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Abstract

Studying large discrete systems is of central interest in, non-exclusively, discrete mathematics, com-
puter sciences and statistical physics. The study of phase transitions, e.g. points in the evolution of a
large random system in which the behaviour of the system changes drastically, became of interest in the
classical field of random graphs, the theory of spin glasses as well as in the analysis of algorithms [78,
82, 121].

It turns out that ideas from the statistical physics’ point of view on spin glass systems can be used to
study inherently combinatorial problems in discrete mathematics and theoretical computer sciences
(for instance, satisfiability) or to analyse phase transitions occurring in inference problems (like the
group testing problem) [68, 135, 168]. A mathematical flaw of this approach is that the physical methods
only render mathematical conjectures as they are not known to be rigorous.

In this thesis, we will discuss the results of six contributions. For instance, we will explore how the
theory of diluted mean-field models for spin glasses helps studying random constraint satisfaction prob-
lems through the example of the random 2−SAT problem. We will derive a formula for the number of
satisfying assignments that a random 2−SAT formula typically possesses [2].

Furthermore, we will discuss how ideas from spin glass models (more precisely, from their planted
versions) can be used to facilitate inference in the group testing problem. We will answer all major
open questions with respect to non-adaptive group testing if the number of infected individuals scales
sublinearly in the population size and draw a complete picture of phase transitions with respect to the
complexity and solubility of this inference problem [41, 46].

Subsequently, we study the group testing problem under sparsity constrains and obtain a (not fully
understood) phase diagram in which only small regions stay unexplored [88].

In all those cases, we will discover that important results can be achieved if one combines the rich
theory of the statistical physics’ approach towards spin glasses and inherent combinatorial properties
of the underlying random graph.

Furthermore, based on partial results of Coja-Oghlan, Perkins and Skubch [42] and Coja-Oghlan et
al. [49], we introduce a consistent limit theory for discrete probability measures akin to the graph limit
theory [31, 32, 128] in [47]. This limit theory involves the extensive study of a special variant of the
cut-distance and we obtain a continuous version of a very simple algorithm, the pinning operation,
which allows to decompose the phase space of an underlying system into parts such that a probability
measure, restricted to this decomposition, is close to a product measure under the cut-distance. We will
see that this pinning lemma can be used to rigorise predictions, at least in some special cases, based on
the physical idea of a Bethe state decomposition when applied to the Boltzmann distribution.

Finally, we study sufficient conditions for the existence of perfect matchings, Hamilton cycles and
bounded degree trees in randomly perturbed graph models if the underlying deterministic graph is
sparse [93].
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1. Introduction

Large discrete systems play a central role in discrete mathematics, theoretical computer sciences, stat-
istical physics as well as in statistics. Analysing such systems became of major interest in the last dec-
ades. Prominent examples are the study of phase transitions on classical random graphs, the modelling
and analysis of spin glasses, creating and analysing limit theories of discrete structures (like the graph
limit theory) as well as the asymptotic analysis of algorithms. While this list is far from being complete,
researchers from different fields realised that the interdisciplinary application of certain methods can
be used very profitably [135, 168].

This thesis gives examples in which methods inspired by the statistical physics analysis’ of large spin
glass systems are used to provide rigorous mathematical understanding of statistical inference problems
as well as a classical random constraint satisfaction problem. The richness provided by this approach is
due to combining ideas from physics like message passing with combinatorial arguments and interpret-
ations. Different combinatorial insights will be used to study large perturbed graphs, thus deterministic
graphs where a bit of randomness is added.

Finally, a rigorous mathematical approach to certain physics’ intuitions is carried out by analysing a
particular form of the cut-distance for discrete probability measures. We will create a theory of limiting
objects comparable to the well known and rich theory of graph limits [31, 32, 128] and formalise the
intuition of basic statistical physics’ concepts like pure states. This limiting theory will provide an eleg-
ant algorithmic regularity lemma for probability measures which can be translated into an algorithmic
version of the weak regularity lemma for graphs [84].

1.1. Message passing and a statistical physics’ approach

In this section, we will briefly introduce some of the most basic concepts of statistical physics that will be
used to describe mathematical problems in an elegant and uniform way. We will, as [135], describe stat-
istical physics as a part of probability theory, and will only sometimes give a meaningful interpretation
of the concepts in nature.

1.1.1. Physical systems and important quantities

Let Ω be a finite set and n be the size of a physical system. Then we say that this system contains n
particles and callΩn the configuration space. Thus, a configuration σ ∈Ωn assigns each particle i a spin
σi ∈ Ω. Furthermore, for k ≥ 1, we define the Hamiltonian (or energy) of a configuration σ ∈ Ωn as a
function

H(σ) =−
∑

i1,...,ik

Ji1,...,ik (σi1 , . . . ,σik ). (1.1.1)

In the special case k = 1, the system is called a non-interacting system as the different particles do not
interact. Conversely, if k ≥ 2, the system is called k−body interacting.

The real numbers Ji1,...,ik express the interactions of the particles. This setup is quite general and al-
lows for a lot of modifications, i.e., for each choice of Ω,k and H a different system is described. Some
systems of this family of systems are well known physical models, for example for magnetism or for
glasses. Depending on the choice of the interaction between its particles, a model is called ferromag-
netic, anti-ferromagnetic or a spin glass. Intuitively, a ferromagnetic system prefers the interaction of
particles with the same spin while an anti-ferromagnetic system prefers the opposite. Finally, in a spin
glass, we find ferromagnetic as well as anti-ferromagnetic interactions.

Some prominent models that fit into this generic setup are the Potts model [16] or the Edwards-
Anderson model [69]. The former is frequently used to study phase transitions – we will come to phase
transitions later – or to model systems with (easy) nearest neighbour interactions while the latter is a
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widely accepted mathematical model for magnetism [135]. Both models are defined on the d-dimensional
grid L = (V ,E) as an underlying graph structure. The configuration space of the Potts model is ΩPotts ={
1,2, ..., q

}
and it is a 2−body interacting system with Hamiltonian

HPotts(σ) =−
∑

i j∈E
J1

{
σi =σ j

}
. (1.1.2)

Therefore, if two neighboured particles have the same spin under a configuration σ, the correspondent
summand vanishes. Clearly, for J > 0, this system is ferromagnetic and for J < 0 it is anti-ferromagnetic.
On the other hand, the Edwards-Anderson model has only two spins (negative and positive), thusΩEA =
{−1,+1}. Furthermore, as it is a model for magnetism, it adds the possibility of the appearance of some
external magnetic field of strength B > 0. Moreover, its Hamiltonian allows for different interactions
between two neighboured spins, depending on where they are placed inside the system, therefore

HEA(σ) =−
∑

i j∈E
Ji jσiσ j −B

∑
i∈V

σi . (1.1.3)

Again, depending on the choice of Ji j being positive or negative for all edges i j , the model is ferro-
magnetic or anti-ferromagnetic, and when allowing different signs, it is a spin glass model. In such
cases, where the interaction between particles can be written as in (1.1.3), the interactions Ji j are called
coupling constants. The most prominent variant of the Edwards-Anderson model is the spin glass case
in which the coupling constants are chosen from a symmetric probability distribution, for instance as
standard Gaussians. In contrast, if we set Ji j > 0 for all coupling constants, we get the ferromagnetic
Ising model on the grid as a special case [100]. Analogously, setting all coupling constants to a negative
value renders the anti-ferromagnetic Ising model.

Now, to capture the idea behind a spin glass, an important physical observation is that any system
strives for being in a state of minimal energy. In the anti-ferromagnetic or ferromagnetic Ising model
it is quite easy to construct the configuration σ minimising H(σ). But in the spin glass situation of the
general Edwards-Anderson model it happens that a particle receives contradicting constraints from its
neighbours. If this happens, we call the system frustrated at this particle. It is computationally hard to
find a configuration that minimises the energy of the system [22]. On the other hand, there are many
configurations with comparable low energy that almost minimise the system’s energy – those states
are called metastable [167]. Besides being mathematically challenging, spin glasses are a very good
model for many real world materials, e.g. window glass or polymers or even granular media. Recent
models like spin glasses for these materials assume that certain atoms and molecules occur randomly
at random positions, thus the single particles behave either anti-ferromagnetically or ferromagnetically
or are frustrated. The emerging theory of spin glasses allows to analyse those materials although they are
random when seen microscopically, because on a macroscopic scale, they show describable properties
[167].

1.1.1.1. Mean field and diluted mean field models

The interactions in the Potts model as well as the Edwards-Anderson model are defined on the grid.
Therefore, those models have direct physical interpretations. The Edwards-Anderson model, for in-
stance, is a realistic mathematical model for magnetism [135]. Unfortunately, the interactions facilit-
ating this geometric constraints are challenging to analyse mathematically. One approach of simpli-
fication are so-called mean-field models. A well known example is the Sherrington-Kirkpatrick model
(SK-model) [158] in which all particles x1 . . . xn of a system interact with each other. More precisely, with
Ω= {−1,1}, and (J i j )i , j=1...n being standard Gaussians, its Hamiltonian reads

HSK(σ) =− 1p
n

n∑
i , j=1

J i jσiσ j . (1.1.4)
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An important feature of the SK-model (as well as of general mean-field models) is the fact that the (dis-
tribution) of the Hamiltonian is invariant under the permutation of the coordinates, thus the geometric
constraints of similar models on the grid (like the Edwards-Anderson model) vanish in the mean-field
theory. The way mean-field models are defined, they neglect local and long-range structure, thus they
are not able to describe all physically necessary properties of a system properly [157]. On the other hand,
the models are somewhat easy, thus studying mean-field models is physically as well as mathematically
more accessible than analysing their corresponding grid-models. For instance, the physical predictions
of the properties of the SK-model [143] were proven rigorously by Talagrand [162].

Diluted mean-field models try to overcome the weakness of mean-field models while staying access-
ible to mathematical analyses. We introduce the diluted version of the SK-model by Viana and Bray
[166]. Let Ω = {−1,1} and k ∼ Po(αn) be a Poisson random variable. Given k , let

{
i k , j k

}
k=1...k be uni-

form samples from {1, . . . ,n} and choose {J k }k=1...k from a symmetric distribution. All those random
variables are supposed to be mutually independent. Then, the Hamiltonian of the Viana-Bray model
reads

HVB(σ) =−
k∑

k=1
J kσi kσ j k

. (1.1.5)

Thus, the Viana-Bray interactions are defined on a sparse random graph where each particle interacts
with a Poisson number of other particles. Therefore, the long-range structure of a grid-model is clearly
missing, but in contrast to the mean-field approach, the random graph looks locally a bit more like a
grid, i. e., a very important feature is the finite connectivity on the random graph [134]. It turns out that
analysing appropriately chosen diluted mean-field models may yield exact solutions of spin glass like
models [144]. Thus, diluted mean field models carry important features of realistic models but are still
mathematically approachable.

Furthermore, it turns out that very important problems in theoretical computer sciences, like random
satisfiability and other random constraint satisfaction problems, can by expressed in the framework of
diluted mean field models [140]. We will introduce random constraint satisfaction problems in Sec-
tion 1.1.2.

After this short excursion to some prominent examples of particle systems, we formalise the intuition
behind finding a configuration of minimal energy within a large system. We may think of any physical
system with a Hamiltonian defined as in (1.1.1), but we will focus on diluted mean-field models.

1.1.1.2. Boltzmann distributions and ground states

If a system is observed showing a configuration of minimal energy, we will call this state a ground state.
We denote byΩn

0 ⊂Ωn the set of configurations of minimal energy. Let us define a probability measure
on the configuration space. Intuitively, a suitable probability measure should output the probability of
observing a certain configuration, preferring those configurations of low energy.

Therefore, let β> 0 be the inverse temperature of the system. Having fixed an energy function H and
an inverse temperature β, we define the Boltzmann distribution as a probability distribution onΩn as

µβ(σ) = exp
(−βH(σ)

)

Zβ
, where Zβ =

∑
σ∈Ωn

exp
(−βH(σ)

)
. (1.1.6)

In (1.1.6), the normalising constant Zβ is known as the partition function of the system and we will see
in due course that the partition function itself carries a lot of information about the system. Clearly, the
lower the Hamiltonian H(σ), the more probable is σ under µβ. This effect decreases with β being small
(the temperature of the system is large) and increases with β being large (the system’s energy is small).
More precisely, with β→ 0 (high-temperature limit), the Boltzmann distribution becomes the uniform
distribution on Ωn . On the other hand, in the low-temperature limit, the Boltzmann distribution cor-
responds to the uniform distribution on the ground states, thus on the configurations minimising the
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system’s energy. Formally,

lim
β→0

µβ(σ) = 1

|Ωn | , and lim
β→∞

µβ(σ) = 1
{
σ ∈Ωn

0

}
∣∣Ωn

0

∣∣ . (1.1.7)

As statistical physics’ main intention is to study the macroscopic behaviour of very large systems con-
sisting of single particles and their interactions, various properties of a statistical system are studied in
the thermodynamical limit (n → ∞) [135]. Such a physical system can be described by various ther-
modynamic quantities. In the following, we will introduce the most important ones for our purposes.
As already mentioned, Zβ is the partition function of the system. We denote by φn,β = ln(Zβ) the free

entropy and by φβ = limn→∞
ln(Zβ)

n the free entropy density. For any β > 0, φβ is convex, therefore it is
continuous in every point in which it exists. We call the non-analytic points of φβ phase transitions.
Of course, non-analytical points are interesting mathematical objects, but physically speaking, those
phase transition points indicate qualitative changes in the physical system [135].

In particular, those phase transitions corresponding to the so-called replica symmetry breaking are of
deeper interest and will be studied later.

1.1.2. Phase transitions in special systems: Random Constraint Satisfaction

In the very general setup of a physical system with a given energy function (1.1.1), it is possible to de-
scribe constraint satisfaction problems (CSPs) which are prominently studied in computer sciences and
mathematics. One of the most important constraint satisfaction problem is the k−SAT problem.

1.1.2.1. k−SAT and factor graphs

A k−SAT formulaΦ is a conjunction of m clauses

Φ=Φ1 ∧ . . .∧Φm

such that each clause is a disjunction of exactly k literals out of n variables x1 . . . xn . One of the most
intriguing questions is, obviously, whether there is a mapping σ : {x1, . . . , xn} → {−1,+1}n that assigns
the Boolean values TRUE (+1) and FALSE (-1) to each variable such that each clause (and therefore the
formula Φ) is satisfied. Without loss of generality, we suppose that a variable appears only once in a
clause (i.e., x and ¬x do never belong to one clause). Let us describe a k−SAT formula as a factor graph.

A factor graph G = (V ∪F,E) is a bipartite graph with vertex classes V (variable nodes) and F (factor
nodes) and edges E [81]. Sometimes, it is convenient to call the factor nodes constraints. We follow
Mézard and Montanari [135] for construction of a factor graph GΦ corresponding to a k−SAT formula
Φ. Define

V = {x1, . . . , xn} and F = {
aΦ1 , . . . , aΦm

}
.

Furthermore, we introduce two different types of edges E = E+∪E− such that xi aΦj ∈ E+ if and only if

xi appears in Φ j and xi aΦj ∈ E− if and only if ¬xi appears in Φ j . The resulting factor graph has a fixed
degree of k at each factor node while the variable node degree is not fixed in general.

While deciding whether a given k−SAT formula is satisfiable is known to be N P hard for k ≥ 3 [109],
it is easily possible to describe the problem as a physical system. Similarly as Kirkpatrick et al. [111], we
interpret the n variables as particles of a system and assign each particle a spin from Ω = {−1,+1}. A
specific assignment is expressed by a configuration σ ∈Ωn . The Hamiltonian turns out to be

Hk−S AT (σ) =
∑

aΦj ∈F

1
{

aΦj is not satisfied under σ
}
=

∑
aΦj ∈F

1





∑
xi aΦj ∈E+

σi −
∑

xi aΦj ∈E−
σi = 0



 .

Therefore, Hk−S AT (σ) equals the number of unsatisfied clauses of Φ under σ. Let us now take the low-
temperature limit and observe that the resulting Boltzmann distributionµ∞ = limβ→∞µβ is the uniform
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x1 x2 x3 x4 x5

a1 a2 a3 a4

Figure 1.1.: The factor graph GΦ corresponding to the 3−SAT formulaΦ : (x1∨x2∨x3)∧ (¬x2∨x3∨x4)∧
(¬x1 ∨¬x3 ∨¬x5)∧ (x2 ∨¬x3 ∨x5). The n = 5 variable nodes are represented as circles while
the m = 4 factor nodes are drawn as rectangles. The edge color represents the sign of the
literal xi in clause a j . Thus, si j =−1 if edge xi a j is red and si j = 1 otherwise. At each factor

node a j we have a local functionΨa j : {−1,+1}|∂a j | → {−1,+1} such that we haveΨa j (σ∂a j ) =
1

{
maxxi∈∂a j

{
σi si j = 1

}}
for an assignment σ ∈ {−1,+1}5.

distribution on all configurations that satisfy the most clauses ofΦ. Now letσ∼µ∞ be a random sample,
then the formula Φ is satisfiable if and only if Hk−S AT (σ) = 0. The N P hardness of k−SAT for k ≥ 3 im-
mediately confirms the fact that it is in general computationally hard to find configurations of minimal
energy in a physical system. We observe that

µ∞(σ) = lim
β→∞

∏
aΦj ∈F

exp
(
−β1

{
aΦj is not satisfied under σ

})

Z (Φ)
. (1.1.8)

The possibility to write the Boltzmann distribution in a factorised form as in (1.1.8) yields a few insights
that directly generalise to other constraint satisfaction problems.

• Each factor of (1.1.8) corresponds to a factor node in the factor graph GΦ, therefore, the factor
graph perfectly describes the factorisation of the Boltzmann distribution into local constraints.

• For each β > 0 a non-satisfied clause gives a penalty of exp(−β) to the probability of observing
a certain configuration. Given that Φ is satisfiable, in the low-temperature limit (or sometimes
called at zero temperature), the Boltzmann distribution is supported on the satisfying assign-
ments.

• Therefore, given that a formula is satisfiable, the partition function of the Boltzmann distribu-
tion in the low-temperature limit of the k-SAT problem (Z0(Φ) =

∣∣Ωn
0

∣∣) just equals the number of
satisfying assignments and is an object of major interest in solving CSPs.

1.1.2.2. Random CSPs

In the general context of CSPs random constraint satisfaction problems gained a lot of attention [156].
Let us briefly sketch, what random means in this context. As we already discussed, a CSP can be ex-
pressed by a factor graph. Thus, given n variables and m factors (where the number of factors might
be random itself), we randomly connect variable nodes and factor nodes. Depending on the problem
itself, we can have arbitrary distributions of degree sequences for both, factor nodes as well as variable
nodes. Given specific degree sequences, a random factor graph is chosen uniformly at random among
all possible factor graphs satisfying the degree sequences.

Let us explain this very general description as before with the example of a random k-SAT formula.
Given n variables and m clauses, initialise a factor graph on n variable nodes x1, . . . , xn and m factor
nodes a1, . . . , am . Each factor node has degree k and variable xi has a random degree d i ∼ Po(mk/n).
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Given the event that
∑n

i=1 d i = mk, select one (simple) graph with the given degree sequences uniformly
at random.

In this setting, a very natural question arises: Is a formula obtained by this process satisfiable? Obvi-
ously, such questions can only be answered with high probability, thus with a probability tending to 1
with n →∞. This question has been studied for a long time and various tools of statistical physics have
been applied to this problem [37, 111] that led to a (non-rigorously proven) prediction for a critical ratio
αs = ms/n, such that in the thermodynamic limit, each random k −S AT formula with a smaller clause-
to-variable ratio than αs is satisfiable with high probability, whilst each formula with a larger ratio is
not satisfiable with high probability. Such a phenomenon is called a phase transition and will be further
discussed in a moment. This conjecture attained a lot of attention within the mathematical community
and a lot of important steps towards proving this conjecture were done [4, 51, 54, 91] until Ding, Sly and
Sun [64] managed to prove the existence of the phase transition for large enough k at

αs = 2k ln2− 1+ ln2

2
+O(2−k ).

The existence of such a satisfiability threshold is not limited to the random k-SAT but is a genuine phe-
nomenon of random constraint satisfaction problems [136]. The satisfiability threshold, however, is not
the only interesting threshold regarding random CSPs. Indeed, let S be the solution space of a random
constraint satisfaction problem (we may think about S being the set of all configurations satisfying a
random k-SAT formula). We say that a pair of solutions is connected if its Hamming distance equals 1
and call a subset of Ωn consisting of connected solutions a cluster. It turns out that the geometry of S

has a highly complicated structure, but fortunately, the so-called 1-Replica Symmetry Breaking (1-RSB)
Ansatz from statistical physics draws a non-rigorously proven but fine grained picture. We will discuss
this Ansatz in a moment. It conjectures that, with growing clause-to-variable ratio α, the solution space
S undergoes four phase transitions (see Figure 1.2). While being a non-rigorous tool, the existence of
the predicted phase transitions could be already proven rigorously for some models [161]. We letα start
at 0 and let it increase continuously, then we observe four critical valuesαu ≤αclus ≤αcond ≤αs at which
S changes dramatically [121, 138, 169, 170].

1. For α < αu , there is exactly one cluster of solutions. Therefore, this phase is called the unique
phase.

2. Once α exceeds αu , the system is in the extremal phase. (Very) few and exponentially small
clusters of satisfying configurations appear besides one cluster containing almost all solutions.

3. At the clustering threshold αclus, the set of solutions shatters into exponentially many exponen-
tially small clusters. Withing this phase, the size and and number of clusters reduces further with
α increasing.

4. Subsequently, when α passes the condensation threshold, the solutions condense into a bounded
number of clusters.

5. Finally, at the satisfiability threshold αs , S becomes empty.

While an intuitive explanation what a phase transition is was already given, until now, we lacked a
formal definition. We distinguish between strict and coarse phase transitions in random discrete sys-
tems. Let P be a property, and α be a parametrisation of the system. For instance, P could be the
property that a random k-SAT formula is unsatisfiable and α is the clause-to-variable ratio. Then the
system (the random factor graph) G undergoes a strict phase transition at a threshold α∗ if for any ε> 0
we have

P
(
G ∈P |α≤ (1−ε)α∗)= o(1) and P

(
G ∈P |α≥ (1+ε)α∗)= 1−o(1).

Similarly, a coarse phase transition occurs if

P
(
G ∈P |α= o(α∗)

)= o(1) and P
(
G ∈P |α=ω(α∗)

)= 1−o(1).
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Figure 1.2.: Overview over the geometry of the solution space in random constraint satisfaction prob-
lems undergoing four important phase transitions obtained by the physics’ 1-RSB Ansatz.
The graphic is modified after [138, 169, 170].

(Clearly, the definition above requires P to become more probable for increasing α, it can analogously
be defined for a property whose probability increases with decreasing α.)

Due to Friedgut and Bourgain [82] it is very well understood that non-uniform strict phase trans-
itions exist in random structures if we look at monotonously increasing or decreasing properties. For
example, the property for a random k−SAT formula to be unsatisfiable is clearly of this kind, as adding
more clauses only increases the probability to be unsatisfiable. Of course, Friedgut and Bourgain’s res-
ult only tells us that there are phase transitions, but it cannot tell us, where they are. For many graph
properties regarding the random graph G (n, p)1 the exact position of the phase transitions is known
[103]. For random constraint satisfaction problems, things are much more unexplored, even if recently
the satisfiability thresholds could be pinned down rigorously for many random CSPs [25, 43, 55, 64].
The large temporal gap between the beginnings of studying random CSPs and the discovery of the exact
satisfiability thresholds might be due to the reason that a simple first-moment calculation overestim-
ates the number of satisfying assignments in many random CSPs dramatically, thus E [Z (Φ)] À Z (Φ)
w.h.p. [55]. In the statistical physics’ interpretation, this is due to the existence of the condensed phase
in which the solution space is dominated by few large clusters. Therefore, the expected number of solu-
tions is blown up by solutions that do not occur in typical formulas frequently and therefore, obviously,
the first moment method that calculates the critical value αav g such that E [Z (Φ)] = 0, fails.

