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1 Introduction

Valuation theory has its origin at the beginning of the twentieth century in Dehn’s
solution of Hilbert’s third problem [24], which showed that a three dimensional cube
cannot be dissected into a finite number of convex polytopes such that these polytopes
can be rearranged to form a tetrahedron of the same volume. His proof relied on the
construction of a finitely additive measure, i.e. a valuation, on the set of convex polytopes
that is invariant with respect to Euclidean motions and associates different values to the
cube and tetrahedron of equal volume. While this sparked the development of a rather
rich combinatorial theory, see for example [45, 54], the theory of continuous valuations
on convex bodies has also seen remarkable developments in recent years with many
applications to geometric inequalities and integral geometry. As the notion of valuations
on functions is heavily influenced by this part of valuation theory, we will start our
discussion with these functionals.
Let V be a real vector space of dimension dimV = n and let K(V ) denote the space of
all convex bodies in V , i.e. the set of all compact convex subsets of V . Equipped with
the Hausdorff metric, K(V ) is a locally compact, σ-compact metric space. Let F denote
a real topological vector space. A functional µ : K(V ) → F is called a valuation if it
satisfies

µ(K) + µ(L) = µ(K ∪ L) + µ(K ∩ L)

for all K,L ∈ K(V ) such that K ∪ L ∈ K(V ). Note that the intersection K ∩ L is non-
empty in this case and thus belongs to K(V ). Let us denote the space of all continuous,
translation invariant valuations on K(V ) with values in F by Val(V, F ). For F = R,
we will also set Val(V ) := Val(V,R). We equip these spaces with the compact-open
topology, which coincides with the topology of locally uniform convergence, as K(V ) is
a locally compact metric space.
A valuation µ ∈ Val(V, F ) is called k-homogeneous or homogeneous of degree k ∈ R
if µ(tK) = tkµ(K) for all K ∈ K(V ) and t ≥ 0. We will denote the subspace of k-
homogeneous elements in Val(V, F ) by Valk(V, F ), and we set Valk(V ) := Valk(V,R).
One of the most striking properties of continuous, translation invariant valuations is the
following homogeneous decomposition, also called McMullen decomposition.

Theorem 1.0.1 (McMullen [43]). Let F be a Hausdorff real topological vector space.
Then

Val(V, F ) =
n⊕
k=0

Valk(V, F ).
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1 Introduction

If F is Banach space with norm | · |, this theorem implies that the topological vector
space Val(V, F ) is also a Banach space with respect to the norm

‖µ‖ := sup
K⊂B
|µ(K)|,

where B ∈ K(V ) is any convex body with non-empty interior. Similarly, Val(V, F )
becomes a Fréchet space if F carries a Fréchet topology.
Let us restate the homogeneous decomposition: For any valuation µ ∈ Val(V, F ), the
map t 7→ µ(tK) is a polynomial in t ≥ 0, whose degree is bounded by the dimension
of V . Starting with a homogeneous element µ ∈ Valk(V, F ), this theorem allows us to
define the polarization of µ, given by

µ̄(K1, . . . , Kk) :=
1

k!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0
µ

(
k∑
i=1

λiKi

)

for K1, . . . , Kk ∈ K(V ). We obtain a symmetric functional µ̄ : K(V )k → F with the
following properties (see [54] Theorem 6.3.6):

1. µ̄ is a continuous, translation invariant valuation in each argument.

2. µ̄ is additive in each argument: For K,L,K2, . . . , Kk ∈ K(V ):

µ̄(K + L,K2, . . . , Kk) = µ̄(K,K2, . . . , Kk) + µ̄(L,K2, . . . , Kk).

3. µ̄(K, . . . ,K) = µ(K) for all K ∈ K(V ).

Starting with a Lebesgue measure volV , which can be considered as an element of
Valn(V ), we recover the well known mixed volumes V (K1, . . . , Kn). These function-
als can be used to construct a large class of translation invariant valuations: Let
L1, . . . , Ln−k ∈ K(V ). Then the functional K 7→ V (K[k], L1, . . . , Ln−k) belongs to
Valk(V ), where K is taken with multiplicity k in this expression. In fact, valuations
of this type are dense in Valk(V ) with respect to the topology of uniform convergence on
compact subsets. This result, known as McMullen’s conjecture, was proved by Alesker
in [2]. In fact, he obtained a much more general result:

Theorem 1.0.2 (Alesker’s irreducibility theorem [2]). The natural representation of
GL(V ) on Val±k (V ) := {µ ∈ Valk(V ) : µ(−K) = ±µ(K) ∀K ∈ K(V )} is topologically
irreducible.

Here GL(V ) acts on µ ∈ Val(V ) by π(g)µ(K) := µ(g−1K), and a representation is
called topologically irreducible if there exists no proper, non-trivial, closed invariant
subspace, i.e. if every invariant subspace is either 0 or dense. McMullen’s conjecture
follows directly from this theorem, since one can construct linear combinations of mixed
volumes that intersect the spaces Val±k (V ) non-trivially, see [2]. This theorem relies on
a number of embedding theorems for translation invariant valuations. For our purposes,
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the most important construction is the Goodey-Weil embedding. Recall that a convex
body K ∈ K(V ) is uniquely determined by its support function hK : V ∗ → R, given by

hK(y) = sup
x∈K
〈y, x〉 for y ∈ V ∗,

where the brackets denote the natural pairing between V ∗ and V . Note that hK is
1-homogeneous by definition. Identifying a convex body with its support function, the
polarization of a homogeneous valuation can be considered as a multilinear functional on
the cone of support functions. By considering differences of support functions, Goodey
and Weil [30] obtained the following result:

Theorem 1.0.3. Let F be a locally convex vector space. For every µ ∈ Valk(V, F )
there exists a unique distribution GW(µ) ∈ D′(P+(V ∗)k, L�k; F̄ ), called the Goodey-Weil
distribution of µ, such that

GW(µ) [hK1 ⊗ · · · ⊗ hKk ] = µ̄(K1, . . . , Kk)

for all K1, . . . , Kk ∈ K(V ) smooth and strictly convex.
In addition, the order of GW(µ) is uniformly bounded for all µ ∈ Valk(V, F ), and the
map GW : Valk(V, F )→ D′(P+(V ∗)k, L�k; F̄ ) is continuous and injective.
Furthermore, the support of GW(µ) is contained in the diagonal of P+(V ∗)k.

Here, L → P+(V ∗) is a certain GL(V )-equivariant line bundle over the space of ori-
ented lines in V ∗, and D′(P+(V ∗)k, L�k; F̄ ) denotes the space of all F̄ -valued distribu-
tions, i.e. all continuous linear maps C∞(P+(V ∗)k, L�k) → F̄ , which is equipped with
the strong topology. F̄ denotes the completion of F . The space of continuous sec-
tions of the line bundle L can be canonically identified with the space of continuous,
1-homogeneous functions on V ∗, so in particular, any support function induces a section
of L. The Goodey-Weil embedding was originally introduced in [30] to prove McMullen’s
conjecture for 1-homogeneous valuations. Alesker observed that the support of these dis-
tributions is contained in the diagonal (see [1]), which was a major step in the proof of
the irreducibility theorem.

Let us remark that the Goodey-Weil embedding was originally only defined for real
valued valuations, but the construction can easily be extended to the more general case.
We will omit the precise details, as we will encounter identical estimates in the construc-
tion of the Goodey-Weil embedding for valuations on convex functions in Section 5.4.1.

In recent years, many results from the theory of convex bodies were extended to func-
tional versions. This includes extensions of mixed volumes [46, 47] as well as functional
versions of various inequalities, see for example [41, 58]. Many of the functionals con-
sidered in these works turn out to be valuations on functions in the following sense: Let
X denote some class of real-valued functions. A map µ : X → (G,+) into some Abelian
semi-group G is called a valuation if

µ(f) + µ(h) = µ(f ∨ h) + µ(f ∧ h)

7



1 Introduction

for all f, h ∈ X such that the pointwise maximum f ∨h and minimum f ∧h also belong
to X. Take for example the set of convex indicator functions of convex bodies in K(V ).
The convex indicator function I∞A of a set A ⊂ V is defined by

I∞A (x) :=

{
∞ x /∈ A
0 x ∈ A

,

so any valuation on these indicator functions recovers the notion of a valuation on K(V )
as

I∞K ∨ I∞L = I∞K∩L, I∞K ∧ I∞L = I∞K∪L

for all K,L ∈ K(V ). The same reasoning applies to indicator functions in L1(Rn). In
this sense, the Lebesgue integral defines a valuation I : L1(Rn) → R, which satisfies
I(α1K) = α voln(K) for all K ∈ K(Rn). Of course, this is not the only possibility to
extend the volume. Take for example F ∈ C(R) with |F (t)| ≤ C|t| for some C > 0 and
all t ∈ R. Then

Ĩ(f) :=

∫
Rn
F (f(x))dx

defines a continuous valuation on L1(Rn), which satisfies Ĩ(α1K) = F (α) voln(K) for all
K ∈ K(Rn). The problem of extending classical functionals to valuations on functions
thus usually involves dealing with a large number of degrees of freedoms, although there
are exceptions, see for example [22].
Nevertheless, the problem of finding geometrically or analytically meaningful valuations
remains. It is thus not surprising that a large number of results is focused on the clas-
sification of certain valuations in terms of their invariance properties. For example, the
functionals considered above give a complete characterization of all continuous, trans-
lation invariant valuations on L1(Rn), see [56]. Similar results exist for Sobolev-spaces
[38, 39, 42], Lp-spaces [11, 37, 40, 50, 56, 57], quasi-concave functions [10, 15, 16], Orlicz-
spaces [36], Lipschitz functions [22, 23], definable functions [10], functions of bounded
variation [59], and convex functions [12, 17, 18, 48, 49]. There also exist some general
results on analytic properties of valuations on Banach lattices [55]. Let us also remark
that valuations on convex functions were also used to give a first example of a Spin(9)-
invariant valuation on convex bodies on the octonionic plane [6] as well as examples of
invariant valuations on quaternionic spaces [4].

In this thesis, we will also try to characterize a certain space of invariant valuations on
convex functions, however, we will focus on the construction of some dense subspaces.
A general classification of all valuations in this class seems to be out of reach, at least
currently. These valuations can be considered, in a way made precise below, as transla-
tion invariant valuations on convex bodies, where a full classification is unknown.
Let us introduce the general setting. For the most part, we will be interested in valua-
tions on subspaces of

Conv(V ) := {f : V → R ∪ {+∞} : f convex, lower semi-continuous, f 6≡ +∞}.
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This space carries a standard metrizable topology, induced by the notion of epi-con-
vergence. We will recall the necessary definitions in Chapter 4, for the purpose of this
introduction, it is sufficient to note that this topology coincides with the topology of
locally uniform convergence on the space Conv(V,R) := {f ∈ Conv(V ) : f < ∞} of
finite-valued convex functions.

Let us consider some examples of valuations on convex functions. We start with the
following observation: If a continuous valuation µ : Conv(V,R) → R is invariant with
respect to the addition of linear functionals, then

µ(hK+y) = µ(hK + 〈y, ·〉) = µ(hK)

for all K ∈ K(V ∗), y ∈ V ∗, i.e. the map K 7→ µ̃(K) := µ(hK) defines an element of
Val(V ∗). By the McMullen decomposition, µ̃ decomposes into its homogeneous compo-
nents. These valuations were considered by Alesker [7], who showed that the construction
above gives raise to a dense subspace of Val(V ∗), although the kernel is infinite dimen-
sional. This directly leads to the question, whether this space of invariant valuations
decomposes into homogeneous components. Unsurprisingly, this is not the case.

Example 1.0.4. Take p ≥ 0 and define

µ(f) := |f(0)|p for f ∈ Conv(V,R).

It is easy to see that µ is a valuation, which is in addition p-homogeneous.

Obviously, these valuations are all invariant under the addition of linear functionals, so
there does not exist a homogeneous decomposition for this space of invariant valuations.
However, all of the examples constructed in [7] are homogeneous of degree 0 ≤ k ≤ n.
They are all of the following form:

Example 1.0.5. Let V be a Euclidean vector space. For 0 ≤ k ≤ n let B ∈ Cc(V ),
A1, . . . An−k ∈ Cc(V,H(V )), where H(V ) denotes the space of symmetric endomorphisms
of V . Alesker showed [7] that the functional

Conv(V,R) ∩ C2(V )→ R

f 7→
∫
V

B(x) det (Hf (x)[k], A1(x), . . . , An−k(x)) dx

extends uniquely to a k-homogeneous, continuous valuation on Conv(V,R), which is in
addition invariant with respect to the addition of linear functionals. Here det denotes the
mixed determinant of n symmetric endomorphisms and Hf is the Hessian of f ∈ C2(V ).
We will call all valuations of this type Alesker valuations.

Note that Alesker valuations satisfy an additional invariance property: They are in-
variant under the addition of constants.
These functionals are in some sense all derived from the following construction.

9



1 Introduction

Example 1.0.6. Let V be a Euclidean vector space. Consider the functional

Conv(V,R) ∩ C2(V )→M(V )

f 7→
[
U 7→

∫
U

det(Hf (x))dx

]
.

As shown in [20] (or [7]), this functional extends to a continuous valuation Hessn on
Conv(V,R) with values in the spaceM(V ) of signed Radon measures on V equipped with
the vague topology, i.e. the topology induced by the family of semi-norms

‖ν‖φ :=

∣∣∣∣∫
V

φ(x)dν(x)

∣∣∣∣ for ν ∈M(V ),

for φ ∈ Cc(V ). We will call this valuation the n-th Hessian measure, or simply the
Hessian measure (see [20] for more general versions of this valuation).

Although we have chosen a scalar product in the previous example, Hessn only depends
on a choice of a density on V ∗: Take f ∈ Conv(V,R) ∩ C2(V ) strictly convex. Then
df : V → V ∗ is a homeomorphism, so given a Lebesgue measure volV ∗ on V ∗ the
pushforward (df−1)∗ volV ∗ defines a measure on V . If we choose a scalar product on V
such that the volV ∗ coincides with the induced Lebesgue measure under the isomorphism
V ∼= V ∗, then

(df−1)∗ volV ∗(U) =

∫
U

det(Hf (x))d volV (x).

This also allows for an interpretation in terms of differential forms: Assume that we
have chosen an orientation on V with induced orientation on V ∗. Then volV ∗ can be
considered as an n-form on V ∗, which we can pull back to V×V ∗ = T ∗V using the natural
projection onto V ∗. The graph of the differential of f ∈ Conv(V,R) ∩ C2(V ) defines a
C1-submanifold of T ∗V , and the pullback of the restriction of volV ∗ by the natural map
x 7→ (x, df(x)) from V to the graph of df corresponds exactly to the Hessian measure. In
Chapter 7 we will give a more general construction of valuations defined by integrating
certain differential forms over the differential of a convex function.

Example 1.0.7. Let ν denote a compactly supported, signed Radon measure on V . Then

µ(f) :=

∫
V

f(x)dν(x)

defines a continuous valuation on Conv(V,R). The class of valuations of this type in-
cludes examples such as

µ′(f) := f(x) + f(−x)− 2f(0) for f ∈ Conv(V,R), for some fixed x ∈ V,

µ′′(f) :=
1

Hn−1(Sn−1)

∫
Sn−1

fdHn−1 − f(0) for f ∈ Conv(Rn,R).

Note that both µ′ and µ′′ are invariant under the addition of linear and constant func-
tionals.
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The additional property that has to be imposed on the valuations to obtain a ho-
mogeneous decomposition is vertical invariance, i.e. the invariance with respect to the
addition of constants.

Definition 1.0.8. Let C ⊂ Conv(V ) be a non-empty subset. A valuation µ on C with
values in some real topological vector space F is called dually epi-translation invariant
if

µ(f + λ+ c) = µ(f) for all f ∈ C, λ ∈ V ∗, c ∈ R
such that f + λ + c ∈ C. The vector space of all continuous, dually epi-translation
invariant valuations will be denoted by VConv(C;V, F ).

For C = Conv(V,R) we will denote these spaces by VConv(V, F ), and we will drop
the dependency on F for F = R. Let us remark that the name VConv(V ) was used
by Alesker in [7] to denote the space of all continuous valuations on Conv(V,R) that
are in addition invariant under the addition of linear functionals. As his examples are
all dually epi-translation invariant, we will borrow the name from his work. This also
implies that the main result from [7] applies to our space of valuations, i.e. the map

VConv(V )→ Val(V ∗)

µ 7→ [K 7→ µ(hK)]

has dense image and infinite dimensional kernel. We will, however, not need this result.

For the geometric significance of this invariance property, let us return to the definition
of a valuation on a space of functions. Assume that the functions under consideration
are defined on some set A. For a given function f , the epi-graph epi(f) := {(x, t) ∈
A× R : f(x) ≤ t} satisfies

epi(f) ∩ epi(h) = epi(f ∨ h), epi(f) ∪ epi(h) = epi(f ∧ h),

so a valuation on functions may also be interpreted as a set theoretic valuation on epi-
graphs. For every f ∈ Conv(V ), its Legendre transform f ∗ ∈ Conv(V ∗) is given by

f ∗(y) = sup
x∈V
〈y, x〉 − f(x) = hepi f (y,−1) for y ∈ V ∗,

where the brackets denote the natural pairing between V and its dual space V ∗. As
f ∗∗ = f , we may consider f = hepi f∗(·,−1) as the support functional of a non-compact
convex set in V ∗×R. The invariance property thus asserts that the valuation is invariant
with respect to translations of this set in V ∗ × R. In particular, we can restrict these
valuations to support functions of convex bodies in V ∗ × R.

Theorem 1.0.9 (Theorem 5.2.5). Let C ⊂ Conv(V ) be a subset with Conv(V,R) ⊂ C,
F a Hausdorff real topological vector space. The map

T : VConv(C;V, F )→ Val(V ∗ × R, F )

µ 7→ [K 7→ µ(hK(·,−1))]

11



1 Introduction

is well defined, continuous, and injective. Here, Val(V, F ) denotes the space of all contin-
uous, translation invariant valuations that take values in F , and both spaces are equipped
with the compact-open topology.

We can thus interpret elements of VConv(C;V, F ) as valuations on higher dimen-
sional convex bodies. The McMullen decomposition for Val(V ∗×R, F ) thus implies the
following homogeneous decomposition.

Theorem 1.0.10. Let C ⊂ Conv(V ) be invariant under scaling, i.e. tf ∈ C for all
f ∈ C, t > 0, and such that Conv(V,R) ⊂ C. Assume that F is a Hausdorff real
topological vector space. Then

VConv(C;V, F ) =
n⊕
k=0

VConvk(C;V, F ).

Here VConvk(C;V, F ) denotes the space of all k-homogeneous valuations, i.e. all valu-
ations µ ∈ VConv(C;V, F ) that satisfy µ(tf) = tkµ(f) for all f ∈ C, t > 0.

For C = Conv(V,R) and F = R, this was already proved by Colesanti, Ludwig and
Mussnig [21] using translates of support functions. Their proof easily generalizes to the
more general setting. As the map T will play a crucial part in many of our constructions,
we will include an alternative proof of this result, see Theorem 5.3.4.
Similar to the McMullen decomposition of Val(V ), the homogeneous decomposition for
VConv(C;V, F ) allows us to define the polarization of a homogeneous valuation if C ⊂
Conv(V ) is a cone, i.e. if tf + g ∈ C for all f, g ∈ C, t > 0. However, this requires the
following regularity assumption: We will call a cone C regular if the domain dom(f) :=
{x ∈ V : f(x) < ∞} has non-empty interior for all f ∈ C. This assumption seems to
be necessary, as the definition of the polarization relies on the continuity of the addition
map on C ⊂ Conv(V ), which is not continuous on arbitrary cones. From now on, we
will assume that C is a regular cone containing Conv(V,R). For µ ∈ VConvk(C;V, F )
we obtain a symmetric functional µ̄ : Ck → F with the following properties:

1. µ̄ is a continuous, dually epi-translation invariant valuation in each argument.

2. µ̄ is additive: For f, h, f2, . . . , fk ∈ C

µ̄(f + h, f2, . . . , fk) = µ̄(f, f2, . . . , fk) + µ̄(h, f2, . . . , fk).

3. µ̄(f, . . . , f) = µ(f) for all f ∈ C.

Thus, µ̄ is a multilinear functional on the cone C, and by representing a smooth function
φ ∈ C∞c (V ) as a difference of convex functions we can use µ̄ to define a continuous
multilinear functional on C∞c (V ). If F is a locally convex vector space, the L. Schwartz
kernel theorem implies that this functional lifts to a unique distribution on V k.

12



Theorem 1.0.11 (Theorem 5.4.9 and 5.4.7). Let µ ∈ VConvk(C;V, F ) and assume
that F admits a continuous norm. Then there exists a unique distribution GW(µ) ∈
D′(V k, F̄ ) with compact support such that

GW(f1 ⊗ · · · ⊗ fk) = µ̄(f1, . . . , fk) for all f1, . . . , fk ∈ Conv(V,R) ∩ C∞(V ),

which will be called the Goodey-Weil distribution of µ. Furthermore, the support of this
distribution is contained in the diagonal in V k.

Note that this implies that the map GW : VConv(C;V, F ) → D′(V k, F̄ ) is injective,
and we will call this map the Goodey-Weil embedding for VConv(C;V, F ). We also de-
fine a version of the Goodey-Weil distributions for valuations with values in an arbitrary
locally convex vector space, that may not admit a continuous norm. In this case, the
support of the Goodey-Weil distribution is still contained in the diagonal but in general
not compact. Nevertheless, the valuation is uniquely determined by its associated dis-
tribution.
As the support of the Goodey-Weil distribution GW(µ) is contained in the diagonal, we
may think of this set as the image of the support of µ under the diagonal embedding
∆ : V → V k. While this definition relies on the Goodey-Weil distributions, it is straight-
forward to check that µ(f) = µ(h) for all functions f, h ∈ Conv(V,R) with f = h on a
neighborhood of the support of µ. In fact, this can be used to characterize the support
without reference to the Goodey-Weil embedding, see Proposition 6.1.3.

The support imposes a number of restrictions on the valuations, in particular, real
valued valuations that are invariant with respect to non-compact subgroups of the gen-
eral linear group GL(V ). For example, Corollary 6.3.6 implies that there exist no non-
constant valuations in VConv(V ) that are invariant with respect to translations or SL(V )
(for dimV ≥ 2). In addition, there is a very interesting connection between the cone C
and the supports of the valuations.

Theorem 1.0.12 (Theorem 6.3.5). Let C ⊂ Conv(V ) be a regular cone containing
Conv(V,R). Consider the set dom(C) :=

⋂
f∈C

dom f . Then the following holds:

1. The support of any valuation in VConv(C;V, F ) is contained in dom(C).

2. If F admits a continuous norm, then every valuation in VConv(V, F ) with support
contained in the interior of dom(C) extends uniquely to a continuous valuation in
VConv(C;V, F ).

If F admits a continuous norm, we thus have inclusions

VConvint dom(C)(V, F ) ↪→ VConv(C;V, F ) ↪→ VConvdom(C)(V, F ).

While both of these inclusions are strict in general, there are certain cones where the
first inclusion becomes a bijection. More precisely, this applies to the regular cone CU :=
{f ∈ Conv(V ) : f |U <∞} for an open, convex subset U ⊂ V . We also set Conv(U,R) :=
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1 Introduction

{f : U → R : f convex}, which is a metrizable topological space with respect to the
topology of uniform convergence on compact subsets. Let VConv(U, F ) denote the space
of all continuous valuations on Conv(U,R) that are dually epi-translation invariant. As
usual, we equip this space with the compact-open topology.

Theorem 1.0.13 (Theorem 6.3.12). If U ⊂ V is an open, convex subset and F is a
locally convex vector space admitting a continuous norm, then the map

res∗ : VConv(U, F )→ VConv(CU ;V, F )

µ 7→ [f 7→ µ(f |U)]

is well defined and a topological isomorphism.

We also consider subspaces of VConv(V, F ) of compactly supported valuations. If we
fix a compact subset A ⊂ V , the value of a valuation whose support is contained in A
only depends on the restriction of its argument to an arbitrary neighborhood of A. We
will use this fact, to construct a semi-norm on the space VConvA(V, F ) of valuations
with support in A for every continuous semi-norm on F . These semi-norms turn out to
generate the subspace topology in VConvA(V, F ). In particular, VConvA(V ) is a Banach
space for every compact subset A ⊂ V .

Let us return to the inclusion T : VConv(V, F ) → Val(V ∗ × R, F ). To describe its
image, we have to return to the Goodey-Weil embedding for Val(V, F ). Similar to the
support of a dually epi-translation invariant valuation, we can use the support of the
Goodey-Weil distributions to define the vertical support of µ ∈ Val(V, F ), which is a
subset of P+(V ∗). This leads to the following description of the image of T :

Theorem 1.0.14 (Theorem 6.3.2). Let F be a locally convex vector space that admits a
continuous norm. The image of T : VConvk(V, F )→ Valk(V

∗×R, F ) consists precisely
of all valuations in Valk(V

∗ × R, F ) whose vertical support is contained in the negative
half sphere P+(V × R)− := {[(y, s)] ∈ P+(V × R) : s < 0}. If F is a Fréchet space,
T : VConvA(V ) → ValP (A)(V

∗ × R, F ) is a topological isomorphism for any compact
subset A ⊂ V , where

P : V →P+(V × R)−

x 7→[(x,−1)],

which is a diffeomorphism onto its image.

The proof uses the characterizing property of the (vertical) support to replace a given
convex function by a suitable convex body such that the support function of this body
coincides with the original function on a neighborhood of the (vertical) support. The
second part is just an application of Banach’s inversion theorem. Note that this theorem
gives us a very powerful tool to obtain approximation results: If we are interested in a
special class of valuations on convex functions, we can try to identify these valuations
with some corresponding class in Val(V ∗×R) using T . If this class of valuations behaves
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well with respect to the vertical support, i.e. if we can approximate any given valuation
in Val(V ∗×R) by a sequence of valuations in the given class such that the vertical sup-
ports of these valuations are eventually contained in an arbitrary neighborhood of the
vertical support of the limit, then the theorem gives us a corresponding density result
for VConv(V ).

We will apply this method to smooth valuations. Recall that a valuation µ ∈ Val(V )
is called smooth if the map

GL(V )→ Val(V )

g 7→ π(g)µ

is smooth. It is a standard result from representation theory that the space Val(V )sm

of smooth valuations is dense in Val(V ). This is usually proved by considering the con-
volution of a given valuation with a smooth approximation of the δ-distribution at the
identity in GL(V ), and this type of approximations turns out to be compatible with the
vertical support.
To describe the corresponding space of valuations in VConv(V ), we will use the dif-
ferential cycle introduced by Fu in [26]. This cycle associates to any convex function
f ∈ Conv(V,R) an integral n-current D(f) on the cotangent bundle T ∗V , which co-
incides with the graph of df if the function f is twice differentiable. In addition, it
satisfies the valuation property, so by integrating suitable differential forms, we obtain
real-valued valuations. To be more precise, let Ωn

hc(T
∗V ) denote the space of smooth

n-forms on T ∗V with horizontally compact support, i.e. all forms τ ∈ Ωn(T ∗V ) that
satisfy supp τ ⊂ π−1(K) for some compact subset K ⊂ V . Here π : T ∗V → V denotes
the natural projection. We will call a valuation µ : Conv(V,R)→ R smooth if it is given
by

µ(f) = D(f)[τ ] for all f ∈ Conv(V,R)

for some τ ∈ Ωn
hc(T

∗V ). This representing form τ is highly non-unique. To describe the
kernel of this procedure, we use a certain second order differential operator D̄, called
symplectic Rumin differential.

Theorem 1.0.15 (Theorem 7.2.5). τ ∈ Ωn
hc(T

∗V ) satisfies D(f)[τ ] = 0 for all f ∈
Conv(V,R) if and only if

1. D̄ τ = 0,

2.
∫
V
τ = 0, where we consider the zero section V ↪→ T ∗V as a submanifold.

We will denote the subspace of smooth valuations in VConv(V ) and VConvk(V ) by
VConv(V )sm and VConvk(V )sm respectively. In Section 7.3, we show that this space can
indeed be identified with Val(V ∗ ×R)sm ∩ ImT . Applying the necessary approximation
result for smooth valuations in Val(V ∗ × R), this implies

Theorem 1.0.16 (Theorem 7.3.5). VConv(V )sm is dense in VConv(V ).
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1 Introduction

By averaging the differential forms in an approximating sequence with respect to the
Haar measure, we obtain the following Corollary.

Corollary 1.0.17 (Corollary 7.3.6). Let G ⊂ GL(V ) be a compact subgroup. Then the
space of smooth G-invariant valuations is dense in the space VConv(V )G of continuous
G-invariant valuations in VConv(V ).

We will apply this result to SO(n)-invariant valuations. For Val(Rn), a famous theo-
rem due to Hadwiger asserts that the space of SO(n)-invariant, continuous, translation
invariant valuations is spanned by the intrinsic volumes. By considering the relevant
invariant differential forms, we obtain the following classification of smooth, rotation
invariant valuations in VConv(V ):

Theorem 1.0.18 (Theorem 9.4.4). For every µ ∈ VConvk(Rn)sm ∩ VConv(Rn)SO(n) of
degree k > 0 there exists a unique function φ ∈ C∞c ([0,∞)) such that

µ(f) =

∫
Rn
φ(|x|2)[D2f(x)]kdx for f ∈ Conv(Rn,R) ∩ C2(Rn),

where [D2f(x)]k denotes the k-th elementary symmetric polynomial in the eigenvalues
of the Hessian of f .

Informally speaking, every intrinsic volume gives raise to a family of rotation invari-
ant valuations on convex functions, which can be parametrized by some suitable class
of functions. As a Corollary we also obtain that every SO(n)-invariant valuation in
VConv(Rn) is actually O(n)-invariant.

Remark 1.0.19. After this thesis was handed in for review, a full classification of
all SO(n)-invariant valuations in VConv(Rn) was obtained by Colesanti, Ludwig and
Mussnig in [19].
To state their result we need to introduce some notation. Let Cb((0,∞)) denote the space
of all continuous functions on (0,∞) with bounded support. For 1 ≤ k ≤ n− 1 set

Dn
k :=

{
ζ ∈ Cb((0,∞)) : lim

s→0+
sn−kζ(s) = 0, lim

s→0+

∫ ∞
s

tn−k−1ζ(t)dt exists and is finite
}
.

In addition, let Dn
n denote the space of all ζ ∈ Cb((0,∞)) such that lims→0+ ζ(s) exists

and is finite.

Theorem 1.0.20 (Colesanti-Ludwig-Mussnig [19] Theorems 1.4 and 1.5). Let 1 ≤ k ≤
n. For every µ ∈ VConvk(Rn)SO(n) there exists a unique function ζ ∈ Dn

k such that

µ(f) =

∫
Rn
ζ(|x|)[D2f(x)]kdx (1.1)

for all f ∈ Conv(Rn,R) ∩ C2(Rn) that are strictly convex.
Conversely, for any ζ ∈ Dn

k there exists a unique valuation µ ∈ VConvk(Rn)SO(n) that
extends the right hand side of Equation (1.1).
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At its core, Theorem 1.0.16 relies on the representation of a smooth valuation in
Val(V ) by integrating a differential form over the conormal cycle of a convex body and
the relation of this cycle to the differential cycle of the corresponding support function. In
[3] Alesker gave a second construction of smooth valuations: He constructed a continuous
multilinear functional Dens(V )×C∞(P+(V ∗), L)k → Valn−k(V ), which maps a product
of support functions to the corresponding mixed volume. By the L. Schwartz kernel
theorem this functional induces a continuous map from Dens(V ) ⊗ C∞(P+(V ∗)k, L�k)
to Valn−k(V ), which, in fact, maps onto the space of smooth valuations. This expresses
any smooth valuation as a converging sum of mixed volumes.
To imitate his construction, let us take a slightly more general approach to the valuations
considered by Alesker in [7]. LetM(V ) denote the space of signed Radon measures on
V equipped with the vague topology, i.e. the topology induced by the semi-norms

|ν|φ :=

∣∣∣∣∫
V

φ(x)dν(x)

∣∣∣∣ for ν ∈M(V ),

where φ ∈ Cc(V ). If f ∈ Conv(V,R)∩C2(V ) is a strictly convex function, the differential
df : V → V ∗ is a homeomorphism, so given a density volV ∗ ∈ Dens(V ∗) on V ∗ we can
consider the pushforward (df−1)∗ volV ∗ ∈M(V ). If we choose a scalar product on V such
that volV ∗ coincides with the induced Lebesgue measure under the induced isomorphism
V ∼= V ∗, this pushforward is given by

(df−1)∗ volV ∗(U) =

∫
U

det(Hf (x))dx for all Borel sets U ⊂ V,

which extends to a unique valuation Hessn ∈ VConvn(V,M(V )) (see [7] or [20] for
details). Note that this valuation only depends on the choice of volV ∗ ∈ Dens(V ∗) and
not the specific scalar product. We can consider the polarization of this functional and
define the measure valued valuations

f 7→ Hessn(f [n− k], f1, . . . , fk)

for f1, . . . , fk ∈ Conv(V,R), where Hessn denotes the polarization, abusing notation.
By considering differences of these valuations, we extend this definition to differences
of convex functions using the multilinearity of the polarization. We thus obtain the
multilinear map

Cc(V )× C2
c (V )k → VConvn−k(V )

(φ0, φ1, . . . , φk) 7→
[
f 7→

∫
V

φ0dHessn(f [n− k], φ1, . . . , φk)

]
,

which turns out to be continuous. These valuations are all examples of mixed Hessian
valuations and are also special cases of the valuations considered by Alesker in [7]. Using
the L. Schwartz kernel theorem once again, this functional induces a continuous linear
map

C∞c (V k+1)→ VConvn−k(V ).
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1 Introduction

We compare this construction with the one used by Alesker to show that the image of
this map coincides with VConvn−k(V )sm. This uses the key observation that the surface
area measure of a convex body K ∈ K(V ∗ × R) is related to the Hessian measure of
hK(·,−1) by a very simple formula. We thus obtain the following version of McMullen’s
conjecture:

Theorem 1.0.21 (Theorem 8.3.5). For every µ ∈ VConvn−k(V )sm and every open
neighborhood U of suppµ, there exist functions φji ∈ C∞c (U) for 0 ≤ i ≤ k, j ∈ N such
that

µ(f) =
∞∑
j=1

∫
V

φj0dHessn(f [n− k], φj1, . . . , φ
j
k).

In particular, the space generated by smooth mixed Hessian valuations is a dense subspace
of VConv(V )sm and VConv(V ).

1.1 Plan of this thesis

Chapter 2 introduces some basic notation and presents some well known results con-
cerning convex bodies. It also discusses a version of the L. Schwartz kernel theorem.
In Chapter 3, we will present the relevant results from the theory of translation invari-
ant valuations on convex bodies and introduce the notion of vertical support using the
Goodey-Weil embedding. We then apply this concept to smooth valuations and the two
constructions of these valuations mentioned in the introduction.
Chapter 4 collects some results on convex functions and the topology on some spaces of
convex functions. We also use these facts to obtain density results for certain classes of
convex functions as well as a characterization of relatively compact subsets of the space
of finite-valued convex functions.

Valuations on convex functions are introduced in Chapter 5. We present two embed-
dings of the space VConv(C;V, F ) into spaces related to valuations on convex bodies and
use these embeddings to give an alternative proof of the homogeneous decomposition
from [21]. The second part of this chapter is used to define the Goodey-Weil embedding
for dually epi-translation invariant valuations and establish its main properties, the di-
agonality of the support as well as its compactness, depending on the topology of the
target space.
Chapter 6 introduces the notion of support for dually epi-translation invariant valua-
tions. We use this concept to construct suitable semi-norms on spaces of compactly
supported valuations and discuss various applications. These include the characteriza-
tion of the image of one of the embeddings from Chapter 5, triviality results for certain
spaces of valuations that are invariant with respect to non-compact subgroups of the
general linear group, as well as restrictions on the support imposed by the domain of
the valuation. These restrictions allow us to reinterpret valuations on certain cones of
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1.1 Plan of this thesis

convex functions as valuations defined on finite-valued convex functions over open, con-
vex subsets.

Smooth valuations are introduced in Chapter 7. We recall the definition of the dif-
ferential cycle as well as some of its properties, and we show that it is continuous on
the class of finite-valued convex functions with respect to the local flat topology on the
space of integral currents. The second part of this chapter establishes a kernel theorem
for the differential cycle and characterizes the subspace of smooth dually epi-translation
invariant valuations in terms of differential forms. In the last section, we interpret dually
epi-translation invariant valuations as certain valuations on convex bodies to show that
the space of smooth dually epi-translation invariant valuations on convex functions co-
incides with a certain space of smooth valuations on convex bodies, where the subspace
is characterized by a geometric restriction on the vertical support. This will also imply
that smooth valuations on convex functions are dense in VConv(V ).
Chapter 8 examines smooth mixed Hessian valuations. We first show that the surface
area measure of a convex body is related to the Hessian measure of the restriction of its
support function and discuss how mixed Hessian valuations are related to the valuations
considered by Alesker in [7]. We then use the results obtained in previous chapters to
relate a construction of smooth valuations on convex functions to a similar construction
used in [3] to construct smooth valuations on convex bodies, which gives us a represen-
tation of any smooth dually epi-translation invariant valuation as a converging sum of
smooth mixed Hessian valuations.
In Chapter 9 we consider smooth dually epi-translation invariant valuations on Conv(Rn,R)
that are invariant under SO(n) and give a classification of these functionals.
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2 Preliminaries

In this chapter we are going to introduce some basic notation and discuss a version of
the well known Schwartz kernel theorem, which we will use in Chapter 5 and 8. We
also collect some results on convex bodies, in particular the relation to their support
functions and the approximation of convex bodies by smooth, strictly convex bodies.

2.1 Basic notation

Let V denote a finite dimensional real vector space of dimension dimV = n. Given a
scalar product 〈·, ·〉 on V , we will denote the induced Euclidean norm on V by | · |. We
equip the algebraic dual V ∗ of V with the unique scalar product such that the natural
isomorphism V ∼= V ∗ induced by the scalar product becomes an isometry. Abusing
notation, we will also denote the natural pairing V ∗ × V → R by (y, x) 7→ 〈y, x〉 for
y ∈ V ∗, x ∈ V . Note that this notation coincides with the notation used for the scalar
product if we identify V ∗ ∼= V (and we are actually given a scalar product on V ). We
will also write S(V ) for the unit sphere in V .

Given a subsets A of some topological space X, we will denote the interior of A by
intA and the topological closure by Ā. If X is a normed vector space, we will denote
the closed ball with radius R > 0 centered at x by BR(x) and the open ball by UR(x).
For x = 0 we will also write BR := BR(0).

If f, h are two functions with values in the extended real line (−∞,+∞] that are
defined on the same domain, we denote their pointwise maximum and minimum by
either f ∨ h and f ∧ h, or max(f, h) and min(f, h) respectively. The first convention is
usually used whenever we want to emphasize the connection of these operations with the
intersection and union of sets. The second convention is usually used if we are dealing
with explicit expressions.

2.2 Distributions and the L. Schwartz kernel theorem

Recall that a Hausdorff real topological vector space F is called locally convex if its topol-
ogy is generated by the family of its open, convex subsets. Equivalently, the topology is
generated by a separating family of semi-norms, where we call a family of semi-norms
on F separating if |v|F = 0 for all semi-norms | · |F of the family implies v = 0. Any
such space is naturally a uniform space and we will denote its completion by F̄ , which
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2 Preliminaries

is again a locally convex vectors space. Its topological dual space will be denoted by F ′.

For U ⊂ V the space C∞c (U) of test functions is equipped with the inductive topology
with respect to the inclusions of the Fréchet spaces

C∞K (U) := {φ ∈ C∞c (U) : suppφ ⊂ K},

where K ⊂ U is compact and these spaces are equipped with the topology of uniform
convergence of all derivatives. Equivalently, the locally convex topology on C∞c (U) is
characterized by the following property: A linear map T : C∞c (U) → F into a locally
convex vector space F is continuous if and only if for every compact subset K ⊂ V and
every continuous semi-norm | · |F on F , there exists k ∈ N and a constant C = C(k,K)
such that

|T (φ)|F ≤ C‖φ‖Ck(U) for all φ ∈ C∞K (U). (2.1)

The local order of T on K (with respect to the semi-norm | · |F ) is defined as the smallest
number k ∈ N such that an estimate of the form above holds for all φ ∈ C∞K (U).
Any continuous functional T : C∞c (U) → F is called a distribution and the space of
distributions on U with values in F will be denoted by D′(U, F ).

To any distribution T ∈ D′(U, F ) one associates a closed subset in U , called the sup-
port of T . It is defined as the complement of the set of all points x ∈ U such that there
exists a neighborhood O ⊂ U of x with T (φ) = 0 for all φ ∈ C∞c (O). Using a partition
of unity, it is easy to see that T (φ) = 0 for all φ ∈ C∞c (U) with suppφ ∩ suppT = ∅.
If the support of a distribution is compact, then the estimate in Equation 2.1 holds for
some constant C > 0 independent of the compact set K ⊂ U . The converse is also true,
but we will not need this fact. However, any distribution T ∈ D′(U, F ) with compact
support induces a continuous functional on C∞(U) equipped with the topology of uni-
form convergence of all derivatives on compact subsets: Take a smooth cut-off function
φ ∈ C∞c (U) with φ = 1 on a neighborhood of suppT and define T (f) := T (φ · f) for
f ∈ C∞(U). Using the Leibniz rule, it is easy to see that this functional is continuous
on C∞(U). Moreover, the properties of the support of T guaranty that this definition
does not depend on the choice of φ ∈ C∞c (U).

One of our main constructions uses the well known Schwartz kernel theorem. We will
only state the following basic version for the trivial line bundle over a finite dimensional
vector space.

Theorem 2.2.1 (L. Schwartz kernel theorem, [29]). Let F be a complete locally convex
vector space and let V,W be finite dimensional real vector spaces. For every continuous
bilinear map

b : C∞c (V )× C∞c (W )→ F

there exists a unique continuous linear map

B : C∞c (V ×W )→ F
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such that B(f ⊗ h) = b(f, h) for all f ∈ C∞c (V ), h ∈ C∞c (W ). Moreover, the local order
of B is bounded by a polynomial expression in the local order of b: If A ⊂ V ×W is
compact and U1 ⊂ V , U2 ⊂ W are two relatively compact, open subsets with A ⊂ U1×U2

such that

|b(g, h)|F ≤ C‖g‖Ck(U1)‖h‖Cl(U2)

for all g ∈ C∞c (U1), h ∈ C∞(U2) for some C > 0, k, l ∈ N, then there exists C̃ > 0 such
that

|B(f)|F ≤ C̃‖f‖CM (A)

for all f ∈ C∞c (V ×W ) with supp f ⊂ A and some M ≤ k + l + dimV + dimW + 2.

At its heart, the Schwartz kernel theorem relies on a decomposition of a given function
into a converging sum of products of simpler functions. We will state a version of this
decomposition for smooth sections of vector bundles over compact manifolds, as well as
a version for compactly supported functions on a finite dimensional real vector space.
The first proposition follows from the second using a partition of unity.

Proposition 2.2.2. Let X1, X2 be two compact manifolds, E1 and E2 two finite dimen-
sional vector bundles over X1 and X2 respectively. For every N ∈ N there exists M ∈ N
and C > 0 such that the following holds: For every f ∈ C∞(X1×X2, E1�E2) there exist
sections gj ∈ C∞(X1, E1), hj ∈ C∞(X2, E2) with

∞∑
j=1

||gj||CN (X1) · ||hj||CN (X2) ≤ C‖f‖CM (X1×X2)

such that

f =
∞∑
j=1

gj ⊗ hj.

Proposition 2.2.3 ([29] Lemma 1). Let V1, V2 be finite dimensional real vector spaces.
For every N ∈ N there exists M ∈ N such that the following holds: For every compact
subset K ⊂ V1 × V2 and for all open sets U1 ⊂ V1 and U2 ⊂ V2 with K ⊂ U1 × U2, there
is a constant C = C(U1, U2, K,M) such that for all f ∈ C∞c (V1 × V2) with supp f ⊂ K
there exist functions gj ∈ C∞c (U1), hj ∈ C∞c (U2) with

∞∑
j=1

‖gj‖CN (V1) · ‖hj‖CN (V2) ≤ C‖f‖CM (V1×V2)

and

f =
∞∑
j=1

gj ⊗ hj,

i.e. the sum converges absolutely to f in the CN -topology.
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Note that these propositions imply that a continuous linear map Φ : C∞c (V1×V2)→ F
into some locally convex vector space F is uniquely determined by its values on functions
of the form g ⊗ h ∈ C∞c (V1 × V2) for g ∈ C∞c (V1), h ∈ C∞c (V2). A similar statement
holds in the compact case.

