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Abstract

This paper explores the interplay of feature-based explainable AI (XAI) tech-

niques, information processing, and human beliefs. Using a novel experimental

protocol, we study the impact of providing users with explanations about how an

AI system weighs inputted information to produce individual predictions (LIME) on

users’ weighting of information and beliefs about the task-relevance of information.

On the one hand, we find that feature-based explanations cause users to alter their

mental weighting of available information according to observed explanations. On

the other hand, explanations lead to asymmetric belief adjustments that we inter-

pret as a manifestation of the confirmation bias. Trust in the prediction accuracy

plays an important moderating role for XAI-enabled belief adjustments. Our results

show that feature-based XAI does not only superficially influence decisions but re-

ally change internal cognitive processes, bearing the potential to manipulate human

beliefs and reinforce stereotypes. Hence, the current regulatory efforts that aim

at enhancing algorithmic transparency may benefit from going hand in hand with

measures ensuring the exclusion of sensitive personal information in XAI systems.

Overall, our findings put assertions that XAI is the silver bullet solving all of AI

systems’ (black box) problems into perspective.
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1 Introduction

Organizations increasingly harness artificial intelligence (AI) systems to augment the decision

making of their employees, mainly by producing predictions that aim at mitigating informa-

tional asymmetries. For instance, AI systems support hiring decisions by generating candidate

performance predictions (Hoffman et al. 2018), medical diagnosing by providing predictions

about afflictions (Esteva et al. 2019), bail decisions by providing recidivism predictions (Klein-

berg et al. 2018), financial investments by generating profitability forecasts (De Spiegeleer et al.

2018).

While state-of-the-art AI methods achieve unprecedented prediction accuracy (see e.g., Jor-

dan and Mitchell 2015), the high predictive performance usually comes at the expense of un-

derstanding how the information going in, i.e., input features, relate to the information going

out, i.e., the prediction (Páez 2019, Arrieta et al. 2020). Put differently, the inner workings of

most contemporary AI methods, e.g., Deep Neural Networks or Random Forests, are unintelli-

gible to human users. This “black box” nature can have considerable downsides (Bauer et al.

2021), including the impairment of trust in and reliance on machine outputs by users (Wang

and Benbasat 2007, Kizilcec 2016), the reduced likelihood to detect incorrect behaviors and

biases (Roselli et al. 2019), and the hindrance of knowledge-transfers from machines to humans

(Rosenfeld and Richardson 2019, Vilone and Longo 2020).

The shortcomings associated with black box machines have sparked public and regulatory in-

terest. Policy makers increasingly demand that “meaningful explanations of the logic involved”1

need to accompany AI systems’ predictions as a means to alleviate black box problems. Ex-

amples include Europe’s (and UK’s) GDPR regualation or its recent proposal for an Artificial

Intelligence Act, the Equal Credit Opportunity Act in the US, or the Digital Republic Act in

France. Hence, the importance of employing explainability measures in organizations steadily

grows. Against this background, it is not surprising that researchers’ and practitioners’ increas-

ingly focus on the development of explainable AI (XAI) methods that elucidate AI systems’

inner logic (Ji-Ye Mao 2000, Adadi and Berrada 2018, Lakkaraju et al. 2019, Bhatt et al. 2020).

A large part of contemporary XAI revolves around feature-based, local explainability. That is,

“machine explanations” about how an AI system weighs given features and arrives at a specific

prediction (see e. g., LIME (Ribeiro et al. 2016a) or SHAP (Lundberg and Lee 2017)).

Despite the importance to provide machine explanations on how AI systems produce specific

predictions, researchers have only recently started to explore the prerequisites and consequences

of human-XAI interaction (see e.g., Yang et al. 2020, Liao et al. 2020, Lakkaraju and Bastani

1See EU (2021)
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2020). There are many open questions, especially concerning the interplay of providing machine

explanations, human behavior, and human cognitive processes. The paper at hand contributes

to this nascent, but important, literature. We examine the impact of feature-based explanations

on human information processing and human beliefs, using LIME (Ribeiro et al. 2016a,b). LIME

is one of today’s most popular XAI techniques that explains why AI systems produce individual

predictions in an intuitive, graphical way. Specifically, LIME typically uses colored bar charts

to represent the weights given to input features for individual predictions. Bars’ colors and

lengths signal to users whether associated input features are evidence in support of or against

the produced prediction (Ribeiro et al. 2016a). Notably, while LIME explanations, as well as

other feature-based explanations, and coefficients from linear or logit regression are somewhat

similar because both depict the relation between distinct features (independent variables) and

the label (dependent variable), they differ in one key aspect: the importance of a specific feature

(or independent variable) and its influence on the label (dependent variable) can vary for every

single observation. That is, LIME tries to explain the relation between features and labels for

individual observations (locally), while linear or logit regressions explain the aggregate relation

between features and labels for the overall data (globally). By means of LIME explanations, we

study whether feature-based explainability techniques lead users to (i) change their weighting

of available information when making a decision, (ii) adjust their preexisting beliefs about the

relation between inputted information and the prediction target, and (iii) whether users’ trust

in the AI-sytem’s prediction accuracy moderate belief adjustment processes.

As a tangible example of the settings we have in mind, consider a bank’s loan officer who

decides upon lending money to an applicant. To inform her decision, she observes personal

characteristics of the applicant (e.g., age, credit history, occupation, ...) that she considers

differently related to the applicant’s repayment probability and thus relevant for the approval

decision. Additionally, she observes a prediction about the applicant’s creditworthiness from

an AI. Due to novel regulations, the bank decided to employ a feature-based explainability

tool. This tool explains how applicants’ personal characteristics contribute to individual pre-

dictions about the creditworthiness. The officer, for example, in addition to the applicants

characteristics, might now observe that the AI system predicts the current applicant not to

repay a loan mainly due to his age and gender. Regarding this example, our study intends to

answer the following three questions: (i) Does the provision of machine explanations change

the loan officer’s weighting of observed borrower characteristics when making her decision? (ii)

Does the provision of explanations change her preexisting beliefs about the relation between

observed characteristics and repayment behavior? (iii) What is the role of the officer’s trust in

3
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the prediction accuracy of the AI-system when it comes to belief adjustments?

Considerable challenges arise when trying to answer these questions. First, identifying how

machine explanations affect users’ weighting of available information is extremely difficult be-

cause it is generally an unobserved cognitive process influenced by a multitude of external cues

that one needs to control. Second, people’s (preexisting) beliefs depend on abundant unob-

served factors (e.g., personal taste, experience, or domain knowledge) that we need to control

for when examining the influence of machine explanations on beliefs. Third, whether people in

organizations are willing to interact with an (explainable) AI in the first place, let alone rely

on it, is highly endogenous and depends on factors such as the organizational culture, degree

of digitization, and technological literacy. Overall, these challenges are extremely difficult, if

not impossible, to overcome in a natural field setting. To identify the causal effect of expla-

nations given by an AI on human information processing and belief structures, we design a

novel experimental protocol that we carry out as an online study. The design closely mirrors

the fundamental structure of many AI-augmented decision making processes in organizations

while at the same time providing us the necessary control over potential confounds to answer

the research questions at hand.

Our experiment comprises five different stages. In each stage, participants engage in sev-

eral incentivized investment games (Berg et al. 1995). Participants act as investors and decide

whether to invest material resources with different borrowers, who may or may not repay the

investment. Before making a decision, investors observe the personal characteristics of a bor-

rower. In stages I and II, we respectively elicit participants’ prior investment behavior and

beliefs about the most decision-relevant borrower characteristics. Stage III serves as our treat-

ment manipulation, where treatment participants make a series of investment decisions with

the additional aid of an explainable AI that shows the individual contribution of borrower char-

acteristics to the overall prediction in the form of LIME values (Ribeiro et al. 2016a). Baseline

participants interact with an opaque AI. We elicit participants’ posterior beliefs and invest-

ment behavior in stages IV and V, respectively. By comparing how participants make decisions

before, during, and after interacting with the explainable or opaque AI, we can isolate how

machine explanations impact their belief structures.

The paper proceeds as follows. Section 2 summarizes the existing literature we contribute

to. In section 3, we outline our empirical strategy. We present our results in section 4. Section

5 and 6, respectively, discusses our findings and concludes.
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2 Related literature

Our work addresses open research questions from three different strands of the literature. The

first and most closely related line of work studies the interplay between explainable AI techniques

and user behavior (see Doshi-Velez and Kim 2017, Vilone and Longo 2020, for a review). The

foundation of this literature has already been laid about two decades ago with early explorations

of how explanations about the functioning and purpose of recommender systems affect their use

and the decision making of users (Dhaliwal and Benbasat 1996, Gregor and Benbasat 1999,

Wang and Benbasat 2007). With the development of modern XAI techniques, research on the

consequences of employing explainability techniques has seen a considerable resurgence (Vilone

and Longo 2020). Much of this current work considers the impact of explanations on user trust

and reliance on AI systems. Yin et al. (2019) find that revealing test data accuracy affects

user trust in AI systems, with the effect size being smaller after observing the live accuracy

of the system. In the context of clinical decision support systems, Bussone et al. (2015) find

that overly detailed explanations about how the system arrives at a certain output can enhance

trust but may also create overreliance on the recommendations. In contrast, short or absent

explanations appear to foster overreliance but decrease trust. In an experimental study, Erlei

et al. (2020) find some evidence indicating that global explainability about the model and its

performance may have negative effects on user trust. Relatedly, Zhou et al. (2017) find that user

trust in the AI decreases significantly once they become aware of the uncertainty associated with

predictions. Other studies focus on the consequences of XAI techniques for decision making.

There is evidence that explanation complexity increases users’ time to act upon machine outputs

(Narayanan et al. 2018). Yang et al. (2020) find that the additional provision of visual example-

based explanations about why a machine learning model makes a specific classification improves

the performance of the human-machine collaboration. Poursabzi-Sangdeh et al. (2021) find that

feature-based explanations can have negative effects on detecting erroneous predictions, and

thus on performance, due to information overload. The aforementioned studies make important

contributions towards understanding the consequences of XAI techniques for decision making.

