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Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is

accompanied by neurodevelopmental differences in regional cortical volume (CV),

and a potential layer-specific pathology. Conventional measures of CV, however, do

not indicate how volume is distributed across cortical layers. In a sample of 92 typi-

cally developing (TD) controls and 92 adult individuals with ASD (aged 18–52 years),

we examined volumetric gradients by quantifying the degree to which CV is weighted

from the pial to the white surface of the brain. Overall, the spatial distribution of

Frustum Surface Ratio (FSR) followed the gyral and sulcal pattern of the cortex and

approximated a bimodal Gaussian distribution caused by a linear mixture of vertices

on gyri and sulci. Measures of FSR were highly correlated with vertex-wise estimates

of mean curvature, sulcal depth, and pial surface area, although none of these fea-

tures explained more than 76% variability in FSR on their own. Moreover, in ASD, we

observed a pattern of predominant increases in the degree of FSR relative to TD con-

trols, with an atypical neurodevelopmental trajectory. Our findings suggest a more

outward-weighted gradient of CV in ASD, which may indicate a larger contribution of

supragranular layers to regional differences in CV.
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1 | INTRODUCTION

The neural architecture of the cerebral cortex is complex and subject

to dynamic changes throughout the human lifespan. During postnatal

development, the cortex undergoes a period of extensive growth,

which is characterized by a rapid expansion in surface area (SA), and

an increase in cortical thickness (CT), leading to a commensurate

increase in cortical grey matter volume (CV) (Giedd et al., 1999). While

different mechanisms have been proposed to drive the increase in

brain volume (Lewitus, Kelava, & Huttner, 2013), evidence suggests

that grey matter development is not uniform across the cortical man-

tle, but differs across brain regions and cortical layers. For example, it

has been noted that the upper and lower layers of the cortex expand

differentially as a consequence of the tangential dispersion of radially

migrating neurons (Reillo, De Juan Romero, García-Cabezas, &

Borrell, 2011). This generates a compressive force in the outer layer

relative to the inner zone that has been suggested to cause folding of

the cortex, and the formation of gyri and sulci (Kriegstein, Noctor, &

Martinez-Cerdeno, 2006; Richman, Stewart, Hutchinson, &

Caviness, 1975). Differential expansion between the outer and inner

layers affects measures of CT, which tends to be thicker in gyri than

in sulci (Llinares-Benadero & Borrell, 2019). The thickness of the cor-

tex also varies across its six-layer structure with supragranular layers

(i.e., layer 1–3) being thicker in sulci than in gyri (Hilgetag &

Barbas, 2006; Wagstyl et al., 2016). Given the folded architecture of

the cortex and variability in CT, the distribution of cortical volume at a

given location on the surface of the brain is therefore not uniform

across cortical layers but seems to differ depending on whether the

cortex is outward-folded (e.g., in case of a gyrus) or inward-folded

(e.g., in case of a sulcus).

Yet, traditional volumetric neuroimaging studies estimate grey

matter volume as the product of SA and CT at each cerebral vertex,

which is also known as the product method. As noted by Winkler and

colleagues, this approach introduces a considerable bias as it under-

estimates grey matter volume in cortical gyri where the outer surface

area is larger than the inner, and overestimates grey matter volume

in cortical sulci where the inner area is larger than the outer, hence

overestimating total grey matter volume across hemispheres

(Winkler et al., 2018). The product method therefore only serves as

a rough approximation of the true grey matter volume at a given

location on the cortical surface. In order to overcome this limitation,

Winkler and colleagues (Winkler et al., 2018) proposed a more

advanced way of estimating local CV by using the so-called analytic

method, where volume is not simply estimated as the product of SA

and CT. Instead, each face (i.e., triangle) on the white matter surface

and its matching face on the pial (i.e., outer) surface are used to

define an oblique truncated pyramid, the volume of which is com-

puted analytically without introducing additional error (Winkler

et al., 2018). To date, this approach has become the default for

surface-based analyses of CV as implemented in FreeSurfer (http://

surfer.nmr.mgh.harvard.edu/). While the analytic method has

become state-of-the-art for quantifying vertex-wise estimates of

grey matter volume, it does not contain any information on the exact

position of a vertex on the folded surface of the brain. Based on the

analytic method alone, it is therefore not possible to determine if a

vertex is located on a gyral crown with an outward-weighting of grey

matter volume towards the pial surface, or on a sulcal fundus with

an inward-weighting of cortical volume towards the white matter sur-

face (Waehnert et al., 2014).

In the present study, we utilized a surface-based neuroanatomi-

cal feature designed to capture volumetric gradients from the outer

to the inner surface of the brain, and thus to quantify the distortion

of grey matter volume across cortical layers. We refer to this feature

as Frustum Surface Ratio (FSR), which describes the degree to which

the cortical volume at a given vertex is ‘skewed’ or ‘weighted’

towards the outer (i.e., pial) or inner (i.e., white matter) surface. As

such, FSR describes the ratio of the inner and outer surfaces of a

truncated pyramidal frustum. Our aim was (a) to characterize the

normative spatially distributed pattern of variability in FSR across

the cortical surface based on typically developing controls to assess

the biological plausibility and interpretability of the measure, (b) to

establish the relationship between variability in FSR and other mor-

phometric features to identify the degree to which FSR measures

unique and shared aspects of the cortical architecture, and (c) to uti-

lize this feature to explore neuroanatomical differences in the brain

of individuals with autism spectrum disorder (ASD) relative to typi-

cally developing (TD) controls. We chose to examine the brain in

ASD in particular as genetic investigations suggest that ASD-related

genes are not expressed equally across cortical layers, but may pre-

dominantly affect either the superficial (Parikshak et al., 2013) or the

inner layers (Willsey et al., 2013). Such layer-dependent expression

of ASD-associated genes might therefore have a differential impact

on the development of outer and inner layers, which cannot be

quantified by approaches that examine either the outer or inner sur-

face of the brain in isolation. As the degree of FSR depends on the

relationship between outer and inner surfaces, it may be sensitive to

geometric distortions driven by a layer-specific neurodevelopment.