Dealing with such effects is non-trivial, but the physics’ 1-RSB Ansatz is a very promising (non-rigorous)
approach towards understanding the condensed phase.

1.1.2.3. Phase transitions in physical systems and replica symmetry

Let us start with explaining major concepts of this Ansatz using a fairly easy model. The Curie-Weiss
model [71] is a simple model for ferromagnetism. LetΩ= {−1,1} and define the corresponding Hamilto-
nian as

HCW (σ) =− 1

n

∑
i 6= j∈[n]

σiσ j −B
n∑

i=1
σi . (1.1.9)

We directly observe by above’s discussion that the Curie-Weiss model is a prime example of a mean-field
model as all pairs of variables interact with each other. Again, B is the strength of an external magnetic
field and the first sum in (1.1.9) reduces the energy of such configurations that do not exhibit many dif-
ferent spins. Following Mézard and Montanari [135], we are going to compute the partition function of
the Curie-Weiss model non-rigorously, but each step can in principle be turned into a rigorous argu-
ment. We emphasise that all formulas (and their derivations) can be found in [135]. First, we need a

1We define the binomial random graph as Gilbert [90], thus every edge is present independently of the rest with probability
p.
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simple global property of a given configuration σ: the magnetisation. Let

m(σ) = 1

n

n∑
i=1

σi

be the magnetisation of σ, then the Hamiltonian (1.1.9) can be written as

HCW (σ) = n

(
1

2
− 1

2
m(σ)2 −Bm(σ)

)
, (1.1.10)

thus can be expressed in terms of the magnetisation. Therefore, in the partition function, we can cluster
the summands by their magnetisation m ∈M = {−1+2`/n : `= 0. . .n} and find [135, Eq. (2.75)]

ZCW (β,B) = exp
(−nβ/2

) ∑
m∈M

(
n

n(1+m)/2)

)
exp

(
nβ

2
m2 +nβBm

)
. (1.1.11)

Using the standard asympotical behaviour of the binomial coefficient
( n
αn

)∼ exp(nH(α)) where H(α) is
the entropy of a Be(α) variable and the definition

φm(β,B) =−β
2

(1−m2)+βBm +H

(
1+m

2

)
,

(1.1.11) can be simplified to [135, Eq. (2.77)]

ZCW (β,B) ∼
∫ 1

−1
exp

(
nφm(β,B)

)
dm. (1.1.12)

Here and subsequently, we use ∼ for asymptotic equality. Then the Laplace method applied to (1.1.12)
yields [135, Eq. (2.79)]

1

n
ln

(
ZCW (β,B)

)∼−β max
m∈[−1,1]

φm(β,B). (1.1.13)

The maximum turns out to be achieved away from the boundary and is dependent on the inverse tem-
perature β as well as the external magnetic field B . Let us, for the moment, suppose that there is no
external magnetic field, thus B = 0. Then for 0 ≤ β ≤ 1, φm(β,0) is concave and takes its unique max-
imum at m = 0. Therefore, for n → ∞, if we sample a configuration from the underlying Boltzmann
distribution µCW defined as in (1.1.6), we do not know the exact configuration, but in almost all cases,
its magnetisation will turn out to be 0, as all other configurations have exponentially smaller probab-
ility mass under µCW . In other words, almost all created instances of the system will exhibit the same
property - thus we find a high degree of symmetry between different instances.

If now, on the other hand, β exceeds the critical value of 1, φm(β,0) is symmetric with respect to the
y-axis and exhibits two global maxima m∗(β) > 0 and −m∗(β) < 0 whose peaks become larger with
increasing β. Therefore, if we sample sufficiently often from the Boltzmann distribution, half of the
configurations will have magnetisation m∗(β) and the other half will show a magnetisation of −m∗(β).
In this sense, the symmetry is broken.

Therefore, in the thermodynamic limit, the space of all configurations of minimal energy Ωn
0 can be

decomposed into two pure statesΩn
0 =Ωn

+∪Ωn
− where

Ωn
+ = {

σ ∈Ωn
0 : m(σ) = m∗(β)

}
and Ωn

− = {
σ ∈Ωn

0 : m(σ) =−m∗(β)
}

.

In the setting of Figure 1.2, this corresponds to a condensed phase, where the configurations of one
cluster have significantly more particles of spin −1 than the configurations in the second cluster.

This observation corresponds intuitively to a fairly important feature of condensation: the marginal
probabilities of the single particles under the Boltzmann distribution are dependent. Indeed, if σ is a
random element ofΩn

0 and we get the information that particle x1 has spin σ1 =−1, it is more likely for
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σ to be an element ofΩn
− and therefore, in expectation, the other particles prefer spin −1 as well.

Let us at this point shortly discuss the so-called replica symmetry and replica symmetry breaking. Two
replicas can be just seen as identically distributed instances of the same system. If such replicas are
symmetric, the following effect takes place. Suppose we sample σ,σ′ from the Boltzmann distribution
of a physical system and calculate the overlap of σ and σ′ which is, for the Curie-Weiss model, defined
as 〈

σ,σ′〉= n−1
n∑

i=1
σiσ

′
i .

Now, if the system is replica symmetric, we suppose that the overlap between two randomly sampled
configurations is concentrated around exactly one value. If this is not the case, we say that replica sym-
metry breaking is present. The last formulation has to be read very cautiously because its definition is
actually a bit more complicated. We say that a system is still replica symmetric if the pure states are
related by global symmetries [131, 135]. The latter is clearly the case in the Curie-Weiss model asΩn

− can
be turned intoΩn

+ (and vice versa) by flipping the spin of each particle.
Overall, we learned the intuition behind replica symmetry and replica symmetry breaking as well as

that we defined pure states. In the following, we will formalise this intuition a bit.

1.1.2.4. Pure state decomposition, replica symmetry and the cut-distance

Let us suppose that we analyse the solution space and the Boltzmann distribution of a random con-
straint satisfaction problem (or a diluted mean-field model). Thus, the underlying graph corresponding
to the interactions of the n particles is a sparse random graph. The physics’ prediction suggests that
the Boltzmann distribution has a fairly comfortable property before condensation (thus, in the replica
symmetric phase): there are no long-range correlations present. More specifically, suppose we know
the prevalence for a specific spin of the i−th particle xi . If particle x j is far away (in the sparse random
graph) from xi , then we do not gain any information about the spin of x j from this knowledge. Formally,
given a probability measure µ onΩn , we denote by µi the marginal of µ on spin i . More generally, for a
set I ⊂ [n], µI is the marginal probability on the particles in I . Then, we say that µ is ε-symmetric if

Ei , j

[∥∥∥µ{i , j } −µi ⊗µ j

∥∥∥
TV

]
≤ ε.

Thus, ε-symmetry formalises the intuition that far-apart particles do not influence each other.
Now, after the condensation threshold, such long-range correlations start to appear. Even if the graph

still looks locally tree-like, like every sparse random graph, the knowledge about a spin of a far-away
particle might influence the probability of observing a specific spin on another particle. Recall that in
the condensed phase of a random constrained satisfaction problem, the solution space is predicted to
consist of clusters of solutions. Knowing the spin of a single particle might contain information on which
of those clusters the configuration at hand lies in and therefore, this information pushes the probabil-
ity to observe a certain spin on a different particle. But, if 1−RSB is present, it is predicted that within
one of those clusters, those long-range correlations disappear. More precisely, if Ξ1, . . . ,Ξ` is the parti-
tion into clusters of Ωn in the condensation phase and the physicist’s prediction of 1−RSB takes place,
the Boltzmann distribution conditioned on one of these pure states, is symmetric. Formally, if µ is the
Boltzmann distribution, we have for all 1 ≤ k ≤ `

Ei , j

[∥∥∥µ{i , j }[·|Ξk ]−µi [·|Ξk ]⊗µ j [·|Ξk ]
∥∥∥

TV

]
= o(1).

We stress at this point that we only described the so-called 1−RSB Ansatz. In physics’ literature, the rep-
lica symmetry breaking might be of different orders. Intuitively, the clusters of solutions described here
might themselves decompose into clusters of solutions (2−RSB) iteratively (until ∞−RSB) before the
pure states (and thus absence of long-range correlations) appear. If the higher order RSB is interpreted
via the overlap distribution as previously 1-RSB, we find that k−RSB corresponds to the concentration of
the overlap onto k +1 values up to symmetry. Of course, this perfectly fits into the picture drawn before
with clusters of clusters of clusters... Indeed, suppose that 2−RSB is present and suppose we have big
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clusters C j and contained small clusters C j k . If we draw two configurations from different big clusters
C j and C j ′ (independent of the small clusters), we observe a certain overlap value concentrated around
q0 (this are two configurations which are very far apart). If, on the other hand, we sample configurations
within the same small cluster Ci j , the overlap will be concentrated around q1 and finally, if the configur-
ations come from the same big cluster but from different small clusters, we find an overlap concentrated
around a third value q2.

Thus, the geometrical interpretation directly shows that the overlap distribution facilitates a kind of
ultra-metricity. What is an ultra-metric? We say that a metric d is an ultra-metric if the triangle in-
equality holds in a stronger version, e.g. d(a,b) ≤ max{d(a,c),d(b,c)}. This analytical property has one
advantage if compared to the geometric interpretation of clusters of clusters of... Indeed, in the case of
∞−RSB, the single clusters would not be well separated but the analytical property of ultra-metricity
still holds and describes the relevant behaviour [135, Section 8.2.2]. The interested reader can find a
detailed discussion of (approximate) ultra-metricity and the replica symmetry breaking in an article of
Jagannath [101].

Let us leave the interpretation of replica symmetry breaking for the moment, we will come back to it in
a moment. Mathematically spoken, there is a decomposition of the Boltzmann distribution which kind
of resembles this pure state decomposition. It comes along with a very simple algorithm: the pinning
operation [49]. Extending and analysing results in context of the pure-state decomposition is part of one
contribution of this thesis (c.f. Section 2.3). To be more precise, for an arbitrary probability measure on
Ωn , we can express the property of being o(1)-symmetric in terms of being close to a specific measure
under a carefully chosen metric - the cut-distance. For two probability measures η,ν on a finite set Ξ,
let Γ(η,ν) denote the set of all couplings γ of η and ν, thus γ is a probability measure on Ξ×Ξ with
marginals η and ν. Further, let Sn denote the set of permutations φ : [n] → [n]. Then, the cut-distance
is defined as

∆�
(
µ,ν

)= inf
γ∈Γ(µ,ν),
φ∈Sn

sup
S⊂Ωn×Ωn ,

X⊂[n],
ω∈Ω

∣∣∣∣∣∣∣

∑
(σ,τ)∈S,

x∈X

γ(σ,τ)
(
1 {σx =ω}−1

{
τφ(x) =ω

})
∣∣∣∣∣∣∣
. (1.1.14)

The definition (1.1.14) can be interpreted as a kind of a two-player game. The first player chooses a
coupling and a permutation of the particles under which µ and η look as much alike as possible. Now,
given the choices γ and φ, the second player tries to find a subset of coordinates and configurations, on
which the two measures differ as much as possible. We stress that the cut-distance is indeed a very weak
metric [49]. But it suffices to gather the idea of ε−symmetry. Let µ be a probability measure on Ωn and
define

µ̄(σ) =
n∏

i=1
µi (σi ) (1.1.15)

as the product measure on the marginals of µ. Clearly, µ̄ is a probability measure on Ωn as well and if
µ is a Boltzmann distribution such that the spins on all particles are completely independent, we have
µ≡ µ̄. Thus, if most pairs of particles do not influence each other, we would expect thatµ and µ̄ are close
to each other under a certain distance. The cut-distance turns out to exactly express this connection. As
proven by Coja-Oghlan and Perkins [53, Proposition 2.5], we have

∆�
(
µ, µ̄

)≤ ε3 =⇒ Ei , j

[∥∥∥µ{i , j } −µi ⊗µ j

∥∥∥
TV

]
≤O(ε)

and
Ei , j

[∥∥∥µ{i , j } −µi ⊗µ j

∥∥∥
TV

]
≤ ε3 =⇒∆�

(
µ, µ̄

)≤O(ε).

Thus, the cut-distance is a perfectly suiting mathematical tool to formalise the idea of pure states and
the absence of long range correlations. Furthermore, as already mentioned, the cut-distance can be
used to find a decomposition of any configuration spaceΩn for a large enough system (n ≥ n0 ∈N) into



Introduction 16

finitely many parts E1, . . . ,E` such that any probability measure conditioned on a specific part µ[· | E j ]
is close to the product of its marginals under the cut-distance, hence ∆�

(
µ[· | E j ], µ̄[· | E j ]

) ≤ ε (for any
ε> 0). This result is a type of a regularity lemma and will be discussed in more detail in Section 1.3.1.

The cautious reader might ask how this finite decomposition fits into the predictions of replica theory.
Indeed, the physics’ prediction is that the phase space decomposes into infinitely many pure states (if
n → ∞) if some kind of replica symmetry breaking is present [131] while the pinning operation – and
regularity lemmas which will be discussed later – yield a finite decomposition. But the pinning operation
(as well as the regularity lemmas) only guarantee the existence of states E1, . . . ,E` with above’s property
such that µ(E1∪ . . .∪E`) ≥ 1−ε for any small but constant ε> 0. Therefore, there can be infinitely many
clusters which carry very little probability mass under the Boltzmann distribution.

After having described how the solution space of random constraint satisfaction problems (respect-
ively, diluted mean field models) might look like, we will study a very specific random constraint satis-
faction problem in more detail which plays the leading role in one of this thesis’s contributions.

1.1.3. The random 2-SAT problem

While we already introduced the k−SAT problem for arbitrary k, we will focus on the very special case
k = 2. This setup plays a very specific role, as it is the only k-SAT problem in which deciding whether
a given formula is satisfiable and, if so, finding a satisfying assignment is computationally easy [120].
For the random 2−SAT problem, the satisfiability threshold is well known since the early 1990’s by inde-
pendent works of Chvatal and Reed [40] and Goerdt [91], which both link the problem to the well studied
percolation phase transition in a random directed graph. Subsequently, Bollobás et al. [30] managed to
analyse the scaling window of the satisfiability threshold in more detail which turns out to correspond
to the scaling window of the giant component in the binomial random graph [29].

Even if the satisfiability threshold itself is well understood, things were completely different for a ques-
tion that seems quite innocuous at first. If a random 2−SAT formula is satisfiable w.h.p., how many sat-
isfying assignments exist? Indeed, this question was posed prominently by Fernandez de la Vega [78]
and it actually turns out that counting the number of satisfying assignments is computationally hard,
this counting problem lies in #P [165].

Describing and analysing the partition function of a random 2−SAT formula would answer this ques-
tion as the partition function exactly counts the number of satisfying assignments, at least, if the formula
is satisfiable in the first place. Luckily, there is a non-rigorous heuristics from statistical physics which
leads to a precise prediction of how this partition function looks like. One of this thesis’s contribution
verifies this prediction rigorously as will be seen in Section 2.2. Intuitively, the non-rigorous physics’
approach calculates the marginals of the Boltzmann distribution, thus for each variable node x they get
the probability that x is assigned the value 0 or 1 under a randomly chosen satisfying assignment Φ.
Now, it is possible to connect Z (Φ) with those marginal probabilities through an operator called Bethe
functional. We will subsequently describe how to (non-rigorously) calculate marginals of the Boltzmann
distribution in Section 1.1.4 and how to link them to the partition function in Section 1.1.5. We start by
finding the marginal probabilities of the Boltzmann distribution. In physics’ literature, specific message
passing algorithms are conjectured to be able to do so.

1.1.4. Getting the marginals through message passing

The key idea behind message passing algorithms is the following. Given a factor graph G , an algorithm
computes messages for each edge of G such that in each round of the algorithm, a set of messages is
sent on every edge of the graph in parallel. Those messages can be sent from the variables to the factors
and vice versa. A computationally intriguing advantage of message passing algorithms is that all mes-
sages are computed through local functions at the vertices of G . Probably the most prominent message
passing algorithm is Belief Propagation BP. It was discovered under various names in different fields
of research, for instance, in statistical physics it is known as the Bethe-Peierls approximation [27], while
coding theorists developed the sum-product algorithm [122]. The terminology Belief Propagation which
we will use subsequently, has its origins in the research towards artificial-intelligence [145].
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1.1.4.1. Belief Propagation

Let G = (V ∪F,E) be a given factor graph. BP is used to estimate the marginal distribution for each
variable, for instance, if G represents a k−SAT formula, this corresponds to the probability of a specific
variable being set to 1 under a random satisfying assignment. While its first occurrence can be traced
back to the 1930’s in statistical physics [27], it was Pearl [145] who proved that BP correctly calculates
the marginals if G is a tree. Furthermore, it is a widespread conjecture that BP performs well if the graph
is at least locally tree-like and there are almost no long-range correlations as discussed in Section 1.1.2.4
[146]. Probably due to its performance as well as being an efficient algorithm, BP finds its applications
in artificial intelligence and information theory. Empirically it was shown that BP can be used in vari-
ous applications including ldpc-codes and turbo-codes in coding theory, free energy approximation in
statistical physics and satisfiability in theoretical computer science [38].

Let us now introduce the messages sent by BP formally. In order to do so, we require a few definitions.
LetΩ be a finite set (the set of spins as before) and G = (V ∪F,E) a factor graph. Denote by x1, . . . , xn ∈V
the n variables and by a1, . . . , am ∈ F the m factors of G . Furthermore, let σ ∈Ωn be a configuration that
assigns each variable a specific spin from Ω. Further, for I = {i1, . . . , ik } ⊂ [n], we set σI = (σi1 , . . . ,σik ) ∈
Ωk and denote byΩI the subspace ofΩn given by the coordinates of I . Moreover, for a vertex v ∈V ∪F ,
we denote by ∂G v ⊂ V ∪F the set of neighbours of v in G . If the context clarifies what the underlying
graph structure is, we write ∂v for the sake of brevity. Finally, we use ∝ to express equality up to a
normalisation constant and write f (n) ∼ g (n) if f (n)/g (n) → 1 for n →∞.

Before stating the BP messages, let us revisit the definition of a factor graph. As already introduced,
one merit of a factor graph is that the Hamiltonian of the corresponding physical system factorises such
that the Boltzmann distribution can be written as

µ(σ) ∝
m∏

i=1
ψai (σ∂ai ). (1.1.16)

Here,ψa1 , . . . ,ψam , are the local contributions of the single factor nodes to the system’s energy. Of course,
given a factor graph G = (V ∪F,E ,Ψ) with weight functionsΨ= {

ψa1 , . . . ,ψam

}
, we can associate a corres-

ponding Hamiltonian such that the system’s energy is calculated via (1.1.16). It turns out that sometimes
it is more convenient to use the factor graph notation and talk about weight functions instead of refer-
ring to the physical interpretations.

We are now in position to state the BP messages on such a factor graph G = (V ∪F,E ,Ψ). For y ∈Ω, a
variable x ∈V and a test a ∈ F they read

ν(t+1)
x→a (y) ∝

∏
b∈∂x\a

ν(t )
b→x (y) and ν(t )

a→x (y) ∝
∑
σ∂a\x

ψa(σ∂a)
∏

x ′∈∂a\x
ν(t )

x ′→a(y). (1.1.17)

More precisely, the set
{
ν(t )

x→a

}
x∈V ,a∈F

is called the set of variable-to-factor messages at time t while the

factor-to-variable messages are
{
ν(t )

a→x

}
x∈V ,a∈F

. Clearly, each message itself is a probability distribution

on Ω. Intuitively speaking, ν(t )
x→a represents the marginal distribution of spins on variable x in a model

that does not contain factor a and analogously, ν(t )
a→x is the marginal distribution of x in a model where

all factors in which x is contained except of a have been deleted.
Observing those messages, various natural questions arise. Probably the most intriguing are the fol-

lowing.

• Do these messages converge to a fixed-point?

• If so, is the fixed-point unique?

• If these messages indeed converge to a unique fixed-point, how are those messages related to the
marginals of the Boltzmann distribution?

These questions can be answered rigorously for tree-factor graphs, thus for graphs G that do not contain
cycles. Furthermore, it is conjectured that similar results hold for locally tree-like graphs if the solution
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space exhibits certain properties. This conjecture was proven rigorously in some special cases [121,
50]. We will discuss those questions in Section 1.1.5. BP is designed to be applied to any distribution
that can be written like (1.1.16), but in many CSPs, the weight functions have a very specific form, as
the Hamiltonian just counts the number of unsatisfied constraints (clauses, in above’s terminology on
satsifiability). Therefore,

ψa(σ∂a) = 1−1 {a is satisfied under σ} . (1.1.18)

In this special case, the messages (1.1.17) simplify remarkably, i.e., if the set of messages at time zero is
initialised with values in {0,1}, then this condition still holds after an arbitrary number of updates [135,
Proposition 14.5]. The resulting update rules are known as Warning Propagation WP [75].

1.1.4.2. Warning Propagation

The semantic interpretation of those integer-valued BP messages is the reason why WP holds its name.
More precisely, for a spin y ∈Ω, a variable x and a factor a, we have

νx→a(y) = 1 ↔ according to all factors b ∈ ∂x \ a variable x

should not have spin y under a satisfying assignment.

νx→a(y) = 0 ↔ according to all factors b ∈ ∂x \ a variable x (1.1.19)

may take spin y under a satisfying assignment.

Thus, the variable-to-factor messages {νx→a} warn a factor node a if a variable can probably not be used
to satisfy a taking certain values. WP itself is a broadly used algorithm in random CSPs and it is known
that it finds all direct implications of a partial assignment of the variables, based on the local structure
[135]. Furthermore, it is known to find satisfying assignments of different satisfiability problems under
mild conditions, for instance, it can be used to solve certain instances of random 3-SAT [75].

Let us suppose for the moment that BP or WP are exact on a given problem. We will now discuss what
we actually understand by being exact.

1.1.5. Boltzmann marginals and the partition function

Let, as above,
{
ν(t )

x→a

}
and

{
ν(t )

a→x

}
be the BP messages at time t . Then we define the BP estimation of

the marginals at time t as

ν(t )
x (y) ∝

∏
a∈∂x

ν(t )
a→x (y). (1.1.20)

Hence, ν(t )
x is the product measure over all incoming messages at variable x. If µ is the corresponding

Boltzmann distribution, we have that ν(t )
x is an estimation for µx . If we say that BP is exact (for instance,

on factor graphs that are acyclic), then it is rigorously proven that

ν(t )
x =µx

if t is large enough. This, of course, already implies that the BP messages converge to a fixed-point. We
call the set of fixed-point messages

{
ν∗x→a

}
and

{
ν∗a→x

}
respectively.

Now, let us discuss, how this helps understanding the partition function of the underlying system.
Given a factor graph G = (V ∪F,E ,Ψ) and a set of messages ν= ({νx→a} , {νa→x }), we define the Bethe free
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entropy as follows. Recall that those messages are probability distributions onΩ and define

Ξa(ν) = ln

( ∑
σ∂a∈Ω∂a

ψa(σ∂a)
∏

x∈∂a
νx→a

)
, Ξx (ν) = ln

( ∑
ω∈Ω

∏
b∈∂x

νb→x

)
,

Ξx,a = ln

( ∑
ω∈Ω

νx→a(ω)νa→x (ω).

