different communities. To test this hypothesis, we
introduce topic networks to make the networking of topics a
research object according to the scenario described in
Figure 1, that is, in relation to the hypothesis of linguistic
encoding of geographical information. The contributions of
this article are of theoretical, methodical, and empirical
nature.

(1) Formal modeling: we develop a generic, extensible
formalism for the representation of topic networks
that cover a wide range of informational sources for
spanning and weighting topic links. To this end, we
introduce the notion of multiplex topic networks
derived from so-called multilayer linguistic networks.
In this way, we enable the same place to be repre-
sented by a family of thematic networks that offer
different perspectives on the networking of its
rhemes. We exemplify this model by means of two
perspectives provided by so-called Text Topic Net-
works (TTN) and their corresponding Author Topic
Networks (ATN).

(2) Procedural modeling: we develop a measurement
procedure for instantiating our formal model. To this
end, we introduce novel measures of the similarity of
labeled graphs that are sensitive to their links and to
their nodes.

(3) Experimentation: we further develop the range of
baseline statistics in network theory in order to better
assess the quality of our measurements. To this end,
we test our model by means of a threefold classifi-
cation experiment that compares a set of TTNs with
each other, a set of corresponding ATNs with each
other, and the former TTNs with the latter ATNG.
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(4) Theory formation: we interpret our findings in the
context of cognitive maps, thus building a bridge
between our network-theoretical approach and ap-
proaches to the cognitive representation of geo-
graphical information. We show how to integrate the
analysis of entire networks into the research about
the linguistic encoding of geographical information
(see Figure 1).

This paper is organized as follows: Section 2 discusses
related work. Section 3 introduces our formal model of
linguistic multilayer networks and the multiplex topic net-
works derived from them. Section 4 describes our experi-
ments in detail, and Section 5 discusses our findings. Finally,
Section 6 concludes and gives an outlook on future work.

2. Related Work

Our work is related to linguistic research on Tobler’s [27]
first law (TFL) which says that “[...] everything is related to
everything else, but near things are more related than distant
things” ([27], p. 236). Due to its underspecification, this so-
called law raised many questions about what it means to be
related or distant [28]. Accordingly, a range of approaches
exist that make different proposals to interpret relatedness
also in terms of semantic relatedness. In the context of in-
formation visualization, Montello et al. [29] test a variant of
TFL called the first law of cognitive geography which says
that “people believe closer things to be more similar than
distant things” ([29], p. 317), where spatial distance is re-
ferred to for judging the similarity of information objects.
This approach is contrasted with a study by Hecht and
Moxley [30] who model relations of Wikipedia articles as a
tunction of the probability of being linked in the web graph
and find that this probability is related to the geographical
distance of toponyms described in the articles. Hecht and
Moxley relate their finding to the transitivity of networks by
stating that the smaller the geographical distance of nodes,
the higher their clustering coeflicient ([30], 101). This work is
extended by Li et al. [31], who calculate semantic re-
lationships of articles instead of hyperlinks and show that
TFL holds independently of the geographical domain up to a
certain distance threshold. A lexical variant of TFL is
mentioned by Yang et al. [32], according to which geo-
graphically close words tend to be clustered into the same
geographical topics. This phenomenon has earlier been
studied by Louwerse et al. (cf. the review in [26]) who
reformulated Firth’s famous dictum by saying that “[. . .] you
shall know the physical distance between locations by the
lexical company they keep” ([26], p. 1557). This means that
the distance of places correlates with syntagmatic associa-
tions between the lexical items used to describe them. That
is, language encodes geographical information [16] at least
regarding the distances of semantically related places. From
this perspective, TFL appears to be reformulated as a can-
didate for a geolinguistic law that is compatible with the
more general Symbol Interdependency Hypothesis (SIH) [33].
According to SIH, linguistic information encodes perceptual



Complexity

information so that the former serves as a shortcut to the
latter [33]. Finally, a rather text-linguistic variant of TFL is
proposed by Adams and McKenzie [34], which states that
near places are each described by texts whose topics are more
similar than in the case of texts about distant places.

In contrast to these approaches, we hypothesize that
places, no matter how far apart, have similar topic distri-
butions when their descriptions are transmitted by media
such as city and region wikis. If we find evidence for this
hypothesis, there are various candidates for explaining it:
Firstly, such a finding could indicate a trivial meaning of TFL
(cf. [28]) in relation to the topics modeled by us, implying
that everything, distant or not, is highly related. Secondly, it
could indicate the (in)effectiveness of distances and simi-
larities at different scales: at the level of local, specific topics
(within the scope of TFL) and at the level of global, more
general topics (outside the scope of TFL). Thirdly, such a
finding could indicate a hidden similarity of processes of
collaboratively writing wikis about different places, even if
the wikis are written by different communities (see Hy-
pothesis 1). In order to decide between these alternatives, we
need a new topic model that derives networks of thematic
structures at different scales from texts in online media
about the same places. This should at least include the
networking of topics along relations of intertextuality and
coauthorship in order to allow for revealing similarities of
the underlying processes of collaborative writing. To this
end, we will develop multiplex networks that integrate text-
and author-driven topic networks.

So far, most approaches to thematic aspects of places use
topic modeling based on Latent Dirichlet Allocation (LDA)
to associate topics and texts about geographical units, where
topics are represented as sets of thematically related words.
An early approach in this regard is described by Mei et al.
[35] who model spatiotemporal theme patterns to identify
dominant topics in texts that are connected to places. A
related approach is proposed by Qiang et al. [36], who aim to
detect topics that are “localized” in places. This is done to
ground their similarities in relations of their thematic
representations—a scenario that is omnipresent in lin-
guistically motivated work in the context of TFL (cf. Fig-
ure 1). Likewise, Adams and McKenzie [34] extract topic
models from travel blogs to detect topics as groups of se-
mantically related words associated to places, so that re-
lations among places can be identified by shared topics.
Another example is proposed by Bahrehdar and Purves [37]:
instead of documents written by individual authors, they
analyze tagging data extracted from image descriptions in
Flickr. A hybrid model of topic modeling comes from Yin
et al. [38], in which representations of regions are used
instead of documents to link topics to places. A related
region-topic model that uses regions as topics to map words,
sentences, and texts to distributions of regions or to ground
them semantically (cf. [39]) is proposed by Speriosu et al.
[40]. A promising extension is developed by Gao et al. [41]
who aim at detecting higher-level functional regions as
semantically coherent areas of interest. To this end, they
analyze co-occurrence relations between topics to describe
many-to-many relations of locations and urban functions.

Another direction is pursued by Lansley and Longley [42],
who investigate the location- and time-based distribution of
topics in Twitter, setting a number of twenty topics as a
target for LDA. See also Jenkins et al. [13] who utilize a list of
six high-level topic categories. One of the largest studies in
this context is the one of Gao et al. [43] who present an
integrative approach to modeling texts from a range of
different media such as Wikipedia, Twitter, and Flickr to
demarcate cognitive regions [44]. All these approaches start
from topic modeling to map natural language texts onto
distributions of topics in order to relate the places thema-
tized by these texts (cf. Figure 1).

A prominent precursor of topic models [45] is given by
Latent Semantic Analysis (LSA) [46]. Consequently, there
are studies in the context of TFL based on this predecessor.
Davies [24], for example, interprets the associations of place
names computed by LSA from place descriptions as a model
of the cognitive representation of the corresponding spaces
(cf. [47]). This approach opens up a perspective for mea-
suring biased cognitive representations of spatial systems:
according to Davies, her approach provides representations
of cognitive geographies that are explored by the associa-
tions of semantically close place names in accordance or not
with the underlying geographical relations, that is, in ac-
cordance or not with TFL (cf. [39]). These and related studies
produce interesting results about the localization of topics or
vice versa about the thematization of places in texts.
However, they mostly disregard topic networking, not to
mention the networking of topics viewed from different
angles. Although it is easy to derive a network approach
from binary relations of topic similarity, relationships that
cannot be traced back to sharing similar words are hardly
mapped by topic models of the sort considered so far. By
generating topic distributions per location, for example, we
know nothing about the dynamics of the coauthorship of the
underlying texts: in the extreme case, one observes (dis)
similarities, which result from the activity of a small number
of authors or even only one author—in contrast to the
assumed collaboration density of online media such as
Wikipedia. Therefore, it is our goal to develop a model of
topic networks that simultaneously addresses the dynamics
of the coauthorship of the underlying texts. A subtask will be
to develop a formal model of thematic networking that is
generic enough to integrate a wide range of sources of
networking—at least theoretically.

While most of the approaches considered so far ignore
aspects of networking, a second branch of research tends to
follow the paradigm of network theory. Hu et al. [48], for
example, measure the semantic relatedness of cities as nodes
of a city network [9] depending on the co-occurrences of city
names in news articles. This approach is related to Liu et al.
[49], who explore co-occurrences of toponyms to induce city
networks that can be used to test predictions associated with
TFL. Hu et al. [48] further develop this approach to net-
working cities by reference to topics of articles in which the
corresponding toponyms are observed. They use Labeled
LDA [50] to learn to extract topics « from texts to finally
determine the a-relative similarity of cities based on the co-
occurrences of their names in texts about «. Another



approach to city networks using Wikipedia as a data source
is proposed by Salvini and Fabrikant [9]: they link cities as a
function of the number of articles “co-siting” [51] their
Wikipedia articles. A comprehensive perspective on mod-
eling spatial information is developed by Luo et al. [52], who
propose a three-part network model that integrates repre-
sentations of spatial, social, and semantic networks. In this
conceptual model, semantics plays the role of interpreting
behavior in spatial and social space and thus of bridging
them. Although we share this hybridization of the network
perspective on spatial information, we strive for a more
concrete model that can be empirically tested.

Any such study has to face various aspects of the
vagueness [44, 53] or informational uncertainty [5] of
concepts of regions [44] and places [13] and especially of the
names of such entities [43]. According to Winter and Freksa
[54], this includes semantic ambiguity, indeterminacy of
spatial extent, or boundary vagueness [43], preference-ori-
ented re-scaling of extent, and the dynamics of salience af-
fected by various dimensions of contrast. Beyond boundary
vagueness, Gao et al. [43] speak of the shape and location
vagueness by example of cognitive regions. Furthermore,
Jenkins et al. [13] refer to the temporal dynamics of places as
evolving concepts as a source of uncertainty. From a
methodological point of view, this multifaceted uncertainty
has two implications: in relation to the model, which should
be flexible enough to map these facets, and in relation to the
object itself, which could complicate its modeling by un-
systematically distorting it.

In accordance with Hu’s study [55], we assume that the
thematic perspective complements the spatial and temporal
perspective of the study of places. A rheme can be understood
as the “content” of a geographical region that expands its
dimensionality [44]. This content may be further specified in
terms of affordances, functions, or shared conceptual rep-
resentations associated by members of a community with the
corresponding place so that different places can be related by
being associated with similar content. This thematic per-
spective will be at the core of our article. To this end, we follow
the approach of Jenkins et al. [13], according to which places
are connected with meanings generated by collaborators of
crowd-sourcing media such as Wikipedia: their collaboration
creates what Jenkins et al. call platial themes, namely, themes
that are characteristic for certain places. As shared meanings,
these platial themes ultimately create a “collective sense of
place,” as it is perceived by the corresponding community. In
this context, Jenkins et al. [13] propose to study politics,
business, education, recreation, sports, and entertainment as
six high-level topics of places. However, by reference to the
Dewey Decimal Classification (DDC), we will instead deal
with more than six hundred hierarchically organized topics,
each of which is manifested by a range of Wikipedia articles.
In any event, we have to consider that thematic aspects may
distort the conceptualization and perception of spatial objects
[43]. A central question then concerns the regularity or
systematicity of this distortion in the sense of asking to what
extent thematic representations of different places show
similar aspects of being biased. This question will be at the
core of this article.
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3. Multiplex Topic Networks: A Novel
Approach to Topic Modeling

In order to study relations of thematic preference in VGl as a
manifestation of distributed cognition, we introduce Topic
Networks (TNs) as an alternative to Topic Models (TMs)
[23, 58, 59]. TMs are based on the idea that texts manifest
probabilistic distributions of topics which are represented as
probability distributions over the lexical constituents of
these texts, where these distributions may be affected by
style, the underlying genre, or any other (syntactic, semantic,
or pragmatic) criterion of text production [60-62]. Re-
gardless of its success, this model is unsuitable for modeling
TNs as manifestations of distributed cognitive maps because
of the following problems:

(P1) Corpus specificity: the corpus specificity of TMs
impairs comparability and transferability to ever new
corpora, since the topic distributions are learned from
the input corpora whose topics are to be modeled. This
approach apparently cannot use a transferable topic
model as a basis for representing the topics of a large
number of different corpora.

(P2) Topic labeling: the corpus-specific derivation of topic
labels from the input corpora makes it difficult to
compare their topic distributions. As reviewed by Herzog
et al. [63], external resources can be used for this task.
However, there are hardly any such resources for all
possible topic combinations—unless one wants to explore
an overarching system such as Wikidata making such a
project considerably more difficult due to its size. The
labeling problem can be addressed using, for example,
Labeled LDA [50], an approach that leads us into the area
of supervised classification, which is also followed here.

(P3) Scalability: instead of dealing with corpora of
equally large texts, online communication often leads
to sparse, tiny texts that sometimes consist of a single
sentence, a single phrase, or a single word. Regardless of
the size of the text, we need a procedure that determines
its topic distributions so that texts of different sizes can
be compared using topic models of comparable size.
Even if small texts are postprocessed (after topic
modeling) in such a way that their topic distributions
are derived from their lexical constituents, such an
approach would nevertheless mean to exclude text
snippets from the training process.

(P4) Rare topics: one reason to prefer training by means
of corpora as large as Wikipedia is to allow for detecting
topics even if they form a kind of thematic hapax
legomenon in the corpora to be analyzed. If we try to
identify rare topics directly from these corpora, we will
probably not detect them, since by definition these
corpora do not provide enough information to identify
such topics. In any event, the rarity of evidence about a
topic should not be an impediment to identifying its
occurrences even at the level of single sentences.

(P5) Methodical closeness: instead of deriving all dis-
tributions of all dependent and independent variables
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as part of the same topic model, one possibly wants to
include different information sources that are com-
puted by different methods based on diverse compu-
tational paradigms (e.g., ontological approaches to
measuring sentence similarities, approaches to word
embeddings based on neural networks, and topic
models). In order to enable this, we look for a meth-
odologically open topic model that allows such dif-
ferent resources to be easily integrated.

In a nutshell, we are looking for an approach that (i) allows
thematic comparisons of previously unforeseen text corpora
using an underlying reference corpus, (ii) offers a generic
solution to the problem of topic labeling, (iii) is highly scalable
and can therefore map even the smallest text snippets to topic
distributions, (iv) simultaneously takes rare topics into account,
and (vii) is methodologically open and expandable. Such a
topic network model is now developed in two steps: in Section
3.1, we introduce the underlying formal apparatus. This is done
by deriving multiplex topic networks from linguistic multilayer
networks. Section 3.2 describes a method by which this model
is instantiated as a prerequisite for its empirical testing.

3.1. From Linguistic Multilayer Networks to Multiplex Topic
Networks. In this section, we introduce multiplex topic
networks. This is a type of network that is based on the idea
of deriving the networking of topics of textual units by
evaluating evidence from different sources of information
such as text vocabulary, higher-level text components,
distributed authorship or readership, genre, register, or
medium. Since these sources of evidence can be explored in
different compositions, this can lead to different perspectives
on the salience and networking of the topics addressed by
the same texts. Topic networks are multiplex precisely in this
respect: the different evidence-providing perspectives may
lead to different topic networks that allow comparisons to be
made through which differences in the linguistic, social, or
otherwise contextual embedding of thematizations become
visible. This concept of a multiplex topic network is now
being generically formalized.

To introduce multiplex topic networks, we start with
defining linguistic multilayer networks (Definition 1) whose
layeredness allows for distinguishing several (non)linguistic
information sources of topic networking. We refer to su-
pervised topic classifiers trained by means of large reference
corpora to tackle the challenges P1, P2, P3, and P4. Based
thereon, we introduce so-called text topic networks (Defi-
nition 3), which evaluate intra- and intertextual relations for
the purpose of topic networking. Then, we introduce two-
level topic networks (Definition 4) and exemplify them by
author (Definition 5) and word topic networks (Definition 6),
which explore relations of (co)authorship and lexical re-
latedness, respectively, as sources of topic networking. These
notions are generalized to arrive at n-level topic networks
(Definition 7) which are based on n>1 informational
sources of topic networking (cf. challenge P5). Finally,
multiplex topic networks are defined as families of n-level
topic networks (Definition 8) representing the networking of
the same set of topics from different informational

perspectives and thus allowing for mapping the thematic
dynamics, for example, of descriptions of the same place.

Definition 1. Let X = {x;,...,x,} be a corpus of texts and
le N, 1>1. A Linguistic Multilayer Network (LMN) is a
tuple (Mehler [57] speaks of multilevel graphs; see Boccaletti
et al. [64] for a comprehensive overview of related notions
whose formalism is used here; see Stella et al. [65] for an
example of a multiplex network of lexical systems)

Z(X, D) =(L0),
L :{L,‘ = (Via Aia,ui; V,‘,/\,', Ki) | i=1,... ,l},

C={Ci; =(Vip AijthijpViphijpij) L j=1,...,1i#j},

(1

of two sets of directed graphs such that the set of kernel layers
L consists of a pivotal text layer and several derivative layers,
that is, a coauthoring layer, a language-systematic word
layer, and possibly several layers modeling the networking of
constituents of the pivotal texts:

ij

(1) The pivotal textlayer L, = (Vy, A, 41, v1, A5 k), also
called text network, is spanned by texts of the corpus
V', = X such that A, is manifesting intratextual (as in
the case of reflexive arcs) or intertextual relations

(2) The author layer L, = (V,, Ay, 4y, 75,45, k,), also
called agent network, is spanned by the network of
agents (co)authoring the texts in V, and their social
relations

(3) The lexicon layer L = (V3, As, s, 75,5, K3), also
called word network, is spanned by the language-
systematic lexical signs (i.e., lexemes and related
units) used by agents of V, as part of their agent
lexica to author the texts in V,

(4) For 3<i<l'<I, L;= (V;, A, 4;, v, Ay k;) is called a
constituent layer modeling the networking of (e.g.,
lexical, phrasal, and sentential) constituents of texts
x € V, such that A; maps intratextual (e.g., anaphoric)
or intertextual (e.g., sentence similarity) relations

(5) For I'<i<l, L;= (V,,Apu,vph,k;) is called a
contextual layer modeling the networking of units
(e.g., media, genres, and registers [66]) of the con-
textual embedding of texts x € V', such that A; maps,
for example, relations of the switching, merging, or
embedding [67, 68] of these contextual units

(6) Foreachi,je{l,...,l},i#j, CijeC, ICl=1(-1),
is called a margin layer where V; ; = V;UV;, A;; €
Vix Vi, p;=uUpjand A;; =AU

Fori,j=1,...,1,i#j, p; and y; ; are vertex weighting
functions, 7; and v; ; are arc weighting functions, A; and A, ; are
vertex labeling functions, and «; and «; ; arc labeling functions.
We say that the linguistic multilayer network & (X,I) is

spanned over the text corpus X and layered into | layers.