Theorem 2.2.4 ([29] Theorem 2). Let Bil(C∞c (V ), C∞c (W );F ) denote the space of all
continuous bilinear maps

b : C∞c (V )× C∞c (W )→ F

into some complete locally convex vector space. Then the natural map

D′(V ×W,F )→ Bil(C∞c (V ), C∞c (W );F )

is a topological isomorphism if the spaces are equipped with strong topology, i.e. the
topology induced the semi-norms

‖b‖F ;K,L := sup
g∈K,h∈L

|b(g, h)|F on Bil(C∞c (V ), C∞c (W );F )

for K ⊂ C∞c (V ), L ⊂ C∞c (W ) relatively compact (or equivalently, bounded), and

‖B‖F ;K := sup
f∈K
|B(f)|F on D′(V ×W,F )

for K ⊂ C∞c (V ×W ) relatively compact.

2.3 The compact-open topology

Let (X, d) be a metric space. Given a topological space Y , we equip the space C(X, Y )
of all continuous functions from X to Y with the compact-open topology. A basis for
this topology is given by the open sets

M(K,O) := {f ∈ C(X, Y ) : f(K) ⊂ O}

for all compact sets K ⊂ X and open subsets O ⊂ Y . If F is a locally convex vector
space, then C(X,F ) is a locally convex vector space and the compact-open topology is
induced by the family of semi-norms

‖f‖F ;K := sup
x∈K
|f(x)|F for f ∈ C(X,F ),

where | · |F is a continuous semi-norm on F and K ⊂ X is compact. Note that C(X,F )
is complete with respect to the compact-open topology if F is complete. Furthermore,
the evaluation map

ev : X × C(X,F )→ F

(x, f) 7→ f(x)

is continuous.
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2.4 Background on convex bodies

2.4 Background on convex bodies

Given a finite dimensional real vector space V , we consider the set K(V ) of convex bodies,
i.e. all convex and compact subsets in V . The space K(V ) carries a standard topology,
induced by the Hausdorff metric. Given a scalar product on V , this metric is given by

dH(K,L) = inf{ε > 0 : K ⊂ L+ εB1, L ⊂ K + εB1}.

Here A + B := {a + b : a ∈ A, b ∈ B} denotes the Minkowski sum of two subsets
A,B ⊂ V . While the definition of the Hausdorff metric depends on the choice of a
scalar product on V , different choices lead to equivalent metrics, so the topology is
independent of this choice.
Equipped with this metric, K(V ) becomes a complete, σ-compact, and locally compact
metric space. More precisely, we have the following description of its relatively compact
subsets.

Theorem 2.4.1 (Blaschke selection theorem,[54] Theorem 1.8.7). A ⊂ K(V ) is rela-
tively compact if and only if it is bounded.

Also note that the general linear group GL(V ) and the affine group Aff(V ) = GL(V )n
V act continuously on K(V ) by

(g,K) 7→ gK := {gx : x ∈ K} for g ∈ GL(V ), K ∈ K(V ),

(z,K) 7→ z +K := {z + x : x ∈ K} for z ∈ V,K ∈ K(V ).

For our purposes, the most important object associated to a convex body K ∈ K(V )
is its support function hK : V ∗ → R, defined by

hK(y) := sup
x∈K
〈y, x〉 for y ∈ V ∗.

K is uniquely determined by its support function, and one easily deduces that hK is a 1-
homogeneous and convex function. Conversely, any convex and 1-homogeneous function
h : V ∗ → R is the support function of a unique convex body.
Note that the basic properties of the support function imply that it is continuous and
uniquely determined by its restriction to the unit sphere in V ∗, assuming that we have
fixed a scalar product. This allows for the following alternative characterization of the
Hausdorff metric:

Lemma 2.4.2 ([54] Lemma 1.8.14). For K,L ∈ K(V )

dH(K,L) = sup
y∈S(V ∗)

|hK(y)− hL(y)|.

In other words, the map K 7→ hK establishes an isometric embedding K(V ) →
C(S(V ∗)).
Let K(V )sm denote the subspace of all strictly convex bodies with smooth boundary.
The following results are well known, see for example [54] Section 2.5.
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Proposition 2.4.3. K ∈ K(V )sm if and only if hK : V ∗ \ {0} → R is smooth and its
Hessian is of constant rank n− 1.

Note that the last condition implies that the restriction of dhK to the unit sphere,
which we will denote by d′hK , establishes a diffeomorphism from S(V ∗) onto its image.
To describe its inverse, recall that for such a body K and any point x ∈ ∂K there exists
a unique outer unit normal νK(x) ∈ S(V ∗). The map νK : ∂K → S(V ∗) is called the
Gauss map.

Lemma 2.4.4. For K ∈ K(V )sm, νK = d′h−1
K .

Smooth, strictly convex bodies are an essential tool in the study of convex bodies due
to the following approximation result.

Proposition 2.4.5. K(V )sm is dense in K(V ).

Proof. This is well known, but we are going to need an explicit approximation in Chapter
3, so we will give a sketch of proof. Let us identify V ∼= Rn. Take a sequence Uj of
open neighborhoods of the identity e ∈ O(n) such that the diameter of Uj converges to
0 for j →∞ with respect to some Riemannian metric on O(n). Now take non-negative
functions φj ∈ C∞c (Uj, [0,∞)) such that

∫
O(n)

φj(k)dk = 1 for all j ∈ N, where dk
denotes a Haar measure on O(n). Then the sequence (φj)j is a smooth approximation of
the δ-distribution in e ∈ O(n). Given a 1-homogeneous continuous function f : V ∗ → R,
we consider the sequence (fj)j of functions defined by

fj(x) :=

∫
O(n)

φj(k)f(k−1x)dk for x ∈ V ∗.

Then (fj)j converges uniformly on compact subsets to f . Furthermore, fj is 1-ho-
mogeneous, and if f is convex, then so is fj (this requires the non-negativity of the
functions φj). We can consider the restriction of these functions to the unit sphere,
which is preserved by the operation of O(n), i.e. we can use the same formula to define
this convolution integral on continuous functions on the unit sphere. As O(n) operates
transitively on the unit sphere, the restriction of fj is smooth if and only if the map
g 7→ fj(g

−1x) is a smooth map on O(n) for some unit vector x. Using the invariance of
the Haar measure with respect to translations, we need to consider the function

g 7→ fj(g
−1x) =

∫
O(n)

φj(k)f(k−1g−1x)dk =

∫
O(n)

φj(g
−1k)f(k−1x)dk.

As φj is a smooth function, this function is smooth using standard results on integrals
depending on a parameter. Thus fj : V ∗ → R is smooth outside of 0.
Let us take K ∈ K(V ) and consider f = hK . Then fj : V ∗ → R is smooth outside
of 0, 1-homogeneous, and convex, so f̃j := fj + 1

j
hB1(0) has the same properties and in

addition the Hessian of f̃j has constant rank n− 1. It is therefore the support function
of a convex body Kj, which is smooth and strictly convex by Proposition 2.4.3. Lemma
2.4.2 implies that the sequence (Kj)j converges to K in the Hausdorff metric.
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2.4 Background on convex bodies

Let us conclude this section with an invariant construction of the support function
considered as a function on the unit sphere. Let P+(V ∗) denote the space of oriented
lines in V ∗ through the origin. For a line l ∈ P+(V ∗), we denote its positive part with
respect to its orientation by l+ ⊂ l \ {0}. Consider the line bundle L over P+(V ∗) with
fiber over l ∈ P+(V ∗) given by

Ll := {h : l+ → R : h 1-homogeneous}.

For any convex body K ∈ K(V ), we consider its support function as a continuous section
of L by defining hK(l) for l ∈ P+(V ∗) by

hK(l)[y] := sup
x∈K
〈y, x〉 ∀y ∈ l+.

This construction has the advantage that it is equivariant with respect to the natural
operation of GL(V ) on K(V ) and C(P+(V ∗), L): For K ∈ K(V ), l ∈ P+(V ∗), g ∈ GL(V )
and y ∈ l+:

hgK(l)[y] = sup
x∈gK
〈y, x〉 = sup

x∈K
〈y, gx〉 = sup

x∈K
〈g−1y, x〉 = hK(g−1l)[g−1y] =: [(ghK)(l)] [y].

Note that any choice of a scalar product induces a trivialization L ∼= S(V ∗) × R by
mapping (l, h) ∈ L to (y, h(y)), where y ∈ l+ is the unique vector of unit length.
In the following chapters, we will consider the support function either as a section of
the line bundle L over P+(V ∗) or as a 1-homogeneous, convex function on V ∗, however,
we will not distinguish notationally between these two perspectives. We will also need
some additional properties of the support function (where we consider it as a function
on V ∗).

Proposition 2.4.6. For K,L ∈ K(V ) and y ∈ V ∗ the following holds:

1. hK+x(y) = hK(y) + 〈y, x〉 for all x ∈ V .

2. If K ∪ L is convex, then hK ∨ hL = hK∪L and hK ∧ hL = hK∩L.

3. hK+L = hK + hL.

4. htK = thK for all t ≥ 0.

27





3 Valuations on convex bodies and
the vertical support

In this chapter we use the Goodey-Weil embedding to define the vertical support of a
valuation in Section 3.1, and we discuss how this notion interacts with two different
constructions of smooth valuations in Sections 3.2 and 3.3.

Section 3.1 will be published in [35] (except for the approximation result on smooth
valuations, which can be found in [34]), while the results from Sections 3.2 and 3.3 can
be found in [34].

3.1 Vertical support

As we have seen in the introduction, the Goodey-Weil distributions are uniquely de-
termined by the underlying valuations. In particular, we can directly reconstruct the
original valuation on smooth, strictly convex bodies by plugging in the corresponding
smooth support functions. This leads to the question which properties of distributions
translate in some meaningful way to properties of valuations. For our purposes, we will
focus on the support of the Goodey-Weil distributions, which induces a corresponding
notion of support for elements of Val(V, F ). We start with the following result due to
Alesker.

Proposition 3.1.1 (Alesker [1] Proposition 3.3). For µ ∈ Valk(V, F ) the support of
GW(µ) is contained in the diagonal in P+(V ∗)k.

Proof. This was originally only proved for real valued valuations. For the general case,
take λ ∈ F̄ ′ ∼= F ′. From the defining property of the Goodey-Weil distribution, one
easily deduces that λ ◦ GW(µ) = GW(λ ◦ µ) for all µ ∈ Valk(V, F ). In particular, we
can apply Alesker’s result to the real valued valuation λ ◦ µ. Thus the restriction of
λ ◦ GW(µ) to the complement of the diagonal vanishes. As this is true for all λ ∈ F̄ ′,
the same holds for GW(µ), as F̄ is locally convex.

Definition 3.1.2. For 1 ≤ k ≤ n we define the vertical support of µ ∈ Valk(V, F ) to be
the set

v-suppµ :=
⋂

supp GW(µ)⊂∆A,
A⊂P+(V ∗) compact

A,
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3 Valuations on convex bodies and the vertical support

where ∆ : P+(V ∗)→ P+(V ∗)k is the diagonal embedding.
For k = 0 we set v-suppµ = ∅. If µ =

∑n
i=0 µi is the decomposition of µ into its

homogeneous components, we set v-suppµ :=
⋃n
i=0 v-suppµi.

The vertical support can also be characterized without reference to the Goodey-Weil
embedding.

Proposition 3.1.3. Let µ ∈ Val(V, F ). The vertical support is minimal (with respect
to inclusion) amongst all closed sets A ⊂ P+(V ∗) with the following property: If K,L ∈
K(V ) are two convex bodies with hK = hL on a neighborhood of A, then µ(K) = µ(L).

Proof. Let us first show that v-suppµ satisfies this property. Using the homogeneous
decomposition, we can assume that µ is k-homogeneous.
Let us identify V ∼= Rn and take a sequence of smooth functions φj ∈ C∞(O(n)) as in
the proof of Proposition 2.4.5. Mirroring the argument of this proof, we see that the
functions

(hK)j(x) :=

∫
O(n)

φj(g)hK(g−1x)dg +
1

j
hB1(0)(x),

(hL)j(x) :=

∫
O(n)

φj(g)hL(g−1x)dg +
1

j
hB1(0)(x)

are support functions of smooth and strictly convex bodies Kj, Lj for all j ∈ N. Fur-
thermore, (Kj)j and (Lj)j converge in the Hausdorff metric to K and L respectively.
As the support of φj is contained in a neighborhood of the identity of O(n), where the
diameter of these neighborhoods converges to zero, we see that the equation hK = hL
on a neighborhood of v-suppµ implies that hKj and hLj coincide on a (smaller) neigh-
borhood of v-suppµ for all j ∈ N large enough. Thus h⊗kKj = h⊗kLj on a neighborhood of
the support of GW(µ), and we obtain

µ(K) = lim
j→∞

µ(Kj) = lim
j→∞

GW (µ)
(
h⊗kKj

)
= lim

j→∞
GW (µ)

(
h⊗kLj

)
= lim

j→∞
µ(Lj) = µ(L).

For the converse statement, we can again assume that µ ∈ Val(V ) is k-homogeneous.
Let A ⊂ P+(V ∗) be a closed subset with the property stated above. Assume that the
claim was false. Then we could find functions φ1, . . . , φk ∈ C∞(P+(V ∗), L) with support
contained in P+(V ∗) \ A such that GW(µ)(φ1 ⊗ · · · ⊗ φk) = 1. Consider the function
hB1 +

∑k
i=1 δiφi on P+(V ∗). As B1 is strictly convex, this is the support function of

a convex body Kδ for all δi > 0 small enough, and hKδ = hB1 on a neighborhood
of A, so µ(Kδ) = µ(B) by assumption. Note that µ(Kδ) is a polynomial in δi for
δi small enough due to Theorem 1.0.3. The coefficient in front of δ1 . . . δk is exactly
k!GW (µ)(φ1⊗· · ·⊗φk) = k!, while the right hand side does not depend on δi > 0. Thus
the coefficient has to vanish and we obtain a contradiction.

For A ⊂ P+(V ∗) let ValA(V, F ) denote the subspace of all valuations with vertical
support contained in A.
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3.1 Vertical support

Corollary 3.1.4. Let A ⊂ P+(V ∗) be closed. Then ValA(V, F ) is closed in Val(V, F ).

Proof. Let (µα)α be a net in ValA(V, F ) converging to µ ∈ Val(V, F ). GivenK,L ∈ K(V )
with hK = hL on a neighborhood of A, Proposition 3.1.3 implies µα(K) = µα(L) for all
α. Thus

µ(K) = lim
α
µα(K) = lim

α
µα(L) = µ(L).

As this holds for all K,L ∈ K(V ) with hK = hL on a neighborhood of A, we can apply
Proposition 3.1.3 again to obtain v-suppµ ⊂ A, i.e. µ ∈ ValA(V, F ).

We conclude this section with an approximation result on smooth real-valued valu-
ations. The proof relies on the following lemma on the compatibility of the vertical
support and the natural operation of GL(V ) on both P+(V ∗) and Val(V ). Recall that
the operation of g ∈ GL(V ) on a section f of L is given by [(gf)(l)][y] = [f(g−1l)][y ◦ g]
for y ∈ l+.

Lemma 3.1.5. For g ∈ GL(V ), µ ∈ Val(V ): v-supp(π(g)µ) = g(v-suppµ).

Proof. Let K,L ∈ K(V ) be two convex bodies with hK = hL on a neighborhood U of
g(v-suppµ). For l ∈ g−1(U) and y ∈ l+

[hg−1K(l)] [y] = sup
x∈g−1K

〈y, x〉 = sup
x∈K
〈y ◦ g−1, x〉 = [hK(gl)]

[
y ◦ g−1

]
= [hL(gl)] [y ◦ g−1] = [hg−1L(l)][y],

i.e. hg−1K = hg−1L on the neighborhood g−1(U) of v-suppµ. By Proposition 3.1.3,

[π(g)µ] (K) = µ(g−1K) = µ
(
g−1L

)
= [π(g)µ] (L).

As this is true for all K,L ∈ K(V ) with hK = hL on a neighborhood of g(v-suppµ),
Proposition 3.1.3 implies v-supp(π(g)µ) ⊂ g(v-suppµ) for g ∈ GL(V ). Thus the converse
inclusion follows from

g (v-suppµ) = g
(
v-supp

[
π
(
g−1
)

(π(g)µ)
])
⊂ g

(
g−1 (v-supp (π(g)µ))

)
= v-supp(π(g)µ).

Proposition 3.1.6. Let A ⊂ P+(V ∗) be compact, B ⊂ P+(V ∗) a compact neighborhood
of A. Then the following holds: For every µ ∈ ValA(V ) there exists a sequence in
ValB(V ) ∩ Val(V )sm converging to µ.

Proof. Take a sequence of relatively compact, open neighborhoods (Uj)j of the identity
in GL(V ) such that their diameter converges to zero with respect to some Rieman-
nian metric on GL(V ). Given µ ∈ ValA(V ) and g ∈ Uj, Lemma 3.1.5 shows that
v-supp(π(g)µ) ⊂ Uj · A. As B is a neighborhood of A, the fact that the diameter of
the neighborhoods (Uj)j converges to zero implies that there exists N ∈ N such that
Uj · A ⊂ B for all j ≥ N . In particular, π(g)µ ∈ ValB(V ) for g ∈ Uj and j ≥ N by

31



3 Valuations on convex bodies and the vertical support

Lemma 3.1.5.
Now take φj ∈ C∞c (Uj) with

∫
GL(V )

φj(g)dg = 1, where have have equipped GL(V ) with
some left invariant Haar measure, and consider the valuations

µj :=

∫
GL(V )

φj(g) · π(g)µ dg.

For j ≥ N , φj(g) · π(g)µ ∈ ValB(V ) for all g ∈ GL(V ) by construction. As this is a
closed subspace, we deduce µj ∈ ValB(V ) for all j ≥ N .
For h ∈ GL(V ) and j ≥ N ,

π(h)µj =

∫
GL(V )

φj(g) · π(hg)µ dg =

∫
GL(V )

φj(h
−1g) · π(g)µ dg

is just the convolution of the Val(V )-valued continuous function g 7→ π(g)µ on GL(V )
and the smooth function φj ∈ C∞c (GL(V )). In particular, h 7→ π(h)µj depends smoothly
on h and thus µj is a smooth valuation, i.e. µj ∈ ValB(V ) ∩ Val(V )sm for j ≥ N .
Obviously, (µj)j converges to µ in Val(V ). The claim follows.

3.2 Construction of smooth valuations using mixed
volumes

In [3], Alesker considered a version of the following functional on convex bodies.

Dens(V )×K(V )k → Valn−k(V )

(vol, L1, . . . , Lk) 7→

[
K 7→ 1

k!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0

vol

(
K +

k∑
i=1

λiLi

)]
.

It is easy to see that this functional is additive in each component. By representing a
section φ ∈ C∞(P+(V ∗), L) as a difference of support functions as in the construction of
the Goodey-Weil embedding, this functional can be extended to a continuous multilinear
functional

Θ̃k : Dens(V )× C∞(P+(V ∗), L)k → Valn−k(V ).

By the Schwartz kernel theorem 2.2.1, this induces a continuous linear functional

Θk : Dens(V )⊗ C∞(P+(V ∗)k, L�k)→ Valn−k(V ).

In fact even more is true:

Theorem 3.2.1 (Alesker [3] Corollary 1.9). Θk : Dens(V ) ⊗ C∞(P+(V ∗)k, L�k) →
Valn−k(V )sm is an epimorphism of Fréchet spaces.
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Note that the continuity of Θk : Dens(V ) ⊗ C∞(P+(V ∗)k, L�k) → Valn−k(V ) implies
that there exists N ∈ N and C > 0 such that

‖Θk(f)‖ = sup
K⊂B1

|Θk(f)(K)| ≤ C‖f‖Dens(V )⊗CN (P+(V ∗)k,L�k).

In particular, Θk extends to a continuous functional Dens(V ) ⊗ CN(P+(V ∗)k, L�k) →
Valn−k(V ).

Proposition 3.2.2. For f ∈ Dens(V )⊗C∞(P+(V ∗)k, L�k), h ∈ C∞(P+(V ∗)n−k, L�n−k):(
n

k

)
Θn(f ⊗ h) = GW(Θk(f))[h] · χ,

where χ ∈ Val0(V ) is the Euler characteristic.

Proof. As the Goodey-Weil embedding is continuous with respect to the strong topology,
both sides define jointly continuous, multilinear maps

Dens(V )⊗ C∞(P+(V ∗)k, L�k)× C∞(P+(V ∗)n−k, L�n−k)→ Val0(V ) ∼= R,

where the last isomorphism is given by evaluating a valuation in {0} ∈ K(V ). We thus
only need to consider the case

f = vol⊗hK1 ⊗ · · · ⊗ hKk , h = hKk+1
⊗ · · · ⊗ hKn

for K1, . . . , Kn ∈ K(V ) smooth and strictly convex, vol ∈ Dens(V ). Evaluating both
sides in {0}, we obtain

GW (Θk (vol⊗hK1 ⊗ · · · ⊗ hKk))
[
hKk+1

⊗ · · · ⊗ hKn
]

=
1

(n− k)!

∂

∂λk+1

∣∣∣
0
. . .

∂

∂λn

∣∣∣
0
Θk (vol⊗hK1 ⊗ · · · ⊗ hKk)

(
{0}+

n∑
i=k+1

λiKi

)

=
1

(n− k)!

∂

∂λk+1

∣∣∣
0
. . .

∂

∂λn

∣∣∣
0

1

k!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0

vol

(
{0}+

n∑
i=1

λiKi

)

=
n!

k!(n− k)!

1

n!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λn

∣∣∣
0

vol

(
{0}+

n∑
i=1

λiKi

)

=

(
n

k

)
Θn (vol⊗hK1 ⊗ · · · ⊗ hKn) ({0}).

For a closed set A ⊂ P+(V ∗), let C∞A (P+(V ∗)k, L�k) denote the space of all smooth
sections of L with support contained in Ak. We will prove the following refinement of
Theorem 3.2.1:
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Proposition 3.2.3. Let A ⊂ P+(V ∗) be a closed subset, B ⊂ P+(V ∗) a compact neigh-
borhood of A. Then the following holds: For every µ ∈ ValA(V ) ∩ Valn−k(V )sm there
exists a function f ∈ Dens(V )⊗ C∞B (P+(V ∗)k, L�k) such that Θk(f) = µ.

Proof. Let φ ∈ C∞(P+(V ∗)) be a function with φ = 1 on a neighborhood of A and
suppφ ⊂ B. By Theorem 3.2.1, we can find f ∈ Dens(V ) ⊗ C∞(P+(V ∗)k, L�k) such
that Θk(f) = µ. We claim that f̃ := φ⊗k · f satisfies Θk(f̃) = µ.
By Theorem 1.0.3, the order of GW(µ) is uniformly bounded by some M ∈ N. We
can thus extend GW(µ) to a continuous linear functional on CM(P+(V ∗)l, L�l) for all
µ ∈ Vall(V ) and all 0 ≤ l ≤ n. Following the remark to Theorem 3.2.1, we extend Θl

to a continuous linear functional Θl : Dens(V )⊗ CM(P+(V ∗)l, L�l)→ Valn−l(V ) for all
0 ≤ l ≤ n (increasing M if necessary). Using Proposition 2.2.2, we can write f as a
converging sum (with respect to the CM -topology)

f = vol⊗
∞∑
j=1

φj1 ⊗ · · · ⊗ φ
j
k,

with vol ∈ Dens(V ), φji ∈ C∞(P+(V ∗), L). Evaluating the Goodey-Weil distribution
of Θk(f) in ψk+1, . . . , ψn ∈ C∞(P+(V ∗), L) and using Proposition 3.2.2, as well as the
continuity of GW(µ) and Θk with respect to the CM -topology, we see that

GW (Θk(f)) [ψk+1 ⊗ · · · ⊗ ψn]

=

(
n

k

)
Θn (f ⊗ ψk+1 ⊗ · · · ⊗ ψn) · χ({0})

=

(
n

k

) ∞∑
j=1

Θn

(
vol⊗φj1 ⊗ · · · ⊗ φ

j
k ⊗ ψk+1 ⊗ · · · ⊗ ψn

)
({0})

=

(
n

k

) ∞∑
j=1

GW(vol)
[
φj1 ⊗ · · · ⊗ φ

j
k ⊗ ψk+1 ⊗ · · · ⊗ ψn

]
.

By definition, the support of GW(Θk(f)) is equal to ∆(v-suppµ), so

ψk+1 ⊗ · · · ⊗ ψn = (φ · ψk+1)⊗ · · · ⊗ (φ · ψn)

on a neighborhood of the support of GW(Θk(f)). Using the same argument as before,
we obtain

GW (Θk(f)) [ψk+1 ⊗ · · · ⊗ ψn] = GW (Θk(f)) [(φ · ψk+1)⊗ · · · ⊗ (φ · ψn)]

=

(
n

k

) ∞∑
j=1

GW(vol)
[
φj1 ⊗ · · · ⊗ φ

j
k ⊗ (φ · ψk+1)⊗ · · · ⊗ (φ · ψn)

]
.

Now note that

φj1 ⊗ · · · ⊗ φ
j
k ⊗ (φ · ψk+1)⊗ · · · ⊗ (φ · ψn) =

(
φ · φj1

)
⊗ · · · ⊗

(
φ · φjk

)
⊗ ψk+1 ⊗ · · · ⊗ ψn
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3.3 Construction of smooth valuations using the conormal cycle

on a neighborhood of the diagonal in P+(V ∗)n. Using again that the support of GW(vol)
is contained in the diagonal, as well as the continuity of GW(vol) with respect to the
CM -topology, we arrive at

GW(Θk(f))[ψk+1 ⊗ · · · ⊗ ψn]

=

(
n

k

) ∞∑
j=1

GW(vol)[(φ · φj1)⊗ · · · ⊗ (φ · φjk)⊗ ψk+1 ⊗ · · · ⊗ ψn]

=

(
n

k

)
GW(vol)

[
∞∑
j=1

(
φ · φj1

)
⊗ · · · ⊗

(
φ · φjk

)
⊗ ψk+1 ⊗ · · · ⊗ ψn

]

=

(
n

k

)
Θn

[
f̃ ⊗ ψk+1 ⊗ · · · ⊗ ψn

]
{0}

= GW
(

Θk(f̃)
)

[ψk+1 ⊗ · · · ⊗ ψn] ,

where we have applied Proposition 3.2.2 in the last two steps. Thus GW(Θk(f)) =
GW(Θk(f̃)), so the injectivity of the Goodey-Weil embedding implies Θk(f̃) = Θk(f) =
µ. Obviously, f̃ has the desired property.

3.3 Construction of smooth valuations using the
conormal cycle

Let V be an oriented vector space. For a convex body K ∈ K(V ), the set

N*(K) := {(x, [v]) ∈ V × P+(V ∗) : v outer normal to K in x ∈ ∂K}

is a Lipschitz submanifold of the co-sphere bundle V ×P+(V ∗) of dimension n−1, which
carries a natural orientation induced by the orientation of V , and can thus be consid-
ered as an integral current, called the conormal cycle of K. We refer to [8] for further
details (see also [28] for results on the conormal cycle for arbitrary compact, as well as
subanalytic sets).
For smooth and strictly convex bodies the conormal cycle admits a very simple de-
scription. Recall that the support function hK : V ∗ \ {0} → R of any such con-
vex body K ∈ K(V ) is a smooth function. As it is 1-homogeneous, its differential
dhK : V ∗ \ {0} → (V ∗)∗ ∼= V is 0-homogeneous and can thus be considered as a map
d′hK : P+(V ∗)→ V .

Lemma 3.3.1. If K ∈ K(V ) is smooth and strictly convex, then

N*(K) = (d′hK × Id)∗ [P+(V ∗)] .

Proof. This follows directly from Lemma 2.4.4, as the conormal cycle is given by inte-
gration over the (projectivized) conormal bundle of K, which can be parametrized by
the Gauss map.
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3 Valuations on convex bodies and the vertical support

Let In−1(V × P+(V ∗)) denote the space of integral currents of dimension n − 1 in
V × P+(V ∗).

Proposition 3.3.2 (Alesker-Fu [8] Proposition 2.1.12). The map N* : K(V )→ In−1(V ×
P+(V ∗)) is continuous, where In−1(V × P+(V ∗)) is equipped with the local flat metric
topology. Furthermore, N* is a valuation: If K,L ∈ K(V ) are convex bodies such that
K ∪ L ∈ K(V ), then

N*(K) + N*(L) = N*(K ∪ L) + N*(K ∩ L).

Let Ωn−1(V ×P+(V ∗))tr denote the space of all translation invariant differential (n−1)-
forms on V ×P+(V ∗). From the previous proposition, one easily deduces that we obtain
a continuous, translation invariant valuation for every translation invariant differential
form τ ∈ Ωn−1(V × P+(V ∗)) by considering the map

K(V )→ R
K 7→ N*(K)[τ ].

Set Ωk,n−k−1(V × P+(V ∗))tr := ΛkV ⊗ Ωn−k−1(P+(V ∗)). Then the space of translation
invariant differential n− 1-forms on V × P+(V ∗) decomposes as

Ωn−1(V × P+(V ∗))tr =
n−1⊕
k=0

Ωk,n−k−1(V × P+(V ∗))tr.

Theorem 3.3.3 (Alesker [5] Theorem 5.2.1). The map

Ωk,n−k−1(V × P+(V ∗))tr → Valk(V )sm

τ 7→
(
K 7→ N*(K)[τ ]

)
is surjective for 0 ≤ k ≤ n− 1.

The kernel of this map was described in [9]. It uses a certain second order differential
operator D : Ωn−1(V × P+(V ∗)) → Ωn(V × P+(V ∗)) defined on the contact manifold
V × P+(V ∗), which is called the Rumin differential (see [53]).

Theorem 3.3.4 (Bernig-Bröcker [9] Theorem 2.2). τ ∈ Ωk,n−k−1(V ×P+(V ∗))tr induces
the trivial valuation if and only if

1. Dτ = 0,

2. π∗τ = 0.

Here π : V × P+(V ∗) → V is the natural projection and π∗ : Ωn−1(V × P+(V ∗))tr →
C∞(V ) denotes the fiber integration.
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3.3 Construction of smooth valuations using the conormal cycle

Note that the second condition is always satisfied for 1 ≤ k ≤ n− 1, while the first is
always true for k = 0.
As we will need it in the following chapters, let us discuss the Rumin differential in
more detail. On V × P+(V ∗), there exists a canonical distribution of hyperplanes H ⊂
T (V × P+(V ∗)), given by

H(x,[v]) = ker(v ◦ dπ|(x,[v])) for (x, [v]) ∈ V × P+(V ∗).

Given a scalar product on V , we can identify P+(V ∗) ∼= S(V ∗). Then the hyperplane
distribution is given by the kernel of the nowhere vanishing 1-form α ∈ Ω1(V × S(V ∗)),

α|(x,v) := 〈v, dπ·〉 for (x, v) ∈ V × S(V ∗).

The restriction of dα to each hyperplane is non-degenerate, so the distribution H is a
contact distribution. We will identify α with the corresponding 1-form on V × P+(V ∗).
Due to the non-degeneracy of dα on the contact hyperplanes, one can introduce a unique
vector field R on V × P+(V ∗) such that iRα = 1, iRdα = 0, which is called the Reeb
vector field. Let us call a form τ ∈ Ωk(V × P+(V ∗)) vertical if its restriction to the
contact distribution vanishes. It is easy to see that this is equivalent to α ∧ τ = 0.
Plugging in R, this yields τ = α ∧ iRτ for vertical differential forms.
One can show that for any τ ∈ Ωn−1(V × P+(V ∗)) there exists a unique vertical form
ξ such that d(τ + ξ) is vertical. In this case, the Rumin differential of τ is defined as
Dτ := d(τ + ξ).

For the next proposition, we need the following notion: A smooth area measure is any
map of the form

K(V )× B(P+(V ∗))→ R
(K,U) 7→

(
N(K)xπ−1

2 (U)
)

[τ ],

where B(P+(V ∗)) denotes the family of Borel sets in P+(V ∗), τ ∈ Ωk,n−k−1(V ×P+(V ∗))tr

is a translation invariant differential form, and π2 : V × P+(V ∗) → P+(V ∗) is the
projection on the second factor. In other words, a smooth area measure associates to
every convex body a signed measure on the unit sphere. It is known that a differential
form τ induces the trivial area measure if and only if it is contained in the ideal generated
by α and dα. We refer to [60] for further details on smooth area measures.

Proposition 3.3.5. For 1 ≤ k ≤ n − 1 let τ ∈ Ωk,n−k−1(V × P+(V ∗))tr represent a
smooth valuation µ ∈ Valk(V )sm. Then v-suppµ = π2(suppDτ).

Proof. We will assume that we are given a scalar product on V , so we can work with
the induced structures. This also identifies C∞(P+(V ∗), L) ∼= C∞(P+(V ∗)).
Let us start by showing

GW(µ)(φ1 ⊗ · · · ⊗ φk) =
1

k!
N*(K) [(φ1iRD) . . . (φkiRD)τ ]

=
1

k!

∫
{0}×P+(V ∗)

(φ1iRD) . . . (φkiRD)τ
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3 Valuations on convex bodies and the vertical support

for any K ∈ K(V ), φ1, . . . , φk ∈ C∞(P+(V ∗)). Wannerer observed in [60] Proposition
2.2 that the following holds for every smooth strictly convex body L:

d

dt

∣∣∣
0
µ(K + tL) = N*(K)[hLiRDτ ].

Iterating this formula for smooth convex bodies L1, . . . , Lk, we obtain

GW(µ)(hL1 ⊗ · · · ⊗ hLk) =
1

k!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0

N*

(
K +

k∑
i=1

λiLi

)
[τ ]

=
1

k!
N*(K) [(hL1iRD) . . . (hLkiRDτ)] .

As GW(µ) is uniquely determined by its values on functions of the form hL1⊗· · ·⊗hLk ,
we see that

GW(µ)(φ1 ⊗ · · · ⊗ φk) =
1

k!
N*(K) [(φ1iRD) . . . (φkiRD)τ ]

for any K ∈ K(V ). Choosing K = {0}, we obtain the desired formula.

Let us show that v-suppµ ⊂ π2(Dτ): Assume that one of the functions φi in the
equation above satisfies suppφi ∩ π2(Dτ) = ∅. As the Goodey-Weil distribution of a
valuation is symmetric, we can assume i = k, so φkiRDτ = 0. Thus the formula above
implies GW(µ)(φ1⊗ · · · ⊗ φk) = 0, and we see that supp GW(µ) ⊂ ∆(π2(suppDτ)), i.e.
v-suppµ ⊂ π2(suppDτ).
For the converse inclusion, let v ∈ π2(suppDτ) be an arbitrary point, U an arbitrary
neighborhood of v ∈ P+(V ∗). Then Dτ does not vanish identically on V × U . We will
construct functions φ1, . . . , φk with support in U such that GW(µ)(φ1 ⊗ · · · ⊗ φk) 6= 0.
Let us start with φ1: Consider the area measure induced by iRDτ . Let us show that the
restriction of iRDτ to the contact distribution H is not contained in the ideal generated
by α and dα on V × U . Using the Lefschetz decomposition (see Proposition 7.2.1), this
is equivalent to iRDτ being primitive, i.e. to dα ∧ iRDτ |H = 0 on the contact plane.
However, Dτ = α ∧ iRDτ is closed, so

0 = d(α ∧ iRDτ) = dα ∧ iRDτ − α ∧ diRDτ.

Restricting the equation to the contact distribution, i.e. the kernel of α, we obtain the
desired result. We can thus find φ1 ∈ C∞c (U) such that N*(K)[φ1iRDτ ] 6= 0 for some
K ∈ K(V ). In particular, the valuation induced by the differential form τ1 := φ1∧ iRDτ
is non-trivial. By construction, this differential form is of bidegree (k − 1, n − k), i.e.
it defines a (k − 1)-homogeneous valuation. Thus Dτ1 6= 0 if k 6= 1 by Theorem 3.3.4.
Obviously, π2(suppDτ1) ⊂ U .
Repeating this construction, we obtain functions φ1, . . . , φk with the properties

1. suppφi ⊂ U ,
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3.3 Construction of smooth valuations using the conormal cycle

2. τi+1 := φi+1iRDτi defines a non-trivial valuation of degree k − i− 1.

In particular, the map

K 7→ N*(K)[τk] = N*(K) [(φkiRD) . . . (φ1iRD)τ ]

defines a 0-homogeneous, non-trivial valuation, i.e. it is a constant multiple of the Euler
characteristic. Using the expression of the Goodey-Weil distribution derived above, we
obtain

GW(µ)(φ1 ⊗ · · · ⊗ φk) =
1

k!
N*(K) [(φkiRD) . . . (φ1iRD)τ ] 6= 0

for any K ∈ K(V ). As this is true for any neighborhood U of v, ∆(v) ∈ supp GW(µ),
i.e. v ∈ v-supp(µ).
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4 Convex functions

In this chapter we collect some facts about convex functions and their topology. It is
also a part of [35].
For simplicity we will assume that V is a Euclidean vector space.

4.1 Topology on spaces of convex functions

Let U ⊂ V be a convex subset. A function f : U → R ∪ {+∞} is called convex if the
following inequality holds for any x0, x1 ∈ U and every t ∈ [0, 1] :

f(tx1 + (1− t)x0) ≤ tf(x1) + (1− t)f(x0).

Equivalently, f : U → R∪{+∞} is convex if and only if its epi-graph epi(f) := {(x, t) ∈
U ×R : f(x) ≤ t} is a convex subset of U ×R. Note that f is lower semi-continuous if
and only if epi(f) is closed in U × R. In this thesis we are mostly interested in subsets
of

Conv(V ) := {f : V → R ∪ {+∞} : f convex, lower semi-continuous, f 6≡ +∞}.

For any f ∈ Conv(V ), we define the domain of f

dom(f) := {x ∈ V : f(x) < +∞}.

By definition, dom(f) is a non-empty convex subset of V . f is always continuous on the
interior of dom(f). In particular, the space of finite-valued convex functions

Conv(V,R) := {f : V → R : f convex} ⊂ Conv(V )

contains only continuous functions. Note that Conv(V,R) is closed with respect to the
formation of the pointwise maximum, while the maximum of two elements of Conv(V )
may be identical to +∞.

We adopt the following notion of convergence for sequences in Conv(V ). It is closely
related to convergence with respect to the Hausdorff metric.

Definition 4.1.1. A sequence (fj)j in Conv(V ) epi-converges to f ∈ Conv(V ) if and
only if for every x ∈ V the following conditions hold:

1. For every sequence (xj)j in V converging to x: f(x) ≤ lim inf
j→∞

fj(xj).

2. There exists a sequence (xj)j converging to x such that f(x) = lim
j→∞

fj(xj).
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4 Convex functions

It is known that this notion of convergence is induced by a metrizable topology on
Conv(V ) (see for example [52] Theorem 7.58).
In the constructions used in the later chapters, the limit function f ∈ Conv(V ) will
usually be finite on some open subset of V . In this case epi-convergence, pointwise
convergence, and locally uniform convergence are compatible in the following sense:

Proposition 4.1.2 ([52] Theorem 7.17). For a function f ∈ Conv(V ) such that dom f
has non-empty interior and a sequence (fj)j in Conv(V ) the following are equivalent:

1. (fj)j epi-converges to f .

2. (fj)j converges pointwise to f on a dense subset.

3. (fj)j converges uniformly to f on all compact subsets that do not contain a bound-
ary point of dom f .

In particular, a sequence (fj)j in Conv(V,R) epi-converges to f ∈ Conv(V,R) if and
only if it converges uniformly on compact subsets.

4.2 Compact subsets of the space of finite-valued
convex functions

As we will equip our spaces of valuations with the compact-open topology, we need some
useful characterization of (relatively) compact subsets. For our purposes, it will only
be necessary to have some controle over compact subsets of the subspace Conv(V,R) of
finite-valued convex functions. Due to Proposition 4.1.2, we can consider Conv(V,R)
as a subspace of the space of all continuous functions on V . We will thus invoke the
theorem of Arzelà-Ascoli, so we need to show that any compact subset of Conv(V,R) is
locally uniformly equicontinuous. Sufficient for the uniform equicontinuity is a common
bound on the Lipschitz constants. This common bound is established by the following
proposition.

Proposition 4.2.1. Let U ⊂ V be a convex, open subset and f : U → R a convex
function. If X ⊂ U is a set with X + εB1 ⊂ U such that f is bounded on X + εB1, then
f is Lipschitz continuous on X with Lipschitz constant 2

ε
‖f |X+εB1‖∞.

Proof. This is a special case of [52] 9.14.

Proposition 4.2.2. A subset U ⊂ Conv(V,R) is relatively compact if and only if it is
bounded on compact subsets.

Proof. As U ⊂ C(V ) is compact, the restriction to any compact subset K ⊂ V leads to
a compact subset of C(K), which therefore has to be bounded. Thus the elements of U
are locally uniformly bounded.
For the converse statement, observe that the topology on Conv(V,R) is metrizable, so
we only have to show that the closure of any such subset is sequentially compact. Let
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(fk)k be a sequence in Conv(V,R) that is bounded on compact subsets of V . Then the
Lipschitz constants of these functions are also uniformly bounded on Bj for all j ∈ N by
Proposition 4.2.1. In particular, the set {fk|Bj : k ∈ N} ⊂ C(Bj) is equicontinuous. By
the theorem of Arzelà-Ascoli, we can choose a subsequence fj,k that converges uniformly
on Bj to some function fj,∞ ∈ C(Bj) for k → ∞. Iterating this argument for all
j ∈ N and taking an appropriate diagonal series, we find a subsequence that converges
uniformly on Bj for all j ∈ N to some function f ∈ C(V ). It is easy to see that f is
convex. Now the claim follows from Proposition 4.1.2.

4.3 Some dense families of convex functions

The Legendre transform or convex dual of a function f ∈ Conv(V ) is the function
f ∗ : V ∗ → (−∞,∞] given by

f ∗(y) = sup
x∈V
〈y, x〉 − f(x) for y ∈ V ∗,

where 〈·, ·〉 : V ∗ × V → R denotes the canonical pairing. As a consequence of [51]
Theorem 12.2 and Corollary 12.2.1, we have

Proposition 4.3.1. For f ∈ Conv(V ), f ∗ ∈ Conv(V ∗) and f ∗∗ := (f ∗)∗ = f .

Proposition 4.3.2. The map Conv(V ) → Conv(V ), f 7→ f ∗ has the following proper-
ties:

1. It is continuous with respect to the topology induced by epi-convergence.

2. If f ∨ h, f ∧ h ∈ Conv(V ), then

(f ∨ h)∗ = f ∗ ∧ h∗, (f ∧ h)∗ = f ∗ ∨ h∗.

3. If x ∈ V , c ∈ R and f ∈ Conv(V ), then

(f(· − x) + c)∗(y) = f ∗(y) + 〈y, x〉 − c for all y ∈ V ∗.

Proof. See [52] Theorem 11.34 for 1. and [20] Proposition 3.4. for 2. The last property
follows directly from the definition.

Let f ∈ Conv(V ). An element y ∈ V ∗ is called a subgradient of f in x0 ∈ dom f if

f(x0) + 〈y, x− x0〉 ≤ f(x) for all x ∈ V.

The set of all subgradients of f in a point x0 ∈ dom f is called the subdifferential of f
in x0 and will be denoted by ∂f(x0). Note that ∂f(x) = {df(x)} if f is differentiable in
x ∈ V .
We recall the following basic properties of the subdifferential:
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4 Convex functions

Lemma 4.3.3 ([51] Theorem 23.5). For f ∈ Conv(V ), x ∈ V , y ∈ V ∗ the following are
equivalent:

1. y ∈ ∂f(x),

2. 〈y, x〉 = f(x) + f ∗(y),

3. y ∈ argmaxx∈V 〈y, x〉 − f(x).

Lemma 4.3.4. Let f ∈ Conv(V,R). Then ∂f(x) ∈ K(V ∗) for all x ∈ V , and if f is
Lipschitz continuous on a neighborhood of x ∈ V with Lipschitz constant L > 0, then
∂f(x) ⊂ BL(0).