However, there are many open questions, especially when it comes to how XAI techniques

affect users’ fundamental cognitive processes, i.e., the psychological underpinnings of observed

effects on decision making. Our study contributes to filling this gap by outlining how feature-

based XAI influences users’ cognitive weighting of available information that are relevant to the

decision. This way, we are able to provide better insights why feature-based XAI influences

decision making. We even go one step further and examine whether, and if so how, feature-

based XAI techniques endogenously influence human beliefs about the relationship between

5

Electronic copy available at: https://ssrn.com/abstract=3872711



input features and the decision problem. Exploring the existence of such effects can improve

our understanding about how XAI techniques can serve as a tool to transfer knowledge domain-

knowledge from machines to humans. To answer our research questions, we make use of an

incentivized experiment that allows us to isolate causal effects from feature-based XAI on human

cognitive processes. To the best of our knowledge, we are the first to address these open gaps.

The second stream of literature that we complement, studies how people respond to and

make use of algorithmic recommendations. There has been a steady stream of research docu-

menting that humans tend to discount the advice by machines relative to the advice by fellow

humans, even when advice-takers are aware that machine advice is more accurate (Meehl 1954,

Dawes et al. 1989, Grove and Meehl 1996, Grove and Lloyd 2006, Önkal et al. 2009, Dietvorst

et al. 2015). The predilection to discount machine advice disproportionately has recently been

coined as algorithm aversion (Dietvorst et al. 2015). This line of work broadly suggests that

people possess an inherent distrust towards algorithmic outputs (see Burton et al. 2020, for

a review). Several factors moderate the occurrence of algorithm aversion. Examples include

the perceived subjectivity of the task (Yeomans et al. 2019, Castelo et al. 2019), seeing the

algorithmic output being incorrect (Dietvorst et al. 2015, Prahl and Van Swol 2017), being

able to modify predictions (Dietvorst et al. 2018), and the degree actual and expected predic-

tive performance diverge (Bhattacherjee and Premkumar 2004, Jussupow et al. 2020). More

recently, studies by Logg et al. (2019), Gunaratne et al. (2018), Prahl and Van Swol (2017)

have found that there are also domains and scenarios in which humans prefer algorithmic over

human advice (algorithm appreciation coined by Logg et al. (2019)). This result suggests that

algorithm aversion is neither a universal nor a straightforward phenomenon. Despite recent

advances in this field, it remains open whether, and if so how, XAI techniques affect people’s

aversion of or preference for algorithmically produced recommendation. XAI may introduce

another layer of complexity that influences people’s attitude towards algorithmic advice. Our

paper contributes to this literature by showing how the introduction of feature-based explana-

tions affects people’s reliance on predictions. Gaining a better understanding of the interplay

between XAI techniques and algorithm aversion is particularly important from a practitioners

perspective as there is a growing number of regulatory requirements stipulating that the output

of AI systems, in a multitude of domains, needs to be human-interpretable (see e.g., GDPR

2016, EU 2021).

Finally, we contribute to previous research that explores the underlying mechanisms of

information processing and belief updating. Here a common theoretical foundation builds upon

Bayes rule as a rational benchmark to incorporate new information into beliefs based on a
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weighting of new signals and prior beliefs (see e.g., Slovic and Lichtenstein 1971). However,

research has shown systematic deviations from Bayes’ rule (Epstein et al. 2010, Rabin 2013).

Reasons include primacy and recency effects (Hogarth and Einhorn 1992), base rate neglects

(Kahneman and Tversky 1973), egocentric underweighting of new information (see e.g, Rabin

and Schrag 1999, Yaniv 2004), and a general tendency to both discount information conflicting

with prior beliefs and readily internalize information in line with prior beliefs (confirmation

bias, Edwards and Smith 1996, Nickerson 1998, Ditto and Lopez 1992, Rabin and Schrag 1999).

Important moderating factors include the perceived expertise of the advisor (see e.g., Pilditch

et al. 2020) and the distance between the advice and preexisting beliefs (see e.g., Yaniv 2004).

While there is ample evidence on how and why people deviate from rational belief updating in

human-human collaborative settings, it is unclear to what extent observed patterns apply in

human-XAI settings. For example, does trust in the predictive performance of an AI system

moderate belief updating evoked by observed machine explanations? A thorough understanding

of belief updating through XAI methods is a necessary prerequisite to harness AI systems’

broader potential of “machine teaching”, the notion that humans learn from AI systems (Abdel-

Karim et al. 2020).

In this paper, we aim to contribute to closing the aforementioned research gaps by exploring

the causal relationships between explainable AI, information processing, and belief updating.

This includes a deeper analysis of moderating factors such as trust in the predictive performance

and the prior belief structure of users. As a result, we complement the broader discussion about

how AI affects human decision making (e. g., Jussupow et al. 2021) and provide important in-

sights frequently requested by leading IS scholars (e. g., Ågerfalk 2020). Our work is particularly

relevant in light of recent studies underlining the potential of explainable AI to mislead users

(Lakkaraju and Bastani 2020).

3 Empirical strategy

We aim to examine the interplay between XAI, human behavior, and human beliefs. More

specifically, this paper intends to answer three questions: (i) Does the provision of machine

explanations change users’ weighting of available information when making decisions? (ii) Does

the provision of machine explanations affect users preexisting beliefs about the relation between

observed information and a target variable? (iii) Does trust in the explainable AI’s prediction

accuracy moderate the adjustment of beliefs?

There are considerable challenges when trying to answer this question. First, studying how

people weigh information is extremely challenging because it is a mental process often occurring
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to a considerable extent subconsciously. Additionally, people generally process a multitude of

external, and even internal cues (e.g., intuition or gut feeling), that are difficult to identify, not

to mention objectively measure. Second, measuring (changes in) beliefs is inherently difficult

because their initial adoption and update are unobserved cognitive processes that depend on

a variety of factors including the socio-cultural environment (see e.g., Kruglanski 1996), prior

experience (see e.g., Rabin and Schrag 1999), and strategic consideration (see e.g., Zimmermann

2020). The identification of effects associated with providing machine explanations on human

beliefs requires tight control over these covariates. Third, whether organizations employ (ex-

plainable) AI to augment human decision making is highly endogenous, depending on factors

such as the organizational culture, type of tasks, and the degree of organizational digitization.

These factors in addition to other organizational-strategic concerns determine employees’ readi-

ness to engage with, rely on, and learn from the technology (see e.g., Venkatesh and Davis

2000, Venkatesh et al. 2012). Answering our research question requires tight control over these

factors.

In the paper at hand, we address these challenges by designing an incentivized, revealed-

beliefs experiment that we implement as an online study. We tailor our experiment to mirror

the fundamental structure of many AI-in-the-loop decision making processes in organizations,

while at the same time providing us with the required control over the aforementioned covariates

that we could not obtain in a field setting. With this approach, we are in line with previous IS

research that has successfully built upon experiments in controlled lab environments (see e. g.,

Jiang and Benbasat 2004, 2007, Adam et al. 2015).

3.1 Experimental design

The experiment comprises 5 subsequent stages (see Figure 1 for an overview). In each stage,

participants repeatedly engage in a modified version of the one-shot investment game (Berg

et al. 1995) that possesses the following structure. An investor and a borrower possess an

initial endowment of 10 monetary units (MU). The investor initially observes up to ten of the

borrower’s characteristics and decides whether to invest her 10 MU with the borrower or keep

the 10 MU for herself. If the investor keeps her endowment, both the investor and borrower

receive a payoff of 10 MU. If she invests her endowment, the borrower receives 20 MU and

has to decide whether or not to repay the investor by giving up 10 MU. In case of repayment,

the investor receives 20 MU so that the initial investment pays off; otherwise the investor

ends up with 0 MU while the borrower earns 30 MU (see Figure 2). This investment game

mimics the fundamental structure of many sequential, strategic decisions under uncertainty

8
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Elicitation of behavioral 

prior

Ten transfer decisions; 

observing all the 

borrowers’ personal 

traits;

no feedback

Elicitation of prior beliefs

One transfer decision; 

ranking and observing 

three of the borrower’s 

personal traits;

no feedback

Treatment manipulation

Twenty transfer decisions; 

observing all the 

borrowers’ personal traits 

together with an 

[explainable] AI’s 

prediction;

no feedback 

Elicitation of posterior 

beliefs

One transfer decision; 

ranking and observing 

three of the borrower’s 

personal traits;

no feedback

Elicitation of behavioral 

posterior

Ten transfer decisions; 

observing all the 

borrowers’ personal 

traits;

same borrowers as in 

stage 1;

no feedback

Stage I Stage II Stage III Stage IV Stage V

Figure 1: Sequence of the experiment

Notes: Sequence and overview of the 5 different stages in the experiment. We denote the
treatment variation in stage III via the expression [explained].

(e.g., lending decisions, market transactions, and hiring decisions) (Fehr and Fischbacher 2003)

while at the same time providing a level of abstraction that mitigates concerns about investors’

prior task-related knowledge and stereotypes. At the end of the experiment, we pay investors

and borrowers according to game outcomes, i.e., the experiment is incentivized allowing us to

measure revealed preference which is superior to purely self-reported answers (Camerer and

Hogarth 1999).

Investor

Borrower

Payoff investor :

Payoff borrower :

20

20

0

30

10

10

Pay back No payback

Not investInvest

Payoff investor:

Payoff borrower:

Figure 2: Trust game structure

Notes: Structure of the modified trust game employed as the main workhorse throughout the
experiment.

In a nutshell, our experiment works as follows. There are five subsequent stages, with every
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single stage being individually incentivized. In stages I and II, we respectively elicit participants’

prior investment behavior and developed beliefs about the most decision-relevant characteris-

tics by letting them make several investment decisions without intermediary feedback. In stage

III, investors make another series of decisions with the additional aid of an AI that provides

predictions about the borrowers’ repayment behavior and, depending on the experimental con-

dition, comes with or without explanations about how the observed characteristics relate to the

prediction. Stages IV and V respectively mirror stages II and I, allowing us to elicit investors’

posterior behavior and beliefs. We show the developed interfaces in Appendix B. To prevent

the development of expertise, idiosyncratic investment strategies, and path dependencies based

on the consequences of investment decisions that might confound our results, we do not pro-

vide intermediary feedback. Comparing changes in investor beliefs after they interacted with

the AI across the baseline and treatment condition allows us to isolate the effects of machine

explanations on user beliefs.