)
(1.1.21)

Thus (Ξa)a∈F and (Ξx )x∈V describe the entropy on the factor nodes and on the variables respectively,
while Ξx,a measures their interaction. If we put in the set of fixed-point messages ν∗, we get the Bethe
free entropyΦ as

Φ=
∑
a∈F

Ξa(ν∗)+
∑

x∈V
Ξx (ν∗)−

∑
ax∈E

Ξx,a(ν∗). (1.1.22)

If BP is exact on a model, then we find

ln Z =Φ. (1.1.23)

Thus, (1.1.23) gives a recipe, how to calculate the partition function of a physical system, for instance, a
random constraint satisfaction problem, by using an easy to implement efficient algorithm. Due to the
N P -hardness of calculating ln Z in general, as discussed earlier, this can of course only be true for very
specific instances of random CSPs (if we suppose P 6= N P ).

Indeed, it turns out that the Bethe approximation by Belief Propagation, which we will call the pro-
cedure above, yields the correct value of the partition function sometimes [50, 52, 145] and sometimes
it does not [126]. The latter is assumed to happen, if the system’s solution space had undergone a phase
transition at which replica symmetry breaking occurred. A statistical physics’ approach suggests to run
BP on a modified problem in this case.

1.1.5.1. The (1-RSB) Cavity Method

Before going deeper into the 1-RSB cavity approach, we shortly stress that the method itself is a highly
non-rigorous technique. Furthermore, this presentation’s focus is solely to draw an intuitive idea behind
the 1-RSB cavity method and not to carry out technical details.

Intuitively, BP depends on a central assumption, namely, whenever we delete a factor node, the spins
on the affected variables become roughly independent. This assumption is clearly violated when the
factor graph either contains short cycles, or whenever long-range correlations appear [135]. As (sparse)
random factor graphs which we deal with in this thesis (or: diluted mean-field models) look locally tree-
like, the failure of BP needs to be due to the appearance of such long-range correlations. In the replica
symmetric phase, those are supposed to be negligible, thus we study systems in a phase in which replica
symmetry is broken.

We recall that in the presence of 1-RSB, the configuration space Ωn is supposed to decompose into
pure states (c.f. Section 1.1.2.4). Let us take a different look on those pure states. Recall that BP is
known to render the correct marginals of the Boltzmann distribution on some replica symmetric factor
graphs and recall that given G = (V ∪F,E ,Ψ), we can write the Boltzmann distribution as

µ(σ) ∝
∏
a∈F

ψa(σ∂a).

Let U ⊂ V be a subset of the variables, then we define G [U ] = (U ∪F [U ],E [U ],Ψ) as the induced factor
graph on U as follows. It contains

• all variables of U ,

• all factor nodes a ∈ F such that ∂a ⊂U ,

• all edges a, x with a ∈ F [U ], x ∈U ,
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• all half-edges x, a with a 6∈ F [U ] but x ∈U .

The half-edges play an important role. Let us denote the set of those half-edges by H (U ). Suppose
that BP renders the correct marginals, then the messages {νa→x }(x,a)∈H (U ) on the half-edges can be
seen as boundary conditions which represent the influence of the factors and variables outside of U . We
will call such a set U coming with G [U ] a cavity. Observe that some variables in U miss factor nodes
(constraints) compared to their distribution in G . If the system is replica symmetric, we would suppose
that we can express the Boltzmann marginal on U – at least approximately – by the weight functions at
the factor nodes inside of U and the boundary condition, thus

µU (σU ) ∝
∏

a∈F [U ]
ψa(σ∂a)

∏
ax∈H (U )

νa→x (σx )+εn . (1.1.24)

Led by this intuition, we call a probability measure µ on Ωn a Bethe measure or Bethe state if in the
thermodynamic limit, n →∞, there is a set of messages {νa→x } such thatµ satisfies (1.1.24) for almost all
finite subsets U [135, Definition 19.1]. We highlight that there has to be one set of BP messages satisfying
(1.1.24) for (almost) all finite subsets of variables and in fact it turns out that messages satisfying the
equation for almost all U are actually very close to valid Belief Propagation messages (1.1.17). To be
a bit more precise, an almost-solution of the BP equations is a set of messages that satisfy almost all
BP equations up to a vanishing error term of o(1).

What does this imply? Any set of messages satisfying (1.1.24) for almost all U , thus a Bethe measure,
corresponds to an almost-solution of the Belief Propagation messages. It is far from true that the con-
verse is correct as well [135, Example 19.2] in every situation, but a core assumption of the 1-RSB cavity
method is that this is indeed correct in the problem at hand. Suppose we have a set of almost-solutions
of the BP equations

{
νi = (νi

x→a ,νi
a→x )

}
i=1...`, then we can associate with each of those (almost) fixed-

points a corresponding Bethe measure µi (1.1.24) as well as the corresponding Bethe free entropyΦi via
(1.1.22). We call a Bethe measure extremal if it does not exhibit long-range correlations. We denote the
set of all extremal Bethe measures out of

{
µi

}
i=1...` as

{
µ̃i

}
i=1... ˜̀ corresponding to BP messages

{
ν̃i

}
i=1... ˜̀

Now, there are three basic assumptions on a model that make the 1-RSB method work heuristically. To
this end, let Σ :R→R+ be a function, which is called complexity function in physics’ language.

1. For any interval [φ,φ′], the number of almost-solutions with Bethe free entropy Φi ∈ [nφ,nφ′]
equals exp(nΣ∗+o(n)) where Σ∗ = supσ∗∈[φ,φ′]

{
Σ(φ∗)

}
. Thus, roughly speaking, the number of

almost-solutions with Bethe free entropy of approximately nφ is given by exp
(
nΣ(φ)

)
.

2. The Boltzmann distribution can be expressed as a convex combination of extremal Bethe meas-
ures

µ(σ) =
˜̀∑

i=1
ωi µ̃

i (σ)

with weights ωi = exp(Φi )/Z such that Z =∑`
i=1 exp(Φi ).

3. The number of extremal Bethe measures ˜̀ equals, up to the leading order, the number of almost-
solutions to the BP equations, thus the number of extremal Bethe measures with Bethe free en-
tropy ∼ nφ equals approximately exp

(
nΣ(φ)

)
.

Now suppose that the three assumptions are satisfied. Then we build a new physical system (an auxiliary
model) from the original system we started with. More precisely, we interpret the BP messages as
variables of the auxiliary model and the corresponding Bethe measures become the configurations. To
this end, let ζ be the set of the extremal Bethe measures and letΛ be a probability measure on ζ defined
as follows. Let κ be the inverse temperature, sometimes called Parisi 1-RSB parameter, of the auxiliary
model. Then we define

Λ(µ̃i ) =ωi (κ) = exp(κΦi )

Z (κ)
. (1.1.25)
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At a first glance, (1.1.25) strongly resembles the definition of the Boltzmann distribution (1.1.6) and
indeed, as it turns out, this resemblance has a deeper meaning. But first observe that for κ = 1, the
auxiliary model equals the original system. Nevertheless, studying Z (κ) for general κ turns out to be
the key for calculating Σ, which ultimately allows understanding the original model. Without going too
much into detail, we will shortly describe how to translate a physical model with an underlying sparse
random factor graph which undergoes 1-RSB, into an auxiliary model which can then, itself, be solved
using Belief Propagation. We stress at this point that the Boltzmann distribution (1.1.25) of the auxiliary
model is a probability distribution on probability distributions, thus a difficult object to analyse.

Let us assume that we start with a problem described by the factor graph G = (V ∪ F,E ,Ψ). Then,
following Mézard and Montanari [135, Section 19.2.1], we create an auxiliary model in three straight-
forward steps. Suppose that {νx→a} and {νa→x } are the BP messages on G . We highlight that we leave
out technical details (for instance, we suppose implicitly that those messages were discrete measures)
as we are only interested in sketching the main idea of the 1-RSB cavity method. RecallΞa ,Ξx ,Ξax from
(1.1.21). Then, we proceed as follows in the construction of the factor graph G = (V ∪F ,E ,Ψ) represent-
ing the auxiliary model.

1. For ax ∈ E , we create a variable node x a representing (νx→a ,νa→x ) and a factor node connected
to this variable with weight functionΨxa = exp(−κΞxa(ν)).

2. For any factor a ∈ F , we introduce a factor node a in the auxiliary model and connect it to all
variable nodes x a with x ∈ ∂a in the original model. The corresponding weight function reads

Ψa =
∏

x∈∂a
1

{
νa→x ∝

∑
σ∂a∈Ω∂a

Ψa(σ∂a)
∏

x ′∈∂a\x
νx ′→a

}
exp

(
−κΞa

({
νy→a

}
y∈∂a

))
.

(Here, we write Ξa

({
νy→a

}
y∈∂a

)
instead of Ξa(ν) in order to highlight the local dependencies.)

The purpose of the weight function is two-fold. First, it makes sure that the correct BP equations
are observed and second, it weighs the contribution by a factor of exp(κΞa).

3. Each variable x ∈ V produces a factor node x ∈ F in the auxiliary model. This factor connects to
all variables x a if a ∈ ∂x in the original model. The corresponding weight function is defined as

Ψx =
∏

a∈∂x
1

{
νx→a ∝

∏
b∈∂x\a

νb→x

}
exp

(
κΞx

(
{νb→x }b∈∂x

))
.

Again, this weight function guarantees observing the valid BP messages as well as it weighs the
factor node’s contribution.

Now it is possible to run BP on this auxiliary model. If the physics’ intuition is correct, this auxiliary
model is replica symmetric and BP yields a valid estimate of lnZ (κ) via the Bethe free entropy. Recall
that we have by definition

Z (κ) =
˜̀∑

i=1
exp(κΦi ) .

Leaving out technical details and justifications, we obtain

Z (κ) ∼
∫

exp
(
n

(
xφ+Σ(φ)

))
dφ.

Then, if Z (κ) ∼ exp
(
n f (κ)

)
for some function f , we find Σ through a Legendre transformation [135,

Section 19.2] as

f (κ) = xκ+Σ(φ) such that
∂Σ

φ
=−κ.

In summary, if a model shows 1-RSB, Belief Propagation will not render the correct estimate for the
partition function, i.e. it will have various (almost) fixed-points. In this case, the physics’ intuition
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proposes to create a statistical auxiliary model with the almost-solutions being variables and analysing
the partition function of the auxiliary model by BP yielding to a (hopefully) unique fixed-point.

To put this section into context, we recall the already discussed phase diagram of random CSPs. Sup-
pose that the Boltzmann distribution was concentrated on finitely many pure states (which is called
static 1-RSB). Then the solution space has undergone the condensation phase transition. In the case
that the Boltzmann distribution is not concentrated on a small amount of pure states but there are ex-
ponentially many pure states each with exponentially small probability mass (dynamical 1-RSB), the
solution space finds itself in the clustering phase. We furthermore stress that one basic assumption of
the 1-RSB Ansatz is that the Boltzmann distribution can be written as a convex combination of extremal
Bethe measures, thus probability distributions which lack long-range correlations and which describe
the local behaviour of the Boltzmann distribution based only on a finite neighbourhood with a bound-
ary condition given by (almost)-solutions to the BP messages. This strongly resembles the finding of
a partition of the configuration space Ωn into clusters E1, . . . ,E` such that the Boltzmann distribution
conditioned on those clusters is ε−extremal (c.f. Section 1.1.2.4). And indeed, the cut-distance formal-
ism turned out to be a key tool in verifying the results predicted by the cavity method in some special
problems [21, 48, 49].

Until now, we studied sparse random CSPs from a specific point of view which ultimately results in
calculating the number of satisfying assignments. Thus, given a degree distribution of the factor nodes
(deg(a1), . . . ,deg(am)) and a degree distribution of the variable nodes (deg(x1), . . . ,deg(xn)) (which might
be obtained by a distribution of choice), we first draw the set of weight functionsΨ1, . . . ,Ψm from a dis-
tribution (which might, in principle, turn out to be deterministic choices like in the random k−SAT
problem). Then, given the degree sequences as well as the weight functions, a factor graph is drawn
uniformly at random from all factor graphs on those degree distributions. We can now ask the ques-
tion, whether this random CSP is satisfiable w.h.p., or determine the number of solutions or study the
geometry of the solution space. There is yet another interesting model closely related, which will be
discussed in the next section.

1.2. Statistical Inference

The task of statistical inference can be modelled by the so-called teacher-student scheme quite intuit-
ively. The scheme itself was introduced by Gardner and Derrida [87] in the context of studying the per-
ceptron, a fairly easy binary classifier. In this section, we follow an introduction into statistical inference
based on the study of physical systems by Zdeborová and Krzakala [168].

1.2.1. A statistical physics’ approach

1.2.1.1. The teacher-student scheme

As a first step, the teacher generates some ground-truthσ from an arbitrary probability distribution µT P

- this is the teacher’s prior. Now he generates some observable data σ̂ fromσ by a statistical model. This
model is characterised by a distribution µT M (σ̂ |σ), which expresses the likelihood of observing σ̂ given
that the ground-truth was σ - this likelihood distribution is the teacher’s model. And finally, the teacher
conveys the data σ̂ and some information about µT P as well as µT M to the student.

The student’s ultimate goal is to infer as much information as possible about σ from the given data
and the (probably limited) information about the teacher’s prior as well as the teacher’s model. If the
teacher gives the full information about the prior as well as the model to the student, we call this setting
Bayes optimal. Let us focus on statistical inference problems which exhibit quite convenient properties.
More precisely, we suppose the following. LetΩ be a finite set and sample the ground-truthσ ∈Ωn from
µT P . Furthermore, suppose that σ̂ is an m-dimensional vector with entries in a finite set χ and that the
following assumptions hold.
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• The prior distribution factorises, thus

µT P (σ) =
n∏

i=1
µT P

i (σi ).

• The single observable data points σ̂1, . . .σ̂m are independently generated based on a subset of
variables ∂σ̂1, . . . ,∂σ̂m , hence

µT M (σ̂ |σ) =
m∏

j=1
µ∂σ̂ j (σ̂ j | ∂σ̂ j ).

Let us now view the whole scenario through the student’s eyes. As the student might not have full access
to the teacher’s prior as well as the model’s statistics, we suppose that the known prior is described by a
distribution ν onΩn and the information about data generation is modelled by a distribution ν̃ on χm .
If ν and ν̃ satisfy above’s assumptions, the student can employ Bayes’ theorem and write the posterior
distribution as

ν(σ | σ̂) ∝
n∏

i=1
νi (σi )

m∏
j=1

ν̃∂σ̂ j (σ̂ j | ∂σ̂ j ). (1.2.1)

Now, the best the student can do in order to inferσ from σ̂, ν and ν̃, is to sample a configuration σ̃ from
ν(σ | σ̂). If σ̃ = σ, we say that the student succeeded in inferring the ground-truth completely. If we
are in the convenient situation of Bayes optimality, thus the student gets the full information about the
teacher’s prior and the data generation, we can observe the following. Denote by τ,τ′,τ′′ three inde-
pendent uniform samples from ν(· | σ̂). Furthermore, let f : Ωn ×Ωn → R be some arbitrary function,
then we have [168, Eq. (15)]

E
[

f (τ′,τ′′)
]= E[

f (τ,σ)
]

.

Thus, at least with respect to the expectation, there is no difference between the ground-truth σ and
uniform samples from the posterior distribution. This result in the Bayes optimal setting is called the
Nishimori property and from now on, we will tacitly assume to satisfy this Nishimori property, thus being
in the Bayes optimal setting. Next, we express the problem of inference in the spin glass language from
the previous sections.

1.2.1.2. Planted models

Probably the first connection between statistical inference problems and statistical physics was ob-
served by Jaynes [104] while the expression of statistical inference problems in terms of spin glass lan-
guage was strongly influenced by pioneering work of Kirkpatrick, Gelatt and Vecchi [110] on simulated
annealing. We first observe that (1.2.1) can be written as [168, Eq. (25)]

ν(σ | σ̂) ∝ exp

(
n∑

i=1
ln(νi (σi ))+

m∑
j=1

ln
(
ν̃∂σ̂ j

(
σ̂ j | ∂σ̂ j

))
)

. (1.2.2)

Now, we introduce an inverse temperature β, such that β= 1 recovers the original posterior distribution

and introduce ln(νi (σi )) as an external magnetic field at particle i while ln
(
ν̃∂σ̂ j

(
σ̂ j | ∂σ̂ j

))
expresses

the interaction between particles. Thus, as given through (1.1.1), we find a Hamiltonian H(σ,σ̂) such
that (1.2.2) becomes

ν(σ | σ̂) = exp
(−βH(σ,σ̂)

)

Z (σ̂)
(1.2.3)

with Z (σ̂) being the partition function of the described physical system. Such a physical system is called
a planted model. Let us elaborate on this shortly. While the particle interactions Ji1,...,ik (σi1 , . . . ,σik )
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in (1.1.1) can be any function on k spins, spin glasses exhibit positive as well as negative interactions
between particles. One possibility to generate such glasses is to choose the interactions randomly from
a (often symmetric) probability distribution, like in the case of Gaussian spin glass models [23]. In con-
trast, the planted model is a very special system, as the interactions between particles are random but
mutually correlated as they are all generated given the ground-truth σ. This is why we call this ground-
truth σ the planted configuration. Following [168], we will introduce a short example on random linear
equations that shows why this correlations of the particle interactions can influence the system’s beha-
viour drastically. Suppose that y ∈ {0,1}m is a random vector and A is a random m ×n matrix over F2.
If m > n, the random system of linear equations Ax = y has no solution x with high probability [18].
But if we sample a uniform binary vector x , calculated y as Ax , then the system of linear equations will
always feature at least one solution, namely x . In our setting, x corresponds to the planted ground-truth
while the teacher shows the student A and y (and the information that x and A are independently and
uniformly chosen). Now the student’s inference task is to infer x from (A, y).

The principle of planting did not only appear in statistical physics. For instance, it has been used to
prove a hardness result on the planted clique problem [74, 105] or within proofs on the geometry of the
solution space of random CSPs [1]. Probably one of the most studied planted models is the stochastic
block model which is a widely used model for community detection on networks [62, 85, 95]. To describe
it in the framework at hand, given n individuals V = {x1 . . . xn}, a teacher generates q communities,
thus a coloring σ ∈ [q]n assigning each individual a community. Now, a random graph G = (V ,E) is
generated as follows. Each edge xi x j is present with probability p1 if σi = σ j and with probability p2

if σi 6= σ j . Clearly, if p1 = p2, this is just a binomial random graph containing no information about
the communities. If p1 À p2, it is more likely to observe edges within one community and if p2 À p1,
most edges are expected between different communities. Of course, there are various generalisations to
this problem. Nevertheless, the student’s task is, given (G , p1, p2, q) to infer a q−coloring σ̃ that has the
highest possible overlap with σ.

As one can conclude, planted models are a fairly common used technique in statistical inference.
Studying the corresponding physical system whose Boltzmann distribution equals the posterior distri-
bution obtained by the student might bring together powerful tools from different fields of research.
For the sake of convenience and as this thesis’s contributions on statistical inference require this setup,
we tacitly assume that the Boltzmann distribution of the planted model can be expressed by a sparse
random factor graph, such that it has the form (1.1.16). As we previously studied different phase trans-
itions, mostly corresponding to the geometry of the solution space of such random CSPs, it is not very
surprising that there are important phase transitions in statistical inference problems as well.

1.2.1.3. Phase transitions in statistical inference

Suppose being in the Bayes optimal setting, thus, the student’s guess ν is exactly the teacher’s prior and
the student’s model knowledge ν̃ equals the teacher’s model generating distribution. Furthermore, sup-
pose that we observe the underlying physical system in the thermodynamic limit (n →∞). Moreover,
let σ ∈Ωn for some finite set Ω. In principle, the following discussion can be extended to more general
ground-truth domains. For two configurations σ,τ ∈ Ωn , we denote the overlap 〈σ,τ〉 as the number
of coordinates in which σ and τ coincide. Let q0 denote the expected overlap between a uniformly at
random chosen τ from ν and σ, formally

q0 = Eτ∼ν〈τ,σ〉.

Given data σ̂ as well as ν and ν̃, the student’s task might be evaluated with respect to two levels of
reconstruction.

• Is the student able to guess σ̃ such that 〈σ̃,σ〉 > q0? (weak reconstruction)

• Is the student able to infer σ? (strong reconstruction)

With the statistical inference tasks being part of this thesis, we are only interested in the strong recon-
struction scenario. Now, this question can be answered under two different sets of restrictions.
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• Reconstruction is information-theoretically possible, if the student can inferσ from (σ̂, ν, ν̃) given
unlimited computational power.

• Reconstruction is algorithmically possible, if there is a polynomial-time algorithm A that outputs
σ on input (σ̂, ν, ν̃).

Clearly, the planted model undergoes phase transitions with respect to this questions. We suppose that
the planted model comes as a factor graph G with n variables and m factor nodes and that the student
has access to this graph. With a slight misuse of notation, we suppose that the student gains knowledge
about ν̃ as well, if she has access to the factor graph. Furthermore, on each factor node a we find a
weight function ψa such that ψa(∂a) = σ̂a . As before, let α = m/n be the factor-to-variable ratio. In
this case, the more factors there are (as α getting large), the more measurements of the ground-truth
are available for gathering information and thus, the easier the task seems to become. We denote by
αinf the information-theoretic threshold and by αalg the algorithmic threshold. Then we have the fol-
lowing, assuming tacitly that all thresholds might be either strict or coarse phase transitions as already
discussed.

• For α<αinf, there is no algorithm (efficient or not) that is able to infer σ from (G ,σ̂,ν).

• For αinf <α<αalg, there is no efficient algorithm that is able to infer σ from (G ,σ̂,ν).

• If α>αalg, there is a polynomial-time algorithm A that outputs σ on input (G ,σ̂,ν).

Ifα∗ is some threshold, we will subsequently refer to negative results (forα<α∗ inference is not possible)
as converse statements and to positive results (forα>α∗ inference is possible) as achievability statements
respectively. When mentioning algorithmic achievability, a natural question arises: which class of al-
gorithms is supposed to perform well on inference problems? We make use of the observation that the
Boltzmann distribution of the planted model can be tackled by the message passing algorithms of Sec-
tion 1.1.4. While Belief Propagation is indeed an efficient algorithm in a complexity theoretical way, in
each iteration at each factor a, we need to compute roughly deg(a) messages. If the underlying graph is
not too sparse, this might not be feasible computationally on large instances. Suppose we have weight
functions that are not too sensitive to single messages’ contributions. Then a family of algorithms called
approximate message passing algorithms is supposed to perform well.

1.2.1.4. Approximate Message Passing AMP

Let us first discuss what a sensitive weight function is. A prime example would be the weight functions
occurring in the random k−SAT problem where a single message can turn the evaluation from nearly
zero to almost 1. On the other hand, a weight function that, for instance, counts the adjacent variables
with spin 1, would be very insensitive – at least if the factor node degree is large. Thus, suppose the
latter is the case and suppose further that the average degree of a factor k = ω(1) is large. Instead of
calculating k different messages (depending on which variable is removed) at each factor as in Belief
Propagation, one could compute one message where no variable is removed and send it to all neigh-
bours. Donoho, Maleki and Montanari [66] introduced a family of message passing algorithms which is,
intuitively speaking, an approximate version of Belief Propagation.