Example 1. To illustrate our definitions, we construct a
minimized example. Suppose a corpus of four texts
V, =X ={x,,x,,%3,x,}, each containing three lexemes



xp = {w, wy, wsh, X, = {wy, wy, wy}, x5 = {ws, we, w5}, and
x4 = {w,, wg, wy} (for reasons of simplicity, we exemplify texts
as bag-of-words), that is, Vy={w,,...,we}, V3= {wy,...,
Wo, X15.., %, and Ay ={(wy,x,), (wy,x7), (Wy,x7),...,
(wy,x4), (wg,x4), (Wg,x,4)}. Further, we assume four authors
V, ={a,,a,,a;,a,} such that a, and a, coauthored x, and x,,
while a; and a, coauthored x; and x,; that is, V,, =
{ay,..;ax,..x4t and Ay ={(a,x)), (a5,x,), (a5,x,),
(ay,x,), (a3,x3), (a4, %3), (as,x,), (a4,x,)}. Further, we as-
sume that the texts x; and x, are linked by some intertextual
coherence relations (e.g., by a rhetorical relation, an argument
relation, or some hyperlinks) as are the texts x;and x, so that
A, ={(x},x,), (x3,x,)}. Note that additional arcs of the layers
L,,L,,andL; will be generated according to the subsequent
definitions. For simplicity reasons, we assume all weighting
functions to be limited to the set {0,1} of vertex/arc weights.
Since we assume no additional constituent layer, we get [ =3.
Thus, any linguistic multilayer network & (X, 3) based on this
setting is layered into three layers.

Throughout this paper, we use the following simplifying
notation: for any graph G = (V, A, 1) of order |G| = [V], arc
set A€ V? of size |A| and vertex labeling function \, and any
vertex v € V, we write v = A(v). Thus, for any two graphs
G;and G; with vertex labeling functions A; and A, for which
A(v) = )Lj (w), veV;andw € V, we can write v = w. Fur-
ther, for any function f:XxY — Z, for which
f (x,y) = z, we use the following alternative notations:

f(x,y)=z<=>x—>fy=z<=>xf—>y=24=’fy(x)=Z-
(2)

Finally, for any function f : Z" — Z, Z being any set,
we introduce the following notation based on square
brackets:

f(. .,x—>y,yi>x )=z

@f[...,x%)y...]:z@f[...

=Z.

,xg<—>fy...]

(3)

To leave no room for ambiguity, we assume that ex-

pressions of the sort x — y, y —, x are replaced from

left to right into expressions of the sort x,<— ;y. Hence-

forth, a structure such as x — y will be called information

link. Based on Definition 1, we start now with introducing
text topic networks using the following auxiliary notion.

Definition 2. Let € = (Vg, Ag) be a directed Generalized
Tree (GT) according to Mehler [69, 70] representing a hi-
erarchical topic structure, henceforth called Reference
Classification System (RCS), that is spanned by kernel arcs
which are possibly superimposed by upward, downward,
lateral, sequential, external, or reflexive arcs. (See Figure 2
for an example of a GT. This notion is required since we may
decide for using, for example, the category system of
Wikipedia as an RCS, which spans a GT [70]). That is,
vertices t € Vg represent topics, while kernel arcs
(t,u) € Ay represent subordination relations according to
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which u is a thematic specialization of ¢. Let further, 6 denote
a hierarchical text classifier [71] taking values in Vi, that has
been trained, validated, and tested by means of a reference
corpus R. Let now Z(X,I) = (L,C) be a LMN spanned
over the text corpus X and layered into [ layers. We call the
structure

§ =(%,0,Z2(X,1), (4)

a Definitional Setting for defining topic networks.

Example 2. Given the LMN of Example 1, the Dewey Decimal
Classification (see Section 3.2), and the topic classifier 6 of
[72], which uses the DDC as its Reference Classification
System €@, a definitional setting is exemplified by
(DDC, 0, Z (X, 3)). More specifically, by t,,t,,t; we will
denote three topic labels of the third level of the DDC so that
Vg ={...,t,t5t5,...}. Note that by using the DDC as a
reference classification, the generalized tree of Definition 2 is
reduced to a tree (see Section 3.2 for more details).

Definition 3. Given a definitional setting & = (%,0, <
(X,1)) according to Definition 2, a Text Topic Network
(TTN) is a vertex- and arc-weighted simple directed graph

T (L) =T (L, {}) = (V, A, %, 4, %), (5)
with vertex set V and arc set A € V* which is said to be derived
from & and inferred from L, by means of the optional classifier

0~ and the monotonically increasing functions «,f,y,d
Ry — Ry if and only if Vv € V and Va = (v,w) € A:

uv) = a( Y B(O(xA(v), 67 (A(v),x))>

xeVy
<Z B (6, (), 65 <x))>
xeV,
(6)
(Zﬁ x—>v,v6—>x>>
xeV,
< Z B x<—>v)> >0,
xeV,
v(a) = y< Y 8(0(x A (), 07 (A (1), x),0(y, A (w)),
x,y€V,
0 (A (w), y), 7 (x, y)))
0 . 0 . 71
= y<x’}gv18|ix<?v,y<?w,x — y]>>0,
(7)

where y:V — R is a vertex weighting function, v : A
—> R* an arc weighting function, A : V — V¢ an in-
jective vertex labeling function, Vg (V) = {A(v) | v e V}C
V&, and « an injective arc labeling function. T'(L,) is called a
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FIGURE 2: Schema of mapping texts onto hierarchically organized topic networks: words, sentences, and texts describing a certain thematic
frame (e.g., a place as the central topic of a city wiki) are mapped onto a topic hierarchy as an example of a so-called generalized tree [56, 57].
Based on kernel links of thematic specialization, the topics are organized hierarchically, whereby this organization is superimposed by up-
and downward cross-references. Dashed links are inferred as a result of modeling the thematic networking of input words, sentences, or
texts. As we assume that the underlying topic model has been trained by means of a reference corpus &% (see Definition 2), each topic is
associated with a distribution of lexical elements of & that are preferably used to manifest this topic (see the types v and w in relation to the
topics @ and 8 in Figure 1). This preference relation may be extended to higher-level units such as sentences.

one-layer topic network that is generated by the generating
layer L,.

Formulas (6) and (7) require that the weighting values
for nodes and arcs are greater than 0: otherwise, the can-
didate vertices and arcs do not exist in the TTN. 6 is a
classifier mapping pairs (¢, x) of topics t € Vg and texts x
onto real numbers indicating the extent to which x is a
“prototypical” instance of ¢ (obviously, the textual argu-
ments of the functions 6 and 6 are not restricted to ele-
ments of X.)

Example 3. Given Example 2, we assume that A(v,) =t,,
A(vy) =t5,A(v;) =t5 and O(x,, 1) = 1, O(x,,t,) = 1, O(x3,
t;) = 0(xyt3) = 1 so that V = {v;,v,,v5}. In our example,
we disregard 6. Further, we assume that the functions
o, 3, , and § are identity functions. Thus, p(v,) = u(v,) =1
and p (v;) = 2. Now, we can generate a topic link between v,
and v, by exploring the intertextual relation (x;,x,) € A;:
To this end, we assume that
6 . 0 . vy y
) Xe Dy —>y]<—8[x —>y]

<—id<x l»y) =x —5 V>
(8)

so that v((v,,v,)) = 1. By analogy to this case, we link topic
v; by means of a reflexive link so that A = {(v;,v,), (v5,v3)}.

Note that these simplifications are made for simplicity’s sake
only: Section 3.2 will elaborate a realistic weighting scenario.
However, the function of the latter illustration is to show
that by the intertextual linkage of both texts, we get evidence
about the linkage of the topics instantiated by these texts.
TTNs always operate according to this premise: they net-
work topics as a function of the networking of an underlying
set of texts. Figure 3 gives a schematic depiction of this
scenario, which is varied subsequently to illustrate the other
types of topic networks developed in this paper.

A concrete example of a TTN that is derived from the
articles of the so-called Dresden wiki (see Section 4.1) is
depicted in Figure 4. It shows the highest weighted topics
addressed by these articles and their (undirected) links. The
TTN has been computed by means of the procedural model
of Section 3.2. Evidently, the topic Transportation; ground
transportation is most prominent in this wiki followed by
the topic Central Europe; Germany. Most topics belong to
the areas transportation (red), geography and history
(turquoise), and architecture (gray) (for the color code, see
Appendix). More examples of TTNs can be found in
Figures 5-7.

Arguments of the sort x — v can be used to quantify
evidence about text x as an instance of topic v: the more the
evidence of this sort, the higher possibly the impact of x in
formula (6) and the higher possibly the final weight of v. The
adverb possibly refers to what is licensed by the parameters
yand 4. Arguments of the sort x — ,, y, where x # y, can be
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FIGURE 3: Schematic depiction of the informational sources of linking topics (red vertices) in text topic networks as a function of the textual
relatedness of two texts (blue vertices) (belonging to layer L1 of a corresponding LMN—see Definition 1). Bidirectional red arcs denote arcs
of the corresponding margin layers: in the present case, this concerns the relation between texts and topics (see below). Relations of thematic
relatedness are inferred in this example (see Definition 3). Gray nodes and arcs indicate unconsidered sources of evidence.
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FIGURE 4: Visualization of a segment of the TTN of the city wiki Dresden (http://www.stadtwikidd.de/wiki/Hauptseite) using the 3rd level of
the DDC as the underlying RCS for the definition of topics according to Section 3.2. The segment shows the highest weighted topics and their
(undirected) links. Edges have been colored to show the two centers of this graph.

used to quantify evidence that text x is intertextually linked
to text y: the more the evidence of this sort, the higher
possibly the weight of the link from x to y and the higher
possibly the influence of this link onto the weight of the link
from topic v to topic w in formula (7) (in cases in which
there is no explicit information about intertextual links, one
can use functions of aggregated word embeddings of the
lexical constituents of texts to calculate their intertextual
similarity). In this and related definitions, we do not fully
specify the functions 6,07, a, 3,7y, to leave enough space
for different instances of topic networks.

Definition 3 relies on the pivotal text layer for deriving
topic networks. To integrate further layers into the process of

inferring topic networks, we introduce the following gen-
eralized schema.

Definition 4. Given a definitional setting & = (4,0,
Z(X,1)) according to Definition 2, an (L,,L")-Topic Net-
work, L' e (@ U{{L;} | i€ {2,...,1}}, is a vertex- and arc-
weighted simple directed graph

T(L,L") =(V,A uv,)\ %), (9)

which is said to be derived from § and inferred from L, and
the elements of L' by means of the optional classifiers 67, 9 :
VixVg — R ,97 : Vg xV; — R and monotonically
increasing functions «,f3,9,8 : Ry — R, iff Vv € V and
Va= (v,w) € A:
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FIGURE 5: Visualizations of a TTN (top left) and two corresponding ATNs. The TN are derived from the city wiki Miinchen (https://www.
muenchenwiki.de/wiki/Hauptseite) (see Section 4 for statistics about this wiki) using the procedural model of Section 3.2. Top right shows
the ATN for which (co)authorship activities are estimated by means of Wikipedia (see Section 3.2.3). The ATN for which these activities are
estimated via the wiki itself is displayed below. The visualizations are carried out by means of PolyViz [73] regarding the 2™ level of the
DDC: nodes are labeled (with numbers denoting the respective 2°¢ level class) and colored to encode their membership to one of the top 10
DDC classes (see Appendix). The higher the weight of a topic, the larger the node, and the higher the weight of an arc, the thicker the line.
Node and line sizes are defined relative to the maximum vertex and arc weights of the underlying network.

0 . 9 . i,
u(v) =« Z Blx— reo v resx| |>o0. (10)
x€V,reV; 0 9 i
0 . 0 . v . 9 . Vi Vi1 Vi Y1
v(a) =y Z S|xeonyeoureonseowreox,s—yr—sx—y| |>0, (11)
0~ 0~ 9 9” Yii VLi

X, Y€V ,1,5€V;
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F1GURE 6: Visualization (by means of PolyViz [73]) of the TTN of the 1% orbit (a) and of the 274 orbit (b) of the German Wikipedia article
Integralrechnung (Integral). The TTNs are derived from the corpora of articles in the 1% and the 27 orbit (see formula (30)) of this article.
Obviously, the most prominent 2™ level DDC class in both TTNs is 510 (Mathematics).

(a) (b)

FIGURE 7: Visualization (by means of PolyViz [73]) of the TTN of the 1*t orbit (a) and of the 2" orbit (b) of the German Wikipedia article
Kernkraftwerk (Nuclear power plant). The TTNs are derived from the corpora of articles in the 1% and 274 orbits (see formula (30)) of this

article. Obviously, the most prominent 2™ level DDC class in both TTNs is 620 (Engineering). Compared to the example in Figure 6, the 2"
orbit is now thematically much more diversified.

where L' = {L;}.pp : V. — R™ isavertex weighting function, L' = {L;}, we say that T'(L,L") is a two-level topic network
v:A— R" an arc weighting function, 1: V — Vi an that is generated by the generating layers L, and L,. If L = &,
injective vertex labeling function, Vg (V) ={A(v)|ve then formula (10) changes to formula (6) and formula (11) to
V}CVg, and «x an injective arc labeling function. For  formula (7). By omitting any optional classifier g € {67, 97},
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expressions of the sort r, «— (v change to r — (v. 9 is
treated analogously.

To understand formula (10) look at Figure 8: among
other things, formula (10) collects the triangle spanned by v,
x, and a supposed that the two-level topic network is based
on text and authorship links. Obviously, Definition 4
generalizes Definition 3. Now, it should be clear why we
speak of the text network of an LMN as its pivotal level: it is
the reference layer of any additional layer that is integrated
into a two-level topic network according to Definition 4.
This role is maintained below when we generalize this
definition to capture n layers, n>2. With the help of
Definition 4, we can immediately derive so-called author
topic networks.

Definition 5. An Author Topic Network (ATN) is a directed
graph

T (L, L") =(V,Auv\x), (12)

according to Definition 4 such that L' = {L,}.

The relational arguments of this definition can be mo-
tivated as follows—assuming that they are instantiated
appropriately:

1) x LN v can be used to represent evidence that text
x is about topic v possibly in relation to other topics
of V.

(2) v — x can be used to represent evidence that text x
is a prototypical instance of topic v possibly in re-
lation to other texts in V.

9 . .
(3) r — v can be used to represent the extent to which
agent r tends to write about topic v possibly in re-
lation to other topics of V.

.9 . .

(4) v — r represents evidence that agent r is a pro-
totypical author writing about topic v possibly in
relation to other agents in V,.

(5) For x+y, x SN y can be calculated to represent
evidence about text x to be intertextually linked to
text y (e.g., in the sense of linking contributions of
different authors). Otherwise, if x = y, x — », ) can
be used to quantify evidence about x being intra-
textually structured.

V
(6) r — x can be used to quantify evidence about the role
of agent r as an author of text x possibly in relation to

13

FIGURE 8: A diagrammatic depiction of inferred arcs (red) in topic
networks, inferred by means of various arcs (black and blue) of an
underlying LMN. Orientation of inferred arcs is provided by three
types of input arcs (blue). x, y € V, denotes two texts, a,b € V,
denotes two authors working on x, and y, respectively, p,q € V;
denotes two lexical units occurring in x and y, respectively. Inferred
weights of vertices are denoted by means of (red) reflexive arcs.

other texts authored by r. Typically, v, ; is a function of
the number of edit actions performed by r on x [74].

(7) x 22 r can be used to quantify evidence about the
role of agent r as a prototypical author of text x
possibly in relation to other authors of x. In the
simplest case, v, ; is symmetric making v, , obsolete.

8) r s represents evidence that agent r is a coauthor
of or interacting with s. For instantiating v,, the
literature knows a wide range of alternatives [74, 75]
(which mostly concern symmetric measures of
coauthorship). Note that we do not require that r #s.

Example 4. Starting from Example 3 to exemplify arcs
between topics in author topic networks, we can now ad-
ditionally explore the evidence, that text x, and x, are both
coauthored by the agents a, and a,. That is, we can assume a
coauthorship link (a;,a,) € A, (A, is the arc set of the
author layer in Definition 1) of weight v(a,,a,) = 1. Let us
now assume the following simplification of the function ¢
in Definition 4, for which we assume that it simply mul-
tiplies and adds up its argument values in the following
way:

0 0 9 9
8[x<—>v,y<—>w,r<—>v,s<—>w,r<—>x s<—>y,r —>s,x—>y:| —
0~ 9 9 V12 V12

. . V2. .
8[x—>v,y—>w,r—>x,s—>y,r—>s,x—>y —

V2.1 V2 V1

(13)

(xe—m})-(ye—mb)-(rﬂ»x)-(sﬁ»y)-(riw+xi>y>=(l-1-1-l)(l+1)

=2.