Measures of FSR might be particularly well suited to characterize the

complex neural architecture of the brain in ASD that has previously

been shown to be atypical based on conventional measures of neu-

roanatomy (Amaral, Schumann, & Nordahl, 2008; Ecker, 2017;

Stanfield et al., 2007).
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2 | METHODS

2.1 | Participants

A total sample of 184 adult individuals was recruited and assessed at

the Institute of Psychiatry, Psychology and Neuroscience (IoPPN),

London (n = 89), and the Autism Research Centre, Cambridge (n = 95).

The sample consisted of 92 typically developing (TD) controls (18–

52 years of age, 51 males and 41 females), and 92 individuals with a

confirmed diagnosis of ASD (18–48 years of age, 53 males and

39 females). Participants were matched on age, sex, and full-scale

intelligence quotient (fsIQ). All participants gave informed written

consent in accordance with the ethics approval by the National

Research Ethics Committee, Suffolk, England. Detailed information on

diagnostic criteria as well as inclusion/exclusion criteria are presented

in the supplement (see Supplementary Information S1).

2.2 | MRI data acquisition

Scanning was performed at the IoPPN, London, and Addenbrooke's

Hospital, Cambridge, using a 3 T GE Signa System (General Electric). A

specialized acquisition protocol using quantitative T1-mapping was

used to ensure standardization of structural magnetic resonance imag-

ing (MRI) scans across scanner platforms. This protocol has previously

been validated and extensively described elsewhere (Deoni

et al., 2008; Ecker et al., 2012), resulting in high-resolution structural

T1-weighted inversion-recovery images, with 1 × 1 × 1 mm resolu-

tion, a 256 × 256 × 176 matrix, TR = 1800 ms, TI = 850 ms, FA = 20�,

and FOV = 25.6 cm. These images were subsequently used for surface

reconstruction.

2.3 | Image processing

Image processing and cortical reconstruction was performed using

FreeSurfer v6.0.0 software (http://surfer.nmr.mgh.harvard.edu/).

These well-validated and fully automated procedures have been

described in previous studies (Dale, Fischl, & Sereno, 1999; Fischl &

Dale, 2000; Fischl, Sereno, & Dale, 1999; Jovicich et al., 2006;

Ségonne et al., 2004). In brief, the processing pipeline includes inten-

sity normalization, skull stripping (Ségonne et al., 2004), removal of

extra-cerebral tissue, volumetric labelling, and white matter segmen-

tation using a connected components algorithm. Then, a triangular

tessellated surface is generated for each white-matter volume by

fitting a deformable template, resulting in a cortical mesh for the

white matter (i.e., inner) and pial (i.e., outer) surfaces. The resulting

surface models were visually inspected for reconstruction errors and

the quality of each scan was rated. Manual edits were performed by

making changes to the pial (i.e., grey matter) outline, to the white

matter outline, or both. Following manual editing, images were re-

preprocessed and re-assessed for reconstruction errors. A summary

of the quality assessments in terms of in- and excluded scans is

provided in the supplementary material (see Supplementary Informa-

tion S2).

All morphometric features were initially computed within the

standard FreeSurfer pipeline based on the individuals' native surfaces

(i.e., in native space). At each cerebral vertex, CT was computed as the

average of the distance between a white surface vertex and the clos-

est vertex on the pial surface (Fischl & Dale, 2000). Vertex-wise esti-

mates of SA were computed using the analytic approach outlined by

Winkler et al. (Winkler et al., 2018), which quantifies SA as one third

of the area of faces (i.e., triangles) incident to a vertex, as each face on

the mesh has three vertices. Local gyrification was computed as

described by Schaer et al. (Schaer et al., 2008). As implemented in

FreeSurfer, the local gyrification index (lGI) is computed as the ratio

between the area of the pial (grey matter) surface and the area of a

constructed smooth ‘hull’ surface around the cortex. Thus, the lGI

reflects the amount of cortex buried within the sulcal folds in the sur-

rounding area (Schaer et al., 2008). Sulcal depth measures the height

or depth of a point above or below an average surface and describes

the amplitude of folding (Fischl, Sereno, & Dale, 1999). Maps of mean

curvature (H) were computed as the average of the principle curva-

tures k1 and k2, and reflect the extent to which the cortex is curved at

a certain vertex (Pienaar, Fischl, Caviness, Makris, & Grant, 2008).