More precisely, let G = (V ∪F,E) be a factor graph representing a statistical inference problem on n
variables and m factors with α= m/n. For a vector τ ∈Rk we write 〈τ〉 = k−1 ∑k

i=1τi for the average over
all entries of τ. Denote by

{
ηt :Rn →Rn

}
t≥1 a family of coordinate-wise applied (non-linear) threshold

functions and let A ∈ Rm×n be the (normalised) adjacency matrix of the factor graph, thus normalise
the columns to `2 norm 1. Then, approximate message passing starts with an initial guess σ(0) of the
ground-truth σ and computes iteratively

σ(t+1) = ηt
(

AT z(t ) +σ(t )) and z(t ) = σ̂− Aσ(t ) +α−1z(t−1) 〈η′t
(

AT z(t−1) +σ(t−1))〉 . (1.2.4)

Let us only briefly sketch the meaning of the single parts of (1.2.4), a complete introduction and a formal
justification of those equations is provided by [66, 129].
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• σ(t ) is the current estimate for the ground-truth σ.

• z(t ) can be interpreted as a current residual.

• The threshold function η pushes σ(t ) towards the sparsest solution. In its absence, the algorithm
would converge to a solution of σ̂= Aσ of least `2 norm.

• α−1z(t−1)
〈
η′

(
AT z(t−1) +σ(t−1)

)〉
is derived from the Belief Propagation update rules on the corres-

ponding factor graph. It improves the convergence towards sparse solutions even further.

While AMP is clearly fast to run and easy to implement, it also achieves the best algorithmic perform-
ance presently known in some of the most prominent inference problems like compressed sensing [67]
or the pooled data problem [70].

After this excursion into the statistical physics’ foundations of statistical inference, we will introduce
the group testing problem in the next section. Group testing is a prime example of a statistical inference
problem and is the protagonist of multiple contributions of this thesis.

1.2.2. Group Testing

In the group testing problem, one is given n individuals x1, . . . , xn out of which a small number k is
infected. We may employ a testing procedure that allows to pool various individuals into one group test
that renders a positive result if and only if at least one infected individual is contained in the test. Given
probes of those n individuals and the prevalence k/n, the ultimate goal is to find a testing strategy (we
will refer to this as a pooling scheme) that is able to infer the infection status of each individual with the
minimum number of tests possible. Group testing itself found its first appearance in literature in the
early 1940’s when Dorfman [68] proposed the following, fairly simple, inference algorithm.

(D1) Assign a group of Γ individuals to a test, such that each individual gets tested once.

(D2) If a test renders a negative result, all of the contained individuals are uninfected. If a test renders
a positive result, test all individuals individually.

Supposing that the prevalence is k/n and each individual is infected independently of all other indi-
viduals, it is straightforward to calculate the expected number of tests m required in this testing scheme
as

E [m] = n

Γ
+n

(
1−

(
1− k

n

)Γ)
.

Given an estimation of the prevalence (this is the teacher’s prior), it is possible to optimise the test size
Γ in order to minimise the expected number of tests.

Even if the Dorfman scheme is, as we will see, a suboptimal design, it finds its applications in various
medical applications which might be due to the very simple inference algorithm and the fact that it
recovers the infection status of each individual correctly (supposing that each test outputs the correct
result) [130].

Since its first appearance, group testing gained a lot of attention in various installments. In the first
decades, the focus was lying on combinatorial group testing, where one aims to construct a pooling
scheme that successfully recovers every possible ground-truth from the teacher’s prior distribution. This
problem was studied intensively, amongst others, by D’yachkov et al. [58], Erdős and Rényi [73], Fischer,
Klasner and Wegener [80], Hwang [98] and Ungar [164]. But in the early 2000’s, the focus changed to so-
called probabilistic test-designs in which inference is only required with high probability with respect to
the random choice of the ground-truth. Some of the most influential contributions are due to Aldridge,
Baldassini and Johnson [8], Aldridge, Johnson and Scarlett [9], Damaschke [59], Gandikota et al. [86],
Johnson, Aldridge and Scarlett [108], Mezard and Toninelli [132], Mézard, Tarzia and Toninelli [133] and
Scarlett and Cevher [154]. Let us describe more systematically which kind of group testing problems
exist in literature. The exact problem description may vary with respect to ...

• ... the teacher’s prior σ ∈ {0,1}n :
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– σ can be a uniformly sampled configuration out of all configurations with exactly k non-zero
entries (hypergeometric group testing model),

– Alternatively,σmight be a binomial random vector, such that each entry equals 1 independ-
ently of all other entries with probability k/n (i.i.d. group testing model).

– Finally, each individual xi might be (independent of the other individuals) infected with
probability pi such that pi and p j do not need to be equal necessarily. This choice of the
teacher’s prior is called group testing with priors.

• ... the number of subsequent rounds a test-design may contain:

– In the non-adaptive group testing problem all tests need to be conducted in parallel, thus
one cannot use information gained in previous stages.

– The adaptive group testing problem allows to design subsequent stages of tests based on the
outcome of previous stages.

• ... the level of required certainty:

– In combinatorial group testing, a testing scheme needs to output the correct infection status
of all individuals on any ground-truth σ.

– On the other hand, in probabilistic group testing, it suffices to recoverσwith high probability
(with respect to the randomly generated ground-truth).

• ... the type of recovery:

– If we demand exact recovery, each individual has to be assigned the correct infection status.

– Otherwise, if we can tolerate a small number of falsely classified individuals, we call this
criterion partial recovery.

• ... the correctness of each test:

– In noiseless group testing, each test outputs the correct result.

– Noisy group testing instances are characterised by a random flip of each test-result. This
noise might be uniformly at random (binary symmetric channel), dependent of the tests’
correct result (e.g. Z−channel and reverse Z−channel) or correlated with the number of
infected and uninfected individuals in the test (diluted noise models).

– In threshold group testing, a test-result is negative if the number of contained infected indi-
viduals is below a given threshold t1 and positive if it exceeds a second threshold t2 ≥ t1. In
the range (t1, t2), the test-result might be randomly chosen.

• ... the constraints on individuals-per-test and tests-per-individual:

– In the unrestricted group testing problem each individual might take place in an arbitrary
number of tests. Furthermore, each test might contain between one and all individuals. For
the sake of brevity, we will refer to the unrestricted group testing problem as the group testing
problem.

– In ∆−divisible sparsity constrained group testing, each individual might take place in a max-
imum of ∆ tests.

– Analogously, in the Γ−sparse group testing problem, each tests may contain at most Γ indi-
viduals.

• ... the prevalence of infected individuals:

– If the number of infected individuals k satisfies k =Θ(1), thus is independent of the number
of individuals n, we call the setting the ultra-sparse regime.

– If, on the other hand, k ∼ nθ(θ ∈ (0,1)), the regime is called sublinear.
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– Finally, if we suppose k =αn for some constant α ∈ (0,1), the setting is denoted as the linear
regime.

In this thesis’s contributions, we will analyse phase transitions in noiseless probabilistic hypergeomet-
ric group testing instances with a focus on non-adaptive group testing. Nevertheless, some contribu-
tions contain results on adaptive group testing as well. We will discuss this thesis’s results in detail in Sec-
tion 2.1. Let us briefly express a non-adaptive group testing instance in terms of the statistical physics’
framework. A pooling scheme for such an instance can be represented as a factor graph G = (V ∪F,E).
We denote with V = {x1, . . . , xn} the n individuals and the m tests are given by F = {a1, . . . , am}. Further-
more, an edge xi a j exists if and only if individual xi takes part in test a j . As we are in the setting of
inference, suppose that the ground-truthσ ∈ {0,1}n assigns each individual its infection status. Further-
more, let σ̂ ∈ {0,1}m denote the sequence of test-results, hence

σ̂a = max
x∈∂a

σx .

This completely describes the planted model introduced via (1.2.3), as we, as usual in group testing,
suppose that we have complete knowledge about the model’s generation and the teacher’s prior (Bayes
optimal setting). A visualisation can be found in Figure 1.3. In the following, we will use a slightly
different notation as in the previous sections on phase transitions. While we previously denoted by α
the factor-to-variable ratio and analysed the system’s behaviour with respect to the size of α, it is usual
in the group testing community to express phase transitions in terms of the required number of tests
m = m(n,k) in the large-system limit n →∞. Of course, those statements can directly be translated into
a statement about the factor-to-variable ratio.

x1 x2 x3 x4 x5 x6 x7

0 1 1 0 1

Figure 1.3.: The factor graph representation G = (V ∪F,E) of a group testing instance with n = 7 indi-
viduals out of which k = 2 are infected on m = 5 tests. Blue individuals are uninfected while
red individuals are infected. Furthermore, a test renders a positive result if and only if at least
one infected individual is contained.

Clearly, if the problem was to be studied for finite n, the different levels of prevalence would not be well
defined. It is, for instance, not possible to distinguish in a population of n = 103 individuals whether the
occurrence of k = 20 infected individuals should be described as k = 20,k ≈ n0.43 or as k = 0.02n, thus
results obtained in the large-system limit need to be verified empirically for small n if they should be
applied in real laboratories.

Next, we will shortly describe known results and open problems ahead of this thesis’s contributions.
As this overview is with respect to noiseless probabilistic group testing, we refer the interested reader to
the detailed overview article of Aldridge, Johnson and Scarlett [10] for an overview over the state of the
play in different models.

1.2.2.1. Prior results on noiseless probabilistic hypergeometric group testing

We will tacitly assume throughout this section that all results are meant to be read with respect to ex-
act recovery if not stated differently. Let us start this section by a folklore counting argument which is
a good indication for how many tests we need to use to have a chance of exact recovery. Namely, in-
dependent of the choice of the pooling scheme (adaptive or non-adaptive), by making m tests, we can
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generate 2m different sequences of test-results. Clearly, this number needs to exceed the number of
possible ground-truth values

(n
k

)
, therefore, if minf is the minimum number of tests necessary to solve

the problem information-theoretically, we find

2minf ≥
(

n

k

)
⇔ minf&

n lnn − (n −k) ln(n −k)−k lnk

ln2
. (1.2.5)

Therefore, with H(α) denoting the entropy of Be(α) and α,θ ∈ (0,1), the counting bound (1.2.5) yields

minf&
{

H(α)
ln2 n, k =αn

1−θ
ln2 k lnn, k ∼ nθ.

Thus, if the prevalence is constant, we require linearly many group tests but if the spread of the disease
scales sublinearly in the population size, we can do much better. The counting bound (1.2.5) gives a
lower bound on the number of tests required in any testing scheme with respect to a hypergeomet-
ric problem setup, thus it applies for adaptive pooling schemes as well as for non-adaptive pooling
schemes. Clearly, it should be easier to come along with minf tests adaptively rather than non-adaptively.
Indeed, it turns out that this intuition is mostly correct.

Adaptive group testing Pretty soon after group testing found its way into mathematical literature,
there were some negative results on group testing. More precisely, Ungar [164] proved that under the

i.i.d. prior there is a phase transition at prevalence p = 3−
p

5
2 ≈ 0.38. More precisely, there is no test

design succeeding at inference of σ on less than n tests if the problem’s prevalence is larger and on
the other hand, if the prevalence becomes smaller, there is a test design achieving inference on at most
n − 1 tests. In the hypergeometric group testing problem, it is conversely conjectured that this phase
transition (of course with n replaced by n −1) occurs at a prevalence of 1/3 [80, 97] but until now it was
only proven that for prevalence p > log−1.5(3) ≈ 0.369 performing n −1 individual tests is optimal [149].
Clearly, this number of required tests is far from the counting bound. Assuming there are αn infected
individuals, Hwang [98] provides a generalised binary splitting algorithm which was later improved by
Allemann [13] such that inference of σ is possible with

mHwang ∼ minf +αn and, respectively mAllemann ∼ minf +0.255αn (1.2.6)

tests.
We stress that in the linear regime it turns out that mAllemann exceeds n at roughly α= 1/3, underlying

the conjecture of Hu, Hwang and Wang [97] and that in the sublinear regime, we find

mHwang ∼ mAllemann ∼ minf,

as the deviations are of lower order.
Unfortunately, the binary splitting approach comes with a practical flaw - in order to guarantee suc-

cessful inference, one requires Ω(lnn) rounds of adaptive tests. A natural question is if there might be
algorithms succeeding at inference of σ with a bounded number of testing rounds. We underline that,
with a slight misuse of wording, we tacitly assume that an algorithm is always efficient, thus runs in
polynomial time, whenever we do not explicitly state differently. Up to the best of our knowledge there
is no algorithm known which succeeds on an arbitrary group testing instance in less thanΩ(lnn) rounds
on mAllemann tests. The situation becomes much more convenient if the problem gets sparser.

More precisely, suppose we have a vanishing prevalence, thus k ∼ nθ for some θ ∈ (0,1). The bin-
ary splitting algorithm by Allemann clearly performs asymptotically optimal in this sublinear regime,
as already discussed. But now, there are well known efficient algorithms achieving the same asymp-
totic performance in much less rounds, the probably best known algorithms are due to Damaschke
and Muhammad [60] whose algorithm achieves inference in not more than 4 rounds and Scarlett [153]
whose algorithm needs only two rounds in the described setting with no more than (1+o(1))minf tests,
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improving on the 2-stage algorithm of Mezard and Toninelli [132] requiring (1+o(1))minf
ln2 tests.

Therefore, the adaptive group testing problem is, up to the exact phase transition point in hyper-
geometric linear group testing, well understood. Things turn out to be completely different for non-
adaptive group testing.

Non-adaptive group testing Let us again start with discussing known results for a constant preval-
ence k = αn. It turns out that this case is, from a mathematical viewpoint, completely uninteresting.
Due to Bay, Price and Scarlett [24] it is known that recovery of the ground-truth is impossible with fewer
than (1− ε)n tests for any ε,α ∈ (0,1). The authors built up on work by Aldridge [7] who established
a coarse phase transition, thus proved that recovery under the given circumstances fails with positive
probability.

Therefore, we let our focus be the sublinear regime in which we suppose throughout that the preval-
ence is given by k/n = n−(1−θ) for some density parameter θ. Thus, if θ becomes larger, the prevalence
gets higher and the group testing problem is said to become denser.

We will first introduce two specific non-adaptive pooling schemes. Given the teacher’s prior in the
hypergeometric model, we might construct a random graph, thus the teacher’s model, as follows.

• Bernoulli testing: Each individual takes place in any test with probability p independently.

• Random (almost) regular testing: Each individual chooses ∆ tests uniformly at random without
(or with, respectively) replacement.

It turns out that both model choices have some similarities but that the first is inferior to the second. We
will verify this fact in Section 2.1, which is basically due to high fluctuations of the individual degree. In-
deed, the information-theoretically optimal designs require each test to be positive with probability 1/2
implying that ∆=Θ(lnn), or p =Θ(

k−1
)

respectively. The choice that any test needs to be positive with
probability 1/2 is, intuitively speaking, due to the fact that this choice maximises the system’s entropy,
thus the gain on information per test is maximised.

While there was no universal converse statement sharpening minf known prior to this thesis’s contri-
butions, there are several algorithmic and information-theoretical achievability as well converse state-
ments on those two random models. We will discuss the most influential ones. Regarding Bernoulli
testing, it were Scarlett and Cevher [152] who proved that it is information-theoretically possible to in-
fer the ground-truth with (1+o(1))minf tests if the group testing instance is fairly sparse, thus θ ≤ 1/3.
This result was strengthened by Aldridge [11] who pinned down the information-theoretic strict phase
transition of the Bernoulli group testing design at

mBernoulli =
1

cBer ln2
k ln

n

k
where cBer = max

ν>0
min

{
(1−θ)νexp(−ν)

θ ln2
,

H
(
exp(−ν)

)

ln2

}
k ln

n

k
(1.2.7)

which is strictly worse than (1.2.5) for all θ > 1/3. Subsequently, Aldridge, Johnson and Scarlett [9]
provided an information-theoretical converse statement (though, no achievability result) in the random
regular model. More precisely, inference of σ fails with positive probability, if the test-design contains
less than

mrand−reg = max

{
θ

(1−θ) ln2 2
,

1

ln2

}
k ln

n

k
(1.2.8)

tests. A short calculation verifies that mrand−reg < mBernoulli for θ ∈ (1
3 ,1

)
and mrand−reg = minf for θ ≤

ln2
1+ln2 ≈ 0.409 but nevertheless, mrand−reg > minf for larger θ. Thus, the random regular model might
outperform the Bernoulli testing but it is clearly far from the counting bound for a high prevalence.
Such an information-theoretic gap might be due to the model itself or it might be the case that non-
adaptive pooling schemes cannot perform at minf. We will discuss in Section 2.1 that the latter is the
case and actually mrand−reg is a universal information-theoretic converse, independent of the pooling
scheme, for any non-adaptive design. We will see furthermore that the converse statement (1.2.8) of [9]
actually marks an information-theoretic phase transition point.



Introduction 31

At this point, we make a very short excursion into the setting of partial recovery. The already men-
tioned paper of Scarlett and Cevher [152] actually proves that minf is an important threshold for partial
recovery models. More precisely, the simple Bernoulli test design suffices to recover all but γk indi-
viduals correctly with minf tests. On the negative side, no test-design can come along with less than
(1−γ)minf tests when trying to recover all but γk individuals correctly.

Let us come back to the problem of exact recovery. While we already discovered the state of the play
prior to this thesis’s contributions with respect to information-theoretic aspects, we will now introduce
three of the most prominent non-adaptive group testing algorithms and state known results about their
performances. In detail, we will introduce the COMP algorithm as well as the DD algorithm and its greedy
extension called SCOMP.

The two probably most basic algorithms are COMP and DD and their descriptions can be found in
Algorithms 1 – 2.

Input: Pooling scheme G = (V ∪F,E), test-results σ̂ ∈ {0,1}m

Output: Estimate σ̃ of σ
1 Mark all individuals occurring in a negative test as uninfected.
2 Declare all other individuals as infected.

Algorithm 1: The COMP algorithm as first introduced by Chan et al. [39].

Input: Pooling scheme G = (V ∪F,E), test-results σ̂ ∈ {0,1}m

Output: Estimate σ̃ of σ
1 Mark all individuals occurring in a negative test as uninfected and remove them and the

corresponding negative test from the graph.
2 Mark an individual as infected if it appears as the only individual in a positive test in this reduced

graph.
3 Declare all other individuals as uninfected.

Algorithm 2: DD algorithm as defined by Aldridge, Baldassini and Johnson [8].

While COMP cannot produce any false negatives, thus σ̃COMP
i = 0 ⇒ σi = 0, DD guarantees that all

declared infected individuals are indeed infected, hence σ̃DD
i = 1 ⇒σi = 1. Nevertheless, it might happen

that the estimate σ̃ does not even explain the test-results σ̂. In this context, we say that an individual
x ∈ ∂a explains test a under σ̃ if σ̂a = 1 and σ̃x = 1. Conversely, a positive test is called explained by
σ̃ if there is at least one individual x ∈ ∂a which explains a. With COMP or DD it might furthermore
happen that σ̃ contains less than k infected individuals (if DD was applied). In terms of inference,
we observe that the estimates of COMP and DD do not necessarily belong to the solution space of the
underlying random CSP. If we look a bit closer into the DD-algorithm, we find that the first two steps
do not misclassify any individual. We furthermore observe that the estimate was correct if after the first
step of DD, there is no individual left that does not belong to at least one (positive) test of degree one. We
will formalise this observation in Section 2.1. Suppose that this does not hold and thus, after the second
step of DD, we are left with some unexplained tests. As the prevalence is small, it might be a natural idea
to declare greedily those individuals as infected that explain the most unexplained tests. This is exactly
what the SCOMP-algorithm does.

Positive news about SCOMP is clearly that it produces an estimate σ̃ which explains the test-results
σ̂. The flaw is, of course, that it might produce false positive as well as false negative predictions. Nev-
ertheless, it was conjectured based on simulations that SCOMP performs better than DD does [8], thus
requires less tests to succeed at inference of σ. We will see in Section 2.1 that this conjecture turned out
to be actually false.

Algorithms 1 – 3 can be applied to any arbitrary (non-adaptive) pooling scheme. Nevertheless, they
were studied on the Bernoulli model [8] as well as the random regular model [108]. As it turns out that
those algorithms require less tests on the random regular model in order to inferσwith high probability,
we focus on those results from [108]. More precisely, the authors prove a strict phase transition of the
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Input: Pooling scheme G = (V ∪F,E), test-results σ̂ ∈ {0,1}m

Output: Estimate σ̃ of σ
1 Mark all individuals occurring in a negative test as uninfected and remove them and the

corresponding negative test from the graph.
2 Mark all individuals that are the sole individual in a test in this reduced graph as infected.
3 while there is an unexplained test a do
4 Take the individual of highest degree, breaking ties arbitrarily, and declare it as infected.
5 Remove all adjacent tests from the graph.

6 Declare all left individuals (now, isolated in the reduced graph) as uninfected.

Algorithm 3: The SCOMP algorithm by Aldridge, Baldassini and Johnson [8] can be seen as a greedy
extension of DD.

COMP-algorithm on the random regular model at mCOMP as well as an achievability result for DD at mDD
where

mCOMP =
1

(1−θ) ln2 2
k ln

n

k
and mDD ≤ max

{
θ

(1−θ) ln2 2
,

1

ln2

}
k ln

n

k
. (1.2.9)

Clearly, if DD achieves inference at mDD, so does SCOMP as it performs the two first steps of DD. Compar-
ing the performance of the DD algorithm on the random regular model with its information-theoretic
converse (1.2.8), we find that DD is an optimal inference algorithm on the random regular model for
θ ≥ 1/2 while there remains a gap for smaller θ. This might have been due to a weakness in the achievab-
ility proof of DD, a weakness in the information-theoretic converse or because DD does not perform best
possible in this regime. As we will see in Section 2.1, the latter is the case.

Let us, at this point, briefly discuss the DD algorithm itself. While it was first stated in its comfort-
able and easy to digest version in [8], it turns out that the estimate σ̃ of σ coincides with the estimate
computed by the well known Warning Propagation algorithm. Such message passing algorithms were
already applied by Mézard, Tarzia and Toninelli [133] to the group testing problem. Indeed it turns out
that the estimates of DD and WP coincide. If an individual x is part of a negative test, WP sends the
warning to x that it may not take value 1, thus we just need to analyse the messages at positives test. If
now there is a positive test a of size Γa containing Γa −1 individuals being part of a (different) negative
test, the message sent to the last individual warns this individual not to take value 0 as well, as otherwise
the test was unexplained. Finally, if there were two individuals in a not being warned about taking the
value 0, the test won’t send a warning. The possibility to write down (equivalent) forms of the statistical
physics’ message passing algorithms seems to be a key feature of group testing and similar problems as
we will see in due course more often.

Until now, all presented (non-adaptive) designs and algorithms have one thing in common. If we
restrict ourselves to the sublinear regime, each individual takes part in Ω (lnn) tests and there are tests
containing at least Ω (n/k) tests. Understanding the group testing problem under given restrictions on
the maximum degrees of individuals and tests is not only a challenging problem but it might influence
the group testing schemes used in real-world laboratories. Thus, let us introduce sparsity constrained
group testing.

Sparsity constrained group testing As before, we restrict ourselves to the noiseless case. We dis-
tinguish between Γ−sparse group testing in which each test may contain at most Γ individuals and
∆−divisible group testing whose restriction is that each individual may only be tested at most ∆ times.
Clearly, these models try to built up real world conditions in the sense that the test’s sensitivity might
decrease with very large pools (Γ−sparse) or that it is not possible to duplicate the patient’s samples
arbitrarily often.

Probably the most influential prior work to this thesis’s contributions is the one of Gandikota et al.
[86]. They stated (universal) information-theoretic converse results in both restriction models and
achievability results using the COMP algorithm on the random regular pooling scheme. Let us denote
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by minf,G(Γ) and minf,G(∆) the information-theoretic converse bounds and by mCOMP,G(Γ) and mCOMP,G(∆)
the achievability bounds of COMP in the Γ−sparse and ∆−divisible setting respectively obtained in [86].