14

In our example, we get v=1, =A(v)), w =1, = A(v,),
X =X, ¥y =X,, r =a,, and s = a,. Since there is no other
interlinked pair of texts (see Example 1), instantiating the
topics v, and v,, we get v((v,,v,)) = 2 as the weight of this
topic link in the corresponding ATN. By this simplified
example of an ATN, we get the information that the link of
topic v, to topic v, is additionally supported by the coau-
thorship of agents a, anda,: this information extends the
evidence about the topic link as provided by the underlying
TTN of Example 3. Likewise, the reflexive link of topic v, is
augmented by 1 compared to the underlying TTN, while
there is no other topic link to be considered in this example
of an ATN. By analogy to Figure 3, Figure 9 gives a schematic
depiction of this scenario. Note that in our example, the
weight of the link between authors a, and a, (cf. r _*2, s) is a
function of their coauthorship: this is only one alternative to
weight the social relatedness of both agents, actually one that
can be measured by exploring (special) wikis. However, any
other social relatedness might be explored to weight the
interaction of agents.

By comparing a text topic network T'(L,) = (V,,
Ap s Mie1> Vis1> Mar> K121) with an author topic network T'(L,,
{L}) = (Vi Al B Vieos Msas K140) - derived  from  the
same LMN Z (X, ), we can learn how the topics of Vi, are
manifested in the texts of corpus X in the form of a con-
comitance or a disparity of intertextual and coauthorship-
based networking. Consider, for example, two vertices
veV,, andw € V, such that v = w; let further L and T
denote the minimum and maximum that the vertex
weighting functions of both graphs can assume. Then, we
can distinguish four extremal cases:

(1) Cases of the sort
1< M1 (V) = U2 (w) =T, (14)

provide information on prominent topics that tend
to be addressed by many texts which are coauthored
by many authors.

(2) Situations like
T> Uy (v) = Hiv2 (w) = 1, (15)

probably apply to the majority of the topics in Vi,
which are hardly or even not at all addressed by texts
in V; = X due to the narrow thematic focus of these
texts.

(3) Cases like
T =y (V) >, W) = 1, (16)
suggests a Zipfian topic effect, according to which a

prominent topic is addressed by a small group of
agents or even by a single author.

(4) Finally, situations of the sort

1= Him (V) LU (w) =T, (17)

refer to rarely manifested topics addressed by a few but
highly coauthored texts. In conjunction with many cases of
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FIGURE 9: Schematic depiction of the informational sources of
linking topics (red vertices) in author topic networks as a function of
the textual relatedness of two texts (blue vertices) (that belong to
layer L, of a corresponding LMN—see Definition 1) and the social
relatedness of corresponding authors (green vertices) (that belong
to layer L, of a corresponding LMN). Bidirectional red arcs denote
arcs of the corresponding margin layers in Definition 1.

the sort described by formula (16), situations of this kind
indicate a Zipfian coauthoring effect, according to which
many authors write only a few texts, while many texts are
written by a few authors without encountering many (rel-
evant) coauthors.

Formulas (14)-(17) compare the node weighting func-
tions of a TTN with those of a related ATN. The same can be
done regarding their arc weighting functions. That is, for two
arcs a= (r,s) € Ay, and b= (v,w) € Ay,,, for which
f =9 A s = w, we distinguish again four cases (L and T now
denote the minimum and maximum the arc weighting
functions of both graphs can assume):

(1) In the case of
1 < 'Vl+1 (a) = Vl+2 (b) =T, (18)

topic v is intertextually linked more strongly to topic
w and authors of its text instances tend to cooperate
with those of instances of topic w likewise to a greater
extent.

(2) In the case of
T, (a) = vy, (b) = L, (19)

topic v is intertextually less strongly linked to topic w
and the few authors of its textual instances tend to
cooperate with authors of instances of topic w
likewise to a lesser extent.

(3) In the case of
T =y, (@)>»v,0b) =1, (20)

topic v is intertextually more strongly connected
with topic w, while authors of its text instances tend
to cooperate with those of instances of topic w to a
lesser extent, if at all.

(4) Finally, in the case of

L=y, (a)<r,0B) =T, (21)
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topic v is intertextually less strongly linked to topic
w, while the numerous authors of its text instances
tend to cooperate with those of instances of topic w
to a much greater extent.

Our central question regarding the relationship be-
tween TTNs and ATNs derived from the same LMN is
whether these networks are similar or not. If they are
similar, we expect that cases of the sort described by for-
mulas (14), (15), (18), and (19) predominate so that cases
matched by formula (14) are parallelized by those con-
sidered by formula (18) and where cases according to
formula (15) are concurrent to those described by formula
(19). An opposite situation would be that two topic nodes in
the TTN are highly weighted but weakly linked, while they
are weakly weighted but strongly linked in the corre-
sponding ATN. In this case, a few or even only a single
author is responsible for the thematic focus of the TTN.
Note that this scenario reminds again of a Zipfian effect
regarding the relation of TTNs and ATNs. By character-
izing TTNs in relation to ATNs along these and related
scenarios, we want to investigate laws of the in-
terdependence of both types of networks, which may
consist, for example, in the simultaneity of dense or sparse
intertextuality-based networking on the one hand and
dense or sparse coauthorship-based networking on the
other. We may expect, for example, that the more related
the two topics, the more likely the authors of their textual
instances cooperate. However, not so much is known about
such scenarios in the area of VGI especially with regard to
Hypothesis 1. Thus, we address this gap at least by in-
troducing a novel theoretical model which may help filling
it.

Figure 5 exemplifies two ATNs in relation to a corre-
sponding TTN (T1) which were computed using the ap-
paratus of Section 3.2 to instantiate the formal model of this
section. The upper right ATN (A1) is computed by globally
weighting coauthorship activities based on Wikipedia (as
explained in Section 3.2.3); the ATN (A2) below is calculated
by weighting of these activities relative to the city wiki itself.
Figure 5 shows that the topic with DDC number 720 (Ar-
chitecture) is weighted higher in A1 than in T1. This is all the
more pronounced in A2, where 720 becomes the most
prominent topic and consequently displaces the top subject
from TI, that is, topic 380 (Commerce, communications &
transportation). That is, although topic 380 is most fre-
quently addressed in this wiki’s texts, topic 720 not only is
almost as salient but also attracts many more activities
among its interacting coauthors. Similar observations
concern the switch of the roles of the topics 910 (Geography
& travel) and 940 (History of Europe) from T1 to Al and A2.

Regardless of the answer to this and related questions, we
will also ask whether the shape of an ATN can be predicted if
one knows the shape of the corresponding TTN and vice
versa. To answer this question, we will consider LMNs of
different text genres: of city wikis and regional wikis on the
one hand and extracts of encyclopedic wikis on the other.
We expect that LMNs spanned over corpora of the same
genre exhibit a pattern of collaboration- and intertextuality-
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based networking that makes TTNs and ATNs derived from
them mutually recognizable or predictable, whereas for
LMNs generated from corpora of different genres this does
not apply.

For reasons of formal variety, we now consider an al-
ternative to author topic networks, namely, so-called word
topic networks, which in turn are derived from Definition 4.

Definition 6. A Word Topic Network (WTN) is a directed
graph

T(L,,L") =(V,Auv,\x), (22)

according to Definition 4 such that L' = {L,}.

This definition departs by five new relational arguments
from Definition 5, which—if being instantiated appro-
priately—can be motivated as follows:

1) a B quantifies evidence about the role of word a
as a lexical constituent of text x possibly in relation to
all other texts in which a occurs. Typically, v, is
implemented by a global term weighting function
[76] or by a neural network-based feature selection
function.

2) x REEN quantifies evidence about the role of the
word a as a lexical constituent of the text x possibly in
relation to other lexical constituents of x. Typically,
V5 is a local term weighting function, such as
normalized term frequency [76], or a topic model-
based function.

9 . .
(3) a — v represents evidence about the word a to be
associated with the topic v possibly in relation to all
other topics of V.

(4) v & a calculates evidence about the extent to which
the topic v is prototypically labeled by the word a,
possibly in relation to all other words in V.

(5) a ENyA quantifies evidence about the extent to
which the word a associates the word b. Typically, v,
is computed by means of word embeddings [77].

Based on this list, we better understand what topic
networks offer in contrast to TMs. This concerns the flex-
ibility with which we can include informational resources
computed by different methods (e.g., based on neural net-
works, topic models, and LSA) to generate topic networks
(cf. challenge P5). Different relational arguments X — ,Y
can be quantified using different methods, which in turn can
belong to a wide range of computational paradigms. Table 2
gives an account of the generality of our approach by hinting
at candidate procedures for computing the different re-
lations of Figure 8.

Example 5. Starting from Example 3 to exemplify arcs
between topics in word topic networks, we have to addi-
tionally explore evidence regarding the lexical relatedness of
the vocabularies of the texts x, and x,. In Example 1, we
assumed that the intersection of both texts (represented as
bags-of-words) is given by the set {w;,w,}. By analogy to
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Example 4, we assume now the following simplification of
the function § of Definition 4:

0 0 9 9 123
S x<—>v,y<—>u) re—v,s— W, r<—>x 5<—>y,r—> S,
0~ 9 9~ Y12 Y12

v 0 . 0 . Y21
X— yle—(x— ) (y — w)-(r—>x)
(sﬂ y) . (rL s+ x—5 y). (23)

In this scenario, we have to instantiate Definition 4 as follows:
ve—t; =A(v), We—1t, =A(V,), X=X, Yy =X,, r =w,,
and s = w, for one summand and—everything else being
constant—r = w, and s = w, for a second summand (for w,
(w,), we do not assume a lexical relatedness w.r.t. the words of
text w, (w;)). Note that under this regime, we assume that
relatedness of lexical constituents only concerns shared usages
of identical words—of course, this is a simplifying example.
By analogy to the setting of Example 4, we have thus to
conclude that v((v,,v,)) = 4 as the weight of the topic link
from v, to v, in the corresponding WTN. For texts x; and x,,
we may alternatively assume that lexical relatedness does not
only concern shared lexical items but also relatedness that is
measured, for example, by means of a terminological ontology
[83] or by means of word embeddings [77]. In this way, we
may additionally arrive at a topic link between v, and v;. In
order to allow for a comparison of a WTN with its corre-
sponding TTN, a more realistic weighting scheme is needed
that also reflects above and below average lexical relatednesses
of the lexical constituents of interlinked texts—in Section 3.2,
we elaborate such a model regarding ATNs in relation to
TTNs. Figure 10 gives a schematic depiction of the scenario of
WTNs as elaborated so far.

It is worth emphasizing that instead of the (language-
systematic) lexicon layer L;, we may use a constituent
layer L;,k>3, to infer a two-level topic network. For
example, we can use the layer spanned by the sentences of
the pivotal texts to obtain a sort of sentence topic network.
In this case, a — , b may quantify evidence about the
extent to which the sentence a entails the sentence b or the
extent to which the sentence a is similar to the sentence b,
etc., while x — , a may quantify evidence about the
extent to which the sentence a is thematically central for
the text x, etc. In sentence topic networks, topic linkage is
a function of sentence linkage: prominent topics emerge
from being addressed by many sentences, while prom-
inent topic links arise from the relatedness of many un-
derlying sentences. Another example of inferring two-
level topic networks is to link topics as a function of places
mentioned (by means of toponyms) within the texts of the
underlying corpus X, where geospatial relations of these
places can be explored to infer concurrent topic relations:
if place p is mentioned in text x about topic v and place g in
text y about topic w, where the platial relation R(p,q)
relates p and g, this information can be used to link the
topic nodes vandw in the corresponding topic network.
As a result, we obtain networks manifesting the net-
working of topics as a function of parallelized geo-
graphical relations.
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FIGURE 10: Schematic depiction of the informational sources of
linking topics (red vertices) in word topic networks as a function of
the textual relatedness of two texts (blue vertices) (that belong to
layer L, of a corresponding LMN—see Definition 1) and the lexical
relatedness of corresponding words (orange vertices) (that belong
to layer L; of a corresponding LMN). Bidirectional red arcs denote
arcs of the corresponding margin layers in Definition 1.

Obviously, any other relationship (e.g., entailment
among sentences, sentiment polarities shared by linked
texts, and co-reference relations) can be investigated to
induce such two-level networks. And even more, we can
think of n-level networks in which several such relationships
are explored at once to generate topic links. We can ask, for
example, which locations are linked by which geospatial
relations while being addressed in which sentences about
which topics where these sentences are related by which
sentiment relations. Another example is to ask which au-
thors prefer to write about which topics while tending to use
which vocabulary: the higher the number of authors who use
the same words more often to write about the same topic,
and the higher the number of such words, the higher the
weight of that topic. In this case, topic weighting is a function
of frequently observed pairs of linguistic (here: lexical)
means and authors. On the other hand, the higher the degree
of coauthorship of two authors contributing to different
topics and the higher the degree of association of the words
used by these authors to write about these topics, the higher
the weight of the link between the topics. This concept of a
topic network induced by the text, the coauthorship, and the
lexicon layer of an LMN is addressed by the following
generalization, which provides a generation scheme for topic
networks:

Definition 7. Given a definitional setting & = (¥,0,<
(X, 1)) according to Definition 2, an (L,,L")-Topic Network,
for which

L' ={L

i

L} e ottt (24)

is a vertex- and arc-weighted simple directed graph
T(L])I]—,) = (V) A)["’ V)A’ K)’ (25)

which is said to be derived from § and inferred from L, and
the elements of L' by means of the optional classifiers
07, Vi; € fip,..iy}: 9 1V, ng—NR",S VXV, —
Ry and monotomcally Jlncreasmg functions a,f3,7,0:
[R{(;r — Ry iff VveV and Va= (v,w) € A:
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0; 0; v, v
0 . i in . il in-1
p(v)=a Z Blx e v, 1, «—> v, .., 1 eV X, .., x| >0, (26)
o- 1 g noge 1oy n oy
XV, i i Liy Lip
V,‘leVil ,,,,, 7i, Vi,
0 . 0 .
v(a)=vy Z 8x<9—:v,y<—gw,
x,y€eVy,
73 &V ipt i €V,
5V ipen8i €V
91’1 . O . ‘91'1 . Sin
Vi €2V, 1 €20 €2 W,...,5 «<W,
1 — n — 1 — n —
9 9 9 9
Vi1 Vip.1 Vip1 Vip.1
T X Ty XS e Y, Y,
1/1.1] 1/1.1“ 1’1.1] szn (27)
i i,
i, — Sip-- ol S,
Viy iy Vilin Vini1 ipein_ 1
r,-l — Siz, ”’ril(_), v s,-n,...,rin — Sil’ ,Tin — S’-l’
iy (o i1.in i 1ein
"1
x—y| >0,

u:V — R™ is a vertex weighting function, v: A — R™
an arc weighting function, A : V. — V¢, an injective ver-
tex labeling function, Vg (V) ={A(v) | ve V} Vg, and «
an injective arc labeling function. For |L'| = n, we say that
T(L,,L") is an m-level, m =n + 1, topic network gener-
ated by the generating layers L, and the elements of ', If
L' = @, formula (26) changes to formula (6) and formula
(27) to formula (7). By omitting the optional classifier

ge€ {9; | je {1,...,n}}, expressions of the sort r e (v
change to r — ¢v. 6 and 91']. are treated analogously. In
order to derive an undirected m-level topic network
T(LI,I]_') = (V,E,u,%,A,%) from T(LI,I]_'), we define
{vvw} € E«— (v,w) € AV (w,v) € A and

G (v w)), v((w, ),
G (v w))),

(v,w) € AN (w,v) € A,
(v,w) € AN (w,v) ¢ A,
(28)

v ({v, w}) ={

and where (; and {, are monotonically increasing functions.

Evidently, Definition 7 is a generalization of Definition
3 by considering higher numbers of generating layers. A
schematic depiction of the scenario addressed by this
definition is shown in Figure 11 by example of a 3-level
topic network that explores evidence about topic linking
starting from the text, the author, and the lexicon layer of
Definition 1. Likewise, Figure 12 depicts an n-level topic

network, n >3, in which additional resources are explored
beyond the word, author, and text level. Figure 8 illustrates
more formally the inference process underlying Definition 7,
and in particular of the arguments used. It illustrates the
inference of an arc that connects two topics by exploring
the links of the text, author, and lexicon layers of an un-
derlying LMN. In this example, the blue and black arcs are
evaluated to determine the weights of red arcs connecting
the focal topic nodes. Blue arcs are used to orientate
inferred arcs. We will not develop this apparatus further,
nor will we empirically examine n + 1-layer topic networks
for n> 2. Rather, the apparatus developed so far serves to
demonstrate the generality, flexibility, and extensibility of
our formal model.

In the above, we explained that one of the reasons for
introducing a flexible and extensible formalism of topic
networks is to compare topic networks derived from dif-
ferent layers (e.g., from the text layer on the one hand and
the author layer on the other). In order to systematize this
approach, we finally introduce the concept of a multiplex
topic network, which is derived from the same or from
different linguistic multilayer networks:

Definition 8. Given a definitional setting & = (4,0,
Z(X,1)) according to Definition 2, a Multiplex Topic Net-
work (MTN) is a k-layer network
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F1Gure 11: Schematic depiction of informational sources explored to link topics (red vertices) in a 3-level topic network as a function of the
textual relatedness of texts (blue vertices) (belonging to layer L, of Definition 1), the social relatedness of corresponding authors (green
vertices) (belonging to layer L, of Definition 1), and the lexical relatedness of corresponding words (orange vertices) (belonging to layer L, of
Definition 1). In this scenario, thematic relatedness is the information to be inferred, while textual, lexical, and social relations concern given
information or evidence. Bidirectional red arcs denote arcs of corresponding margin layers of Definition 1.
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FIGURE 12: Schematic depiction of informational sources explored to link topics (red vertices) in an n-level topic network, n > 3, as a function
of the textual relatedness of texts (blue vertices) (belonging to layer L, of Definition 1), the social relatedness of corresponding authors
(green vertices) (belonging to layer L, of Definition 1), the lexical relatedness of corresponding words (orange vertices) (belonging to layer
L, of Definition 1), and additional layers of contextual patterns concerning, for example, the underlying medium, genre, or register

instantiated by the texts under consideration.

M (X, k) = (M, D),
M ={M; =(V,, Apps v Api;) | i = 1,.. .k},
D :{Di,j :(Vi.j’Ai,j’/’li,j’vij’)ti,j’Ki.j) li,j=1,....k: i¢j}>
(29)

such that each M,, i € {1,...,k}, is an (L,,L})-Topic Net-
work derived from & according to Definition 7 and for each
hje{l,....l} i#j, D;; €D, |Dl=k(k - 1), is called a
margin layer fulfilling the following requirements: V,; =
ViUV, A= {(v,w) eV xV;|v= u')}, Wij = ;U and
Aij=A;UA;.