3.2 Borrowers, the AI, and LIME explanations

Participants in our online study always take on the role of the investor. Borrowers are sub-

jects from a previous incentivized field study where we elicited repayment decisions using the

strategy method, i.e., participants had to decide upon repayment under the assumption that

their opponent initially invests. More specifically, the field study comprises a variation of an

incentivized one-shot investment game and a broad set of survey items on participants’ demo-

graphics, socio-economic background, cognitive abilities, and other personality traits. Overall,

we collected more than 2,500 individual observations over three years (2016-2019). For our

online study, we use 1,104 distinct observations of this data set.2

In preparation for the online study, we randomly split the 1104 observations into two repre-

sentative subsets: a training set (n=1054) and a player set (n=50).3 We use the training set to

build a Gradient Boosted Random Forest (GBRF) that uses ten socio-demographic borrower

characteristics to predict whether or not a person will repay an investment (see Table 4 in the

appendix).4 Investors in our online study always observe these ten borrower characteristics

before making their decision. The rationale for choosing these very ten features is twofold. On

the one side, we wanted to include borrower characteristics accessible to investors, i.e., that they

could intuitively relate to a borrower’s repayment behavior. Additionally, we worked on building

2After careful cleaning and preprocessing of the overall data set, we are left with 1,104 observations that we
are confident to use for the online study. For more details on the field study, see the Appendix A.

3Note: a Kolmogorov-Smirnov test cannot reject the hypothesis that both sets stem from the same underlying
population p = 0.781

4The characteristics are: Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism, Competi-
tiveness, Patience, Gender, having younger siblings, and having older siblings.
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a model that has reasonably high predictive performance, so that the choice of these features,

at least partially, result from the comprehensive empirical tuning of the GBRF.5 We render the

“black box” GBRF model explainable, using feature-based explanations provided by the Python

library InterpretML (Nori et al. 2019), an open-source package that incorporates state-of-the-art

machine learning explainability techniques. Specifically, we generate local feature-based expla-

nations about why the AI system produces individual predictions for the player set using the

model-agnostic surrogate technique LIME (Local Interpretable Model-Agnostic Explanations)

(Ribeiro et al. 2016a). LIME is one of the most popular and widely used explainability tech-

niques as of today (see e.g., Feng and Boyd-Graber 2019, Bhatt et al. 2020). LIME belongs to

the class of feature-based linear surrogate models that explain the AI’s behavior for individual

observations. Notably, “local” refers to the possibility to explain how a certain combination of

input features shape the associated, individual prediction.

In a nutshell, it works as follows. LIME first creates artificial, perturbed data points in the

local proximity around the instance for which it produces explanations. For every artificial data

point, the original “black box” model produces a prediction. Subsequently, LIME fits a linear,

intrinsically interpretable model (here: Ridge regression) on the created data set, whereby it

weighs artificial data points according to their distance to the real data point. Estimated local

coefficients for the input features of the real data point then depict how this very attribute

contributes to the overall prediction of the “black box” model. For instance, for a specific male

borrower who is highly competitive, LIME might estimate that for this very person being male

decreases the likelihood of repayment by 10 %, while his high competitiveness increases the

likelihood of repayment by 5 %.

We opted for LIME because its explanations are highly intuitive and straightforward to

explain and interpret for lay users. Following the standard approach suggested by Ribeiro et al.

(2016a), we visualize explanations graphically using red and green colored bars, respectively

depicting a negative or positive contribution of the corresponding characteristic to the GBRF’s

prediction. The length of bars indicates the quantitative strength of the contribution. For

instance, a long red bar indicates that, for the given borrower, the corresponding characteristic

is strong evidence against him paying back an investment. A short green bar indicates that, for

the given borrower, the corresponding characteristic is weak evidence in favor of him paying back

an investment. To avoid biases associated with subjective interpretations of probabilities, we did

not display underlying probability values. Instead, we only depict estimated local coefficients

as colored bars. We explain to participants in detail how they have to interpret the bars.

5Using the standard ten-fold cross-validation, the model achieves an average performance of about 74% accu-
racy.
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Notably, although we use LIME, it more broadly reflects model-agnostic methods that pro-

duce local explanations about how individual input factors contribute to given predictions.

Instead of LIME, we could also have used local explanations produced by SHAP (Lundberg

and Lee 2017). Hence, our results should be interpreted in the light of potential effects associ-

ated with local, model-agnostic explanations that, at least partially, rely on intuitive graphical

visualizations.

While we use the training set as the basis of our (explainable) GBRF, the player set serves

as the representative out-of-sample population of borrowers against which participants in our

experiment play. On the player set, the GBRF achieves a performance of 69.8% accuracy,

i.e., correctly predicts borrowers’ repayment behavior in more than two-thirds of the cases. To

determine the outcomes and payoffs for a given investment decision, we match the online study

participants’ corresponding investment decision with the conditional decision of the field study

participant. Notably, to implement an actual strategic setting, we recontact and pay field study

participants according to the outcomes of a randomly drawn subset of investment games. We

make online study participants explicitly aware of this feature so that they understand that

their decisions affect the material well-being of other people as well as their payoff in this study.

Using the participants from the previous field study as borrowers has two advantages. First,

due to this procedure borrowers are drawn from the same population as the training data,

ensuring that the Gradient Boosted Forest performs reasonably well. Second, it reduces the

complexity of the experiment for online participants so that we mitigate fatigue concerns while

at the same time maximizing the number of observations we are mainly interested in.

3.3 Stage I

In stage I, participants play ten rounds of the outlined one-shot investment game against dif-

ferent borrowers. For every participant, we randomly draw ten different borrowers without

replacement from the player set. This way, we control for order effects. Before participants

make their investment decisions they observe the ten characteristics of the borrower they can

invest with in the given round. While we fix the order in which we present the characteristics

to a given investor across all investment decisions she makes, we randomized the order across

investors. We do so to control for order effects while at the same time reducing the cogni-

tive effort associated with processing information to decide. We do not provide intermediary

feedback to prevent the development of expertise, idiosyncratic investment strategies, and path

dependencies based on the consequences of investment decisions, because such effects might

confound our results.
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Stage I serves two purposes. First, despite the absence of feedback, participants can fa-

miliarize themselves with the investment task for the subsequent stages and form prior beliefs

about the relevance of borrower characteristics and their relation to repayment behavior. Sec-

ond, elicited investment decisions allow us to identify participants’ prior choice patterns and

thereby developed beliefs about the relationship between borrowers’ characteristics and repay-

ment behavior.

3.4 Stage II

In stage II, participants play one investment game against a random borrower from the player

set whom they have not encountered in stage I. In contrast to the previous stage, participants

can only observe three out of the ten borrower characteristics, before making their investment

decision. Participants have to choose the characteristics they prefer to see. Specifically, we ask

them to select three distinct characteristics and mark them as first, second, and third choice.

They observe the characteristics marked as the first choice before making their investment

decision with a probability of 1. They see their second and third choices with a probability of 0.9

and 0.8, respectively. With the corresponding inverse probabilities of 0.1 and 0.2, they instead

observe distinct characteristics of the borrower that we randomly draw from the remaining

seven characteristics that the participant does not select. We randomly determine the three

characteristics participants actually observe according to the outlined probabilities. To ensure

incentive compatibility the investment decision in this round is payoff relevant in any case.

Again, participants do not receive feedback on the outcome of the game.

3.5 Stage III

Stage III comprises 20 rounds of the investment game against distinct random borrowers from

the player set that participants have not encountered before. There is no feedback on game

outcomes between rounds. As in stage I, participants observe all of the borrowers’ ten per-

sonal characteristics before making their investment decision. Additionally, participants also

observe the (explainable) AI system’s prediction about whether the borrower repays an initial

investment.

To reduce potential initial skepticism towards the AI, we explain to participants in detail how

the model operates, how it has been trained, and reveal its performance on a representative test

set, i.e., we provide global explanations about the AI. Notably, we explicitly inform participants

that the model produces the prediction only using the borrowers’ ten personal characteristics

they also observe. That is, we emphasize that the model does not have access to any additional
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information about the borrower. This way, we make sure that participants understand that

the AI has no information advantage due to additionally observed signals. Subjects observe a

binary prediction that we formulated as an unambiguous text to avoid misinterpretations.6

Our between-subject treatment variation is whether or not participants, in addition to the

prediction as such, also receive a human-interpretable explanation about the contribution of bor-

rower characteristics to a specific prediction using LIME (Local Interpretable Model-Agnostic

Explanation, Ribeiro et al. 2016a). In our treatment condition, participants observe LIME ex-

planations for each borrower characteristic, informing them whether it is evidence for or against

the borrower repaying an investment and how strong it is. To avoid confusion, we explain to

participants in detail how they should interpret the explanations. By contrast, baseline par-

ticipants do not see any additional explanation. At this point it is important to understand

that participants in both conditions actually interact with the same AI, producing the same

predictions for the same borrower. The only difference is that in the treatment, we also provide

post-hoc, model-agnostic explanations. We portray our operationalized interface in appendix

B.

We measure baseline (treatment) participants’ trust in the (explainable) AI’s predictive

performance for the first and the second ten rounds of investment decisions. In both cases, par-

ticipants have to guess the share of accurate predictions for the preceding ten rounds. Subjects

receive a payoff of 3 MU for every guess that is off by at most 20 percentage points. Hence, we

obtain incentive compatible measures of participants’ trust in the machine performance.

3.6 Stage IV

Stage IV mirrors stage II. That is, we measure participants’ posterior beliefs about the three

most decision-relevant borrower characteristics. Notably, we match participants with a borrower

they have not encountered in any previous stage. Again we do not provide feedback.

3.7 Stage V

Finally, in stage V, participants play another ten rounds of the investment game without feed-

back. Notably, participants play against the same ten individuals that they have encountered

in stage I. We randomize the order in which participants play against the borrowers from

stage I. Participants again only observe borrowers’ ten personal characteristics before making

their transfer decision, but no AI prediction at all. Letting participants play against the same

individuals as in stage I allows us to observe any individual-level changes across the experiment.