2.4 | Computation of vertex-wise estimates of FSR

To capture the volumetric gradient from the outer to the inner surface

of the brain, we estimated the degree of FSR at each vertex as the

ratio between the expected volume (VE) and the actual volume (VA) at

each vertex, or

FSR=
VE

VA
,

where VE denotes the estimated cortical volume at a vertex computed

as the product of vertex-wise estimates of the outer surface area and

cortical thickness (VE = SApial * CT), and VA is the actual volume at a

vertex derived as proposed by Winkler and colleagues (Winkler

et al., 2018). However, while we have used FreeSurfer to obtain sur-

faces for the computation of SA and CT, we did not use the

FreeSurfer method to obtain cortical volume VA. Instead, we esti-

mated the actual (analytical) volume VA at each vertex as the volume

of a truncated pyramid or prism based on the conventional

(i.e., geometric) formula to calculate the volume of a pyramidal

frustum:

VA =
1
3
CT SApial + SAwhite +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SApial x SAwhite

p� �
,

where CT equals the height (i.e., the cortical thickness) at each vertex,

SAwhite is the surface area of the white matter surface, and SApial is

the surface area of the corresponding vertex on the pial surface

(i.e., outer grey matter surface). As such, VA is measured as the volume
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of a pyramid truncated (i.e., cut) by a plane parallel to its base. In con-

trast to our geometric computation of VA, FreeSurfer computes

vertex-wise estimates of CV that are analytically based on the exact

vertex positions (i.e., the volume is split into three tetrahedrons;

Winkler et al. (2018)). FreeSurfer also takes into account that the bot-

tom and top faces of the pyramid may not be aligned in parallel, which

is neglected in our geometric approach. However, both approaches

for the computation of VA result in nearly equivalent values

(r = .98, p < .001).

Besides, rather than simply computing the ratio of SApial to

SAwhite (Ratiopw = SApial

SAwhite
), a non-linear term in the denominator was

chosen to ensure that FSR values are normally distributed across the

cortical surface (see Figure S3 for further details). FSR represents a

ratio measure in units of proportions that can take values smaller or

larger than 1, depending on whether a vertex is located on a sulcus or

gyrus. Hence, FSR<1 indicates that the volume is inward-weighted,

for example, in case of a sulcus, and FSR>1 when the volume is out-

ward-weighted, as would be expected in case of a gyrus (see

Figure S4).

< 1: inward-weighted volume (i.e., sulcus)

FSR(i)

> 1: outward-weighted volume (i.e., gyrus).

2.5 | Statistical analysis

2.5.1 | Characterization of FSR in typically
developing controls

We initially explored the spatial distribution of FSR within our sub-

sample of typically developing controls (n = 92) to characterize the

neurotypical distribution of our feature across the cortical surface,

and to establish the biological plausibility of the feature. Here, we

examined the distribution of FSR across the cortex using descriptive

parameters such as the minimum (min), maximum (max), median

(med), interquartile range (IQR), mean (M), and standard devia-

tion (SD).

Next, we assessed the relationship between FSR and other mor-

phometric features derived by FreeSurfer. For visualisation purposes,

and to compare the spatial distribution of FSR values with other mor-

phometric features, vertex-wise FSR values were initially mapped to

standard space. The same was done for CV, CT, SAwhite, SApial, lGI,

mean curvature H and sulcal depth. Across vertices on the fsaverage

surface, the distribution of FSR was examined based on its mean value

averaged across all TD. The statistical relationship between features

was assessed using Spearman's Rank Correlation Coefficients (ρ)

across vertices (and subjects) in native space. We examined Spe-

arman's Rank Correlation Coefficients as not all morphometric fea-

tures are normally distributed. For each feature, the vertex-wise

values of all 92 typically developing controls were concatenated verti-

cally into a single column vector. The average vertex count per subject

was �290.000, so horizontally combining the vectors for all features

resulted in a two-dimensional matrix of size �27,000,000 (datapoints)

× 8 (features). Spearman's ρ was then computed between each pair of

surface descriptors. Corrections for multiple comparisons were per-

formed using the Bonferroni method (Bonferroni, 1963). In addition

to these correlations, which combine data across subjects and vertices

and thus allowed us to pool both inter- and intraindividual data, corre-

lations where further examined across subjects and across vertices

separately. A more detailed description of the methodological

approach for these analyses can be found in the supplementary mate-

rial (see Figure S5).

Following the initial computation in native space, we also exam-

ined the effect of registering FSR measures to the common space sur-

face template (i.e., the FreeSurfer fsaverage surface). Furthermore, we

examined the effect of spatial smoothing on the distribution of the

parameter. To this end, the native space data of each subject was

compared to the respective distribution on the high-resolution

FreeSurfer common standard space template with �330,000 vertices

across hemispheres. Common space registration is crucial for the

comparison between groups and for applying cortical parcellation

brain atlases (Fischl, Sereno, Tootell, & Dale, 1999). In order to iden-

tify the effects of spatial smoothing, the mean distributions of FSR

measures were generated with several full-width at half-maximum

(FWHM) surface-based Gaussian kernels: 0 (no smoothing), 5, 10, and

15 mm. The distributions were then compared with the native space

data and across smoothing kernels by computing the mean percent-

age of overlap between distributions across participants.

To examine the degree of normality of FSR at each vertex, we

computed probability maps illustrating the likelihood of the data being

normally distributed using Shapiro–Wilk tests across all typically

developing controls. Shapiro–Wilk's p was then plotted at each corti-

cal vertex for FSR data smoothed at FWHM 0, 10, and 20 mm. To

compare FSR to other cortical descriptors, these probability maps

where also produced for measures of H, SAwhite, CT, and CV, and are

displayed in the supplementary materials.

2.5.2 | Between-group analysis

Vertex-wise statistical analyses were conducted using the SurfStat

toolbox (https://www.math.mcgill.ca/keith/surfstat/) for Matlab

(R2017b; MathWorks). We examined differences in FSR between

ASD and TD, as well as age-by-group interactions by applying a gen-

eral linear model (GLM) at each vertex i for subject j, with (a) group as

categorical fixed-effect factor, (b) an age-by-group interaction term,

and (c) sex, site, fsIQ, and age as covariates, so that

Yij = β0 + β1Groupj + β2Age
�Groupj + β3Sexj + β4Sitej + β5IQj + β6Agej + εi

where εi denotes the residual error. Corrections for multiple compari-

sons across the whole brain were performed using random field the-

ory (RFT)-based cluster analysis for non-isotropic images with a

significance threshold of p < .05 (two-tailed) (Worsley, Andermann,

Koulis, MacDonald, & Evans, 1999). We also performed the between-
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group analysis (a) with FSR smoothed at FWHM 5 mm, (b) with VA

being computed based on the FreeSurfer formula as suggested by

Winkler et al. (2018), and (c) using mean Euler number as continuous

covariate in the statistical model. Last, we compared our results of the

FSR analysis with between-group differences in traditional measures

of CV. Here, we applied a smoothing filter of FWHM 10 mm in order

to allow for comparability with other studies.