See Figure 13 for a schematic depiction of the com-
parison of two MTNs. Note that because of Definition 7, it
does not necessarily hold that Vg (V,) =V (V]-), but it
always holds that Vi (V;) Vg 2 Vg (V). In this respect, we
depart from [64], which instead require more strongly that
V;=V,. In the case of topic networks, this would be too
restrictive, as different topic networks derived from the same
definitional setting can focus on different subsets of topics,
while ignoring the rest of the topics in the co-domain V¢, of
0. (A way to extend Definition 8 is to include the RCS € =
(V, Ag) of Definition 2 as an additional layer. This would

allow for directly relating its constituent topic networks with
the hierarchical classification system 6.)

In this paper, we quantify similarities of the different
layers of MTNs to shed light on Hypothesis 1. More
specifically, we generate an LMN for each corpus of a set of
different text corpora in order to derive a separate two-
layer MTN for each of these LMNs, each consisting of a
TTN and an associated ATN. Then, among other things,
we conduct a triadic classification experiment: firstly with
respect to the subset of all TTN's derived from our corpus,
secondly with respect to the subset of all corresponding
ATNs, and thirdly with respect to the subset of all TTNs in
relation to the subset of the corresponding ATNs. In the
next section, we explain the measurement procedure for
carrying out this triadic classification experiment.

3.2. A Procedural Model of Topic Network Analysis. In order
to instantiate topic networks as manifestations of the
rhematic networking of places, we employ the procedure
depicted in Figure 14. It combines nine modules for the
induction, comparison, and classification of topic
networks.
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F1GURE 13: 3D depiction of two MTNs (left and right) each consisting of two layers (including a TTN at the bottom and an ATN at the top of
the respective cube). Shared colors of nodes and dashed vertical lines indicate identically labeled vertices. The depiction disregards the
orientation of the arcs. In this example, all four layers span topic networks over the same set of topics (vertices). Any such two-layer MTN
can be used to represent the intertextuality- and coauthorship-based networking of the topics derived from the same corpus of texts about
the same place. In this way, we gain several perspectives for the analysis of such multiplex networks: by comparing the TTNs or the ATNs of
different MTNs (dotted arcs), by comparing the TTNs of different networks with their corresponding ATNs (dashed arcs), or by comparing
the different MTNs as a whole with each other (solid arc).
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FIGURE 14: A procedural model of investigating LMNs and MTNs: generating, randomizing, and quantifying topic networks in 9 steps
including Natural Language Processing (NLP) (1), topic classification using a classifier 6 according to Definition 2 (2), topic network
induction according to Definition 8 (3), network randomization according to Section 3.2.4 (4), network quantification (5), and network
similarity analysis (6) both based on Section 3.2.6, machine learning of network classifiers (7) and classification analysis (8) both based on
Section 3.2.7, and finally, time series analysis of topic networks (which will not be performed here) (9).

3.2.1. Module 1: Natural Language Processing. Preparatory for  3.2.2. Module 2: Topic Classification. According to Defi-
all modules is the natural language processing of the input  nition 2, the derivation of TNs from LMNs requires the
text corpora. To this end, we utilize the NLP tool chain of  specification of a Reference Classification System (RCS)
TextImager [84] to carry out tokenization, sentence splitting, =~ & = (V, Ay). For this purpose, we utilize the Dewey
part of speech tagging, lemmatization, morphological tag-  Decimal Classification (DDC), a system that is well
ging, named entity recognition, dependency parsing [85],  established in the area of (digital) libraries. As a result, the
and automatic disambiguation—the latter by means of  generalized tree € from Definition 2 degenerates into an
fastSense [86]. For more details on these submodules, see  ordinary tree since the DDC has no arcs superimposing its
[86, 87]. As a result of Module 1, the topic classification can kernel hierarchy (see Figure 15 for a subtree of the DDC).
be fed with texts whose lexical components are disambig- ~ As a classifier 8, which addresses the DDC, we use
uated at the sense level. As a sense model, we use the dis- 0 = text2ddc [72], a topic classifier based on neural net-
ambiguation pages of Wikipedia, currently the largest  works, which has been trained for a variety of languages
available model of lexical ambiguity. [88]  (see  https://textimager.hucompute.org/DDC/).
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Starting from the output of Module 1 (NLP), we use
text2ddc to map each input text x to the distribution of the 5
top-ranked DDC classes that best match the content of x as
predicted by text2ddc. Since text2ddc reflects the three-
level topic hierarchy of the DDC, this classifier can outputa
subset of 98 classes of the 2" (two classes of this level are
unspecified) and a subset of 641 classes of the 3rd DDC level
for each input text. (We did not have training for all 3rd
level classes (which are partly unspecified). See [72] and the
appendix for details.) Thus, each topic network of each
input corpus is represented on two levels of increasing
thematic resolution. Note that text2ddc classifies input
texts of any size (from single words to entire texts in order
to meet challenge P3) and works as a multilabel classifier for
processing thematically ambiguous input texts. By using an
RCS, text2ddc meets challenge P2 simply by referring to the
labels of the topic classes of the DDC. Furthermore, since
text2ddc is trained with the help of a reference corpus, it
can detect topics, even if they occur only once in a text (this
is needed to meet challenge P4) and guarantees compa-
rability for different input corpora (challenge P1). text2ddc
is based on fastText whose time complexity is O (hlog, (k)),
where “k is the number of classes and 4 the dimension of
the text representation” (2, [89]) (making this classifier
competitive compared to TMs).

Figures 4-7 show examples of TTNs and ATNs gen-
erated by means of text2ddc by addressing the second level
of the DDC. Each of these topic networks was generated for
a subset of articles of the German Wikipedia that are at
most 2 clicks away from the respective start article x (for the
statistics of the corpora underlying these topic networks,
see Section 4.1). Formally speaking, let G = (V,A) be a
directed graph and v € V; the nth orbit induced by v is the
subgraph,

G, = (V). A)),
Vi={weV|d(vw)<n}, (30)
Al ={(r,s) e Alr,seV},

that is induced by the subset of vertices whose geodetic
distance & (v, w) from v is at most n (cf. [90]). We compute
the first orbit and the second orbit of a set of Wikipedia
articles (so that G denotes Wikipedia’s web graph). This is
done to obtain a basis for comparison for the evaluation of
topic networks derived from special wikis. Since Wikipedia
is probably more strongly regulated than these special wikis,
we expect higher disparities between networks of different
groups (Wikipedia vs. special wiki) and smaller differences
for networks of the same group.

3.2.3. Module 3: Network Induction. Network induction is
done according to the formal model of Section 3.1. It starts
with inducing an LMN Z (X, 2) for each input corpus X.

Complexity

That is, for each corpus X, we generate a text network L, and
an agent network L, according to Definition 1:

(1) In this paper, X always denotes the set of texts (web
documents) of a corresponding wiki W so that the
text layer L, = (V,, Ay, py, 71,4, %) of the LMN
Z(X,2), in which L, is an agent network defined
below, can be used to represent the web graph [91] of
this wiki. Thus, for any two texts xand y that are
linked in W, we generate an arc a = (v,w) € A4,,
where v, (a) = 1 and «, (a) = hyperlink. Further, for
Vx eV, :p(x)=1AL (x) = x.

(2) The author layer L, = (V,, A,, 4y, v5, 45, k,) of the
LMN Z (X,2) corresponding to L, (see Definition
1) is generated as follows: V, is the set of all
registered authors or TCP/IP addresses of anon-
ymous users working on texts in X so that Vv € V, :
A, (v) maps to this name or IP address, respectively.
Let # (r, x) be the sum of all additions made by the
author r € V, to any revision of the edit history of
the text x; we use #” (r, x) to approximate the more
difficult to measure concept of authorship as in-
troduced by Brandes et al. [74]. Then, we define:
Vr €V, py(r) = Yyep,# (1, x). Further, A, is the
set of all arcs (r,s) between users r,s € V,, for
which there is at least one text x to which both
contribute so that # (r, x), # (s,x)>0. Then, we
define (cf. [92]):

- min (# (1, x), # (s, x))
v, (r,$) = x;l 2 S o ()

€ (0,11. (31)

Finally, «, (a) = coauthorship. Obviously, L, is symmetric.

Now, given the definitional setting (%,6, % (X,2)),
where €, 0 are instantiated in terms of Section 3.2.2, we
induce a TIN T'(Ly) = (Vi , A s pay > V15 A K ) according
to Definition 3 by means of appropriately defined mono-
tonically increasing functions «;, f;, y,, and §;. To this end,
we utilize the set

00 ={0, () >0 | VE Vil (32)

of the membership values of text x € V, to the topics in
V&, where the parameter 0,;, denotes a lower bound of an
acceptable degree of aboutness. We set 6,;, = 0. Further,
by

1
QZMZ% (33)

we denote the mean value of the set Y = U, Gz%’ of se-
lected topic membership values and by max (X, m) we de-
note the m € {1,...,[X|} largest value of the arbitrary set X.
Finally, we select a number 0<m, <|Vy| and define
Vv e V,Vx € V|, thereby instantiating the parameters
«, 3, y, and § of formulas (6) and (7) of Definition 3:
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Dewey decimal classification

200 religion

100 philosophy and psychology

110 metaphysics

150 psychology

21

120 epistemology, causation, humankind
130 paranormal phenomena, occult

140 specific philosophical schools

151 [unassigned]

152 perception, movement, emotions & drives

153 mental processes & intelligence

FIGURE 15: A subtree of the DDC displaying a snapshot of the second class (100) on the first three levels.

o= o =id,

ﬁ<x% v) =By (x5 9) = B O AM)) = B, (6, ()

_ { 0,(¥), 0,(9) e{reby|Im<m, :r=max(6]c,m)=6},

0, else,

‘}):: 'yl :id’

6 . 6 . 0 . oo
8x<07>v,y<ef>w,x—>y =0 (x — Ty —>wx—y

_ { B (6, (M)B, (6, (@), (x,y) € A,

O)

According to formula (35), B, (x,-«—yv) =0, (v) iff
0, (V) is one of the m, highest membership values of x to the
topics in Vg, supposed that 6,(v)>0. Otherwise,
B (xg——¢¥) = 0. In this paper, we experiment with m, = 5.
The higher the value of 11, the more sensitive the generation of
T(L,) to the thematic ambiguity of the underlying texts.
However, since 6 creates a membership value for each pair of
texts and topics, we use 0 as a lower bound of aboutness (in the
sense of addressing a topic known by 0) so that irrelevant
classifications 0, () do not affect Hr, ).

Regarding the ATN T (L, {L,}) = (VA 71,
Ay, %)) corresponding to the TTN T'(L;), we have to define
monotonically increasing functions «,, 3,, y,, andd,. To
this end, we use several auxiliary functions:

(i) By #(-,-), we denote the mean activity per author
per Wikipedia article.

(ii) By |#* (-, )|, we denote the average number of active
authors per Wikipedia article.

(34)

(35)

(36)
else.

The corresponding estimators are found in Table 4. Now,
consider the set V, (x) of all active authors of the text x and
the set 0, (V) of all texts that potentially contribute to y;_(v)
and thus to the weight of the vertex v € V :

V,(x) ={r eV, | #(r,x)>0},

(37)
0,(V,) ={x eV, | B(6,()>0}.

Then, we define the following functions and ratios:

0,11> — (0,2],

scale = (38)
scale (a, b)—2 a ,
a+

w, = scale(|V,(x)],[# (- )]), € (0,2],  (39)



22

1
CTRWL O W

where scale is a function which is used to rescale below or
above average values (see formula (39)). Formula (40) de-
fines the mean of the rescaled numbers of active users per
article in 8, (V). Based on these preliminaries and regarding
the vertex weighting function y;, we define VveV
and Vr € V,, thereby instantiating the functions « and f of
formula (10) of Definition 4:

a=uAVzeR 1 a,(2) =w, -z, (41)

0 9 0 . Y21
ﬂ x<—>v,r<—>v,r<—)x ::ﬁ2 X — VT — X
0~ 9 Vi

1 #(r,x) L
;m & (r,x) < # (),
. & (1, x)
= B0, () - 7% PU—
#(r,x) o
Py e J09> 76
(42)

In the present paper, we experiment with p =2. To
understand this definition, we have to run through the cases
of formula (42):

(1) The case # (r,x) = #(-,-): suppose that, for each
x€0,(V,), the following condition holds:
Vr,s € Vy(x): & (r,x) = #(s,x) = # (--). In this

case, we obtain for each x € 6,(V), the following

result:
S (r,x) 2 (1, x)
’;zﬁl(e (V )ZSEVZ/)(S"X) ﬁl(e @ )r; ZSEVZ/)(S’ x)
= ﬁl(ex (V))
(43)

Complexity

In other words, if all authors of all texts contributing
to the weight of a topic contribute to these texts
according to the average activity, the weight of this
topic in the ATN corresponds to that of the corre-
sponding TTN. In this case, the average activity does
not bias the weight of a topic in the ATN compared to
the same topic in the corresponding TTN. Obviously,
this scenario gives us a neutral point or, more spe-
cifically, a calibration point for the comparison of
ATNs and TTNs. Such a calibration point allows us to
interpret any down- or upward deviation of the topic
weights in both networks, since no deviation means
average activity and average number of active users.
However, this consideration presupposes that w, = 1
so that a, = & = id. If w, > 1, then the number of
authors of texts contributing to the weight of v is on
average higher than expected on the basis of Wiki-
pedia, so that the weight of the topic v in the ATN is
“biased upwards” compared to the weight of the same
topic in the corresponding TTN. Conversely, if w, < 1,
then the number of authors of texts contributing to the
weight of v is on average smaller than expected, so that
v’s weight in the ATN is “biased downwards” com-
pared to the weight of the same topic in the corre-
sponding TTN. This scenario teaches us the different
roles of a, and f3, with respect to the weighting of the
B, values: while 3, operates as a function of the ac-
tivities of authors, a, considers their number.

(2) The case # (r,x)<#"(-,-): suppose for each s+r

that # (s, x) = # (-,-) while & (r, x) < # (-, ). Then,

we conclude the following:

) Z(t, x)
0. (V) +
ﬁl( v )<t€\§{r}zsevz/(5 x)

# (1, x) ><ﬁ1(6x(‘-/))<:>

Zsevz/(
# (8, x) 1 #(r,x)
) 1 (44)
teVo\{r} Zsevz/ (S’ X) ' p ZSEVZ/ (5> x) e
1 #(rx) # (1, %)

- <
P ZSEVZ/(S’ x) ZSEVZ/(S’ .X)

Thus, for p>1, we penalize the contribution of a
below-average active author of a text to the weight of

—1<p.

the topic to which this text contributes. The different
effects of ,S1 have already been discussed.



Complexity

(3) The case # (r,x) > #" (-,-): if we suppose now that
Vs#r:#(s,x)=#(-) while #(r,x)>+(,),
we conclude that for p>1, we reward the contri-
bution of an above-average active author of a text to
the weight of the topic to which this text contributes.

In a nutshell, @, and f3, implement the following pro-
portionality assumptions:

(i) By a, we penalize or reward under- or above-average
coauthorships: the higher the above-average number
of authors contributing to the texts of a topic, the
higher the reward effect and the higher the weight of
the topic. And vice versa, the lower the below-av-
erage number of authors contributing to the texts of
a topic, the higher the penalty effect and the lower
the weight of the topic.

(ii) By f3, we penalize or reward under- or above-average
activities of single authors: the higher the above-
average activity of a single author contributing to a
text of a topic, the higher the reward effect and the
higher the contribution of this author-text pair to the

0 . [ . . i1 Vi1 i 1
8[x<—>v,y<—>w,r<—>v,s<—>w,r<—>x,s<—>y,r—)s,x—)y] :
0~ 0~ 9 9

0 . 0 . V21 2.1 2 1
Llx — vy —uwr—x,s—yr—sx—y|=

{

In this deﬁnitign, B, (0, (v)) quantifies the link x 2, vand
the link r —> x (cf. formula (11)), the product
B> (0, (), (0, (W) quantifies the link x — , y, and
v, (r,s) quantifies the link r — , s. The calibration point
of arc weighting is now reached under the conditions of
the following scenario (for the first two conditions, see
above):

O:

Bo(6. (1) = B (6. (M), (47)
B(6, (W)) = B, (6, (w)), (48)
v, (r,8) = 1. (49)

Under these conditions, the authors r and s contribute to the
texts x and y at an average level while interacting at an
average level of coauthorship. In this case, the (co)author-
ship of both authors does not influence the strength of the
corresponding arc in the ATN: in terms of neither reducing
nor increasing v, (v, w). Note that the size of an ATN (i.e,,
the number of its arcs) is always less than or equal to that of
the corresponding TTN, since the arcs present in a TTN are
merely re-weighted in the corresponding ATN: no new arcs
are added. The same holds for the order of the ATN since

v,

Vii
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weight of the topic. And vice versa, the lower the
below-average activity of a single author contrib-
uting to a text of a topic, the higher the penalty effect
and the lower the contribution of this author-text
pair to the weight of the topic.

Finally, we define the functions y, and §, to get in-
stantiations of the functions y and & of formula (11) of
Definition 4 (or, in the generalized case, of formula (27) of
Definition 7). This is done by means of the following aux-
iliary function:

7, (r,s) = scale(v, (,5),%,) € R", (45)

where 7, estimates the average degree of coauthorship in
Wikipedia according to formula (31). (We estimate v, by
means of 10,000 randomly selected Wikipedia articles so that
v, = 0.002,756.) V,(r,s) is a readjustment of v, (r,s) in
relation to the mean value %,: the higher the above-average
coauthorship, the higher the value of ,, and the lower the
below-average coauthorship, the lower the value of 7,. Then,
we define

’}} = ’}/2 = id’

V; V-

Vii

(46)

V. V. Vv

7, (r,8) - B (0, () - By(6, (W), (x,9) € A A (r,5) € Ay,

else.

there is no node in a TTN for which there is no author
authoring it.