6If the produced probability that the borrower reciprocates a transfer is greater than 50%, we inform partici-
pants that the borrower will most likely repay an initial investment.
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After participants have made all ten decisions, the experiment ends with a questionnaire

containing items on participants’ socio-demographics and social preferences. Participants’ an-

swers serve as controls for some of our regression analyses. At the end of the experiment, we

inform participants about the outcomes of payoff relevant investment games and their payoffs.

3.8 Experimental summary

Overall, 607 individuals participated in our study (301 Treatment condition and 306 Base-

line condition).7 We run the experiment as an online experiment on the popular and widely

used platform Prolific. The experiment is implemented using oTree, Python, and HTML. Par-

ticipants’ earnings equal the sum of MU they earn in each stage. In each stage, we match

participants’ investor decisions with corresponding borrower decisions to determine payoffs ac-

cording to the previously outlined structure. For stages I, III, and V where participants make

multiple investment decisions, we randomly select one of the rounds. Notably, to mitigate con-

cerns about participants not paying attention to displayed information and rush through the

investment decisions, they were allowed to submit investment decisions after at least 5 seconds.

On average, participants earned $5.52 ($4 participation fee; $1.52 due to actual decisions) and

took about 27 minutes to finish the experiment.8

4 Results

In accordance with the three main questions we have in mind, we present our results in three

parts. First, we analyze how the employment of machine explanations affects participants’

weighting of available information by comparing investment decisions between stages I and

III. Second, we examine to what extent machine explanation affect participants’ preexisting

beliefs about the relationship between borrowers’ characteristics and repayment behavior. We

do so by analyzing changes in participants’ decisions across stages I and V. Finally, we study

the importance of trust in the explainable AI’s predictive performance for belief adjustment

processes.

7This study was approved by the IRB of the ... (blinded for review) and preregistered at the Amer-
ican Economic Association’s registry for randomized controlled trials (AEA RCT Registry. December 07.
https://doi.org/10.1257/...) (blinded for review).

8For every transfer decision that is ultimately payoff relevant for participants in the experiment, we randomly
draw a number between 0 and 20. If the drawn number is equal to 20, we contact and pay the corresponding
borrower according to the game’s outcome.
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4.1 XAI and decision making

We analyze changes in the influences of available information entailed by the provision of ma-

chine explanations using regression analyses. Table 1 shows standardized estimates of these

analyses. In each regression model, investment decisions serve as the dependent variable. In-

dependent variables are all pieces of information that participants observe and borrowers’ un-

observed type, which allows us to capture additional borrower types fixed effects. To estimate

differences across stages within baseline and treatment conditions (see columns (3) and (6)), we

additionally include a stage dummy and corresponding interaction terms. We also conduct a

Difference-in-Difference (DiD) analysis (see column (7)) to isolate changes in coefficients purely

associated with the provision of machine explanations. In all regressions we include participant

and stage fixed effects cluster robust standard errors on the individual × stage level.9

Regression results show that the provision of machine explanations, in addition to predic-

tions, changes the influence of several observed information on investment decisions. First, we

find that participants are significantly less likely to follow an explained repayment prediction.

In comparison to opaque repayment predictions, participants are 5.2 percentage points (stan-

dardized units) less likely adhere to a repayment prediction and invest. Second, while the mere

provision of an opaque prediction appears to decrease (most) borrower characteristics’ influ-

ence on investment decisions, the introduction of machine explanations seems to counteract

or reinforce these weight changes, conditional on the characteristic. Specifically, explanations

significantly reinforce the influence of the competitiveness, patience, gender, and older siblings

by 7.9 (p < 0.01), 3.9 (p < 0.05), 4.9 (p < 0.01), and 2.5 percentage points (p < 0.1) per

one standard deviation, respectively. By contrast, the influence of agreeableness significantly

decreases by 4.7 percentage points per one standard deviation. In the context of the investment

decision these results indicate that with explanations, participants are less likely to blindly fol-

low a prediction depicting a borrower to repay an investment. Instead they seem to look at

some characteristics more closely before deciding. Specifically, due to explanations, they are

less likely to invest in competitive, impatient men (without older siblings) even if they appear

warm and considerate.

As one might expect, the direction and magnitude of weight changes largely mirror observed

machine explanations. Figure 3 shows the distribution of LIME values for all ten borrower

characteristics and their values that treatment participants observed. High positive and negative

contributions to the prediction indicate that the associated characteristic value is evidence for or

9Thereby we account for the possibility that participants’ decision making patterns completely change once
we introduce AI decision support.
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against repayment, respectively. Machine explanations portray borrowers’ repayment likelihood

to depend mainly on their competitiveness (strong negative relation), patience (strong positive

relation), and gender (strong negative effect for males). Our DiD regression results depict

that the introduction of explanations significantly elevates participants weighting of these three

characteristics. We detect the strongest increase in the estimate for competitiveness, i.e., the

characteristic machine explanations mark as most influential. Changes for patience and gender,

which the machine depicts are equally important, are of similar magnitude. For agreeableness,

that machine explanations mark as relatively unimportant, we find treatment participants to

consider it significantly less intensely.10

In sum, our findings so far show that the provision of explanations about how input features

contribute to the AI’s prediction lead participants to significantly change their weighting of

available information in directions suggested by machine explanations. Participants interacting

with the explainable AI weigh borrower characteristics marked as most important significantly

more, while becoming significantly less likely to follow a “repayment” prediction. In fact, we

find that participants are more likely to rubberstamp a prediction when explanations about how

the observed borrower characteristics relate to the prediction accompany it. Baseline and treat-

ment participants override the prediction in 22.6 % and 27.8 % of the cases, respectively. The

difference is economically (+23 %) and statistically significant (p < 0.001, χ2-test), indicating

that explanations cause participants to rely less often on the overall prediction. Notably, beliefs

about the prediction accuracy does not significantly differ between opaque and explained pre-

dictions (71.8 % and 70.6 % respectively, p = 0.751, Wilcoxon rank-sum test), so that changes

in the weighting of predictions do not seem to result from lower trust. It thus appears that

the provision of machine explanations causes participants to shift their attention away from

predictions alone towards additional information.

Result 1: Machine explanations steer users’ attention away from the isolated prediction to-

wards information marked as decision-relevant. This occurs without reducing users’ trust in the

prediction accuracy.

These observations suggest that the provision of machine explanations may reduce the re-

10Even though machine explanations suggest that having older siblings is the least relevant characteristic to
predict repayment behavior, we observe a marginally significant increase in the influence on investment decisions
due to explanations. A plausible rationale for this observation is that machine explanations lead participants to
consider every borrower characteristic at least to some minimum degree. Hence, machine explanations could sig-
nificantly increase participants’ consideration of a characteristic when predictions steer their attention (strongly)
away from it. Providing support for the notion of a minimum attention level, all estimates in column (5) are at
least marginally significant, except for agreeableness which is slightly insignificant (p = 0.2).
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Figure 3: Distribution of LIME values

Notes: Distribution of LIME values, i.e., prediction contribution, for different borrower char-
acteristics. The color of dots indicates the level of the corresponding borrower characteristic.
From top to bottom characteristics are in a descending order according to their mean absolute
prediction contribution (noted in parentheses).

liance on predictions alone and cause users to process other available information marked as

decision-relevant more vigilantly. Hence, as one might hope, machine explanations appear to be

an effective means to reduce automation biases (Skitka et al. 2000, 1999), i.e., the in appropriate

overreliance on intransparent outputs of AI systems that leads users to ignore other relevant

information and impairs decision making. Notably, explanations can induce such a shift in

attention without harming participants’ overall trust in the predictive performance of the AI.

Our first result demonstrates that the employment of explainability measures have important

consequences on how users engage with the AI and weight other available information. However,

it remains open whether these effects only occur because users effectively delegate their (real)
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decision authority (see, e.g. Aghion and Tirole 1997, Baker et al. 1999) to the explainable AI

or if explanations cause belief adjustments about the relation between borrower characteristics

and repayment behavior (see, e.g. Hogarth and Einhorn 1992, Epstein et al. 2010, Rabin 2013,

Henckel et al. 2021). When the latter is the case, the employment of explainable AI may have

much more significant consequences on human behavior than merely shifting users’ attention.

We examine this notion in the subsequent section.

4.2 XAI and belief updating

At the heart of human behavior lie beliefs about, for instance, the consequences of their deci-

sion making. People form and update their beliefs in response to receiving new information,

in some way or another (see, e.g. Hogarth and Einhorn 1992, Epstein et al. 2010, Rabin 2013,

Henckel et al. 2021). In our study, participants initially form their beliefs about the relation-

ship between borrower characteristics and repayment behavior to make investment decisions

in stage I. During stage III, treatment participants observe machine explanations about how

borrower characteristics relate to repayment predictions. These explanations effectively con-

stitute new information that may lead treatment participants to adjust their beliefs initially

formed in stage I, and thus change their behavior.11 To detect any ongoing belief updating,

we compare participants’ investment choices in stages I and V, i.e., before and after they in-

teracted with the opaque or explainable AI. Recall that participants had to make decisions

for the same ten borrowers in the two stages, even though in a randomized order. Therefore,

we can directly compare their choices for a given borrower across stages. As before, we use

(Difference-in-Difference) regression analyses to determine changes in the influence of observed

borrower characteristics on investment decisions over the course of the experiment.

Table 2 shows results of our regression analyses. In each regression, the investment decision

serves as the dependent variable. In columns (1) and (2), observed borrower characteristics and

their unobserved type, a posterior dummy, and corresponding interaction terms as independent

variables. Column (3) depicts results of a corresponding Difference-in-Difference regression.

We control for participant and stage fixed effects and cluster robust standard errors on the

individual × stage level, to account for the fact that participants’ way of decision making before

and after interacting with the AI may fundamentally differ. We report standardized coefficients

of interaction terms, depicting changes in the weighting of characteristics from prior to posterior

decision making.