More precisely, the authors find for Γ=Θ
((n

k

)β)
for some β ∈ [0,1) that

minf,G(Γ) = 1

1−β
n

Γ
and mCOMP,G(Γ) =

⌈
1

(1−θ)(1−β)

⌉⌈n

Γ

⌉
. (1.2.10)

Furthermore, with ∆= o(lnn) they prove weak converse respectively achievability statements at

minf,G(∆) =∆k
(n

k

)1/∆
and mCOMP,G(∆) = (

e∆kn1/∆)
. (1.2.11)

Comparing the achievability result with the converse statement, we observe a sizeable gap in the ∆−
divisible setting whilst in the Γ−sparse case the gap is only a multiplicative constant factor. We will
improve on the converse statements as well as provide a rigorous analysis of the DD algorithm in a
tailor-made pooling scheme which improves the achievability bounds in Section 2.1.

After having presented a prime example of a statistical inference problem in large planted versions of
statistical physics’ models, let us return to the question of how to express the physics’ intuition behind
the handling of such large random CSPs in a rigorous way. This might help studying random CSPs as
well as their planted versions, hence to study statistical inference problems.

1.3. Large discrete systems and their limits

The purpose of this section is two-fold. First, we will dive deeper into the already defined cut-distance
for probability measures and give an overview of recent results prior to this thesis’s contributions, for
instance we will present a regularity lemma for such measures. We will see that this notion is highly
inspired by graph regularity and the cut-distance used in graph limit theory and give a very gentle and
short introduction into this field as well. Second, we will slightly change the point of view on large graphs
from diluted mean-field models (random graphs) to deterministic graphs which are perturbed slightly
with a little bit of randomness. The latter ones are useful structures in order to study the expected
behaviour of algorithms or to obtain structural results on real world occurrences of large graphs.

1.3.1. Approaching pure states of spin glass systems: the cut-distance

We already learned about the cut-distance ∆� in Section 1.1.2.4. For the sake of the reading flow, recall
that it was defined in (1.1.14) for two probability measures µ,ν on some finite setΩn as

∆�
(
µ,ν

)= inf
γ∈Γ(µ,ν),
φ∈Sn

sup
S⊂Ωn×Ωn ,

X⊂[n],
ω∈Ω

∣∣∣∣∣∣∣

∑
(σ,τ)∈S,

x∈X

γ(σ,τ)
(
1 {σx =ω}−1

{
τφ(x) =ω

})
∣∣∣∣∣∣∣
,

where Γ(µ,ν) is the set of couplings of µ and ν and Sn is the set of permutations on [n]. Let us write
P (Ωn) for the set of probability measures over Ωn . It can be easily verified that ∆�(·, ·) satisfies the
triangle-inequality and is symmetric on P (Ωn) but it might happen that ∆�(µ,ν) = 0 even if µ 6≡ ν.
Therefore, let Ln(Ω) be the set of equivalence classes over P (Ωn) such that one class consists of those
measures with cut-distance zero. With a slight misuse of notation, we say that µ ∈Ln(Ω) is a probability
measure on Ωn rather than representing some equivalence class and now, ∆�(·, ·) defines a metric on
Ln(Ω). As n is supposed to grow to ∞ in typical applications, it might be tempting to introduce some
kind of limit theory.

1.3.1.1. The cut-distance in the thermodynamic limit

The cut-distance for probability measures was introduced by Coja-Oghlan, Perkins and Skubch [42] and
the authors provided an idea of how to get meaningful limit objects of discrete probability measures
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by using this cut-distance. Let us introduce some notation in order to grasp this idea. If σ ∈ Ωn is a
configuration, we can translate this configuration into a measurable function from [0,1) into the set of
probability measures overΩ. Denote by ΣΩ the space of all measurable functions from [0,1) to P (Ω) up
to equality almost everywhere. Then, express σ as

σ̂ : [0,1) →P (Ω) s.t. x 7→
n∑

i=1
δσi 1

{
x ∈

[
i −1

n
,

i

n

)}
.

If now µ ∈P (Ωn) is a probability measure onΩn , Coja-Oghlan, Perkins and Skubch [42] define

µ̂=
∑
σ∈Ωn

µ(σ)δσ̂ s.t. µ̂ ∈P (ΣΩ) . (1.3.1)

Thus, µ and µ̂ are in 1-to-1-correspondence. Now it is possible to equip P (ΣΩ) with a corresponding
continuous version of the cut-distance. To this end, let S[0,1) denote the set of all measure-preserving
bijections on [0,1) whose inverse is measure-preserving as well, then the cut-distance of two measures
µ,ν ∈P (ΣΩ) is defined as

D�(µ,ν) = inf
γ∈Γ(µ,ν),
ϕ∈S[0,1)

sup
B⊂Σ2

Ω,
U⊂[0,1),
ω∈Ω

∣∣∣∣
∫

B

∫

U
σx (ω)−τϕ(x)(ω)dxdγ(σ,τ)

∣∣∣∣. (1.3.2)

Again, we identify two measures µ,ν if their cut-distance is zero and obtain LΩ as the space of all such
equivalence classes. It can be proven that LΩ is a compact metric space [42, Corollary 2.5]. The authors
prove this by the compactness of (a special version) of the so-called graphon space [127] and the exist-
ence of a homeomorphism from LΩ into the latter due to [102, Theorem 7.1]. Nevertheless, prior to
this thesis’s contributions, there was no rigorous limit theory for such probability measures. Especially
the limit objects (we will call them Ω−laws later on) were not described explicitly and the connection
between the discrete and continuous cut-distance was not understood for embedded measures con-
structed via (1.3.1). Furthermore, the exact connection to the graph limit theory was not carried out
and some important key features of graph limit theory, like reconstruction of a finite object by sampling
from a limit object were not known. We will discuss those missing pieces in Section 2.3. As we referred to
graph limit theory a couple of times, let us briefly describe this beautiful theory on a fairly short and in-
tuitive level. Lovász [127] provides a very detailed introduction into graph limit theory for the interested
reader.

1.3.1.2. A spark of graph limit theory

In a series of seminal papers, Borgs et al. and Lovász and Szegedy [31, 32, 128] introduced a very power-
ful theory which connects large discrete objects - growing sequences of dense graphs - with analyt-
ical functions called graphons which are measurable functions from the unit-square into [0,1]. We
give a little insight into this theory following Lovász [127]. In this context, we call a weighted graph
G = (V = {1, . . . ,n} ,E ,Ψ) on |V | = n vertices dense, if there is a constant ε> 0 such that |E | ≥ εn2, thus a
positive proportion of all edges is present. Furthermore, Ψ : V ×V → [0,1] describes the weight of each
edge (observe that a {0,1}−valued functionΨmakes G a simple graph). Without going much into detail,
one way of obtaining such limit objects is by using their version of the cut-distance for graphs. We begin
by introducing a very intuitive version of this distance, namely for graphs on the same vertex set of size
n. We identify a graph G with its adjacency matrix and denote by Gi j its entry, then the cut-distance
reads

δ�(G , H) = n−2 min
ϕ∈Sn

max
S,T⊂V

∣∣∣∣∣
∑

s∈S,t∈T
Gs,t −Hφ(s),φ(t )

∣∣∣∣∣ . (1.3.3)

Intuitively speaking, the cut-distance measures the largest deviation of edges on subsets of vertices un-
der a best possible re-labelling of the vertices. In particular, isomorphic graphs are those graphs with
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cut-distance zero. One can imagine that this definition gets quite involved if it is defined for graphs on a
different number of vertices. Roughly said, in this case the cut-distance is defined as the minimum over
all values of the cut-distance between blow-ups of the graphs that have the same number of vertices
[127, Section 8.1.4].

Let us now embed such finite graphs into the space of kernels, thus measurable functions W : [0,1]2 →
[0,1]. Denote the space of all such kernels as K . In order to embed a graph we can, figuratively speaking,
shrink the adjacency matrix of a graph G from size n ×n onto the unit-square [0,1]2 such that the built
function takes a constant value on each little square corresponding to a matrix entry. Formally, if G =
(V ,E) is a graph on n vertices, we construct WG as the corresponding G−kernel as follows. Let S1, . . . ,S`
be a partition of [0,1] into n intervals such that Si = [(i −1)/n, i /n). Then let

WG (x, y) =
n∑

i , j=1
1

{
x ∈ Si , y ∈ S j

}
Gi , j

be the step-function which takes value 1 on square Si × S j if and only if edge i , j is present in G . Of
course, this definition easily generalises to weighted graphs as well.

Thus, we can embed any finite graph into the space of kernels K . But clearly, there are much more
functions in K as those that correspond to finite graphs. Following [127, Section 8.2.1], we define the
continuous version of the cut-distance for two kernels W,W ′ ∈K as

D�(W,W ′) = inf
ϕ∈S[0,1]

sup
S,T⊂[0,1]

∣∣∣∣
∫

S×T
W (x, y)−W ′(ϕ(x),ϕ(y))dydx

∣∣∣∣ . (1.3.4)

As in the previous section, the continuous version seems to be the intuitive generalisation of the dis-
crete cut-distance (1.3.3) by replacing sums with integrals and permutations with measure preserving
bijections. On th other hand, we are in a good position that such intuition can be formalised rigorously
as for two graphs G , H and their corresponding G−kernel and H−kernel WG ,WH , we have [127, Lemma
8.9]

δ�(G , H) =D�(WG ,WH ).

We will see in Section 2.3 that we are not that lucky in the case of limit objects of probability measures
but it is possible to achieve similar but slightly weaker results.

Sampling A very elegant aspect about graph limits is that sampling from a kernel yields a finite graph
which is close to the kernel in the cut-distance. This fact is often referred to as a sampling lemma. More
precisely, given a kernel W , let k > 1 be an integer and sample x1, . . . , xk uniformly and independently
from [0,1]. Define a random graph G =G (k,W ) on k vertices such that edge i j is present with probab-
ility W (xi , x j ). Then we have the following sampling lemma [127, Lemma 10.16].

Sampling Lemma. Let W be a kernel and G =G (k,W ) defined as above. Then we have with
probability at least 1−exp(−k/(2lnk)) that

D�(WG ,W ) < 22p
lnk

.

It will turn out in Section 2.3 that a similar fact holds forΩ−laws as well.

Subgraph counts and homomorphism densities A further fairly important aspect about graph limit
theory is that the space of kernels really consists of meaningful limit object for sequences of graphs. To
this end, we need to briefly mention that graph convergence is actually defined as the convergence of all
homomorphism densities of finite graphs into the graph sequence. Therefore, a series of graphs (Gn)n

converges, by definition, if all series of homomorphism densities of finite graphs (t (H ,Gn))H converge
inR. Let us define the homomorphism density. A graph homomorphism f from a graph F = (V (F ),E(F ))



Introduction 36

into a graph G = (V (G),E(G)) is a function f : V (F ) →V (G) that maps edges on edges, thus i j ∈V (F ) ⇒
f (i ) f ( j ) ∈V (G). Now, hom(F,Gn) counts the number of homomorphisms from a given k−vertex graph
F into Gn and we define the homomorphism density as

t (F,Gn) = hom(F,Gn)

nk
.

With this notation at hand, convergence of graphs should be understand as follows. If two graph se-
quences produce the same convergent series of homomorphism densities, they should have much in
common (as they contain equally many copies of all finite graphs) and therefore converge to the same
limit object. Fortunately, it turns out that the kernels are good limit objects as we find that for any con-
vergent sequence (Gn)n of graphs there is a kernel W such that t (F,Gn) converges to t (F,W ) for every
finite graph F [127, Theorem 11.22]. Such a kernel is called the limit of the graph sequence (Gn)n and we
say that (Gn)n converges to W . Now it could in principle happen that multiple kernels satisfy this condi-
tion and clearly, kernels representing isomorphic graphs should definitely do so. To this end, denote by
W the space of kernels such that we identify kernels of cut-distance zero. We have that W is a compact
Polish space [127, Theorem 9.23]. It turns out that we are in good shape as [127, Theorem 11.22] proves
that a sequence of graphs (Gn)n with a diverging number of vertices converges to a kernel W if and only
if D�

(
WGn ,W

) → 0 and as W is a compact metric space, the uniqueness up to equivalent kernels W ′ -
kernels that satisfy D�

(
W,W ′)= 0 - follows directly.

After discussing some aspects of the kernel representation of a graph limit, let us shortly describe a
second important possibility to describe a limit object.

Aldous-Hoover representation The Aldous-Hoover representation theorem for exchangeable arrays
of random variables is closely connected to the graph limit theory [6, 96, 102]. More precisely, with W
being a kernel, we recall that G (k,W ) is the random graph obtained as follows.

• Draw X 1, . . . , X k uniformly at random and independently from [0,1].

• Let each edge i j be present in G (k,W ) with probability W (X i , X j ).

This can be naturally extended to an infinite random graph model G (∞,W ) by sampling infinitely many
points X i . Of course, G (∞,W ) contains every finite random graph G (k,W ) as an induced subgraph [31].
We observe that G (∞,W ) is an exchangeable random graph. Indeed, its distribution is invariant under
permutation of the vertices.

Thus, the Aldous-Hoover representation theorem says that any such infinite random graph can be
written as a mixture of random variables Ai j = W̃k (Y i ,Y j ) where {Y i }i∈N is a family of mutually in-
dependent [0,1]−valued random variables and

{
W̃k

}
k is a family of symmetric functions W̃k : [0,1]2 →

[0,1]. This matrix A = (Ai j )i , j is clearly an infinite random exchangeable array in [0,1]N×N and one
would suggest that it is in 1-to-1 correspondence with the adjacency matrix of G (∞,W ). And this intu-
ition is indeed correct. It is possible to proof that the set of exchangeable infinite arrays corresponding
to such an infinite graph equals the set of extremal points in the space of all exchangeable random ar-
rays. Therefore, the mixture is no real mixture but there is exactly one function W : [0,1]2 → [0,1] such
that Ai j =W (Y i ,Y j ) for all i , j . This is, of course, exactly the kernel W .

After having learned a spark of graph limit theory, let us use it to tackle one of the most influential
concepts in graph theory, the graph regularity.

1.3.1.3. Regularity of graphs, graph limits and probability measures

Since the first occurrence of a regularity lemma for graphs in 1975, graph regularity and its generalisation
have attracted a lot of attention. We refer to two very detailed overview articles by Rödl and Schacht
[151] and Komlos et al. [112] describing and analysing various variants of graph regularity and their
applications. In this thesis, we will only sketch two types of regularity, one which is just called regularity
as defined by Szemerédi [160] and a much weaker version called weak regularity by Frieze and Kannan
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[84]. Besides belonging clearly to the most studied types of regularity, we will see that those concepts
are closely related to the cut-distance for probability distributions.

Throughout this section we suppose that G = (V ,E) is a graph on n vertices with at least εn2 edges. The
regularity lemma says, intuitively speaking, that the vertex set of each such graph can be partitioned into
finitely many classes such that the edges between (almost all) those classes look random. Let us describe
this in more detail.

For two subsets X ,Y ⊂V of the vertex set we denote by E(X ,Y ) the set of edges with one endpoint in
X and one endpoint in Y . Then the edge density between X and Y is defined as

d(X ,Y ) = |E(X ,Y )|
|X | |Y | .

If the edges between X and Y were randomly chosen, we would expect that the edge density between
not too small subsets of X and Y roughly equals the overall edge density. Thus, let us call the pair (X ,Y )
ε−regular if for all X ′ ⊂ X , Y ′ ⊂ Y with

∣∣X ′∣∣≥ ε |X | and
∣∣Y ′∣∣≥ ε |Y | we have

∣∣d(X ,Y )−d(X ′,Y ′)
∣∣≤ ε.

If we now have a partition S = (S0,S1, . . . ,S`) of the vertex set V , we say that S is ε−regular if

• the exceptional set S0 satisfies |S0| ≤ εn,

• for all 1 ≤ i < j ≤ ` we have that the pair (Si ,S j ) is ε−regular.

Now, the famous regularity lemma of Szemerédi [160] guarantees that every large enough dense graph
has such a partition of its vertex set.

Regularity Lemma. For all ε> 0 and every t ∈N there exists an integer T = T (ε, t ) such that
each graph G on at least T vertices has an ε−regular partition S = (S0, . . . ,S`) of its vertex set
where t ≤ `≤ T .

A specific feature of this theorem is that T is independent of the graph G and its size. Nevertheless, it
turns out that T is lower bounded by a tower of 2s of height proportional to ln(1/ε) [92]. One might ask,
do we get smaller partitions if we only want to have the property of being regular on average? Indeed,
Frieze and Kannan [84] answer this question positively.

Observe that given a regular partition S = (S0, . . . ,S`) we find that the number of edges between two
disjoint subsets of vertices A,B is within ±εn2 of

∑̀
i , j=1

d(Si ,S j ) |A∩Vi |
∣∣B ∩V j

∣∣ ,

thus the latter expression measures somehow the deviation from being regular. Therefore, we say that
a partition S = (S1, . . . ,Sk ) of the vertex set of a graph G = (V ,E) is weakly ε−regular if we have for all
disjoint A,B ⊂V

∣∣∣∣∣|E(A,B)|−
∑̀

i , j=1
d(Si ,S j ) |A∩Si |

∣∣B ∩S j
∣∣
∣∣∣∣∣< ε. (1.3.5)

Now, the weak regularity lemma [84] guarantees the existence of a weakly regular partition for every
graph.

Weak Regularity Lemma. For all ε> 0 and every graph G there is a weakly ε−regular parti-
tion of its vertex set into k sets such that k ≤ exp

(
O

(
ε−2

))
.

Thus, the weak regularity lemma provides a partition which is on average regular but consists of consid-
erably less parts. Interestingly, if GS is the weighted graph on the same vertices as G with edge-weight
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d(Si ,S j ) for edge uv with u ∈ Si , v ∈ S j , we have that (1.3.5) implies

δ�(G ,GS) < 2ε. (1.3.6)

Therefore, the cut-distance is closely related to the concept of (weak) regularity. Of course, a similar res-
ult does hold for kernels as well. If W is a kernel and S = (S1, . . . ,S`) is a partition of [0,1] into measurable
sets, we define following [127, Section 9.2.1]2

WS(x, y) = 1

λ(Si )λ(S j )

∫

Si×S j

W (x, y)dydx for (x ∈ Si , y ∈ S j ). (1.3.7)

Thus, WS is obtained by averaging over each step Si×S j . Now the weak regularity lemma states that given
a kernel W we find a partition S of the unit interval into k ≤ exp

(
O

(
ε−2

))
sets such that D�(W,WS) < ε.

Let us now come back to discrete probability measures on Ωn for some finite set Ω. More precisely,
we look at their continuous embeddings as Ω-laws on ΣΩ. It is possible to define a similar concept of
regularity for those objects inspired by the concept of regularity in graph theory [21, 42]. In order to do
so, we need to introduce some notation.

For a set X ⊂ [0,1) and a configuration σ ∈ΣΩ as well as a spin ω ∈Ω define

σ[ω | X ] =
∫

X
σx (ω)dx.

Thus, σ[· | X ] : [0,1) → P (Ω) is a probability distribution on Ω and more precisely, it can be seen as a
continuous valued analogue of the empirical distribution of σ on X .

If we now have a partition V = (V0,V1, . . . ,V`) of [0,1), and a partition S = (S0,S1, . . . ,Sk ) of ΣΩ we say
that µ is ε−regular with respect to (V ,S), if

(i) the non-exceptional sets V1, . . . ,V` and S1, . . . ,Sk satisfy

λ (Vi )µ
(
S j

)> 0 and
∑̀
i=1

k∑
j=1

λ(Vi )µ(S j ) ≥ 1−ε,

(ii) for all 1 ≤ i ≤ `, 1 ≤ j ≤ k we have

max
σ,σ′∈Si

∣∣∣∣σ[·|V j ]−σ′[·|V j ]
∣∣∣∣

1 < ε,

(iii) for all 1 ≤ i ≤ ` and 1 ≤ j ≤ k we have for U ⊂ Vi with λ(U ) ≥ ελ(Vi ) and T ⊂ S j with µ(T ) ≥ εµ(S j )
that ∣∣∣

∣∣∣〈σ[· |U ]〉µ[·|T ] −〈σ[· |Vi ]〉µ[·|S j ]

∣∣∣
∣∣∣
1
< ε.

This definition deviates slightly from the one in [42] with respect to the exceptional sets but is clearly
equivalent. As stated in this publication, (ii) guarantees that the averages σ[· | Vi ] and σ′[· | Vi ] over Vi

of any two configurations from one cluster S j are close. More importantly, (iii) requires that the average
〈σ[· |U ]〉µ[·|T ] over a large sub-square does roughly equal the mean over the square given by the partition
Vi ×S j .

As in the case of graph regularity, this can be expressed via the cut-distance. Given an ε−regular
partition (V ,S), we define

σx [ω|V ] =
∑̀
i=0

1 {x ∈Vi }σx [ω |Vi ].

Furthermore, we let µ[· |V ,S] be the conditional expectation of µ with respect to this partition, thus

µ[· |V ,S] =
k∑

j=0
δ∫

S j
σ[·|V ]dµ(σ).

2We denote by λ(·) the Lebesgue-measure.
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Therefore, µ[· | V ,S] ∈ LΩ is an Ω−law which is supported on a discrete set of configurations σ :
[0,1) → P (Ω) which themselves are constant on each of the partition classes V . Comparing µ[· | V ,S]
with the step-kernel WS given via (1.3.7) we see that the two structures express very similar ideas, for
graphs on the one hand and probability measures on the other hand.

Thus, it might be no surprise that we find for an Ω-law µ and an ε−regular partition (V ,S) that [42,
Proposition 2.14]

D�
(
µ,µ[· |V ,S]

)< 2ε.

Moreover, the authors provide a regularity lemma for suchΩ−laws [42, Corollary 2.15].

Regularity Lemma for Ω−laws. For any ε > 0 there is a natural number N = N (ε) such
that for any Ω-law µ there are σ1, . . . ,σN : [0,1) → P (Ω) and ω = (ω1, . . . ,ωN ) ∈ P ([N ]) with
D�(µ,

∑N
i=1ωiδσi ) < ε.

A similar statement is known for probability measures µ on Ωn [21, Theorem 2.1]. Let us bring this no-
tion of regularity together with the idea of ε−symmetry discussed previously. First we observe that any
refinement of the classes V1, . . . ,V` only increases the cut-distance between µ and µ[· | V ,S] by a con-
stant factor. Therefore, we can refine a regular partition (V ,S) into singletons Vi = {i } and observe that
in this case µ[· |V ,S] becomes a convex combination over (on Si conditioned) product measures on the
marginals of µ[· | Si ]. Recall that for a probability measure ν ∈P (Ωn) we denote by ν̄ the corresponding
product measure on the same marginals, therefore, on each partition class Si we findµ[· |V ,S] = µ̄[· | Si ].

A direct consequence [21, Corollary 2.2] of the regularity lemma is the following. If S is an ε3−regular
partition of (Ωn) (we drop the singleton decomposition of V for the sake of readability from now on)
w.r.t. µ ∈P (Ωn) then we have:

Regularity and symmetry. For any ε> 0 there is η= η(ε,Ω) > 0 such that for all n ≥ η−1 and
any probability measure µ onΩn we have for j = 1, . . . ,k that ∆�(µ[· | S j ], µ̄[· | S j ]) <O(ε).