Our instantiation of multiplex text and author topic
networks has shown two points: firstly, we demonstrated a
single-parameter setting as an element of a huge parameter
space spanned by parameters such as p, %,, #* (-,-), |# (-, )|,
0, a1, oy, Bis Bas V15 V2> 01> and §,. (In the latter eight cases,
various information links are included as candidate pa-
rameters. Formula (42) shows, for example, that out of the
six possible information links, only two are evaluated to
instantiate f3,. Obviously, numerous alternatives exist to
instantiate this function.) Secondly, anyone who complains
about the apparently inherent parameter explosion in our
approach should consider the hyperparameter spaces of
neuronal networks as an object of parameter optimizations.
Regardless of the heuristic character of our approach,
compared to the black box character of neural networks, its
settings are extensible on the basis of the schematic
framework provided by Definition 8 of MTNs and the
definitions it is based upon. At the same time, this approach
guarantees interpretability as long as the different in-
gredients entering our model via formulas of the sort as
formulas (26) and (26) fulfill this condition—in order to
meet challenge P5.
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3.2.4. Module 4: Network Randomization. Randomization is
conducted to assess the significance of our findings. This is
necessary because there is currently no related classification
in the area examined here that can serve this role. To fill this
gap, we compute the following randomizations:

(1) Baseline B1: a lower bound of a baseline is obtained
by randomly assigning the object networks onto the
gold standard (target) classes. This can be done by
informing the assignment about the true cardinality
of these classes (B11) or not (B12). We opt for B11
since this variant yields a higher F-score, making it
more difficult to surpass. Of course, any serious
network representation and classification model
should go beyond this baseline. B1 will be averaged
over 100,000 iterations.

(2) Baseline B2: an alternative is to randomize the
input networks and to derive vector representa-
tions (according to Section 3.2.3), which ultimately
undergo the same classification process as the
original networks. That is, the input networks are
randomly rewired to generate Erdés-Rényi (ER)
graphs, for which we ask whether they are sepa-
rable by the same classification model. (An alter-
native, not considered here, would be to
randomize the topic classification of the un-
derlying texts.) If this is successful in terms of high
F-scores (the F-score is a measure of the accuracy
of a classification, that is, the harmonic mean of its
precision and recall), then we conclude that the
network representation model or the operative
classifier is not informative enough regarding the
hypothetical class memberships of the input net-
works. Conversely, the lower the average F-scores
obtained by classifying the randomized networks
compared to the classification of the original ones,
the more informative the representation model or
the classification procedure regarding the un-
derlying hypotheses. By keeping the model con-
stant while varying the classifier, we can ultimately
attribute this (non)informativity to the underlying
representation model. Conversely, by keeping the
classifier constant while varying the model, we can
attribute this informativity to the classification
model. B2 will be repeated 100 times.

(3) Baseline B3: a third baseline results from random-
izing the matrices that form the input of the target
classifiers. This means that instead of calculating
graph invariants or similarity values to feed the
classifiers, we use matrices whose dimensions are
chosen uniformly at random from the domain of the
corresponding invariants or (dis)similarity mea-
sures. (We require that the main diagonal of the
random matrix is 1 and that it is symmetric.) If the
classification based on the original networks does not
exceed this baseline, we are again informed about a
deficit of our representation model. Evidently, we are
looking for models that significantly exceed this
baseline; otherwise, we would have to accept that the

Complexity

same classifiers perform better on random values
than on our feature model. B3 will be repeated 100
times.

(4) Baseline B4: finally, we start from randomly reor-
ganizing the set of observations into random classes
while using the same representation model to sep-
arate the resulting random gold standard. (Obvi-
ously, we have to prevent that the gold standard is
ever part of the set of these randomizations.)
We choose the variant of using randomized cardi-
nalities of the random classes rather than keeping
the sizes of the gold standard. Tests have shown
that this approach tends to generate higher F-scores
than the latter. If our network representation and
classification model do not outperform this baseline,
we learn that the underlying invariants used to
characterize the networks are not specific enough;
rather, they can be related to random classifications
of the same objects using the same feature space.
Obviously, we are looking for a model characterizing
the gold standard (tendency to specificity) and not a
random counterpart of it (tendency to non-specific-
ity). B4 is averaged over 100 repetitions.

Bl is a lower bound: models that fall under this bound
are obsolete. B2 concerns the evaluation of the network
representation or classification model. B3 focuses on eval-
uating the classification model, and B4 aims at evaluating the
specificity of the operative feature model.

3.2.5. Module 5: Network Quantification. Module 5 is a
preparatory step for a subset of network similarity measures.
This relates to so-called topology-based approaches to graph
similarity [57, 93-96]. The idea behind this approach is to
map input networks onto vectors of graph indices or in-
variants to compare them with each other. That is, graph
similarity is traced back to similarity in vector space: the
higher the number of indices for which two graphs resemble
each other, the more similar the graphs. The apparatus that
we employ in this context is described next.

3.2.6. Module 6: Graph Similarity Analysis. Our hypothesis
about thematic networks on geographical places says that
these networks are similar in terms of the skewness of their
thematic focus and their network structure, regardless of
whether the underlying texts are written by different
communities and regardless of the framing theme. To test
this hypothesis, we apply the framework of graph similarity
measurement which allows for mapping the second of these
three reference points by exploring the structure of topic
networks as well as features of their nodes. Since graph
similarity measurement is generally known to be compu-
tational complex, we take profit from the fact of dealing with
labeled graphs. By using alignments of the labels of the nodes
of the graphs to be compared, we reduce the time complexity
of these approaches enormously.

The literature knows a number of approaches for graph
similarity measurement. Among other things, this includes
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the following approaches (see Emmert-Streib et al. [97] for
an overview (cf. [98, 99]); the paper does not aim at a
comprehensive study of them but focuses on a selected
subset):

(1) Graph Edit Distance- (GED-) based approaches
[100-102] and their relatives (e.g., the Vertex and
Edge Overlap (VEO) [103])

(2) Spherical [90] or neighborhood-related approaches
(cf. [99])

(3) Network topology-related approaches [57, 93-96, 103]

We will develop and test candidates of each of these
classes.

GES(G,,G,) = 1
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GED-based methods are well studied in the area of web
mining [104]. Since we are dealing with labeled graphs, we
can compute the GED directly from the vertex and edge sets
of the input graphs [99, 100]. Let G, = (V,, A, 4,75
AL k) and G, = (V,, Ay, Uy, v, 45, &) be two TN, then their
GED is computed as follows:

GED(G,,G,) =|[V| + |[Va| = 2[Ve (V) nVg (V)]
+ Ay + |Ay] - 2|V (4) NV (4)] € Ry,
(50)
where Vg (4)) ={(»,w) | (v,w) € A;},i=1,...,2. Since we are
targeting graph similarities, we consider GES instead of

GED, where overlaps of vertex and arc sets are equally
weighted:

2 [Vi] + |V,

The same is done in the case of Wallis’ approach to graph
distance [102], which is adapted as follows to get a similarity
measure:

B l<|V1| + |V2| - Zlv%(vl)nv%(vz)l N |A1| + |A2| - 2|Vg(A1)ﬂV<g(A2)l

Ve (V)N Ve (V)] + [V (A) NV (A,)|

Al T4l )e [0,1.  (51)
1 2

WAL(G,,G,)

A relative of GES is the Vertex/Edge Overlap (VEO)
graph similarity measure [103]:
Vi (V1) N Vig (Vo)] + [V (A) NV (4)))]

VEO(G,,G,) =2
(61,G2) Vil + Vol + A + |4

) Vil + [Va] + A + |Ay] = Ve (Vi) Ve (V)] = Ve (A) NV (4,)

| € [0,1]. (52)

Since node and arc weights are not taken into account by
these measures, we compute the following variant of GES to
close this gap:

(53)
L GED(GLG)
Vil + (Vo] + [A] + |4
(54)
Vi, y € R 1 8(x, ) :M, e [0,1], (55)

Vv eV Vw eV, : wges(v,w) = {

>

S(p (M py (W), ¥ =1,

e [0,1],
else, (56)

Va=(v,w) € A,Vb=(x,y) € A, :

wges(a,b) = { g(”l (a),v, (b)),

>

V=%AW =,

e [0,1], (57)

else,
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_ |V1| + |V2| - ZZveVl,weVz(s(tul(V)’Hz(w))

Complexity

wges(V,,V,) =

wges (A}, Ay) =

. e [o1], (58)
V.| + |V,
AL+ 4] - 2WeeapendOr @ ®) (59)
[A] + [4)] ’ T
_wges(V,V,) + wges (A}, A,) € [0,1] (60)

wges (G, G,) =

wges is sensitive to arc [99] and to vertex weights of TN,
the latter measuring the membership degree of the un-
derlying texts to the topic represented by the corresponding
vertex. We say that such measures are dual weight-de-
pendent. These measures are of high interest since they
cover more information on the underlying networks than
single weight-dependent or even weight-independent
measures (cf. the axiom of edge weight sensitivity of Koutra
et al. [99]).

GED and its relatives share a view of similarity, according
to which graphs are considered to be more similar the more
(equally weighted) vertices and arcs they share. This notion of
similarity is contrasted by spherical approaches (see above) as
exemplified by DeltaCon [99]. Roughly speaking, according
to DeltaCon, the more similar two graphs resemble each other
from the perspective of their vertices, the more similar they
are. Since DeltaCon is not dual weight-dependent, we con-
sider a dual weight-dependent relative of it. To this end, we
compute the cosine of the vectors of geodetic distances for
each pair of equally labeled vertices. Since topic networks can
differ in their order, we first have to align their node sets to
make them comparable—this is also needed because we aim
for a dual weight-dependent measurement. The required
alignment is addressed by means of the following auxiliary
graphs G, and G,;:

Vi je{L2hi#j: Gy =(Vip Anipviliy)s
Vij:ViU{wGVin‘IveV,-:ilzw},

w(v), vev,
VYveV, :u.(v)= (61)
Y MU( ) {0, else,
l L(v), veV,
Y V..:1l. =
VeVl ;(v), else.

G,, and G,, are needed to make G, and G, comparable
whose symmetric difference VAV, can be nonempty while
their vertex labeling functions share the same co-domain
(since G, and G, belong to the same multiplex topic network

2

according to Definition 8). Obviously, |G,,| = |G,,| so that
foreachv € Vi, w € V;\Vy3i, j € {1,2},i# j, there is no path
from v to w in G;;. Cases in which no such path exists are
denoted by v + w; otherwise, if such a path exists, we denote
by ged;; (v,w) the length of the shortest path, that is, the
geodetic distance between v and w in G;;. As we deal with
graph similarities, we first transform the distance values into
similarity values:

[w,]

Yvw eV gep;” (v, w)

ed!“ (v, w)
1 - <g,]7 , wwevV,
- Vil e [0,1],

0, else,
(62)

gep is short for geodetic proximity. With the denominator |V,
we penalize situations in which there is no path between v and
w, that is, v + w. The parameter w € {w, ~w} specifies, whether
the geodetic distance ged!’ and the geodetic proximity
gepi[;-"”] are computed for the weighted (w) or unweighted (-w)
variant of G;;. If w = w, we assume that each arc weighting
value is normalized by means of the nonzero maximum value
assumed by the arc weighting function for this network (this
means that a graph G,, which is obtained from a graph G, by
multiplying the weights of all arcs of G, by a factor ¢ > 0, will be
equal to G, in terms of the graph similarity measure to be
introduced now (insensitivity to certain scalings)). 1 € R
specifies the maximum geodetic distance to be considered:
beyond this value, nodes w are considered to be of maximum
geodetic distance |V;| to v—irrespective of their real distance.
For 1>|V;|, we have to compute all geodetic distances. For
values of 1 < |V;/| (e.g., 1 = 2), we arrive at variants of gep;; that
are less time complex. We consider the variant : = co so that
we take all path-related information into account. Now, we
calculate the dual weight-dependent cosine of G, and G, as
follows:
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Vv e V,Vw eV, & coslw, 1] (v,w) =

cosyw, 1,4, L]1(Gy,G,) =

cosy (G, G,) =

27
Bnerpyery 8P (o X)gep T w0 y) (63)
\/ Zuevngep[‘” 1, u)? \/ Yuev,, gepl[]““ (w, u)?
VeV el ® (Vs w)cos [w, 1] (v, w
Z €V 15, WEV,, e[L(/)( ) [w, ] ( ), € [0,1], (64)
Zvevu,wevm,v:we[L‘P (V’ w)
PR V u)
ZVGVIZ,wGVZI,v;wFIZ( )[’121( ) . e [O, 1]) (65)
\/Zvevu.“u v \/zwevn.“zl (w)
cosy (G, G,) + cosylw, 1, ¢] (Gl,Gz)’ c[0.1], (66)

o8y [w, 1, §, L] (G, G,) =

cos[w, 1, ¢, L] (G, G,) is the weighted cosine of the vectors of
geodetic proximities of the same-named vertices in G,, and
G,,. In this article, we consider two instantiations of pa-
rameter ¢:

VWweVi,weV,, v=w:¢ (v,w) =1, (67)

Vv eV, weV,, = max (d (v), d (w)),

(68)

v=w:¢,(v,w)

where ¢, implements an arithmetic mean. ¢, is a function
of the degree centrality [105] of its arguments: the more
linked a topic in a network, the higher its impact onto the
similarity of the input networks. The similarity view be-
hind this approach is that while cosy[w, 1, ¢;,L],
X e{d,d7}, treats all—peripheral or central—nodes
equally, cosy[w,1, ¢,,L] gives central nodes more influ-
ence. Take the example of two city networks [106]: it is
plausible to say that if city networks look similar from the
point of view of their central places, this should have more
impact on the general similarity assessment than simi-
larities from the point of view of peripheral locations. An
extension would be to use more informative node
weighting measures (e.g., closeness centrality). Finally,
parameter L limits the number of vertices for which cosine
values are computed. In the unlimited case, L = L, = {I;,
(v) | v € V,}. It is easy to see that formulas (64)-(66) are
similarity measures. For X € {¢/, 7', 47}, this can be
shown as follows:

(1) Symmetry:
cosy [w, 1, ¢, L] (G, G,) = cosx[w, 1, ¢, L] (G,,G,)
since formulas (63)-(66) are all symmetric.

(2) Positivity: since we are considering only positive arc
weights, it always holds that
cosy [w,1, ¢, L] (G,,G,) >0, (69)

for any w,, ¢ and L # &.

(3) Upper bound: cos|w,1,$,L](G;,G;) =1 for any
w,1,¢ and L # < and thus
VG, #G, : coslw,1,¢,L](G;,G;) = cos[w, 1, , L] (G}, Gy).
(70)

2

It is worth noticing that the range of values of formulas
(63) and (65) is limited to [0, 1], since the values of gep are
always positive and we only consider positive membership
values of texts to topic nodes.

So far we looked at measures that mostly processed the
arc set A of TNs. This is contrasted by measures operating on
topological indices of graphs. An example is NetSimile [107],
which is based on the idea of characterizing networks by
vectors of graph indices, which mostly draw on theories of
social networks or egonets. Starting from seven local, node-
related structural features (e.g., node degree, node clustering,
or size of a node’s egonet (see Berlingerio et al. [107] for the
details of this approach)), it computes the mean and the first
four moments of the corresponding distributions to generate
35-dimensional feature vectors per network where the
Canberra Distance is used to compute their distances: let
X,y € RF be two vectors, then their Canberra Distance is
defined as

dCan (7’7) 1: (71)

><l k],

\<l \<L

M»

i |

Soundarajan et al. [108] show that NetSimile is consis-
tently close to the consensus among all measures studied
by them, showing that it approximates the results of
more complex competitors. This finding makes NetSi-
mile a first choice in any comparative study of graph
similarities.

Following on from this success, we introduce a to-
pology-related approach to graph similarity, which
draws on the hierarchical classification of the texts un-
derlying the topic networks by reference to the Dewey
Decimal Classification (DDC) (see Section 3.2.2).
Starting from a pretest which essentially showed that
graph invariants of complex network theory [109] do not
sufficiently distinguish networks from their random
counterparts, we decided to calculate a series of graph
indices that evaluate the assignment of topics to the
second level of the DDC. More specifically, we compute
three node type-sensitive variants of the four cluster
coefficient C [110], Cy, [111], Cyppy [112], and Cyp, [113]
(cf. [114]). This variation can be exemplified by means of
C,s: to derive the desired variants from C,, we use the

+

i i
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following scheme, where mode € {intra,inter, heter}
serves as a parameter to distinguish these alternatives (d;
is the degree of v; € V):

1 ¢ adjmode (V)
Cwsmode = ; ;271’ € [0’ 1]’ (72)

d? - d,
where adjj,,, (v;) is the number of adjacent neighbors of
v; € V sharing their 2°¢ level topic classification with v;,
adjier (v;) is the number of adjacent neighbors of v; whose
identical classification differs from that of v;, and adjy., (v;)
is the number of adjacent neighbors of v; whose classification
differs among each other and from that of v; (a 4th case is
that v; shares with a single neighbor its 2°¢ level topic while
differing from the topics of all other neighbors). In this way,
we compute for each of the cluster values C,,, (unweighted),
Cy; (unweighted), Gy, (weighted), and C,, (weighted)
three variants considering intra- and interrelational as well
as heterogeneous type-sensitive clustering so that topic
networks are finally represented by 12-dimensional feature
vectors which are compared using the cosine measure. We
call this approach ToSi (as short for topological similarity).

As a result of this candidate show of graph similarity
measures, we consider the set of measures displayed in
Table 5 for measuring the similarities of topic networks in
order to shed light on Hypothesis 1, part (2).

3.2.7. Modules 7 and 8: Machine Learning and Classification
Analysis. We conduct experiments in supervised learning
with the aim of training classifiers to detect the layer (TTN or
ATN) to which a topic network of a MTN belongs and the
genre of the corpus from which the underlying LMN is
derived. That is, our machine learning starts from a set of n
genres &;,i = 1,...,n, each of which is represented by a set
C; = {C,~ lj=1,... ,ni} of text corpora C;; (see Figure 16).
The set {C; | i = 1,...,n} defines a gold standard for which
we assume that Vi, j = 1,...,n,i# j: C;NC; = &. Next, for
each corpus C;; of each genre ¥;, we span an LMN Z(C;;, 2)
that in turn is used to derive a two-layer MTN /4 (C,-]-, 2) =
(M, D;;)C;; such that M;; = {Mij,Nij} consists of exactly
two topic networks: a TTN M;; and an ATN N;; both
derived from Z(C;;,2). In this way, we obtain the set My,
and the set M, of all TTNs and ATNs, respectively, both
derived from Z(C;;,2) according to Section 3.2.3. Next,
each of the sets M., and M,,,, is randomized according to the
procedure described in Section 3.2.4 (Baseline B2). In this
way, we obtain the sets M, and M,,, as the randomized
counterparts of M,,,, and M,,,,. As a result, we distinguish a
range of classification experiments (1-14) only a subset of
which will be conducted in Section 4 to tackle Hypothesis 1.
We start with distinguishing TTNs from ATNs. The un-
derlying classification hypothesis is as follows.