Proof. This is a special case of [13] 2.1.2.

Also note that ∂f(x) 6= ∅ for any x ∈ V if f ∈ Conv(V,R).
In Section 5.2.2 we will relate valuations on convex functions to valuations on higher
dimensional convex bodies. This construction relies on a density result contained in
Corollary 4.3.6 below, which we will deduce from the following proposition.

Proposition 4.3.5. Let f ∈ Conv(V,R) be a finite-valued convex function, f ∗ its convex
dual, R > 0. If ‖f‖C(BR+2) ≤ c, then the set

Kf,R := epi(f ∗) ∩ {(y, t) ∈ V ∗ × R : |y| ≤ 2c, |t| ≤ (2R + 3)c}

is a convex body in V ∗ × R and satisfies

f(x) = hKf,R(x,−1) for all x ∈ BR+1.

Proof. Consider the set C := {y ∈ V ∗ : y ∈ ∂f(x) for some x ∈ BR+1}. As f |BR+1

is Lipschitz continuous with Lipschitz constant L = 2‖f‖C(BR+2) by Proposition 4.2.1,
Lemma 4.3.4 implies that C is contained in a ball of radius L centered at the origin.
Any y ∈ C satisfies f ∗(y) = 〈x, y〉 − f(x) for some x ∈ BR+1 due to Lemma 4.3.3. Thus

|f ∗(y)| ≤ |〈y, x〉|+ |f(x)| ≤ L(R + 1) + ‖f‖C(BR+2) ≤ (2R + 3)‖f‖C(BR+2) ≤ (2R + 3)c.

Let us show that f(x) = hKf,R(x,−1) for all x ∈ BR+1. Obviously, the left hand side
is equal to or larger than the right hand side. By Lemma 4.3.4, we know that for any
x ∈ BR+1 there exists y ∈ V ∗ such that f(x) = 〈y, x〉−f ∗(y). In particular y ∈ C. Then

(y, f ∗(y)) ∈ epi(f ∗) ∩ {(y, t) ∈ V ∗ × R : |y| ≤ 2c, |t| ≤ (2R + 3)c} = Kf,R

by the previous discussion, so

f(x) = 〈y, x〉 − f ∗(y) ≤ sup
(ỹ,t)∈Kf,R

〈ỹ, x〉 − t = hKf,R(x,−1).

As f ∗ is lower semi-continuous, the set epi(f ∗)∩{(y, t) ∈ V ∗×R : |y| ≤ 2(R+2)c, |t| ≤
3(R + 2)c} is closed. As it is also convex and bounded, it belongs to K(V ∗ × R).

44



4.4 Lipschitz regularization

We thus obtain the following density results.

Corollary 4.3.6. The following families of functions are dense in Conv(V,R):

1. {hK(·,−1) : K ∈ K(V ∗ × R)},

2. {hP (·,−1) : P ∈ K(V ∗ × R) polytope},

3. {hK(·,−1) : K ∈ K(V ∗ × R)sm},

4. Conv(V,R) ∩ C∞(V ).

Proof. For the first set this follows directly from Proposition 4.3.5 and the continuity
of the map K(V ∗ × R) → Conv(V,R), K 7→ hK(·,−1), see Lemma 2.4.2. As {P ∈
K(V ∗ × R) : P polytope} and K(V ∗ × R)sm are dense subsets of K(V ∗ × R) by [54]
Theorem 1.8.16 and Proposition 2.4.5 respectively, this implies the density of the second
and third set. For the last set, observe that the support function of any smooth and
strictly convex body is smooth, so the last set contains a dense subset and is thus dense
itself.

4.4 Lipschitz regularization

Most of our results are actually results on valuations on Conv(V,R) which generalize to
more general subspaces of Conv(V ) by approximation.
For r > 0 the Lipschitz regularization or Pasch-Hausdorff envelope of a convex function
f ∈ Conv(V ) is defined as

regr(f) :=
(
f ∗ + 1∞B1/r

)∗
.

We will need the following properties:

Proposition 4.4.1 ([20] Propositions 4.1, 4.2, 4.3). For f, h ∈ Conv(V ) and r > 0, the
Lipschitz regularization has the following properties:

i. There exists r0 > 0 such that regr f ∈ Conv(V,R) for all 0 < r ≤ r0.

ii. regr f epi-converges to f for r → 0.

iii. If x ∈ dom(f) and ∂f(x) ∩ B1/r 6= ∅, then regr f(x) = f(x) and ∂ regr f(x) =
∂f(x) ∩B1/r.

iv. If (fj)j is a sequence in Conv(V ) that epi-converges to f , then there exists r0 > 0
such that (regr fj)j epi-converges to regr f for all 0 < r ≤ r0.

v. If f ∨ h, f ∧ h ∈ Conv(V ), then there exists r0 > 0 such that

regr(f ∨ h)) = regr f ∨ regr h, regr(f ∧ h) = regr f ∧ regr h

for all 0 < r ≤ r0.

Note that ii. implies that Conv(V,R) ⊂ Conv(V ) is dense. Thus the sets considered
in Corollary 4.3.6 are also dense in Conv(V ).
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5 Dually epi-translation invariant
valuations on convex functions

In this Chapter we examine dually epi-translation invariant valuations on certain cones
of convex functions, restating the basic definitions from the introduction in Section 5.1.
Their invariance properties will allow us to relate this type of valuations to translation
invariant valuations on convex bodies in Section 5.2, where we also discuss a classifica-
tion of n-homogeneous valuations from [21]. This relation is then used to establish the
existence of a homogeneous decomposition in Section 5.3, which was also obtained in
[21]. Section 5.4.1 establishes a version of the Goodey-Weil distributions derived from
this decomposition and Sections 5.4.2 and 5.4.3 examine the diagonality and compact-
ness of the support of these distributions.

The results of this chapter are to be published in [35].

5.1 Basic definitions

Let C ⊂ Conv(V ) be a non-empty subset and let (F,+) be an abelian semigroup.

Definition 5.1.1. A map µ : C → F is called a valuation if

µ(f) + µ(h) = µ(f ∨ h) + µ(f ∧ h)

for all f, h ∈ C such that the pointwise maximum f ∨ h and minimum f ∧ h belong to
C.

We will only be interested in the case where F is a real topological vector space
and µ : C → F is continuous with respect to the metrizable topology induced by epi-
convergence.

Definition 5.1.2. Let C ⊂ Conv(V ). A valuation µ : C → F is called dually epi-
translation invariant if

µ(f + λ+ c) = µ(f) for all f ∈ C, λ ∈ V ∗, c ∈ R

such that f + λ+ c ∈ C.

From now on let C ⊂ Conv(V ) be a subset with Conv(V,R) ⊂ C.

Definition 5.1.3. If F is a topological vector space, let VConv(C;V, F ) denote the space
of all valuations µ : C → F that are
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1. continuous with respect to epi-convergence,

2. dually epi-translation invariant.

If C = Conv(V,R), we will use the notation VConv(V, F ) instead. For F = R, we
will write VConv(C;V ) := VConv(C;V,R) and VConv(V ) := VConv(V,R) for brevity.
We also equip VConv(C;V, F ) with the compact-open topology. Note that Proposition
4.2.2 provides a characterization of all compact subsets for the case C = Conv(V,R).

5.2 Relation to valuations on convex bodies

In this section we will construct injective maps from VConv(C;V, F ) into spaces of
translation invariant valuations on convex bodies. We start with a generalization of the
map

VConv(V )→ Val(V ∗)

µ 7→ [K 7→ µ(hK)]

considered by Alesker in [7].

5.2.1 Characteristic function

We first consider translates of support functions.

Lemma 5.2.1. Let (G,+) be an Abelian semi-group with cancellation law that carries a
Hausdorff topology, and µ1, µ2 : Conv(V,R)→ G two continuous valuations. If µ1(hP (·−
y) + c) = µ2(hP (·− y) + c) for all polytopes P ∈ K(V ∗) with 0 ∈ intP , y ∈ V and c ∈ R,
then µ1 ≡ µ2 on Conv(V,R).

Proof. This is [49] Lemma 5.1. To be precise, the version in [49] considers translation
invariant valuations, however, the proof only uses the weaker property stated above.

Proposition 5.2.2. Let µ ∈ VConv(C;V, F ), where F is Hausdorff and Conv(V,R) ⊂
C. For x ∈ V define S(µ)[x] ∈ Val(V, F ) by [S(µ)[x]](K) := µ(hK(· − x)). Then the
map

S : VConv(C;V, F )→ C(V,Val(V ∗, F ))

is well defined and injective. We will call S(µ) the characteristic function of µ ∈
VConv(C;V, F ).

Proof. The properties of the support function imply that S(µ)[x] ∈ Val(V ∗, F ) for all
x ∈ V , see Proposition 2.4.6. To see that S is injective, assume that S(µ) = 0. Then
µ(hP (· − x) + c) = 0 for all polytopes P ∈ K(V ) with 0 ∈ intP and all x ∈ V , c ∈ R, so
Lemma 5.2.1 implies µ ≡ 0 on Conv(V,R), which is dense in C by Proposition 4.4.1, so
µ = 0 by continuity.
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5.2 Relation to valuations on convex bodies

Now let B ⊂ V ∗ be a convex body with non-empty interior and set B̃ := {K ∈ K(V ∗) :
K ⊂ B}. Recall that a basis for the topology of Val(V ∗, F ) is given by translates of the
open subsets

M(B̃, O) = {µ ∈ Val(V ∗, F ) : µ(K) ∈ O ∀K ∈ B̃},

where O ⊂ F is an open neighborhood of the origin. Let us show that the map

R : K(V ∗)× V → Conv(V,R)

(K, x) 7→ hK(· − x)

is continuous. Assume that (Kj, xj) is a convergent sequence in K(V ∗) × V with limit
(K, x). Then∣∣hKj(· − xj)− hK(· − x)

∣∣ ≤ ∣∣hKj(· − xj)− hK(· − xj)
∣∣+ |hK(· − xj)− hK(· − x)| .

As the sequence of functions (hKj)j converges uniformly on the compact subset {xj :
j ∈ N} ∪ {x}, the right hand side converges to 0.
We deduce that (K, x) 7→ S(µ)[x](K) = [µ◦R](K, x) is uniformly continuous on compact
subsets. In particular, we can find δ > 0 such that

µ(hK(· − x))− µ(hK(· − x′)) ∈ O ∀K ⊂ B, ∀x, x′ ∈ V with |x− x′| < δ,

i.e.

S(µ)[x]− S(µ)[x′] ∈M(B̃, O) for all x, x′ ∈ V with |x− x′| < δ.

Thus S(µ) is continuous.

If µ ∈ VConv(V ) is n-homogeneous, then S(µ) ∈ C(V,Valn(V ∗)). By a classical result
due to Hadwiger [31], Valn(V ∗) is 1-dimensional and spanned by a Lebesgue measure.
In other words, we can interpret S(µ) as an element of C(V )⊗Dens(V ∗). Let us return
to the n-homogeneous valuations considered in Example 1.0.5. All of these functionals
are given by

f 7→
∫
V

φdHessn(f)

for some φ ∈ Cc(V ). This is in fact a complete characterization of VConvn(V ), as we will
discuss below. To present a version of this result in terms suitable for our application in
later chapters, we will need some additional properties of the Hessian measure. These
results are well known, but for the convenience of the reader we will show how these
basic properties follow from the characterization of Hessn on smooth functions and the
continuity with respect to the vague topology.

Lemma 5.2.3. The Hessian measure has the following properties:
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5 Dually epi-translation invariant valuations on convex functions

1. If f = h on an open subset U ⊂ V , then∫
V

φdHessn(f) =

∫
V

φdHessn(h) for all φ ∈ Cc(U).

2. Hessn(f) is a non-negative measure for all f ∈ Conv(V,R).

3. Hessn(hK(· − y)) = volV ∗(K)δy for all y ∈ V , where volV ∗ is the unique volume
form on V ∗ inducing Hessn, see Chapter 1.

Proof. Choose a scalar product on V and identify V ∼= Rn using an orthonormal basis.
For the first property, observe that the mollified functions fε and hε coincide on an open
neighborhood of suppφ for all ε > 0 small enough. Thus the defining property and the
continuity of the Hessian measure imply∫

V

φdHessn(f) = lim
ε→0

∫
V

φdHessn(fε) = lim
ε→0

∫
V

φ(x) det(Hfε(x))dx

= lim
ε→0

∫
V

φ(x) det(Hhε(x))dx = lim
ε→0

∫
V

φdHessn(hε) =

∫
V

φdHessn(h).

This also directly implies the second property.
For the last property, assume first that K ∈ K(V ∗) is smooth and strictly convex. Then
hK(· − y) is smooth on V \ {y}. In addition, hK is 1-homogeneous, so detHhK(·−y) = 0
on V \ {y}. Mollifying hK , the first property implies∫

V

φdHessn(hK(· − y)) = lim
ε→0

∫
V

φdHessn((hK(· − y))ε)

= lim
ε→0

∫
V

φ(x) detH(hK(·−y))ε(x)dx =

∫
V

φ(x) detHhK(·−y)(x)dx = 0

for all φ ∈ Cc(V ) with suppφ ⊂ V \ {y}. By continuity, this holds for all K ∈ K(V ∗),
so Hessn(hK(· − y)) = c(K)δy for some c(K) ∈ R. Now take a function φ ∈ Cc(V ) with
φ = 1 on a neighborhood of y ∈ V . Then

K 7→ c(K) =

∫
V

φdHessn(hK(· − y))

defines a continuous, n-homogeneous valuation on K(V ∗), which is also translation in-
variant. By Hadwiger’s characterization, c(K) = C · volV ∗(K) for some C ∈ R. To
determine C, take the function fε ∈ Conv(V,R) given for ε > 0 by

fε(x) =
√
ε2 + |x|2.

For ε→ 0, this function converges to the support function of the unit ball. Thus

C · volV ∗(B1) = c(B1) = lim
ε→0

∫
V

φdHessn(fε(· − y)).
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5.2 Relation to valuations on convex bodies

The Hessian of fε is given by

Hfε(x) =
1√

ε2 + |x|23 ((ε2 + |x|2)Idn − x · xT ),

which has two distinct eigenvalues for x 6= 0: On the orthogonal complement of x, Hfε(x)

operates by multiplication with (
√
ε2 + |x|2)−1, while it is given by the multiplication

with ε2/
√
ε2 + |x|23

on the 1-dimensional space spanned by x. Thus

lim
ε→0

∫
V

φdHessn(fε(· − y)) = lim
ε→0

∫
V

φ(x) detHfε(x− y)dx

= lim
ε→0

∫
V

φ(x+ y) detHfε(x)dx = lim
ε→0

∫
V

φ(x+ y)
ε2√

ε2 + |x|2n+2dx

= lim
ε→0

∫
V

φ(x+ y)
ε2

εn+2

√
1 + |x|2

ε2

n+2dx = lim
ε→0

∫
V

φ(εx+ y)
1√

1 + |x|2n+2dx

=

∫
V

φ(y)
1√

1 + |x|2n+2dx = φ(y)

∫
V

1√
1 + |x|2n+2dx

by the theorem of dominated convergence. The last integral can be computed using
polar coordinates and reduces to the volume of the unit ball. Thus C = φ(y) = 1.

Now assume that µ ∈ VConv(V ) is n-homogeneous and choose volV ∗ ∈ Dens(V ∗). If
S(µ) ∈ C(V,Valn(V ∗)) ∼= C(V )⊗Dens(V ∗) has compact support, write S(µ) = φ⊗volV ∗
for φ ∈ Cc(V ). If Hessn denotes the Hessian measure induced by volV ∗ , consider the
continuous valuation

µ̃(f) :=

∫
V

φdHessn(f).

By Lemma 5.2.3, S(µ̃) = φ ⊗ volV ∗ = S(µ), so Proposition 5.2.2 implies µ = µ̃. For
a complete characterization of all n-homogeneous elements of VConv(V ), we only need
to show that the characteristic function of any n-homogeneous valuation has compact
support. This was done by Colesanti, Ludwig and Mussnig in [21]. Let us state their
result using our terminology:

Theorem 5.2.4 ([21] Theorem 5). µ : Conv(V,R)→ R is a continuous, n-homogeneous,
dually epi-translation invariant valuation if and only if there exists φ ∈ Cc(V ) such that

µ(f) =

∫
V

φdHessn(f) for all f ∈ Conv(V,R)

for some Hessian measure Hessn. More precisely, φ⊗ volV ∗ ∈ Cc(V,Valn(V ∗)) coincides
with the characteristic function S(µ) of µ, where volV ∗ is the unique density inducing
Hessn.
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5 Dually epi-translation invariant valuations on convex functions

5.2.2 Embedding into Val(V ∗ × R, F )

By Proposition 2.4.6, the map

P : K(V ∗ × R)→ Conv(V,R)

K 7→ hK(·,−1)

is continuous, where we have used the canonical isomorphism (V × R)∗ ∼= V ∗ × R.
For µ ∈ VConv(C;V, F ) define T (µ) ∈ Val(V ∗, F ) by T (µ)[K] := µ(hK(·,−1)) for
K ∈ K(V ∗ × R).

Theorem 5.2.5. Let F be a Hausdorff real topological vector space and C ⊂ Conv(V )
a subset with Conv(V,R) ⊂ C. Then

T : VConv(C;V, F )→ Val(V ∗ × R, F )

is well defined, continuous, and injective.

Proof. It is clear that T (µ) = µ ◦ P ∈ Val(V ∗ × R, F ).
Let us show that T is injective: If T (µ) = 0, then µ(hK(·,−1)) = 0 for allK ∈ K(V ∗×R).
By Corollary 4.3.6, these functions form a dense subspace of Conv(V,R), which is dense
in C, so the continuity of µ implies µ = 0, as F is Hausdorff. Thus T is injective.
A basis for the topology of Val(V ∗ × R, F ) is given by the open sets

M(B,O) = {µ ∈ Val(V ∗ × R, F ) : µ(K) ∈ O ∀K ∈ B},

where O ⊂ F is open and B ⊂ K(V ∗ × R) is compact. Then

T−1(M(B,O)) = {µ ∈ VConv(C;V, F ) : µ(hK(·,−1)) ∈ O ∀K ∈ B}
= {µ ∈ VConv(C;V, F ) : µ(f) ∈ O ∀f ∈ P (B)}
=M(P (B), O).

As P is continuous, P (B) is compact in C, so T−1(M(B,O)) =M(P (B), O) is open in
VConv(C;V, F ).

5.3 Homogeneous decomposition

In this section we are going to prove that VConv(C;V, F ) decomposes into a direct
sum of spaces of homogeneous valuations. Colesanti, Ludwig and Mussnig [21] showed
a version of this homogeneous decomposition for C = Conv(V,R), F = R using the
characteristic function. Their approach easily generalizes to the more general case. We
will thus present a different proof, where we use the embedding of VConv(C;V, F ) into
Val(V ∗ × R, F ).
We will call a subset C ⊂ Conv(V ) invariant under scaling if tf ∈ C for all f ∈ C, t > 0.
This notion will be replaced by a more restrictive property in the next section.
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5.3 Homogeneous decomposition

Definition 5.3.1. Let C ⊂ Conv(V ) be invariant under scaling. A continuous valuation
µ : C → F is called k-homogeneous if µ(tf) = tkµ(f) for all f ∈ C and all t > 0. We will
denote the space of k-homogeneous valuations in VConv(C;V, F ) by VConvk(C;V, F ).

Proposition 5.3.2. Let F be a Hausdorff real topological vector space, C ⊂ Conv(V ) a
subset invariant under scaling that contains Conv(V,R), and µ ∈ VConv(C;V, F ). Then
there exist valuations µi ∈ VConvi(C;V, F ) for i = 0, . . . , n+ 1 such that

µ =
n+1∑
i=0

µi.

Proof. Consider the injective map T : VConv(C;V, F )→ Val(V ∗×R, F ) from Theorem
5.2.5, given by T (µ)[K] = µ(hK(·,−1)) for K ∈ K(V ∗ × R).
For t > 0 define µt ∈ VConv(C;V, F ) by µt(f) := µ(tf) for f ∈ C. Then T (µt)[K] =
T (µ)[tK], as htK = thK for t > 0.
Using the McMullen decomposition (Theorem 1.0.1) for Val(V ∗ × R, F ), we see that
T (µt) =

∑n+1
i=0 t

iµ̃i for homogeneous elements µ̃i ∈ Vali(V
∗ × R, F ). Plugging in 0 <

t0 < · · · < tn+1 and using the inverse of the Vandermonde matrix, we obtain constants
cij ∈ R such that µ̃i =

∑n+1
j=0 cijT (µtj).

Now define µi ∈ VConv(C;V, F ) by µi :=
∑n+1

j=0 cijµ
tj . Then, obviously, T (µi) = µ̃i and

for any K ∈ K(V ∗ × R), t > 0:

T
(
µti
)

(K) = T (µi)(tK) = µ̃i(tK) = tiµ̃i(K) = tiT (µi)(K) = T
(
tiµi
)

(K).

The injectivity of T implies tiµi = µti, i.e. µi is i-homogeneous. In addition,

T (µ) =
n+1∑
i=0

µ̃i =
n+1∑
i=0

T (µi) = T

(
n+1∑
i=0

µi

)
.

Thus the injectivity of T implies µ =
∑n+1

i=0 µi.

It remains to see that the top component vanishes.

Proposition 5.3.3. VConvn+1(C;V, F ) = 0

Proof. Let µ ∈ VConvn+1(C;V, F ). As Conv(V,R) is dense in C, we only need to show
that µ vanishes on finite-valued convex functions. Using Proposition 5.2.2, it is sufficient
to show µ(hK(· − x)) = 0 for all K ∈ K(V ∗) and x ∈ V . However, K 7→ µ(hK(· − x))
defines an element of Valn+1(V ∗, F ) = 0. The claim follows.

We thus arrive at the main result of this section.

Theorem 5.3.4. Let C ⊂ Conv(V ) be subset invariant under scaling that contains
Conv(V,R) and F a Hausdorff real topological vector space. Then

VConv(C;V, F ) =
n⊕
k=0

VConvk(C;V, F ).

Proof. This follows directly from Proposition 5.3.2 and Proposition 5.3.3.
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5 Dually epi-translation invariant valuations on convex functions

5.3.1 Polynomiality and polarization

Let us call a subset C ⊂ Conv(V ) a cone if tf +h ∈ C for f, h ∈ C and t > 0. To define
the polarization of a homogeneous valuation in VConvk(C;V, F ), we need the following
regularity assumption on the cone C:

Definition 5.3.5. A cone C ⊂ Conv(V ) will be called regular if dom f has non-empty
interior for all f ∈ C.

Lemma 5.3.6. If C ⊂ Conv(V ) is a regular cone, then

+ : C × C → C

(f, h) 7→ f + h

is continuous.

Proof. This follows directly from Proposition 4.1.2.

Note that this map is in general not continuous if C is not a regular cone: Take
h := I∞(−∞,0] and fj ∈ Conv(V ) given by

fj(x) = I∞[0,∞) + j2 max(
1

j
− x, 0) =


∞ x < 0,

j − j2x 0 ≤ x ≤ 1
j
,

0 1
j
< x.

Using Proposition 4.1.2, we see that (fj)j epi-converges to f = I∞[0,∞), but h+fj = j+I∞{0}
does not epi-converge to h+ f = I∞{0}.
From now on we will assume that F is a Hausdorff real topological vector space and
that C ⊂ Conv(V ) is a regular cone containing Conv(V,R). Then we can consider
the question of polynomiality for elements of VConv(C;V, F ). From Theorem 5.3.4 we
deduce

Corollary 5.3.7. Let C ⊂ Conv(V ) be a regular cone containing Conv(V,R). For
µ ∈ VConv(C;V, F ) and f1, . . . , fm ∈ C, the map (λ1, . . . , λm) 7→ µ(

∑m
j=1 λjfj) is a

polynomial in λj > 0.

Proof. We will use induction on m ∈ N. For m = 1, this is just Theorem 5.3.4. Assume
we have shown the statement for m ∈ N. The map

f 7→ µ (h+ f)

belongs to VConv(C;V, F ) for all h ∈ C by Lemma 5.3.6. Using Theorem 5.3.4, we
obtain

µ (h+ tf) =
n∑
i=0

tiµi (h, f) ,
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5.3 Homogeneous decomposition

where µi : C2 → F is an i-homogeneous, continuous, and dually epi-translation invariant
valuation in the second argument and a dually epi-translation invariant valuation in
the first. To see that µi is continuous in the first argument, apply the inverse of the
Vandermonde matrix to the formula above to write µi(h, f) as a linear combination of
elements of the form µ(h+ tf) for a finite number of fixed values of t > 0.
The induction assumption implies that (λ1, . . . , λm) 7→ µi(

∑m
j=1 λjfj, f) is a polynomial

in λj > 0, 1 ≤ j ≤ m. The claim follows.

Definition 5.3.8. A valuation µ ∈ VConv(C;V, F ) is called additive if µ(f + g) =
µ(f) + µ(g) for all f, g ∈ C.

By continuity any additive valuation is 1-homogeneous.

Theorem 5.3.9. Let C ⊂ Conv(V ) be a regular cone containing Conv(V,R). For every
µ ∈ VConvk(C;V, F ) there exists a unique map µ̄ : Ck → F , called the polarization of
µ, with the following properties:

1. µ̄ is additive and 1-homogeneous in each argument,

2. µ̄ is symmetric,

3. µ(f) = µ̄(f, . . . , f) for all f ∈ C.

Proof. We start by showing uniqueness: Using 1. and 3., we obtain

µ

(
k∑
j=1

λjfj

)
= µ̄

(
k∑
j=1

λjfj, . . . ,
k∑
j=1

λjfj

)
=

k∑
j1,...,jk=1

λj1 . . . λjk µ̄ (fj1 , . . . , fjk) .

Differentiating and using 2., we obtain the formula

µ̄(f1, . . . , fk) =
1

k!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0
µ

(
k∑
j=1

λjfj

)
. (5.1)

Thus µ̄ is uniquely determined by µ. To see that such a functional exists, observe that
5.3.7 implies that the right-hand side of Equation (5.1) is well defined, so we can use
this equation to define µ̄.
Obviously, the definition is symmetric in f1, . . . , fn. To see that µ̄ is additive in each
argument, we thus only need to consider one argument. Setting

F (t, s) :=
1

k!

∂

∂λ1

∣∣
0
. . .

∂

∂λk−1

∣∣
0
µ

(
k−1∑
j=1

λjfj + tf + sg

)
,

G(t) :=F (t, t),

we obtain

µ̄(f1, . . . , fk−1, f + g) =G′(0) =
∂F

∂t

∣∣∣
(0,0)

+
∂F

∂s

∣∣∣
(0,0)

=µ̄(f1, . . . , fk−1, f) + µ̄(f1, . . . , fk−1, g).
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5 Dually epi-translation invariant valuations on convex functions

For the last property, we calculate

µ̄(f, . . . , f) =
1

k!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0
µ

(
k∑
j=1

λjf

)
=

1

k!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0

(
k∑
j=1

λj

)k

· µ(f),

where we used that µ is k-homogeneous in the last step. Thus µ̄(f, . . . , f) = µ(f).

The construction shows that µ̄ is a dually epi-translation invariant valuation in each
argument. We will now show that µ̄ is jointly continuous. From the defining properties
of µ̄ we deduce the following corollary.

Corollary 5.3.10. Let C ⊂ Conv(V ) be a regular cone containing Conv(V,R). For
µ ∈ VConvk(C;V, F ), m ∈ N, and f1, . . . , fm ∈ C, µ(

∑m
j=1 λjfj) is a polynomial of

degree at most k in λj ≥ 0.

Corollary 5.3.11. If C ⊂ Conv(V ) is a regular cone containing Conv(V,R), then
µ̄ : Ck → R is continuous for µ ∈ VConvk(C;V, F ).

Proof. Assume that we are given sequences (fi,j)j in C, 1 ≤ i ≤ k, such that each
sequence (fi,j)j converges to some fi ∈ C. Then the polynomials Pj(λ1, . . . , λk) :=

µ(
∑k

i=1 λifi,j) converge pointwise to P (λ1, . . . , λk) := µ(
∑k

i=1 λifi) for λi ≥ 0. As the
degree of Pj is bounded by k due to Corollary 5.3.10, this implies that the coefficient in
front of λ1 . . . λk converges. Now the claim follows from the definition of µ̄ in the proof
of Theorem 5.3.9.

We close this section with an inequality, which will be used in the construction of the
Goodey-Weil embedding. It also shows that the map which associates the polarization
to a given valuation is continuous with respect to the natural topologies.

Lemma 5.3.12. There exists a constant Ck > 0 depending on 0 ≤ k ≤ n only such
that the following holds: If C ⊂ Conv(V ) is a regular cone containing Conv(V,R) and
if K ⊂ C is compact, then

‖µ̄‖F ;K := sup
f1,...,fk∈K

|µ̄(f1, . . . , fk)|F ≤ Ck‖µ‖F ;K′

for every semi-norm | · |F on F and all µ ∈ VConvk(V, F ), where

K ′ :=
k∑
j=1

j+1⋃
i=1

iK =

{
k∑
j=1

fj : fj ∈
j+1⋃
i=1

iK

}
⊂ C

is compact. If K is convex with 0 ∈ K, there exists a constant C ′k > 0 independent of
K such that

‖µ̄‖F ;K ≤ C ′k‖µ‖F ;K .
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5.4 Goodey-Weil embedding

Proof. For f, g ∈ C and λ ≥ 0

µ(f + λg) =
k∑
i=0

λii!(k − i)!µ̄(f [k − i], g[i]).

We are only interested in the linear term. Plugging in λ = 1, . . . , k + 1 and setting
µ′i(f) := µ(f + ig), we obtain a valuation Pg(µ) = (µ′1, . . . , µ

′
k+1) ∈ VConv(C;V, F k+1).

Let πi : F k+1 → F denote the i-th projection and Sk the Vandermonde matrix with
entries corresponding to (1, . . . , k + 1). Then

µ̄(f [k − 1], g) =
1

(k − 1)!
π1[S−1

k Pg(µ)(f)].

If we equip F k+1 with the family of semi-norms |(v1, . . . , vk+1)|F := maxi=1,...,k+1 |vi|F ,
and denote by ‖S−1

k ‖∞ the operator norm of S−1
k : Rk+1 → Rk+1 with respect to the

maximum norm on Rk+1, we obtain

|µ̄(f [k − 1], g)|F ≤
1

(k − 1)!
‖S−1

k ‖∞ |Pg(µ)(f)|F .

For g ∈ K, Pg : VConv(C;V, F )→ VConv(C;V, F k+1) satisfies

|Pg(µ)(f)|F = max
i=1,...,k+1

|µ(f + ig)|F ≤ sup

{
|µ(f + g̃)|F : g̃ ∈

k+1⋃
i=1

iK

}
independent of g ∈ K. Iterating this construction starting with the (k−1)-homogeneous
valuation ν(f) := µ̄(f [k − 1], g), we see that there exists Ck > 0 depending on k only
such that for f1, . . . , fk ∈ K

|µ̄(f1, . . . , fk)|F ≤ Ck sup

{
|µ(g̃)|F : g̃ ∈

k∑
j=1

j+1⋃
i=1

iK

}
= Ck‖µ‖F,K′

for every semi-norm | · |F on F . Also note that K ′ is compact, as it is the image of a
compact subset under the addition map, which is continuous on C by Lemma 5.3.6.
If K is convex with 0 ∈ K, then K ′ ⊂ (k + 1)2K, so

‖µ‖F ;K′ = sup
g∈K′
|µ(g)|F ≤ sup

g∈(k+1)2K

|µ(g)|F ≤ ((k + 1)2)k sup
g∈K
|µ(g)| = (k + 1)2k‖µ‖F ;K ,

i.e. we can choose C ′k := (k + 1)2kCk.

5.4 Goodey-Weil embedding

5.4.1 Construction and basic properties

In this section, we will assume that V carries a Euclidean structure. Let C2
b (V ) denote

the Banach space of twice differentiable functions with bounded C2-norm

‖φ‖C2
b (V ) :=‖φ‖∞ + ‖∇φ‖∞ + ‖Hφ‖∞ = sup

x∈V
|φ(x)|+ sup

x∈V
|∇φ(x)|+ sup

x∈V,v∈S(V )

|〈Hφ(x)v, v〉|.

Let us also set c(A) := supx∈A
|x|2
2

+ 1 for any compact subset A ⊂ V .

57



5 Dually epi-translation invariant valuations on convex functions

Lemma 5.4.1. For every φ ∈ C2
b (V ) there exist two convex functions f, h ∈ Conv(V,R)

such that f − h = φ and such that ‖f |A‖∞, ‖h|A‖∞ ≤ c(A)‖φ‖C2
b (V ) for all compact

subsets A ⊂ V . These functions can be chosen in C∞(V ).

Proof. Take f(x) := c |x|
2

2
+ φ(x), h(x) = c |x|

2

2
, where c := ‖φ‖C2

b (V ). Then f and h are
convex, as their Hessians are positive semi-definite. In addition

‖h|A‖∞, ‖f |A‖∞ ≤ c · sup
x∈A

|x|2

2
+ ‖φ‖∞ ≤

(
sup
x∈A

|x|2

2
+ 1

)
‖φ‖C2

b (V ) = c(A)‖φ‖C2
b (V ).

To every µ ∈ VConvk(C;V, F ) we can associate a k-multilinear functional µ̃ on formal
differences of convex functions: Assume that h1 + φ1 = f1, . . . , h1 + φk = fk for convex
functions f1, . . . , fk, h1, . . . , hk ∈ C. Using the polarization µ̄ from Theorem 5.3.9, we
define the following functionals inductively for arbitrary convex functions g1, . . . , gk ∈
Conv(V,R) and 1 ≤ i ≤ k − 1:

µ(1)(φ1, g2, . . . , gk) :=µ̄(f1, g2, . . . , gk)− µ̄(h1, g2, . . . , gk),

µ(i+1)(φ1, . . . , φi+1, gi+2, . . . , gk) :=µ(i)(φ1, . . . , φi, fi+1, gi+1, . . . , gk)

− µ(i)(φ1, . . . , φi, hi+1, gi+1, . . . , gk).

Then we set µ̃(φ1, . . . , φk) := µ(k)(φ1, . . . , φk). It is easy to see that this is equivalent to

µ̃(φ1, .., φk) =
k∑
l=0

(−1)k−l
1

(k − l)!l!
∑
σ∈Sk

µ̄(fσ(1), . . . , fσ(l), hσ(l+1), . . . , hσ(k)), (5.2)

where µ̄ denotes the polarization of µ from Theorem 5.3.9. Thus µ̃ is also symmetric.
Using the additivity of µ̄ in each argument, one readily verifies that this definition only
depends on the functions φ1, . . . , φk (and not the special choices of fi and hi) and that
this functional is multilinear.
By Lemma 5.4.1, C2

c (V ) is contained in the space generated by differences of elements
of Conv(V,R). For the construction of the Goodey-Weil embedding, we will thus consider
the restricted map

µ̃ : C2
b (V )k → F.

Given functions φ1, . . . , φk ∈ C2
b (V ), we take the special convex functions f1,. . . , fk,

h1,. . . ,hk in Conv(V,R) with φi = fi− hi satisfying the inequality in Lemma 5.4.1. The
set K of all convex functions that are bounded by c(A) on every compact set A (as
defined above) is compact in Conv(V,R) by Proposition 4.2.2, so it is also compact in
C. Note that the functions

f̃i :=
fi

‖φi‖C2
b (V )

, h̃i :=
hi

‖φi‖C2
b (V )
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5.4 Goodey-Weil embedding

belong to K by construction. As K is also convex with 0 ∈ K, Lemma 5.3.12 and
Equation (5.2) imply

|µ̃(φ1, . . . , φk)|F = |
k∑
l=0

(−1)k−l
1

(k − l)!l!
∑
σ∈Sk

µ̄(fσ(1), . . . , fσ(l), hσ(l+1), . . . , hσ(k))|F

≤
k∑
l=0

1

(k − l)!l!
∑
σ∈Sk

|µ̄(fσ(1), . . . , fσ(l), hσ(l+1), . . . , hσ(k))|F

=
k∑
l=0

1

(k − l)!l!
∑
σ∈Sk

|µ̄(f̃σ(1), . . . , f̃σ(l), h̃σ(l+1), . . . , h̃σ(k))|F ·
k∏
i=1

‖φi‖C2
b (V )

≤ ck‖µ‖F ;K ·
k∏
i=1

‖φi‖C2
b (V ) (5.3)

for any continuous semi-norm | · |F on F for some constant ck > 0 depending on k only
(we can choose 2k times the constant C ′k from Lemma 5.3.12). Here we have used that
µ̄ is 1-homogeneous in each argument. As µ̃ is multilinear, this inequality implies that
µ̃ is continuous. In particular, we can apply the L. Schwartz kernel theorem 2.2.1.

Definition 5.4.2. Let F be a locally convex vector space, 1 ≤ k ≤ n. To every µ ∈
VConvk(C;V, F ) we associate the distribution GW(µ) ∈ D′(V k, F̄ ) determined by

GW(µ)(φ1 ⊗ · · · ⊗ φk) = µ̃(φ1, . . . , φk)

for φ1, . . . , φk ∈ C∞c (V ). This distribution will be called the Goodey-Weil distribution
of µ.

Corollary 5.4.3. The map GW : VConvk(C;V, F )→ D′(V k, F̄ ), that maps each valu-
ation to its Goodey-Weil distribution, is continuous.

Proof. From Inequality (5.3) we deduce that the map that associates to any valua-
tion µ ∈ VConvk(C;V, F ) its multilinear extension µ̃ is a continuous linear map from
VConvk(C;V, F ) into the space of continuous, F̄ -valued, k-multilinear functionals on
C∞c (V ). By Theorem 2.2.4, the L. Schwartz kernel theorem establishes a topological
isomorphism between this space and D′(V k, F̄ ). Thus GW is continuous.

Before we discuss the Goodey-Weil distributions of some of the examples from Chapter
1, let us show a simple way to calculate these distributions.

Lemma 5.4.4. Let µ ∈ VConvk(C;V, F ) and let f ∈ Conv(V,R) be a strictly convex
function. If φ1, . . . , φk ∈ C∞c (V ), then µ(f +

∑k
i=1 δiφi) is a polynomial in δi for all δi

small enough and

GW(µ)[φ1 ⊗ · · · ⊗ φk] =
1

k!

∂

∂δ1

∣∣∣
0
. . .

∂

∂δk

∣∣∣
0
µ

(
f +

k∑
i=1

δiφi

)
.
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5 Dually epi-translation invariant valuations on convex functions

Proof. Note that the strict convexity implies that f +
∑k

i=1 δiφi is a convex function for
all δi sufficiently small. Let us consider the multilinear functional µ̃ from section 5.4.1.
The construction of µ̃ implies µ̃(h, . . . , h) = µ(h) for h ∈ Conv(V,R), so

µ

(
f +

k∑
i=1

δiφi

)
= µ̃

(
f +

k∑
i=1

δiφi, . . . , f +
k∑
i=1

δiφi

)
.

In particular, the left hand side is a polynomial in δi > 0 for all δi small enough and we
calculate

1

k!

∂

∂δ1

∣∣∣
0
. . .

∂

∂δk

∣∣∣
0
µ

(
f +

k∑
i=1

δiφi

)
=

1

k!

∂

∂δ1

∣∣∣
0
. . .

∂

∂δk

∣∣∣
0
µ̃

(
f +

k∑
i=1

δiφi, . . . , f +
k∑
i=1

δiφi

)
=µ̃(φ1, . . . , φk)

= GW(µ)[φ1 ⊗ · · · ⊗ φk],

where we have used that µ̃ is multilinear and symmetric.

Example 5.4.5. Consider the Hessian measure Hessn from Example 1.0.6, which be-
longs to VConvn(V,M(V )). Given φ1, . . . , φn ∈ C∞c (V ), its Goodey-Weil distribution is
given by

GW(Hessn)[φ1 ⊗ · · · ⊗ φn](U) =

∫
U

det(Hφ1(x), . . . , Hφn(x))dx

for all Borel sets U ⊂ V . In particular, the support of GW(Hessn) is non-compact and
coincides with the diagonal in V n.

Example 5.4.6. Let A1, . . . , An−k ∈ Cc(V,H(V )) be functions with values in the space
H(V ) of symmetric endomorphisms with respect to a fixed Euclidean structure, B ∈
Cc(V ). The Alesker valuation µ extending

Conv(V,R) ∩ C2(V )→ R

f 7→
∫
V

B(x) det(Hf (x)[k], A1(x), . . . , An−k(x))dx

belongs to VConvk(V ). Its Goodey-Weil distribution is given by

GW(µ)[φ1 ⊗ . . . ,⊗φk] =

∫
V

B(x) det(Hφ1(x), . . . , Hφk(x), A1(x), . . . , An−k(x))dx.

The support of this distribution is contained in the diagonal in V k, but this time the
support is compact - it is contained in the intersection of the supports of the functions
B,A1, . . . , Ak.

The diagonality of the support of the Goodey-Weil distributions is indeed a general
property of these distributions and we will discuss this result in the next section. It turns
out that the compactness of the support only depends on the topology of F : If F admits
a continuous norm, the support of a Goodey-Weil distribution is always compact. Note
that this is consistent with the first example. We will address this question in Section
5.4.3

60



5.4 Goodey-Weil embedding

5.4.2 Diagonality of the support of the Goodey-Weil
distributions

The following theorem is a version of the proof of the corresponding statement for the
Goodey-Weil embedding for translation invariant valuations on convex bodies, compare
[1].

Theorem 5.4.7. Let F be a locally convex vector space. For µ ∈ VConvk(C;V, F ) the
support of GW(µ) is contained in the diagonal in V k.

Proof. Let us assume that V carries a Euclidean structure. Using a partition of unity,
it is sufficient to show that GW(µ)(h1 ⊗ · · · ⊗ hk) = 0 if h1, . . . , hk ∈ C∞c (V ) are
smooth functions satisfying supphi ⊂ Uε(ai), where ai ∈ V , 1 ≤ i ≤ k, are points with
Uε(ai) ∩ Uε(aj) = ∅ for i 6= j and some fixed ε > 0.
First, there exists δ > 0 such that the function x 7→ 1 + |x|2 +

∑k
i=1 δihi is convex and

non-negative for all |δi| ≤ δ. Set

H(x) := 1 + |x|2 +
k∑
i=3

δihi

and choose an affine hyperplane that separates Uε(a1) and Uε(a2). This plane is given
by the equation 〈y, x − x0〉 = 0 for some y, x0 ∈ V . We can choose y such that Uε(a1)
is contained in the positive half space with respect to the normal y. Define the convex
functions

G±(x) := max(0,±〈y, x− x0〉) =

{
0 ±〈y, x− x0〉 ≤ 0,

±〈y, x− x0〉 ±〈y, x− x0〉 > 0.

As G± is positive on the supports of h1 and h2 respectively, we can rescale y such that G+

is larger thanH+δ1h1 on the support of h1 and G− is larger thanH+δ2h2 on the support
of h2 for all |δi| ≤ δ. Now set H̃+ := max(H + δ1h1, G+) and H̃− := max(H + δ1h1, G−).
Then H̃+ and H̃− are convex functions with

H̃+(x) =

{
H(x) + δ1h1(x) 〈y, x− x0〉 ≤ 0,

max(H(x) + δ1h1(x), 〈y, x− x0〉) 〈y, x− x0〉 > 0,

H̃−(x) =

{
H(x) + δ1h1(x) 〈y, x− x0〉 ≥ 0,

max(H(x) + δ1h1(x),−〈y, x− x0〉) 〈y, x− x0〉 < 0.

In particular min(H̃+, H̃−) = H̃ := H+δ1h1 is convex. As the support of h1 is contained
in the positive half space with respect to y, we see that in fact

H̃+(x) =

{
H(x) 〈y, x− x0〉 ≤ 0,

max(H(x), 〈y, x− x0〉) 〈y, x− x0〉 > 0,

H̃−(x) =

{
H(x) + δ1h1(x) 〈y, x− x0〉 ≥ 0,

max(H(x),−〈y, x− x0〉) 〈y, x− x0〉 < 0.
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5 Dually epi-translation invariant valuations on convex functions

Thus max(H̃+, H̃−) = max(H, |〈y, · − x0〉|).