3 | RESULTS

3.1 | Neurotypical distribution of FSR measures
across the cortex

The spatially distributed pattern of variability in FSR in TD is shown in

Figure 1a. As expected, the degree of FSR follows the overall gyral

and sulcal pattern of the cortical surface and tends to be higher in gyri

than in sulci. Consequently, the distribution of FSR is a linear mixture

of two Gaussian distributions ranging from a minimum value of 0.02

to a maximum value of 2.8 (first IQR = 0.79, med = 1.08, third

IQR = 1.31, M = 1.05, SD = 0.35) (Figure 1b). To disentangle the

bimodal distribution, and to the identify the influence of cortical fold-

ing on measures of FSR, we subdivided the cortex based on each ver-

tex' mean curvature (H) into: (1) gyri (H ≤ −0.1), (2) gyral wall regions

(−0.1 < H < 0.1), or (3) sulci (H ≥ 0.1) (for a similar procedure see

Wagstyl et al., 2016). We then plotted the respective FSR distribution

within each folding category. As can be seen in Figure 1c, the overall

FSR distribution across the cortex is a linear mixture of vertex esti-

mates in sulci (M = 0.65, SD = 0.20) or in close proximity to a gyral

wall (M = 1.05, SD = 0.20), and of vertices located on gyri (M = 1.38,

SD = 0.20). The overall spatial distribution of FSR therefore follows

the overall pattern of cortical folding with a more outward-weighted

volume in gyri, and a more inward-weighted volume in sulci.

As shown in Figure 2a, the spatial distribution of FSR also closely

follows the distribution of other high-resolution geometric features

that are typically computed either on the outer or inner brain surface.

F IGURE 1 Spatial distribution of FSR in typically developing controls. (a) Spatially distributed pattern of FSR values averaged across TD
mapped onto FreeSurfer common group template (fsaverage). Lower FSR values <1 (purple to cyan) indicate a more inward-weighted cortical
volume (CV) as is the case in a sulcal pit; medium FSR values indicate an even distribution of CV across cortical layers as is the case on a gyral wall
(green); FSR values >1 indicate a more outward-weighted CV as is the case on a gyral crown (yellow to red). (b) Distribution of mean FSR values
(blue line) across the cortical surface approximating the Gaussian normal distribution (dotted line). (c) FSR density distribution across vertices
located on sulci (dark blue), in close proximity of the gyral wall (light blue), and on a gyri (grey), subdivided based on the mean curvature (H) at a
vertex. FSR, frustum surface ratio; H, mean curvature
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Consequently, measures of FSR were significantly correlated with

several other morphometric features. More specifically, vertex-wise

estimates of FSR were significantly positively correlated with SApial

(ρ = 0.74, p < .001), CT (ρ = 0.48, p < .001), and CV (ρ = 0.55,

p < .001), and significantly negatively correlated with mean curvature

H (ρ = −0.87, p < 0.001) and sulcal depth (ρ = −0.73, p < .001). Lower

correlations, despite being significant due to the large number of ver-

tices, were observed between FSR and lGI (ρ = −0.03, p < .001) and

SAwhite (ρ = −0.07, p < .001). Notably, although correlations were

highly significant overall, no cortical feature explained more than 76%

of variability in FSR. Thus, while the spatially distributed pattern of

variability in FSR is similar to other cortical features, none of these

descriptors was able to capture the neuroanatomical information

uniquely provided by FSR. We also examined correlations between

FSR and other morphometric features across subjects and vertices

separately, which are shown in the Supplementary material (see

Figure S5). These figures indicate that regardless of the examined

dimension, we observed strong correlations between FSR and mea-

sures of curvature (H), which was also the cortical feature that

explained the largest percentage of variability in FSR.

Last, we examined the effects of mapping FSR measures from

native into standard space, as well as the effects of spatial smooth-

ing. We observed that the distribution of FSR values did not change

significantly as a result of spherical registration. Across TD, we

observed a mean percentage overlap of 94% (SD = 0.06) between

the FSR distribution in native space and in standard space

(Figure 3b). Measures of FSR thus seem robust to common space

registration. We did observe, however, a main effect of smoothing:

larger smoothing kernels changed the distribution in terms of shape,

symmetry, and mean value. As a result, the mean percentage of

overlap between the FSR distribution in native space and the stan-

dard space distributions decreased from 94% at 0 mm to 33% at

15 mm smoothing (Figure 3c). Violin plots depicting an inverse asso-

ciation between percentage overlap and width of the smoothing ker-

nel are presented in the supplementary material (see Figure S6). In

order to keep distributional shifts induced by spatial smoothing as

minimal as possible, we did not impose any smoothing for subse-

quent between-group comparisons.

The results of the vertex-wise analyses testing the degree of nor-

mality for measures of FSR and other features are presented in the

supplementary material (see Figure S7). The probability of the data

being normally distributed without smoothing (FWHM 0) across par-

ticipants was relatively low for most features, and for SAwhite and CV

in particular. As expected however, the proportion of cortex areas

with normally distributed data increased with higher smoothing set-

tings and was highest at FWHM 20.