Thus, finding an ε−regular partition of the phase space guarantees to express a probability measure
as an convex combination of measures conditioned on the partition classes which look like a product
measure under the cut-distance. Clearly, it would be interesting to have algorithms that construct such
partitions efficiently. Here comes the flaw of all described regularity lemmas. While they guarantee the
existence of regular partitions, it is not clear how to generate them. A fairly elegant way of obtaining a
partition S of Ωn for some measure µ ∈ P (Ωn) is the so-called pinning operation introduced by Coja-
Oghlan et al. [49].

1.3.1.4. Pinning

Suppose we have a measureµ ∈P (Ωn) and we want to obtain a fairly related measure which is ε−symmetric.
In this case, the pinning lemma [49, Lemma 3.5] provides a very simple way of achieving this goal.

Pinning Lemma. For any ε> 0 there is a natural number T > 0 such that for every n > T and
every µ ∈P (Ωn) the following holds. Construct a (random) probability measure ν= ν(µ) ∈
P (Ωn) as follows.

• Sample σ̃∼µ.

• Choose independently an integer θ ∈ [1,T ) uniformly at random.

• Create a random subset U ⊂ [n] by including each coordinate with probability θ/n
independently.

• Define

ν(σ) =µ(σ)
1 {∀i ∈U :σi = σ̃i }

µ ({τ : ∀i ∈U : τi = σ̃i })
.

Then we have ∆� (ν, ν̄) <O
(
ε1/3

)
with probability at least 1−ε.
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Therefore, we draw just a single sample from µ and pin a relatively small number of coordinates to
their spins under this sample. This reweighed measure is now likely to be ε−symmetric. Fairly related
versions of such lemmas for probability measures were previously obtained by Montanari [137, Lemma
3.1] and Raghavendra and Tan [148].

It actually turns out that the pinning operation does not only yield such a reweighed measure but that
we can actually obtain a partition of the phase space and a corresponding family of reweighed measures,
when we just define the partition as given by all |Ω||U | possibilities of spins those variables in U can take.
While this operation is clearly a mighty tool for producing regular partitions, it was not known prior to
this thesis’s contributions whether and how similar approaches might work for Ω-laws. We will discuss
this in Section 2.3.

Let us for the sake of completeness mention that similar approaches of obtaining regular partitions for
graphs have been studied as well by (non-exclusively) Tao [163] and Fischer, Matsliah and Shapira [79]
by choosing partitions according to the adjacency of randomly selected vertices. Up to our knowledge,
a complete understanding on how the procedure of sampling and reweighing can be explicitly applied
in this context is not yet gained.

In this section we discussed the cut-distance and its connection to regularity for probability measures
and graphs. We saw that regularity implies that (dense) large graphs cannot look arbitrarily wild but do
contain a lot of structure. Structural results of (sparse) graphs will be the topic of the next section which
introduces the concept of random perturbation of graphs.

1.4. Perturbing sparse graphs: when randomness meets
determinism

The origin of randomly perturbing deterministic structures can be traced back to a contribution of Spiel-
man and Teng [159] who introduced the smoothed analysis of algorithms. The key idea is fairly simple.
While it is known for many algorithms that their worst-case running time exceeds the average case run-
ning time significantly, it can be observed in real world applications that this worst-case does not usually
occur. A prime example might be the simplex algorithm [61] whose worst-case complexity is exponen-
tial but nevertheless, the method is used quite frequently in applications. Of course, one could analyse
the average case running time but this might not give enough performance guarantees in production
systems, as it is not unlikely to observe an input deviating from the average case. The smoothed ana-
lysis of algorithms overcomes this flaw by analysing a worst-case input on whom random changes have
been applied. If the number of changes is fairly high, the instance clearly becomes average case by
definition but if the number of manipulations is small, the modified input is fairly close to a worst-case
instance which is reasonable to be observed in real applications as hitting the absolute worst-case is
very unlikely.

Subsequently, this idea of randomly perturbing deterministic structures became of interest in the
study of random graphs. For instance, one of the most famous results of extremal combinatorics might
be Dirac’s theorem [65] on Hamilton cycles. It states that whenever a graph on n vertices has minimum
degree at least dn/2e, this graph contains a Hamilton cycle, thus a closed loop through the graph visiting
each vertex exactly once. This result is optimal in the sense that there are graphs with minimum degree
bn/2c which do not contain such a cycle, i.e. let n = 2m−1 and take two copies of the complete graph on
m vertices Km which share exactly one common vertex. The latter graph has clearly no Hamilton cycle
but has minimum degree bn/2c. But it is of course very unlikely to observe such an extreme graph in a
real world network, thus many graphs with smaller minimum degree contain a Hamilton cycle (clearly,
the necessary minimum degree is 2 achieved by the cycle on n vertices Cn). Let us look at the average
case, which is the binomial random graph. It is well understood that G (n, p) undergoes a strict phase
transition with respect to containing a Hamilton cycle at p = n−1 lnn [116, 117, 147]. What happens if we
combine the probabilistic and deterministic objects? Denote by Gα = (V ,E) an arbitrary (probably ad-
versely chosen) graph on V = [n] with minimum degreeαn and denote furthermore by F =Gα∪G (n, p)
the union of this graph and an instance of the binomial random graph with edge probability p. Here we
define the union as follows: For each pair of vertices i , j ∈ (V

2

)
, we add an edge of G (n, p) independently
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of everything else with probability p. When does F contain a Hamilton cycle with high probability?
Clearly, if α ≥ 1/2, the existence follows solely from Dirac’s theorem applied to Gα. If on the other

hand p ≥ (1+ε) lnn/n, we find the cycle inside of the edges of G (n, p) with high probability. But what
happens in between?

This model of randomly perturbed graphs with given minimum degree was introduced by Bohman,
Frieze and Martin [28] for α = Θ(1), thus for dense graphs. In the aforementioned contribution the
authors explicitly find the trade-off betweenα and p. More precisely, they proved that for every constant
0 < α < 1/2 there are graphs Gα such that Gα ∪G(n, p) does not contain a Hamilton cycle with high
probability if p = o(1/n). On the other hand, if p =ω(1/n), any such union of graphs contains a Hamilton
cycle with high probability. It is important to observe that p = 1/n is the phase transition point in (solely)
G (n, p) of containing a cycle on all but εn vertices. Thus the transition point for the spanning structure
in the perturbed model equals (in this case) the transition point of the existence of an almost spanning
structure in the random graph which is due to the existence of isolated vertices below p ∼ lnn/n.

Of course, there is not only interest for Hamilton cycles but also for various different spanning struc-
tures. On the side of finding Dirac-like theorems for the existence of specific spanning structures in Gα

solely, there are for instance results for spanning trees [115], factors [94] as well as powers of Hamilton
cycles [113, 114]. Finally, there are even fairly generic results for the existence of a copy of any bounded
degree graph in Gα by Böttcher, Schacht and Taraz [36]. And clearly, the existence of all of those struc-
tures is known to undergo phase transitions in the random graph G (n, p). To briefly name a few import-
ant contributions, there are results on the existence of matchings [72], spanning trees [118, 139], factors
[107] and powers of Hamilton cycles [125, 141]. Finally, there are also generic results on the phase trans-
itions with respect to general bounded degree graphs [14, 76, 77, 150]. We refer to a recent overview
article of Böttcher [33] for a more detailed presentation.

It is not very surprising that since the first discussion of the existence of Hamilton cycles in randomly
perturbed graphs various contributions obtained results with respect to the aforementioned spanning
structures. Just to name a few, there are results on spanning trees [34, 119], factors [20] as well as powers
of Hamilton cycles [26]. Ultimately, there are recent results on the existence of general bounded degree
graphs in the perturbed model by Böttcher et al. [35]. Interestingly, in most of the results, the obtained
phase transition for p is a multiplicative factor of order lnn smaller than in G (n, p).

The knowledge of things becomes completely different if one allowsα= o(1), thus one has a determin-
istic sparse graph Gα and needs more edges from the random graph. We will investigate the existence of
perfect matchings, Hamilton cycles and bounded degree trees in this model of sparse perturbed graphs
in Section 2.4.
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2. Results

This chapter summarises the main results obtained in this thesis’s contributions. Those results will be
presented and very short proof sketches will be given showing the most important steps in order to
achieve those results. We emphasise that those sketches make simplifying assumptions and leave out
all technical details because they are just meant to grasp the main idea of how to prove a result. For
complete and rigorous proofs we refer the reader to the contributions in the appendix.

We start by discussing results with respect to the group testing problem. Subsequently, we will an-
swer the question of how many satisfying assignments a random 2-SAT formula has and state results in
context with a limit theory for discrete probability measures and the role of the cut-distance. Finally, we
discuss the existence of spanning structures in randomly perturbed sparse graphs.

2.1. Group Testing

As already discussed in the introduction, all our results are within the framework of Bayes optimal sub-
linear hypergeometric probabilistic group testing, thus we try to achieve inference with high probability
and the ground-truth σ is supposed to be chosen uniformly at random from all possible configurations
in {0,1}n of Hamming weight k ∼ nθ for some θ ∈ (0,1). The results of this section were obtained in the
following contributions which can be found in the appendix:

• Information-Theoretic and algorithmic thresholds for group testing [41],

• Optimal group testing [46],

• Near optimal sparsity-constrained group testing: improved bounds and algorithms [88].

We start by discussing results with respect to non-adaptive group testing schemes. A summary of the
obtained results can be found at the end of the section.

2.1.1. Non-adaptive Group Testing

Almost all obtained results make extensive use of the occurrence of different types of individuals in a
group testing instance. Following [88], we will shortly describe the combinatorial meaning of those
types.

Throughout the section we suppose that we have individuals V = {x1, . . . , xn} and tests F = {a1, . . . , am}
and that each individual’s infection status is given by the underlying ground-truth σ and all test-results
are given by σ̂.

2.1.1.1. Combinatorial properties of individuals

Suppose that some (non-adaptive) pooling scheme is given through the factor graph G = (V ∪F,E). We
abbreviate the set of uninfected individuals to V0 and the set of infected individuals to V1, thus

V0(G ) = {x ∈V (G ) :σx = 0} and V1(G ) = {x ∈V (G ) :σx = 1} .

Those uninfected individuals appearing in a negative test can be classified immediately and play there-
fore a special role. We define this set of individuals as V0−, formally

V0−(G ) = {x ∈V0(G ) : ∃a ∈ ∂G x : σ̂a = 0} .

Furthermore, with respect to the DD algorithm, it intuitively makes sense to denote the set of infected
individuals which appear in at least one test with only elements of V0−. Thus, upon classifying the latter



Results 43

0 1 1 1 1 1 1 1 1

Figure 2.1.: The local structure given by the underlying factor graph in the non-adaptive group testing
problem modified after [88]. Blue individuals are uninfected under the ground-truthσwhile
red individuals are infected. More precisely, we suppose that light blue individuals belong to
V0+ and dark blue individuals to V0−. From left to right, the upper individuals are elements
of V0−,V1−− and V+ respectively.

individuals, those infected individuals are easy to identify. More precisely, we define

V1−−(G ) = {x ∈V1(G ) : ∃a ∈ ∂G x : ∂G a \ {x} ⊂V0−(G )} .

Moreover, there might be totally disguised individuals. Following Aldridge, Johnson and Scarlett [10]
and Mézard, Tarzia and Toninelli [133], we say that an individual x is disguised in a test a if there is
an infected individual y ∈ ∂a \ {x}. A totally disguised individual is disguised in all of its tests. Clearly,
the infection status of those individuals cannot be inferred directly, but using the prior, it is possible
to declare any of those individuals as uninfected as long as there are not too many totally disguised
individuals [8, 41]. Formally, we let

V+(G ) = {x ∈V (G ) : ∀a ∈ ∂G x : (∂G a \ {x})∩V1(G ) 6= ;} .

For the sake of completeness, we furthermore define the set of totally disguised infected and uninfected
individuals, thus

V0+(G ) =V+(G )∩V0(G ) and V1+(G ) =V+(G )∩V1(G ).

If it is clear from the context which pooling scheme G is the matter of discussion, we will write V0+ =
V0+(G ) and equivalently abbreviate the other sets. A graphical visualisation of those types of individuals
is given in Figure 2.1.

The sizes of the sets V1+,V0+,V1−− have direct impact on the algorithmic and information-theoretic
feasibility of a group testing instance. For a configuration τ ∈ {0,1}n we denote by τ̂ = τ̂(G ) the corres-
ponding test-results on a pooling scheme G . Now we define

Sk = Sk (G ,σ) = {
τ ∈ {0,1}n : ||τ||1 = k and τ̂= σ̂}

as well as Zk = Zk (G ,σ) = |Sk | .

This notation enables us to find the following assertion which holds as the infection status of totally
disguised individuals can be swapped arbitrarily due to the supposed Bayes optimality ( [41, Corollary
2.2] and [88, Claim 2.3]).

Lemma 2.1.1. Let Zk (G ,σ) be defined as above, then the following holds.

• If Zk (G ,σ) = 1, there exists a (not necessarily efficient) algorithm which infers σ from (G ,σ̂) with
high probability.

• If Zk (G ,σ) = `, any algorithm (efficient or not) fails at inference of σ from (G ,σ̂) with probability
at least 1−`−1.

• For any test design G , we have Zk (G ,σ) ≥ |V1+(G )×V0+(G )| .

A similar statement follows for the DD algorithm but here we need to take the set V1−− into account
because it consists of exactly those individuals which will be misclassified by DD.

Lemma 2.1.2 (Corollary 2.4 of [88]). The DD algorithm recovers σ from (G ,σ̂) if and only if V1(G ) =
V1−−(G ).
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Let us subsequently state achieved information-theoretic bounds for non-adaptive hypergeometric
probabilistic group testing.

2.1.1.2. Information-theoretical results

Recall minf and mrand−reg from (1.2.5) and (1.2.8) as

minf =
1

ln2
k ln

n

k
and mrand−reg = max

{
θ

(1−θ) ln2 2
,

1

ln2

}
k ln

n

k
.

As discussed earlier, the random regular model was known to fail with positive probability below
mrand−reg due to [9]. We strengthen this converse statement and establish an achievability statement
at the same value, thus obtaining a strict phase transition in the random regular model. With a slight
misuse of notation we refer to a model as the random (almost) regular model if each individual chooses
∆ tests uniformly at random with or without replacement. While the technical delicacies of the proofs
change depending on the exact model formulation the results themselves stay the same.

Theorem 2.1.3 (Theorem 1.1 of [41]). Let G be the random almost regular pooling scheme with n indi-
viduals and m tests, ε> 0 and k ∼ nθ. Then the following holds.

• If m > (1+ε)mrand−reg, there is an (exponential time) algorithm inferring σ from (G ,σ̂) with high
probability.

• If m < (1−ε)mrand−reg, no algorithm (efficient or not) outputs σ given (G ,σ̂) with a non-vanishing
probability.

Proof sketch of Theorem 2.1.3. We need to establish two directions of the theorem, let us start with the
achievability result. We do this by employing Markov’s inequality and an idea from statistical physics.
More precisely, we denote by Zk,` the number of configurations τ 6=σ satisfying all test-results that have
overlap ` with σ where the overlap is defined as the number of individuals which are infected under τ
and σ. If we can show that the expected number of such individuals (for the sum over ` = 0. . .k −1) is
o(1), Markov’s inequality shows that there is, w.h.p., only one satisfying assignment (namely σ) which
can be found by exhaustive search.

Thus, let us bound the expected number of such configurations. First, we suppose ` < (1−1/lnn)k
and calculate the expected number of individuals quite directly as

E[Zk,`(G ,σ̂)] ≤O(1)

(
k

`

)(
n −k

k −`

)(
1−2(1−k/n)Γ̄+2(1−2k/n +`/n)Γ̄

)m
, (2.1.1)

where Γ̄ = n∆/m is the average test size. The combinatorial meaning is immediate. While the product
of the two binomial coefficients counts the number of possible assignments τ that have overlap ` with
σ, the last factor is the probability that an average test renders the same result underσ and τ. Of course,
we made many simplifying assumptions as, for instance, we supposed that all tests are independent
and the single test degrees are sufficiently concentrated. But it turns out that this can be turned into a
rigorous argument. Now we find – as long as `< (1−1/lnn)k – that an easy calculation provides

(1−1/lnn)k∑
`=0

E[Zk,`(G ,σ̂)] = o(1)

for the choice of m = (1+ε)mrand−reg.
Unfortunately, this argument fails for very large overlaps as the r.h.s. of (2.1.1) gets too large, thus the

expectation overshoots the value of the random variable dramatically. This is a kind of a lottery effect and
is well known in the random CSP literature as for big overlap values rare but very solution-rich clusters
dominate the expectation [3]. But fortunately, the random CSP literature enables us to cope with such
phenomena [1]. In short, we only need to show that the underlying random graph simply does not



Results 45

allow solutions having an overlap close to k asσ is locally rigid. More precisely, we can proof that above
mrand−reg, each individual is part ofΘ (∆) =Θ(lnn) tests such that all other contained individuals belong
to V0−. Therefore, upon changing the infection status of one individual from 1 → 0, we directly need to
change the status of ∼ lnn different individuals from 0 → 1 to compensate for those tests. But now, the
same applies for those individuals, thus we have to change the status of another lnn individuals from
1 → 0. This argument goes on for a couple of rounds until we proved that ` needs to be smaller than
(1−1/lnn)k.

We observe at this point that the both expressions in the max(·, ·) of mrand−reg exactly account for
those two arguments. While the ln−1 2 from the universal counting bound suffices to guarantee that the
expected number of alternative satisfying configurations is small, the non-adaptivity part accounts for
the local rigidity. This perfectly fits into the previous discussion.

Let us subsequently sketch how to achieve the converse statement, namely that any inference al-
gorithm fails below mrand−reg on the random regular model. As mrand−reg coincides with minf for θ <

ln2
1+ln2 , we only need to consider larger values of θ. The proof idea is fairly simple, as by Lemma 2.1.1,
we just need to calculate that we find ω(1) totally disguised infected and uninfected individuals with
high probability. For this proof sketch, we suppose that all tests are stochastically independent but we
remark that the actual proof is technically challenging in order to cope with the delicate dependencies
in the random regular model. I.e., it is possible to describe the number of infected individuals in each
test by a family of independent but conditioned binomial random variables. As a first step, we prove
that in the random regular model on m = ck ln n

k tests the choice ∆ = c ln2ln n
k is optimal. Intuitively,

this maximises the entropy of the system. Having established this, the probability for an individual x to
be totally disguised turns out to be roughly

(1− (1−k/n)Γ̄−1)∆ ∼ 2−∆ ∼ n−(1−θ)c ln2 2.

Thus, the expected number of individuals in V1+ is nθ−(1−θ)c ln2 2 and for V0+ we find E [|V0+|] À E [|V1+|].
Clearly, E [|V1+|] diverges as fast as a polynomial in n if m = (1−ε)mrand−reg and luckily it turns out that
Chebyshev’s inequality suffices to guarantee enough concentration.

Actually, it turns out that Theorem 2.1.3 is not the strongest result we can achieve. While it answers
all questions regarding information-theoretical inference in the random regular model, it might be the
case that there are different pooling schemes facilitating better. This is, indeed, not the case.

Theorem 2.1.4 (Theorem 2 of [46]). Let G be any arbitrary non-adaptive pooling scheme with n indi-
viduals and m tests, ε > 0 and k ∼ nθ. If m < (1−ε)mrand−reg, no algorithm (efficient or not) outputs σ
given (G ,σ̂) with a non-vanishing probability.

Theorem 2.1.4 implies two important facts. First of all, the random regular design is information-
theoretically optimal as there cannot be any better designs for inference. Second, as

mrand−reg > minf for θ > ln2

1+ ln2
,

we proved the existence of an adaptivity-gap. Thus, performing multiple stages of testing might de-
crease the number of required tests. Formerly, the question about the existence of such an adaptivity-
gap has been raised prominently [10, 108]. In light of the second part of Theorem 2.1.3 and The-
orem 2.1.4, we will write

mnon−ada = mrand−reg

from now on as this marks a strict phase transition point for non-adaptive group testing. Let us now give
a proof sketch of Theorem 2.1.4.

Proof sketch of Theorem 2.1.4. As before, we only need to establish the assertion for θ > ln2
1+ln2 as the

universal counting bound already proves the theorem for smaller values of θ.
This proof comes in three steps. First, we slightly change the model from a hypergeometric group

testing ground-truth σ to an i.i.d. ground-truth σ̃ where each entry is set to one with probability p ∼
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k−
p

k lnn
n . Thus, with high probability, we find a coupling of (σ,σ̃) such that turning few uninfected

individuals in σ̃ to infected creates σ. It turns out that finding totally disguised infected and uninfected
individuals in a testing scheme under σ̃ implies to find some of them also under σ. This change of the
model simplifies proving converse statements. As the underlying graph is deterministic, this enables us
to create the only source of independent randomness within the setup.

Second, we show that the number of totally disguised infected and uninfected individuals below minf

is large for θ really close to one. We first observe that even in an arbitrary test-design no test contains
more than n lnn/k individuals as otherwise a union bound over all tests shows that these tests render
a positive result anyways and could also be left out. But this already implies due to the handshaking
lemma that there are very few individuals participating in more than ln3 n many tests. Thus, the under-
lying testing scheme is, besides not knowing how it looks like exactly, fairly sparse if θ is large. Next, we
strengthen an argument based on the FKG-inequality and the probabilistic method of Aldridge [7] and
Mézard, Tarzia and Toninelli [133] to identify one individual y whose probability of being element of V+
is not too small, say ≥ exp

(−m ln2(2)/k
)
. Of course, this probability tends to zero (making it much more

difficult to find enough such individuals compared to Aldridge’s case). Next, we delete this individual
and all tests and individuals in its first, second, third and fourth neighbourhood. Clearly, the left-over
individuals are stochastically independent of y with respect to the property of belonging to V+. Further-
more, upon removal of the individuals, chances of being totally disguised only increase. Let us denote
by G1 the graph after removal of y and its described neighbourhoods. Due to the sparsity of the under-
lying graph we can show that m

n ∼ |F (G1)|
|V (G1)| , thus the ratio between tests and individuals stays roughly the

same. We repeat this procedure n1−δ times where δ = δ(θ) > 0 is a small constant depending on the
prevalence and identify n1−δ individuals which all are independently totally disguised with probability
at least q = exp

(−m ln2(2)/k
)
. As the infection status is independent of being totally disguised, we find

that the number of infected totally disguised individuals is dominated by a Bin(n1−δ, pq) random vari-
able while the number of totally disguised uninfected individuals is dominated by a Bin(n1−δ, (1−p)q)
variable. Both binomial random variables turn out to have expectation nΩ(1) for a suitable choice of
δ if m = (1− ε)mnon−ada and thus the Chernoff bound guarantees the existence of many infected and
uninfected totally disguised individuals.

As a third step, we need to show that if we could solve a group testing instance with low prevalence
given through θ with (1−ε)mnon−ada(θ) tests we were also able to solve an instance of larger prevalence
given via θ′ with (1−η)mnon−ada(θ′) tests. To this end, let ln2

1+ln2 < θ < θ′ < 1 and suppose that G = (V ∪F,E)
is a pooling graph satisfying

|V (G )| = n, and |F (G )| = m = (1−ε)mnon−ada(n,θ).

We construct a pooling graph G ′ for n′ ≈ nθ/θ′ individuals out of which k ′ ∼ n′θ′ ∼ k are infected, thus
an instance with the same number of infected individuals but those are found within a much smaller
population n′ ¿ n.

• Select n′ individuals uniformly at random out of all individuals and define G ′ on those individuals
but on the same tests as G .

• Select an adjusted ground-truth σ′ ∈ {0,1}n′
u.a.r. with Hamming weight k and denote by σ̂′ the

corresponding test-results.