Let us also define H± := max(H,G±). Then H+ = H̃+, and, using the non-negativity
of H, it is easy to see that min(H+, H−) = H and max(H+, H−) = max(H, |〈y, ·−x0〉|) =
max(H̃+, H̃−).
The valuations property implies

µ(H̃+) + µ(H̃−) = µ(max(H̃+, H̃−)) + µ(min(H̃+, H̃−)),

µ(H+) + µ(H−) = µ(max(H+, H−)) + µ(min(H+, H−)).

Thus using max(H+, H−) = max(H̃+, H̃−), and H̃+ = H+, we obtain

µ(H̃−)− µ(H−) = µ(min(H̃+, H̃−))− µ(min(H+, H−))

by subtracting the two equations. Plugging in the relations for the minima, we arrive at

µ(H̃−)− µ(H−) = µ(H̃)− µ(H).

Set

∆(x) :=H−(x) =

{
H(x) 〈y, x− x0〉 ≥ 0,

max(H(x),−〈y, x− x0〉) 〈y, x− x0〉 < 0,

∆̃(x) :=H̃−(x) =

{
H(x) + δ1h1(x) 〈y, x− x0〉 ≥ 0,

max(H(x),−〈y, x− x0〉) 〈y, x− x0〉 < 0,

to rewrite the previous equation as

µ(∆̃)− µ(∆) = µ(H̃)− µ(H) = µ(H + δ1h1)− µ(H).

Now, if we replace H by H + δ2h2 and repeat the argument, the convex functions ∆′

and ∆̃′ defined by

∆′(x) =

{
H(x) + δ2h2(x) 〈y, x− x0〉 ≥ 0,

max(H(x) + δ2h(x),−〈y, x− x0〉) 〈y, x− x0〉 < 0,

∆̃′(x) =

{
H(x) + δ1h1(x) + δ2h2(x) 〈y, x− x0〉 ≥ 0,

max(H(x) + δ2h2(x),−〈y, x− x0〉) 〈y, x− x0〉 < 0,

satisfy

µ(∆̃′)− µ(∆′) = µ(H + δ1h1 + δ2h2)− µ(H + δ2h2).

However, the support of h2 is contained in the negative half space and H+δ2h2 is smaller
than −〈y, · − x0〉 on the support of h2. Thus ∆′ = ∆ and ∆̃′ = ∆̃, and we obtain the
equation

µ(H + δ1h1)− µ(H) = µ(∆̃)− µ(∆) = µ(H + δ1h1 + δ2h2)− µ(H + δ2h2)
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5.4 Goodey-Weil embedding

for all δi with |δi| < δ. Both the left and the right hand side are polynomials in δi for
all δi small enough by Lemma 5.4.4, but the left hand side is independent of δ2. Thus
Lemma 5.4.4 implies

0 =
1

k!

∂

∂δ1

∣∣∣
0
. . .

∂

∂δk

∣∣∣
0

[µ(H + δ1h1 + δ2h2)− µ(H + δ2h2)]

=
1

k!

∂

∂δ1

∣∣∣
0
. . .

∂

∂δk

∣∣∣
0
µ(H + δ1h1 + δ2h2)

= GW(µ)[h1 ⊗ · · · ⊗ hk].

5.4.3 Compactness of the support

Let us start by considering the case F = R. We have constructed the Goodey-Weil
distribution of µ ∈ VConvk(C;V ) as the unique continuous lift of the functional µ̃ :
C∞c (V )k → R to a linear functional on C∞c (V k). However, µ̃ is actually defined on
arbitrary differences of convex functions, which includes all smooth functions, as shown
below. As distributions with compact support are in natural duality with smooth func-
tions, this suggests that the Goodey-Weil distributions should have compact support.
However, in contrast to the restriction of µ̃ to compactly supported smooth functions, we
do not have estimates controlling the continuity of µ̃ with respect to the natural topology
on the space of all smooth functions, i.e. the topology of locally uniform convergence
of all derivatives. On the other hand, GW(µ) is given by a very simple combinatorial
formula involving only the polarization of µ on products of smooth functions. This po-
larization is continuous with respect to locally uniform convergence of convex functions,
which is much more flexible than locally uniform convergence of all derivatives.
To show that the support is compact, we will thus argue by contradiction, using the di-
agonality of the support as well as the special formula for products of smooth functions.
For this, we need the following lemma.

Lemma 5.4.8. For every φ ∈ C2(V ) there exists a convex function h ∈ Conv(V,R)
with the following property: If ψ ∈ C∞(V ) is a function with ‖ψ‖C2(Bj) ≤ ‖φ‖C2(Bj) for
all j ∈ N, then h+ ψ is convex.

Proof. Assume that we are given φ and let ψ be an arbitrary function with the property
stated above. Let us inductively define a sequence of convex functions hj ∈ Conv(V,R).
Set cj := ‖φ‖C2(Bj+1). Then cj ≥ supx∈Bj+1,v∈S(V )〈Hψ(x)v, v〉 for all j ∈ N.
For j = 1 define h1 by h1(x) := c1

|x|2
2
. As its Hessian is positive semi-definite, h1 + ψ is

convex on B2.
Assume that we have already constructed hj. Then the Hessian of cj+1

|x|2
2

+ψ is positive
semi-definite on Bj+2, so this function is convex on Bj+2. We set

hj+1(x) := max

(
cj+1
|x|2 − j2

2
, 0

)
+ hj(x).
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5 Dually epi-translation invariant valuations on convex functions

Thus hj+1 is a finite-valued convex function for all j ∈ N, that coincides with hj on Bj.
We deduce that for each point x ∈ V the sequence (hj(x))j becomes constant for large j
and thus (hj)j converges pointwise to a function h ∈ Conv(V,R). By Proposition 4.1.2,
this implies that this sequence epi-converges to h.
It remains to see that h+ ψ is convex. Observe that for every point x ∈ V there exists
an open, convex neighborhood such that the restriction of h + ψ to this neighborhood
is convex, i.e. h+ ψ is a locally convex function: On Uj+1 \Bj−1

h(x) + ψ(x) = max

(
cj+1
|x|2 − j2

2
, 0

)
+ hj(x) + ψ(x)

= max

(
cj+1
|x|2 − j2

2
, 0

)
+ hj−1(x) + cj

|x|2 − (j − 1)2

2
+ ψ(x),

where cj |x|
2−(j−1)2

2
+ ψ(x) is locally convex on this set, as its Hessian is positive semi-

definite. Obviously, the other two functions are locally convex on this set as well, so the
same applies to h+ ψ.
As any locally convex function defined on V is convex, h+ ψ ∈ Conv(V,R).

Theorem 5.4.9. Let F be a locally convex vector space admitting a continuous norm.
For every µ ∈ VConvk(C;V, F ) the distribution GW(µ) ∈ D′(V k, F̄ ) has compact sup-
port and is uniquely determined by the following property: If f1, . . . , fk ∈ Conv(V,R) ∩
C∞(V ), then

GW(µ)(f1 ⊗ · · · ⊗ fk) = µ̄(f1, . . . , fk), (5.4)

where µ̄ denotes the polarization of µ.

Proof. Uniqueness follows directly from Equation (5.4), as every function φ ∈ C∞c (V )
can be written as a difference of two smooth convex functions due to Lemma 5.4.1
and a distribution on V k is uniquely determined by its values on functions of the form
φ1 ⊗ · · · ⊗ φk for φ1, . . . , φk ∈ C∞c (V ) by the L. Schwartz kernel theorem.
Let us assume that GW(µ) does not have compact support and let ‖ · ‖ denote a contin-
uous norm on F . Then we can inductively define a sequence of functions (φji )j in C∞c (V )
for each 1 ≤ i ≤ k and a strictly increasing sequence (rj)j of positive real numbers with
lim
j→∞

rj =∞ with the following properties:

1. For each 1 ≤ i ≤ k the functions (φji )j have pairwise disjoint support.

2. The support of φji is contained in V \Brj(0) for all j ∈ N, 1 ≤ i ≤ k.

3. ‖GW(µ)(φj1 ⊗ · · · ⊗ φ
j
k)‖ = ‖µ̃(φj1, . . . , φ

j
k)‖ = 1.

To see this, assume that we have constructed φj1, . . . , φ
j
k as well as rj > 0. First choose

rj+1 > rj + 1 such that the restriction of GW(µ) to [Urj+1
\Brj ]

k ⊂ V k does not vanish.
This is possible, as the support of GW(µ) is contained in the diagonal due to Theorem
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5.4.7. Then take φj+1
1 , . . . , φj+1

k ∈ C∞(Urj+1
\ Brj) with GW(µ)[φj+1

1 ⊗ · · · ⊗ φj+1
k ] 6= 0

and rescale one function by an appropriate constant.
Note that φi :=

∑∞
j=1 φ

j
i ∈ C∞(V ) is well defined as this sum is locally finite. More

precisely, the supports of the functions φji are disjoint for each 1 ≤ i ≤ k, so ‖φji‖C2(BN ) ≤
‖φi‖C2(BN ) for all N ∈ N and j ∈ N. Applying Lemma 5.4.8 to the functions φi, we
find convex functions h1, . . . , hk ∈ Conv(V,R) such that for 1 ≤ i ≤ k the function
f ji := hi + φji is convex for all j ∈ N. By Equation (5.2)

µ̃(φj1, . . . , φ
j
k) =

k∑
l=0

(−1)k−l
1

(k − l)!l!
∑
σ∈Sk

µ̄
(
f jσ(1), . . . , f

j
σ(l), hσ(l+1), . . . , hσ(k)

)
.

As f ji → hi uniformly on compact subsets for all 1 ≤ i ≤ k, the joint continuity of the
polarization µ̄ from Corollary 5.3.11 and the continuity of the norm ‖ · ‖ imply

lim
j→∞
‖µ̃(φj1, . . . , φ

j
k)‖ =‖

k∑
l=0

(−1)k−l
1

(k − l)!l!
∑
σ∈Sk

µ̄
(
hσ(1), . . . , hσ(l), hσ(l+1), . . . , hσ(k)

)
‖

=‖(−1)k
k∑
l=0

(−1)l
k!

(k − l)!l!
µ̄(h1, . . . , hk)‖

=‖(−1)kµ̄(h1, . . . , hk)
k∑
l=0

(−1)l
(
k

l

)
‖

=‖µ̄(h1, . . . , hk)‖ · 0 = 0.

We arrive at a contradiction to ‖µ̃(φj1, . . . , φ
j
k)‖ = 1 for all j ∈ N, so the distribution

GW(µ) must have compact support.
It remains to see that GW(µ)(f1 ⊗ · · · ⊗ fk) = µ̄(f1, . . . , fk) for all convex functions
fi ∈ Conv(V,R) ∩ C∞(V ). Take a sequence of functions φj ∈ C∞c (V ) with φj ≡ 1 on
Bj(0) and such that ‖φj‖C2(V ) ≤ C for all j ∈ N and some C > 0. Such a sequence can
be constructed by setting φj(x) := ψ(x

j
) for ψ ∈ C∞c (V ) with ψ ≡ 1 on B1(0). As the

support of GW(µ) is compact, we obtain N ∈ N such that

GW(µ)(f1 ⊗ · · · ⊗ fk) = GW(µ)(φjf1 ⊗ · · · ⊗ φjfk) ∀j ≥ N.

Using the Leibniz-rule, we see that there exists C ′ > 0 such that for any compact set
A ⊂ V the inequality ‖φjfi‖C2(A) ≤ C ′‖fi‖C2(A) holds for all j ∈ N. Now take the
function hi from Lemma 5.4.8 for the function φ = C ′fi. Then hi +φjfi is convex for all
j ∈ N and hi+φjfi converges to hi+fi uniformly on compact subsets, i.e. in Conv(V,R).
Plugging in the definition of µ̃ and using the joint continuity of the polarization µ̄, we
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5 Dually epi-translation invariant valuations on convex functions

obtain

GW(µ)(f1 ⊗ · · · ⊗ fk) = lim
j→∞

GW(µ)(φjf1 ⊗ · · · ⊗ φjfk)

= lim
j→∞

k∑
l=0

(−1)k−l
1

(k − l)!l!
∑
σ∈Sk

µ̄(hσ(1) + φjfσ(1), . . . , hσ(l) + φjfσ(l), hσ(l+1), . . . , hσ(k))

=
k∑
l=0

(−1)k−l
1

(k − l)!l!
∑
σ∈Sk

µ̄(hσ(1) + fσ(1), . . . , hσ(l) + fσ(l), hσ(l+1), . . . , hσ(k))

=µ̄(f1, . . . , fk),

where we have used the additivity of µ̄ in the last step.

Corollary 5.4.10. GW : VConvk(C;V, F )→ D′(V k, F̄ ) is injective.

Proof. Assume first that F admits a continuous norm. As Conv(V,R)∩C∞(V ) is dense
in C due to Proposition 4.4.1, the claim follows from Theorem 5.4.9 and the continuity
of µ.
If F is an arbitrary locally convex vector space, then the definition of GW implies

λ ◦GW(µ) = GW(λ ◦ µ) ∀λ ∈ F̄ ′ ∼= F ′,

where F ′ denotes the topological dual of F . In particular, GW(µ) = 0 if and only if
GW(λ ◦ µ) = 0 for all λ ∈ F ′. By the previous discussion, GW(λ ◦ µ) = 0 implies
λ ◦ µ = 0. If this holds for all λ ∈ F ′, we obtain µ = 0, as F is locally convex.
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6 The support of a dually
epi-translation invariant valuation

Similar to Section 3.1, the support of the Goodey-Weil distribution of a dually epi-
translation invariant valuation can be used to define a notion of support for the underly-
ing valuation. After establishing an intrinsic characterization of the support in Section
6.1, we consider spaces of valuations with compact support in Section 6.2 and define
families of continuous semi-norms, which induce the subspace topology on these spaces.
In Section 6.3 we will see some applications of this concept: We start by characterizing
the image of the embedding from Section 5.2, and show some triviality results for valu-
ations that are invariant under non-compact subgroups of the affine group. Lastly, we
discuss how the cone on which the valuation is defined affects its support. This gives a
partial answer to the question which valuations on finite-valued convex functions can be
extended to larger cones of convex functions.

The results of this chapter are to be published in [35].

6.1 Definition and characterization of the support

Throughout this section, let F be a locally convex vector space. As in Section 3.1, the
properties of the Goodey-Weil distributions suggest the following notion of support for
dually epi-translation invariant valuations on convex functions.

Definition 6.1.1. For 1 ≤ k ≤ n and µ ∈ VConvk(C;V, F ), the support suppµ ⊂ V of
µ is the set

suppµ :=
⋂

A⊂V closed,
supp GW(µ)⊂∆A

A.

Here, ∆ : V → V k is the diagonal embedding. For µ ∈ VConv0(C;V, F ) we set suppµ =
∅. If µ =

∑n
i=0 µi is the homogeneous decomposition of µ ∈ VConv(C;V, F ), we set

suppµ :=
⋃n
i=0 suppµi.

Theorem 5.4.9 implies

Corollary 6.1.2. If F admits a continuous norm, then any µ ∈ VConv(C;V, F ) has
compact support.
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6 The support of a dually epi-translation invariant valuation

Similar to the vertical support of a translation invariant valuation on convex bodies,
the support of a dually epi-translation invariant valuation can be characterized without
reference to its Goodey-Weil distribution.

Proposition 6.1.3. The support of µ ∈ VConv(C;V, F ) is minimal (with respect to in-
clusion) amongst the closed sets A ⊂ V with the following property: If f, g ∈ Conv(V,R)
satisfy f = g on an open neighborhood of A, then µ(f) = µ(g).

Proof. Let us first show that any closed setA satisfying the property contains the support
of µ. Using the homogeneous decomposition, we can assume that µ is k-homogeneous.
We will argue by contradiction. Assume that the support of µ is not contained in A.
Then supp GW(µ) \∆A 6= ∅. In particular, we find functions φ1, ..., φk with support in
V \ A such that

GW(µ)(φ1 ⊗ ...⊗ φk) 6= 0.

Using the Hahn-Banach theorem, we can choose λ ∈ F ′ with

λ(GW(µ)(φ1 ⊗ · · · ⊗ φk)) 6= 0.

Choose some Euclidean structure on V and let f ∈ Conv(V,R) be given by f(x) := |x|2.
Then f +

∑k
i=1 δiφi is convex for all δi small enough. Let us compare λ(µ(f)) and

λ(µ(f +
∑k

i=1 δiφi)). By construction, the two functions coincide on an open neighbor-
hood of A and thus the assumption implies λ(µ(f)) = λ(µ(f +

∑k
i=1 δiφi)) for all δi

small enough. Applying Theorem 5.4.9, we see that the right hand side is a polyno-
mial in δi for all δi small enough and that the coefficient in front of δ1 . . . δk is exactly
k! GW(λ ◦ µ)(φ1 ⊗ · · · ⊗ φk) = k!λ(GW(µ)(φ1 ⊗ ... ⊗ φk)). As the left hand side is
independent of δi, this coefficient has to vanish, so we obtain a contradiction.

It remains to see that suppµ actually satisfies the property. We can again assume
that µ is k-homogeneous. As F is locally convex, it is sufficient to show the claim for all
valuations λ ◦ µ ∈ VConv(C;V ) for λ ∈ F ′. This is a real-valued valuation and thus in
particular compactly supported, so under the assumptions above the mollified functions
fε, gε ∈ Conv(V,R) ∩ C∞(V ) satisfy fε = gε on an open neighborhood of the support
of λ ◦ µ for all ε > 0 small enough. In particular, f⊗kε = g⊗kε on a neighborhood of
supp GW(λ ◦ µ), and using Theorem 5.4.9, we obtain

λ(µ(f)) = lim
ε→0

λ(µ(fε)) = lim
ε→0

GW(λ ◦ µ)
(
f⊗kε
)

= lim
ε→0

GW(λ ◦ µ)
(
g⊗kε
)

= lim
ε→0

λ(µ(gε)) = λ(µ(g)).

6.2 Subspaces of valuations with compact support

The goal of this section is to establish some useful results on the topology of spaces of
valuations with support contained in a fixed (compact) set. Most notably, these spaces
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6.2 Subspaces of valuations with compact support

turn out to be Banach spaces for real-valued valuations, which will be crucial for the
density results in Chapter 7 and 8. We will start with some general considerations and
then construct suitable semi-norms on spaces of valuations with compact support.
Throughout this section, let F be a locally convex vector space and let us assume for
simplicity that V carries some Euclidean structure.

Definition 6.2.1. For A ⊂ V let VConvA(V, F ) denote the subspace of all valuations
in VConv(V, F ) with support contained in A.

Lemma 6.2.2. If A ⊂ V is a closed subset, then VConvA(V, F ) is a closed subspace of
VConv(V, F ).

Proof. If (µα)α is a net in VConvA(V, F ) converging to µ in VConv(V, F ) and f, h ∈
Conv(V,R) are two functions with f = h on a neighborhood of A, we deduce µα(f) =
µα(h) for all α using Proposition 6.1.3. Taking the limit, we obtain µ(f) = µ(h). As
this is true for any f, h ∈ Conv(V,R) with f = h on a neighborhood of A, the support
of µ has to be contained in A by Proposition 6.1.3. Thus VConvA(V, F ) is closed in
VConv(V, F ).

If F carries a continuous norm, all valuations in VConv(V, F ) have compact support
by Corollary 6.1.2, and, obviously, the inclusion VConvA(V, F ) → VConvB(V, F ) is
continuous for A ⊂ B. We thus obtain the directed family of locally convex vector spaces
(VConvA(V, F ))A⊂V , where A ⊂ V is compact. The direct limit lim−→VConvA(V ) in the
category of locally convex vector spaces can be identified with VConv(V, F ) equipped
with the final topology with respect to the inclusions VConvA(V, F ) → VConv(V, F ).
In other words, the natural map

lim−→VConvA(V )→ VConv(V, F )

is continuous and bijective, but the topology on the left hand side might be finer than
the original topology, i.e. the inverse might not be continuous. However, the following
proposition implies that the inverse is at least sequentially continuous. While we do
not have a direct application of this result, it highlights the fact that the support of
valuations in VConv(V, F ) and the compact-open topology on this space are heavily
intertwined.

Proposition 6.2.3. Let F be a locally convex vector space admitting a continuous norm.
If a sequence (µj)j converges to µ in VConv(V, F ), then there exists a compact set A ⊂ V
such that the supports of µ and µj are contained in A for all j ∈ N. In particular, (µj)j
converges to µ in VConvA(V, F ).

Proof. Let us denote the continuous norm by ‖ · ‖ and let UR := UR(0) denote the open
ball in V with radius R > 0. Using the homogeneous decomposition, we can assume
that all valuations are k-homogeneous.
Assume that the supports of the valuations µj are not bounded. Choosing a subsequence
if necessary, we can assume that the following holds: There exists a strictly increasing
sequence (rj)j of positive real numbers converging to +∞ such that
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6 The support of a dually epi-translation invariant valuation

1. suppµ ⊂ Ur0 ,

2. suppµj ⊂ Urj for all j ≥ 1,

3. suppµj+1 \Brj 6= ∅ for all j ≥ 1.

In particular, for every j ∈ N we can inductively define functions φj1, ..., φ
j
k ∈ C∞c (V )

with the properties

1. suppφji ⊂ Urj \Brj−1
for all j ≥ 1,

2. ‖
j∑
l=1

GW(µj)(φ
l
1 ⊗ ...⊗ φlk)‖ ≥ 1 for all j ≥ 1,

as follows: Assume that we have constructed the functions φli for all 1 ≤ i ≤ k and
l ≤ j − 1. If ‖

∑j−1
l=1 GW(µj)(φ

l
1 ⊗ ...⊗ φlk)‖ ≥ 1, choose φj1 = ... = φjk = 0.

If ‖
∑j−1

l=1 GW(µj)(φ
l
1⊗...⊗φlk)‖ < 1, choose φji ∈ C∞c (Urj \Bj−1) such that GW(µj)(φ

j
1⊗

· · · ⊗ φjk) 6= 0. Then

‖
j∑
l=1

GW(µj)(φ
l
1 ⊗ ...⊗ φlk)‖ ≥‖GW(µj)(φ

j
1 ⊗ ...⊗ φ

j
k)‖ − ‖

j−1∑
l=1

GW(µj)(φ
l
1 ⊗ ...⊗ φlk)‖

>‖GW(µj)(φ
j
1 ⊗ ...⊗ φ

j
k)‖ − 1.

Scaling one of the functions φji appropriately for 1 ≤ i ≤ k, we can make the right hand
side equal to 1.
In any case, we obtain functions satisfying ‖

∑j
l=1 GW(µj)(φ

l
1⊗...⊗φlk)‖ ≥ 1 for all j ≥ 1.

For 1 ≤ i ≤ k define φi :=
∑∞

j=1 φ
j
i . By construction, this is a locally finite sum, so

we obtain an element in C∞(V ). As the supports of the functions (φji )j are pairwise
disjoint for each 1 ≤ i ≤ k, we can apply Lemma 5.4.8 to find functions fi ∈ Conv(V,R),
1 ≤ i ≤ k, such that f ji := fi +

∑j
l=1 φ

l
i is convex for all 1 ≤ i ≤ k, j ∈ N. Then (f ji )j

converges to fi + φi uniformly on compact subsets, i.e. in Conv(V,R). Furthermore,
f ji = fi on an open neighborhood of the support of µ, so µ(fi) = µ(f ji ) for all j. As the
polarization µ̄ is a linear combination of µ evaluated in positive linear combinations of
the arguments, exchanging fi and f ji does not change the value of µ̄. For any j ∈ N we
thus obtain

0 =‖GW(µ)(0⊗ ...⊗ 0)‖

=‖
k∑
i=0

(−1)k−i
1

(k − i)!i!
∑
σ∈Sk

µ̄
(
fσ(1), ..., fσ(i), fσ(i+1), ..., fσ(k)

)
‖

=‖
k∑
i=0

(−1)k−i
1

(k − i)!i!
∑
σ∈Sk

µ̄
(
f jσ(1), ..., f

j
σ(i), fσ(i+1), ..., fσ(k)

)
‖,
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6.2 Subspaces of valuations with compact support

i.e.
∑k

i=0(−1)k−i 1
(k−i)!i!

∑
σ∈Sk µ̄(f jσ(1), ..., f

j
σ(i), fσ(i+1), ..., fσ(k)) = 0.

SetK := {f ji : j ∈ N, 1 ≤ i ≤ k}∪{f1+φ1, ..., fk+φk, f1, ..., fk}. ThenK ⊂ Conv(V,R)
is compact, so (µj)j converges to µ uniformly on K. By Lemma 5.3.12 the same holds
for the polarizations (µ̄j)j. In particular, there exists N ∈ N such that

‖
k∑
i=0

(−1)k−i
1

(k − i)!i!
∑
σ∈Sk

µ̄j(f
j
σ(1), ..., f

j
σ(i), fσ(i+1), ..., fσ(k))‖

=‖
k∑
i=0

(−1)k−i
1

(k − i)!i!
∑
σ∈Sk

µ̄(f jσ(1), ..., f
j
σ(i), fσ(i+1), ..., fσ(k))

−
k∑
i=0

(−1)k−i
1

(k − i)!i!
∑
σ∈Sk

µ̄j(f
j
σ(1), ..., f

j
σ(i), fσ(i+1), ..., fσ(k))‖ <

1

2

for all j ≥ N . By definition

k∑
i=0

(−1)k−i
1

(k − i)!i!
∑
σ∈Sk

µ̄j(f
j
σ(1), ..., f

j
σ(i), fσ(i+1), ..., fσ(k))

= GW(µj)

(
j∑
l=1

φl1 ⊗ ...⊗
j∑
l=1

φlk

)
.

As the support of GW(µj) is contained in the diagonal and the functions belonging to
different superscripts i have disjoint support, we obtain

k∑
i=0

(−1)k−i
1

(k − i)!i!
∑
σ∈Sk

µ̄j(f
j
σ(1), ..., f

j
σ(i), fσ(i+1), ..., fσ(k)) =

j∑
l=1

GW(µj)(φ
l
1 ⊗ ...⊗ φlk).

Thus we arrive at

‖
j∑
l=1

GW(µj)(φ
l
1 ⊗ ...⊗ φlk)‖ <

1

2

for all j ≥ N , which is a contradiction.

We will now focus on valuations with support contained in a fixed compact subset. In
the remaining part of this section, we will construct special continuous semi-norms on
these subspaces, and we will show that these semi-norms generate the subspace topology.
This will also imply that the topology on any such subspace is much simpler than the
topology on VConv(V, F ): Instead of uniform convergence on all compact subsets in
Conv(V,R), we only have to check the convergence on one simple subset.

Proposition 6.2.4. Let A ⊂ V be compact and convex. Let | · |F denote a continuous
semi-norm on F and choose s > 0. For µ ∈ VConvA(V, F ) define

‖µ‖F ;A,s := sup{|µ(f)|F : f ∈ Conv(V,R), ‖f‖C(A+2sB1) ≤ 1}.

71



6 The support of a dually epi-translation invariant valuation

This defines a continuous semi-norm on VConvA(V ). If | · |F is a norm, so is ‖ · ‖F ;A,s.
In addition, the topology induced by the family ‖ · ‖F ;A,s (for all continuous semi-norms
| · |F on F ) on VConvA(V, F ) coincides with the relative topology.

Proof. It is clear that ‖·‖F ;A,s defines a semi-norm if it is finite. Let f ∈ Conv(V,R) with
‖f‖C(A+2sB1) ≤ 1 be given. By Proposition 4.2.1, f is Lipschitz continuous on BA+sB1

with Lipschitz constant L = 2
s
‖f |A+2sB1‖∞ ≤ 2

s
. Consider the function

f̃(x) :=

 sup
x=λy+(1−λ)z,λ≥1

λf(y) + (1− λ)f(z) x ∈ V \ (A+ sB1),

f(x) x ∈ A+ sB1.

By the proof of Theorem 4.1 in [61], f̃ is a finite-valued convex extension of the Lipschitz
continuous function f |A+sB1 . For any λ ≥ 1, y, z ∈ A+ sB1 with x = λy + (1− λ)z:

λf(y) + (1− λ)f(z) ≤|λ[f(y)− f(z)]|+ |f(z)| ≤ 2

s
λ|y − z|+ ‖f‖C(A+sB1)

≤2

s
|λy − λz|+ 1 =

2

s
|x− z|+ 1.

For x ∈ V \ (A+ sB1) we thus obtain

f̃(x) ≤ 2

s
sup

z∈A+sB1

|x− z|+ 1 ≤ 2

s
(dist(x,A+ sB1) + diam(A+ sB1)) + 1.

Choosing λ = |z−x|
s

, y = z + s x−z
|z−x| and z ∈ A, we also obtain the inequality

|z − x|
s

f(z + s
x− z
|z − x|

) + (1− |z − x|
s

)f(z) ≤ f̃(x).

As

| |z − x|
s

f(z + s
x− z
|z − x|

) + (1− |z − x|
s

)f(z)| ≤ |z − x|
s

+ |(1− |z − x|
s

)|

≤2
|z − x|
s

+ 1 ≤ 2

s
(dist(x,A+ sB1) + diam(A+ sB1)) + 1,

|f̃(x)| ≤ 2
s
(dist(x,A+ sB1) + diam(A+ sB1)) + 1 for all x ∈ V , so the set

K := {f ∈ Conv(V,R) : f = h̃ for some h ∈ Conv(V,R) with ‖h‖C(A+2sB1) ≤ 1}

is uniformly bounded on compact subsets and therefore relatively compact in Conv(V,R)
due to Proposition 4.2.2. In particular, µ is bounded on K, as it is continuous.
Any function f ∈ Conv(V,R) satisfies f̃ = f on A + sB1, i.e. these functions coincide
on an open neighborhood of the support of µ. Proposition 6.1.3 implies µ(f) = µ(f̃),
and therefore

‖µ‖F ;A,s = sup{|µ(f)|F : f ∈ Conv(V,R), ‖f‖A+sB1 ≤ 1} = sup
f̃∈K
|µ(f̃)|F <∞.
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6.2 Subspaces of valuations with compact support

In addition, we see that the compact subset K̄ ⊂ Conv(V,R) satisfies

‖µ‖F ;A,s ≤ ‖µ‖F ;K̄ for all µ ∈ VConvA(V, F ).

On the other hand, any f ∈ K̄ satisfies ‖f‖C(A+2sB1) ≤ supx∈A+2sB1

2
s
(dist(x,A+ sB1) +

diam(A+ sB1)) + 1 ≤ cA,s := 2
s
(diam(A) + 3s) + 1 = 2

s
diam(A) + 7. By considering the

k-homogeneous component µk of µ, we obtain

‖µk‖F ;K̄ = sup
f∈K̄
|µk(f)| = ckA,s sup

f∈K̄

∣∣∣∣µk ( f

cA,s

)∣∣∣∣ ≤ ckA,s‖µk‖F ;A,s.

Thus ‖ · ‖F ;A,s and ‖ · ‖F ;K̄ are equivalent, so the semi-norm ‖ · ‖F ;A,s is in particular
continuous on VConvA(C;V, F ).
More generally, any compact set D ⊂ Conv(V,R) satisfies t := supf∈D,x∈A+2sB1

|f(x)| <
∞. Assuming t > 0, this implies

‖µk‖F ;D = sup
f∈D
|µk(f)|F = tk sup

f∈D

∣∣∣∣µk (ft
)∣∣∣∣

F

≤ tk‖µk‖F ;A,s.

If t = 0, then any f ∈ D coincides with the zero function on a neighborhood of the
support of µ, so µk(f) = µk(0) for all f ∈ D due to Proposition 6.1.3, i.e. ‖µk‖F ;D ≤
‖µk‖F ;A,s.
In any case, we see that ‖ · ‖F ;A,s defines a continuous semi-norm on VConvA(V, F ) and
that the family of these semi-norms generates the subspace topology.
Let us now assume that | · |F is a norm. If µ 6= 0, we can find f ∈ Conv(V,R) with
µ(f) 6= 0. Repeating the argument above for D = {f}, we see that ‖µ‖F ;D > 0 for
µ ∈ VConvA(V, F ) implies ‖µ‖F ;A,s > 0. Thus ‖ · ‖F ;A,s is indeed a norm.

For completeness, let us relate these semi-norms for different parameters s > 0:

Corollary 6.2.5. Let A ⊂ V be a compact convex subset. For 0 < s < t

‖µ‖F ;A,t ≤ ‖µ‖F ;A,s ≤
(

2

s
(2t+ diamA) + 1

)k
‖µ‖F ;A,t

for all k-homogeneous µ ∈ VConvA(V, F ).

Proof. The first inequality is obvious. For the second inequality, let f ∈ Conv(V,R) be
a function with ‖f‖C(A+2sB1) ≤ 1. Considering the function f̃ ∈ Conv(V,R) given by

f̃(x) :=

 sup
x=λy+(1−λ)z,λ≥1

λf(y) + (1− λ)f(z) x ∈ V \ (A+ sB1),

f(x) x ∈ A+ sB1

from the previous proof, we see that |f̃(x)| ≤ 2
s
(dist(x,A+ sB1) + diam(A+ sB1)) + 1,

so ‖f̃‖C(A+2tB1) ≤ 2
s
(2t − s + diamA + s) + 1 = 2

s
(2t + diamA) + 1. As f = f̃ on a

73



6 The support of a dually epi-translation invariant valuation

neighborhood of the support of µ, we obtain

|µ(f)|F =

(
2

s
(2t+ diamA) + 1

)k ∣∣∣∣µ( f
2
s
(2t+ diamA) + 1

)∣∣∣∣
F

≤
(

2

s
(2t+ diamA) + 1

)k
‖µ‖F ;A,s.

Corollary 6.2.6. If A is compact and F is a Banach or Fréchet space, then VConvA(V, F )
is also a Banach or Fréchet space respectively.

Proof. By Lemma 6.2.2, VConvA(V, F ) is a closed subspace of the complete locally con-
vex space VConv(V, F ) and so it is also complete.
If A is compact and convex, we can take one of the families of semi-norms from Proposi-
tion 6.2.4, which generates the subspace topology, so the space VConvA(V, F ) is complete
with respect to these semi-norms. If F is a Banach space, we only obtain one norm,
while we get a sequence of norms if F is a Fréchet space. In both cases, the claim follows
If A is not convex, choose R > 0 such that A ⊂ BR(0). Using the same argument as
in the proof of Lemma 6.2.2, we see that VConvA(V, F ) ⊂ VConvBR(0)(V, F ) is a closed
subspace of a Banach or Fréchet space. The claim follows.

6.3 Applications

6.3.1 The image of the embedding of VConv(V, F ) into
Val(V ∗ × R, F )

We are now able to describe the image of T : VConv(V, F ) → Val(V ∗ × R, F ) in the
case that F admits a continuous norm. Note that by Corollary 6.1.2, all valuations
µ ∈ VConv(V, F ) have compact support in this case. We start with the following
observation:

Proposition 6.3.1. For µ ∈ VConv(V ), v-supp(T (µ)) ⊂ P (suppµ), where

P : V →P+(V × R)

v 7→[(v,−1)].

Proof. By Proposition 3.1.3, we only need to show that T (µ)[K] = T (µ)[L] whenever
hK and hL coincide on an open neighborhood U of P (suppµ). Considering hK and hL
as 1-homogeneous functions on V × R, this implies that they coincide on the open set
π−1(U) ⊂ V × R, where π : (V × R) \ {0} → P+(V × R) is the natural projection.
Obviously, this is an open neighborhood of suppµ × {−1}, so we can apply Propo-
sition 6.1.3 to obtain µ(hK(·,−1)) = µ(hL(·,−1)), i.e. T (µ)(K) = T (µ)(L). Thus
v-suppT (µ) ⊂ P (suppµ).
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6.3 Applications

Theorem 6.3.2. Let F be a locally convex vector space that admits a continuous norm.
The image of T : VConvk(V, F ) → Valk(V

∗ × R, F ) consists precisely of the valua-
tions µ ∈ Valk(V

∗ × R, F ) whose vertical support is contained in the negative half
sphere P+(V × R)− := {[(y, s)] ∈ P+(V × R) : s < 0}. If F is a Fréchet space,
T : VConvA(V, F ) → ValP (A)(V

∗ × R, F ) is a topological isomorphism for any com-
pact subset A ⊂ V .

Proof. Starting with µ ∈ VConvk(V, F ), Proposition 6.3.1 shows that T (µ) has vertical
support contained in P+(V × R)−.
Conversely, let ν ∈ Valk(V

∗ × R, F ) be a valuation with vertical support contained in
P+(V × R)−. As P : V → P+(V × R)− is a diffeomorphism, P−1(v-supp ν) is compact.
Let us construct a functional µ on Conv(V,R) as follows: Given f ∈ Conv(V,R), let
Kf ∈ K(V ∗ × R) be a convex body with hKf (·,−1) = f on some neighborhood of
P−1(v-supp ν), which exists by Proposition 4.3.5. Now set

µ(f) := ν(Kf ).

Note that this does not depend on the special choice of Kf : If K is another convex
body with hK(·,−1) = f on some neighborhood of P−1(v-supp ν), then hK(·,−1) = f =
hKf (·,−1) on a neighborhood of P−1(v-supp ν), i.e. hK = hKf on a neighborhood of
v-supp ν, so Proposition 3.1.3 implies ν(K) = ν(Kf ).
The functional constructed this way is also a valuation: Choose a scalar product on V
and let R > 0 be such that P−1(v-supp ν) is contained in BR. If min(f, h) is convex,
then

epi max(f, h)∗ = epi min(f ∗, h∗) = epi(f ∗) ∪ epi(h∗),

epi min(f, h)∗ = epi max(f ∗, h∗) = epi(f ∗) ∩ epi(h∗).

For c = max{||f ||C(BR+2), ||h||C(BR+2), ||min{f, h}||C(BR+2), ||max{f, h}||C(BR+2)} choose

Kf = epi(f ∗) ∩ {|y| ≤ 2(n+ 2)c, |t| ≤ 3(n+ 2)c},
Kh = epi(h∗) ∩ {|y| ≤ 2(n+ 2)c, |t| ≤ 3(n+ 2)c}.

Proposition 4.3.5 shows that

max(f, h) = hKf∪Kh(·,−1), min(f, h) = hKf∩Kh(·,−1) on BR+1,

so the definition of µ implies

µ(max(f, h)) + µ(min(f, h)) =ν(Kf ∪Kh) + ν(Kf ∩Kh)

=ν(Kf ) + ν(Kh) = µ(f) + µ(h).

Furthermore, µ is invariant under the addition of linear or constant functions, as ν
is translation invariant. It remains to show that µ is continuous. We will argue by
contradiction.
Let (fj)j be a sequence in Conv(V,R) converging to f ∈ Conv(V,R) uniformly on
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6 The support of a dually epi-translation invariant valuation

compact subsets and assume that there exists ε > 0 such that |µ(fj) − µ(f)| > ε for
all j ∈ N for some continuous semi-norm | · | on F . Recall that we have chosen R > 0
such that P−1(v-supp ν) ⊂ BR. As the set {fj|j ∈ N} ∪ {f} is compact, these functions
are bounded on BR+2 by some constant c > 0. Using Proposition 4.3.5, we see that the
convex bodies

Kfj = epi(f ∗j ) ∩ {|y| ≤ 2(R + 2)c, |t| ≤ 3(R + 2)c},
Kf = epi(f ∗) ∩ {|y| ≤ 2(R + 2)c, |t| ≤ 3(R + 2)c},

satisfy hKfj = fj and hKf = f on BR+1. By construction, the sequence (Kfj)j of convex
bodies is bounded, so by the Blaschke selection theorem 2.4.1 we find a subsequence
Kfjk

converging to some convex body K ∈ K(V ∗ × R, F ). Then hK(·,−1) = hKf (·,−1)
on BR+1, as hKfjk (·,−1) = fjk on BR+1 and fj → f . As µ(f) does not depend on the
special choice of the convex body, we deduce that

lim
k→∞

µ(fjk) = lim
k→∞

ν(Kfjk
) = ν(K) = ν(Kf ) = µ(f).

This is a contradiction to |µ(fj)− µ(f)| > ε for all j ∈ N. Thus µ has to be continuous.
We have constructed µ ∈ VConv(V, F ) with T (µ) = ν and the support of µ is obviously
contained in P−1(v-supp ν).

Now let A ⊂ V be compact, F a Fréchet space. Observe that the restriction T :
VConvA(V, F ) → ValP (A)(V

∗ × R) is a well defined, injective, and continuous map be-
tween Fréchet spaces by Corollary 6.2.6 and Theorem 5.2.5. By the preceding discussion
it is also surjective, so Banach’s inversion theorem implies that T−1 : ValP (A)(V

∗ ×
R, F )→ VConvA(V, F ) is continuous, i.e. T : VConvA(V, F )→ ValP (A)(V

∗ × R, F ) is a
topological isomorphism.

Note that Proposition 6.2.3 shows that the inverse T−1 : ImT → VConv(V ;F ) is not
continuous if F admits a continuous norm: If (µj)j is a sequence in Val(V ∗ × R, F )
that converges to zero such that µj ∈ ImT and such that the distance of the vertical
supports of these valuations to the set {[(v, s)] ∈ P+(V × R) : s = 0} converges to zero,
then T−1(µj) defines a sequence of valuations in VConv(V, F ) with unbounded supports.
Thus the sequence cannot converge in VConv(V, F ).

6.3.2 Triviality of certain invariant valuations

A classical problem in the theory of valuation is the classification of valuations in terms
of their invariance properties. It is easy to see that the Goodey-Weil embedding for
VConv(C;V, F ) is equivariant with respect to the natural operation of the affine group,
so any invariance property of a valuation is reflected in the properties of its Goodey-Weil
distribution. The compactness of the support thus imposes certain restrictions on the
existence of invariant valuations. Let us start with the following observation.

Proposition 6.3.3. If the support of µ ∈ VConv(C;V, F ) is contained in a one-point
set, then it is empty and µ is constant.
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Proof. By considering λ ◦ µ for λ ∈ F ′ again, it is enough to consider the case F = R.
Let us also assume V = Rn and, without loss of generality, let the support of µ be
contained in {0}. By taking the homogeneous decomposition of µ, we can assume that
µ is homogeneous of degree k. We thus only need to show that the assumptions imply
µ = 0 for k > 0.
If µ is 1-homogeneous, GW(µ) is a distribution with compact support of order at most
2 due to Inequality (5.3), so there exist constants cα ∈ R such that

GW(µ) =
∑
|α|≤2

cα∂
αδ0.

Plugging in linear and constant functions, we see that cα = 0 for |α| < 2. Thus for any
f ∈ C∞(V ):

GW(µ)(f) =
∑
|α|=2

cα∂
αf(0).

Fix 1 ≤ i ≤ n and consider the functions fε(x) =
√
ε2 + x2

i for ε > 0. Then

∂αfε(x) =


ε2√
ε2+x2i

3 α = (i, i),

0 else.

Moreover, fε(x)→ f(x) = |xi| for ε→ 0, so the continuity of µ implies

µ(f) = lim
ε→0

µ(fε) = lim
ε→0

GW(µ)(fε) = lim
ε→0

c(i,i)
1

ε
.

Thus we must have c(i,i) = 0. In total, we are left with an expression of the form

GW(µ) =
∑
i<j

cij∂i∂jδ0.

Now consider fε(x) =
√
ε2 + (xi + xj)2 for i 6= j, which converges to f(x) = |xi + xj|

for ε→ 0. Then ∂i∂jfε(x) = ε2√
ε2+(xi+xj)2

3 and all other mixed derivatives vanish, so the

same argument as before shows that

µ(f) = lim
ε→0

µ(fε) = lim
ε→0

GW(µ)(fε) = lim
ε→0

cij
1

ε
.

Thus cij = 0 for all 1 ≤ i, j ≤ n, i.e. GW(µ) = 0. The injectivity of GW from Corollary
5.4.10 implies µ = 0.

If µ is k-homogeneous, we consider the valuation

µf := µ̄(·, f [k − 1])

for f ∈ C obtained from µ̄ by setting the last k − 1 arguments equal to f . Then µf is
a 1-homogeneous valuation. Using Proposition 6.1.3, it is easy to see that the support
of µf is a subset of the support of µ, so we deduce µf = 0 from the case k = 1. In
particular, µ(f) = µ̄(f, f [k − 1]) = µf (f) = 0.
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6 The support of a dually epi-translation invariant valuation

Corollary 6.3.4. Let G ⊂ Aff(V ) be a subgroup such that either

1. there exists no compact orbit in V , or

2. the only compact orbit in V consists of a single point.