3.2 | Vertex-wise differences in FSR and CV
between individuals with ASD and typically
developing controls

For the clinical application, we examined differences in FSR in a sam-

ple of 92 participants with ASD compared to the 92 typically develop-

ing controls. Groups did not differ significantly in biological sex, mean

cortical thickness, and total brain measures (p > .05; Table 1). We

therefore did not covary for total brain measures in the vertex-wise

analysis of FSR.

F IGURE 2 Relationship between FSR and well-established morphometric descriptors. (a) Spatially distributed pattern of morphometric
features across TD, displayed on the FreeSurfer default common group template (fsaverage). Lower values of the respective cortical feature are
displayed in purple to cyan, higher values are displayed in yellow to red. (b) Spearman's rank correlation coefficients between morphometric
features across vertices and subjects in native space. Negative correlations are displayed in orange, positive correlations are displayed in blue.
FSR, frustum surface ratio; SAwhite, surface area of white surface; SApial, surface area of pial surface; CT, cortical thickness; CV, cortical volume; H,
mean curvature; lGI, local gyrification index; Sulc, sulcal depth
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Individuals with ASD significantly differed from TD controls in

FSR in several regions across the cortex (Figure 4a and Table 2).

Across the cortex, we observed predominantly increased FSR in ASD

in the left middle frontal cortex (Brodmann area [BA] 46), the left lat-

eral orbitofrontal cortex (BA 45), bilateral pre-and postcentral gyri

(BA 1–4), right superior and left inferior parietal cortex (BA 7), right

insula (BA 13), left superior temporal lobe (BA 41), left para-

hippocampal cortex (BA 35), left fusiform gyrus (BA 37), right anterior

cingulate cortex (ACC; BA 24), and left posterior cingulate cortex

(PCC; BA 23). In these brain regions, ASD individuals showed a larger

gradient in brain volume from the outer to the inner cortical surface,

with a more outward-weighted volume compared to TD controls.

There were also a few brain regions where we observed decreased

FSR in ASD, which included the left postcentral gyrus (BA 1–3), left

precuneus (BA 7), left insula (BA 13), and left PCC (BA 23). In these

brain regions, cortical volume was distributed more towards the inner

cortical surface in ASD (i.e., inward-weighted). When increasing the

smoothing size to FWHM 5 mm, between-group differences were

reduced to one significant cluster in the inferior parietal cortex, where

FSR was increased in ASD compared to typically developing controls

(see Figure S8A). However, the pattern of between-group differences

did not change when computing VA based on the FreeSurfer formula

(see Figure S8B), or when including mean Euler number as continuous

covariate (see Figure S8C). For the between-group comparison of

vertex-wise measures of cortical volume (CV), see Figure S9. Notably,

there was no spatial overlap between the pattern of differences in CV

and FSR indicating FSR measures aspects of the cortical architecture

that are not captured by vertex-wise measures of CV alone.

3.2.1 | Effect of age on FSR

In many regions with significant between-group differences in FSR we

also observed significant age-by-group interactions. Linear age-by-

F IGURE 3 Common space registration and spatial smoothing. (a) FSR distribution for three representative TD in native space, and the
respective native space density distribution of FSR across TD. (b) Distribution of FSR values in native space (dark blue) and following the
registration into standard space (light blue) via spherical registration; numbers indicate the percentage of overlap between both distributions.
(c) Distribution of mean FSR across TD in native and standard space, as well as after the application of different spatial smoothing kernels;
numbers indicate the percentage overlap of distributions relative to the unsmoothed native space data. FSR, frustum surface ratio; H, mean
curvature; fwhm, full-width at half-maximum
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group interactions were observed in the bilateral insulae (BA 13),

precentral gyri (BA 1–3), PCC (BA 23), and inferior parietal cortices

(BA 7), as well as in the left supramarginal gyrus (BA 40), left superior

temporal gyrus (BA 41), and left middle frontal, superior frontal, and

orbitofrontal regions (BA 6, 45, 46). Here, were observed a negative

association between FSR and age in the ASD group, and a positive

correlation in the TD group. Additionally, we identified linear age-by-

group interactions in the bilateral insulae (BA 13), left PCC (BA 23),

and left inferior parietal cortex (BA 7). In these regions, we observed a

positive association between FSR and age in the ASD group and a

negative correlation in the TD group (see Figure 4b for two exemplary

scatterplots of age-by-group interactions). Thus, while we did observe

a significant main effect of group, our findings suggest that between-

group differences in FSR are age dependent during adulthood.

4 | DISCUSSION

In this study, we examined volumetric gradients from the outer to the

inner cortical surface in TD, and in individuals with ASD, using a novel

cortical feature that relates the expected CV based on the surface

area of the cortical pial surface to the actual CV computed at each

cerebral vertex. The resulting measure indicates the amount to which

cortical volume is distorted from a regular (triangular) prism to a more

cone- or pyramid-shaped 3D object. Such distortions have already

been described by Bok (1929) and have guided similar analytical

frameworks to model anatomically meaningful locations of cortical

laminae (Waehnert et al., 2014). In these studies, an equivolume model

is assumed, in which the cortical volume is considered constant in

neighboring segments of a given layer. Similarities thus exist between

the equivolume approach and the mesh generation algorithm used in

FreeSurfer, where the local vertex density on the surfaces positively

correlates with their absolute curvature, that is, more vertices are

placed in regions of high curvature. Therefore, the shape of the pyra-

midal frustum defining vertex-wise CV adapts based on changes in

local curvature. This degree of adaptation is also quantified by mea-

sures of FSR, which hence offers information that cannot adequately

be captured by traditional measures of CV alone.