Now it is easy to proof that the probability of having multiple elements in the solution space of (G ,σ̂) is
at least as high as observing that many in the solution space of (G ′,σ̂′). Indeed, by construction there is
a coupling ofσ andσ′ such that all infected individuals coincide. This is true because we first choose n′
individuals uniformly at random. But this implies σ̂ = σ̂′, thus whenever a configuration τ explains σ̂′

we can construct a configuration explaining σ̂ by setting the infection status of the not in σ′ contained
individuals to 0. Finally, the assertion follows from the fact that the choice n′ ∼ nθ/θ′ allows to calculate

mnon−ada(n′,θ′) = θ′

(1−θ′) ln2 2
k ′ ln

n′

k ′ =
θ′

ln2 2
k ′ lnn′ ∼ θ′θ

θ′ ln2 2
k lnn = θ

(1−θ) ln2 2
k ln

n

k
= mnon−ada(n,θ).
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While Theorems 2.1.3 – 2.1.4 answer all questions with respect to information-theoretical phase trans-
itions in non-adaptive group testing, we expect to require significantly more tests if we restrict the design
choices. More precisely, as the random regular model has tests of sizeΘ(n/k) and each individual takes
part in Θ(lnn) tests, the number of tests required for inference might increase in sparsity constrained
settings. As explained earlier, the work of Gandikota et al. [86] provided some information-theoretical

converse statements, i.e. for the maximum test-degree Γ = O
(
(n/k)β

)
and the maximum individual

degree ∆ = o(lnn) they provide information-theoretical converse statements at minf,G(Γ) and minf,G(∆)
respectively given in Equations (1.2.10) – (1.2.11) as

minf,G(Γ) = 1

1−β
n

Γ
and minf,G(∆) =∆k

(n

k

)1/∆
.

We need to stress that the converse result with respect to ∆−divisible group testing is of a weak nature,

thus they prove that any testing scheme with success probability at least 1−ε requires at least∆k
(n

k

) 1−5ε
∆

tests.
Let us begin with the ∆−divisible case. To this end define

mnon−ada(∆) = max
{

exp(−1)∆k1+ (1−θ)
∆θ ,∆k1+ 1

∆

}
. (2.1.2)

Then we find that no testing-scheme with individual degree at most ∆ can be used to infer σ from the
test-results below mnon−ada(∆). We tacitly suppose that

θ/(1−θ) <∆

as otherwise mnon−ada(∆) would exceed n. Observe that we reduced the exponential dependency on the
number of tests provided by [86] to a constant factor of exp(−1).

Theorem 2.1.5 (Theorem 3.1 and Theorem 3.2 of [88]). Let ∆ = ln1−δn for some δ ∈ (0,1] and suppose
k = nθ with θ ∈ (0,1). Let furthermore G be an arbitrary non-adaptive pooling scheme in which each
individual gets tested at most ∆ times and let ε> 0. Then the following holds.

• If m ≤ (1−ε)∆k1+1/∆, any non-adaptive pooling scheme with any algorithm (efficient or not) fails
at inferring σ from (G ,σ̂) with probability at least max

{
Ω(ε2),1−O

(
(1−ε/2)∆

)}
.

• If m ≤ (1−ε)exp(−1)∆k1+(1−θ)/(θ∆), any pooling scheme with any algorithm (efficient or not) fails
at inferring σ from (G ,σ̂) with high probability.

We remark that the second part of Theorem 2.1.5 does not only hold for non-adaptive pooling schemes
but for adaptive ones as well. Therefore, we will prove this part later. Let us, at this point, introduce a
technique which we will be using for proving the first part of the theorem. We make extensive use of the
so-called 2−round exposure technique [103] which will help us to obtain further results later on.

Without going too much into detail, the technique reads as follows. Suppose we want to find a sub-
graph in G (n, p). It might be helpful to avoid stochastic dependencies by obtaining one part of the
subgraph in G (n, p1) (with p1 < p) and afterwards expose the missing edges of G (n, p −p1). It is known,
that if a subgraph is found in G (n, p −p1)∪G (n, p1) with high probability, it is contained in G (n, p) as
well with high probability. We will use this technique in order to expose the infected individuals in two
rounds, more precisely, we will find a set of infected individuals with certain properties of size roughly
αk and analyse their neighbourhood. Afterwards, we will infect each individual in this neighbourhood
with probability ∼ (1−2α)k/n independently which will yield totally disguised infected individuals. We
will start with a proof sketch of Theorem 2.1.5.

Proof sketch of (the first part of) Theorem 2.1.5. In a first step we argue again that we may employ the

i.i.d. model with p ∼ k+
p

k lnn
n . Furthermore, we prove that it suffices to find infected totally disguised

individuals in the problem at hand as there will be at least as many uninfected totally disguised indi-
viduals with high probability. Before starting the actual proof, we modify the graph such that it does not
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contain tests with less than constantly many individuals for a suitable constant and call the resulting
pooling graph G = (V ∪F,E) such that |V | = n and |F | = (1−ε)mnon−ada(∆).

A key insight, again provided by the FKG-inequality, is that the probability for an individual x to belong
to V+(G ) is at least as high as in a model in which all tests are disjoint, thus

P (x ∈V+(G )) ≥
∏

a∈∂x

(
1− (

1−p
)Γa−1

)

if Γa denotes the degree of test a.
Now we employ the 2−round exposure technique and infect every individual with probabilityαp end-

ing up with a set of infected individuals K1 of size at least αk/2. We observe that the expected number
of totally disguised individuals can only increase if those individuals share tests. Therefore, we built an
auxiliary model G ′ as follows. We include every element of K1, and for each such individual we include
as many disjoint tests of size corresponding to the tests it belongs to in G . Now we mark each individual
added with those tests with probability q = (1−2α)p as infected.

Let
X u =

∏
a∈∂u

(
1− (

1−q
)Γa−1

)

denote the probability that u is totally disguised in this auxiliary model. Jensen’s inequality and the
inequality of arithmetic and geometric means allow to calculate

E [X u] ≥ (1−ε/2)−∆k−1.

Therefore, with X = ∑
u∈K1

X u we have E[X ] ≥ α (1−ε/2)−∆ /2 and as X u and X v are independent by
construction a generalised Chernoff bound yields

P
(

X <α/4(1−ε/2)−∆
)< exp

(−Θ(
α (1−ε/2)−∆

))
.

Finally, we observe that
∑

x∈K1
P (x ∈V1+(G )) ≥ X and Markov’s inequality suffices to show that we

observe at least one totally disguised infected individual with probability at least X /(1+ X ). Thus with
the bound on X and a suitable choice of α=α(ε) we obtain the result.

The suspicious reader might ask why the statement (and the end of the proof sketch) require that
much detailed calculation and explicit statements of probabilities. This is due to the fact that∆might be
a constant. Indeed, if∆was diverging, the Chernoff-like bound on X would clearly suffice as (1−ε/2)−∆→
∞ but if∆ is a constant, the calculations become much harder. This is even more challenging under the
Γ=Θ(1) restriction as rounding errors need to be taken into account.

In the Γ−sparse case, we strengthen the converse statement at minf,G(Γ) for the special case of Γ=Θ(1)
being a constant independent of the number of individuals. We define

mnon−ada(Γ) = max

{(
1+

⌊
θ

1−θ

⌋)
n

Γ
,2

n

Γ+1

}
. (2.1.3)

Again, we tacitly suppose that Γ >
(
1+

⌊
θ

1−θ
⌋)

as otherwise individual testing would be superior. Then

we find that no non-adaptive pooling scheme can infer the ground-truth using less than mnon−ada(Γ)
tests.

Theorem 2.1.6 (Theorem 4.1 of [88]). Let G be any non-adaptive pooling scheme with tests of size at
most Γ =Θ(1). Suppose G contains at most m = (1−ε)mnon−ada(Γ) tests for some ε > 0. Then any infer-
ence algorithm fails at recovering σ from (G ,σ̂) with high probability if θ/(1−θ) is no integer and with
probabilityΩ(1) if θ/(1−θ) is an integer.

Interestingly, for very few density levels θ, the phase transition could only be proven to be coarse
rather than strict. This arises from technical reasons as, for instance, counting the number of nodes
with degree at most θ/(1−θ) which is tight in the integer-case.
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Proof sketch of Theorem 2.1.6. We start by defining

d+ = 1+
⌊

θ

1−θ

⌋
and d− =

⌊
θ

1−θ

⌋

and need to distinguish between low prevalence and high prevalence.

Let us begin to sketch the case 1/2 ≤ θ < 1. Again, we employ the i.i.d. model with p = k−
p

k lnn
n . A first

observation is that whenever G ′ is a pooling scheme with maximum test degree Γ on

m = (1−2ε)d+n/Γ= (1−2ε)mnon−ada(Γ)

tests achieving inference, there is a pooling scheme G on the same set of individuals with

m′ = (1−ε)d+n/Γ

tests which achieves inference as well and which has the additional property that each individual gets
tested at most ∆ = Θ(1) times. This follows immediately from a plain counting argument as there can
only be n/C individuals of degree ≥ C ′ as m is linear in n. Thus, testing each individual of degree > C ′

individually causes n/C additional tests. Clearly, inference in G ′ implies inference in G and we get the
claim by choosing C = Γ/(εd+). By a similar token, one can achieve that we might suppose that the
minimum test-degree is at least 2 (if d+ ≥ 3).

A second observation is that m = (1−ε)d+n/Γ implies that there are at least αn individuals of degree
at most d− by the handshaking lemma. Now we claim that there are also βn individuals of degree at
most d− and distance at least 6 in G which follows from simple counting as all variables have bounded
degree. Let B denote a set of individuals satisfying those two properties.

Then clearly, the property of being disguised is independent for x, x ′ ∈ B and the probability turns out
to be, as before, at least

P (x ∈V+) ≥
∏

a∈∂x

(
1− (1−p)Γa−1)=Θ

(
pd−)

.

By the independence we directly find that a binomial random variable Bin
(
βn,Θ

(
pd−+1

))
dominates

|V1+(G )|. Therefore, the expected number of totally disguised infected individuals isΘ
(
nθ−(1−θ)d−)

.
The failure with high probability if θ/(1−θ) is no integer and with positive probability if it is follows

directly from the Chernoff bound.
Hence, we are only left to prove the result for 0 < θ < 1/2. The first fact which follows from double

counting the edges of the pooling graph G = (V ,E) is that there are at least εn individuals of degree one.
A second observation is that there cannot be many tests containing two (or more) individuals of degree
one. Assume there were n/

p
k such tests, then the Chernoff bound guarantees that we have

p
k lnn tests

containing two individuals of degree one out of which one is infected. Thus any inference algorithm
has to guess the infection status of those individuals and therefore the chance of correct inference is
2−ω(1) = o(1). But those two simple observations already suffice as they imply directly that

(2−ε)n/Γ= m ≥ εn −o(n)

needs to hold. Solving for ε implies

m ≥ 2
n

Γ+1
−o(n).

Therefore, the theorem follows from combining the arguments for small and large θ.

Let us briefly mention that those sparsity constrained results do explicitly not converge to mrand−reg

for ∆→ lnn and Γ→ n/k what might at the first glance be a surprise. But actually, it is not very sur-
prising. First, the bounds are given only with respect to the first order and lower order terms might
get relevant in the limit and second, the proofs extensively make use of the sparsity, thus many partial
results do not carry over to the unconstrained setting.

We observed the splitting of the information-theoretic bound into two parts (thus a maximum over
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two terms) in the unrestricted group testing in mnon−ada as well as in the ∆−sparse case in mnon−ada(∆).
This is actually not very surprising. The first part comes in both cases from an information-theoretic
argument (for instance, the counting bound) which applies for adaptive as well as non-adaptive pooling
schemes, as the amount of information provided by the test-results must exceed certain bounds. On
the other hand, the non-adaptivity strikes with respect to the different types of individuals. If the set of
totally disguised infected individuals is non-empty, non-adaptive pooling schemes are doomed to fail
while adaptive pooling schemes might classify those individuals in subsequent stages of tests. This is
why the second term in the maximum actually corresponds to the phase transition point from which on
there are totally disguised infected individuals in a pooling scheme.

After having discussed the information-theoretic side, let us now present algorithmic results in the
aforementioned models.

2.1.1.3. Algorithms

We will first discuss two major results obtained in [41] and [46] with respect to unrestricted non-adaptive
group testing algorithms. The first result shows that DD and SCOMP fail at exactly the same threshold
in the random regular model, thus we obtain a fitting converse statement to the achievability result
of DD obtained by [108] and settle a strict phase transition. Furthermore, we reject the conjecture of
Aldridge, Baldassini and Johnson [8] that SCOMP could outperform DD asymptotically. Recall

mDD = max

{
θ

(1−θ) ln2 2
,

1

ln2 2

}
k ln

n

k

from (1.2.9). Then our result reads as follows.

Theorem 2.1.7 (Theorem 1.2 of [41]). Let ε > 0 be a constant. Then, if G is an instance of the random
regular model with m ≤ (1− ε)mDD tests, both SCOMP and DD fail at inferring σ from (G ,σ̂) with high
probability.

Therefore, Theorem 2.1.7 does not only establish a phase transition but it also shows that there is a gap
of a factor of ln2 between the information-theoretic achievability bound and the best known achieving
efficient algorithm on the random regular model. Let us sketch how to prove this converse statement.

Proof sketch of Theorem 2.1.7. In a first step we need to show that DD fails on the random regular model
with m = (1−ε)mDD tests with high probability. To this end let m = ck ln n

k and recall that any individual
chooses ∆= d ln n

k tests uniformly at random. In this contribution we chose the tests with replacement,
thus an individual is part of one test twice from time to time. Thus, the average test-degree Γ̄ turns out
to be dn

ck . Analogously as before, we suppose for gathering the main idea of the proof that there were
no stochastic dependencies (which is clearly false). In this simplified version, the probability for an
individual to be disguised is roughly given by

(
1−

(
1− k

n

)Γ̄)∆
∼

(
1−exp

(
−d

c

))∆
.

Therefore, the expected number of totally disguised uninfected individuals is

E [|V0+|] ∼ (n −k)

(
1−exp

(
−d

c

))∆
.

Actually, this argument as well as the fact that the value is concentrated, can be proven rigorously by
describing the number of infected and uninfected individuals per test as a family of independent bino-
mials conditioned on a (not too unlikely) event. Furthermore, it is possible to prove that DD achieves its
best results for the choice d = c ln2, therefore |V0+| ∼ n2−∆ ∼ n1−(1−θ)c ln2 2.

However, it is not clear at all how to find a rigorous argument which enables us to calculate the size of
V1−−. Let us change our point of view and observe that DD identifies an infected individual in a positive
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test a if and only if, besides x, there are no elements of V1 nor V0+ in a. Therefore, let

W = number of positive tests containing exactly one element of V1 ∪V0+.

We are left with calculating the expectation of W which turns out to be a mildly delicate calculation
involving the description of the number of uninfected disguised, uninfected non-disguised and infected
individuals per test as a family of independent conditioned multinomial-variables. Nevertheless, it can
be shown that

E [W ] ∼ k∆

2
exp

(
− ln2n(1−θ)(1−c ln2 2)

)

which tends to zero below the DD threshold. Thus, by Markov’s inequality we already established the
converse statement. Let us furthermore show how to calculate the size of V1−− from that point. It is
possible to show that W is actually tightly concentrated around its mean, thus

W ∼ k∆

2
exp

(
− ln2n(1−θ)(1−c ln2 2)

)
.

Now, we can rigorously calculate the probability that a given infected individual x does not belong to
V1−−, as

P (x 6∈V1−− | x ∈V1) ∼
(

k∆−W

∆

)(
k∆

∆

)−1

.

Indeed, such an infected individual would need to choose all its ∆ edges out of the k∆−W edges be-
longing to tests containing either a totally disguised individual or a second infected one. By plugging in
m = (1−ε)mDD Markov’s inequality shows that DD fails with high probability. Nevertheless, we are still
left to prove that the greedy extension SCOMP fails as well.

To this end, let us observe that there are Ω (|V0+|) À k totally disguised uninfected individuals which
are contained in exactly∆ tests. Indeed, with high probability, each individual is contained in at least∆−
` (`=O(1)) different tests which can be easily verified. Furthermore, the probability of being in exactly
∆−`′ tests for 0 ≤ `′ ≤ ` isΩ(1), thus a positive fraction of all totally disguised uninfected individuals is in
∆ different tests. Therefore, already the first individual taken by SCOMP is only infected with probability

k
Ω(|V0+|)+k = o(1). Thus, SCOMP fails with high probability.

While the previous result is a converse statement about the performance of specific algorithms, we
could not answer the question whether there is an efficient algorithm achieving at mnon−ada on the
random regular model. Fortunately, we could prove that this gap between information-theoretic and al-
gorithmic achievability is not due to the group testing problem itself. More precisely, we can introduce
a different (random) pooling scheme coming with an efficient decoding algorithm called Spatial Infer-
ence Vertex Cover-algorithm (SPIV) which succeeds with m = (1+ε)mnon−ada many tests at inference of
σ with high probability.

Theorem 2.1.8 (Theorem 1.2 of [46]). Let ε > 0 be a constant. Then there is a pooling scheme called
spatially coupled random regular model Gsc coming with an efficient inference algorithm SPIV which
succeeds at inferring σ from (Gsc ,σ̂) with m = (1+ε)mnon−ada many tests.

In the specific case of Theorem 2.1.8 we will not give an explicit proof sketch as the explanation of
the pooling scheme and the inference algorithm allow presenting the proof idea on the fly whereby we
follow the contribution [46].

We start by defining the pooling scheme. The main idea of the spatial coupling has its origins in
coding theory [15, 123, 124]. It was applied, for instance, to LDPC-codes. The key idea is to add some
kind of geometry to the random regular graph such that, for a specific individual, the neighbourhood
looks fairly similar in both models (as the random regular model is known to be information-theoretic
optimal). But this geometry constraint allows a trick at inference. Let us partition the set of individuals
into `∼

p
lnn compartments V [1], . . . ,V [`] of size n/` and the m tests into compartments F [1], . . . ,F [`]

as well. Let s ∼ lnlnn be the size of the sliding window. Then we furthermore add 10ks lnn/` additional
tests into a larger compartment F [0] whose purpose will become clear in due course.
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V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]
F [0] F [0] F [0]

· · · · · ·

Figure 2.2.: The spatially coupled test design with n = 36,`= 9, s = 3. The graphic is modified after [41].
The individuals in the seed (blue) join additional tests from F [0].

As in the random regular graph, we let ∆ = c ln2ln n
k denote the individual degree if m = ck ln n

k and
let the individuals choose their tests as follows.

• For i = 1, . . . ,` and j = 1, . . . , s every individual x ∈V [i ] chooses independently from all other ran-
domness ∆/s tests from F [i + j −1] without replacement.

• Those individuals from V [1]∪ ·· · ∪V [s] independently choose 10ln(2) lnn additional tests from
F [0] uniformly at random without replacement.

All indices of compartments need to be read such that V [`+ i ] = V [i ] and F [i +`] = F [i ] for i = 1. . .`.
Thus the pooling graph has a ring structure such that, locally seen, all edges from an individual are going
to its right whereas all incoming edges in a test come from the left. A visualisation can be found in Figure
2.2.

Why should such a graph perform better? Suppose we already classified all individuals in compart-
ments V [1], . . . ,V [h] successfully. If we now are about to infer the infection status of those individuals
in V [h +1] we can use a lot of information. Indeed, in the tests in F [h +1] there are just the individuals
of V [h +1] unclassified whilst in the tests in F [h +1+ j ] at least proportion (s − j )/s is already known.
Therefore, if an early test emphasises that an individual was infected or uninfected, this information
might be more confidential than an information gained in a test far to the right. This is exactly the idea
behind the SPIV algorithm.

The main challenge of inference is to distinguish the k infected individuals from those ω(k) totally
disguised uninfected individuals. Therefore, we introduce a random variable W x, j whose distribution
differs for real infected individuals x and uninfected but disguised individuals. By choice of∆, the num-
ber of infected individuals per test a is (approximately) Po(ln2) distributed. But it turns out that this
number’s distribution changes when conditioning on specific events.

We define for an individual x ∈V [i +1] and a compartment F [i + j ] for j = 1. . . s

W x, j = number of tests in compartment F [i + j ] containing x

and no infected individual from the preceding compartments.

Because the number of infected individuals in a test from a specific compartment is Po(ln2/s) distrib-
uted, the probability that a specific test contains no infected individual from any of the compartments
V [i + j − s +1], . . . ,V [i ] turns out to be 2−(s− j )/s , therefore

E
[
W x, j | x ∈V [i +1]∩V1

]∼ ∆
s

2 j /s−1.

Equivalently, we can calculate

E
[
W x, j | x ∈V [i +1]∩V0+

]∼ ∆
s

(
2 j /s −1

)
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as the sole difference is that a specific test a needs to contain at least one infected individual which is
not x. Therefore, the number of infected individuals in a, conditioned on containing an element of V0+,
turns out to be a conditioned Poisson distributed variable Po≥1(ln2). We clearly find

E
[
W x, j | x ∈V [i +1]∩V0+

]< E[
W x, j | x ∈V [i +1]∩V1

]
.

Unfortunately, it turns out that trying to distinguish the infection status solely on the sum of those ran-
dom variables does not suffice as there will be too much fluctuation [46, Section 4.3]. Therefore, we
should try to incorporate the intuition that tests in a compartment close to the individual might contain
more valuable information. We define

W ∗
x =

s−1∑
i=1

w j W x, j where w j ∼− ln
(
1−2− j /s−1

)
. (2.1.4)

Thus, W ∗
x weighs information from closer tests higher. The optimal value of the weighs w j was obtained

by a delicate large deviation analysis using a Lagrange optimisation [46, Sections 4.7 and 4.8].
If we call the individuals in V [1]∪ . . .∪V [s] =Vseed the seed (those individuals which are connected to

tests in F [0]) the idea is now to classify the individuals subsequently starting at the seed. As we clearly
cannot compute W ∗

x as this would require knowledge about σ, we have to rely on the current estimate
of the ground-truth, thus let

Wx, j (τ) =
∣∣∣∣
{

a ∈ ∂x ∩F [i + j −1] : max
y∈∂a∩(V [1]∪...∪V [i ])

τy = 0

}∣∣∣∣

and analogously

W ∗
x (τ) =

s−1∑
i=1

w j Wx, j (τ).

We apply DD to the seed individuals as the graph on the seed individuals and the tests of F [0] is an
instance of the random regular model which is dense enough to allow classification by DD. We let τ be
the current estimate of σ which we initialise to the all zero vector outside of the seed. Then we proceed
with the individuals in the next compartment and

• declare an individual as uninfected if it is in at least one negative test,

• declare an individual x as uninfected, if W ∗
x (τ) is smaller than the expected value for infected

individuals under σ,

• declare an individual as infected otherwise.

We iterate with this procedure through the graph and stop when all individuals are classified. We call the
estimate of the ground-truth produced by this algorithm τ. Unfortunately, it turns out that τ does prob-
ably not coincide withσ. But fortunately, if |F [1]∪ . . .F [`]| = (1+ε)minf, we have at least [46, Proposition
4.6]

|{x : τx 6=σx }| = kn−Ω(1).

Thus, using only as many tests as given by the universal counting bound, we achieve already partial
recovery of σ with high probability. To this end observe that |F [0]| = o(m) is of lower order.

Corollary 2.1.9. The SPIV algorithm on Gsc with (1+ε)minf tests succeeds at (1−o(1))−partial recovery
of σ from (Gsc ,σ̂) with high probability.