Then any G-invariant valuation in VConv(V ) is constant. In particular, any translation
or SL(V )-invariant valuation (for dimV ≥ 2) is constant.

Proof. Without loss of generality, we can assume that µ is homogeneous of degree k and
G-invariant. We will show that µ has to vanish identically if k > 0.
Suppose k > 0. It is easy to see that GW : VConvk(V ) → D′(V k) is equivariant with
respect to the operation of the affine group. In particular, any G-invariant valuation
induces a G-invariant distribution. As the support of any such distribution must be
invariant with respect to the group, the same holds true for the support of µ. However,
the support of µ is compact, so we directly see that the support of µ is either empty or
consists of a single point. Due to Proposition 6.3.3 the second case cannot occur, so the
support of µ is empty, i.e. µ = 0.

6.3.3 Restrictions on the support and extension of valuations to
larger cones of convex functions

Up to this point, the cone C ⊂ Conv(V ) did not play any role in our constructions. In
particular, we could have defined the Goodey-Weil embedding by first restricting any
valuation in VConvk(C;V, F ) to Conv(V,R) and then using the Goodey-Weil embedding
for VConv(V, F ). This naturally leads to the question if the cone C actually imposes
any restrictions on the support. We will use this approach to give a partial answer to
the question which valuations in VConv(V, F ) can be extended to some larger cone. As
usual, let F denote a locally convex vector space.

Theorem 6.3.5. Let C ⊂ Conv(V ) be a regular cone containing Conv(V,R). Consider
the set dom(C) :=

⋂
f∈C

dom f . Then the following holds:

1. The support of any valuation in VConv(C;V, F ) is contained in dom(C).

2. If F admits a continuous norm, then every valuation in VConv(V, F ) with support
contained in the interior of dom(C) extends uniquely to a continuous valuation in
VConv(C;V, F ).

If F admits a continuous norm, we thus have inclusions

VConvint dom(C)(V, F ) ↪→ VConv(C;V, F ) ↪→ VConvdom(C)(V, F ).

Proof. For the first statement, consider the Goodey-Weil distribution of a k-homogeneous
valuations µ and let φ1, . . . , φk ∈ C∞c (V \ dom(C)). We have to show that GW(µ)(φ1 ⊗
· · · ⊗ φk) = 0. Using a partition of unity, we can assume that suppφi ⊂ Uε(xi) for some

78



6.3 Applications

xi ∈ V \ dom(C) and that Bε(xi) ⊂ V \ dom(C). We claim that every point y ∈ Bε(xi)
has a neighborhood where some fxi ∈ C is identical to +∞. Indeed, if y ∈ Bε(xi) is a
point where the assertion is violated, then y ∈ dom f for all f ∈ C. Thus y ∈ dom(C),
which is a contradiction to y ∈ Bε(xi) ⊂ V \dom(C). As Bε(xi) is compact, we can thus
find a finite number of functions f1,i, ..., fj,i ∈ C such that fi :=

∑j
l=1 fl,i is identical to

+∞ on Bε(xi).
The Lipschitz regularization fi,r := regr fi belongs to Conv(V,R) for all r > 0 small
enough. Let hi ∈ Conv(V,R) be a convex function such that hi + φi ∈ Conv(V,R).
Then h̃i,r := fi,r + hi ∈ C satisfies h̃i,r + φi ∈ C as well, so

GW(µ)(φ1 ⊗ · · · ⊗ φk)

=
k∑
l=0

(−1)k−l
1

(k − l)!l!
∑
σ∈Sk

µ̄
(
h̃σ(1),r + φσ(1), ..., h̃σ(l),r + φσ(l), h̃σ(l+1),r, ..., h̃σ(k),r

)
for all r > 0 sufficiently small. Of course, h̃i,r epi-converges to fi + hi for r → 0 and
h̃i,r + φi epi-converges to fi + hi + φi = fi + hi, as fi = ∞ on the support of φi. The
joint continuity of µ̄ implies

GW(µ)(φ1 ⊗ · · · ⊗ φk) =
k∑
l=0

(−1)k−l
1

(k − l)!l!
∑
σ∈Sk

µ̄(fσ(1) + hσ(1), ..., fσ(k) + hσ(k))

=µ̄(f1 + h1, ..., fk + hk)
k∑
l=0

(−1)k−l
(
k

l

)
= 0.

For the second statement, let µ ∈ VConvk(V, F ) be a valuation with support in int dom(C).
If f ∈ C is any function, it is finite and thus continuous on the interior of dom(C). In
particular, it is bounded on a compact neighborhood A of the support of µ that is
contained in int dom(C). Taking a smaller open neighborhood U of the support of µ
such that Ū ⊂ intA, Proposition 4.2.1 implies that f is Lipschitz continuous on U . In
particular, the norm of any subgradient of f on U is bounded by the Lipschitz constant.
Proposition 4.4.1 iv. implies that there exists r0 > 0 such that regr f = f on U for all
0 < r ≤ r0. Thus Proposition 6.1.3 shows that µ(regr f) does not depend on 0 < r ≤ r0,
so

µ′(f) := lim
r→0

µ(regr f)

defines an extension of µ to C. Due to Proposition 4.4.1 v., it is a valuation. We need to
show that this extension is continuous. As the topology on C is metrizable, we only need
to show that µ′ is sequentially continuous. Let (fj)j be a sequence in C epi-converging
to f ∈ C. Then all functions are finite on the interior of dom(C) and thus they converge
uniformly on the compact set A by Proposition 4.1.2. The estimate in Proposition 4.2.1
shows that {fj : j ∈ N} ∪ {f} is uniformly Lipschitz continuous on U , so Proposition
4.4.1 iii. implies that there exists r0 > 0 such that regr fj = fj and regr f = f on U for
all 0 < r ≤ r0 independent of j ∈ N. In particular, using Proposition 6.1.3, we see that
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6 The support of a dually epi-translation invariant valuation

there exists r0 > 0 such that µ(regr f) and µ(regr fj) do not depend on 0 < r ≤ r0. As
regr fj → regr f for j →∞ and all r sufficiently small, we obtain

µ(regr f) = lim
j→∞

µ(regr fj) for all r sufficiently small.

However, µ(regr fj) and µ(regr f) do not depend on r for 0 < r ≤ r0 independent of
j ∈ N, so we conclude µ′(f) = lim

j→∞
µ′(fj).

Obviously, the inclusion constructed this way is injective.

Let us show that both inclusions in Theorem 6.3.5 are strict in general:
Define µ(f) := f(0) + f(2) − 2f(1) for f ∈ Conv(R,R). It is easy to see that µ is a
dually epi-translation invariant valuation with support contained in {0, 1, 2}.
For the first inclusion, let C be the cone generated by Conv(R,R) and the convex indi-
cator functions I∞

[− 1
n
,∞)

for all n ∈ N. Then dom(C) = [0,∞), but any f ∈ C contains
suppµ in the interior of its domain. Now let (fj)j be a sequence in C that epi-converges to
f ∈ C. Due to Proposition 4.1.2, the sequence converges locally uniformly on the interior
of dom f , so in particular on {0, 1, 2}, i.e. µ(fj) = fj(0)+fj(2)−2fj(1)→ f(0)+f(2)−
2f(1). We can thus extend µ continuously to C by setting µ(f) := f(0) + f(2)− 2f(1)
for f ∈ C.

For the second inclusion, let C ⊂ Conv(R) be the cone generated by Conv(R,R) and
the convex indicator I∞[0,∞). Consider the sequence (fj)j in C given by

fj(x) = j2 max(
1

j
− x, 0) =

{
j − j2x x ≤ 1

j
,

0 x > 1
j
.

Using Proposition 4.1.2 again, we see that (fj)j epi-converges to I∞[0,∞), but µ(fj) = j
for all j ∈ N, so µ does not extend to C by continuity.

The restrictions on the support apply in particular to cones that are invariant under
large subgroups of the affine group.

Corollary 6.3.6. Let C ⊂ Conv(V ) be a regular cone containing Conv(V,R) that is
invariant with respect to either translations or SL(V ) (if dimV ≥ 2). If C contains a
non-finite convex function, then the only dually epi-translation invariant valuations are
the constant valuations.

Proof. If C contains a non-finite convex function, dom(C) is either empty or contains
only the origin due to the invariance of C. Due to Proposition 6.3.3, there are no non-
trivial valuations with this support for any 1 ≤ k ≤ n. Thus the only valuations are the
constant valuations.

Let us see that first inclusion in Theorem 6.3.5 is bijective for certain cones.
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Proposition 6.3.7. Let U ⊂ V be an open, convex set, CU := {f ∈ Conv(V ) :
f |U < ∞}, and F a locally convex vector space. Then the support of any valuation
µ ∈ VConv(CU ;V, F ) is contained in U .

Proof. This is trivial for U = V , thus let us assume U 6= V . Due to Theorem 6.3.5,
it is enough to show that the support of any valuation µ ∈ VConv(CU ;V, F ) does not
contain any point x0 ∈ ∂U . By considering λ ◦ µ for all λ ∈ F ′, it is also sufficient to
consider real-valued valuations. For simplicity, we will identify V ∼= Rn. Let us assume
that µ ∈ VConv(CU ;V, F ) is k-homogeneous and that x0 ∈ suppµ ∩ ∂U . By taking a
supporting hyperplane through x0 and using translations as well as rotations, we can
assume that x0 = 0 and that Ū ⊂ [0,∞)× Rn−1.
As 0 ∈ suppµ, we can choose functions φj1, ..., φ

j
k ∈ C∞c (Rn) with suppφji ⊂ U 1

j
(0) such

that

GW(µ)(φj1 ⊗ ...⊗ φ
j
k) = 1 ∀j ∈ N.

Consider the function hj ∈ CU given by

hj(x) =

∞ x ∈ (−∞, 0)× Rn−1,

max

(
(x1−(j+ 1

j
))2

2
+

n∑
i=2

x2i
2
, j

2

2

)
− j2

2
x ∈ [0,∞)× Rn−1.

Then hj ≡ 0 on Bj(j+ 1
j
, 0, . . . , 0). Setting xj := (j+ 1

j
, 0, . . . , 0), we see that x ∈ Bj(xj)

implies

|x− xj+1| ≤ |x− xj|+ |xj − xj+1| ≤ j +
1

j
− 1

j + 1
≤ j + 1,

so Bj(xj) ⊂ Bj+1(xj+1). If y = (y1, ..., yn) ∈ (0,∞)× Rn−1 is given, then

|y − xj|2 − j2 = −2

(
j +

1

j

)
y1 +

1

j2
+ 2 +

n∑
i=1

y2
i → −∞ for j →∞,

so
⋃
j∈NBj(xj) = (0,∞)×Rn−1. In particular, the sequence (hj)j converges pointwise to

h := I∞[0,∞)×Rn−1 for all x /∈ {0}×Rn−1. Proposition 4.1.2 implies that (hj)j epi-converges
to h.
Now set cj := maxi=1,...,k ‖φji‖C2(V ) and define f ji := cjhj + φji . Then f

j
i ∈ CU for all 1 ≤

i ≤ k, j ∈ N. By construction, limj→∞ f
j
i (x) = I∞[0,∞)×Rn−1(x) = h(x) for x /∈ {0}×Rn−1,

so Proposition 4.1.2 shows that (f ji )j epi-converges to h for j →∞. Using the definition
of the Goodey-Weil embedding and the joint continuity of the polarization µ̄, we obtain

81



6 The support of a dually epi-translation invariant valuation

the contradiction

1 = lim
j→∞

GW(µ)(φj1 ⊗ ...⊗ φ
j
k)

= lim
j→∞

k∑
l=0

(−1)k−l
1

(k − l)!l!
∑
σ∈Sk

µ̄
(
f jσ(1), ..., f

j
σ(l), hσ(l+1), . . . , hσ(k)

)
=

k∑
l=0

(−1)k−l
1

(k − l)!l!
∑
σ∈Sk

µ̄(h[l], h[k − l])

=(−1)kµ(h)
k∑
l=0

(−1)l
k!

(k − l)!l!
= 0.

Thus 0 /∈ suppµ.

6.3.4 Valuations on convex functions defined on open subsets

For an open and convex subset U ⊂ V , let us denote the space of all convex functions
f : U → R by Conv(U,R), which is a subspace of C(U). Equipped with the topol-
ogy of uniform convergence on compact subset of U , Conv(U,R) becomes a metrizable
topological space.

Lemma 6.3.8. For f ∈ Conv(U,R) define f̃ by

f̃(x0) =


f(x0) x0 ∈ U,
lim inf
x→x0,x∈U

f(x) x0 ∈ ∂U,

∞ x0 ∈ V \ Ū .

Then f̃ ∈ Conv(V ).

Proof. Observe that f̃(x0) = lim infx→x0,x∈U f(x) for all x ∈ Ū , as f is continuous on U .
Obviously, f̃ is lower semi-continuous. We need to show that f̃ > −∞ and that f̃ is
convex.
Let x ∈ ∂U be any point, (xj)j a sequence in U converging to x such that lim

j→∞
f(xj) =

f̃(x). For y ∈ U and λ ∈ (0, 1), the convexity of f implies

f(λy + (1− λ)xj) ≤ λf(y) + (1− λ)f(xj).

As U is open, λy + (1− λ)xj → λy + (1− λ)x in U for all λ ∈ (0, 1), so the continuity
of f on U implies

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f̃(x).

In particular, f̃(x) > −∞. In addition, we see that f̃ is convex along line segments [x, y],
where x ∈ ∂U and y ∈ U . To see that f̃ is convex, the only non-trivial case remaining is
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a line segment [x, y] where x, y ∈ ∂U . Take a sequence (yj)j in U converging to y such
that lim

j→∞
f(yj) = f̃(y). Using the inequality above, we see that for λ ∈ (0, 1)

f(λyj + (1− λ)x) ≤ λf(yj) + (1− λ)f̃(x).

Now, λyj + (1 − λ)x ∈ U defines a sequence converging to λy + (1 − λ)x ∈ Ū . Thus
taking limits and using the remark, we obtain

f̃(λy + (1− λ)x) ≤ lim inf
j→∞

f(λyj + (1− λ)x) ≤ λf̃(y) + (1− λ)f̃(x).

Proposition 6.3.9. The extension f 7→ f̃ defines a continuous, injective map iU :
Conv(U,R) → CU = {f ∈ Conv(V ) : f |U < ∞}. The inverse map is given by
restricting the map

res : CU → Conv(U,R)

f 7→ f |U

to the image of Conv(U,R) in CU and is also continuous. In addition, iU and res are
compatible with the formation of the pointwise maximum and minimum of two convex
functions.

Proof. It is clear that iU is injective. To see that it is continuous, it is enough to show
that it is sequentially continuous, as both spaces are metrizable.
Let (fj)j ⊂ Conv(U,R) be a sequence converging to f ∈ Conv(U,R). Then (f̃j)j con-
verges pointwise on the dense subset V \ ∂U to f̃ , so the claim follows from Proposition
4.1.2. Of course, the restriction map defines the inverse to this extension procedure.
The continuity follows again from Proposition 4.1.2.
Obviously, the restriction map is compatible with the formation of the pointwise max-
imum and minimum. If f, h ∈ Conv(U,R), then iU(max(f, h)) = max(iU(f), iU(h)) on
V \ ∂U . Thus iU(max(f, h))(x0) ≤ max(iU(f), iU(h))(x0) for x0 ∈ ∂U by definition of
iU . For the converse inequality, take a sequence (xj)j in U converging to x0 such that

lim
j→∞

max(f(xj), h(xj)) = iU(max(f, h))(x0).

As iU(f) and iU(h) are lower semi-continuous, given ε > 0 there exists N ∈ N such that
iU(f)(x0) ≤ f(xj) + ε and iU(h)(x0) ≤ h(xj) + ε for all j ≥ N , and therefore

max(iU(f), iU(h))(x0) ≤ max(f(xj), h(xj)) + ε ∀j ≥ N.

Thus max(iU(f), iU(h))(x0) ≤ iU(max(f, h))(x0). The same argument can be applied to
the minimum.

Definition 6.3.10. Let U be an open, convex subset, F a locally convex vector space.
We will denote the space of all continuous valuations µ : Conv(U,R)→ F that are dually
epi-translation invariant by VConv(U, F ).
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6 The support of a dually epi-translation invariant valuation

As usual, we equip VConv(U, F ) with the topology of uniform convergence on com-
pact subsets, which is generated by the semi-norms ‖µ‖F ;K := supf∈K |µ(f)|F for all
continuous semi-norms | · |F of F and compact subsets K ⊂ Conv(U,R).
Let CU := {f ∈ Conv(V ) : f |U <∞} be the regular cone of convex functions that are
finite on U . Using Proposition 6.3.9, we can consider the map

res∗ : VConv(U, F )→ VConv(CU ;V, F )

µ 7→ [f 7→ µ(f |U)].

Lemma 6.3.11. res∗ : VConv(U, F )→ VConv(CU ;V, F ) is injective and continuous.

Proof. Assume that res∗(µ) = 0 and let f ∈ Conv(U,R). The Lipschitz regularization
regr f̃ belongs to Conv(V,R) for r > 0 small enough, so Proposition 4.4.1 and Proposition
6.3.9 imply that µ([regr f̃ ]|U) converges to µ(f). However, µ([regr f̃ ]|U) = 0, so µ(f) = 0.
As this holds for arbitrary f ∈ Conv(U,R), µ = 0.
To see that the map is continuous, let K ⊂ CU be a compact subset. As the restriction
res : CU → Conv(U,R) is continuous due to Proposition 6.3.9, res(K) ⊂ Conv(U,R) is
compact, and

‖ res∗ µ‖F ;K = ‖µ‖F ;res(K).

Thus res∗ is continuous.

In addition to res∗, we can also consider

i∗U : VConv(CU ;V, F )→ VConv(U, F )

µ 7→ [f 7→ µ(iU(f))].

Using the same argument as in Lemma 6.3.11, we see that this is well defined and
continuous.
We obtain the following identification between valuations on Conv(U,R) and valuations
on CU :

Theorem 6.3.12. If U ⊂ V is an open, convex subset and F is a locally convex vector
space admitting a continuous norm, then the map

res∗ : VConv(U, F )→ VConv(CU ;V, F )

µ 7→ [f 7→ µ(f |U)]

is a topological isomorphism with inverse i∗U .

Proof. It is easy to see that i∗U ◦ res∗ = IdVConv(U,F ), so i∗U is surjective. Let us show
that i∗U is injective. Assume that µ ∈ VConv(CU ;V, F ) satisfies µ(iU(f)) = 0 for all
f ∈ Conv(U,R). Due to Proposition 6.3.7, the support of µ is compactly contained in
U . Given h ∈ Conv(V,R), the function iU(h|U) coincides with h on U , i.e. they coincide
on a neighborhood of the support of µ. Proposition 6.1.3 implies µ(h) = µ(iU(h|U)) = 0.
Thus µ vanishes on the dense subset Conv(V,R) ⊂ CU , i.e. µ = 0.
We obtain (i∗U)−1 = res∗, which is continuous. The same applies to (res∗)−1 = iU .
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7 Smooth valuations on convex
functions

In this chapter we are going to construct a large class of valuations on finite-valued convex
functions. For smooth convex functions, these functionals are obtained by integrating
certain differential forms of appropriate degree over the graph of their differential, which
can be considered as a smooth n-dimensional submanifold in the cotangent bundle. For
non-smooth functions we replace the graph of the differential by the differential cycle,
which was introduced by Fu in [26]. The valuations obtained this way will be called
smooth valuations. Let us also remark that this cycle exists for a much larger class of
functions, called Monge-Ampère functions, and smooth valuations extend naturally to
this larger class.
In the first section, we are going to discuss some properties of the differential cycle and
establish the continuity of this current on the class of convex functions.
The second section examines which differential forms induce the trivial valuation. This
description involves a certain second order differential operator on the cotangent bundle,
which is closely related to the Rumin operator. As we are mostly interested in dually
epi-translation invariant valuations, we will also show that smooth dually epi-translation
invariant valuations can be represented by suitable invariant differential forms.
In the third section, we will show that smooth dually epi-translation invariant valuations
are dense in VConv(V ). This result is based on the observation that the differential cycle
of a support function is closely related to the conormal cycle of the corresponding convex
body. We then use the description of the image of the embedding of VConv(V ) into
Val(V ∗×R) to show that the approximation of continuous valuations in Val(V ∗×R) by
smooth valuations can be used to establish the corresponding statement for VConv(V ).

The results of this chapter are to be published in [34].

7.1 Properties of the differential cycle

In this section we summarize the basic facts concerning Monge-Ampère functions es-
tablished by Fu in [26]. For a generalization of this notion we also refer to [33]. Let
V be an oriented vector space, vol ∈ ΛnV ∗ a positive volume form, and let ωs denote
the natural symplectic form on T ∗V . Recall that a current S on T ∗V is called locally
vertically bounded if suppS ∩ π−1(K) is compact for all compact subsets K ⊂ V . Here,
π : T ∗V → V denotes the natural projection. For a background on currents we refer to
[25].
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7 Smooth valuations on convex functions

Theorem 7.1.1 (Fu [26] Theorem 2.0). Let f : V → R be a locally Lipschitzian function.
There exists at most one integral current S ∈ In(T ∗V ) such that

1. S is closed, i.e. ∂S = 0,

2. S is Lagrangian, i.e. Sxωs = 0,

3. S is locally vertically bounded,

4. S(ψ(x, y) ∧ π∗ vol) =
∫
V

ψ(x, df(x))d vol(x) for all ψ ∈ C∞c (T ∗V ).

Note that the right hand side of the last equation is well defined due to Rademacher’s
theorem.

If such a current exists, the function f is called Monge-Ampère. The corresponding
current is denoted byD(f) and is called the differential cycle of f . Moreover, we have the
following description of the support of D(f): Let ∂∗f : V → K(V ∗) denote the unique
upper semi-continuous multifunction with values in K(V ∗) such that df(x) ∈ ∂∗f(x)
whenever f is differentiable at x ∈ V (also called the generalized differential by Clarke
[13]).

Theorem 7.1.2 (Fu [26] Theorem 2.2.). If f : V → R is Monge-Ampère, then

suppD(f) ⊂ graph ∂∗f := {(x, y) ∈ T ∗V : y ∈ ∂∗f(x)} .

In particular, given an relatively compact, open set U ⊂ V ,

suppD(f) ∩ π−1(U) ⊂ U ×Blip(f |U )(0),

where lip(f |U) denotes the Lipschitz constant of f |U (with respect to some scalar product
on V ).

Let us summarize some additional properties.

Proposition 7.1.3 (Fu [26] Proposition 2.4). Let f be a Monge-Ampère function and
φ ∈ C1,1(V ). Then f + φ is Monge-Ampère and

F (f + φ) = Gφ∗D(f),

where Gφ : T ∗V → T ∗V is given by (x, y) 7→ (x, y + dφ(x)).

Proposition 7.1.4. Let φ : V → V be a diffeomorphism of class C1,1. Then f ◦ φ is
Monge-Ampère and

D(f ◦ φ) =
(
φ#
)
∗D(f)

if φ is orientation preserving, and

D(f ◦ φ) = −
(
φ#
)
∗D(f)

if φ is orientation reversing. Here φ# : T ∗V → T ∗V is given by (x, y) 7→ (φ−1(x), φ∗y).
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7.1 Properties of the differential cycle

Proof. For orientation preserving diffeomorphisms this was shown in [26] Proposition
2.5. The second case follows with the same argument: First note that the integral current
−
(
φ#
)
∗D(f) is locally vertically bounded and satisfies ∂

[(
φ#
)
∗D(f)

]
=
(
φ#
)
∗ ∂D(f) =

0. As φ# is a symplectomorphism, so is (φ#)−1, and in particular

−
[(
φ#
)
∗D(f)

]
xωs = −

(
φ#
)
∗ [D(f)x((φ#)−1)∗ωs] = −

(
φ#
)
∗ [D(f)xωs] = 0.

In addition,

−
[(
φ#
)
∗D(f)

]
[ψ(x, y) ∧ π∗ vol] =−D(f)

[
(φ#)∗[ψ(x, y) ∧ π∗ vol]

]
=−D(f)

[
ψ ◦ φ#(x, y) ∧ π∗(φ−1)∗ vol

]
=−D(f)

[
ψ ◦ φ#(x, y) ∧ π∗(detDφ−1 ∧ vol)

]
=D(f)

[
ψ ◦ φ#(x, y) ∧ π∗| detDφ−1| ∧ π∗ vol

]
=D(f)

[
ψ
(
φ−1(x), φ∗y

)
∧ π∗| detDφ−1| ∧ π∗ vol

]
=

∫
V

ψ
(
φ−1(x), φ∗df

(
φ−1(x)

))
| detDφ−1(x)|d vol(x)

for all ψ ∈ C∞c (T ∗V ), where we have used the defining property of D(f) in the last step.
By a change of variables, we obtain

−
[(
φ#
)
∗D(f)

]
(ψ(x, y) ∧ π∗ vol) =

∫
V

ψ
(
φ−1(x), φ∗df

(
φ−1(x)

))
| detDφ−1(x)|d vol(x)

=

∫
V

ψ (x, φ∗df(x)) d vol(x)

=

∫
V

ψ(x, d(φ∗f)(x))d vol(x).

Thus −
[(
φ#
)
∗D(f)

]
satisfies the defining properties of the differential cycle for φ∗f ,

which is thus a Monge-Ampère function with D(φ∗f) = −
[(
φ#
)
∗D(f)

]
by Theorem

7.1.1.

Also note that [26] Remark 2.1 shows that cf is Monge-Ampère for any c ∈ R \ {0}
and any Monge-Ampère function f , with

D(cf) = C∗D(f), (7.1)

where C : T ∗V → T ∗V is given by (x, y) 7→ (x, cy).
The differential cycle satisfies the following valuation property:

Proposition 7.1.5 (Fu [26] Proposition 2.9). Let f, g : V → R be locally Lipschitzian.
If any three of f , g, f ∨ g and f ∧ g are Monge-Ampère, then so is the fourth, and

D(f) +D(g) = D(f ∧ g) +D(f ∨ g).
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7 Smooth valuations on convex functions

By [26] Proposition 3.1, all convex functions are Monge-Ampère. We will now show
that D : Conv(V,R)→ In(T ∗V ) is continuous with respect to the local flat topology on
In(T ∗V ), i.e. the topology induced by the family of semi-norms

‖T‖A,[ := sup
{
|T (ω)| : suppω ⊂ A, ‖ω‖[ ≤ 1

}
for T ∈ In(T ∗V ), where

‖ω‖[ := max(‖ω‖∞, ‖dω‖∞) for ω ∈ Ωn(T ∗V ),

for A ⊂ T ∗V compact. The proof is based on the following approximation result.

Proposition 7.1.6 (Fu [26] Proposition 2.7.). Let f1, f2, ... : V → R be a sequence of
Monge-Ampère functions, and suppose that for each bounded open subset U ⊂ V there
exists a constant C such that

1. lip(fj|U) ≤ C

2. Mπ−1(U)(D(fj)) ≤ C

for all j ∈ N. If f = lim
j→∞

fj in the C0-topology, then f is Monge-Ampère, with

D(f) = lim
j→∞

D(fj)

in the local flat topology.

Here Mπ−1(U)(T ) := sup{|T (φ)| : suppφ ⊂ π−1(U), ‖φ‖∞ ≤ 1} denotes the mass of a
current T on π−1(U).
For convex functions the first bound follows directly from Proposition 4.2.1, while the
second is established by the following lemma.

Lemma 7.1.7. For f ∈ Conv(V,R), Mπ−1(UR)(D(f)) ≤ 2NωN‖f‖NC0(UR+1).

Proof. We will prove the following estimate:

Mπ−1(UR)(D(f + ε| · |2)) ≤ 2NωN‖f + ε| · |2‖NC0(UR+1)(1 + ε)
N
2 .

As D(f + ε| · |2) = Gε∗D(fj) for Gε(x, y) = (x, y + 2εx) due to Proposition 7.1.3, we see
that D(f + ε| · |2) converges to D(f) weakly for ε → 0, so the claim follows from this
inequality using the lower semi-continuity of the mass norm.

Considering the mollifications (f + ε| · |2)h for h > 0, Fu observed in the proof of [26]
Proposition 3.1. that

Mπ−1(U)(D((f + ε| · |2)h)) ≤ ωNr
N(1 + ε)

N
2

for any bounded, open subset U ⊂ V , where r > 0 can be chosen to be the Lipschitz
constant of f + ε| · |2 on {x ∈ V |d(x, U) < h}. For U = UR, we may thus choose
r = 2‖f + ε| · |2‖C0(UR+1+h) by Proposition 4.2.1. Now, the proof of [26] Proposition 3.1.
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7.2 Kernel theorem for the differential cycle

shows that D((f + ε| · |2)h)→ D(f) in the local flat topology for h→ 0, so in particular,
D((f + ε| · |2)h) converges weakly to D(f + ε| · |2). The lower semi-continuity of the mass
norm thus implies

Mπ−1(UR)(D(f + ε| · |2)) ≤ ωN
(
2‖f + ε| · |2‖C0(UR+1)

)N
(1 + ε)

N
2 .

Theorem 7.1.8. D : Conv(V,R)→ In(T ∗V ) is continuous with respect to the local flat
topology on In(T ∗V ).

Proof. If fj → f in Conv(V,R), their Lipschitz constants are locally uniformly bounded
by Proposition 4.2.1. The mass estimate from Lemma 7.1.7 shows that the mass of D(fj)
is locally uniformly bounded as well. Thus D(fj) → D(f) in the local flat topology by
Proposition 7.1.6.

Let Ωk
hc(T

∗M) denote the space of all smooth k-forms τ on T ∗V with horizontally
compact support, i.e. all k-forms τ ∈ Ωk

hc(T
∗V ) with supp τ ⊂ π−1(K) for some compact

set K ⊂ V .

Corollary 7.1.9. For each τ ∈ Ωn
hc(T

∗V ), f 7→ D(f)[τ ] defines a continuous valuation
on Conv(V,R).

Proof. Let K ⊂ V be a compact subset with supp τ ⊂ π−1(K). As the support of the
differential cycle is vertically bounded, suppD(f) ∩ supp τ is compact for every f ∈
Conv(V,R), so D(f)[τ ] is well defined for all f ∈ Conv(V,R). Furthermore, Proposition
7.1.5 shows that this functional satisfies the valuations property.
To see that it is continuous, let (fj)j be a sequence in Conv(V,R) converging to f ∈
Conv(V,R) uniformly on compact subsets. Choose R > 0 such that UR contains K.
As fj → f uniformly on UR, Proposition 4.2.1 implies that the Lipschitz constants
of these functions are bounded on UR by some L > 0. Now Theorem 7.1.2 shows that
suppD(fj)∩π−1(UR) ⊂ UR×BL(0). Let A be a compact neighborhood of UR×BL(0) and
φ ∈ C∞c (T ∗V ) a function with φ = 1 on a neighborhood of UR×BL(0) and suppφ ⊂ A.
Then

|D(fj)[τ ]−D(f)[τ ]| = |(D(fj)−D(f)) [φ · τ ]| ≤ ‖D(fj)−D(f)‖A,[ · ‖φ · τ‖
[ .

Now the claim follows from Theorem 7.1.8, as ||φ · τ ||[ <∞.

7.2 Kernel theorem for the differential cycle

By the previous section, any τ ∈ Ωn
hc(T

∗V ) defines a continuous valuation Conv(V,R)→
R, f 7→ D(f)[τ ]. To decide which differential forms induce the trivial valuation, we
will need a symplectic version of the Rumin differential. The starting point is the
Lefschetz decomposition for the space of smooth k-forms on a symplectic manifold (see
[32] Proposition 1.2.30).
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7 Smooth valuations on convex functions

Proposition 7.2.1. Let (M,ωs) be a symplectic manifold of dimension 2n and let L :
Ω∗(M)→ Ω∗(M), τ 7→ ωs ∧ τ be the Lefschetz operator.
For 0 ≤ k ≤ n let P k(M) := {τ ∈ Ωk(M) : Ln−k+1τ = 0} denote the space of primitive
k-forms on M . Then the following holds:

1. There exists a direct sum decomposition Ωk(M) =
⊕

i≥0 L
iP k−2i(M).

2. Ln−k : Ωk(M)→ Ω2n−k(M) is an isomorphism.

In particular, L : Ωn−1(M)→ Ωn+1(M) is an isomorphism.

Definition 7.2.2. We define

d̄ : Ωn(M)→ Ωn−1(M), d̄τ := L−1dτ

D̄ : Ωn(M)→ Ωn(M), D̄ τ := dd̄τ = dL−1dτ

and call D̄ the symplectic Rumin operator.

Note that d̄ is a first order differential operator, while D̄ is of second order.

Proposition 7.2.3. D̄ and d̄ have the following properties:

1. D̄ τ is primitive for all τ ∈ Ωn(M).

2. D̄ vanishes on multiples of ωs.

3. d̄ and D̄ vanish on closed forms.

4. If φ : M → M is a symplectomorphism, then d̄ and φ∗ commute. The same holds
for D̄.

Proof. 1. As the degree of D̄ τ is n, we only need to show that ωs ∧ D̄ τ = 0. Let
ξ be the unique element such that dτ = ωs ∧ ξ, i.e. ξ = d̄τ = L−1dτ . Then
ωs ∧ D̄ τ = ωs ∧ dL−1dτ = d(ωs ∧ L−1dτ) = d2τ = 0, as ωs is closed.

2. If τ = ωs ∧ ξ, then D̄ τ = dL−1d(ωs ∧ ξ) = dL−1(ωs ∧ dξ) = d(dξ) = 0.

3. Trivial.

4. Set ξ = d̄τ , i.e. ωs ∧ ξ = dτ . Then

d(φ∗τ) = φ∗dτ = φ∗(ωs ∧ ξ) = ωs ∧ φ∗ξ = ωs ∧ φ∗d̄τ.

By dividing by ωs we obtain d̄(φ∗τ) = φ∗d̄τ . D̄(φ∗τ) = φ∗ D̄ τ follows by applying
d to both sides.
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7.2 Kernel theorem for the differential cycle

For a Euclidean vector space V , consider the symplectic vector space V × V with
symplectic form ωs((v1, v2), (w1, w2)) := 〈v1, w2〉 − 〈v2, w1〉. An isotropic subspace W ⊂
V × V is called strictly positive if there exist k orthogonal vectors u1, . . . , uk ∈ V such
that W is spanned by the vectors wi := (ui, λiui) where λi > 0 for all 1 ≤ i ≤ k. We
will need the following lemma, which is due to Bernig. It is an easy generalization of [9]
Lemma 1.4.

Lemma 7.2.4. If τ ∈ Ωk(V × V ) vanishes on all strictly positive isotropic subspaces,
then τ is a multiple of the symplectic form.

Theorem 7.2.5. τ ∈ Ωn
hc(T

∗V ) satisfies D(f)[τ ] = 0 for all f ∈ Conv(V,R) if and only
if

1. D̄ τ = 0,

2.
∫
V
τ = 0, where we consider the zero section V ↪→ T ∗V as a submanifold.

Proof. To fix some notation, let µ := D(·)[τ ] be the valuation induced by τ and let
α ∈ Ω1(T ∗V ) denote the canonical 1-form. Let us start by showing that the conditions
above imply µ = 0. Set ξ := d̄τ , i.e. ωs ∧ ξ = dτ . Then d(α ∧ ξ) = −ωs ∧ ξ − α ∧ dξ =
−dτ − α ∧ D̄ τ . Thus, if D̄ τ = 0, we have d(τ + α ∧ ξ) = 0.
Consider the valuation f 7→ D(f)[α ∧ ξ]. By the main result of [27], D(f)xα =
D(f)xπ∗df , so

D(f)[α ∧ ξ] =D(f)[d(π∗f) ∧ ξ] = D(f)[d(π∗f ∧ ξ)− π∗f ∧ dξ]
=−D(f)[π∗f ∧ D̄ τ ] = 0.

Here we have used that D(f) is closed. Now observe that D(f) and [V × {0}] = D(0)
belong to the same homology class. Thus d(τ + α ∧ ξ) = 0 and D(f)[α ∧ ξ] = 0 imply

D(f)[τ ] = D(f)[τ + α ∧ ξ] = D(0)[τ + α ∧ ξ] =

∫
V

(τ + α ∧ ξ) =

∫
V

τ = 0,

as α|V = 0. Thus µ(f) = 0.

Now let us assume that µ = 0. Because
∫
V
τ = D(0)[τ ] = µ(0) = 0, the second

condition follows directly.
Let f be a smooth, strictly convex function. Then D(f) is given by integration over the
graph of df . For g ∈ C∞c (V ), Proposition 7.1.3 shows that

0 = D(f + tg)[τ ] = Φtg∗D(f)[τ ] = D(f)[Φ∗tgτ ],

where Φtg : T ∗V → T ∗V , Φtg(x, y) = (x, y + tdg(x)). Differentiating, we obtain

0 = D(f)[LXgτ ] = D(f)[(d ◦ iXg + iXg ◦ d)τ ] = D(f)[iXgdτ ],

as D(f) is closed. Here Xg := d
dt
|0Φtg. Using dτ = ωs ∧ d̄τ ,

0 = D(f)[iXg(ωs ∧ d̄τ)] = D(f)[ωs ∧ iXg d̄τ + iXgωs ∧ d̄τ ].
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7 Smooth valuations on convex functions

As D(f) is Lagrangian, the first term vanishes, so we are left with

0 = D(f)[iXgωs ∧ d̄τ ].

The map Φtg is a symplectomorphism and it is easy to see that Φ∗tgα = α + tπ∗dg.
Differentiating, we obtain π∗dg = LXgα = iXgdα+ diXgα = −iXgωs. Here we have used
that dπ(Xg) = 0, i.e. iXgα = 0, as Φtg maps each fiber to itself. In particular,

0 = D(f)[d(π∗g) ∧ d̄τ ].

Using once again that D(f) is closed, we arrive at

0 = D(f)(π∗g ∧ dd̄τ) = D(f)(π∗g ∧ D̄ τ).

As this is true for all g ∈ C∞c (V ), D̄ τ vanishes on all spaces tangent to the graph of df .
We are now going to apply Lemma 7.2.4: Fix a Euclidean structure on V and use the
induced isomorphism V × V ∗ ∼= V × V . It can be checked that this is a symplecto-
morphism. Fix a point (x, y) ∈ T ∗V . We claim that the pullback of D̄ τ vanishes on
all strictly positive isotropic subspaces at the corresponding point in TV = V × V .
Given a strictly positive subspace W , we thus need to find a strictly convex function
f ∈ Conv(V,R) ∩ C∞(V ) such that df(x) = y and such that the tangent space to the
graph of ∇f is exactly W . By definition, there exist orthonormal vectors u1, . . . , un ∈ V
and positive numbers λ1, . . . , λn such that W is spanned by wi = (ui, λiui). With re-
spect to the basis u1, . . . , un, we obtain linear coordinates z1, . . . , zn on V , and we define
f ∈ Conv(V,R) ∩ C∞(V ) by

f(z) :=
n∑
i=1

1

2
λiz

2
i + (yi − λixi)zi,

where (y1, . . . , yn) are the coordinates with respect to the basis u1, . . . , un of the image
of y ∈ V ∗ in V under the isomorphism above. Then f has the desired properties. Using
that D̄ τ vanishes on all spaces tangent to the graph of df , we see that the pullback of
D̄ τ to TV vanishes on W . As this is true for all strictly positive isotropic subspaces and
all (x, y) ∈ T ∗V ∼= V × V , this pullback must be a multiple of the symplectic form due
to Lemma 7.2.4. As T ∗V ∼= V × V are symplectomorphic, D̄ τ must be a multiple of
the symplectic form on T ∗V as well. However, D̄ τ is primitive due to Proposition 7.2.3,
thus the Lefschetz decomposition in Proposition 7.2.1 implies D̄ τ = 0.

Corollary 7.2.6. If τ ∈ Ωn
hc(T

∗V ) satisfies D̄ τ = 0, then D(f)[τ ] =
∫
V
τ for all f .

Proof. Choose φ ∈ C∞c (V ) such that
∫
V
τ =

∫
V
φ(x)d vol(x). Then D̄(π∗(φ ∧ vol)) = 0,

as dπ∗(φ ∧ vol) = 0. By definition
∫
V

(τ − π∗(φ ∧ vol)) = 0, so the valuations induced
by τ and π∗(φ ∧ vol) have to coincide by Theorem 7.2.5. But D(f)[π∗(φ ∧ vol)] =∫
V
φ(x)d vol(x) =

∫
V
τ by the defining property of the differential cycle.

Proposition 7.2.7. Let G ⊂ Aff(V ) be a subgroup and let µ = D(·)[τ ] be a G-invariant
valuation on Conv(V,R). Then g∗ D̄ τ = sign(det g)Dτ .
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7.2 Kernel theorem for the differential cycle

Proof. By Proposition 7.1.4 we have D(f ◦ g) = sign(det g)(g−1)∗D(f), where g ∈ G
operates on T ∗V by g(x, y) = (gx, y ◦ g−1), which is a symplectomorphism. Thus the
valuation f 7→ µ(f ◦ g) is represented by the differential form sign(det g)(g−1)∗τ . Propo-
sition 7.2.3 implies D̄((g−1)∗τ) = (g−1)∗ D̄ τ for all g ∈ G.
As τ induces a G-invariant valuation, τ−sign(det g)(g−1)∗τ induces the trivial valuation
for all g ∈ G. Thus

D̄ τ − sign(det g)(g−1)∗ D̄ τ = D̄ τ − D̄(sign(det g)(g−1)∗τ)

= D̄(τ − sign(det g)(g−1)∗τ) = 0

for all g ∈ G by Theorem 7.2.5.

We will call a differential form on T ∗V vertically translation invariant if it is invariant
with respect to translations in the second component of T ∗V ∼= V × V ∗.

Corollary 7.2.8. A differential form τ represents a dually epi-translation invariant
valuation µ if and only if D̄ τ is vertically translation invariant and

∫
V
φ∗λτ =

∫
V
τ for

all λ ∈ V ∗, where φλ : T ∗V → T ∗V , φ(x, y) = (x, y + λ).

Proof. By Proposition 7.1.3, D(f + λ) = φλ∗D(f). If µ is dually epi-translation in-
variant, this implies that τ and φ∗λτ induce the same valuation µ. Theorem 7.2.5 shows
D̄(τ−φ∗λτ) = 0 and

∫
V
φ∗λτ =

∫
V
τ . But it is easy to see that φλ is a symplectomorphism,

so D̄ τ = φ∗λ D̄ τ by Proposition 7.2.3, i.e. D̄ τ is vertically translation invariant.

For the converse direction, note that this argument also shows that D̄(τ) = D̄(φλτ) for
all λ ∈ V ∗ if D̄ τ is vertically translation invariant. Together with the second property,
Theorem 7.2.5 implies that τ and φ∗λτ induce the same valuation. Of course, any valua-
tion obtained from the differential cycle is invariant under the addition of constants, so
τ induces a dually epi-translation invariant valuation.

Consider the map mt : T ∗V → T ∗V , (x, y) 7→ (x, ty) for t > 0. We will call a
differential form τ on T ∗V homogeneous of degree k ∈ R if m∗t τ = tkτ for all t > 0.

Corollary 7.2.9. τ represents a smooth valuation µ homogeneous of degree k ≥ 0 if
and only if

1. D̄ τ is (k − 1)-homogeneous and
∫
V
m∗t τ = 0 for all t > 0 if k 6= 0,

2. D̄ τ = 0 if k = 0.

In particular, τ induces a constant valuation if and only if D̄ τ = 0.

Proof. Using Equation (7.1), D(tf) = mt∗D(f). mt is not a symplectomorphism but
m∗tωs = tωs, i.e. we obtain a constant multiple of ωs. Set ξ = d̄τ , i.e. dτ = ωs ∧ ξ. Then

d(m∗t τ) = m∗tdτ = m∗t (ωs ∧ ξ) = tωs ∧m∗t ξ,
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7 Smooth valuations on convex functions

and thus d̄(m∗t τ) = tm∗t ξ = tm∗t d̄τ and D̄(m∗t τ) = d(tm∗t d̄τ) = tm∗t D̄ τ .
Let µ be k-homogeneous. Then

D(f)[m∗t τ ] = µ(tf) = tkµ(f) = D(f)[tkτ ] for all f ∈ Conv(V,R).