4.1 | Characterizing FSR in native space

Based on our typically developing controls, we established that the

degree of FSR follows the overall gyral and sulcal pattern of the corti-

cal surface, where cortical volume is skewed towards the outer or

inner surface depending on whether a vertex is located on a gyrus or

sulcus. Moreover, measures of FSR follow an anterior–posterior gradi-

ent resembling the spatial gradients of volumetric features (i.e., CT

and CV). The observed high correlations of FSR with other descrip-

tors, and curvature measures in particular, may in part be explained by

local effects of the mesh generation algorithm employed by

FreeSurfer. In highly curved areas, vertices are placed closely together

to satisfy smoothness constraints, which means that each vertex in a

densely packed region has a relatively small SA. In gyri, where the cur-

vature of the outer surface is smaller than the inner, smaller SAs are

designated to the white matter surface relative to the pial surface,

TABLE 1 Participant demographics

ASD TD

Test statistic

χ2/t p

n 92 92

Sex (m/f) 53/39 51/41 0.02 .88

Site (London/Cambridge) 42 /50 47/45 0.35 .56

Age (years) 27 ± 7 (18–48) 28 ± 7 (18–52) −1.62 .11

fsIQ 113 ± 13 (83–136) 116 ± 10 (93–137) −1.69 .09

ADI-R social 17 ± 5 (9–28) –

ADI-R communication 13 ± 4 (7–24) –

ADI-R repetitive behaviour 5 ± 2 (1–10) –

ADOS 8 ± 5 (0–18) –

Mean CT (mm) 2.67 ± 0.09 (2.46–2.89) 2.66 ± 0.08 (2.45–2.88) 0.51 .61

Total SAwhite (m
2) 0.19 ± 0.02 (0.15–0.26) 0.19 ± 0.02 (0.15–0.23) 0.87 .38

Total SApial (m
2) 0.25 ± 0.02 (0.21–0.34) 0.24 ± 0.02 (0.19–0.29) 1.44 .15

Total CV (l) 0.78 ± 0.08 (0.61–1.06) 0.76 ± 0.07 (0.61–0.90) 1.12 .23

Total brain volume (l) 1.25 ± 0.14 (1.01–1.72) 1.24 ± 0.12 (0.95–1.48) 0.81 .42

Note: Data expressed as mean ± SD (range). There were no significant between-group differences in age,

full-scale IQ, or any of the global brain measures at p < .05 (two-tailed).

Abbreviations: ADI-R, autism diagnostic interview–revised; ADOS, autism diagnostic observation

schedule; CT, cortical thickness; CV, cortical volume; f, female; fsIQ, full-scale intelligence quotient; l,

liter; m, male; m, metre; mm, millimeter; n, number of participants per group; p, p-value; SApial, Surface

Area of pial surface; SAwhite, Surface Area of white surface.
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leading to larger FSR values. In sulci, where the curvature of the outer

surface tends to be larger than the inner, smaller SAs are designated

to the pial surface relative to the white matter surface, leading to

lower FSR values. This may also explain the observed positive correla-

tions of FSR with CT and SApial, but not SAwhite, which may be a con-

sequence of the cortex being slightly thicker in gyri (where FSR values

are higher) than in sulci (where FSR values are lower). In gyri, the cur-

vature of the pial surface is comparably low (i.e., lower than the curva-

ture of the white surface), and thus larger vertex distances, and hence

face areas, are produced by the non-isoform mesh generation algo-

rithm used in FreeSurfer. This does not affect the white surface to the

same degree, where the tips of the gyri show higher absolute curva-

ture values compared to the pial surface. The surface area of the

white matter surface is therefore smaller than the pial surface, which

could also explain the high correlation with SApial but not SAwhite.

However, unlike curvature measures which describe either the outer

or inner cortical surface in isolation, the degree of FSR captures the

relationship between both surfaces and reflects unique aspects of the

F IGURE 4 Between group differences and age-by-group interactions in FSR. (a) Significant differences in FSR between individuals with ASD
and TD while controlling for the effect of age, age-related interactions, sex, site, and fsIQ (i.e., main effect of group). Left panel: unthresholded t-
maps. Right panel: random field theory (RFT)-based cluster corrected t–maps (p < .05, two-tailed). Here, significant increases in FSR are displayed
in red to yellow, significant decreases are displayed in blue to cyan. (b) Scatter plots depicting age-related trajectories for individuals with ASD
(grey) and TD (blue). Left panel: Age-by-group interactions in cluster located on the left orbitofrontal cortex. Right panel: Age-by-group
interactions in cluster located on the left insula. ASD, autism spectrum disorder; TD, typically developing controls; t, t-statistic; FSR, frustum
surface ratio
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cortical architecture that cannot be adequately described based on a

single surface alone. FSR is therefore one of the few morphometric

features that combines information across cortical layers. This is of

particular relevance for the characterization of disorders with a layer-

specific pathophysiology and aberrant cortical lamination, as has been

suggested for ASD (Varghese et al., 2018).