Hypothesis 2. Topic networks of the same layer (also called
mode) (i.e., TTN or ATN) are more similar than networks of
different modes (this concerns Scenario 1 (observed data)
and Scenario 6 (randomized data) in Figure 16).

Complexity

The similarity of TNs will be quantified by means of the
apparatus of Section 3.2.6. Regardless of which genre (urban
vs. regional vs. encyclopedic communication) the underlying
corpus belongs to, Hypothesis 2 assumes that one can always
distinguish TTNs from ATNs by their structure, while TTNs
and ATNs are less distinguishable among themselves. This
scenario is depicted in Figure 14 by Arrow 1. If we falsify the
alternative to this hypothesis, we can assume that (poor, rich,
or moderate) thematic intertextuality, as manifested by
TTNs, is different from coauthorship-based networking of
topics in ATNs. Collaboration- and intertextuality-based
networking would then differ in a way that characterizes
their layer. In order to test genre sensitivity as disregarded by
Hypothesis 2, we carry out two experiments: one in which
we classify TTNs (ATNs) by genre and one in which we
combine both classifications by simultaneously classifying
by genre and layer. When classifying by genre, we distin-
guish TNs derived from city wikis (urban communication),
regional wikis (regional communication), and subnetworks
of Wikipedia (knowledge communication) (see Section
3.2.2). Finally, we generate two control classes of wikis and
Wikipedia-based networks outside of these three genres. The
corresponding wikis are sampled in a way that their
members are rather dissimilar. Our similarity measurement
should therefore not work with them. In a nutshell, the
underlying classification hypothesis is as follows.

Hypothesis 3. Topic networks of the same genre are more
similar than those of different genres (this concerns Sce-
narios 2-4 (observed) and Scenarios 7-9 (random data) in
Figure 16).

As we consider the genre-sensitive classification in the
context of the layer-sensitive one, we get different classifi-
cation scenarios:

(1) Scenario 2 in Figure 16 denotes the task of training a
classifier that detects TTNs of the same genre while
distinguishing TTNs of different ones. If this is
successful, we can assume that the TTNs analyzed
here are genre-sensitive or that the communication
functions that we hypothetically associate with these
genres influence the structure of these TTN.

(2) Scenario 3 from Figure 16 regards the analog experi-
ment for the genre-sensitive classification of ATNS.

(3) Scenario 4 concerns the alternative in which the
modal difference of TTNs and ATNs is ignored in
order to classify topic networks independently of
their modal difference according to their underlying
genre.

(4) This scenario is contrasted with Scenario 5, which
considers classifiers for simultaneously detecting the
genre and layer of TNs. The underlying classification
hypothesis is as follows.

Hypothesis 4. Topic networks of the same layer and genre
are more similar than networks of different layers or genres
(this concerns Scenario 5 (observed data) and Scenario 10
(random data) in Figure 16).
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FIGURE 16: From sets of corpora of different genres to multiplex topic networks and their randomizations: corpora of different genres are the
starting point for spanning LMNs which are then used to derive two-layer multiplex topic networks (k). In a second step, randomized
counterparts according to Section 3.2.4 are derived from these MTNs to obtain a further basis for evaluating their significance. In this way,
we arrive at fourteen candidate scenarios for classifying topic networks.

Falsifying the alternative to part (2) of Hypothesis 1
implies that TNs derived from corpora written by dif-
ferent communities by addressing different thematic
frames (e.g., cities) appear nevertheless similar in their
gestalt. Such a finding is very unlikely in cases in which the
underlying corpora serve very different communication
functions: Hypothesis 1 is not saying that everything is
similar irrespective of the heterogeneity of the underlying
function or the thematic orientation. Thus, a genre-ori-
ented classification that shows that TNs of the same genre
(serving a certain communication function and having a
certain thematic orientation) are more similar than those
belonging to different genres would rather correspond to
such a finding. From this point of view, Hypotheses 3 and
4 are of interest: to deal with them experimentally could
pave the way for testing the second part (2) of Hypothesis
1.

As explained in Section 3.2.4, we randomize input
networks so that we obtain five additional classification
scenarios labeled 6-10 in Figure 16. The experiments cor-
responding to these scenarios will be conducted here, as far
as they concern the baseline scenario B2 of Section 3.2.4.
Furthermore, scenarios are to be enumerated which attempt
to distinguish observed networks directly from their ran-
domized counterparts. In this context, Scenario 11 aims at
distinguishing TTNs from their randomized counterparts by
means of the classifiers trained to detect TTNs. Analogously,
Scenario 12 considers ATNs in relation to their randomized
counterparts, while Scenario 13 aims to separate observed
topic networks (whether ATNs or TTNs) from randomized
ones. Finally, Scenario 14 extends the latter scenario by
trying to additionally account for the modal difference of

ATNs and TTNs. These scenarios are only listed for theo-
retical reasons.

4. Experimentation

To test Hypothesis 1 and its relatives (i.e., Hypotheses 2-4),
we conduct several experiments using two resources: a
corpus of special wikis, called the Frankfurt Regional Wiki
Corpus, and a corpus of subnetworks of Wikipedia that
mostly contain information about cities and regions.

4.1. Tools and Resources. The Frankfurt Regional Wiki Corpus
(FRWC) contains 43 wikis collected from online wiki lists
(e.g., https://de.wikipedia.org/wiki/Regiowiki). Table 1 shows
the statistics of this corpus, which is divided into three genres:
Crries relates to wikis describing certain cities, REGIONS in-
cludes wikis focusing on a specific region, while the residual
class OtHERS collects wikis that are not off-topic w.r.t. regional
communication but are unusual in their structure or the
described rhemes. We consider only articles that are not
redirects. Wiki authors use redirect pages to lead readers of
articles with outdated, incorrect, or alternative spelling titles
to the desired target page. We remove all such redirects and
rewire all affected links accordingly. As a result, the number of
processed articles is smaller than their overall number (see
Table 1). In addition to the FRWC, we extracted a corpus of
Wikipedia subgraphs (see Section 3.2.2 for the formal defi-
nition of these graphs and Table 3 for the corpus statistics).
Subsequently, we denote the two variants in this Wikipedia
corpus WP-ReGIo-1 and WP-ReGI0-2. We choose 25 articles


https://de.wikipedia.org/wiki/Regiowiki

30

about cities or regions matching the titles of the wikis in the
FRWC and additionally include the subgraphs of six off-topic
articles to build two additional corpora, called WP-OTHERs-1
and WP-OTHERs-2, for purposes of comparison.

We process the content, link structure, and metadata
(e.g., authorship-related information) of all articles in our
corpora. This includes their history, that is, the chains of
revisions which led to their current state. We do not consider
past states of link structure and content itself but incorporate
the authorship and the amount of content being added or
removed per revision (see Section 3.2.3). The wikis con-
sidered here are based on MediaWiki. The structure of their
articles varies from wiki to wiki so that HTML-based ex-
tractions are error-prone. To circumvent this problem, we
use WikiDragon [115], a Java-based framework for
importing and processing wikis offline.

For our experiments we used, adapted, and newly de-
veloped several tools including the so-called Genet-
icClassifierWorkbench (GCW), a Python library for
performing feature selections and sensitivity analyses in
classification experiments. Since our experiments are based
on feature vectors with a size of sometimes more than 100
features, a complete sensitivity analysis of all feature com-
binations was not possible. Therefore, we conducted a ge-
netic search for the best-performing subset of features due to
maximizing the F-score. That is, a population of p features is
evaluated and mutated over a number of # rounds. Instances
which score best are saved unchanged for the next round and
partly added in a slightly mutated form. The worst-per-
forming instances are removed and replaced by random
feature combinations. The Workbench is based on the Py-
thon library scikit-learn [116], allowing us to abstract from
the underlying machine learning paradigm so that the same
genetic search can be applied to optimize different classifiers.
We experimented with neural networks which produced
similar results on our test data but took too much time to be
used for genetic searches and random baseline computa-
tions. Therefore, we decided for Support Vector Machines
(SVM) as the embedded method of supervised learning
using the Radial Basis Function (RBF) as a kernel. Our
source code is open source on GitHub (https://github.com/
texttechnologylab/GeneticClassifierWorkbench).

4.2. Classification Experiments. We investigate the similar-
ities of our seven corpora of regional wikis (CITIES, REGIONS,
and OtHERs) and of Wikipedia-based subgraphs (WP-REGI0-
1, WP-REGI0-2, WP-OTHERS-1, and WP-OTHERS-2) (each
defining a corpus of texts) in order to test Hypothesis 1 and
its derivatives, that is, Hypotheses 2—4. Thus, we distinguish
up to seven target classes in our experiments. For reasons of
simplicity, we call each element of these corpora wiki and
each of the seven classes genre. Unless otherwise stated, the
experiments are performed on all of them. In the case of
WP-ReGI0-2 and WP-OrtHers-2, we did not induce the
corresponding ATNs, as some of these would have included
several million edit events. Thus, in this case, we have at most
five target classes. Each experiment includes three consec-
utive steps:

Complexity

(1) The all variant: the first step, denoted by all, is a
hyperplane parameter optimization and evaluation
using the entire feature set. The optimized param-
eters of the respective classifier are then used in
subsequent steps. Ideally, the parameters are opti-
mized independently for each step, but this would
have slowed down the genetic search.

(2) The opt variant: in the 2" step, denoted by opt,
genetic searches for optimal feature subsets are
performed using a population of 20 feature vector
instances and 50 rounds, trying to maximize the F-
score of the classification. Note that these searches
may only reach a local maximum.

(3) The ext variant: for experiments which are not
conducted on random baseline data, we perform an
extended genetic search for optimal feature subsets
based on 20 instances and 500 rounds. In an addi-
tional step, a bit-wise genetic optimization attempts
to further minimize the number of used features
while keeping or even improving the F-score, using
20 instances and 500 rounds.

4.2.1. Graph-Similarity-Based Classification. Using the ap-
paratus of Section 3.2.6, each TN (ATN or TTN) of each
MTN is represented by a vector of values indicating its
similarities to the wikis of the underlying experiment. Any
such vector is separately computed for each of the 11
similarity measures of Table 5. Thus, if T is the set of all
TNs of whatever mode (ATN or TTN) and genre (CITIES,
REGIONS, etc.) and if T' € T is a subset of these TN's used in
a classification experiment concerning the genres (target
classes) Genreiy,...,Genrei; (cf. Figure 16), then each
topic network T € T is represented for each similarity
measure by a |T'|-dimensional feature vector which is
processed by the three-step algorithm described above. If
for a given similarity measure the topic networks derived
from wikis of the same genre are mapped to neighboring
similarity vectors, then they belong to overlapping
neighborhoods in vector space: related networks are
similar in their similarity and dissimilarity relations.
In this way, TNs of the same genre should become as
recognizable as TNs of different genres. Now we see why a
genetic search for optimal subsets of features is necessary:
the reason is that otherwise we would assume that all
dimensions of our feature vectors are equally informati-
ve—an assumption that is probably wrong.

Relating to Hypothesis 3, Tables 6 and 7 summarize our
findings regarding the genre-sensitive classification of TTNs
and ATNs, respectively. Cosine-based measures always
perform best. Especially in the case of ATNs we see that
accounting for arcs and for nodes secures better perfor-
mance: dual weight-dependent measures (see Section 3.2.6)
outperform single weight-dependent or weight-insensitive
measures. However, in the case of TTNs, we also see that as
long as we do not perform an extended optimization (ext),
the measure cosq [~w, 00, ¢, L,,], which disregards arc
weights, is a best performer. Of special interest is
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TaBLE 1: Statistics of the FRWC showing the number of articles with (#art. 1) and without (#art. 2) redirects, the number of revisions (#rev.),

and the number of distinct authors (#authors).

Wiki #art.1 #art.2 #rev. #authors
Baden-Baden 999 844 3,576 138
Boppard 24 23 107 17
Cuxhaven 2,884 2,722 28,284 619
Dresden 11,479 9,796 76,776 2,702
Erfurt 2,275 2,267 30,314 129
Esslingen 252 219 2,646 353
Furth 9,686 8,055 109,467 2,546

Wiki #art.1 #art.2 #rev. #authors
Gorlitz 1,897 1,735 11,412 555

Ahrweiler 24,194 22,814 149,345 690
Hamm 16,602 14,439 99,307 1,353

Attersee/Attergau 922 813 17,944 53
Karlsruhe 38,870 25,575 306,143 11,002

Dithmarschen 2,155 1,712 29,981 185
Koéln 3,925 3,184 13,394 400

Ennstal 12,774 11,936 76,721 135
Linz 6,776 4,250 28,923 343

Franken 5,511 4,510 78,371 887
Liineburg 105 96 422 108

Gottingen 8,695 7,755 36,393 488
Lustenau 812 553 3,185 241

Niederbayern 33,751 20,504 196,525 1,392
Miinchen 20,344 15,829 111,681 8,016

Pforzheim-Enz 14,763 12,821 67,604 3,213
Miinster 4,096 3,703 24,226 984

Rhein-Main 5,276 2,801 17,290 40
Olsberg 376 360 2,403 140

Rhein-Neckar 12,241 10,413 62,830 2,807
Reutlingen 583 545 3,122 368

Sachenanhalt 4,644 4,173 36,264 1,153
Schiltach 505 489 560 14

Waldviertel 266 264 1,906 124
Schorndorf 1,035 1,005 4,778 73
Strausberg 3,906 3,668 12,860 111 Wiki #art.1 #art.2 #rev. #authors
Stuttgart 1,260 1,076 6,784 228 Graz 10,226 9,436 35,490 32
Tiibingen 4,749 4,211 38,540 1,513 RegioWikiAT 12,085 8,551 113,436 3,221
Weiflenburg 436 393 5,436 63 Wallis 3,174 3,149 18,054 86
Wulfen 746 722 23,218 767 Wetzikon 1,737 1,302 23,999 446
Wiirzburg 22,432 17,661 283,773 2,726 Wien-Geschichte 45,473 43919 296,467 402

Note: the last three columns disregard redirecting articles. Left table: genre cIties; upper right: genre REGIONs; lower right: genre oTHERS. The German, Austrian,

and Swiss wikis were downloaded in early 2018.

€oS o [w, 00, ¢y, L1,], the best performer regarding the
classification of ATNs (Table 7), which is not only arc and
node sensitive but also weights nodes as a function of their
degree centrality and therefore covers the highest amount of
structural information among all candidates considered
here. This measure is also a robust candidate working at a
high level in both experiments (it is the 2¢ best performer in
the case of TTNs if being optimized by an extended genetic
search). Thus, we conclude that spherical measures clearly
outperform GED-related approaches and especially net-
work-topology-based approaches (ToSi and NetSimile)
which perform worst: the kind of information we seek is
apparently ignored or “abstracted away” by the latter

measures. However, NetSimile has at least a high optimi-
zation potential (see the column ext in Table 6)—a potential
which is missing in the case of ToSi. In any event, none of the
measures considered here is outperformed by our baselines.
But in Table 6, we also see that B3 (opt) approaches ToSi (all);
in Table 7, we make analog observations also by example of
other measures. A serious problem concerns NetSimile in
relation to Baseline B2 regarding the classification of ATNs
(Table 7): the baseline surpasses the topology-related mea-
sure whether being optimized (opt) or not (all). The graph
indices collected by NetSimile have obviously difficulties in
making observed networks distinguishable from their ran-
dom counterparts—at least in some of the cases considered
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TaBLE 2: Building blocks of topic networks (texts, topics, words, agents, etc.), their relations according to Figure 8, and candidate procedures
for weighting the corresponding arcs (last column).

Source Relation Target Candidate procedure

Text BN Topic text2ddc [72]

Topic g, Text text2ddc™

Text R Text Measures of sentence/tex{t;ginﬂarlty, text embeddings
9

Agent e Topic Topic models [59]

Topic - Agent Topic models [59]

Agent %» Text Edit networks [74]

Text % Agent Edit networks [74]

Agent —;> Agent Coauthorship [74, 79]

Word - Topic text2ddc [72], topic models [59]

Topic - Word text2ddc ™, topic models [59]

Word %) Text fastText, topic models [59]

Text % Word fastText, topic models [59]

Word

]

Word Word embeddings [77, 80-82]

TaBLE 3: Wikipedia-based corpora: number of content articles (#articles n), revisions (#revisions n), and authors (#authors n) of non-
redirecting articles in WP-ReGI0-1 (n = 1) and WP-REGI0-2 (1 = 2) of the German Wikipedia dump from 201807-01 (subgraphs 1-25); the
variable n codes the nth orbit (see formula (30)). Subgraphs 26-31 are used to generate the corpora WP-OTHERs-1 and WP-OTHERS-2.