Theorem 7.2.5 implies D̄(m∗t τ − tkτ) = 0 and using the computation above, we obtain
tm∗t D̄ τ = tk D̄ τ for all t > 0.
If k = 0, we obtain D̄ τ = 0 by considering the limit t → 0 and thus µ is constant
by Corollary 7.2.6. If k 6= 0, we can divide by t to obtain m∗t D̄ τ = tk−1 D̄ τ for all
t > 0, i.e. D̄ τ is (k− 1)-homogeneous. Obviously,

∫
V
m∗t τ = D(0)[m∗t τ ] = mt∗D(0)[τ ] =

D(t · 0)[τ ] = µ(0) = 0k · µ(0) = 0 if k > 0.

Now assume that D̄ τ is k−1 homogeneous, k 6= 0, and
∫
V
m∗t τ = 0 for all t > 0. With

the same computation as before, we conclude that D̄(m∗t τ − tkτ) = 0 for all t > 0. As∫
V
m∗t τ = 0 by assumption, m∗t τ and tkτ induce the same valuation by Theorem 7.2.5,

i.e. µ(tf) = tkµ(f) for all t > 0.
If D̄ τ = 0, then µ is constant by Corollary 7.2.6 and in particular 0-homogeneous.

Let us also make the following observation:

Lemma 7.2.10. If τ ∈ Ωn
hc(T

∗V ) induces a k-homogeneous valuation for k 6= 0, then

D(f)[τ ] =
1

k
D(f)

[
f D̄ τ

]
for all f ∈ Conv(V,R) ∩ C∞(V ).

Proof. Let Gf : T ∗V → T ∗V , (x, y) 7→ (x, y + df(x)). Using Proposition 7.1.3 we see
that

(1 + t)kD(f)[τ ] = D(f + tf)[τ ] = D(f)
[
G∗tfτ

]
.

Differentiating at t = 0 and setting Xf = d
dt
|0Gtf , we obtain

kD(f)[τ ] = D(f)
[
LXf τ

]
= D(f)

[
iXfdτ

]
= D(f)

[
iXf (ωs ∧ d̄τ)

]
= D(f)

[
iXfωs ∧ d̄τ

]
.

As in the proof of Theorem 7.2.5, iXfωs = −π∗df , so we obtain

kD(f)[τ ] = −D(f)
[
df ∧ d̄τ

]
= D(f)

[
f ∧ D̄ τ

]
.

In the rest of this section, we will show that any smooth dually epi-translation invariant
valuation, which can be represented by some (not necessarily invariant) differential form,
can actually be obtained by only considering vertically translation invariant differential
forms.
Let Ωk,l = Ωk

c (V )⊗ΛlV ∗ ⊂ Ωk+l
hc (T ∗V ) denote the space of differential forms of bidegree

(k, l) with horizontally compact support that are in addition translation invariant in
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7.2 Kernel theorem for the differential cycle

the second component of T ∗V ∼= V × V ∗. The next lemma describes the image of
D̄ : Ωn−k,k → Ωn−(k−1),k−1. Recall that the de Rham cohomology with compact support
is given by

Hk
c (Rn) ∼=

{
0 k 6= n,

R k = n.

This isomorphism is realized by the map [τ ] 7→
∫
Rn τ .

Lemma 7.2.11. For 2 ≤ k ≤ n:

Im(D̄ : Ωn−k,k → Ωn−(k−1),k−1) = ker d ∩ kerL ∩ Ωn−(k−1),k−1.

For k = 1:

Im(D̄ : Ωn−1,1 → Ωn,0)

=

{
π∗(φ ∧ vol) : φ ∈ C∞c (V ),

∫
V

φ(x)d vol(x) =

∫
V

λ(x)φ(x)d vol(x) = 0 ∀λ ∈ V ∗
}
.

Proof. Let us start with the case 2 ≤ k ≤ n. Examining the degrees and using Propo-
sition 7.2.3, the image of D̄ is contained in the space on the right. For the converse, let
τ ∈ ker d ∩ kerL ∩Ωn−(k−1),k−1 be given. Choosing a basis ξi, 1 ≤ i ≤

(
n
k−1

)
, of Λk−1V ∗,

we find differential forms φi ∈ Ω
n−(k−1)
c (V ) such that

τ =
∑
i

ξi ∧ φi.

As τ is closed, 0 = (−1)k−1
∑

i ξi∧dφi, and thus dφi = 0 for all i. Using Hn−(k−1)
c (V ) = 0

for 2 ≤ k ≤ n, we see that there exists ψi ∈ Ωn−k
c (V ) such that φi = (−1)k−1dψi. Set

ω :=
∑
i

ξi ∧ ψi,

i.e. τ = dω. Then dα ∧ ω is closed, as d(dα ∧ ω) = dα ∧ dω = dα ∧ τ = 0, because τ
belongs to the kernel of L. We will need to find a vertically translation invariant n-form
τ̃ such that dτ̃ = −dα ∧ ω.
Note that −dα ∧ ω ∈ Ωn+1(T ∗V ) is again a vertically translation invariant differential
form, now of bidegree (n− k + 1, k). If ξ̃i, i = 1, . . . ,

(
n
k

)
, denotes a basis of ΛkV ∗, there

exist unique differential forms φ̃i ∈ Ωn−k+1
c (V ) such that

−dα ∧ ω =
∑
i

ξ̃i ∧ φ̃i.

As dα ∧ ω is closed, we obtain 0 = (−1)k
∑

i ξ̃i ∧ dφ̃i, i.e. dφ̃i = 0 for all i. Using
Hn−k+1
c (V ) = 0 for k 6= 1, we obtain ψ̃i ∈ Ωn−k

c (V ) such that φ̃i = (−1)kdψ̃i. Then
−dα ∧ ω = dτ̃ , where

τ̃ =
∑
i

ξ̃i ∧ ψ̃i ∈ Ωn−k,k.
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7 Smooth valuations on convex functions

Thus D̄ τ̃ = dω = τ .

For k = 1, choose oriented linear coordinates (x1, . . . , xn) on V with induced coor-
dinates (y1, . . . , yn) on V ∗ and volume form vol = dx1 ∧ · · · ∧ dxn. Let φ ∈ C∞c (V )
be a function with

∫
V
φ(x)d vol(x) = 0. Then φ ∧ vol belongs to the trivial cohomol-

ogy class of Hn
c (V ) ∼= R, so there exists ω ∈ Ωn−1

c (V ) such that φ ∧ vol = dω. Now
dα ∧ ω = d(α ∧ ω) − α ∧ dω. As dω is a multiple of π∗ vol, the second term vanishes,
and we are left with dα∧ω = d(α∧ω). Thus D̄(−α∧ω) = dω = π∗(φ∧ vol). Moreover,
α ∧ ω =

∑n
i=1 yiπ

∗(φi vol) for some φi ∈ C∞c (V ). If we consider the valuation induced
by −α ∧ ω, the defining property of the differential cycle implies

D(f)[−α ∧ ω] = −D(f)

[
n∑
i=1

yiπ
∗(φi vol)

]
= −

n∑
i=1

∫
V

∂if(x)φi(x)d vol(x). (7.2)

On the other hand, Lemma 7.2.10 implies

D(f)[−α ∧ ω] = D(f)
[
f D̄(−α ∧ ω)

]
= D(f) [π∗(fφ ∧ vol)] =

∫
V

f(x)φ(x)d vol(x)

for all f ∈ Conv(V,R) ∩ C∞(V ). As
∫
V
φ(x)d vol(x) =

∫
V
xiφ(x)d vol(x) = 0 for all

1 ≤ i ≤ n, D(·)[−α∧ω] is invariant under the addition of constant and linear functions.
From Equation (7.2) we deduce 0 =

∑n
i=1 li

∫
V
φi(x)d vol(x) for all l = (l1, . . . , ln) ∈

V ∗, which implies
∫
V
φi(x)d vol(x) = 0 for all i = 1, . . . , n, i.e. φi ∧ vol is trivial in

cohomology. Thus we can find ψi ∈ Ωn−1
c (V ) such that dψi = φi ∧ vol. In total,

α ∧ ω =
∑n

i=1 yidψi = d(
∑n

i=1 yiψi) −
∑n

i=1 dyi ∧ ψi. Then τ :=
∑n

i=1 dyi ∧ ψi ∈ Ωn−1,1

satisfies D̄ τ = D̄(−α ∧ ω + d(
∑n

i=1 yiψi)) = − D̄(α ∧ ω) = π∗(φ ∧ vol).

Theorem 7.2.12. Let VConv(V )sm ⊂ VConv(V ) denote the space of all dually epi-
translation invariant valuations of the form f 7→ D(f)[τ ] for some τ ∈ Ωn

hc(T
∗V ). Then

the following holds:

1. The map Ωn−k,k → VConvk(V )sm, τ 7→ D(·)[τ ] is surjective for all 0 ≤ k ≤ n.

2. For 2 ≤ k ≤ n D̄ induces an isomorphism

VConvk(V )sm ∼=Im(D̄ : Ωn−k,k → Ωn−(k−1),k−1)

= ker d ∩ kerL ∩ Ωn−(k−1),k−1.

3. For k = 1 D̄ induces an isomorphism

VConv1(V )sm ∼= Im(D̄ : Ωn−1,1 → Ωn,0)

=

{
π∗(φ ∧ vol) : φ ∈ C∞c (V ),

∫
V

φ(x)d vol(x) =

∫
V

λ(x)φ(x)d vol(x) = 0 ∀λ ∈ V ∗
}
.

96
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Proof. As any k-homogeneous valuation of degree k > 0 vanishes in 0 ∈ Conv(V,R),
a valuation µ ∈ VConvk(V )sm is uniquely determined by D̄ τ , where τ is any smooth
differential form representing µ, due to Theorem 7.2.5. Thus 2. and 3. follow from
1. using Lemma 7.2.11. For k = 0, the map in 1. is obviously surjective. Thus let
k > 0. As remarked before, any k-homogeneous valuation represented by τ ∈ Ωn

hc(T
∗V )

vanishes in 0 and D̄ τ is vertically translation invariant and k − 1-homogeneous. For
k ≥ 2, this implies that D̄ τ belongs to the image of D̄ : Ωn−k,k → Ωn−(k−1),k−1, so we
find some τ̃ ∈ Ωn−k,k with D̄(τ − τ̃) = 0. Of course, any such differential form satisfies∫
V
τ̃ = 0, so Theorem 7.2.5 implies that τ̃ and τ induce the same valuation.

For k = 1, we need to show that D̄ τ = π∗(φ ∧ vol) is in the image of D̄ : Ωn−1,1 →
Ωn,0. However, this follows from the fact that D(·)[τ ] is dually epi-translation invariant
together with Lemma 7.2.10. With the same argument as before we find τ̃ ∈ Ωn−1,1

with D̄(τ − τ̃) = 0 and
∫
V
τ̃ = 0 =

∫
V
τ . Applying Theorem 7.2.5 again, we obtain the

desired result.

Let us also add the following observation:

Lemma 7.2.13. Let µ ∈ VConv(V ) be a smooth valuation. For every function φ ∈
C∞(V ) (not necessarily with compact support) there exists a unique smooth valuation µφ
such that

µφ(f) =
d

dt

∣∣∣
0
µ(f + tφ)

for all f ∈ Conv(V,R).

Proof. First note that every smooth valuation naturally extends to a functional on all
Monge-Ampère functions, so the right hand side is well defined for all f ∈ Conv(V,R)
by Proposition 7.1.3. If µ is represented by some differential form τ , then

d

dt

∣∣∣
0
µ(f + tφ) =

d

dt

∣∣∣
0
D(f + tφ)[τ ] =

d

dt

∣∣∣
0
D(f)[G∗tφτ ]

for Gtφ(x, y) := (x, y + tdφ(x)) by Proposition 7.1.3. Setting Xφ := d
dt
|0Gtφ, we see that

d

dt

∣∣∣
0
µ(f + tφ) =D(f)

[
LXφτ

]
= D(f)

[
iXφdτ

]
= D(f)

[
iXφ(ωs ∧ d̄τ)

]
=D(f)

[
iXφωs ∧ d̄τ

]
= −D(f)

[
dφ ∧ d̄τ

]
= D(f)

[
φ D̄ τ

]
.

Thus f 7→ µφ(f) := D(f)
[
φ D̄ τ

]
is the desired smooth valuation.

7.3 Characterization of smooth valuations

Let us choose a scalar product on V with induced scalar products on V ∗ and V × R.
In addition, let us fix an orientation on V (and thus V ∗). If vol ∈ ΛnV induces the
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7 Smooth valuations on convex functions

orientation of V ∗, we will equip V ∗×R with the orientation induced by −dt∧vol, where
dt is the standard coordinate form on R. Consider the map

Q : (V ∗ × R)× P+(V × R)− → V × V ∗ = T ∗V

(y, s, [(x, t)]) 7→
(
−x
t
, y
)
.

To simplify the notation, let E := V ∗×R, such that Q : PE− := E×P+(E∗)− → T ∗V .

Proposition 7.3.1. Let K ∈ K(V ∗ × R). Then

Q∗
[
N*(K)|PE−

]
= D (hK(·,−1)) .

Proof. As supp N*(K) ⊂ K × P+(E), Q is proper on the support of N*(K)
∣∣
PE−

. Now
observe that both sides depend continuously on K in the local flat topology by Propo-
sition 3.3.2 and Theorem 7.1.8. It is thus enough to prove the equation for K ∈ K(E)
smooth and strictly convex. In this case, the support function of K is smooth outside
of 0 and

N*(K) = (d′hK × Id)∗ [P+(E∗)]

by Lemma 3.3.1. We therefore need to consider the map

Q ◦ (d′hK × Id) : P+(E∗)− → V × V ∗

[(x, t)] 7→
(
−x
t
, ∂1hK(x, t)

)
,

where ∂1hK = (∂x1hK , . . . , ∂xNhK). hK is 1-homogeneous, so ∂1hK(x, t) = ∂1hK(−x
t
,−1) =

dfK(−x
t
) for t < 0, where fK := hK(·,−1). Thus

Q ◦ (d′hK × Id) ([(x, t)]) =
(
−x
t
, dfK

(
−x
t

))
for all [(x, t)] ∈ P+(E∗)−. The map P+(E∗)− → V , [(x, t)] 7→ −x

t
is a diffeomorphism

and it is easy to see that it is orientation preserving for our choice of orientation. As
D(hK(·,−1)) is given by integration over the graph of dfK , we see that both currents
coincide.

Let us choose orthonormal linear coordinates x1, . . . , xn on V with induced coordinates
(y1, . . . , yn) on V ∗. We will denote the induced contact form on E × P+(E∗) by αE,
ωE := −dαE. Then αE = sdt+

∑n
i=1 xidyi with respect to the coordinates (y, s, x, t) on

V ∗ × R× S(V × R) ∼= V ∗ × R× P+(V × R).

Lemma 7.3.2. Let ω ∈ Ωk(E × P+(E∗)) be a translation invariant differential form.
Then there exists a differential form ω′ ∈ Ωk(T ∗V ) such that ω − Q∗ω′ is vertical on
E × P+(E∗)−, i.e. a multiple of the contact form αE.
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Proof. Any translation invariant differential form ω on E × P+(E∗) can be written as a
sum of terms of the form ds ∧ dyI ∧ τ or dyI ∧ τ , where τ is a form on P+(V × R) of
degree k − |I| − 1 or k − |I| respectively. As αE = tds+

∑n
j=1 xjdyj, we can replace ds

by −1
t

∑n
j=1 xjdyj while picking up a multiple of αE. We can thus assume that ω only

consists of terms of the form dyI ∧ τ with τ ∈ Ω∗(P+(V ×R)), i.e. ω is the pullback of a
form ω̃ on V ∗×P+(V×R). Obviously, Q̃ : V ∗×P+(V×R)− → T ∗V , (y, [(x, t)]) 7→ (−x

t
, y)

is a diffeomorphism, and if we let π̃ : V ∗×R×P+(V ×R)− → V ∗×P+(V ×R)− denote the
obvious projection, we obtain Q̃◦π̃ = Q. The claim follows by setting ω′ := (Q̃−1)∗ω̃.

Due to the kernel theorems 3.3.4 and 7.2.5, a smooth valuation is (up to its 0-
homogeneous component) uniquely determined by the (symplectic) Rumin differential
of a representing form. We will thus need the following compatibility between the two
versions of the differential.

Corollary 7.3.3. For any smooth differential form τ ∈ Ωn(T ∗V ), DQ∗τ = −1
t
αE ∧

Q∗ D̄ τ .

Proof. Let ωV denote the symplectic form on T ∗V . A short calculation shows Q∗ωV =
1
t
ωE + 1

t2
dt∧αE. Let ξ ∈ Ωn−1(T ∗V ) be the unique form with ωV ∧ ξ = dτ . Pulling back

this equation, we see that

dQ∗τ = Q∗ωV ∧Q∗ξ =
1

t
ωE ∧Q∗ξ +

1

t2
dt ∧ αE ∧Q∗ξ.

Restricting this equation to the contact distribution H in E × P+(E∗), we obtain

dQ∗τ |H =
1

t
ωE ∧Q∗ξ|H = ωE|H ∧

1

t
Q∗ξ|H .

This implies

d(Q∗τ + αE ∧
1

t
Q∗ξ) =dQ∗τ − ωE ∧

1

t
Q∗ξ − αE ∧ d(

1

t
Q∗ξ)

=− 1

t2
αE ∧ dt ∧Q∗ξ +

1

t2
αE ∧ dt ∧Q∗ξ − αE ∧

1

t
dQ∗ξ

=− 1

t
αE ∧Q∗dξ = −1

t
αE ∧Q∗ D̄ τ,

which is vertical. Thus D(Q∗τ) = d(Q∗τ + αE ∧ 1
t
Q∗ξ) = −1

t
αE ∧Q∗ D̄ τ .

Proposition 7.3.4. Let µ ∈ VConv(V ) be a valuation such that T (µ) ∈ Val(V ∗×R)sm.
Then there exists a differential form τ ∈ Ωn

hc(T
∗V ) such that

µ(f) = D(f)[τ ] ∀f ∈ Conv(V,R).

In particular µ ∈ VConv(V )sm if and only if T (µ) ∈ Val(V ∗ × R)sm.

99



7 Smooth valuations on convex functions

Proof. Using the homogeneous decomposition, we can assume that µ is homogeneous of
degree 1 ≤ k ≤ n. As T (µ) is a smooth valuation, it can be represented by a smooth
differential form ω ∈ Ωk,n−k(E×P+(E∗)). Using Lemma 7.3.2, we can find a differential
form ω′ ∈ Ωn(T ∗V ) such that ω − Q∗ω′ differ by a multiple of α on E × P+(E∗)−.
Applying the Rumin differential and using Corollary 7.3.3, we obtain

Dω = DQ∗ω′ = −1

t
α ∧Q∗ D̄ω′ on E × P+(E∗)−.

By Theorem 6.3.2, the support of T (µ) is compactly contained in P+(E∗)−. From
Proposition 3.3.5 we deduce that Dω has support compactly contained in E×P+(E∗)−,
so the same applies to Q∗ D̄ω′. Thus the support of D̄ω′ is horizontally compact. By
construction, this is a vertically translation invariant form of bidegree (n + 1 − k, k −
1). Using Lemma 7.2.11, we find a vertically translation invariant form τ ∈ Ωn−k,k ⊂
Ωn
hc(T

∗V ) such that D̄ τ = D̄ω. It remains to see that µ is represented by the differential
form τ . Observe that

Dω = −1

t
α ∧Q∗ D̄ω′ = −1

t
α ∧Q∗ D̄ τ = D(Q∗τ) on E × P+(E∗)−.

By extending Q∗τ trivially to E×P+(E∗), we see that this equation holds on the whole
space, so Theorem 3.3.4 implies that ω andQ∗τ induces the same valuation (note that the
second property in Theorem 3.3.4 is satisfied as the degree of our valuation is positive).
In particular

T (µ)(K) = N*(K)[ω] = N*(K) [Q∗τ ] =
[
N*(K)

∣∣
E×P+(E∗)−

]
[Q∗τ ]

=D (hK(·,−1)) [τ ] = T (D(·)[τ ]) (K)

for any K ∈ K(V ∗ × R), where we have used Proposition 7.3.1. The injectivity of T
implies µ = D(·)[τ ].
It remains to see that any valuation µ ∈ VConv(V )sm satisfies T (µ) ∈ Val(V ∗ × R)sm.
This follows directly from Proposition 7.3.1 and the characterization of Val(V ∗ × R)sm

in Theorem 3.3.3.

Theorem 7.3.5. VConv(V )sm is dense in VConv(V ). More precisely, the following
holds: For every compact set A ⊂ V and every compact neighborhood B ⊂ V of A, there
exists a sequence (µj)j in VConvB(V )sm such that (µj)j converges to µ.

Proof. Let µ ∈ VConvA(V ) be given and consider the following commutative diagram
with the diffeomorphism

P : V → P+(V × R)−

v 7→ [(v,−1)]

from Section 6.3.1:
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7.3 Characterization of smooth valuations

VConvA(V ) ValP (A)(V
∗ × R)

VConvB(V ) ValP (B)(V
∗ × R)

T

T

The vertical maps are the natural inclusions, while the horizontal maps are topolog-
ical isomorphisms due to Theorem 6.3.2. As P is a diffeomorphism, P (B) is a com-
pact neighborhood of P (A), so using Proposition 3.1.6, we can find a sequence (νj)j in
ValP (B)(V

∗ × R) ∩ Val(V ∗ × R)sm such that (νj) converges to T (µ). Then (T−1(νj))j is
a sequence in VConvB(V ) that converges to µ in VConvB(V ) and, by Proposition 7.3.4,
T−1(νj) ∈ VConv(V )sm. The claim follows.

Corollary 7.3.6. Let G ⊂ GL(V ) be a compact subgroup. Then the space of smooth
G-invariant valuations is dense in the space VConv(V )G of all continuous G-invariant
elements of VConv(V ).

Proof. Without loss of generality, we can assume that G is a subgroup of O(n), V = Rn.
Let µ be a G-invariant valuation and let R > 0 be such that BR is a neighborhood of
suppµ. Applying Proposition 6.1.3, it is easy to deduce that G maps an element of
VConvBR(Rn) to an element of the same space. Using Theorem 7.3.5, choose a sequence
(µj)j of smooth valuations converging to µ such that the supports of the valuations
µj are all contained in BR. By the previous theorem, each µj can be represented by
a vertically translation invariant differential form ωj. By averaging µj with respect to
the Haar measure, we obtain a G-invariant valuation µ̃j ∈ VConvBR(Rn). We claim
that this valuation is induced by the differential form ω̃j obtained by averaging g 7→
sign(det g)(g−1)∗ωj with respect to the Haar measure. Using the relation D(f ◦ g)[τ ] =
sign(det g)D(f)[(g−1)∗τ ] from Proposition 7.1.4, this is easily verified. Thus µ̃j is a
smooth G-invariant valuation.
It is easy to see that G acts continuously on VConvBR(Rn), i.e. the map

G× VConvBR(Rn)→ VConvBR(Rn)

(g, µ) 7→ [f 7→ (g · µ)(f) := µ(f ◦ g)]

is continuous. By Corollary 6.2.6, this is a Banach space with norm ‖ · ‖ := ‖ · ‖BR,1,
and the definition of the norm implies that G acts by isometries. We obtain

‖µ− µ̃j‖ =

∥∥∥∥∫
G

g · (µ− µj)dg
∥∥∥∥ ≤ ∫

G

‖g · (µ− µj)‖ dg =

∫
G

‖µ− µj‖ dg = ‖µ− µj‖ .

Thus (µ̃j)j is a sequence of smooth G-invariant valuations converging to µ.
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In this Chapter we will show that smooth mixed Hessian valuations are dense in VConv(V ).
We first establish a relation between the surface area measure of a convex body in V ∗×R
and the Hessian measure of the restriction of its support function in Section 8.1. Sec-
tion 8.2 introduces mixed Hessian valuations and examines their connection to Alesker
valuations. Finally, McMullen’s conjecture for VConv(V ) is proved in Section 8.3 using
a construction from Alesker [3] that represents a smooth valuation on convex bodies as
a converging sum of mixed volumes.

The results of this chapter are to be published in [34].

8.1 The Relation between the n-th Hessian measure
and the surface area measure

Throughout this section let us assume that V carries some Euclidean structure, which
also induces a normalization of the Hessian measure Hessn.
Let us recall the following well known theorem.

Theorem 8.1.1. For every K ∈ K(V ) there exists a measure Sn−1(K) on S(V ∗), called
the surface area measure, which as a measure-valued map on K(V ) is uniquely determined
by the following properties:

1. If K is a polytope with non-empty interior and unit normals {u1, . . . , us} ⊂ S(V ∗),
then

Sn−1(K) =
s∑
i=1

voln−1(F (K, ui))δui .

Here F (K, ui) is the face in direction ui.

2. If a sequence (Kj)j converges to K with respect to the Hausdorff metric, then
Sn−1(Kj) converges weakly to Sn−1(K).

Usually the surface area measure is interpreted as a measure on the unit sphere in V .
We will work in the dual space due to the following characterization in terms of support
functions.
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Lemma 8.1.2. For K,L ∈ K(V ):

d

dt
voln(K + tL) =

1

n

∫
S(V ∗)

hLdSn−1(K).

Proof. See [54] 5.1.7.

These measures also play an important role in the characterization of Valn−1(V ).

Theorem 8.1.3 (McMullen [44]). For every µ ∈ Valn−1(V ) there exists a function
f ∈ C(S(V ∗)) such that

µ(K) =

∫
S(V ∗)

fdSn−1(K) ∀K ∈ K(V ).

Furthermore, this function is unique up to the restriction of linear functions.

Let µ ∈ VConvn(V ). Then T (µ) ∈ Valn(V ∗ × R) and can thus be written as

T (µ) =

∫
S(V×R)

fdSn(·)

for some function f ∈ C(S(V ×R)) by McMullen’s characterization. On the other hand,
µ =

∫
V
φdHessn, for some φ ∈ Cc(V ) due to Theorem 5.2.4. The next lemma shows how

these two functions are related.

Lemma 8.1.4. If µ =
∫
V
φdHessn for φ ∈ Cc(V ) and T (µ) =

∫
S(V×R)

fdSn for a
function f ∈ C(S(V × R)), then

φ(y) =
√

1 + |y|2 ·

[
f

(
y√

1 + |y|2
,− 1√

1 + |y|2

)
+ f

(
− y√

1 + |y|2
,

1√
1 + |y|2

)]
.

Proof. Let us identify V ∼= V ∗. First note that Theorem 8.1.1 implies that

T (µ)[P ] = [f(u0) + f(−u0)] voln(P ) for all P ∈ K(keru0),

where u0 ∈ S(V × R) is an arbitrary unit direction. Choose an orthonormal basis
e1, . . . , en of V and let P be the parallelotope spanned by these basis vectors. By
Proposition 5.2.2,

µ(hP (· − y)) = φ(y) · voln(P ) = φ(y) ∀y ∈ V.

On the other hand, considering P ⊂ V × R,

hP (· − y,−1) = [hP ◦ gy](·,−1)

for gy ∈ GL(V × R) given by

gy :=

(
Idn y
0 1

)
.
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Identifying V ∼= V ∗, we thus obtain

µ (hP (· − y,−1)) =µ ([hP ◦ gy] (·,−1)) = µ
(
hgTy P (·,−1)

)
= T (µ)

[
gTy P

]
=[f(u0) + f(−u0)] voln

(
gTy P

)
,

where u0 := 1√
1+|y|2

(y,−1) is orthogonal to gTy P .

We thus only need to calculate voln(gTy P ). This is equal to the n+1-dimensional volume
of the parallelotope spanned by gTy e1, . . . , g

T
y en, u0, i.e. it is given by the absolute value

of the determinant of the matrix

(
gTy e1 . . . gTy en u0

)
=

e1 . . . en
y√

1+|y|2

y1 . . . yn − 1√
1+|y|2

 ,

which is
√

1 + |y|2.

Also note that, if we consider f ∈ C(S(V ×R)) as the restriction of a 1-homogeneous
function on V × R to S(V × R), the formula in Lemma 8.1.4 simplifies to

φ(y) = f(y,−1) + f(−y, 1) for y ∈ V.

Assuming that the support of f is contained in the negative half sphere S(V × R)− :=
{(v, t) ∈ S(V ×R) : t < 0}, this implies that f is the 1-homogeneous extension of φ to
V × (−∞, 0), extended by 0 on V × [0,∞).

8.2 Alesker valuations and mixed Hessian valuations

Abusing notation, let us denote the polarization of the Hessian measure by Hessn again.
As in Section 5.4.1, we can extend this functional to a multilinear functional on dif-
ferences of convex functions. We can thus consider the valuation f 7→ Hessn(f [n −
k], ψ1, . . . , ψk) for ψ1, . . . , ψk ∈ C2

c (V ), which belongs to VConvn−k(V,M(V )). If f ∈
Conv(V,R) ∩ C2(V ), then this valuation is given by∫
V

φdHessn (f [n− k], ψ1, . . . , ψk) =

∫
V

φ(x) det (Hf (x)[n− k], Hψ1(x), . . . , Hψk(x)) dx,

where det denotes the mixed determinant, and is thus an Alesker valuation. Let us also
set

µφ(f) :=

∫
V

φdHessn(f)

for φ ∈ Cc(V ).

Definition 8.2.1. For f1, .., fk ∈ Conv(V,R), µ̄φ(·[n− k], f1, . . . , fk) ∈ VConvn−k(V ) is
called a mixed Hessian valuation.
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Proposition 8.2.2. The space spanned by mixed Hessian valuations contains all Alesker
valuations. Every mixed Hessian valuation µ̄φ(·[n − k], f1, . . . , fk) with f1, . . . , fk ∈
Conv(V ) ∩ C2(V ) is an Alesker valuation.
Furthermore, if the coefficients of an Alesker valuation are smooth, so is the valuation.

Proof. For simplicity let us assume V = Rn. Let Eij denote the symmetric matrix that
has 1 as its (i, j)-th and (j, i)-th entry and 0 everywhere else. Using the multilinearity
of the mixed determinant, we see that any Alesker valuation can be written as a sum of
terms of the form

µ̃(f) :=

∫
V

φ(x) det (Hf (x)[n− k], Ei1j1 , . . . , Eikjk) ∀f ∈ Conv(V,R) ∩ C2(V ),

where φ ∈ Cc(V ). Consider the functions fij(x) := xixj − 1
2
δijxixj. Then Hfij = Eij

and the definition of the mixed determinant implies for f ∈ Conv(V,R) ∩ C2(V )

µ̃(f) =
(n− k)!

n!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0

∫
V

φ(x) det

(
Hf (x) +

k∑
i=1

λiEij

)
dx

=
(n− k)!

n!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0

∫
V

φdHess

(
f +

k∑
i=1

λifij

)

=
(n− k)!

n!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0
µφ

(
f +

k∑
i=1

λifij

)
.

Thus we see that µ̃ is a mixed Hessian valuation. Furthermore, the density φ in the
equation above is smooth if all coefficients of the Alesker valuation are smooth. As fij
is smooth as well, the last statement follows from Lemma 7.2.13.
Now let f1, . . . , fk ∈ Conv(V ) ∩ C2(V ) be given. For f ∈ Conv(V,R) ∩ C2(V ):

µ̄φ(f [n− k], f1, . . . , fk)

=
(n− k)!

n!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0

∫
V

φ(x) det

(
Hf (x) +

k∑
i=1

λiHfi(x)

)
dx

=

∫
V

φ(x) det (Hf (x)[n− k], Hf1(x), . . . , Hfk(x)) dx

=

∫
V

φ(x) det (Hf (x)[n− k], A1(x), . . . , Ak(x)) dx,

where we have set Ai(x) = ψ(x)Hfi(x) for some function ψ ∈ Cc(V ) with ψ ≡ 1 on
suppµ. Thus f 7→ µ̄φ(f [n− k], f1, . . . , fk) is indeed an Alesker valuation.

8.3 Density result for mixed Hessian valuations

Before we prove the main result concerning mixed Hessian valuations, let us show a
compatibility property for the two versions of the Goodey-Weil embedding. As discussed
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before, any φ ∈ C∞c (V ) defines a 1-homogeneous function φ̃ ∈ C(V × R) by setting

φ̃(y, s) :=

{
0 for s ≥ 0,

−sφ(y
s
) for s < 0.

In addition, φ̃ is smooth outside of (0, 0) ∈ V × R and can thus be considered as
an element of C∞(P+(V × R), L), which we will denote by φ̃ again. Also note that
φ̃(·,−1) = φ by construction. We thus obtain a continuous inclusion

i : C∞c (V k+1)→ C∞(P+(V × R)k+1, Lk+1).

The image of i consists precisely of all sections with support contained in P+(V ×R)−.

Proposition 8.3.1. For µ ∈ VConvk(V ), φ1, . . . , φk ∈ C∞c (V ) the following holds:

GW(T (µ))
(
φ̃1 ⊗ · · · ⊗ φ̃k

)
= GW(µ) (φ1 ⊗ · · · ⊗ φk) .

Proof. Without loss of generality, let V = Rn. Consider the unit ball B in Rn×R. Then

hB(y,−1) =
√

1 + |y|2 for y ∈ Rn.

It is easy to see that there exists δ > 0 such that hB(·,−1) +
∑k

i=1 δiφi is convex for all
|δi| ≤ δ. In addition, hB +

∑k
i=1 δiφ̃i is the support function of some smooth, strictly

convex body Kδ1,...,δk in Rn ×R for all δi small enough. The definitions of both versions
of the Goodey-Weil embedding imply

GW(T (µ))
(
φ̃1 ⊗ · · · ⊗ φ̃k

)
=

1

k!

∂

∂δ1

∣∣∣
0
. . .

∂

∂δk

∣∣∣
0
T (µ) [Kδ1,...,δk ]

=
1

k!

∂

∂δ1

∣∣∣
0
. . .

∂

∂δk

∣∣∣
0
µ
(
hKδ1,...,δk (·,−1)

)
=

1

k!

∂

∂δ1

∣∣∣
0
. . .

∂

∂δk

∣∣∣
0
µ

(
hB(·,−1) +

k∑
i=1

δiφ̃i(·,−1)

)

=
1

k!

∂

∂δ1

∣∣∣
0
. . .

∂

∂δk

∣∣∣
0
µ

(
hB(·,−1) +

k∑
i=1

δiφi

)
= GW(µ)(φ1 ⊗ · · · ⊗ φk).

Proposition 8.3.2. The map

˜̄Θk+1 : Cc(V )× C2
c (V )k → VConvn−k(V )

(φ0, ψ1 . . . , ψk) 7→ [f 7→
∫
V

φ0dHessn(f [n− k], ψ1, . . . , ψk)]

is continuous. More precisely, the following holds: For every compact subset K ⊂
Conv(V,R) and every compact set A ⊂ V , there is a constant CA,K > 0 such that

sup
f∈K

∣∣∣ ˜̄Θk+1(φ0, ψ1, . . . , ψk)[f ]
∣∣∣ ≤ CA,K‖φ0‖C(V ) ·

k∏
i=1

‖ψi‖C2(V )

for all ψ1, . . . , ψk ∈ C∞c (V ) and φ0 ∈ Cc(V ) with suppφ0 ⊂ A.
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Proof. Let A ⊂ V , K ⊂ Conv(V,R) be fixed compact subsets.
For φ0 ∈ Cc(V ) with suppφ0 ⊂ A and ψ1, . . . , ψk ∈ C2

c (V ), let µ ∈ VConv(V ) be given
by

µ(f) :=

∫
V

φ0dHessn(f [n− k], ψ1, . . . , ψk).

Let M(V ) denote the space of signed Radon measures on V equipped with the vague
topology, and consider Φ ∈ VConv(V,M(V )) defined by

Φ(f) := Hessn(f [n− k], ψ1, . . . , ψk).

Then |µ(f)| = |Φ(f)|φ0 , where we have used the continuous semi-norm |ν|φ0 :=
∣∣∫
V
φ0dν

∣∣
onM(V ). By Lemma 5.4.1, there exists a constant C(B) > 0 for each compact subset
B ⊂ V such that we can find convex functions fi, hi ∈ Conv(V,R) with fi = hi +ψi and
‖fi|B‖∞, ‖hi|B‖∞ ≤ C(B)‖ψi‖C2(V ). By Equation (5.2),

Hessn(f [n− k], φ1, . . . , ψk)

=
k∑
l=1

(−1)k−l
1

l!(k − l)!
∑
σ∈Sk

Hessn(f [n− k], fσ(1), . . . , fσ(l), hσ(l+1), . . . , hσ(k)).

Setting f̃i := fi
‖ψi‖C2(V )

, h̃i := hi
‖ψi‖C2(V )

,

|µ(f)| = |Φ(f)|φ0

≤
k∑
l=1

1

l!(k − l)!
∑
σ∈Sk

∣∣Hessn(f [n− k], fσ(1), . . . , fσ(l), hσ(l+1), . . . , hσ(k))
∣∣
φ0

=
k∑
l=1

1

l!(k − l)!
∑
σ∈Sk

∣∣∣Hessn(f [n− k], f̃σ(1), . . . , f̃σ(l), h̃σ(l+1), . . . , h̃σ(k))
∣∣∣
φ0

k∏
i=1

‖ψi‖C2(V ).

Let C ⊂ Conv(V,R) denote the subset of functions that are bounded by C(B) on B for
all compact subsets B ⊂ V . By Proposition 4.2.2, C is compact, so

sup
f∈K

∣∣∣Hessn(f [n− k], f̃σ(1), . . . , f̃σ(l), h̃σ(l+1), . . . , h̃σ(k))
∣∣∣
φ0

≤ sup
f1,...,fn∈K∪C

|Hessn(f1, . . . , fn)|φ0

≤Cn sup
f∈K′
|Hessn(f)|φ0

by Lemma 5.3.12 for some compact subset K ′ ⊂ Conv(V,R) and some constant Cn > 0
depending on n only. By Lemma 5.2.3, Hessn(f) is a non-negative measure for each
f ∈ Conv(V,R). Let U be an open neighborhood of the compact set A and take a
non-negative function φA ∈ Cc(U) with φA = 1 on A. Then φA = 1 on suppφ0, so

|Hessn(f)|φ0 =

∣∣∣∣∫
V

φ0dHessn(f)

∣∣∣∣ ≤ ∫
V

|φ0|dHessn(f) ≤ ‖φ0‖C(V ) ·
∫
V

φAdHessn(f).
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Using our estimates for every term in the sum, we obtain

sup
f∈K
|µ(f)| ≤2k · Cn sup

f∈K′
|Hessn(f)|φ0

k∏
i=1

‖ψi‖C2(V )

≤2k · Cn ·
[

sup
f∈K′

∫
V

φAdHessn(f)

]
· ‖φ0‖C(V ) ·

k∏
i=1

‖ψi‖C2(V ).

Setting CA,K := 2k · Cn ·
[
supf∈K′

∫
V
φAdHessn(f)

]
<∞ for A ⊂ V compact, we obtain

the inequality

sup
f∈K

∣∣∣∣∫
V

φ0dHessn(f [n− k], ψ1, . . . , ψk)

∣∣∣∣ ≤ CA,K‖φ0‖C(V ) ·
k∏
i=1

‖ψi‖C2(V )

for all ψ1, . . . , ψk ∈ C∞c (V ) and φ0 ∈ Cc(V ) with suppφ0 ⊂ A.

Using the L. Schwartz kernel theorem 2.2.1, we extend ˜̄Θk+1 to a continuous linear
functional

Θ̄k+1 : C∞c (V k+1)→ VConvn−k(V ).

Corollary 8.3.3. The order of Θ̄k is uniformly bounded: There exists N ∈ N such that
for every compact subset K ⊂ Conv(V,R) and every compact subset A ⊂ V k+1 there
exists a constant C > 0 such that

sup
f∈K
|Θk(f)| ≤ C‖f‖CN (V k+1) ∀f ∈ C∞c (V k+1) with supp f ⊂ A.

Proof. Combine the estimate from Proposition 8.3.2 with Theorem 2.2.1.

Let us once again remark that we have fixed a Euclidean structure on V . This induces
a trivialization Dens(V ∗ × R) ∼= R using the induced metric on V ∗ × R. We will thus
consider Θk : C∞c (P+(V ∗ × R)k+1

− , L�k+1)→ Valn−k(V × R)sm.

Proposition 8.3.4. The diagram

C∞c (V k+1) C∞c (P+(V × R)k+1
− , L�k+1)

VConvn−k(V )sm Valn−k,P+(V×R)−(V ∗ × R)sm

1
n+1

n!
(k+1)!

Θ̄k+1

i

T

Θk+1

commutes. In particular, Θ̄k+1 : C∞c (V k+1) → VConvn−k(V )sm is well defined and
surjective.
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Proof. T is surjective by the characterization of VConv(V )sm in Proposition 7.3.4 and
the description of the image of T in Theorem 6.3.2. To see that Θk+1 is surjective, it
is enough to apply Proposition 3.2.3 to a compact neighborhood of the support of any
valuation µ ∈ Valn−k(V

∗×R) with vertical support compactly contained in P+(V ×R)−
that is also contained in P+(V × R)−. i is bijective, so Θ̄k+1 is surjective and defines
smooth valuations if the diagram commutes.
As functions of the form φ0⊗· · ·⊗φk for φi ∈ C∞c (V ) span a dense subspace of C∞c (V k+1)
and all maps are continuous, it is enough to show

1

n+ 1

n!

(k + 1)!
T
(
Θ̄k+1(φ0 ⊗ · · · ⊗ φk)

)
= Θk+1(φ̃0 ⊗ · · · ⊗ φ̃k).

Applying GW to both sides and using Proposition 8.3.1, this is equivalent to

1

n+ 1

n!

(k + 1)!
GW (Θk+1 (φ0 ⊗ · · · ⊗ φk)) [ψk+1 ⊗ · · · ⊗ ψn]

= GW
(

Θk+1

(
φ̃0 ⊗ · · · ⊗ φ̃k

)) [
ψ̃k+1 ⊗ · · · ⊗ ψ̃n

]
for ψk+1, . . . , ψn ∈ C∞c (V ).
We will use the metric on V ×R to identify C∞(P+(V ×R), L) ∼= C∞(S(V ×R)). From
Proposition 8.1.2 we deduce

Θ1(φ̃0) =
1

n+ 1

∫
S(V×R)

φ̃0dSn =
1

n+ 1
T

(∫
V

φ0dHessn

)
,

where the last equality follows from Lemma 8.1.4. Using the compatibility of the maps
Θi and GW from Proposition 3.2.2, we obtain

GW
(

Θk+1

(
φ̃0 ⊗ · · · ⊗ φ̃k

)) [
ψ̃k+1 ⊗ · · · ⊗ ψ̃n

]
=

(
n+ 1

k + 1

)
Θn

(
φ̃0 ⊗ · · · ⊗ φ̃k ⊗ ψ̃k+1 ⊗ · · · ⊗ ψ̃n

)
({0})

=

(
n+ 1

k + 1

)
1

n+ 1
GW

(
Θ1

(
φ̃0

)) [
φ̃1 ⊗ · · · ⊗ φ̃k ⊗ ψ̃k+1 ⊗ · · · ⊗ ψ̃n

]
=

(
n+ 1

k + 1

)
1

(n+ 1)2
GW

(
T

(∫
V

φ0dHessn

))[
φ̃1 ⊗ · · · ⊗ φ̃k ⊗ ψ̃k+1 ⊗ · · · ⊗ ψ̃n

]
=

(
n+ 1

k + 1

)
1

(n+ 1)2
GW

(∫
V

φ0dHessn

)
[φ1 ⊗ · · · ⊗ φk ⊗ ψk+1 ⊗ · · · ⊗ ψn] ,
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where we have again used Proposition 8.3.1 in the last step. Thus

GW
(

Θk+1

(
φ̃0 ⊗ · · · ⊗ φ̃k

)) [
ψ̃k+1 ⊗ · · · ⊗ ψ̃n

]
=

(
n+ 1

k + 1

)
1

(n+ 1)2

∫
V

φ0dHessn (φ1, . . . , φk, ψk+1, . . . , ψn)

=
1

(n+ 1)(k + 1)

(
n

k

)∫
V

φ0dHessn (φ1, . . . , φk, ψk+1, . . . , ψn)

=
n!

(n+ 1)(k + 1)!
GW

(∫
V

φ0dHessn (·[n− k], φ1, . . . , φk)

)
[ψk+1 ⊗ · · · ⊗ ψn]

=
n!