4.2 | Common space registration and spatial
smoothing of FSR

In order to examine interindividual variability or group differences, it

is necessary to map cortical features from the individual's native space

geometry of the brain to a common standard-space template (Drury

et al., 1996). In FreeSurfer, FSR values were mapped from native to

standard geometry via spherical transformation, which preserves the

quantities originally assigned to vertices on a local, regional, and global

level (Dale et al., 1999; Fischl, Sereno, Tootell, et al., 1999; Winkler

et al., 2012). As measures of FSR are a novel cortical feature with

unknown spatial and distributional characteristics, we initially exam-

ined the amount of distortion introduced by mapping the data onto

the standard high-resolution surface coordinate system provided by

FreeSurfer (fsaverage) (Fischl, Sereno, & Dale, 1999). In general, the

amount of distortion introduced by the common space registration is

positively correlated with the spatial frequency of the feature. Fea-

tures with an extremely high spatial frequency in native space, such as

vertex-wise measures of Gaussian curvature (Ronan et al., 2012), can-

not be transformed into standard space without incurring a significant

distortion of the distributional characteristics of the feature across

vertices. These features are thus unsuited for the vertex-wise compar-

ison across individuals. Features with an inherently low-resolution and

a smooth spatial distribution across the cortical surface, such as the

local gyrification index (Schaer et al., 2008), remain relatively unaf-

fected by common space registration. For FSR we observed a percent-

age overlap between the native and standard space distributions of

94% across all individuals. Additionally, common space registration did

not significantly affect the shape of the distribution, which retained

its bimodality caused by a linear mixture of values on gyri and sulci.

Our results therefore suggest that measures of FSR can be reliably

mapped to a standard geometry without incurring significant informa-

tion loss and are thus well suited for vertex-wise comparisons

between groups.

However, while measures of FSR seem relatively insensitive to

common space registration, their distribution across the cortex signifi-

cantly depend on the amount of spatial smoothing applied to the data.

More specifically, there was a reduction in the percentage overlap

between the distribution of FSR in native space and in standard space

by 61% when increasing the smoothing kernel from 0 to 15 mm

TABLE 2 Cluster information on between-group differences in FSR

Cluster Regional labels Side BA Vertices tmax p Talairach coordinates x y z

Between-group difference in FSR

1 Posterior cingulate cortex L 23 129 3.46 1.36 × 10−4 −8 −25 28

2 Anterior cingulate cortex R 24 93 4.15 1.01 × 10−2 7 14–11

3 Inferior parietal cortex L 7 150 3.33 5.16 × 10−4 −37 −81 21

4 Parahippocampal gyrus L 35 108 2.99 1.09 × 10−3 −25 −40 −6

5 Precentral gyrus R 4 80 3.30 1.26 × 10−3 33–22 43

6 Lateral orbitofrontal cortex L 45 105 3.26 2.52 × 10−3 −26 22–6

7 Superior parietal cortex R 7 195 3.63 5.37 × 10−3 33–45 37

8 Supramarginal gyrus L 40 182 4.34 5.90 × 10−3 −56 −30 36

9 Postcentral/supramarginal gyrus L 1,2,3,40 128 3.14 7.62 × 10−3 −38 −28 35

10 Posterior cingulate cortex L 23 113 3.48 7.96 × 10−3 −7 −15 36

11 Fusiform gyrus L 37 122 3.94 1.58 × 10−2 −34 −48 −5

12 Insula R 13 58 3.63 2.11 × 10−2 33 11–1

13 Superior temporal gyrus L 41 136 3.19 2.34 × 10−2 −59 −41 16

14 Insula L 13 80 3.71 3.26 × 10−2 −37 −5 17

15 Rostral middle frontal gyrus L 46 157 3.47 3.29 × 10−2 −28 24 32

16 Postcentral gyrus L 1,2,3 145 −1.65 7.84 × 10−3 −54 −10 14

17 Precuneus L 7 112 −1.66 8.64 × 10−3 −16 −55 18

18 Insula L 13 59 −1.67 1.74 × 10−2 −34 −5 9

19 Posterior cingulate cortex L 23 108 −1.66 4.91 × 10−2 −5 1 35

20 Precuneus R 7 111 −1.65 4.96 × 10−2 8–44 48

Abbreviations: BA, approximate Brodmann area(s); FSR, Frustum Surface Ratio; L, left; p, cluster-corrected p-value;R, right; tmax, maximum t-statistic within

cluster; Vertices, number of vertices within the cluster.
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FWHM. Even when applying a smoothing filter of 5 mm in standard

space, the percentage overlap between the FSR distribution in stan-

dard space relative to the native space decreased by 29%. Thus, in

order to preserve the distribution of FSR values across the cortical

surface, a minimal amount of smoothing (i.e., FWHM 0 or 5 mm)

should be applied when examining group comparisons. Inter-individual

differences in FSR are therefore expected to be small and localized

rather than affecting large-scale cortical regions. In a next analysis

step, we investigated the potential of FSR to detect statistical effects

on the group level in order to characterize novel aspects of the neuro-

anatomical underpinnings of ASD.

4.3 | FSR in adults with ASD

ASD is a highly heterogeneous condition that has been linked to neu-

rodevelopmental differences in brain anatomy (Ecker, Bookheimer, &

Murphy, 2015). This includes volumetric differences (Courchesne,

2004; Hazlett et al., 2017; Hazlett, Poe, Gerig, Smith, & Piven, 2006;