11As we do not provide feedback about the game outcomes, participants are by design unable to learn the true
quality of the signals or engage in some version of reinforcement learning. This allows us to draw clear conclusions
about the pure effects of machine explanations on beliefs. Additionally, it facilitates the interpretation of our
results.
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Regression results indicate that the provision of machine explanations leads to selective be-

lief adjustments about the importance of borrower characteristics for investment decisions. On

the one hand, we find that the influence of competitiveness, patience, and gender on investment

decisions increases after participants interacted with the explainable AI (respectively by 5.2,

2.1, and 2.7 percentage points per one standard deviation). That is, treatment participants do

not only put more weight on these three characteristics while they observe machine explanations

that mark them as relevant. Instead, they seem to continue to weigh them more, even when

they do not have access to the explainable AI anymore. DiD estimates show that the changes

associated with observed explanations are statistically significant suggesting that the provision

of machine explanations have led participants to reinforce their preexisting beliefs about the

relevance of these traits for their investment decision. On the other hand, it appears as if par-

ticipants are reluctant to adjust strong preexisting beliefs about the relevance of characteristics

for which observed machine explanations suggest that their initial weighting is incorrect. Inde-

pendent of the condition, we do not find the weight of agreeableness to change after participants

interacted with the AI. DiD estimates further depict that changes associated with explanations

are insignificant. Agreeableness is (one of) the most influential borrower characteristic for both

prior and posterior decisions. That is the case even though participants only put low weight, if

any, on agreeableness while interacting with the explainable AI. It seems that participants are

willing to adhere to machine explanations that contradict strong preconceptions but unwilling

to adjust beliefs accordingly so that they would continue to put less weight on it, when they do

not have access to the explainable AI anymore.12

In sum, findings regarding the adjustment of preexisting beliefs suggest that participants

engage in an asymmetric updating. On the one hand, they appear to reinforce prior beliefs

when machine explanations provide support for their preconception. On the other hand, we

observe that the influence of the initially most important characteristic does not reside after

participants observed machine explanations marking it as irrelevant. Notably, an analysis of

participants’ decisions in stages II and IV, where they had to select the three characteristics

they perceive to be most decision-relevant, corroborate these observations (see Appendix A).

Result 2: Machine explanations cause users to adjust their beliefs about the relevance of bor-

12Note: After participants interacted with the explainable AI that depicts openness as relatively irrelevant
(similarly irrelevant as agreeableness), openness becomes significantly less influential for posterior investment
decisions. On the first sight, this pattern may suggest that participants are, at least to some degree, willing
adjust their beliefs in the light of contradicting information, after all. However, Table 1 shows that their prior
weighting of openness is considerably smaller compared to agreeableness for which we observe a reluctance to
adjust beliefs (p < 0.000, F-test). Therefore, it seems more plausible to assume that the willingness to actually
adjust beliefs decreases with the strength of the preexisting beliefs.
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rower characteristics in an asymmetric way. Users reinforce preexisting beliefs that machine

explanations substantiate but do not abandon strong prior beliefs that machine explanations de-

pict as incorrect.

How can we account for this asymmetry in adjusting beliefs based on machine explanations?

One plausible rationale is that the asymmetry is the manifestation of the confirmation bias, a

predilection to search for, favor, process, and even remember information in a way that is

favorable to already held beliefs (see e.g., Edwards and Smith 1996, Nickerson 1998, Ditto

and Lopez 1992, Park et al. 2013). Specifically, the finding that participants’ weighting of

agreeableness reverts to very high prior levels while the influence of competitiveness, patience,

and gender remains elevated, once they do not observe explanations anymore, might reflect

the biased recall of information conditional on whether they support or contradict prior beliefs

(see e.g., Frost et al. 2015). It is worth noting that the confirmation bias has been found to

play a major role for interacting with human advisors (Agnew et al. 2018b,a). In our case, the

confirmation bias is able to reconcile the observations that participants adhere to explanations

with regard to agreeableness as long as they interact with the explainable AI, but seem to

cherry pick explanations when it comes to adjusting their beliefs, i.e., learn from explanations.

Put differently, users seem to harness explanations not so much to expand their knowledge, but

to support their preexisting perceptions. Providing some support for this assertion, additional

regression analyses (see 6 in appendix) depict that only for participants who do not initially

rank agreeableness as most important in stage II the coefficient capturing weight changes is

negative. The coefficient for individuals who rank agreeableness first is, if anything, positive.

Notably, while the difference between the coefficients is in support of our argumentation, it is

statistically insignificant.

As the final step of our analyses, we take a closer look at participants’ readiness to adjust

their beliefs according to observed machine explanations. Specifically, we examine whether there

exist treatment heterogeneities conditional on participants’ trust in the predictive performance

of the AI. Put differently, we ask whether high trust in the AI’s prediction accuracy encourages

participants to adjust their beliefs.

4.3 Belief updating and trust

Previous studies have shown that trust in the predictive performance of AI decision aid fosters

the adoption and use of the technology (Komiak and Benbasat 2006, Logg et al. 2019, Shin

et al. 2020, Glikson and Woolley 2020). Additionally, evidence from the advice taking literature
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suggests that people’s propensity to discount new information in favor of prior beliefs decreases

with the perceived expertise of the person (or system) giving advice (Yaniv 2004, Pilditch et al.

2020). From this perspective, it seems plausible to suspect that trust also plays a moderating

role when it comes to learning from machine explanations. If participants trust the AI to make

accurate predictions, they may be more likely to adjust prior beliefs according to the machine

explanations observed.

We harness participants’ incentivized guesses about the prediction accuracy in stage III.

That is, we consider the cognitive, rather technical aspect of trust in the “expertise” of the

AI system (Komiak and Benbasat 2006). To determine the role of trust in the AI’s predictive

performance for belief adjustment, we perform a median split based on participants’ guess about

the prediction accuracy. We refer to participants who estimate that the prediction accuracy

is at least 75 % as trusting, and the other half as non-trusting types.13 We examine changes

in the weight participants put on observed borrower characteristics across stages I and V. As

before, significant changes reflect that participants weigh observed information differently after

interacting with the AI. We conduct separate regression analyses for the two different types

of participants. Table 3 depicts estimates of the weight changes across stages I and V. In

each model, participants’ investment decisions serve as dependent variables, while observed

borrower characteristics, unobserved borrower types, a posterior dummy, and corresponding

interaction terms serve as independent variables. We include participant and stage fixed effects

and cluster robust standard errors on the individual × stage level. Columns (1) and (2) portray

weight changes for non-trusting baseline and treatment participants, respectively. We report

corresponding Difference-in-Difference estimates in column (3). Columns (4), (5), and (6) show

results for trusting types.

Comparing the changes in the influence of observed borrower characteristics on participants’

investment decisions for different types indicates that only trusting types are willing to learn

(asymmetrically), from machine explanations. Non-trusting types who observe machine ex-

planations only adjust their beliefs significantly with regard to openness (weight on openness

decreases). Otherwise, they do not seem to engage in belief updating (see column (2)). By

contrast, trusting treatment participants exhibit adjustments in the weight they put on bor-

rower characteristics (see column (5)). For the most part, these changes seem to correspond to

observed machine explanations. Notably, trusting types exhibit the same kind of confirmation

bias we detected on the aggregate level. That is, even though these participants have high

confidence in the explainable AI’s prediction accuracy, they appear unwilling to learn from it,

13Note: 75 % is the median for both the baseline and treatment condition.
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not to put weight on the observed agreeableness.

In sum, we find trust in the predictive performance of the AI to play an important role

when it comes to learning from machine explanations. Hence, it does not merely play a role

when it comes to inciting participants to follow and adhere to AI outputs (see e.g., Glikson

and Woolley 2020), but also for explainable AI’s capacity to influence the way users understand

their (decision-)environment. Notably, analyses of different types’ investment decisions while

interacting with the AI reveal that non-trusting treatment participants do not only rely less on

the overall prediction compared to trusting ones, but also put significant weight on agreeable-

ness. Otherwise, however, their weighting of information is very similar to trusting participants.

That is, while trust in the prediction performance of the explainable AI does not seem to spur

the adjustment of strong prior beliefs, it appears to influence participants’ adherence to expla-

nations that contradict these priors—at least while they observe machine explanations.

Result 3: Trust in the predictive performance of the explainable AI is an important prerequi-

site for users to adjust beliefs in the direction of observed machine explanations. However, even

users with high confidence in the prediction accuracy do not adapt strong priors that machine

explanations oppose.

The observation that trust in the predictive performance of the XAI is in line with previous

findings that people’s likelihood to listen to advice by another human increases with the ad-

visor’s perceived task-relevant expertise (Sniezek et al. 2004, Bonaccio and Dalal 2006). This

observation suggests that the identified relation between people’s propensity to rely on (and

internalize) advice from another person apply, at least partially, also in human-XAI collabora-

tions.

5 Discussion and implications

In a nutshell, we report three main findings revealing that feature-based XAI causally affects

important cognitive processes of human users, i.e., information processing and belief updating.

First, we demonstrate that the provision of machine explanations causally changes participants’

cognitive processing of available information. Second, we find that the provision of machine

explanations entails an asymmetric adjustment of human beliefs that is favorable to strong

predilections. Third, (cognitive) trust in the prediction accuracy of the AI is a vital prereq-

uisite for learning from machine explanations, however, it does not prevent asymmetric belief

adjustments.
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Reported results on the asymmetric belief adjustment have implications for policymakers

advocating higher explainability and transparency in AI applications. According to our findings,

the provision of feature-based explanations reinforces preexisting beliefs that are in line with the

correlations between features and target variables detected by the AI system in the data. This

emphasizes the importance not to include sensitive information such as gender or race into AI

systems if there are strong correlations with the label and the system eventually has to provide

(feature-based) explanations for predictions. Consider, for instance, predictive policing, i.e.,

predictive AI systems that help allocate police across a city to best prevent crime (Ferguson

2017). According to our results, the provision of explanations to officers that the share of

specific ethnicities in certain neighborhoods is strong evidence for a crime occurring may have

foster preexisting racial biases. Indeed, in many domains in which AI plays a major role, racial

or gender biases persist (e. g., in online hiring (Chan and Wang 2018) or crowdfunding (Burtch

and Chan 2019)). Hence, regulatory efforts that aim to make AI systems’ predictions more

transparent should go hand in hand with measures ensuring that these systems do not include

specific sensitive information (correlating with the target measure).