(n+ 1)(k + 1)!
GW

(
Θ̄k+1 (φ0 ⊗ · · · ⊗ φk)

)
[ψk+1 ⊗ · · · ⊗ ψn] .

Theorem 8.3.5. For every µ ∈ VConvn−k(V )sm and every open neighborhood U of
suppµ there exist functions φji ∈ C∞c (U) for 0 ≤ i ≤ k, j ∈ N such that

µ(f) =
∞∑
j=1

∫
V

φj0dHessn(f [n− k], φj1, . . . , φ
j
k).

In particular, the space generated by smooth mixed Hessian valuations is a dense subspace
of VConv(V )sm and VConv(V ).

Proof. Let µ ∈ VConvn−k(V )sm. Fix a compact neighborhood A of suppµ such that
A ⊂ U for the desired open neighborhood U of suppµ. By Proposition 3.2.3, there exists
a function f̃ ∈ CP (A)(P+(V ×R)k, L�k) such that Θk+1(f̃) = T (µ). Using the inverse of
i and Proposition 8.3.4, we obtain a function f ∈ C∞c (V k+1) with support contained in
Ak+1 such that 1

n+1
n!

(k+1)!
Θ̄k+1(f) = µ.

As the order of Θ̄k+1 is uniformly bounded by some N ∈ N by Corollary 8.3.3, we can
extend Θ̄k+1 to a continuous linear functional on CN(V k+1). Increasing N if necessary,
we can apply Proposition 2.2.3 to the neighborhood Uk+1 of Ak+1 to obtain functions
φj0, . . . , φ

j
k ∈ C∞c (U) with

f =
∞∑
j=1

φj0 ⊗ · · · ⊗ φ
j
k

in the CN -topology. Then

µ =
1

n+ 1

n!

(k + 1)!
Θ̄k+1(f) =

1

n+ 1

n!

(k + 1)!

∞∑
j=1

Θ̄k+1

(
φj0 ⊗ · · · ⊗ φ

j
k

)
=

1

n+ 1

n!

(k + 1)!

∞∑
j=1

∫
V

φj0dHessn
(
·[n− k], φj1, . . . , φ

j
k

)
.

Rescaling the functions by an appropriate constant, we obtain the desired expression.
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9 Smooth rotation invariant
valuations

Let us consider V = Rn equipped with its standard scalar product. We will identify
the differential cycle of f ∈ Conv(Rn,R) with its image in TRn under the natural iden-
tification of Rn with its dual space. We will be interested in smooth valuations that
are invariant under the operation of SO(n). Combining Theorem 7.2.12 and Corollary
7.3.6, we are lead to a classification of all SO(n)-invariant and vertically translation in-
variant differential forms. Note that SO(n) acts diagonally by symplectomorphisms on
TRn ∼= Rn×Rn, and translations in the second component also preserve the symplectic
form on TRn. As the Lefschetz decomposition (Proposition 7.2.1) is compatible with
symplectomorphisms, we thus only need to classify primitive invariant forms.

Section 9.1 introduces a class of differential forms related to the Hessian measures
defined in [14], which were also used in [20] to construct valuations on Conv(Rn,R). The
whole array of all invariant forms needed for the classification is presented in Section 9.2.
In Section 9.3 we classify the relevant primitive differential forms, which will be used
to derive the desired representation formulas for smooth SO(n)-invariant valuations in
Section 9.4.

9.1 Representation of the Hessian measures by
differential forms

In [20] a class of rotation invariant valuations on Conv(Rn,R) was constructed using the
so called Hessian measures from [14]. In this section, we will consider a version of these
measures in terms of differential forms. The connection with the functionals from [20]
is established in Proposition 9.1.4 below.

Throughout this chapter, we will denote the standard coordinates on Rn by (x1, . . . , xn),
with induced coordinates (x1, . . . , xn, y1, . . . , yn) on TRn. We start with the following
well known result.
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9 Smooth rotation invariant valuations

Proposition 9.1.1. The forms

ωs =
n∑
i=1

dxi ∧ dyi,

κk =
1

k!(n− k)!

∑
π∈Sn

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n) 0 ≤ k ≤ n,

generate the algebra of all SO(n)-invariant forms in Λ∗(Rn × Rn).

For t ∈ R let Gt : TRn → TRn be given by Gt(x, y) = (x, y + tx).

Lemma 9.1.2.

G∗tκn =
n∑
k=0

tn−kκk.

Proof. Let us show

G∗t (dy1 . . . dym) =
m∑
k=0

tm−k

k!(m− k)!

∑
π∈Sm

sign(π)dxπ(1) . . . dxπ(m−k) ∧ dyπ(m−k+1) . . . dyπ(m)

for 1 ≤ m ≤ n by induction. For m = 1, this is trivial. Assuming the equation holds for
m, we calculate

G∗t (dy1 . . . dym+1) = G∗t (dy1 . . . dym) ∧G∗tdym+1

=G∗t (dy1 . . . dym) ∧ dym+1 + tG∗t (dy1 . . . dym) ∧ dxm+1

=
m∑
k=0

tm−k

k!(m− k)!

∑
π∈Sm

sign(π)dxπ(1) . . . dxπ(m−k) ∧ dyπ(m−k+1) . . . dyπ(m) ∧ dym+1

+
m∑
k=0

tm+1−k

k!(m− k)!

∑
π∈Sm

sign(π)dxπ(1) . . . dxπ(m−k) ∧ dyπ(m−k+1) . . . dyπ(m) ∧ dxm+1

=
m∑
k=0

tm−k

k!(m− k)!

∑
π∈Sm+1

π(m+1)=m+1

sign(π)dxπ(1) . . . dxπ(m−k) ∧ dyπ(m−k+1) . . . dyπ(m+1)

+
m∑
k=0

tm+1−k

k!(m− k)!

∑
π∈Sm+1

π(m+1−k)=m+1

sign(π)dxπ(1) . . . dxπ(m+1−k) ∧ .dyπ(m+1−k+1) . . . dyπ(m+1)

Note that ∑
π∈Sm+1

π(m+1)=m+1

sign(π)dxπ(1) . . . dxπ(m−k) ∧ dyπ(m−k+1) . . . dyπ(m+1)

=
1

k + 1

∑
π∈Sm+1

m+1∈π({m−k+1,...,m+1})

sign(π)dxπ(1) . . . dxπ(m−k) ∧ dyπ(m−k+1) . . . dyπ(m+1)
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9.1 Representation of the Hessian measures by differential forms

and similarly∑
π∈Sm+1

π(m+1−k)=m+1

sign(π)dxπ(1) . . . dxπ(m+1−k) ∧ dyπ(m+1−k+1) . . . dyπ(m+1)

=
1

(m+ 1− k)

∑
π∈Sm+1

m+1∈π({1,...,m+1−k})

sign(π)dxπ(1) . . . dxπ(m+1−k) ∧ dyπ(m+1−k+1) . . . dyπ(m+1),

so

G∗t (dy1 . . . dym+1)

=
m∑
k=0

tm−k

(k + 1)!(m− k)!

∑
π∈Sm+1

m+1∈π({m−k+1,...,m+1})

sign(π)dxπ(1) . . . dxπ(m−k) ∧ dyπ(m−k+1) . . . dyπ(m+1)

+
m∑
k=0

tm+1−k

k!(m+ 1− k)!

∑
π∈Sm+1

m+1∈π({1,...,m+1−k})

sign(π)dxπ(1) . . . dxπ(m+1−k) ∧ dyπ(m+1−k+1) . . . dyπ(m+1)

=dy1 . . . dym+1 + tm+1dx1 . . . dxm+1

+
m−1∑
k=0

tm−k

(k + 1)!(m− k)!

∑
π∈Sm+1

m+1∈π({m−k+1,...,m+1})

sign(π)dxπ(1) . . . dxπ(m−k) ∧ dyπ(m−k+1) . . . dyπ(m+1)

+
m∑
k=1

tm+1−k

k!(m+ 1− k)!

∑
π∈Sm+1

m+1∈π({1,...,m+1−k})

sign(π)dxπ(1) . . . dxπ(m+1−k) ∧ dyπ(m+1−k+1) . . . dyπ(m+1)

=dy1 . . . dym+1 + tm+1dx1 . . . dxm+1

+
m−1∑
k=0

tm−k

(k + 1)!(m− k)!

∑
π∈Sm+1

m+1∈π({m−k+1,...,m+1})

sign(π)dxπ(1) . . . dxπ(m−k) ∧ dyπ(m−k+1) . . . dyπ(m+1)

+
m−1∑
k=0

tm−k

(k + 1)!(m− k)!

∑
π∈Sm+1

m+1∈π({1,...,m−k})

sign(π)dxπ(1) . . . dxπ(m−k) ∧ dyπ(m−k+1) . . . dyπ(m+1)

=dy1 . . . dym+1 + tm+1dx1 . . . dxm+1

+
m−1∑
k=0

tm−k

(k + 1)!(m− k)!

∑
π∈Sm+1

sign(π)dxπ(1) . . . dxπ(m−k) ∧ dyπ(m−k+1) . . . dyπ(m+1)

=dy1 . . . dym+1 + tm+1dx1 . . . dxm+1

+
m∑
k=1

tm+1−k

k!(m+ 1− k)!

∑
π∈Sm+1

sign(π)dxπ(1) . . . dxπ(m+1−k) ∧ dyπ(m+1−k+1) . . . dyπ(m+1),
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9 Smooth rotation invariant valuations

which reduces to
m+1∑
k=0

tm+1−k

k!(m+ 1− k)!

∑
π∈Sm+1

sign(π)dxπ(1) . . . dxπ(m+1−k) ∧ dyπ(m+1−k+1) . . . dyπ(m+1).

For m = n we obtain the desired result.

Definition 9.1.3. For f ∈ Conv(Rn,R) we call Φk(f) := π∗[D(f)xκk] the k-th Hessian
measure of f , i.e. we consider the measures given by

φ 7→ D(f)[π∗φ ∧ κk] for φ ∈ Cc(Rn).

Note that the pushforward is well defined, as the support of D(f) is locally vertically
bounded. Moreover, D(f) is an integral current and so in particular a current of locally
finite mass, so we obtain signed measure on Rn for each f ∈ Conv(Rn,R). With this
terminology, Φn = Hessn.

Proposition 9.1.4. For f ∈ Conv(Rn,R) ∩ C2(Rn) and φ ∈ Cc(Rn):∫
Rn
φdΦk(f) =

∫
Rn
φ(x)[D2f(x)]kdx,

where [D2f(x)]k denotes the k-th elementary symmetric polynomial in the eigenvalues
of the Hessian of f .

Proof. As D(f) is an integral current, it is sufficient to show this equation for φ ∈
C∞c (Rn). Then f 7→

∫
Rn φdΦk(f) is a smooth dually epi-translation invariant valuation,

represented by the differential form π∗φ∧κk, so by continuity it is sufficient to show the
equation for f ∈ Conv(Rn,R) ∩ C∞(Rn) (note that the right hand side is continuous in
the C2-topology). Let h ∈ Conv(Rn,R) be given by h(x) = |x|2

2
. Then∫

Rn
φdΦn(f + th) = D(f + th)[π∗φ ∧ κn] = Gt∗D(f)[π∗φ ∧ κn],

for t ≥ 0 by Proposition 7.1.3. Thus∫
Rn
φdΦn(f + th) =D(f)[π∗φ ∧G∗tκn] =

n∑
k=0

tn−kD(f)[π∗φ ∧ κk]

=
n∑
k=0

tn−k
∫
Rn
φdΦk(f)

by Lemma 9.1.2. On the other hand,∫
Rn
φdΦn(f + th) =

∫
Rn
φ(x) det(Hf (x) + tIdn)dx =

∫
Rn
φ(x)

n∑
k=0

tn−k[D2f(x)]kdx

=
n∑
k=0

tn−k
∫
Rn
φ(x)[D2f(x)]kdx.

Comparing coefficients, we obtain the desired formula.
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9.2 Basic invariant differential forms

Definition 9.2.1. We define the following SO(n)-invariant differential forms on TRn

in degree 1

α :=
n∑
i=1

yidxi,

β :=
n∑
i=1

xidxi,

γ :=
n∑
i=1

xidyi = d(x · y)− α,

and for 1 ≤ k ≤ n− 1 in degree n− 1

κ′k :=
1

k!(n− k)!

∑
π∈Sn

sign(π)xπ(1)dxπ(2) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n).

With this notation, the forms κ′k are k-homogeneous in the sense of Section 7.2.
Note that dκ′k = κk are exactly the invariant forms from Proposition 9.1.1 and α is the
canonical 1-form on TRn, i.e. the symplectic form is given by ωs = −dα =

∑n
i=1 dxi∧dyi.

Let r : TRn → R be the function given by r(x, y) = |x|. Then r2 : TRn → R is smooth
and dr2 = 2β.

Proposition 9.2.2. For 1 ≤ k ≤ n− 1,

r2κk = (n− k)β ∧ κ′k + (n− k + 1)γ ∧ κ′k−1.

In addition,

r2κ0 =β ∧ κ′0,
r2κn =γ ∧ κ′n−1.

Proof. As both sides are SO(n)-invariant as well as vertically translation invariant, we
only need to examine the equation in one point of each orbit, i.e. in the point (x, y) =
(te1, 0), t ≥ 0. Here

β = tdx1,

γ = tdy1,

κ′k = t
1

k!(n− k)!

∑
π∈Sn,π(1)=1

sign(π)dxπ(2) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n),

r2κk = t2
1

k!(n− k)!

∑
π∈Sn

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n).
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9 Smooth rotation invariant valuations

Therefore

β ∧ κ′k =t2
1

k!(n− k)!

∑
π∈Sn,π(1)=1

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n),

while γ ∧ κ′k−1 is given by

t2(−1)n−k

(k − 1)!(n− k + 1)!

∑
π∈Sn,π(1)=1

sign(π)dxπ(2) . . . dxπ(n−k+1) ∧ dy1 ∧ dyπ(n−k+2) . . . dyπ(n)

=
t2

(k − 1)!(n− k + 1)!

∑
π∈Sn,π(k+1)=1

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n).

Thus

r2κk =t2
1

k!(n− k)!

∑
π∈Sn

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n)

=t2
1

k!(n− k)!

∑
π∈Sn,1∈π({1,...,n−k})

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n)

+ t2
1

k!(n− k)!

∑
π∈Sn,1∈π({n−k+1,...,n})

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n)

=t2
1

k!(n− k)!
(n− k)

∑
π∈Sn,π(1)=1

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n)

+ t2
1

k!(n− k)!
k

∑
π∈Sn,π(n−k+1)=1

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n)

=(n− k)β ∧ κ′k + (n− k + 1)γ ∧ κ′k−1.

The cases r2κ0 = β ∧ κ′0 and r2κn = γ ∧ κ′n−1 follow with a similar calculation.

Definition 9.2.3. For 1 ≤ k ≤ n− 1 we set

τk,1 :=(n− k)β ∧ κ′k,
τk,2 :=(n− k + 1)γ ∧ κ′k−1.

Note that these forms are linearly independent in each point of TRn \T0Rn. Moreover

r2κk = τk,1 + τk,2 for 1 ≤ k ≤ n− 1

by Proposition 9.2.2.

Lemma 9.2.4. For 1 ≤ k ≤ n− 1,

dτk,1 =− (n− k)β ∧ κk,
dτk,2 =(n− k + 2)β ∧ κk.

In particular,

(n− k + 2)dτk,1 = −(n− k)dτk,2.
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Proof. By definition,

dτk,1 = (n− k)d(β ∧ κ′k) = −(n− k)β ∧ dκ′k = −(n− k)β ∧ κk.

Thus Proposition 9.2.2 implies

2β ∧ κk = d(r2κk) = dτk,1 + dτk,2 = −(n− k)β ∧ κk + dτk,2,

i.e. (n− k + 2)β ∧ κk = dτk,2.

Lemma 9.2.5. For 1 ≤ k ≤ n− 1,

β ∧ γ ∧ κ′k = r2ωs ∧ κ′k.

Proof. As in the proof of Proposition 9.2.2, it is sufficient to examine the equation in
the point (te1, 0), t ≥ 0. We compute

β ∧ γ ∧ κ′k

=tdx1 ∧ tdy1 ∧
1

k!(n− k)!

∑
π∈Sn,π(1)=1

sign(π)tdxπ(2) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n),

=
t3

k!(n− k)!

∑
π∈Sn,π(1)=1

sign(π)dx1 ∧ dy1 ∧ dxπ(2) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n),

as well as

r2ωs ∧ κ′k

=t2
n∑
i=1

dxi ∧ dyi ∧
1

k!(n− k)!

∑
π∈Sn,π(1)=1

sign(π)tdxπ(2) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n)

=t3
1

k!(n− k)!

∑
π∈Sn,π(1)=1

sign(π)
n∑
i=1

dxi ∧ dyi ∧ dxπ(2) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n).

Now notice that the term dxi ∧ dyi ∧ dxπ(2) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n) vanishes
unless i = 1. The claim follows.

Corollary 9.2.6. For 1 ≤ k ≤ n− 1,

β ∧ κk =(n− k + 1)ωs ∧ κ′k−1,

γ ∧ κk =− (n− k)ωs ∧ κ′k.

In particular

dτk,1 =− (n− k)(n− k + 1)ωs ∧ κ′k−1,

dτk,2 =(n− k + 2)(n− k + 1)ωs ∧ κ′k−1.
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Proof. Let us multiply the equation

κk =
n− k
r2

β ∧ κ′k +
n− k + 1

r2
γ ∧ κ′k−1

from Proposition 9.2.2 by β:

β ∧ κk =
n− k + 1

r2
β ∧ γ ∧ κ′k−1.

The term on the right is equal to (n− k + 1)ωs ∧ κ′k−1 by Lemma 9.2.5.
On the other hand, multiplying the equation by γ, we obtain

γ ∧ κk =− n− k
r2

β ∧ γ ∧ κ′k = −(n− k)ωs ∧ κ′k.

The formulas for dτk,1 and dτk,2 follow from Lemma 9.2.4 and the following calculation:

dτk,1 = = −(n− k)β ∧ κk = −(n− k)(n− k + 1)ωs ∧ κ′k−1,

dτk,2 =(n− k + 2)β ∧ κk = (n− k + 2)(n− k + 1)ωs ∧ κ′k−1.

Lemma 9.2.7. The forms κ0, κn, as well as τk,1 and τk,2, for 1 ≤ k ≤ n − 1, are
primitive.

Proof. We need to show that the product of these forms with the symplectic form ωs
vanishes. For κ0 and κn this is obviously true.
Let 1 ≤ k ≤ n− 1. As ωs, as well as τk,1 and τk,2 are SO(n)- and vertically translation
invariant, it is sufficient to check this for one point of each orbit, i.e. in the point (te1, 0),
t ≥ 0. As in the proof of Proposition 9.2.2, we obtain

τk,1 =t2
1

k!(n− k − 1)!

∑
π∈Sn,π(1)=1

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n),

τk,2 =t2
1

(k − 1)!(n− k)!

∑
π∈Sn,π(k+1)=1

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n).

Note that every term in the sums contains either dxi or dyi for i ∈ {1, . . . , n}, so the
product of each term with ωs =

∑n
i=1 dxi ∧ dyi vanishes and we obtain ωs ∧ τk,1 =

ωs ∧ τk,2 = 0.

Corollary 9.2.8. The forms κk, 0 ≤ k ≤ n, are primitive.

Proof. For 1 ≤ k ≤ n−1, this follows from the relation κk = 1
r2
τk,1+ 1

r2
τk,2 on TRn\T0Rn,

from which the general case follows by continuity. For k = 0, n this is trivial.
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9.3 Primitive SO(n)-invariant forms

To give a characterization of all primitive, SO(n)- and vertically translation invariant
differential n-forms on TRn, we will need the following technical lemma.

Lemma 9.3.1. Let φ ∈ C∞((0,∞)) be a function such that f : R→ R,

f(r) :=

{
φ(r2)r2 r 6= 0,

0 r = 0,

is a smooth function on R. Then φ extends to an element of C∞([0,∞)).

Proof. As f is a smooth, even function, its odd derivatives vanish in r = 0. Applying
de L’Hospital’s rule repeatedly, we obtain

f (2k)(0) = lim
s→0

(2k)!

f(s) + f(−s)− 2
k−1∑
i=0

s2i

(2i)!
f (2i)(0)

2s2k

= lim
s→0

(2k)!

f(s)−
k−1∑
i=1

s2i

(2i)!
f (2i)(0)

s2k
. (9.1)

For k = 1 this implies

f ′′(0) = lim
s→0

2!
f(s)− f(0)

s2
= lim

s→0
2!
φ(s2)s2

s2
= lim

s→0
2!φ(s2).

Thus φ has a continuous extension to [0,∞), which we will denote by φ again. We will
now show the following by induction: For k ∈ N, φ(k−1) is differentiable in 0 with

φ(k)(0) =
k!

(2(k + 1))!
f (2(k+1))(0),

i.e. f (2(k+1))(0) = (2(k+1))!
k!

φ(k)(0). Note that this implies that φ(k−1) is continuous.
For k = 1 Equation (9.1) implies

f (4)(0) = lim
s→0

4!
f(s)− s2

2!
f (2)(0)

s4

= lim
s→0

4!
φ(s2)s2 − s2

2!
2!φ(0)

s4

= lim
s→0

4!
φ(s2)− φ(0)

s2

= lim
s→0

4!
φ(s)− φ(0)

s
.
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Thus φ is differentiable in 0 and the derivative is given by the desired formula.
Assume that we have shown this relation for all derivatives of order less or equal to k−1.
Then

f (2(k+1))(0) = lim
s→0

(2(k + 1))!

f(s)−
k∑
i=1

s2i

(2i)!
f (2i)(0)

s2k+2

= lim
s→0

(2(k + 1))!

φ(s2)s2 −
k∑
i=1

s2i

(2i)!
(2i)!

(i−1)!
φ(i−1)(0)

s2k+2

= lim
s→0

(2(k + 1))!

φ(s)s−
k∑
i=1

si

(i−1)!
φ(i−1)(0)

sk+1

= lim
s→0

(2(k + 1))!

φ(s)−
k∑
i=1

si−1

(i−1)!
φ(i−1)(0)

sk

= lim
s→0

(2(k + 1))!

φ(s)−
k−1∑
i=0

si

i!
φ(i)(0)

sk
.

Applying de L’Hospital’s rule (k − 1)-times, we obtain

f (2(k+1))(0) = lim
s→0

(2(k + 1))!
φ(k−1)(s)− φ(k−1)(0)

k!s
,

i.e. the limit lim
s→0

φ(k−1)(s)−φ(k−1)(0)
s

= k!
(2(k+1))!

f (2(k+1))(0) exists. Thus φ(k−1) is differen-
tiable in 0 and the value of its derivative in 0 is given by desired expression.

Proposition 9.3.2. Let τ ∈ Ωn(TRn) be a vertically translation invariant differential
form of bidegree (n−k, k) that is also SO(n)-invariant and primitive. For 1 ≤ k ≤ n−1
there exists a unique c ∈ R and two unique functions φ1, φ2 ∈ C∞([0,∞)) such that

τ = cκk + φ1(r2)τk,1 + φ2(r2)τk,2.

For k = 0, n there exists a unique function φ ∈ C∞([0,∞)) such that

τ = φ(r2)κk.

Proof. We will only show this for 1 ≤ k ≤ n − 1, the two other cases are similar and
simpler.
Let us show that such a decomposition exists. As τ is vertically translation invariant,
we only need to consider points of the form (x, y) = (x, 0).
There are two orbits of SO(n) on Rn: The origin x = 0 and its complement. The
stabilizer of x = 0 is SO(n), so by evaluating τ in (x, 0) = (0, 0), we obtain an SO(n)-
invariant element of ΛnT(0,0)TRn ∼= Λn(Rn × Rn). By Proposition 9.1.1, the space of
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9.3 Primitive SO(n)-invariant forms

SO(n)-invariant elements is generated by the forms ωs, κj for 0 ≤ j ≤ n. As τ is
primitive, the Lefschetz decomposition 7.2.1 shows that τ evaluated in 0 is given by a
linear combination of the forms κj, 0 ≤ j ≤ n. Now the degree of homogeneity forces
τ |(0,0) = cκk|(0,0) for some c ∈ R.
Consider the form τ̃ := τ − cκk, which vanishes in x = 0. We evaluate this form in
x 6= 0. The stabilizer of this point can be identified with SO(n − 1), and the tangent
space splits into the equivariant direct sum

T(x,0)
∼= Rn ⊕ Rn = (Rx⊕ V )⊕ (Rx⊕ V ) ∼= (Rx⊕ Rx)⊕ (V ⊕ V ),

where V = x⊥. The stabilizer Stab(x) ⊂ SO(n) of (x, 0) acts trivially on Rx⊕ Rx and
by the usual diagonal action on V ⊕ V ∼= Rn−1 ⊕ Rn−1. The evaluation of τ̃ in (x, 0)
thus leads to an element of

(ΛnT(x,0)Rn)Stab(x) ∼=
⊕

a+b+c=n

Λa(Rx)⊗ Λb(Rx)⊗ Λc(Rn−1 ⊕ Rn−1)SO(n−1),

where a, b ∈ {0, 1}, c ∈ {n − 1, n}. Now consider the invariant forms from Definition
9.2.1. The forms β and γ span the first two factors, while the last space is generated by
the forms κ′j, 0 ≤ k ≤ n− 1, and the restriction of the symplectic form to V ⊕ V , where
we have used Proposition 9.1.1 again. Note that the symplectic form of V ⊕ V is given
by a multiple of r2ωs − β ∧ γ. Thus the space on the right is contained in the space
generated by β, γ, ωs, and κ′j for 0 ≤ j ≤ n − 1. The only n-forms are thus the forms
τj,1, τj,2, for 1 ≤ j ≤ n − 1, and κ0, κn, as well as multiples of ωs. The only primitive
forms are thus τj,1, τj,2, and κj, compare Lemma 9.2.7 and Corollary 9.2.6, so τ̃ is a
linear combination of these forms. Now note that κj is a linear combination of τj,1 and
τj,2 for x 6= 0 by Proposition 9.2.2, so τ̃ is in fact a linear combinations of the forms τj,1,
τj,2 for 1 ≤ j ≤ n− 1. Comparing the degree of homogeneity, we obtain

τ̃ =φ1(x)τk,1 + φ2(x)τk,2

for two smooth functions φ1, φ2 : Rn \ {0} → R. Note that φ1 and φ2 are uniquely
determined by this equation, as the forms τk,1 and τk,2 are linearly independent at each
point x 6= 0. In particular, the SO(n)-invariance forces these functions to be rotation
invariant, i.e. we can assume that

τ̃ =φ1(r2)τk,1 + φ2(r2)τk,2

for r 6= 0, where φ1, φ2 ∈ C∞((0,∞)). Evaluating these forms along the line R(e1, 0),
we obtain, using the formula for τk,1, τk,2 from the proof of Proposition 9.2.2,

τ̃ |(te1,0)

=φ1(t2)t2
1

k!(n− k − 1)!

∑
π∈Sn,π(1)=1

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n)

+ φ2(t2)t2
1

(k − 1)!(n− k)!

∑
π∈Sn,

π(n−k+1)=1

sign(π)dxπ(1) . . . dxπ(n−k) ∧ dyπ(n−k+1) . . . dyπ(n).
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9 Smooth rotation invariant valuations

The two sums on the right are linearly independent on the whole tangent space, so
we see that the limits lim

t→0
φi(t

2)t2 exist. Furthermore, τ̃ vanishes for t = 0. Thus the
functions

fi(r) :=

{
φi(r

2)r2 r 6= 0

0 r = 0

are smooth functions on R, so we can apply Lemma 9.3.1 to extend φ1 and φ2 to elements
of C∞([0,∞)). In total, we obtain the desired decomposition on TRn:

τ = cκk + τ̃ = cκk + φ1(r2)τk,1 + φ2(r2)τk,2.

To see that this decomposition is unique, assume that cκk + φ1(r2)τk,1 + φ2(r2)τk,2 = 0.
As τk,1 and τk,2 vanish in x = 0, we obtain c = 0 by evaluating this expression in
(x, y) = (0, 0). As the forms τk,1 and τk,2 are linearly independent outside of x = 0,
this implies φ1 = φ2 = 0 on (0,∞), so they have to vanish identically on [0,∞) by
continuity.

Corollary 9.3.3. If τ ∈ Ωn−k,k is SO(n)-invariant and primitive, then there exist
φ0, φ1, φ2 ∈ C∞c ([0,∞)) such that

τ =φ0(r2)κk + φ1(r2)τk,1 + φ2(r2)τk,2 for 1 ≤ k ≤ n− 1,

τ =φ0(r2)κk for k = 0, n.

Proof. Let R > 0 be such that supp τ ⊂ π−1(BR(0)) and let ψ ∈ C∞c ([0,∞)) be a
function with ψ = 1 on [0, R2]. Then multiply the decomposition in Proposition 9.3.2
with ψ(r2).

9.4 Classification of smooth rotation invariant
valuations

Corollary 9.3.3 lets us define three families of smooth rotation invariant valuations in
degree 1 ≤ k ≤ n− 1, each obtained from τk,1, τk,2 and κk by multiplying the form with
φ(r2) for φ ∈ C∞c ([0,∞)). For k = 0, n we only obtain one family of differential forms:
They are given by τ = φk(r

2)κk, i.e. we are considering the valuations

µn(f) =D(f)[φn(r2)dy1 ∧ · · · ∧ dyn] =

∫
Rn
φn(r2)dHessn(f) for k = n,

µ0(f) =D(f)[φ0(r2)dx1 ∧ · · · ∧ dxn] =

∫
Rn
φ0(|x|2)dx for k = 0,

for f ∈ Conv(Rn,R). In particular, the function φn is uniquely determined by µn and
can be recovered from the characteristic function of µn, see Section 5.2.
The goal of this section is to show that, for 1 ≤ k ≤ n−1, every k-homogeneous valuation
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9.4 Classification of smooth rotation invariant valuations

can be represented by a differential form τ = φ(r2)κk. As the integral condition in
Theorem 7.2.5 is always satisfied if k > 0, we thus have to compare the symplectic
Rumin differential of forms belonging to the three families. We begin with the families
belonging to τk,1 and τk,2.

Proposition 9.4.1. For 1 ≤ k ≤ n− 1

d(φ(r2)τk,1) =− (n− k)(n− k + 1)φ(r2)ωs ∧ κ′k−1,

d(φ(r2)τk,2) =(n− k + 1)[2φ′(r2)r2 + φ(r2)(n− k + 2)]ωs ∧ κ′k−1.

Thus for 2 ≤ k ≤ n− 1

D̄(φ(r2)τk,1) =− 2(n− k)φ′(r2)τk−1,1 − (n− k)(n− k + 1)φ(r2)κk−1,

D̄(φ(r2)τk,2) =2[2φ′′(r2)r2) + φ′(r2)(n− k + 4)]τk−1,1

+ (n− k + 1)[2φ′′(r2)r2 + 2φ′(r2) + φ′(r2)(n− k + 2)]κk−1,

and for k = 1

D̄(φ(r2)τ1,1) =− (n− 1)n[2φ′(r2)r2 + φ(r2)]κ0,

D̄(φ(r2)τ1,2) =n[4φ′′(r2)r4 + 2φ′(r2)r2(n+ 4) + φ(r2)(n+ 1)]κ0.

Proof. The differentials of τk,1 and τk,2 were already calculated in Proposition 9.4.1.
Thus, using dr2 = 2β,

d(φ(r2)τk,1) =φ′(r2)2β ∧ τk,1 + φ(r2)dτk,1

=0− φ(r2)(n− k)β ∧ κk
=− φ(r2)(n− k)(n− k + 1)ωs ∧ κ′k−1,

where we have used Corollary 9.2.6 in the last step. Similarly,

d(φ(r2)τk,2) =φ′(r2)2β ∧ τk,2 + φ(r2)dτk,2

=φ′(r2)2(n− k + 1)β ∧ γ ∧ κ′k−1 + φ(r2)(n− k + 2)β ∧ κk
=φ′(r2)2(n− k + 1)r2ωs ∧ κ′k−1 + φ(r2)(n− k + 2)(n− k + 1)ωs ∧ κ′k−1

=(n− k + 1)[2φ′(r2)r2 + φ(r2)(n− k + 2)]ωs ∧ κ′k−1

by Lemma 9.2.5 and Corollary 9.2.6. Dividing by ωs and applying d, we obtain the
symplectic Rumin differential of these forms:

D̄(φ(r2)τk,1) =− (n− k)(n− k + 1)d[φ(r2)κ′k−1]

=− (n− k)(n− k + 1)[φ′(r2)2β ∧ κ′k−1 + φ(r2)dκ′k−1],

D̄(φ(r2)τk,2) =(n− k + 1)d[[2φ′(r2)r2 + φ(r2)(n− k + 2)]κ′k−1]

=(n− k + 1)[2φ′′(r2)r2 + 2φ′(r2) + φ′(r2)(n− k + 2)]2β ∧ κ′k−1

+ (n− k + 1)[2φ′(r2)r2 + φ(r2)(n− k + 2)]dκ′k−1.
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9 Smooth rotation invariant valuations

For k 6= 1 this reduces to

D̄(φ(r2)τk,1) =− 2(n− k)φ′(r2)τk−1,1 − (n− k)(n− k + 1)φ(r2)κk−1,

D̄(φ(r2)τk,2) =2[2φ′′(r2)r2 + φ′(r2)(n− k + 4)]τk−1,1

+ (n− k + 1)[2φ′(r2)r2 + φ(r2)(n− k + 2)]κk−1,

while we obtain

D̄(φ(r2)τ1,1) =− (n− 1)n[φ′(r2)2β ∧ κ′0 + φ(r2)κ0]

=− (n− 1)n[2φ′(r2)r2 + φ(r2)]κ0,

D̄(φ(r2)τ1,2) =n[2φ′′(r2)r2 + φ′(r2)(n+ 3)]2r2κ0 + n[2φ′(r2)r2 + φ(r2)(n+ 1)]κ0

=n[4φ′′(r2)r4 + 2φ′(r2)r2(n+ 3) + 2φ′(r2)r2 + φ(r2)(n+ 1)]κ0

=n[4φ′′(r2)r4 + 2φ′(r2)r2(n+ 4) + φ(r2)(n+ 1)]κ0

for k = 1.

Proposition 9.4.2.

D̄(φ(r2)κk) =4φ′′(r2)τk−1,1 + 2(n− k + 1)φ′(r2)κk−1 for k 6= 1,

D̄(φ(r2)κ1) =2n[2φ′′(r2)r2 + φ′(r2)]κ0 for k = 1.

In particular,

(n− k) D̄(φ(r2)κk) =− 2 D̄(φ′(r2)τk,1).

Proof. By Corollary 9.2.6,

d(φ(r2)κk) = 2φ′(r2)β ∧ κk = 2(n− k + 1)φ′(r2)ωs ∧ κ′k−1.

Dividing by ωs and applying d, we obtain

D̄(φ(r2)κk) =2(n− k + 1)d[φ′(r2)κ′k−1]

=2(n− k + 1)[2φ′′(r2)β ∧ κ′k−1 + φ′(r2)dκ′k−1].

For k 6= 1, this implies

D̄(φ(r2)κk) = 4φ′′(r2)τk−1,1 + 2(n− k + 1)φ′(r2)κ′k−1,

while we obtain

D̄(φ(r2)κ1) =2n[2φ′′(r2)r2 + φ′(r2)]κ0

for k = 1. The last equation follows by comparing these formulas with Proposition
9.4.1.

Corollary 9.4.3.

(n− k) D̄(φ(r2)τk,2) = − D̄([2φ′(r2)r2 + (n− k + 2)φ(r2)]τk,1)

126
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Proof. By Proposition 9.2.2, r2κk = τk,1 + τk,2, so

(n− k) D̄(φ(r2)τk,2) =(n− k)[D̄(φ(r2)r2κk)− D̄(φ(r2)τk,1)]

=− 2 D̄([φ′(r2)r2 + φ]τk,1)− (n− k) D̄(φ(r2)τk,1)

=− D̄([2φ′(r2)r2 + (n− k + 2)φ(r2)]τk,1)

by Proposition 9.4.2.

Theorem 9.4.4. For every µ ∈ VConvk(Rn)sm∩VConv(Rn)SO(n) of degree k > 0, there
exists a unique function φ ∈ C∞c ([0,∞)) such that

µ(f) = D(f)[φ(r2)κk] for all f ∈ Conv(Rn,R).

If f ∈ Conv(Rn,R) ∩ C2(Rn), then

µ(f) =

∫
Rn
φ(|x|2)[D2f ]k(x)dx,

where [D2f(x)]k denotes the k-th elementary symmetric polynomial in the eigenvalues
of the Hessian of f .

Proof. For k = n, this follows directly from the properties of the characteristic function,
so we can focus on the case 1 ≤ k ≤ n− 1.
Any such valuation can be represented by a vertically translation invariant differential
form τ of bidegree (n−k, k) that has horizontally compact support and is SO(n)-invariant
as well as primitive. By Corollary 9.3.3, any such form τ is given by

τ = φ0(r2)κk + φ1(r2)τk,1 + φ2(r2)τk,2

for some functions φ0, φ1, φ2 ∈ C∞c ([0,∞)). Combining Proposition 9.4.2 and Theorem
7.2.5, we see that −(n − k)φ0(r2)κk and 2φ′0(r2)τk,1 induce the same valuation. By
Corollary 9.4.3, the same holds for [2φ′2(r2)r2 + (n − k + 2)φ2(r2)]τk,1 and φ2(r2)τk,2.
Replacing these terms and combining everything, we obtain ψ ∈ C∞c ([0,∞)) such that
ψ(r2)τk,1 and τ induce the same valuation. Now set

φ(s) :=

∫ s

0

ψ(t)dt−
∫ ∞

0

ψ(t)dt,

i.e. φ′(s) = ψ(s) and φ ∈ C∞c ([0,∞)). By Proposition 9.4.2, (n − k) D̄(φ(r2)κk) =
−2 D̄(ψ(r2)τk,1) = −2 D̄ τ , so (n−k)φ(r2)κk and −2τ induce the same valuation. Rescal-
ing φ by an appropriate constant, we obtain the desired representation.
To see that φ is uniquely determined, observe that µ is uniquely determined by D̄(φ(r2)κk)
by Theorem 7.2.5 (or Theorem 7.2.12). By Proposition 9.4.2, this differential is given
by

D̄(φ(r2)κk) = 4φ′′(r2)τk−1,1 + 2(n− k + 1)φ′(r2)κk−1
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9 Smooth rotation invariant valuations

for k 6= 1 and by

D̄(φ(r2)κ1) =2n[2φ′′(r2)r2 + φ′(r2)]κ0

for k = 1. As τk,1 and κk are linearly independent on the complement of x = 0,
D̄(φ(r2)κk) = 0 implies φ′′ = 0 on (0,∞) for k 6= 1. Thus φ is the restriction of an affine
function to [0,∞). As φ has compact support, this implies φ ≡ 0.
For k = 1, take R > 0 such that φ(s) = 0 for all s ≥ R. D̄(φ(r2)κ1) = 0 implies that φ
is a solution of the ordinary differential equation

2u′′(s)s+ u′(s) = 0 on (0,∞).

Given a, b ∈ R, this ordinary differential equation has a unique maximal solution with
u(R) = a, u′(R) = b. In our case, φ is a solution on (0,∞) for a = b = 0. The same
holds true for the trivial solution u ≡ 0, so φ ≡ 0 on (0,∞) by uniqueness. Thus φ has
to vanish identically on [0,∞) by continuity.
In both cases, φ is uniquely determined by µ. The last statement is a reformulation of
Proposition 9.1.4.

Corollary 9.4.5. Every SO(n)-invariant valuation in VConv(Rn) is O(n)-invariant.

Proof. As the operation of SO(n) and O(n) is continuous on VConv(V ), it is enough
to verify this claim for the subspace of smooth SO(n)-invariant valuations, which is
dense on VConv(Rn)SO(n) by Corollary 7.3.6. Thus the claim follows from the previous
characterization of smooth SO(n)-invariant valuations, as these functionals are O(n)-
invariant.
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10 Deutsche Zusammenfassung

Für einen reellen Vektorraum V der Dimension dim(V ) = n bezeichne K(V ) die Menge
der konvexen Körper in V , d.h. die Menge aller kompakten, konvexen Teilmengen.
Versieht man K(V ) mit der sogenannten Hausdorff-Metrik, so erhält man einen lokal
kompakten metrischen Raum. Ist (G,+) eine abelsche Gruppe, so wird eine Abbildung
µ : K(V )→ (G,+) als Bewertung bezeichnet, falls sie

µ(K) + µ(L) = µ(K ∪ L) + µ(K ∩ L)

für alleK,L ∈ K(V ) mitK∪L ∈ K(V ) erfüllt. Die Klasse der Bewertungen enthält viele
geometrische Funktionale wie beispielsweise das Lebesgue-Maß, sowie Oberflächenmaß
und Eulercharakteristik. Die Theorie der Bewertungen auf konvexen Körper ist daher
seit jeher ein wichtiger Teil der Konvexgeometrie mit vielen Anwendungen im Kontext
von geometrischen Ungleichungen und Integralgeometrie. Dies trifft insbesondere auf
den Raum Val(V ) der reellwertigen, stetigen, translationsinvarianten Bewertungen auf
konvexen Körpern zu. Eine der wichtigesten Eigenschaften dieses Raums ist die Existenz
einer homogenen Zerlegung. Es bezeichne Valk(V ) den Unterraum von Val(V ) der k-
homogenen Bewertungen, d.h. aller µ ∈ Val(V ), welche µ(tK) = tkµ(K) für alle K ∈
K(V ) und t ≥ 0 erfüllen.

Theorem 10.0.1 (McMullen Zerlegung [43]).

Val(V ) =
n⊕
k=0

Valk(V )

Mit anderen Worten ist die Abbildung t 7→ µ(tK) ein Polynom, dessen Grad durch
die Dimension des Raumes beschränkt ist. Definiert man für eine homogene Bewertung
µ ∈ Valk(V ) die Polarisierung µ̄ : K(V )k → R von µ durch

µ̄(K1, . . . , Kk) :=
1

n!

∂

∂λ1

∣∣∣
0
. . .

∂

∂λk

∣∣∣
0
µ(λ1K1 + · · ·+ λkKk),

wobei A + B := {a + b : a ∈ A, b ∈ V } die Minkowski-Summe zweier Teilmengen von
V bezeichnet, so erhält man ein symmetrisches Funktional, welches in jedem Argument
eine additive Bewertung ist: Für K,L,K2, . . . , Kk gilt

µ̄(K + L,K2, . . . , Kk) = µ̄(K,K2, . . . , Kk) + µ̄(L,K2, . . . , Kk).

Wendet man diese Konstruktion auf ein Lebesgue-Maß an, so erhält man Minkowskis
gemischte Volumina V (K1, . . . , Kn), aus denen sich eine wichtige Klasse von Bewertun-
gen konstruieren lässt: Fixiert man Kk+1, . . . , Kn ∈ K(V ), so definiert die Abbildung
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K → V (K[k], Kk+1, . . . , Kn) eine stetige, translationsinvariante und k-homogene Bewer-
tungen. Tatsächlich bilden Linearkombinationen dieser Bewertungen einen dichten Teil-
raum von Valk(V ) bezüglich der Topologie der lokal gleichmäßigen Konvergenz. Diese
Aussage ist als McMullen-Vermutung bekannt und wurde von Alesker im Jahr 2001
bewiesen. Tatsächlich ist das von ihm gezeigte Resultat deutlich allgemeiner.

Theorem 10.0.2 (Aleskers Irreduzibilitätstheorem [2]). Die natürliche Darstellung von
GL(V ) auf Val±k (V ) := {µ ∈ Valk(V ) : µ(−K) = ±µ(K) ∀K ∈ K(V )} ist topologisch
irreduzibel.