Seed article #articles 1 #revisions 1 #authors 1 #articles 2 #revisions 2 #authors 2
1 Ahrweiler 90 66,217 16,772 11,413 5,602,327 930,621
2 Dithmarschen 210 156,862 38,180 30,386 10,006,785 1,506,634
3 Dresden 1,615 1,180,743 239,747 127,675 27,746,644 3,566,957
4 Erfurt 943 850,786 179,282 100,052 23,644,822 3,158,299
5 Fiirth 504 598,687 130,445 77,663 19,481,686 2,657,440
6 Gorlitz 790 468,641 99,606 62,896 17,305,177 2,431,331
7 Gottingen 922 786,663 170,082 93,726 22,448,816 2,995,497
8 Hamm 764 697,437 150,502 82,099 20,436,567 2,799,384
9 Karlsruhe 1,021 842,723 180,652 97,984 23,178,185 3,103,192
10 Koln 1,485 1,090,676 223,801 122,446 26,851,098 3,483,785
11 Linz 816 602,346 130,520 79,376 20,188,052 2,792,374
12 Metropolregion Rhein-Neckar 296 157,356 37,960 23,250 8,608,771 1,388,939
13 Miinchen 1,421 1,077,626 216,774 120,725 26,727,317 3,472,725
14 Munster 1,139 894,916 193,090 103,436 24,330,809 3,251,427
15 Niederbayern 239 142,392 33,551 22,466 7,796,961 1,222,744
16 Rhein-Main-Gebiet 390 297,276 65,804 42,238 12,750,028 1,870,354
17 Sachsen-Anhalt 603 459,933 96,116 59,565 16,392,237 2,291,304
18 Schorndorf 362 226,153 51,264 32,562 11,738,799 1,746,169
19 Steirisches Ennstal 43 19,702 6,322 4,400 2,101,467 386,487
20 Strausberg 265 215,854 49,617 30,284 10,602,198 1,579,390
21 Stuttgart 1,317 1,089,313 215,788 123,906 26,648,581 3,403,376
22 Tl'ibingen 623 385,288 85,266 54,525 15,884,637 2,265,358
23 Wetzikon 204 145,207 33,914 20,607 8,044,399 1,306,780
24 Wien 1,380 874,419 170,952 102,792 23,357,095 3,087,254
25 Wﬁrzburg 959 885,109 185,495 106,381 24,484,274 3216,674
26 Hydraulik 121 59,874 19,400 8,287 3,600,636 700,341
27 Integralrechnung 194 75,082 21,787 6,708 2,663,563 508,606
28 Kernkraftwerk 287 196,202 49,279 20,773 8,195,232 1,387,491
29 Neuronales Netze 85 27,878 9,750 3,739 1,488,680 332,714
30 Schlacht bei Waterloo 200 97,290 25,614 18,674 6,990,403 1,097,749
31 Zecken 112 58,582 16,350 7,500 3,896,913 734,269

here. B3 is also of interest with regard to the classification of  are also remarkably high and can therefore be regarded as a
ATNSs, which achieves F-scores of up to 40% and thus makes  challenge for the measures.

representation models based on measures such as NetSimile, Figure 17 shows that the baselines B1, B3, and B4 are
ToSi, and wges problematic candidates. The values of B4 opt  outperformed by the results obtained for TTNs. However, it
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TaBLE 4: Estimates of the average number of active authors per
Wikipedia article (#°|(-,-)|) and the average activity of authors per
article (# (-, -)) differentiated for the complete set of articles in the
German Wikipedia (downloaded at 2018-07-01) with and without
redirect articles (numbers of articles in parentheses).

Corpus of articles [# ()l # ()
Without redirects (2,195,812) 27.34 234.52
With redirects (3,657,483) 17.07 226.61

also shows that feature optimization affects the random
baselines. This is particularly evident in the case of B3, which
is based on random matrices. This gain in F-score can be
explained by random numbers that allow the target classes to
be separated—at least to some extent. These features are then
selected by the genetic feature selection. The baseline results
for ATNs show a similar picture (see Figure 17(b)). Re-
garding B2, we make the following observations in
Figure 17(b) (for reasons of complexity, we did not consider
all measures to compute B2): although the best B2 candi-
dates are better than the average F-scores calculated on the
basis of real data, B2 is clearly surpassed on average. Thus, we
come to the conclusion that we found effective measures for
comparing networks—this concerns in particular the
spherical approach based on the cosine measure. From these
experiments, we conclude the following:

(1) Hypothesis 3 is not falsified: we know the genre
of a topic network by its structure. Note that this
only concerns Scenarios 2 and 3 of Figure 16—
Scenario 4 is not computed here. Similarly, by
calculating our baselines, this also involves Sce-
narios 7 and 8 while ignoring Scenario 9. The
classification benefits especially from information
that is explored by dual weight-dependent mea-
sures. This holds regardless of the mode (ATN or
TTN).

(2) Spherical measures should be preferred to GED-
based measures and these in turn to topology-based
measures:

spherical > GED > topological. (73)

The boxplots in Figure 18 give another perspective on the
classification results by summarizing the distributions of
precision and recall values generated by the graph similarity
measures. Except for the results on ATN using all features,
the average precision is higher than the average recall. The
figure also demonstrates the strong effect of feature selection.

So far, we considered classifications as a whole and thus
abstracted from the scores obtained for individual genres.
The boxplots in Figure 19 give insights into these genre-
related scores regarding the classification of TTNs by
means of the extended feature optimization (ext). The
members of the genre CITiEs are well identified: in terms of
recall and precision. The genre REGIONS is far less separable
and causes many classification errors (low recall). Ap-
parently, this class contains more heterogeneous TTNs. In
any event, the Wikipedia-based genres WP-REeGlO-1 and
WP-REGIO-2 are very well separated. By contrast, instances
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of the category OTHERSs are extremely difficult to detect (as
predicted in Section 3.2.7). Similarly, elements of the
classes WP-OTHERS-1 and WP-OTHERS-2 are difficult to
identify—albeit to a minor degree. Thus, we conclude that
the upper bound of separability concerns Wikipedia-based
regional wikis. The corresponding subgraphs are very
similar. This upper bound is approached by city wikis.
Region wikis are less homogeneous, making the corre-
sponding class REeGlons rather blurred and therefore
question its status as a genre. Figure 20 shows the cor-
responding results of classifying ATNs. The general picture
is quite similar to that of the TTNs.

We take another perspective on the results to examine
classification errors. The best results on TTNs using all features
is achieved by cos o [w, 00, ¢;,L,,]. Figure 21 shows to
what degree wikis of a target class are wrongly classified using
this measure. The labels show the proportion of the categories
according to the gold standard (top) and the classification
result (bottom). The picture is diverse, but some details be-
come clear: wikis of the classes ReGIONS and OTHERS are often
falsely categorized as Crtigs. City wikis on the other hand are
wrongly classifled as WP-OTHERs-1 or WP-REGIO-1.

Genetic feature selection has proven to increase F-score
significantly. In the extended optimization (ext), the last step
is to minimize the number of features used. Since our
features stand for similarities to networks, we have to ask
whether some of the wikis underlying these networks are
more relevant for the differentiation of the target classes than
others—possibly because of their prototypical status. If all
wikis were equally important, an equal distribution of the
frequencies with which these features are selected by the
genetic optimization would be expected. Figure 22 shows the
corresponding rank frequency distribution: it shows that we
are far from evenly distributed features. From this, we
conclude that the selection of features is indispensable and
that the underlying wikis are very different in their roles in
our classification experiments.

Next, we try to distinguish TTNs from ATNs thereby
addressing Hypothesis 2 (or more specifically, Scenario 1 of
Figure 16). The error analysis in Figure 23 shows that
networks of these two modes are not separable using our
approach. Table 8 differentiates this outcome by reporting
the results obtained for different measures. It shows that
this classification scenario is far exceeded by Baseline Bl
and is therefore irrelevant. From this result, we conclude
that ATNs are so similar to their corresponding TTNs that
they cannot be distinguished by our measures, or alter-
natively, our similarity measures are not suitable to dis-
tinguish them. This is not surprising, as the order and the
size of an ATN always correspond to the order and the size
of the TTN from which it was derived, so that they can only
differ by the weighting of their nodes and arcs. By con-
cerning Hypothesis 4 and thus by distinguishing twelve
target classes (in the case of WP-OTHERs-2 and WP-REGIO-
2, we do not induce ATNs), Table 8 shows a somehow
different scenario: though the F-scores are still rather low,
Baseline B1 is clearly outperformed when using a cosine
measure for graph similarity measurement. From this
observation, we conclude that while Hypothesis 2 is
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TaBLE 5: The list of measures of graph similarity used for computing the similarities of topic networks.
Measure Approach Formula Reference
1 GES Graph edit similarity (51) [100]
2 WAL Graph edit similarity (52) [102]
3 VEO Vertex and edge overlap (54) [103]
4 wges Weighted graph edit similarity (60)
5 cosy [w, 00, ¢y, L] Cosine graph similarity (64)
6 €08 9 (W, 00, ¢y, L 5] Cosine graph similarity (66)
7 €08 o (W, 00, ¢y, Ly5] Cosine graph similarity (66)
8 cosy [w, 00, ¢y, Ly, ] Cosine graph similarity (64)
9 €OS o ["w, 00, ¢y, L] Cosine graph similarity (66)
10 NetSimile Topological similarity (70) [107]
11 ToSi Topological similarity (72)

TaBLE 6: F-scores of classifying TTNs into seven target classes (CITiEs, REGIONs, OTHERS, WP-REGIO-1, WP-REGIO-2, WP-OTHERS-1, and

WP-OrHERs-2) by means of SVMs using RBF kernels.

Measure all opt ext B1 B3 all B3 opt B4 all B4 opt
1 GES 0.653 0.753 0.798 0.143 0.130 0.286 0.121 0.213
2 WAL 0.649 0.751 0.788 0.143 0.130 0.286 0.109 0.216
3 VEO 0.677 0.773 0.816 0.143 0.130 0.286 0.120 0.221
4 wges 0.559 0.620 0.650 0.143 0.130 0.286 0.120 0.199
5 cosy [w, 00,¢1,L12] 0.638 0.722 0.764 0.143 0.130 0.286 0.119 0.211
6 €08,y [w, 00, 1, L] 0.729 0.768 0.853 0.143 0.130 0.286 0.125 0.223
7 €08,y [w, 00, ¢y L, ] 0.694 0.766 0.832 0143 0.130 0.286 0127 0.229
8 COS [~w, o, ¢2,L12] 0.642 0.681 0.717 0.143 0.130 0.286 0.122 0.212
9 €08 9 [~w, 00, ¢y, L] 0.742 0.773 0.790 0.143 0.130 0.286 0102 0156
10 NetSimile 0.479 0.629 0.722 0.143 0.130 0.286 0.127 0.229
11 ToSi 0.390 0.433 0.465 0.143 0.130 0.286 0.108 0.229

Column “all”: F-scores, if all features are used by the similarity measure (row). Column “opt”: F-scores, if a subset of features selected by the genetic search is
used. Column “ext”: F-scores, if a subset of features selected by the extended genetic search is used. The last five columns display the F-scores of the random
baselines B1, B3, and B4, in the case of B3 and B4 differentiated for the variants all and opt.

TaBLE 7: F-scores of classifying ATNs into five classes (Crties, REGIONS, OTHERS, WP-REGIO-1, and WP-OTHERs-1) by means of SVMs using

RBF kernels.

Measure all opt ext B1 B2 all B2 opt B3 all B3 opt B4 all B4 opt
1 GES 0.598 0.649 0.752 0.200 0.226 0.325 0.182 0.397 0.176 0.294
2 WAL 0.610 0.635 0.707 0.200 0.168 0.222 0.182 0.397 0.158 0.289
3 VEO 0.636 0.706 0.783 0.200 0.213 0.306 0.182 0.397 0.170 0.308
4 wges 0.458 0.576 0.618 0.200 0.311 0.348 0.182 0.397 0.173 0.281
5 cos,, [w, 00, ¢y, L] 0567  0.673 0737  0.200 — — 0182 0397 0173 0300
6 COS o [w, 00, b1 L] 0.740 0.777 0.854 0.200 0.242 0.440 0.182 0.397 0.181 0.320
7 oSy [w, 00,65, L,] 0612  0.816  0.875  0.200 — — 0182 0397 0187  0.340
8 COS [~w, oo, b, le] 0.559 0.600 0.652 0.200 — — 0.182 0.397 0.182 0.307
9 COS 9 [ W, 00, ¢, Ly5] 0.721 0.811 0.865 0.200 0.240 0.464 0.182 0.397 0.182 0.317
10 NetSimile 0.467 0.507 0.610 0.200 0.494 0.602 0.182 0.397 0.173 0.272
11 ToSi 0.431 0.567 0.585 0.200 - 0.182 0.397 0.179 0.254

Column “all”: F-scores using all features in terms of the respective similarity measure. Column “opt”: using a subset of features detected according to a genetic
search. Column “ext”: subset selection according to extended genetic optimization. Additionally, F-scores of random baselines B1, B2, B3, and B4 are

displayed, in the latter three cases differentiated for the variants all and opt.

falsified, there is at least a potential regarding the simul-
taneous distinction of genre and mode: ATNs do not
uniformly resemble their corresponding TTNss.

So far we considered part (2) of Hypothesis 1 by
showing that TTNs (and also ATNs) with similar func-
tions resemble each other, while differing from networks
of other genres. It remains to be shown that these net-
works are also thematically focused—in a highly skewed

manner. To test this, we fit power laws to the distributions
of node weights in TTNs. Remember that these weights
result from detecting textual instances of the topic rep-
resented by the respective node so that the more such
instances are detected, the more salient the topic in the
network. Fitting a power law to such a distribution means
that there is a minority of topics or just one topic that
surpasses all other topics in its importance, while the
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FIGURE 17: (a) Boxplots of F-scores obtained for classifying TTNs contrasted by the baselines B1, B3, and B4. (b) Boxplots of F-scores
obtained for classifying ATNs contrasted by the baselines B1, B2, B3, and B4.

0.8 -

0.6

04 -

| T

Rty

TINPall -
TTN Rall -
TTN R opt |-
TTN P ext
TTN R ext
ATNPall -
ATN Rall -
ATN P opt
ATN R opt
ATN P ext
ATN Rext |-

TTN P opt

FiGure 18: Boxplots of precision P and recall R values (y-axis)
induced by the measures of Table 5 and underlying the F-scores of
Table 6 (first six columns) and Table 7 (last six columns). Distri-
butions are distinguished by considering all features (all) or subsets
of them generated by the genetic optimization opt or ext.

majority of topics are of little or no importance. The
boxplots in Figure 24(a) show the distribution of the
exponents of the power laws fitted to these distributions,
differentiated by the genres considered here. To assess the
goodness of the fittings, we compute the adjusted R-
squares and display the value distributions in
Figure 24(b). Obviously, the fits are very good (the ad-
justed R-squares are on average above 95%) while the
averages of the exponents range between 0.5 and 1.5: from
this analysis, we conclude that the underlying wikis are all
thematically focused and skewed by dealing with a mi-
nority of topics in depth. The five most detected DDC
labels per genre are shown in Table 9. It shows that
Transportation; ground transportation is by far the most
dominant topic in city wikis and in region wikis. Obvi-
ously, these wikis are thematically focused in a highly
skewed manner.

It remains to be shown that our findings about urban
wikis neither depend on the distances of the
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F1Gure 19: Boxplots of precision (P) and recall (R) values (y-axis)
induced by the measures of Table 5 underlying the F-scores of
Table 6. Distributions are distinguished by the respective target
class of the classification.
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FIGUure 20: Boxplots of precision P and recall R values (y-axis)
induced by the measures of Table 5 underlying the F-scores of
Table 7. Distributions are distinguished by the respective target
class of the classification.
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6.7% 1.9% 28.6% 7.6% 24.8% 25.7% 4.8%

FiGure 21: Error analysis regarding the classification of TTNs by means of cos_ [w, 00, ¢, L, ].
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FIGURE 22: Ranking of the relative frequencies of features as a result of being selected by the extended genetic feature optimization in the

classification of TTNs.
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F1GURE 23: Error analysis regarding the classification of TTNs vs.
ATNs by means of cos 4 ["w, 00, ¢, L}, ].

corresponding places nor on the communities writing
these wikis. Figure 25 shows that the similarities detected
by us do hardly correlate with the underlying distances of
the places. In the heatmap in Figure 25(a), a connection
between two city wikis is the greener, the closer, and the
more similar they are to each other, while a pair of wikis is
the more red, the less similar, and the more distant they
are. Similarity is measured by cos[w, 00, ¢;,L,,] while
distance is converted into closeness and normalized to the
unit interval (the values of the heatmap scale to [ — 1,1]

by calculating — 1 + closeness + similarity). Figure 25(b)
shows that there is hardly a tendency to being more
similar when being more close to each other. The lower
similarity values are mostly induced by the rather un-
usually small wikis such as Boppard (see Table 1). Fig-
ure 26 shows the Fuzzy Jaccard of the communities
underlying the wikis, that is, the overlap of these com-
munities weighted by the activities of their authors: the
lower the number of shared authors of two wikis and the
less active these authors, the lower the fuzzy overlap of
these wikis. The Fuzzy Jaccard is computed as follows
(cf. [117]): let authors (W) be the set of all registered users
contributing to any of the wikis in W= Cities U REGIONS,
OTHERS U WP-REGIO-1 U WP-OTHERS-1 and let texts (W)
be the set of all (nonredirect) articles of wiki W € W, then
we compute

Zréauthors (W)HAHB (T')

VA,BEW:]M(A,B)z € [0,1],

Zréauthors (W) HauB (T)
(74)

where
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TaBLE 8: Left: F-scores obtained for different measures and optimizations by classifying ATNs vs. TTNs according to Scenario 1 of Table
16—two target classes are considered. B1 considers Scenario 6 of Figure 16. Right: F-scores obtained for different measures and opti-
mizations by classifying simultaneously for mode and genre according to Scenario 5—twelve target classes are considered. Bl considers
Scenario 10.

Measure all opt ext Bl Measure all opt ext Bl
1 GES 0.370  0.370 0.370  0.500 1 GES 0.152  0.178 0.194 0.082
2 VEO 0.370 0.370 0.370 0.500 2 VEO 0.181 0.228 0.259 0.082

3 coslw, oo ¢1,L,] 0370 0370 0370 0500 3 coslw, oo ¢y Ly,] 0315 0363 0407 0.082

4 cos[~w, e, ¢y, L,] 0370 0370 0.370  0.500 4 cos[~w, e, ¢y, L,] 0284 0339 0.409 0.082
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FIGURE 24: (a) Boxplots of the distribution of the exponents of the power laws fitted to the weight distributions of the nodes in the TTNs
differentiated by the target classes. (b) The boxplots of the corresponding fitting accuracies computed by means of the adjusted R-squared.

TaBLE 9: The five most detected DDC labels for the genres CrTies, REGIONS, and OTHERS.