From a different point of view, our results imply that people with a high level of trust in

the predictive performance of AI systems are willing to learn from machine explanations and

change their behavior. This finding is important from the perspective that a largely untapped

potential to enhance economic efficiency is the transfer of domain knowledge from AI systems

to human users (see e.g., Teso and Hinz 2020). Our results imply that feature-based machine

explanations and trust are an important prerequisite for harnessing the broader potential of

AI systems teaching humans, i.e., “machine teaching” (Abdel-Karim et al. 2020). Against this

background, organizations that intend to transfer domain knowledge extracted by AI system

from (Big) Data to employees, may be well advised to (i) employ feature-based explainability

techniques and (ii) foster users’ trust in the system’s predictive performance. In order to achieve

the latter, future research should focus on how this trust is built, similar to recent work exploring

how trust is generated to improve economic efficiency in human-human collaboration (Susarla

et al. 2020). As a final word of caution on this implication, we want to point out that there

may also be a dark side to learning from explanations. There is the danger that ill-meaning

third parties harness explainable AI to manipulate people’s fundamental belief structures. In

a worst case scenario, machine explanations may be misused to spread specific ideological and

discriminatory views. From this perspective, our results complement warnings recently asserted

in the literature (Lakkaraju and Bastani 2020, Liel and Zalmanson 2020).
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6 Conclusion

This paper explores the interplay of feature-based XAI, information processing, and human

beliefs. We develop a novel incentivized experimental protocol that allows us to circumvent

severe endogeneity concerns we would encounter in a field setting and, thus, identify causal

effects. Our paper is the first to provide causal empirical evidence on feature-based XAI’s

potential to fundamentally change important cognitive processes: information processing and

belief adjustment.

In light of the gravity of this potential, there is need for future research in several directions.

For instance, it is important to better understand the origins of the asymmetric learning from

machine explanations. What are moderating factors? Are there effective ways to alleviate

the seeming occurrence of the confirmation bias when it comes to learning from AI? Answering

these questions will be a vital step to tap into the potential of explainable AI effectively teaching

humans new domain knowledge extracted from Big Data (Abdel-Karim et al. 2020, Bauer et al.

2021).

Another fruitful avenue is to examine whether other XAI techniques, e.g., global explanations

or counterfactual explanations, evoke similar cognitive responses so that we have a better idea

about the consequences of employing specific XAI systems. Do different types of explanations

affect beliefs differently, or not at all? Are users more willing to learn new knowledge from an

XAI system that provides counterfactuals? Providing an answer to this question is important

to inform organizational decisions about which method to employ.

As a concluding remark, we want to point out that one should interpret our results as evi-

dence that puts assertions about XAI being the silver bullet that solves all of AI systems’ (black

box) problems into perspective. As with every other technological innovation, XAI comes with

merits and problems. Specifically, in our study, the provision of state-of-the-art feature-based

explanations affects users’ beliefs in an asymmetric way making them potentially vulnerable

to manipulation by ill-meaning third parties who can influence machine explanations. Addi-

tionally, in our specific setting, the use of feature-based explanations decreases the economic

efficiency of decision making. That seems to be the case because XAI users rubberstamp the

overall machine prediction in favor of individual, explained features too often. Overall, they

are significantly less likely to make the payoff maximizing decisions than opaque AI system

users. (respective average shares of payoff maximizing investment decision: 57.5 % and 63.1 %;

p < 0.001; χ2-test).14 While we acknowledge that these results inextricably link to our specific

14Note: on average, always following the prediction would have resulted in the payoff maximizing decision in
69.3 % of the cases.
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design choices, they nonetheless show that, once again, the human factor can be the weakness

of even well-designed XAI systems. This flaw in the system can ultimately impede its efficacy in

alleviating the black box problems and possibly creating new, unanticipated problems. Hence,

regulations such as Europe’s recent proposal for an Artificial Intelligence Act may benefit from

not merely stipulating the provision of “meaningful” explanations in whatever form. Addition-

ally demanding a specific presentation of explanations (or their exclusion) may be worthwhile

as well.
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Baseline Treatment
Dep. variable: (1) (2) (3) (4) (5) (6) (7)
Making an Without With ∆ Without With ∆ ∆
investment AI opaque AI (1)-(2) AI explainable AI (4)-(5) (3)-(6)

Agreeableness 0.081*** 0.049*** -0.032** 0.084*** 0.008 -0.077*** -0.041**
(0.010) (0.007) (0.013) (0.011) (0.006) (0.012) (0.017)

Competitiveness -0.039*** -0.019*** 0.020 -0.034*** -0.097*** -0.062*** -0.079***
(0.012) (0.007) (0.014) (0.011) (0.010) (0.015) (0.020)

Conscientiousness 0.004 0.017*** 0.014 0.018** 0.018*** 0.001 -0.014
(0.009) (0.006) (0.011) (0.008) (0.006) (0.010) (0.015)

Extraversion 0.027*** 0.012** -0.015 0.033*** 0.031*** -0.002 0.014
(0.009) (0.006) (0.011) (0.010) (0.006) (0.012) (0.016)

Patience 0.031*** 0.005 -0.027** 0.037*** 0.048*** 0.011 0.039**
(0.008) (0.007) (0.011) (0.008) (0.007) (0.011) (0.015)

Openness 0.024*** 0.011** -0.013 0.029*** 0.009 -0.020* -0.004
(0.009) (0.005) (0.010) (0.009) (0.006) (0.010) (0.015)

Gender (male) -0.039*** -0.009 0.030** -0.015 -0.033*** -0.018 -0.049***
(0.010) (0.007) (0.012) (0.011) (0.007) (0.013) (0.017)

Neuroticism -0.030** -0.010 0.019 -0.011 0.013* 0.025* 0.001
(0.012) (0.007) (0.014) (0.011) (0.007) (0.013) (0.018)

Younger sibl. (yes) -0.004 0.004 0.009 -0.020** -0.015*** 0.005 -0.006
(0.009) (0.005) (0.011) (0.008) (0.005) (0.010) (0.014)

Older sibl. (yes) 0.028*** -0.000 -0.028*** 0.024*** 0.024*** 0.000 0.025*
(0.009) (0.005) (0.010) (0.009) (0.005) (0.010) (0.014)

Repayment prediction 0.224*** 0.172*** -0.052***
(0.012) (0.011) (0.017)

N 3060 6120 9180 3010 6020 9030 18210
p 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Adj. R2 0.315 0.423 0.389 0.382 0.374 0.383 0.387

Table 1: Regression analyses: Weighing of borrower characteristics

Notes: Regression analyses with participant and stage fixed effects. In each regression, the investment
decision serves as the dependent variable. As independent variables, we include observed borrower charac-
teristics, borrowers’ unobserved types, and, if applicable, the observed prediction. Reported estimates are
standardized. In columns (1), (2), (4), and (5), we cluster robust standard errors on the participant level;
in the remaining columns, on the participants × stage level. Column (7) depicts Difference-in-Difference
regressions. We denote significance levels as ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Dep. variable: (1) (2) (3)
Making an investment Opaque AI Explainable AI Diff.-in-Diff.

Agreeableness 0.016 -0.005 -0.019
*Posterior (0.015) (0.015) (0.021)

Competitiveness -0.006 -0.052*** -0.044*
*Posterior (0.017) (0.018) (0.024)

Conscentiousness 0.033*** 0.017 -0.017
*Posterior (0.013) (0.012) (0.018)

Extraversion 0.018 -0.010 -0.027
*Posterior (0.014) (0.014) (0.020)

Patience -0.013 0.021* 0.037**
*Posterior (0.013) (0.013) (0.018)

Openness 0.000 -0.030** -0.028
*Posterior (0.013) (0.013) (0.018)

Gender 0.019 -0.027* -0.047**
*Posterior (0.014) (0.015) (0.021)

Neuroticism 0.045*** 0.005 -0.044**
*Posterior (0.016) (0.016) (0.022)

Younger sibl. -0.004 0.002 0.006
*Posterior (0.014) (0.012) (0.018)

Older sibl. 0.005 -0.005 -0.014
*Posterior (0.013) (0.013) (0.018)

N 6120 6020 12140
p 0.000 0.000 0.000
Adj. R2 0.316 0.355 0.335

Table 2: Regression analyses: Influence of borrower characteristics

Notes: Regressions analyses including participant and stage fixed effects. In each regression, the invest-
ment decision serves as the dependent variable. As independent variables, we include observed borrower
characteristics, borrowers’ unobserved types, a posterior dummy, and their interaction terms. Reported
estimates are standardized. We cluster robust standard errors on the participant × stage level to ac-
count for the fact that participants’ way of decision making before and after interacting with the AI may
fundamentally differ. We denote significance levels as ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

28

Electronic copy available at: https://ssrn.com/abstract=3872711



Dep. variable: Non-trusting types Trusting types
Making an (1) (2) (3) (4) (5) (6)
investment ∆Baseline ∆Treatment ∆ (1)-(2) ∆Baseline ∆Treatment ∆ (4)-(5)

Agreeableness 0.013 0.029 0.015 0.019 -0.034 -0.048
*Posterior (0.023) (0.021) (0.031) (0.021) (0.021) (0.030)

Competitiveness -0.002 -0.004 -0.003 -0.008 -0.091*** -0.080**
*Posterior (0.025) (0.027) (0.036) (0.022) (0.024) (0.032)

Conscientiousness 0.040** 0.003 -0.037 0.030* 0.029* 0.001
*Posterior (0.020) (0.019) (0.027) (0.016) (0.016) (0.023)

Extraversion -0.010 0.005 0.015 0.044** -0.019 -0.061**
*Posterior (0.020) (0.021) (0.029) (0.019) (0.020) (0.027)

Patience -0.040** -0.017 0.023 0.011 0.053*** 0.042*
*Posterior (0.019) (0.018) (0.026) (0.018) (0.018) (0.025)

Openness 0.001 -0.032* -0.037 0.000 -0.025 -0.021
*Posterior (0.020) (0.020) (0.028) (0.017) (0.016) (0.024)

Gender 0.003 -0.022 -0.026 0.028 -0.028 -0.060**
*Posterior (0.022) (0.022) (0.031) (0.018) (0.020) (0.027)