Die Operation von GL(V ) ist hierbei gegeben durch π(g)µ(K) := µ(g−1K) für µ ∈
Val(V ) und g ∈ GL(V ) und eine Darstellung einer Lie-Gruppe auf einem topologischen
Vektorraum wird als topologisch irreduzibel bezeichnet, wenn die einzigen abgeschlosse-
nen invarianten Unterräume der Nullraum oder der gesamte Raum sind. Mit anderen
Worten ist ein invarianter Unterraum entweder trivial oder dicht. Indem man geeignete
Linearkombinationen von gemischten Volumina betrachtet, lässt sich leicht zeigen, dass
der von diesen erzeugte Unterraum mit jedem der obigen irreduziblen Teilräume nicht-
leeren Schnitt besitzt und somit dicht liegt.
Für k = 1 wurde die McMullen-Vermutung bereits vorher von Goodey und Weil be-
wiesen. Sie betrachteten die Stützfunktion hK : V ∗ → R eines konvexen Körpers
K ∈ K(V ), welche gegeben ist durch

hK(y) = sup
x∈K
〈y, x〉 für y ∈ V ∗,

wobei die Klammern die natürliche Paarung zwischen V und seinem Dualraum V ∗ be-
zeichnen. Da hK+L = hK + hL für all K,L ∈ K(V ) gilt, kann man die Polarisierung als
multilineares Funktional auf dem Kegel der Stützfunktionen ansehen.

Theorem 10.0.3. Für jede Bewertung µ ∈ Valk(V ) existiert eine eindeutige Distribu-
tion GW(µ) ∈ D′(P+(V ∗)k, L�k), welche als Goodey-Weil Distribution von µ bezeichnet
wird, welche

GW(µ) [hK1 ⊗ · · · ⊗ hKk ] = µ̄(K1, . . . , Kk)

für alle glatten und strikt konvexen K ∈ K(V ) erfüllt.
Zusätzlich ist der Träger von GW(µ) in der Diagonale von P+(V ∗)k enthalten.

Hier bezeichnet L → P+(V ∗) ein gewisses Linienbündel über dem Raum der ori-
entierten Geraden in V ∗, dessen Schnitte kanonisch mit 1-homogenen Funktionen auf
V ∗ identifiziert werden können. Insbesondere definiert die Stützfunktion eines glatten,
strikt konvexen Körpers einen glatten Schnitt von L. Die Abbildung GW : Val(V ) →
D′(P+(V ∗)k, L�k) wurde ursprünglich von Goodey und Weil für Funktionen auf der
Sphäre definiert [30], die obige invariante Version stammt von Alesker [1], welcher auch
die Einschränkungen an den Träger bemerkte, was sich als kritisch für den Beweis des
Irreduzibilitätstheorems herausstellte.
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Diese Arbeit beschäftigt sich mit funktionalen Versionen der obigen Resultate. Der
Begriff der Bewertung überträgt sich wie folgt: Eine Abbildung µ : X → G, definiert
auf einem Raum X reellwertiger Funktionen, wird als Bewertung bezeichnet, wenn

µ(f) + µ(h) = µ(f ∨ h) + µ(f ∧ h)

für alle f, h ∈ X gilt, für die das punktweise Maximum f ∨h, beziehungsweise Minimum
f ∧ h ebenfalls in X liegt. Während dieser Begriff im Kontext von Funktionen relativ
jung ist, ist die dahinterstehende Idee sehr alt: Um funktionale Versionen geometrisch
interessanter Bewertungen auf einer Klasse von Mengen zu erhalten, betrachtet man
zunächst Funktionen, die aus einfachen Grundbausteinen zusammengesetzt werden, und
verwendet die Bewertungseigenschaft, um eine kombinatorische Fortsetzung auf dieser
Klasse von Funktionen zu erhalten. Anschließend stellt sich die Frage, ob sich diese
Definition durch Ausnutzung von Stetigkeitseigenschaften auf eine größere Klasse von
Funktionen fortsetzen lässt.
In diesem Sinne ist das Lebesgue-Integral eine Fortsetzung des Volumens voln ∈ Valn(Rn)
zu einer Bewertung I auf den Raum L1(Rn) der Lebesgue-integrierbaren Funktionen,
welche I(α1K) = α voln(K) für α ∈ R und K ∈ K(V ) erfüllt. Dies ist bei weitem jedoch
nicht die einzige Möglichkeit. Nimmt man eine stetige Funktion F : R → R, welche
|F (t)| ≤ C|t| für alle t ∈ R und ein C > 0 erfüllt, so definiert

Ĩ(f) :=

∫
Rn
F (f(x))dx für f ∈ L1(Rn)

ebenfalls eine Bewertung auf L1(Rn), welche durch Ĩ(α1K) = F (α) voln(K) charakter-
isiert ist. Schränkt man diese beiden Funktionale jedoch auf Indikatorfunktionen ein,
so erhält man in beiden Fällen das Lebesgue-Maß - mit anderen Worten verfügen Bew-
ertungen auf Funktionenräumen üblicherweise über mehr Freiheitsgrade als die zugrun-
deliegenden geometrischen Funktionale. Hierbei muss man allerdings erwähnen, dass
diese Aussage je nach Kontext auch komplett falsch sein kann, siehe beispielsweise [22].
Auch die vorliegende Arbeit verfolgt in Teilen einen gegensätzlichen Ansatz.
Nichts desto trotz verbleibt die Problematik, geometrisch relevante Bewertungen auf
Funktionen zu finden. Ein großer Teil der Arbeiten zu Bewertungen auf Funktionen
beschäftigt sich daher mit der Klassifikation von Bewertungen, die bestimmte Invari-
anzeigenschaften besitzen. Die obigen Beispiele ergeben beispielsweise eine vollständige
Charakterisierung aller stetigen, translationsinvarianten Bewertungen auf L1(Rn) [56].
Ähnliche Resultate existieren für Sobolev-Räume [38, 39, 42], Lp-Räume [40, 50, 56, 57],
quasi-konkave Funktionen [10, 15, 16], Orlicz-Räume [36], Lipschitzfunktionen [22, 23],
definierbare Funktionen [10], Funktionen mit beschränkter Variation [59] und konvexe
Funktionen [12, 17, 18, 48, 49]. Daneben gibt es auch einige Resultate zu analytischen
Eigenschaften von Bewertungen auf allgemeinen Banach-Verbänden [55].

Diese Arbeit strebt ebenfalls an, einen speziellen Raum von Bewertungen auf Funk-
tionen zu beschreiben. Der Fokus liegt dabei auf der Konstruktion gewisser dichter
Teilräume. Eine vollständige Charakterisierung scheint zu diesem Zeitpunkt noch in
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weiter Ferne zu stehen - die betrachteten Bewertungen lassen sich in einem sehr präzisen
Sinne als translationsinvariante Bewertungen auf konvexen Körpern auffassen, für die
keine solche Charakterisierung bekannt ist.
Im Folgenden betrachten wir vor allem Unterräume von

Conv(V ) := {f : V → R ∪ {+∞} : f konvex, unterhalbstetig, f 6≡ +∞}.

Dieser Raum trägt eine metrisierbare Topologie, welche durch Epi-Konvergenz von Fol-
gen konvexer Funktionen charakterisiert ist. Für die nachfolgende Diskussion wird die
genaue Definition dieser Begriffe nicht benötigt, es sei jedoch gesagt, dass Epikonver-
genz im Fall des Unterraums Conv(V,R) := {f ∈ Conv(V ) : f < +∞} der endlichen
konvexen Funktionen äquivalent zu sowohl punktweiser, als auch lokal gleichmäßiger
Konvergenz ist. Wir nehmen im Folgenden zusätzlich an, dass V mit einem Skalarpro-
dukt ausgestattet ist.

Beispiel 10.0.4. Es sei V ein euklidischer Vektorraum. In [7] betrachtete Alesker Ab-
bildungen der Form

Conv(V,R) ∩ C2(V )→R

f 7→µ(f) :=

∫
V

B(x) det(Hf (x)[k], A1(x), . . . , An−k(x))dx,

wobei B ∈ Cc(V ) und A1, . . . , An−k ∈ Cc(V,H(V )) stetige Funktionen mit Werten im
Raum der symmetrischen Endomorphismen von V sind, Hf die Hesse-Matrix von f ∈
C2(V ), und det die gemischte Determinante von n symmetrischen Endomorphismen
bezeichnet. Er zeigte, dass sich diese zu stetigen Bewertungen auf Conv(V,R) fortsetzen
lassen und dass Bewertungen dieser Form über

K 7→ µ(hK)

einen dichten Teilraum von Val(V ∗) definieren.

Sein Hauptresult beruht auf der Beobachtung, dass die Stützfunktion eines konvexen
Körpers K ∈ K(V ∗) die Bedingung hK+x(y) = hK + 〈y, x〉 für alle x ∈ V ∗, y ∈ V
erfüllt. Da die obigen Funktionale invariant bezüglich der Addition linearer Funktionen
sind, definiert K 7→ µ(hK) eine stetige, translationsinvariante Bewertung auf K(V ∗).
Durch Betrachtung geeigneter Beispiele folgt mithilfe des Irreduzibilitätstheorems, dass
Bewertungen dieser Art einen dichten Teilraum von Val(V ∗) aufspannen.
Gemäßg der McMullen-Zerlegung zerfallen die so konstruierten Bewertungen auf K(V ∗)
in homogenen Komponenten. Tatsächlich sind die obigen Funktionale auf Conv(V,R)
ebenfalls k-homogen, d.h. sie erfüllen µ(tf) = tkµ(f) für alle t > 0 und f ∈ Conv(V,R).
Es drängt sich somit die Frage auf, ob für den Raum der stetigen Bewertungen auf
Conv(V,R), die invariant bezüglich der Addition linearer Funktionen sind, ebenfalls eine
solche Zerlegung existiert. Bedauerlicherweise ist dies nicht nicht der Fall, wie folgendes
Beispiel zeigt.
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Beispiel 10.0.5. Für f ∈ Conv(V,R) definiert µ(f) := |f(0)|p eine stetige, p-homogene
Bewertung, welche invariant bezüglich der Addition linearer Funktionen ist.

Tatsächlich liefert die Zuweisung µ 7→ [K 7→ µ(hK)] zwar einen dichten Teilraum
von Val(V ∗), jedoch auch einen unendlich dimensionalen Kern von Bewertungen auf
Conv(V,R).

Die obigen Funktionale besitzen jedoch noch eine weitere Invarianzeigenschaft: Sie
sind invariant bezüglich der Addition von Konstanten.

Definition 10.0.6. Für C ⊂ Conv(V ) und einen reellen Hausdorff topologischen Vek-
torraum F bezeichne VConv(C;V, F ) den Raum der stetigen, dual epi-translationsin-
varianten Bewertungen, d.h. aller stetigen Bewertungen µ : C → F , die zusätzlich

µ(f + λ+ c) = µ(f) für alle f ∈ C, λ ∈ V ∗, c ∈ R

mit f + λ+ c ∈ C erfüllen.

Für die geometrische Bedeutung dieses Invarianzbegriffs müssen wir noch einmal zur
Definition einer Bewertung auf Funktionen zurückkehren. Für f ∈ Conv(V ) ist der
Epigraph epi(f) := {(x, t) ∈ V × R : f(x) ≤ t} eine nichtleere, abgeschlossene konvexe
Teilmenge von V × R. Zusätlich gilt

epi(f ∨ h) = epi(f) ∩ epi(h), epi(f ∧ h) = epi(f) ∪ epi(h).

Mit anderen Worten lässt sich eine Bewertung auf Funktionen auch als mengentheo-
retische Bewertung auf Epigraphen interpretieren. Für f ∈ Conv(V ) können wir die
Legendre-Transformierte f ∗ ∈ Conv(V ∗) gegeben durch

f ∗(y) = sup
x∈V
〈y, x〉 − f(x) = sup

(x,t)∈epi(f)

〈y, x〉 − t = hepi(f)(y,−1)

betrachten. Wegen f ∗∗ = f lässt sich f = hepi(f∗)(·,−1) somit als Stützfunktion einer
konvexen Menge in V ∗×R auffassen. Die obige Invarianzeigenschaft ist dann nichts an-
deres als die Invarianz der Bewertung bezüglich Translationen dieser Mengen in V ∗×R.
Insbesondere können wir die Einschränkung dieser Bewertungen auf Funktionen der
Form hK(·,−1) für K ∈ K(V ∗ × R) betrachten; mit anderen Worten können wir Bew-
ertungen auf konvexen Funktionen als Bewertungen auf höherdimensionalen konvexen
Körpern interpretieren.

Theorem 10.0.7 (Theorem 5.2.5). Es sei C ⊂ Conv(V ) eine Teilmenge, die Conv(V,R)
enthält, F ein topologischer Vektorraum. Die Abbildung

T : VConv(C;V, F )→ Val(V ∗ × R, F )

µ 7→ [K 7→ µ(hK(·,−1))]

ist wohldefiniert, injektiv und stetig. Hierbei bezeichnet Val(V ∗ × R, F ) den Raum der
stetigen, translationsinvarianten Bewertungen mit Werten in F und beide Räume sind
mit der Kompakt-Offen-Topologie ausgestattet.
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Wir fassen VConv(C;V, F ) mithilfe dieser Abbildung alsTeilraum von Val(V ∗×R, F )
auf. Die McMullen-Zerlegung für diesen Raum impliziert direkt die folgende homogene
Zerlegung

Theorem 10.0.8 (Theorem 5.3.4). Es sei C ⊂ Conv(V ) eine Teilmenge mit tf ∈ C
für alle f ∈ C, t > 0, welche Conv(V,R) enthält. Zusätzlich sei F ein reeller Hausdorff
topologischer Vektorraum. Dann gilt

VConv(C;V, F ) =
n⊕
k=0

VConvk(C;V, F ),

wobei VConvk(C;V, F ) := {µ ∈ VConv(C;V, F ) : µ(tf) = tkµ(f) für alle f ∈ C, t > 0}.
Für reellwertige Funktionen und C = Conv(V,R) wurde dies bereits von Colesanti,

Ludwig und Mussnig in [21] gezeigt. Ihr Beweis verwendet eine andere Art der Einbet-
tung, beruht jedoch auch auf der McMullen-Zerlegung. Mit ihrer Methode lässt sich die
obige Version ebenfalls zeigen, da die Einbettung T : VConv(C;V, F )→ Val(V ∗×R, F )
jedoch im weiteren Verlauf dieser Arbeit eine herausragende Rolle spielen wird, habe ich
mich entschlossen, einen kurzen alternativen Beweis zu präsentieren.

Wie auch für Bewertungen auf konvexen Körpern erlaubt es uns diese Zerlegung, die
Polarisierung einer homogenen Bewertung µ ∈ VConvk(C;V, F ) zu definieren, falls es
sich bei C ⊂ Conv(V ) um einen Kegel handelt, d.h. falls f + th ∈ C für all f, h ∈ C,
t > 0 gilt. Wir werden dabei eine zusätzliche Regularitätsannahme treffen müssen.
Dafür bezeichnen wir einen Kegel C ⊂ Conv(V ) als regulär, wenn dom(f) := {x ∈ V :
f(x) < +∞} für alle f ∈ C nichtleeres Innere besitzt. Dies ist hinreichend für die
Stetigkeit der Additionsabbildung + : C2 → C, was notwendig für die Konstruktion
der Polarisierung ist. Wir erhalten in diesem Fall eine stetige Abbildung µ̄ : Ck → F
für jedes µ ∈ VConvk(C;V, F ), welche folgenden Eigenschaften besitzt (siehe Theorem
5.3.9):

1. µ̄ ist symmetrisch.

2. µ̄ ist additiv und 1-homogen in jedem Argument:

µ̄(f + th, f2, . . . , fk) = µ̄(f, f2, . . . , fk) + tµ̄(h, f2, . . . , fk)

für f, h, f2, . . . , fk ∈ C, t > 0.

3. µ̄(f, . . . , f) = µ(f) für all f ∈ C.

Indem man Differenzen von konvexen Funktionen betrachtet, kann man µ̄ zu einem
multilinearen Funktional auf eben diesen fortsetzen. Es stellt sich heraus, dass die
Einschränkung dieses Funktionals auf C2

c (V ) stetig ist, welches sich somit gemäß des
Kerntheorems von Schwartz zu einer eindeutigen Distribution fortsetzen lässt. Dies
führt auf folgende Version der Goodey-Weil Einbettung für VConv(C;V, F ), sofern es
sich bei F um einen lokal konvexer Vektorraum handelt, d.h. einen reellen Hausdorff
topologischen Vektorraum, dessen Topologie von einer Familie von Halbnormen erzeugt
wird.
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Theorem 10.0.9 (Theorem 5.4.9 und 5.4.7). Es sei µ ∈ VConvk(C;V, F ) und F ein
lokal konvexer Vektorraum, der mit einer stetigen Norm versehen werden kann. Dann
existiert eine eindeutige Distribution GW(µ) ∈ D′(V k, F̄ ) mit kompaktem Träger, welche

GW(f1 ⊗ · · · ⊗ fk) = µ̄(f1, . . . , fK) für alle f1, . . . , fk ∈ Conv(V,R) ∩ C∞(V ) (10.1)

erfüllt und als Goodey-Weil Distribution von µ bezeichnet wird. Zusätzlich ist der Träger
dieser Distribution in der Diagonalen in V k enthalten.

Hier bezeichnet F̄ die Vervollständigung von F . Wir definieren ebenfalls eine Version
der Goodey-Weil Distributionen für allgemeine lokal konvexe Vektorräume. In diesem
Fall ist der Träger zwar noch immer in der Diagonale enthalten, jedoch im Allgemeinen
nicht kompakt, weswegen sich die Distribution nicht kanonisch auf alle glatten Funktio-
nen fortsetzen lässt. In beiden Fällen ist die Bewertung jedoch durch ihre zugehörige
Goodey-Weil Distribution eindeutig bestimmt.
Dies wirft insbesondere die Frage auf, welche Eigenschaften der Goodey-Weil Distribu-
tion sich in korrespondierende Eigenschaften der zugrunde liegenden Bewertung über-
setzen lassen. Schaut man sich die charakterisierende Eigenschaft der Goodey-Weil Dis-
tribution in Gleichung (10.1) an, so scheint der Träger der Distribution ein geeigneter
Kandidat zu sein, schließlich lässt sich dieser durch reines Auswerten auf passenden
Funktionen charakterisieren. Da der Träger von GW(µ) in der Diagonalen enthalten
ist, können wir ihn als Bild des Trägers suppµ der Bewertung µ unter der Diagonalein-
bettung ∆ : V → V k auffassen. Ist µ ∈ VConv(C;V, F ) eine beliebige Bewertung, so
definieren wir suppµ durch die Vereinigung der Träger der homogenen Komponenten
von µ. Während diese Definition zunächst auf der Goodey-Weil Distribution von µ
beruht, ist es nicht schwer zu sehen, dass der Träger die folgende Eigenschaft hat: Sind
f, h ∈ Conv(V,R) zwei Funktionen, die f = h auf einer Umgebung des Trägers erfüllen,
so gilt µ(f) = µ(h). Tatsächlich lässt sich der Träger durch diese Eigenschaft auch ohne
Bezugnahme auf die Goodey-Weil Distribution charakterisierern, siehe Proposition 6.1.3.

Durch den Träger unterliegen die Bewertungen einer Reihe von Restriktionen, ins-
besondere reellwertige Bewertungen, die invariant unter nicht-kompakten Untergruppen
der affinen Gruppe sind. So zeigt Korollar 6.3.4 beispielsweise, dass es außer konstanten
Bewertungen keine translations- bzw. SL(V )-invarianten Bewertungen gibt (im letzten
Fall für dimV ≥ 2). Es besteht auch ein interessanter Zusammenhang zwischen dem
Kegel C ⊂ Conv(V ) und dem Träger der Bewertungen in VConv(C;V, F ).

Theorem 10.0.10 (Theorem 6.3.5). Es sei C ⊂ Conv(V ) ein regulärer Kegel, der
Conv(V,R) enthält. Setzt man dom(C) :=

⋂
f∈C

dom f , so gilt:

1. Der Träger jeder Bewertung in VConv(C;V, F ) ist in dom(C) enthalten.

2. Lässt sich F mit einer stetigen Norm versehen, so lässt sich jede Bewertung in
VConv(V, F ), deren Träger im Inneren von dom(C) enthalten ist, eindeutig zu
einem Element von VConv(C;V, F ) fortsetzen.
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Im letzten Fall haben wir somit Inklusionen

VConvint dom(C)(V, F ) ↪→ VConv(C;V, F ) ↪→ VConvdom(C)(V, F ).

Beide Inklusionen sind im Allgemeinen strikt, wie wir an zwei Beispielen diskutieren
werden, doch in bestimmten Fällen ist die erste Inklusion bijektiv. Dazu betrachten wir
für eine offene und konvexe Menge U ⊂ V den regulären Kegel CU := {f ∈ Conv(V ) :
f |U < +∞}. Zusätzlich setzen wir Conv(U,R) := {f : U → R : f konvex}. Ausgestattet
mit der Topologie der lokal gleichmäßigen Konvergenz ist dies ein metrisierbarer Raum.
Wir bezeichnen den Raum der stetigen, dual epi-translationsinvarianten Bewertungen
auf Conv(U,R) mit Werten in F mit VConv(U, F ) und statten diesen Raum mit der
Kompakt-Offen-Topologie aus.

Theorem 10.0.11 (Theorem 6.3.12). Ist U ⊂ V offen und konvex und F ein lokal kon-
vexer Raum, der mit einer stetigen Norm ausgestattet werden kann, so ist die Abbildung

res∗ : VConv(U, F )→ VConv(CU ;V, F )

µ 7→ [f 7→ µ(f |U)]

wohldefiniert und ein topologischer Isomorphismus.

Wir betrachten ebenfalls Teilräume von VConv(V, F ) von Bewertungen mit kompak-
tem Träger. Fixiert man eine kompakte Menge A ⊂ V , so hängt der Wert jeder Be-
wertung im Raum VConvA(V, F ) der Bewertungen, deren Träger in A enthalten ist,
nur von den Werten ihres Arguments auf einer beliebigen offenen Umgebung von A ab.
Das unterschiedliche Divergenzverhalten verschiedener Klassen konvexer Funktionen im
Unendlichen spielt für diese Teilräume somit nur eine sehr untergeordnete Rolle. Wir
werden dies dahingehend nutzen, die Halbnormen, welche die Kompakt-Offen-Topologie
auf VConv(V, F ) erzeugen, auf den Teilräumen VConvA(V, F ) durch einfachere Halb-
normen zu ersetzen. Diese erzeugen die Unterraumtopologie, jedoch erhalten wir für
jede stetige Halbnorm auf F genau eine zugehörige Halbnorm auf VConvA(V, F ). Dies
impliziert insbesondere, dass der Raum VConvA(V ) der reellwertigen Bewertungen mit
Träger in A ein Banachraum ist.

Kehren wir nun zurück zu unserer Einbettung T : VConv(V, F )→ Val(V ∗×R, F ). Die
Konstruktionen der Goodey-Weil Einbettungen für beide Räume legen nahe, die zuge-
hörigen Distributionen mithilfe von T miteinander in Beziehung zu setzen, schließlich
interpretieren wir die Elemente von VConv(C;V, F ) mittels T als Funktionale auf Stütz-
funktionen, analog zu den Goodey-Weil Distributionen. Insbesondere können wir über
den Träger der Goodey-Weil Distribution einer homogenen Bewertung in Val(V ∗×R, F )
den vertikalen Träger der zugehörigen Bewertung definieren, analog zum Träger von Be-
wertungen in VConv(V, F ). Dies erlaubt die folgende Charakterisierung des Bildes der
obigen Einbettung.

Theorem 10.0.12 ( Theorem 6.3.2). Es sein F ein lokal konvexer Raum, der mit einer
stetigen Norm ausgestattet werden kann. Dann besteht das Bild von T : VConvk(V, F )→
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Valk(V
∗×R, F ) genau aus den Bewertungen in Valk(V

∗×R, F ), deren vertikaler Träger
in der unteren Halbsphäre P+(V × R)− := {[(y, s)] ∈ P+(V × R) : s < 0} enthalten ist.
Ist F ein Fréchetraum, so ist T : VConvA(V, F )→ ValP (A)(V

∗×R, F ) ein topologischer
Isomorphismus für alle kompakten Teilmengen A ⊂ V . Hierbei ist

P : V → P+(V × R)

x 7→ [(x,−1)].

Dies erlaubt es uns, Approximationsprobleme für dual epi-translationsinvariante Be-
wertungen zunächst für translationsinvariante Bewertungen auf konvexen Körpern zu
behandeln, sofern diese im folgenden Sinne mit dem Träger verträglich sind: Hat man
eine gewisse Klasse von Bewertungen auf Funktionen gegeben, so kann man die korre-
spondierende Klasse von Bewertungen auf konvexen Körpern betrachten, mit anderen
Worten das Bild dieser Funktionale unter der Abbildung T . Lässt sich nun eine gegebene
Bewertung im Bild von T dahingehend durch Bewertungen in der untersuchten Klasse
approximieren, dass die vertikalen Träger einer approximierenden Folge ab einem gewis-
sen Folgenglied stets in einer passenden Umgebung des vertikalen Trägers des Grenzwerts
enthalten sind, so impliziert das obige Theorem direkt die Konvergenz dieser Folge in
VConv(V, F ).

Dies lässt sich auf auf glatte, translationsinvariante Bewertungen in Val(V ) anwenden.
Eine Bewertung µ ∈ Val(V ) wird dabei als glatt bezeichnet, wenn die Abbildung

GL(V )→ Val(V )

g 7→ π(g)µ

glatt ist. Ein Standardresultat aus der Darstellungstheorie besagt, dass glatten Bew-
ertungen einen dichten Teilraum von Val(V ) bilden, was üblicherweise dadurch gezeigt
wird, dass eine gegebene Bewertung mit einer glatten Approximation der δ-Distribution
im neutralen Element gefaltet wird. Betrachtet man diese Faltungsoperation, so sieht
man schnell, dass diese im obigen Sinne kompatibel mit dem vertikalen Träger der Be-
wertungen ist. Wir erhalten somit einen dichten Teilraum von VConv(V ).
Um diesen zu beschreiben, verwenden wir den differentiellen Zykel D(f) einer konvexen
Funktion f ∈ Conv(V,R). Dabei handelt es sich um einen von Fu in [26] eingeführten
integralen n-Strom im Kotangentialbündel T ∗V , der mit der Integration von Differen-
tialformen über den Graphen des Differentials df : V → V ∗ übereinstimmt, sofern f
zweimal stetig differenzierbar ist. Zusätzlich erfüllt der differentielle Zykel die Bewer-
tungseigenschaft. Durch Einsetzen geeigneter Differentialformen erhält man somit reell-
wertige Bewertungen. Wir betrachten dazu den Raum Ωn

hc(T
∗V ) der glatten n-Formen

mit horizontal kompaktem Träger, d.h. alle Formen τ ∈ Ωn(T ∗M), die supp τ ⊂ π−1(A)
für eine kompakte Teilmenge A ⊂ V erfüllen. Hierbei ist π : T ∗V → V die natürliche
Projektion. Wir bezeichnen eine Bewertung µ : Conv(V,R)→ R als glatt, wenn es eine
Form τ ∈ Ωn

hc(T
∗V ) gibt, sodass µ gegeben ist durch

µ(f) = D(f)[τ ] für alle f ∈ Conv(V,R).
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Die Form τ in dieser Darstellung ist hochgradig uneindeutig. Um den Kern dieser
Zuweisung zu beschreiben, benötigen wir einen gewissen Differentialoperator D̄ zweiter
Ordnung, der in dieser Arbeit als symplektischer Ruminoperator bezeichnet wird.

Theorem 10.0.13 (Theorem 7.2.5). τ ∈ Ωn
hc(T

∗V ) erfüllt genau dann D(f)[τ ] = 0 für
alle f ∈ Conv(V,R), wenn

1. D̄ τ = 0,

2.
∫
V
τ = 0, wobei wir den Nullschnitt V ↪→ T ∗V als Untermannigfaltigkeit auffassen.

Wir werden den Raum der glatten Bewertungen in VConv(V ) und VConvk(V ) mit
VConv(V )sm und VConvk(V )sm bezeichnen. Nachdem wir diesen Raum mit ImT ∩
Val(V ∗ × R)sm indentifiziert haben, liefert das obige Approximationsargument die fol-
gende Aussage:

Theorem 10.0.14 (Theorem 7.3.5). Der Unterraum VConv(V )sm der glatten Bewer-
tungen ist dicht in VConv(V ).

Indem man eine approximierende Folge glatter Bewertungen bezüglich des Haarmaßes
mittelt, erhält man folgendes Korollar über invariante Bewertungen:

Korollar 10.0.15 (Corollary [7.3.6). Ist G ⊂ GL(V ) eine kompakte Untergruppe, so
ist der Raum der glatten, G-invarianten Bewertungen dicht im Raum VConv(V )G der
stetigen, G-invarianten Bewertungen in VConv(V ).

Für eine Beschreibung dieser Bewertungen wird lediglich eine Klassifikation der rel-
evanten Differentialformen benötigt. Wir führen dies exemplarisch für den Fall G =
SO(n) durch. Dies führt auf die folgene Klassifikation.

Theorem 10.0.16 (Theorem 9.4.4). Für jede glatte Bewertung µ ∈ VConvk(Rn)sm ∩
VConv(Rn)SO(n) vom Grad k > 0 existiert eine eindeutige Funktion φ ∈ C∞c ([0,∞)),
sodass

µ(f) =

∫
Rn
φ(|x|2)[D2f(x)k]dx für all f ∈ Conv(Rn,R) ∩ C2(Rn) gilt,

wobei [D2f(x)]k das k-te elementarsymmetrische Polynom in den Eigenwerten der Hes-
seschen von f bezeichnet.

Als Korollar dieser Aussage erhalten wir, dass jede SO(n)-invariante Bewertung in
VConv(Rn) bereits O(n)-invariant ist.

Die Dichtheitsaussage über glatte Bewertungen in VConv(V ) beruht auf dem Zusam-
menhang zwischen dem sogenannten Konormalenzykel eines konvexen Körpers K ∈
K(V ∗×R) und dem differentiellen Zykel seiner eigenschränkten Stützfunktion hK(·,−1),
sowie der Repräsentation glatter Bewertungen in Val(V ∗×R) mithilfe des Konormalen-
zykels. Eine zweite Darstellung wurde von Alesker in [3] verwendet. Dazu betrachtete er
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die Abbildung Dens(V )×C∞(P+(V ∗), L)k → Valn−k(V ), welche einem Tupel von Stütz-
funktionen das zugehörige gemischte Volumen zuordnet. Mithilfe des Kerntheorems
von Schwartz erhält man eine surjektive Abbildung Dens(V ) ⊗ C∞(P+(V ∗)k, L�k) →
Valn−k(V )sm, welche eine glatte Bewertung als konvergente Reihe gemischter Volumina
darstellt.
Um eine Version dieser Abbildung für Bewertungen auf Funktionen zu erhalten, betra-
chten wir die von Alesker in [7] untersuchten Bewertungen. Diese lassen sich auf folgende
Konstruktion zurückführen: Ist f : Conv(V,R) ∩ C2(V ) eine strikt konvexe Funktion,
so ist das Differential df : V → V ∗ ein Homeomorphismus. Für ein Lebesgue-Maß
volV ∗ ∈ Dens(V ∗) auf V ∗ können wir somit den Pushforward (df−1)∗ volV ∗ betrachten,
welcher ein Maß auf V definiert. Wählt man ein Skalarprodukt auf V , welches über die
induzierte Identifikation V ∼= V ∗ das Lebesgue-Maß volV ∗ induziert, so ist dieses Maß
gegeben durch

(df−1)∗ volV ∗(U) =

∫
U

det(Hf (x))dx für alle Borelmengen U ⊂ V.

Diese Abbildung lässt sich zu einer Bewertung Hessn ∈ VConvn(V,M(V )) mit Werten
im RaumM(V ) der signierten Radonmaße fortsetzen, welche bezüglich der vagen Topolo-
gie stetig ist (siehe [14], [20]). Betrachtet man die Polarisierung dieser als Hessesches
Maß bezeichneten Bewertung Hessn und setzt diese auf Differenzen von konvexen Funk-
tionen fort, so erhält man eine Abbildung

Cc(V )× C2
c (V )k → VConvn−k(V )

(φ0, φ1, . . . , φk) 7→
[
f 7→

∫
V

φ0dHessn(f [n− k], φ1, . . . , φk)

]
,

wobei wir hier die Polarisierung von Hessn wieder mit dem selben Ausdruck bezeichnet
haben. Bewertungen dieser Art sind Beispiele für sogenannte gemischte Hessesche Be-
wertungen. Durch Einschränkung dieser Abbildung auf glatte Funktionen erhalten wir
eine stetige, multilineare Abbildung, welche wir mithilfe des Kerntheorems von Schwartz
zu einer Abbildung C∞(V k+1)→ VConvn−k(V ) fortsetzen. Im Anschluss vergleichen wir
dieses Funktional mithilfe der Einbettung T mit Aleskers Konstruktion. Der kritische
Schritt besteht dabei darin, das Oberflächenmaß eines konvexen Körpers K ∈ K(V ∗×R)
und das Hessesche Maß seiner Stützfunktion hK(·,−1) miteinander in Beziehung zu set-
zen. Nachdem wir die notwendigen Kompatibilitätsbedingungen dieser Abbildungen
überprüft haben, erhalten folgende Version der McMullen-Vermutung für VConv(V ):

Theorem 10.0.17 (Theorem 8.3.5). Für jede glatte Bewertung µ ∈ VConvn−k(V )sm und
jede offene Umgebung U von suppµ existieren Funktionen φji ∈ C∞c (U) für 0 ≤ i ≤ k,
j ∈ N, sodass µ gegeben ist durch

µ(f) =
∞∑
j=1

∫
V

φj0dHessn(f [n− k], φj1, . . . , φ
j
k).

Insbesondere spannen glatte gemischte Hessesche Bewertungen einen dichten Unterraum
von VConv(V )sm und VConv(V ) auf.

139





Bibliography

[1] Semyon Alesker. On P. McMullen’s conjecture on translation invariant valuations.
Advances in Mathematics, 155(2):239–263, 2000.

[2] Semyon Alesker. Description of translation invariant valuations on convex sets with
solution of P. McMullen’s conjecture. Geometric & Functional Analysis GAFA,
11(2):244–272, 2001.

[3] Semyon Alesker. The multiplicative structure on continuous polynomial valuations.
Geometric & Functional Analysis GAFA, 14(1):1–26, 2004.

[4] Semyon Alesker. Valuations on convex sets, non-commutative determinants, and
pluripotential theory. Advances in Mathematics, 195(2):561–595, 2005.

[5] Semyon Alesker. Theory of valuations on manifolds, I. Linear spaces. Israel Journal
of Mathematics, 156(1):311–339, 2006.

[6] Semyon Alesker. Plurisubharmonic functions on the octonionic plane and Spin(9)-
invariant valuations on convex sets. Journal of Geometric Analysis, 18(3):651, 2008.

[7] Semyon Alesker. Valuations on convex functions and convex sets and Monge–
Ampère operators. Advances in Geometry, 19(3):313–322, 2019.

[8] Semyon Alesker and Joseph H. G. Fu. Theory of valuations on manifolds, III. Multi-
plicative structure in the general case. Transactions of the American Mathematical
Society, 360(4):1951–1981, 2008.

[9] Andreas Bernig and Ludwig Bröcker. Valuations on manifolds and Rumin coho-
mology. Journal of Differential Geometry, 75(3):433–457, 2007.

[10] Sergey G. Bobkov, Andrea Colesanti, and Ilaria Fragala. Quermassintegrals of
quasi-concave functions and generalized Prékopa–Leindler inequalities. Manuscripta
Mathematica, 143(1-2):131–169, 2014.

[11] Lorenzo Cavallina. Non-trivial translation-invariant valuations on L∞. arXiv
preprint arXiv:1505.00089, 2015.

[12] Lorenzo Cavallina and Andrea Colesanti. Monotone valuations on the space of
convex functions. Analysis and Geometry in Metric Spaces, 3(1):167–211, 2015.

141



Bibliography

[13] Frank H. Clarke. Optimization and nonsmooth analysis, volume 5 of Classics in
applied mathematics. Society for Industrial and Applied Mathematics, Philadelphia,
1990.

[14] Andrea Colesanti and Daniel Hug. Hessian measures of convex functions and appli-
cations to area measures. Journal of the London Mathematical Society, 71(1):221–
235, 2005.

[15] Andrea Colesanti and Nico Lombardi. Valuations on the space of quasi-concave
functions. In B. Klartag and E. Milman, editors, Geometric Aspects of Functional
Analysis. Lecture Notes in Mathematics, volume 2169, pages 71–105. Springer, 2017.

[16] Andrea Colesanti, Nico Lombardi, and Lukas Parapatits. Translation invariant
valuations on quasi-concave functions. Studia Mathematica, 243:79–99, 2018.

[17] Andrea Colesanti, Monika Ludwig, and Fabian Mussnig. Minkowski valuations on
convex functions. Calculus of variations and partial differential equations, 56(6):162,
2017.

[18] Andrea Colesanti, Monika Ludwig, and Fabian Mussnig. Valuations on convex
functions. International Mathematics Research Notices, 2019(8):2384–2410, 2017.

[19] Andrea Colesanti, Monika Ludwig, and Fabian Mussnig. The Hadwiger theorem on
convex functions. I. arXiv preprint arXiv:2009.03702, 2020.

[20] Andrea Colesanti, Monika Ludwig, and Fabian Mussnig. Hessian valuations. Indi-
ana University Mathematics Journal, 69(4):1275–1315, 2020.

[21] Andrea Colesanti, Monika Ludwig, and Fabian Mussnig. A homogeneous decompo-
sition theorem for valuations on convex functions. Journal of Functional Analysis,
279(5):1–25, 2020.

[22] Andrea Colesanti, Daniele Pagnini, Pedro Tradacete, and Ignacio Villanueva. A
class of invariant valuations on Lip(Sn−1). Advances in Mathematics, 366:1–37,
2020.

[23] Andrea Colesanti, Daniele Pagnini, Pedro Tradacete, and Ignacio Villanueva. Con-
tinuous valuations on the space of Lipschitz functions on the sphere. arXiv preprint
arXiv:2005.05419, 2020.

[24] Max Dehn. Ueber den Rauminhalt. Mathematische Annalen, 55(3):465–478, 1901.

[25] Herbert Federer. Geometric measure theory, volume 153 of Die Grundlehren der
mathematischen Wissenschaften in Einzeldarstellungen. Springer, Berlin, 1969.

[26] Joseph H. G. Fu. Monge-Ampère functions, I. Indiana University Mathematics
Journal, 38(3):745–771, 1989.

142



Bibliography

[27] Joseph H. G. Fu. Monge-Ampère functions, II. Indiana University Mathematics
Journal, 38(3):773–789, 1989.

[28] Joseph H. G. Fu. Curvature measures of subanalytic sets. American Journal of
Mathematics, pages 819–880, 1994.

[29] H. Gask. A proof of Schwartz’s kernel theorem. Mathematica Scandinavica,
8(2):327–332, 1961.

[30] Paul Goodey and Wolfgang Weil. Distributions and valuations. Proceedings of the
London Mathematical Society, 3(3):504–516, 1984.

[31] Hugo Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, volume 93
of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen.
Springer, Berlin, 1957.

[32] Daniel Huybrechts. Complex geometry: an introduction. Springer, Berlin, 2005.

[33] Robert L. Jerrard. Some rigidity results related to Monge-Ampère functions. Cana-
dian Journal of Mathematics, 62(2):320–354, 2010.

[34] Jonas Knoerr. Smooth and mixed Hessian valuations on convex functions. arXiv
preprint. arXiv:2006.12933, 2020.

[35] Jonas Knoerr. The support of dually epi-translation invariant valuations on convex
functions. arXiv preprint. arXiv:2005.00486, 2020.

[36] Hassane Kone. Valuations on Orlicz spaces and Lφ-star sets. Advances in Applied
Mathematics, 52:82–98, 2014.

[37] Jin Li and Dan Ma. Laplace transforms and valuations. Journal of Functional
Analysis, 272:738–758, 2016.

[38] Monika Ludwig. Fisher information and matrix-valued valuations. Advances in
Mathematics, 226(3):2700–2711, 2011.

[39] Monika Ludwig. Valuations on Sobolev spaces. American Journal of Mathematics,
134(3):827–842, 2012.

[40] Monika Ludwig. Covariance matrices and valuations. Advances in Applied Mathe-
matics, 51(3):359–366, 2013.

[41] Erwin Lutwak, Deane Yang, and Gaoyong Zhang. Sharp affine Lp Sobolev inequal-
ities. Journal of Differential Geometry, 62(1):17–38, 2002.

[42] Dan Ma. Real-valued valuations on Sobolev spaces. Science China Mathematics,
59(5):921–934, 2016.

143



Bibliography

[43] Peter McMullen. Valuations and Euler-type relations on certain classes of convex
polytopes. Proceedings of the London Mathematical Society, 3(1):113–135, 1977.

[44] Peter McMullen. Continuous translation invariant valuations on the space of com-
pact convex sets. Archiv der Mathematik, 34(1):377–384, 1980.

[45] Peter McMullen. Valuations and dissections. In P. M. Gruber and J. M. Willis,
editors, Handbook of convex geometry, pages 933–988. North-Holland, Amsterdam,
1993.

[46] Vitali Milman and Liran Rotem. α-concave functions and a functional extension
of mixed volumes. Electronic Research Announcements in Mathematical Sciences,
20:1–11, 2013.

[47] Vitali Milman and Liran Rotem. Mixed integrals and related inequalities. Journal
of Functional Analysis, 264(2):570–604, 2013.

[48] Fabian Mussnig. SL(n) invariant valuations on super-coercive convex functions.
Canadian Journal of Mathematics (in press). arXiv:1903.04225.

[49] Fabian Mussnig. Volume, polar volume and Euler characteristic for convex func-
tions. Advances in Mathematics, 344:340–373, 2019.

[50] Michael Ober. Lp-Minkowski valuations on Lq-spaces. Journal of Mathematical
Analysis and Applications, 414(1):68–87, 2014.

[51] R. Tyrrell Rockafellar. Convex analysis, volume 28 of Princeton mathematical series.
Princeton University Press, Princeton, NJ, 1970.

[52] R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational analysis, volume 317 of Die
Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer,
Berlin, 2009.

[53] Michel Rumin. Formes différentielles sur les variétés de contact. Journal of Differ-
ential Geometry, 39(2):281–330, 1994.

[54] Rolf Schneider. Convex bodies: the Brunn–Minkowski theory, volume 151 of Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, 2 edition, 2014.

[55] Pedro Tradacete and Ignacio Villanueva. Valuations on Banach Lattices. Interna-
tional Mathematics Research Notices, 2020(8):2468–2500, 2018.

[56] Andy Tsang. Valuations on Lp-spaces. International Mathematics Research Notices,
2010(20):3993–4023, 2010.

[57] Andy Tsang. Minkowski valuations on Lp-spaces. Transactions of the American
Mathematical Society, 364(12):6159–6186, 2012.

144



Bibliography

[58] Tuo Wang. The affine Sobolev–Zhang inequality on BV (Rn). Advances in Mathe-
matics, 230(4–6):2457–2473, 2012.

[59] Tuo Wang. Semi-valuations on BV (Rn). Indiana University Mathematics Journal,
63(5):1447–1465, 2014.

[60] Thomas Wannerer. The module of unitarily invariant area measures. Journal of
Differential Geometry, 96(1):141–182, 2014.

[61] Min Yan. Extension of convex function. Journal of Convex Analysis, 21(4):965–987,
2012.

145


	Introduction
	Plan of this thesis

	Preliminaries
	Basic notation
	Distributions and the L. Schwartz kernel theorem
	The compact-open topology
	Background on convex bodies

	Valuations on convex bodies and the vertical support
	Vertical support
	Construction of smooth valuations using mixed volumes
	Construction of smooth valuations using the conormal cycle

	Convex functions
	Topology on spaces of convex functions
	Compact subsets of the space of finite-valued convex functions
	Some dense families of convex functions
	Lipschitz regularization

	Dually epi-translation invariant valuations on convex functions
	Basic definitions
	Relation to valuations on convex bodies
	Homogeneous decomposition
	Goodey-Weil embedding

	The support of a dually epi-translation invariant valuation
	Definition and characterization of the support
	Subspaces of valuations with compact support
	Applications

	Smooth valuations on convex functions
	Properties of the differential cycle
	Kernel theorem for the differential cycle
	Characterization of smooth valuations

	McMullen's conjecture for dually epi-translation invariant valuations
	The Relation between the n-th Hessian measure and the surface area measure
	Alesker valuations and mixed Hessian valuations
	Density result for mixed Hessian valuations

	Smooth rotation invariant valuations
	Representation of the Hessian measures by differential forms
	Basic invariant differential forms
	Primitive SO(n)-invariant forms
	Classification of smooth rotation invariant valuations

	Deutsche Zusammenfassung
	Bibliography