Lange et al., 2015) as well as geometric differences such as atypical

cortical folding (Ecker et al., 2016; Schaer et al., 2013; Wallace

et al., 2013; Yang et al., 2016). While little is currently known about

the aetiological mechanisms mediating cortical abnormalities in ASD,

genetic evidence suggests that ASD risk genes are enriched among

gene modules coregulated during cortical layer formation. More spe-

cifically, ASD-associated modules have been reported to be specifi-

cally expressed in superficial cortical layers (i.e., layers 2,3,4), and are

strongly associated with markers of upper layer glutamatergic neurons

in the adult cortex (Parikshak et al., 2013). In addition, a disorganiza-

tion of the cortical laminar architecture has been shown in post-

mortem brain tissue of ASD individuals, with the clearest signs of

abnormal expression observed in lower cortical layers in ASD

(i.e., layer 4,5,6) (Stoner et al., 2014; Willsey et al., 2013). Thus, while

genetic investigations remain in disagreement with regards to which

layers are the most affected in ASD, it is likely that some layers of the

cortex are more affected than others. Here we demonstrate that mea-

sures of FSR were significantly increased in adult individuals with ASD

in many areas across the cortex including frontal regions, anterior and

posterior cingulate cortices, the insula, as well as parietal and temporal

regions. In these brain regions, many of which have previously been

linked to the set of behavioral symptoms characteristic for ASD

(Amaral et al., 2008; Ecker, 2017), an increase in FSR indicates that

the distribution of cortical volume is more outward-weighted, that is,

there is a steeper volumetric gradient from the inner to the superficial

cortical layers. In contrast, only a few regions displayed a significant

decrease in FSR in ASD (i.e., a more inward-weighted volumetric gradi-

ent), which implicates particularly the infragranular cortical layers in

the pathophysiology of ASD. Notably, this hypothesis is also

supported by studies examining preclinical (i.e., rodent) models of

ASD, where experimentally induced structural differences in the

upper neocortical layers of mice have been suggested to result in

autism-like behavioural abnormalities (Fang et al., 2014). In addition to

the main effect of group, we also observed significant age-by-group

interactions, indicating that between-group differences in FSR are

age-dependent, with differences being most prominent at an age of

40 years and above. A steeper decrease of FSR values indicates how

the distribution of cortical volume is changing shape from a higher

degree of outward-weighting towards inward-weighting. Such changes

may reflect an age-related decrease in the ‘steepness’ of gyri, that is,

both the convexity of the gyral ridges and the curvature may decrease

across the lifespan—leading to a more ‘atrophic’ brain in ASD in the

observed brain regions. The results of a steeper age-related decline of

FSR are also in line with most previous literature examining cortical

development in adults with ASD, with similar developmental trajecto-

ries being reported for cortical volume (Lange et al., 2015), cortical

thickness (Zielinski et al., 2014), and gyrification (Kohli et al., 2019).

Measures of FSR might thus be utilized as an age-sensitive marker of

the pathophysiology of ASD in adults and may guide future genetic

studies into the aetiological underpinnings of the condition.

4.4 | Limitations and outlook

The results presented in this study should be interpreted in the light of

several limitations. First, we employed a multi-site study design to over-

come single-site recruitment limitations. However, anatomical mea-

sures derived by FreeSurfer have been shown to be highly reliable

across field-strength and scanner-platforms when controlling for MRI

hardware and data processing (Han et al., 2006). Additionally, we have

applied specialized scanning sequences to ensure a standardized acqui-

sition of MRI scans across sites. Furthermore, the same pre-processing

pipeline and quality assessments were applied to all surface reconstruc-

tions, and inter-site effects were controlled for the statistical model.

Second, we examined FSR in a sample of adults aged between 18 and

52 years without intellectual disability. Given the large heterogeneity

associated with ASD, our results may therefore not generalise to other

(i.e., younger) populations on the autism spectrum, or to individuals

with intellectual disability. Third, the choice of smoothing filter and mul-

tiple comparison corrections are inherently challenging for features

with high resolution, such as FSR. Based on our finding that measures

of FSR are highly susceptible to spatial smoothing, we performed the

between-group analysis using the un-smoothed data and applied a

random-field theory (RFT)-based cluster threshold (Worsley

et al., 1999). While cluster-extent based thresholding-approaches are

widely used to control for false positives in mass-univariate analysis,

these identify statistically significant clusters on the basis of voxel con-

tiguity and are thus sensitive to the smoothness of the data. When

increasing the smoothing size to 5 mm, between-group differences

were ‘smoothed out’ and reduced to one significant cluster in the infe-

rior parietal cortex, where FSR was increased in ASD compared to typi-

cally developing controls. Thus, smaller smoothing kernels are better

placed to capture between-group differences yet limit the ability to

detect significant effects on the cluster level. Due to (a) the high spatial

frequency of FSR, which did not allow us to apply a larger smoothing

filter, and (b) the size of effects and their spatial distribution (i.e., small,

isolated peaks), a cluster threshold approach may not be the best
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option. Future validation using alternative (i.e., permutation-based)

approaches is required to replicate our findings. Moreover, ASD is a

highly heterogeneous condition and low effect sizes are typically

observed in studies examining differences in neuroanatomy

(e.g., reviewed in Ecker et al., 2012). Thus, while the development of

our feature was motivated by genetic studies suggesting a differential

expression of genes across layers in ASD, the neuroanatomical differ-

ences associated with ASD are inherently difficult to describe. Future

studies in other psychiatric conditions with a known layer-specific

development, such as schizophrenia, might therefore be useful to vali-

date our feature. Hence, the results of the between-group comparison

should be considered preliminary, and it will be important to investigate

the robustness of our results using (a) larger samples including different

ASD subgroups and/or other clinical cohorts, and (b) using alternative

statistical approaches that do not rely on the spatial distribution of

effect sizes across the cortex, and that are more sensitive to local

effects in isolated brain regions. Last, while we employed stringent data

quality assessments including manual editing of the FreeSurfer surfaces,

our approach is not immune to smaller reconstruction errors. Future

research is needed to replicate our findings in larger samples of ASD

individuals and TD following the same quality controls applied in the

current investigation. This will also be important with regards to the

large phenotypic heterogeneity associated with ASD that might be

parsed on the neuroanatomical level using several different neuroana-

tomical features, including measures of FSR.
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