Neuroticism -0.007 -0.008 0.001 0.090*** 0.014 -0.083***
*Posterior (0.023) (0.024) (0.033) (0.022) (0.022) (0.030)

Younger sibl. 0.003 0.010 0.008 -0.009 -0.005 0.001
*Posterior (0.021) (0.018) (0.028) (0.018) (0.016) (0.024)

Older sibl. 0.002 0.014 0.017 0.008 -0.021 -0.035
*Posterior (0.019) (0.018) (0.026) (0.018) (0.018) (0.025)

N 2780 2800 5580 3340 3220 6560
p 0.000 0.000 0.000 0.000 3220.000 0.000
Adj. R2 0.298 0.352 0.326 0.322 0.367 0.344

Table 3: Regression analyses: Treatment heterogeneities

Notes: Regressions analyses with participant and stage fixed effects. In each regression, the investment
decision serves as the dependent variable. As independent variables, we include observed borrower charac-
teristics, unobserved borrower types, a posterior dummy, and corresponding interaction terms. Columns
(1)-(3) show results for the subsample of non-trusting types. Columns (4)-(6) show results for trusting
types. Reported estimates are standardized. We cluster robust standard errors on the individual × stage
level. Columns (3) and (6) depict Difference-in-Difference regression results, respectively showing the es-
timated difference between columns (1) and (2) or (4) and (5). We denote significance levels as ∗p < 0.1,
∗∗p < 0.05, ∗∗∗p < 0.01.
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Ruchir Puri, José MF Moura, and Peter Eckersley. Explainable machine learning in deployment. In

Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pages 648–657,

2020.

30

Electronic copy available at: https://ssrn.com/abstract=3872711



Anol Bhattacherjee and G Premkumar. Understanding changes in belief and attitude toward information

technology usage: A theoretical model and longitudinal test. MIS Quarterly, pages 229–254, 2004.

Ronit Bodner and Drazen Prelec. Self-signaling and diagnostic utility in everyday decision making. The

psychology of economic decisions, 1(105):26, 2003.

Silvia Bonaccio and Reeshad S Dalal. Advice taking and decision-making: An integrative literature

review, and implications for the organizational sciences. Organizational Behavior and Human

Decision Processes, 101(2):127–151, 2006.

Gordon Burtch and Jason Chan. Investigating the relationship between medical crowdfunding and

personal bankruptcy in the united states: Evidence of a digital divide. MIS Quarterly, pages

237–262, 2019.

Jason W Burton, Mari-Klara Stein, and Tina Blegind Jensen. A systematic review of algorithm aversion

in augmented decision making. Journal of Behavioral Decision Making, 33(2):220–239, 2020.

Adrian Bussone, Simone Stumpf, and Dympna O’Sullivan. The role of explanations on trust and reliance

in clinical decision support systems. In International Conference on Healthcare Informatics, 2015.

Colin F Camerer and Robin M Hogarth. The effects of financial incentives in experiments: A review and

capital-labor-production framework. Journal of Risk and Uncertainty, 19(1):7–42, 1999.

Noah Castelo, Maarten W Bos, and Donald R Lehmann. Task-dependent algorithm aversion. Journal

of Marketing Research, 56(5):809–825, 2019.

Jason Chan and Jing Wang. Hiring preferences in online labor markets: Evidence of a female hiring

bias. Management Science, 64(7):2973–2994, 2018.

Robyn M Dawes, David Faust, and Paul E Meehl. Clinical versus actuarial judgment. Science, 243

(4899):1668–1674, 1989.

Jan De Spiegeleer, Dilip B Madan, Sofie Reyners, and Wim Schoutens. Machine learning for quantitative

finance: Fast derivative pricing, hedging and fitting. Quantitative Finance, 18(10):1635–1643, 2018.

Jasbir S Dhaliwal and Izak Benbasat. The use and effects of knowledge-based system explanations:

Theoretical foundations and a framework for empirical evaluation. Information Systems Research,

7(3):342–362, 1996.

Berkeley J Dietvorst, Joseph P Simmons, and Cade Massey. Algorithm aversion: People erroneously

avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1):114,

2015.

Berkeley J Dietvorst, Joseph P Simmons, and Cade Massey. Overcoming algorithm aversion: People

will use imperfect algorithms if they can (even slightly) modify them. Management Science, 64(3):

1155–1170, 2018.

Peter H Ditto and David F Lopez. Motivated skepticism: Use of differential decision criteria for preferred

and nonpreferred conclusions. Journal of Personality and Social Psychology, 63(4):568, 1992.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning. In

arXiv:1702.08608, 2017.

31

Electronic copy available at: https://ssrn.com/abstract=3872711



Kari Edwards and Edward E Smith. A disconfirmation bias in the evaluation of arguments. Journal of

Personality and Social Psychology, 71(1):5, 1996.

Larry G Epstein, Jawwad Noor, Alvaro Sandroni, et al. Non-bayesian learning. The BE Journal of

Theoretical Economics, 10(1):1–20, 2010.

Alexander Erlei, Franck Nekdem, Lukas Meub, Avishek Anand, and Ujwal Gadiraju. Impact of algorith-

mic decision making on human behavior: Evidence from ultimatum bargaining. In Proceedings of

the AAAI Conference on Human Computation and Crowdsourcing, volume 8, pages 43–52, 2020.

Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark DePristo, Kather-

ine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean. A guide to deep learning in

healthcare. Nature medicine, 25(1):24–29, 2019.

EU. Proposal for a regulation EU of the european parliament and of the council of 21 April 2021, laying

down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain

union legislative acts. Official Journal of the European Union, L 119, 2021.

Ernst Fehr and Urs Fischbacher. The nature of human altruism. Nature, 425(6960):785–791, 2003.

Shi Feng and Jordan Boyd-Graber. What can AI do for me? Evaluating machine learning interpreta-

tions in cooperative play. In Proceedings of the 24th International Conference on Intelligent User

Interfaces, pages 229–239, 2019.

Andrew Guthrie Ferguson. Policing predictive policing. Wash. UL Rev., 94:1109, 2017.

Peter Frost, Bridgette Casey, Kaydee Griffin, Luis Raymundo, Christopher Farrell, and Ryan Carrigan.

The influence of confirmation bias on memory and source monitoring. The Journal of general

psychology, 142(4):238–252, 2015.

GDPR. Regulation EU 2016/679 of the european parliament and of the council of 27 april 2016, article

22. Official Journal of the European Union L 119, 59, 2016.

Ella Glikson and Anita Williams Woolley. Human trust in artificial intelligence: Review of empirical

research. Academy of Management Annals, 14(2):627–660, 2020.

Shirley Gregor and Izak Benbasat. Explanations from intelligent systems: Theoretical foundations and

implications for practice. MIS Quarterly, pages 497–530, 1999.

William M Grove and Martin Lloyd. Meehl’s contribution to clinical versus statistical prediction. Journal

of Abnormal Psychology, 115(2):192, 2006.

William M Grove and Paul E Meehl. Comparative efficiency of informal (subjective, impressionistic)

and formal (mechanical, algorithmic) prediction procedures: The clinical–statistical controversy.

Psychology, Public Policy, and Law, 2(2):293, 1996.

Junius Gunaratne, Lior Zalmanson, and Oded Nov. The persuasive power of algorithmic and crowd-

sourced advice. Journal of Management Information Systems, 35(4):1092–1120, 2018.

Timo Henckel, Gordon D Menzies, Peter G Moffatt, and Daniel J Zizzo. Belief adjustment: A double

hurdle model and experimental evidence. Experimental Economics, pages 1–42, 2021.

32

Electronic copy available at: https://ssrn.com/abstract=3872711



Mitchell Hoffman, Lisa B Kahn, and Danielle Li. Discretion in hiring. The Quarterly Journal of Eco-

nomics, 133(2):765–800, 2018.

Robin M Hogarth and Hillel J Einhorn. Order effects in belief updating: The belief-adjustment model.

Cognitive psychology, 24(1):1–55, 1992.

Izak Benbasat Ji-Ye Mao. The use of explanations in knowledge-based systems: Cognitive perspectives

and a process-tracing analysis. Journal of Management Information Systems, 17(2):153–179, 2000.

Zhenhui Jiang and Izak Benbasat. Virtual product experience: Effects of visual and functional control

of products on perceived diagnosticity and flow in electronic shopping. Journal of Management

Information Systems, 21(3):111–147, 2004.

Zhenhui Jiang and Izak Benbasat. The effects of presentation formats and task complexity on online

consumers’ product understanding. MIS Quarterly, pages 475–500, 2007.

Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and prospects. Science,

349(6245):255–260, 2015.

Ekaterina Jussupow, Izak Benbasat, and Armin Heinzl. Why are we averse towards algorithms? A

comprehensive literature review on algorithm aversion. In European Conference on Information

Systems (ECIS), 2020.

Ekaterina Jussupow, Kai Spohrer, Armin Heinzl, and Joshua Gawlitza. Augmenting medical diagnosis

decisions? An investigation into physicians’ decision-making process with artificial intelligence.

Information Systems Research, forthcoming, 2021.

Daniel Kahneman and Amos Tversky. On the psychology of prediction. Psychological review, 80(4):237,

1973.
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A Supplementary Material

A.1 Prior field study

We collected this data in an incentivized field study that we conducted at a large German

university over three years (2016–2019). Most important for the experiment at hand, the field

study included an incentivized one-shot prisoners’ dilemma where we anonymously matched

participants in pairs of two and initially endowed each one with 10 Euro. Participants could

either keep the 10 Euro for themselves or transfer them to their opponent. Whenever one player

transferred her 10 Euro, we doubled the amount so that the other player received 20 Euro.

Players made their choices sequentially. The second moving player received information about

the first mover’s choice before deciding upon the transfer herself. For each subject, we elicited

both conditional choices in the role of the second mover and the unconditional choice as a first

mover. In addition to the incentivized game, the field study included a broad set of survey items

on students’ demographics, including socio-economic background, cognitive abilities, personal

traits, and other preferences.