Rank Genre Node weight sum Avg weight DDC Description

1 City 10,325.830 397.147 388 Transportation; ground transportation
2 City 2,404.631 92.486 943 Central Europe; Germany

3 City 1,570.010 60.385 726 Buildings for religious purposes

4 City 1,512.536 58.174 725 Public structures

5 City 964.262 37.087 711 Area planning

1 Region 5,127.546 427.296 388 Transportation; ground transportation
2 Region 1,692.267 141.022 943 Central Europe; Germany

3 Region 1,385.013 115.418 726 Buildings for religious purposes

4 Region 1,289.722 107.477 551 Geology, hydrology & meteorology
5 Region 1,171.656 97.638 796 Athletic & outdoor sports & games
1 Other 5,335.555 1,067.111 929 Genealogy, names & insignia

2 Other 1,640.042 328.008 726 Buildings for religious purposes

3 Other 715.084 143.017 723 Architecture from ca. 300 to 1399
4 Other 701.298 140.260 725 Public structures

5 Other 680.309 136.062 720 Architecture
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FIGUure 25: (a) The heatmap of thematic similarity and spatial closeness among city wikis. Red means that the wikis are thematically
dissimilar and distant in space; green means that they are thematically similar and close in space. (b): the distribution of the similarities (y-
axis) as a function of the closenesses (x-axis) of the different pairs of city wikis.

ertexts (A) e (1‘, X)

Yang (1) = min<

ertexts(B)/ (1‘, X) >

Zséauthors(A)ertexts(A)%(S’ X) ZSEauthors(B)ertexts(B)/(S’x)

ertexts (A) e (7‘, x)

(75)

Paup (1) = max(

Figure 25 shows that while among the Wikipedia-based
extractions the overlap is remarkably high, it does nearly not
exist between any of the city or region wikis: these wikis are
written by mostly completely different communities. The
picture is not different if one considers all authors—
registered and unregistered.

5. Discussion

Section 4 has shown that topic networks, whether TTNs or
ATNs, are similar if they belong to the same genre, while
they are characterized by a high degree of thematic focusing.
In order to operationalize this notion of network similarity,
we tested further or newly developed 11 different measures
of network similarity by relying on four different paradigms
of measuring the similarity of graphs (see Table 5 and the
discussion of graph/network similarity measures in Section
3.2.6) as instantiated by the complex networks studied here.
All these measures and paradigms come along with a dif-
ferent notion of network similarity. We have shown that a
subclass of them, especially cosine-based measures of net-
work similarity, allow for detecting similarities of topic
networks in line with Hypotheses 3 and 4. At the same time,
the concept of network similarity underlying this class of
dual weight-dependent measures seems to be the most

ertexts(B)/> (7‘, x) )

Zseauthors(A)ertexts(A)/(S’ X) Zseauthors(B)ertexts(B)/(S’ X)

promising from a research point of view, as it is based on
node and arc weights and instantiates a very intuitive
concept of network similarity: The more similar the two
networks are from the perspective of the more of their nodes,
the more similar they are. Thus, at the level of thematic
abstraction examined here, there seems to be a hidden
tendency to write about very prominent topics when it
comes to thematizing places and linking the underlying texts
in such a way that the resulting networks become almost
indistinguishable.

Starting from this kind of thematic distortion of VGI as
conveyed by online media, we now ask for a more general
explanation of our findings. The candidate we are consid-
ering for this purpose is given by Cognitive Maps (CM),
which were introduced as models of the cognitive repre-
sentation and processing of spatial information to explain a
number of different cognitive biases. Because of bridging the
gap between geographical information and its biased rep-
resentation, CMs promise to be a candidate for our task. At
the same time, this notion allows for the connection of
cognitive geography on the one hand and our generalized
model of linguistic encoding of geographical information on
the other (see Figure 1). The reason is that as mental rep-
resentations, CMs are seen to integrate a wide range of
representations of spatial objects, their relations, and
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FIGURE 26: The Fuzzy Jaccard overlap of the communities of registered authors of the wikis in the corpora CiTigs, REGIONS, OTHERS,
WP-REGI0-1, and WP-OTHERs-1 weighted by means of the writing activities of the authors: the greener the link, the higher the fuzzy overlap.

thematic units (see below). We may argue now that we
developed a method to represent and analyze a particular
type of thematic information which can be subsumed under
the latter list. If this is true, then the thematic distortion
observed by us could be seen as a result of the biased
processing of geographic information by a community of
agents dealing with the same place to generate a common
cognitive map, thereby manifesting a particular type of
distributed cognition. When creating such a common CM of
the same place, agents tend to focus on a highly selected set
of rhemes (see Figure 1), even if there is no explicit
agreement among these agents about this selection and even
if there is little or no direct communication between them
and also irrespective of the focal place. It seems that the

agents participate in processes of distributed cognition in
such a way that their own thematically distorted maps flow
into the formation of a shared, stable but likewise distorted
“thematic map.” These maps then appear as the result of a
sort of swarm behavior regarding the formation of a par-
ticular distribution of the preference and salience of certain
place-related rhemes. From this perspective, topic networks
serve as models of these thematic maps which in turn are
parts of CMs. To underpin this interpretation, we briefly
summarize the research on CMs and, above all, ask about
distortions that are distinguished by the research in this
area.

Understood as mental representations of spatial
knowledge, CMs have been subject of scientific work for
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decades. Starting from different disciplinary perspectives,
this research provides insights into how people perceive
their environment, think about it, and how this influences
their spatial behavior. The interdisciplinary research on CMs
has led to a multitude of notions, research designs, and
outcomes, the integration of which is still pending. Over the
years, researchers worked, for example, with different terms
for the mental representations in question such as cognitive
maps [118], environmental images [119], mental maps [120],
mental sketch maps [121], narrative space maps [122], or
internal representations [123], where the constituent map is
most common. However, there has been a discussion as to
whether the term map is generally misleading. In this
context, Kitchin ([124], 3 pp.) distinguishes approaches that
understand CMs as

(1) Three-dimensional maps

(2) An analogy to maps (because of their map-like
characteristics)

(3) A metaphor for maps (because they function as if
they were maps), or

(4) A hypothetical construct used to explain spatial
behavior

While we refer to cognitive maps as an auxiliary notion,
we adhere to the fourth of these variants. Regardless of this
discussion, there is a greater consensus on some charac-
teristics of CMs as mental representations: CMs are un-
derstood as complexes of mental images and concepts that
humans have in mind when thinking about places, their
location (in terms of distance and direction), accessibility
(regarding questions like how to get there), and the meanings
associated with them. They serve as a means of un-
derstanding spatial circumstances and as a frame of refer-
ence for the interpretation, preference, and prediction of
spatial structures, their relations, and events in which they
participate (see [125], 100 pp, 313), ([120], 3), and ([119],
5p.). Beyond that, they also serve as a basis for decision-
making regarding spatial behavior (e.g., in route planning).
In a nutshell, humans activate, generate, and utilize CMs in
spatial thinking and spatial behavior (cf. [126], 233). CMs are
distinguished according to the entities they model. Kitchin
and Blades ([127], 5p) distinguish CMs of object spaces (e.g.,
rooms and cars), environmental spaces (e.g., buildings,
streets, neighborhoods, and cities), geographical spaces (e.g.,
regions and countries), panoramic spaces, and map spaces
(including models) (cf. [128]). In this way, they cover
existing as well as imagined places, where facts about the
former can be mixed with imaginations of the latter [129].
This list includes the kind of places that are central to our
study, especially cities.

To build a bridge between the notion of CMs and our
analysis, we need to look more closely at their content and
the principles by which they are created. Generally speaking,
CMs are seen to cover at least two types of information (see
[124] 1p. and [129] 314p.):

(1) Regarding spatial cognition, this concerns in-
formation about where entities are located in the
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environment of a person (location, distance, and
direction in relation to her location or to reference
points like landmarks)

(2) Regarding environmental cognition, this concerns
information about the kind of these entities, their
attributes, meanings, valuations, and attitudes that
the person associates with them—individually, so-
cially, or culturally mediated ([126], 224, 235)

Our study focuses on the second part of this distinction:
it is related to the rhemes that are associated with places as
framing themes (see Section 1). In any event, CMs are
systematically characterized by distortions ([129], 315)
concerning judgments about locations, distances, and di-
rections as well as the formation of preferences which affect
spatial or environmental cognition. One example is the
localization effect [120] according to which people can
discriminate nearby places better and have stronger pref-
erences for them, see also [126]. This relates to errors in
distance judgments depending on the perspective from
which they are made: more differences are seen between
closer areas than between more distant ones, so that shorter
distances are exaggerated, while longer distances are
underestimated [130], 133). Furthermore, spatial knowledge
can be organized by reference to landmarks which “distort”
places in their “neighborhood” so that buildings, for ex-
ample, are judged to be closer to them than vice versa
[130], 134). Tversky ([130], 135pp.] describes additional
modes of distortion: to remember the position and orien-
tation of objects, humans isolate them from their back-
ground and organize them by referring to a general frame of
reference (rotation) or to other figures (alignment). While
these examples primarily concern spatial cognition, the
following bias focuses more on environmental cognition.
This concerns the hierarchical organization of conceptual
systems according to which places of the same category are
supposed to be closer in distance than places of different
categories, while the direction of a category (with a direction
slot) determines the one of its members ([130], 132p). Last
but not least, Golledge and Stimson [126] describe distor-
tions of the representation of urban spaces. They observe
that interactions influence the perception of a city in the
sense that spatial information accumulates along the rep-
resentations of the paths used to carry out these interactions.
Likewise, structural properties of cities which are more
salient than others are likely to become anchor points in
CMs. In such maps, areas between used paths and anchor
points may appear to be “folded” or “wrapped” so that
preferred visited places are represented closer to each other.
As a result, positional and relational errors can occur in
perception (see ([126], 254) and ( [131], 7).

To interpret our findings in the light of this research, we
need to link the formation of CMs with linguistic processes.
The idea that this formation is substantially influenced by
human language processing, so that geographical in-
formation is nontrivially encoded in linguistic structure,
goes back to the work of Louwerse and Benesh (cf. [26]) (see
Section 1; see also Montello and Freundschuh ([132], 171)
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for an earlier hint on “obtain[ing] spatial knowledge through
language”). In this context, Golledge and Stimson ([126],
235) distinguish shared components of CMs from person-
alized ones by stating that “The common elements facilitate
communication with others about the characteristics of an
environment; the idiosyncratic elements provide the basis of
the personalized responses to such situations.” Our hypothesis
is now that at the level of thematic abstraction as modeled
here, the organization of platial rhemes shared by the
members of a community is influenced by the general law of
preferential order, which is most prominently instantiated
by Zipf's first law [133]. Such an organization makes the
anticipation of a place rather expectable among the members
of a community so that communication about this place is
facilitated as predicted by Golledge and Stimson [126].

This Zipfian organization allows for relating our findings
to the well-known power-law-like degree distributions
found in many natural, social, semiotic, or technical net-
works (see [109, 134] and especially [135] for overviews of
this and related research) and also by example of many
linguistic systems—especially on the text level [136-138].
Because of this commonality, one might assume that we just
detected a well-known text or network characteristic.
Characteristic for our findings, however, is that we de-
veloped a measurement procedure that detects a text (cor-
pus)-related semantic, thematic trend—with the help of
network theory: instead of counting directly observable arcs,
for example, in ontological networks or co-occurrences in
texts and instead of relying on monoplex networks
[70, 93, 139-143], we generated and analyzed a range of
different networks in relation to each other in order to
determine the corresponding thematic trend by means of
multiplex networks. This is not to say that we first discovered
a Zipfian process in the organization of linguistic networks,
but rather that we observe such a process in a very specific
area, in which it has not been observed before and which
requires an appropriate explanation as elaborated so far.
Indeed, if thematic salience is skewed, and if skewed topic
distributions derived from different corpora are similar not
only topologically but also regarding the ranking of the
majority of salient topics, such an observation requires
explanation subject to the fact that the underlying text
networks are constituted by different, distributed commu-
nities of authors. It is the answer to this question that the
paper was about.

At this point, one might further object that we made a
rather expectable observation in the sense that descriptions
of cities, for example, are very likely related to rhemes like
traflic, trade, culture, and history. However, this would mean
underestimating our results: (i) the thematic distortions
observed by us are extremely skewed, (ii) they seem to
emerge rather earlier in the development of a wiki (this is not
shown here but is the result of a pretest in which we looked at
the life cycles of three different wikis; in future work, we will
analyze the underlying time series of multiplex topic net-
works in detail), and (iii) they make both members of the
same genre similar while allowing for distinguishing
members of different genres. To phrase it as a question: If the
number of rhemes under which places are thematized is
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limited, why then should always a tiny subset of them
dominate the discourse about a place and why then should the
networking of these rhemes make discourses of the same genre
identifiable? From this point of view, we argue that we
discovered an additional form of the distortion of CMs,
which means that the underlying place is always concep-
tualized from the point of view of a few but extremely
preferred rhemes. When organizing their distributed pro-
cesses of coauthorship, communities of authors seem to
strive to a kind of thematic unification that makes different
wikis serving alike functions looking structurally similar—
with respect to the preference order of themes and their
networking. It seems that people participate in processes of
collaborative writing with a tendency to organize their
thematic contributions and references in such a way that
they remain shareable [144] and communicable among
members of the same community. Ensuring shareability
means securing the continued existence of the underlying
wiki, which could otherwise collapse because of too many
personalized or individualized fragmentations. At this point,
we can speculate that people unconsciously prefer such
thematic contributions that make their social roles and
participations expectable and acceptable, whereby this se-
lection behavior produces the described similarity of thematic
maps as components of CMs. In other words, the participants
anticipate social roles and neglect their personal view of cities
and regions, whose documentation would fragment the
corresponding media thematically. Instead, they ignore the
reproduction of their idiosyncratic, personalized views of
places. To say it in terms of the distinction made by Golledge
and Stimson [126] between shared and personalized com-
ponents of CMs: participants overweight the former to the
disadvantage of the latter to guarantee the shareability
[144, 145] of CMs as a result of distributed cognition.

Note that in our study we did not simply map a fre-
quency effect by our measurements: although we counted
frequencies of topic assignments, they were determined by
means of an inference process that went through a process of
(machine) learning. To support such an interpretation,
however, a deeper analysis with a larger corpus of wikis and
related media providing different functions is required. This
also requires experiments with other and above all much
finer classification systems than the DDC to find out how
much the use of the DDC has influenced our measurements.
And it requires a deeper analysis of the social roles of authors
in online media, their interactions, and the regulatory
systems under which they interact. But this already concerns
future work.

6. Conclusion

We developed a novel model of topic networks in order to
investigate the networking of rhemes addressing the same
places in underlying corpora of natural language texts. We
developed our network model in a way that it enables
thematic comparisons of previously unforeseen text corpora
using an underlying reference corpus, offers a generic so-
lution to the problem of topic labeling, is highly scalable and
can therefore map even the smallest text snippets to topic
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distributions, simultaneously takes rare topics into account,
and is methodologically open and expandable. Moreover,
our model allows for comparatively investigating the net-
working of thematic units from different angles. In this way,
itis open and expandable as it allows for integrating different
analytical perspectives into the study of the same semantic
networks. We exemplified our model by means of corpora of
special wikis and extracts from Wikipedia in order to in-
vestigate how textual information encodes geographical
information on the aboutness level of texts. Our experiments
show that the thematizations of different places on a certain
level of abstraction are similar to each other in that they
focus on a few themes in a highly distorted manner while
networking them in similar ways. This happens regardless of
whether the underlying media are generated by different
communities and whether these communities address re-
lated or unrelated places in nearby or distant places. We
interpreted our findings in the context of the notion of
cognitive maps. To this end, we proposed to extend this
notion in terms of thematic maps and argued that partici-
pants or interlocutors of online communication tend to
organize their contributions in a way that makes them
sharable. This means that the contributions are abstracted
and depersonalized at the aboutness level in such a way that
the social roles of these participants become expectable and
acceptable, while their personal views of places are reduced
whose documentation would fragment the corresponding
media thematically. Ensuring shareability means securing
the continued existence of the wiki, which could otherwise
collapse in the face of too many personalized or

individualized fragmentations. Future work concerns several
tasks: we want to conduct deeper analyses based on larger
corpora that manifest a greater variety of communication
functions in order to shed more light on the genre sensitivity
discovered in our study. Beyond the DDC, we strive for the
use of finer structured, higher resolution classification
systems in order to model the contents of texts much more
precisely. Ideally, this should be carried out with the help of
systems like the category system of Wikipedia or even
Wikidata, both of which develop as open topic universes
[146]. Last but not least, a deeper analysis of the social roles
of authors in online media and their coauthorship is re-
quired to gain a deeper understanding of the processes of
linguistic encoding of geographical information. This will be
the task of future work.

Appendix

A. text2ddc

text2ddc is trained by means of corpora that are derived by
integrating information from Wikidata, Wikipedia, and the
Integrated Authority File (Gemeinsame Normdatei—GND)
of the German National Library: we explore the links of
Wikipedia articles to entries in Wikidata containing the
property attribute https://www.wikidata.org/wiki/
Property:P1036 that directly links to the DDC or to a
GND page containing a DDC tag. An example is the article
about the Pythagorean theorem (https://en.wikipedia.org/
wiki/Pythagorean_theorem), which is linked to the GND
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page 4176546-1 (https://d-nb.info/gnd/4176546-1) re-
ferring to the DDC tag 516 (geometry). Using such in-
formation, we obtain a corpus for a subset of 98 classes of
the 2" and for a subset of 641 classes of the 3rd DDC level.
Since Wikipedia exists for many languages, such corpora
can be created for each of them. For preprocessing the input
data of text2ddc, we use TextImager [86] and fastSense [88]
for disambiguating these data on the sense level. The
resulting information is used to train a neural network for
classifying any piece of text (down to the word level) into
DDC classes (see https://textimager.hucompute.org/DDC/
). To this end, text2ddc uses a very efficient classifier, that is,
fastText [91], a bag-of-words model to train a neural
network with a single hidden layer. To optimize fastText, we
optimize the following hyperparameters: learning rate: 0;
update rate: 150; minimal number of word occurrences: 5;
number of epochs: 10,000. In this way, we increase the F-
score to 87% for the 2" level and to 78% for the 3rd level of
the DDC.

B. Color Codes and 2™ Class Members of
the DDC

Figure 27 shows the colors and labels of the classes of the 274
level of the DDC.

Data Availability

Parts of the programs that underlie our work are available
via GitHub (https://github.com/texttechnologylab/Genetic
ClassifierWorkbench).
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