Item Scale (normalized)

1. Big 5: Openness (0,1)
2. Big 5: Conscientiousness (0,1)
3. Big 5: Extraversion (0,1)
4. Big 5: Agreeableness (0,1)
5. Big 5: Neuroticism (0,1)
6. Competitiveness score (0,1)
7. Patience (0,1)
8. Gender Male=1, Female=0
9. Person has younger siblings Yes=1, No=0
10. Person has older siblings Yes=1, No=0

Table 4: Features used to train the Machine Learning Model.

Notes: We normalized the scale of numeric items for training and prediction processes.

A.2 Additional results on belief updating

We start comparing participants’ selection of the three most decision-relevant characteristics

before and after they interacted with the AI. For each borrower characteristic, Figure 4 shows

the share of investors who select it among the three most relevant characteristics for their

investment decision.15 Different colored bars represent participant shares before (prior) and

after (posterior) participants engaged with the AI. Panel (i) and (ii), respectively, portray

baseline and treatment results.

15Note: For ease of interpretation we aggregate the ordinal ranking decision so that we consider whether a
characteristic has been included in the selection or not.
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Figure 4: Share of participants ranking characteristics among three most relevant

Notes: Prior and posterior shares of participants who ranked a given characteristic among three
most relevant for making the investment decision. Different panels show results for baseline and
treatment participants.

Figure 4 indicates that the provision of machine explanations not only impacts immediate

decisions. Instead, explanations may alter aggregate beliefs about the decision-relevance of bor-

rower characteristics. Prior and posterior beliefs for participants observing opaque predictions

are almost identical (see panel (i)). Before and after interacting with the AI, baseline partic-

ipants belief agreeableness (prior: 78.8 %, posterior: 76.5 %), competitiveness (prior: 60.8 %,

posterior: 61.7 %), and conscientiousness (prior: 54.9 %, posterior: 53.9 %) to be the most

informative characteristics, by far. While treatment participants also believe these three char-

acteristics to be most informative at both points in time, panel (ii) depicts some notable changes

in the aggregate distribution. On the one hand, the share of participants who believe compet-

itiveness, patience, or gender to be most informative increases from 56.5 % to 74.2 %, 20.6 %

to 28.2 %, and 10.6 % to 20.6 %, respectively. On the other hand, the shares of participants

selecting conscientiousness decreases from 58.1 % to 42.9 %.

Difference-in-difference (DiD) regression analyses show that these changes are statistically

significant (see Table 5). DiD estimates suggest that observing machine explanations leads

treatment participants to significantly adjust their beliefs about the decision-relevance of bor-

rowers’ competitiveness, conscientiousness, patience, openness, and gender (see columns (2),
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Dep. variable: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Selecting Agreeab Competit Conscien Extra Pati Open Gender Neuro Younger. Older
charachteristic leness iveness tiousness version ence ness ticism siblings siblings

Treatment 0.010 -0.038 0.011 -0.000 0.045 0.014 -0.036 0.003 -0.004 -0.005
(0.032) (0.040) (0.041) (0.036) (0.032) (0.033) (0.028) (0.027) (0.025) (0.016)

Posterior -0.023 0.010 -0.010 0.003 0.007 0.023 -0.003 0.013 -0.023 0.003
(0.026) (0.026) (0.027) (0.027) (0.024) (0.023) (0.018) (0.022) (0.016) (0.013)

Treatment -0.057 0.166∗∗∗ -0.143∗∗∗ -0.060 0.070∗ -0.069∗∗ 0.103∗∗∗ 0.004 -0.017 0.003
*Posterior (0.037) (0.039) (0.040) (0.040) (0.038) (0.032) (0.029) (0.031) (0.024) (0.019)

Constant 0.657∗∗∗ 0.753∗∗∗ 0.649∗∗∗ 0.216∗ 0.123 0.195∗ 0.114 0.020 0.126 0.147∗∗

(0.109) (0.129) (0.132) (0.115) (0.097) (0.106) (0.102) (0.081) (0.085) (0.069)

N 1214 1214 1214 1214 1214 1214 1214 1214 1214 1214
p 0.000 0.000 0.000 0.069 0.034 0.031 0.110 0.015 0.071 0.133
R2 0.076 0.044 0.044 0.029 0.032 0.036 0.019 0.039 0.025 0.054

Table 5: Regression analyses: Selection of characteristics

Notes: Random effects GLS regression analyses. In each regression, selecting the corresponding charac-
teristic among top 3 in stages II and IV serves as the dependent variable. As independent variables, we
include a treatment dummy variable, a dummy indicating the posterior decisions, and an interaction term.
We additionally include control variables for participants’ social preferences and socio-demographics. We
cluster robust standard errors on the individual level to account for the panel data structure, i.e., dis-
tinct participants who repeatedly made their investment decisions for different borrowers. We denote
significance levels as ∗p < 0.1, ∗∗p < 0.05,

∗∗∗
p < 0.01.

(3), (5), (6), and (7)).

A comparison of aggregate belief adjustments for the three initially most pronounced be-

liefs with machine explanations treatment participants observed (see Figure 3) provides some

evidence that belief updating depends on the strength of prior beliefs and their alignment with

explanations. For agreeableness and conscientiousness, machine explanations and initial human

priors are at odds. While the machine depicts these characteristics similarly irrelevant to in-

vestment decisions, participants on average believe it to be among the most decision-relevant

information. Here we only observe significant belief adjustments for conscientiousness, which

participants on average initially rank significantly less often as the most important charac-

teristic (43.2 % vs. 17.9 % of the cases, p < 0.001, χ2-test). Put differently, explanations

do not incite participants to abandon the by far most pronounced initial prior. Concerning

competitiveness, for which machine explanations and strong initial priors are aligned, we ob-

serve a significant reinforcement of the perceived decision-relevance so that it becomes the most

decision-relevant information for the majority of treatment participants, after interaction with

the machine (48.5 %).16

16Concerning gender, patience, and openness, which the majority believes not to be among the most relevant
characteristics, i.e., rather weak priors on the aggregate level, we observe significant belief adjustments in the
direction of the explanation. Notably, for gender, prior and posterior beliefs may be subject to additional self-
signaling concerns. This refers to decisions that, at least partially, aim at establishing a desirable view of oneself
(Bodner and Prelec 2003, Bénabou and Tirole 2011). In line with this notion, participants may initially consider
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These aggregate level results are indicative that explainable AI can have permanent effects

on human behavior, while this is not true for an opaque AI. It seems that it is explanations that

can lead participants to adjust their beliefs about the individual decision-relevance of borrower

characteristics.

basing an investment decision on gender to be a ‘taboo’. However, once the AI provides explanations that gender
is a relevant factor, they might feel allowed to include this information in their decision. As our experimental
design cannot provide further clarification on this issue, an investigation of such an effect presents a fruitful
avenue for future research.
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A.3 Confirmation bias

Dep. variable: (1) (2)
Making an investment Agreeableness Agreeableness

ranked first not ranked first

Agreeableness -0.015 0.004
(0.019) (0.023)

Competitiveness -0.046* -0.059**
(0.024) (0.026)

Conscientiousness 0.014 0.021
(0.017) (0.018)

Extraversion -0.014 -0.004
(0.020) (0.020)

Patience 0.035* 0.006
(0.018) (0.019)

Openness -0.036** -0.023
(0.018) (0.018)

Gender -0.029 -0.024
(0.021) (0.021)

Neuroticism -0.008 0.027
(0.023) (0.022)

Younger sibl. 0.016 -0.013
(0.017) (0.016)

Older sibl. -0.017 0.015
(0.018) (0.018)

N 3420 2600
p 0.000 0.000
Adj. Rr 0.322 0.396

Table 6: Regression analyses: Confirmation bias

Notes: Regressions analyses on the subsample of treatment participants with participant and stage fixed effects.
In each regression, the investment decision serves as the dependent variable. As independent variables, we
include observed borrower characteristics, unobserved borrower types, a posterior dummy, and corresponding
interaction terms. Column (1) shows results for treatment participants who initially ranked agreeableness as
most important characteristic, while column (2) shows resuts for those who did not. Reported estimates are
standardized. We cluster robust standard errors on the individual × stage level. We denote significance levels as
∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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A.4 Treatment heterogenetities stage III

Non-trusting Trusting
Dep. variable: (1) (2) (3) (4)
Making an investment Baseline Treatment Baseline Treatment

Agreeableness 0.038*** 0.018** 0.056*** -0.002
(0.012) (0.009) (0.009) (0.009)

Competitiveness -0.027** -0.106*** -0.014* -0.090***
(0.012) (0.014) (0.008) (0.013)

Conscientiousness 0.022** 0.022** 0.016** 0.014**
(0.009) (0.010) (0.007) (0.007)

Extraversion 0.016 0.020* 0.007 0.041***
(0.010) (0.010) (0.007) (0.008)

Patience 0.009 0.044*** -0.001 0.054***
(0.010) (0.010) (0.008) (0.010)

Openness 0.015* 0.012 0.010 0.008
(0.009) (0.009) (0.007) (0.007)

Gender (male) -0.008 -0.038*** -0.009 -0.028***
(0.012) (0.010) (0.008) (0.010)

Neuroticism -0.007 0.004 -0.013 0.022**
(0.012) (0.013) (0.009) (0.008)

Younger sibl. (yes) 0.005 -0.017** 0.002 -0.013**
(0.008) (0.008) (0.007) (0.007)

Older sibl. (yes) 0.011 0.018** -0.005 0.031***
(0.008) (0.008) (0.006) (0.007)

Repayment prediction 0.150*** 0.123*** 0.285*** 0.214***
(0.017) (0.014) (0.015) (0.016)

N 2780 2800 3340 3220
pp 0.000 0.000 0.000 0.000
Adj. R2 0.344 0.337 0.517 0.418

Table 7: Regression analyses: Investment decisions stage III and trust

Notes: Regression analyses with participant fixed effects. In each regression, the investment decision serves as the
dependent variable. As independent variables, we include observed borrower characteristics, unobserved types,
and the prediction. We cluster robust standard errors on the individual × borrower level, to account for the
fact that participants make one prior and one posterior decision for each borrower they encounter. We denote
significance levels as ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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B Screenshots of experiment

Figure 5: Interfaces of stage I, stage III—baseline, and stage III—treatment
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