But of course we want to achieve exact recovery. It turns out that a rigidity argument helps in estab-
lishing an exact recovery statement. If m = (1+ε)mnon−ada, each infected individual is contained in at
leastΘ(lnn) tests in which no second infected individual appears. Let Sx (τ) denote the number of (pos-
itive) tests in which an individual would be the only infected individual under τ if it was infected. Then
a combinatorial clean-up step could read as follows.
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For lnn steps repeat thresholding Sx (τ) with respect to the current estimate τ in order to classify in-
dividual x as infected or uninfected. By the expansion properties of the random graph it is possible
to prove that this reduces the number of misclassified individuals by a factor of at least 3 each step.
Thus, the final estimate τ coincides with σ w.h.p.. This is again an example of the splitting of the phase
transition point into two parts. The non-adaptive tail of the phase transition point corresponds to the
combinatorial observation of having some kind of local rigidity, similarly as we already saw in the proof
sketch of Theorem 2.1.3.

We can now state the SPIV algorithm completely and formally.

Input: Spatially coupled pooling scheme Gsc = (V ∪F,E), test-results σ̂ ∈ {0,1}m

Output: Estimate σ̃ of σ
1 Infer the infection status for all x ∈Vseed by DD and obtain σ̃Vseed .
2 Initialise σ̃x = 0 for all x 6∈Vseed .
3 for i = s, . . . ,`−1 do
4 for x ∈V [i +1] do
5 if x is in at least one negative test then
6 σ̃x = 0 // set infection status to uninfected
7 else if W ∗

x (σ̃) < (1−ζ)
∑s−1

j=1
∆
s w j 2 j /s−1 then

8 σ̃x = 0 // set infection status to uninfected
9 else

10 σ̃x = 1 // classify as infected
11 Let σ̃(1) = σ̃.
12 for i = 1, . . . , lnn do
13 For all x ∈V [s +1]∪·· ·∪V [`] calculate

14 Sx

(
σ̃(i )

)
=

∑
a∈∂x:σ̂a=1

1
{
∀y ∈ ∂a \ {x} : σ̃(i )

y = 0
}

15 Let σ̃(i+1)
x =

{
σ̃(i )

x if x ∈V [1]∪·· ·∪V [s],

1
{
Sx

(
σ̃(i )

)> ln1/4 n
}

otherwise

16 return σ̃(dlnne)

Algorithm 4: The SPIV algorithm by Coja-Oghlan et al. [46] using a spatially coupled pooling
scheme.

We should emphasise that the decoding algorithms in prior applications on spatially coupled in-
ference graphs like coding or compressed sensing were approximate message passing or BP like al-
gorithms [106, 123, 124]. On the first glance, those algorithms are clearly much more sophisticated than
the combinatorial and easy to digest SPIV algorithm. But based on the discussion about WP and DD,
we should not be too surprised that actually the decisions based on (a normalised version of) W ∗

x cor-
respond to the estimate after one round of BP.

Therefore, we have proven that the group testing problem is very special with respect to its solvability.
Either, it is completely impossible or it is easy (there is an efficient algorithm for inference) but there
is no hard phase. Such phenomena are known as impossible-easy phase transitions. Furthermore, we
discussed that there is indeed a gap between adaptive algorithms and non-adaptive algorithms, thus
multiple stages of testing can decrease the number of tests required in total, at least if many individuals
are supposed to be infected.

As we will discuss next, we observe similar phenomena even if we restrict the maximum capacity of a
test or the number of tests an individual can be part of.

Let us first present the results we obtained with respect to the ∆−divisible restricted group testing
problem. We recall that we already provided a result showing that each non-adaptive group testing
scheme which tests each individual at most ∆ times fails with high probability if it contains less than
mnon−ada(∆) tests where

mnon−ada(∆) = max
{

exp(−1)∆k1+ (1−θ)
∆θ ,∆k1+ 1

∆

}
.



Results 55

We will show that the DD algorithm on the random regular model solves the group testing problem
almost at this bound, thus let mDD(∆) denote the phase transition point of DD in the random (almost)
regular model, then we have

mDD(∆) = max
{
∆k1+ (1−θ)

∆θ ,∆k1+ 1
∆

}
(2.1.5)

which is a factor of e away from the converse statement for θ < 1/2 and matches it for θ ≥ 1/2. We define
the random almost regular model in a way that each individual chooses ∆ tests uniformly at random
with replacement, thus the test-degree sequence is random (but sufficiently concentrated). Then we
obtain the following theorem.

Theorem 2.1.10 (Theorem 3.3 [88]). Let G∆ be the random regular model where each individual joins
∆=O(ln1−δn) (0 < δ≤ 1) tests on m tests. Then , if m ≥ (1+ε)mDD(∆), DD succeeds at inference of σ from
(G∆,σ̂) with probabilityΩ(1) if ∆=O(1) and with probability (1−o(1)) if ∆=ω(1).

Thus, Theorem 2.1.10 shows in combination with the information-theoretic converse at mnon−ada(∆)
that the random-regular model is information-theoretic optimal for large θ and that DD performs op-
timally in this regime.

Proof sketch of Theorem 2.1.10. Analogously as in the DD analysis in the unrestricted problem (The-
orem 2.1.7), we bound the expected number of positive tests containing exactly one infected and no
uninfected totally disguised individual E [W ] with the only difference that some probabilities have to be
calculated slightly more carefully if ∆ does not diverge. Again we require to describe some local prop-
erties of tests by a family of independent conditioned multinomial random variables. Of course, the
resulting formulas differ such that

E [W ] ∼∆k · (1− (1+ε)−1k−1/∆)
.

Nevertheless, we will omit any details here.
But in this case, as we want to proof that DD actually succeeds, we require a stronger result as Markov’s

inequality applied on the expectation of W does not suffice. Luckily, it turns out that W is fairly concen-
trated around its expectation. Therefore, with high enough probability, we find

W ∼∆k · (1− (1+ε)−1k−1/∆)
.

Now, we can rigorously calculate the probability that a given infected individual x is classified falsely by
DD, thus does not belong to V1−−, as

P (x 6∈V1−− | x ∈V1) ∼
(

k∆−W

∆

)(
k∆

∆

)−1

∼ (
(1+ε)−1k−1/∆)∆

.

Indeed, such an infected individual would need to choose all its∆ edges out of the k∆−W edges belong-
ing to tests containing either a totally disguised individual or a second infected one. A standard calcula-
tion involving a case distinction between small and large θ suffices in order to obtain the expected num-
ber of individuals x ∈V1 \ V1−− and to observe that this number is at most (1+ε)−∆ if m = (1+ε)mDD(∆)
tests are carried out and the theorem follows by Markov’s inequality.

Of course, above’s theorem does only give an achievability result for DD on a specific design. We can
actually prove that DD is failing below mDD(∆) on the random almost regular model. Clearly, we only
need to show this for small θ as the assertion for large θ follows from the universal converse bound.

Theorem 2.1.11 (Theorem 3.4 of [88]). Let 0 < θ < 1/2 and let G∆ be the random almost regular model
on m tests. If m ≤ (1−ε)∆k1+(1−θ)/(∆θ), DD fails at inference of σ from (G∆,σ̂) with probability 1−o(1) of
∆=ω(1) and with probabilityΩ(1) if ∆=Θ(1).
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Proof sketch of Theorem 2.1.11. Similarily as in the achievability proof, we find by analysing the number
of positive tests containing exactly one infected and no uninfected totally disguised individual that

E [|V1−−(G∆)|] ∼ k
(
1− (

1−exp
(−(1−ε)−∆ (1−1/∆)

))∆)
.

But then Markov’s inequality readily yields that the probability of having at least γk infected individuals
outside of V1−−(G ) is at least

1− 1− (
1−exp

(−(1−ε)−∆ (1−1/∆)
))∆

1−γ

and therefore, the assertion of the theorem follows. Indeed, this probability is 1−o(1) for ∆→∞ for any
0 < γ< 1 and if ∆ is a constant, a suitable choice of γ makes the probabilityΩ(1).

Thus, we understand DD on the random regular model completely.
We are left to discuss theΓ−sparse case. This is an especially interesting case as the underlying (almost

regular) model has constant degrees on both sides, thus the construction of the graph requires a lot
more attention. Ultimately, we will see that DD actually succeeds at the information-theoretic universal
converse mnon−ada(Γ) on a suitable chosen almost regular graph for all θ outside of a set of Lebesgue-
measure zero. Recall that

mnon−ada(Γ) = max

{(
1+

⌊
θ

1−θ

⌋)
n

Γ
,2

n

Γ+1

}

and define

mDD(Γ) =




max
{(

1+
⌊

θ
1−θ

⌋)
n
Γ ,2 n

Γ+1

}
, θ

1−θ 6∈Z
max

{(
2+

⌊
θ

1−θ
⌋)

n
Γ ,2 n

Γ+1

}
, θ

1−θ ∈Z.

Therefore, mDD coincides with the universal converse if θ/(1−θ) is no integer.
Let us first describe how to obtain the almost regular pooling scheme. If θ ≥ 1/2, we create the random

pooling scheme by the configuration model as a random regular multi-graph G (Γ,∆). Thus, with ∆ =
mΓ/n, each individual node gets ∆ clones and each test node gets Γ clones and a perfect matching is
chosen uniformly at random. On the other hand, if θ < 1/2, it turns out that this model is not optimal.
In this case, we select γ≤ 2n

Γ+1 individuals X ⊂ {x1, . . . , xn} uniformly at random and put them apart. The
exact value of γ is chosen such that the remaining individuals can be pooled by G (Γ−1,2). Now we select
a uniform matching between the tests F (G (Γ−1,2)) and the remaining individuals X . For a brief check
of sanity, observe that this pooling is only possible for m ≥ 2 n

Γ+1 by comparing degrees. Furthermore
observe that in the final graph any test has size Γ−1 or Γ. We will call this graph model G∗(Γ). Therefore,
let us define

G (Γ) =
{

G (Γ,mΓ/n), θ ≥ 1/2

G∗(Γ), θ < 1/2.
.

With this model at hand, we can state the achievability result.

Theorem 2.1.12 (Theorems 4.10 and 4.18 of [88]). If DD is applied on an instance of G (Γ) with m ≥
mDD(∆), it succeeds at inference of σ from (G (Γ),σ̂) with high probability.

Observe that interestingly, the achievability bound is tight, thus we do not even need a multiplicative
factor of (1+ε).

Proof sketch of Theorem 2.1.12. The proof comes in two major steps. First, we give an achievability res-
ult of DD on the random regular model G (Γ,∆) for any choice of θ. More precisely, let

∆DD = max

{
2,1+

⌊
θ

1−θ

⌋}

denote the individual degree, then we have the following.
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Achievability on the random regular model. DD recovers σ from (GΓ(Γ,∆DD),σ̂) correctly
w.h.p..

Observe that by definition of the random regular graph we have m ≥∆DD n
Γ . It turns out that this part of

the proof follows completely analogous ideas as the achievability proof of DD in the ∆−divisible case
and will thus be omitted. Of course, a technical challenge is to deal with the (higher) number of multi-
edges. Fortunately, the heavy stochastic dependencies caused by the configuration model vanish as we
can describe the important local properties of tests by a family of independent conditioned multinomial
random variables as before. The sole technical challenge is to deal with the (higher) number of multi-
edges.

As we have proven the success of DD with m =∆DD n
Γ tests, the part of the theorem for θ ≥ 1/2 follows.

But it turns out that we can indeed perform better if θ < 1/2. The main idea is the following. We let G∗,r
Γ

be the subgraph created in the first step of generating G (Γ), thus an instance of G (Γ−1,2) on n′ = n −γ
individuals where γ≤ 2

Γ+1 n. Without loss of generality we suppose that γ= 2
Γ+1 n as otherwise we could

fill the instance with dummy-individuals which are known to be uninfected.
We furthermore let σ[G∗,r

Γ ] and σ̂[G∗,r
Γ ] be the infection status vector and test-result vector on this

induced subgraph. Observe that for θ < 1/2 we have ∆DD = 2. Now we obtain the result as follows.

(i) Let θ′ = θ′(θ) describe the prevalence on σ[G∗,r
Γ ], then we have θ′ ∼ θ with high probability.

(ii) We already know that m = 2 n−γ
Γ−1 = 2 n

Γ+1 tests suffice for DD to infer σ[G∗,r
Γ ] from G (Γ− 1,2) and

σ̂[G∗,r
Γ ].

(iii) We prove that adding the matching edges in order to generate G (Γ) from G (Γ−1,2) does, with high
probability, enable DD to infer σ from G (Γ).

It is easy to see that (i) follows from the Chernoff bound as the number of infected individuals inσ[G∗,r
Γ ]

is a hypergeometrically distributed random variable k ′ ∼ H
(
n,k,n′) and thus concentrated around its

mean k ′ ∼ Γ−1
Γ+1 k. Furthermore, (ii) is a direct consequence of above’s result with respect to achievability

on the random regular model. Therefore, we only need to discuss (iii).
The key property of the proof is that for k = o(

p
n) we do not find two infected individuals in any

bounded part of the graph. Suppose that an individual x gets connected to a negative test. If x is un-
infected itself, the test stays uninfected an DD recovers x (and the other individuals) correctly. If x is
infected, each uninfected individual in the test joins a second test which is negative as well with high
probability due to the fact that there are no two infected individuals within a finite range within the
random graph with high probability.

If on the other hand x connects to a positive test and is uninfected, a similar argument shows that the
causing already contained positive individual can be identified by DD through both its tests with high
probability. Thus the previously infected individual in σ[G∗,r

Γ ] can be still inferred by DDand x will be
declared uninfected.

Finally, if x is infected, it will connect to a negative test with high probability. Indeed, as it is infected
with probability ∼ k/n and its test is chosen uniformly at random, this test will contain a second infected
individual with probability ∼ k2/n2 and a union bound shows that therefore, with high probability, all
infected individuals connect to negative tests in the matching process.

Therefore, DD infers σ from G (Γ) and σ̂ w.h.p., if it infers σ[G∗,r
Γ ] from G∗,r and σ̂[G∗,r

Γ ] w.h.p..
Above’s bounding of the probability of bad events can be done rigorously and hinges on precise but

elementary calculations which make extensive use of the fact that a uniformly at random chosen subset
of individuals was put apart before creating the regular part of the graph.

Next, we will present the results we obtained with respect to adaptive group testing. Afterwards, we
summarise the results on non-adaptive group testing as well as adaptive group testing shortly in Sec-
tion 2.1.3.



Results 58

2.1.2. Adaptive Group Testing

As in the section about non-adaptive group testing, we split our results into a section about information-
theoretic aspects as well as algorithmic aspects respectively.

2.1.2.1. Information-theoretic results

With respect to the information-theoretic phase transitions, we achieved primarily results in the context
of sparsity constrained group testing. More precisely, while the contribution of Gandikota et al. [86]
only provided non-adaptive converse statements, we give information-theoretic converse results for all
adaptive pooling schemes in the ∆−divisible and the Γ−sparse case. To this end, let ∆ = ln1−δn and

Γ= (n
k

)β with 0 < δ≤ 1 and 0 ≤β< 1. Then define

minf(∆) = exp(−1)∆k1+ 1−θ
∆θ and minf(Γ) = n

Γ

as the information-theoretic threshold for any test-design in which individuals get tested at most ∆
times and, respectively, each test has size at mostΓ. We letσdenote the ground-truth and for an `−stage
testing procedure G = (G1, . . . ,G`) we let σ̂= (σ̂1, . . . ,σ̂`) denote the sequence of test-results.

Theorem 2.1.13 (Theorems 3.1 and 6.2 of [88]). Suppose G (∆) = (G1(∆), . . . ,G`(∆)) is an `−stage test-
ing procedure such that any individual gets tested at most ∆ times in total and respectively that G (Γ) =
(G1(Γ), . . . ,G`(Γ)) is an `−stage testing procedure such that any test contains at most Γ individuals. Then
the following holds.

• If G (∆) contains at most (1−ε)minf(∆) tests, inference ofσ from (G (∆),σ̂) fails with high probability.

• If G (Γ) uses at most (1−ε)minf(Γ) tests, inference of σ from (G (Γ),σ̂) fails with probabilityΩ(1).

Proof sketch of Theorem 2.1.13. The proof of the first part of the theorem resembles the counting based
proof of the universal counting bound in the unrestricted group testing problem.

We first show that any adaptive strategy with m tests succeeds with probability at most

∑∆k
i=0

(m
i

)
(n

k

) ∼ exp(H(∆k/m))(n
k

)

which is given by a short calculation using the Nishimori property that guarantees that choosing one
possible solution is the best an inference algorithm can do. We directly find that there can be at most
∆k positive tests in total, as each infected individual can be tested at most ∆ times. Therefore, the
summation accounts for all possible choices of positive tests. Plugging in m = (1−ε)minf(∆) yields the
assertion of the theorem.

The second part, namely the Γ−sparse case, might be actually called a folklore argument. Indeed,
n
Γ (1− o(1)) tests of size at most Γ are clearly required to test n − o(n) of all individuals at least once,
which is a necessary requirement for inference.

Overall it turns out that under both kinds of restrictions the adaptive converse statements are strictly
below the non-adaptive converse results and non-adaptive achievability results. In the case of∆− divis-
ible group testing, this is only true for θ > 1/2. This alone can clearly not answer the question whether
there is an adaptivity-gap in restricted group testing or not. But the next section will show that such a
gap really exists.

2.1.2.2. Algorithms

We introduce two new algorithms for the two restricted group testing models. Let us start with the
∆−divisible case which can be solved by Algorithm 5.

Clearly, this algorithm strongly resembles the binary splitting approach of Hwang [98] and Allemann
[13]. The only major difference is that we do not split groups into halves in order to guarantee the
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Input: n,k,∆
Output: Estimate K̃ ⊂ {x1, . . . , xn} of the infected individuals.

1 Set ñ = (n
k

) ∆−1
∆ .

2 Set K̃ =;.
3 Arbitrarily divide the n individuals into n/ñ groups of size ñ.
4 Test each of these groups and discard those with a negative result.

5 Denote the remaining groups by A(0)
j .

6 for i = 1 to ∆−1 do
7 for each group A(i−1)

j from the previous stage do

8 Arbitrarily divide all individuals in A(i−1)
j into ñ1/(∆−1) sub-groups of size ñ1−i /(∆−1).

9 Test each sub-group and discard any that returns a negative outcome.

10 Label the remaining sub-groups as A(i )
j .

11 Add the individuals from all of the remaining singleton groups A(∆−1)
j to K̃ .

Algorithm 5: Splitting algorithm for the ∆−divisible restricted group testing as posed in [88].

∆−restriction. As we will see, it does not perform tightly at the information-theoretic converse bound
proven before. Let

madap−alg(∆) =∆k1+ 1−θ
θ∆

be an algorithmic threshold. Then we find the following theorem.

Theorem 2.1.14 (Theorem 5.1 of [88]). There is a choice of ñ = ñ(n,k,∆) such that Algorithm 5 succeeds
with at most (1+ε)madap−alg(∆) tests.

Therefore, the algorithm performs for all θ at exactly one of the bounds of non-adaptive group testing
(mnon−ada(∆)) establishing an adaptivity-gap as in the unrestricted group testing problem.

Proof sketch of Theorem 2.1.14. It is clear from the definition of the algorithm that it recoversσ correctly
as all infected individuals will be tested individually. The core idea is to optimise the choice of ñ in such
a way that tests do not get too large as otherwise they will be very likely positive. Starting initially with
groups of size ñ, the size is continuously decreasing whenever the test-outcome is still positive.

Clearly, in the first stage we conduct ñ tests and as there are k infected individuals, each subsequent
stage of testing can produce at most kñ

1
∆−1 additional (smaller) tests, therefore

m ≤ n

ñ
+ (∆−1)kñ

1
∆−1 .

The assertion of the theorem follows with ñ = n(1−θ)(∆−1)/∆.

After having understood a splitting approach towards∆−divisible constrained instances of group test-
ing, we will subsequently present an algorithm for Γ−sparse group testing. In this case, we will use a
standard binary splitting approach as a sub-routine, thus let us shortly describe how it works in detail.
Given a group of individuals, test the whole group and if the test is positive, split the group into two
equal parts and tests each part. If the test is negative, we know that all individuals are uninfected and do
not need to test further. Iterate this process until all positive tests contain exactly one individual. Now
we can state Algorithm 6. We stress that the algorithm basically reduces to applying the first round of
the Dorfman-algorithm followed by a binary splitting algorithm for all positive tests.

How many tests does this algorithm require? It turns out that at least its first order complexity coin-

cides (up to rounding) with the information-theoretic converse if Γ = O
(n

k

)β for some β ∈ [0,1). Thus,
let

madap−alg(Γ) =
⌈n

Γ

⌉
+ lnΓ

ln2
k

denote the algorithmic achievability bound.
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Input: n,k,Γ
Output: Estimate K̃ ⊂ {x1, . . . , xn} of the infected individuals.

1 Set T = dn/Γe and K̃ =;.
2 Choose one partition of all individuals into groups G1, . . . ,GT of size Γ.
3 for i = 1. . .T do
4 Test group Gi .
5 if the outcome is positive then
6 Infer the infection status of all individuals in Gi by binary splitting.
7 else
8 Declare all individuals in Gi as uninfected.

9 Add the individuals from all of the remaining singleton groups A(∆−1)
j to K̃ .

Algorithm 6: Splitting algorithm in the Γ−sparse restricted group testing. A similar version was
introduced in [88].

Theorem 2.1.15. Algorithm 6 succeeds at inference of σ requiring at most (1+ε)madap−alg(Γ) tests.

Proof sketch of Theorem 2.1.15. Again, it is clear that the algorithm succeeds at inference. Thus, we only
need to bound the number of tests required. At the first stage, we clearly conduct T = ⌈n

Γ

⌉
tests. Sub-

sequently, we apply the binary splitting algorithm to groups of at most Γ individuals each. But due to
Hwang [98] it is known that binary splitting on a group of Γ individuals out of which ki are infected
requires not more than

mHwang ∼
ki ln Γ

ki

ln2

tests. As Γ≥ 2, we find lnΓ
ln2 ≥ 1 and therefore, testing all those groups of size at most Γ requires at most

T∑
i=1

ki lnΓ−ki lnki

ln2
≤ k

lnΓ

ln2

tests. Therefore, we clearly find

m ≤
⌈n

Γ

⌉
+k

lnΓ

ln2

yielding the assertion of the theorem.

Finally, with respect to the unrestricted group testing problem, we find as a direct consequence of the
previous discussion on SPIV that we can use SPIV to infer all individuals with minf tests within two
rounds.

Corollary 2.1.16 (Theorem 1.3 of [46]). There is a two-stage inference algorithm which achieves inference
of σ with high probability requiring at most minf tests.

Indeed, it turns out that applying SPIV with the spatially coupled testing strategy using minf tests does
render an estimate σ̃ of σ where all but kn−Ω(1) = o(k/lnn) individuals are identified correctly. Instead
of applying the previously described clean-up step based on a local rigidity argument (which requires
mnon−ada tests), we proceed as follows.

(i) Test any individual which is infected under σ̃ individually.

(ii) Test all individuals which are uninfected under σ̃ with the random regular model using DD.

Clearly, (i) requires at most (1+o(1))k = o(minf) tests and the prevalence in (ii) is o(k/lnn), thus DD re-
quires o(minf) tests in order to succeed.
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2.1.3. Summary of phase transitions in group testing

Let us begin by drawing a picture of unrestricted group testing. In Figure 2.3 we present a phase diagram
based on the results obtained in [41, 46]. While exact recovery in the red areas (below mnon−ada) is not
possible within one round of testing, in the light red area adaptive algorithms (e.g. Alleman’s algorithm)
succeed. The existence of this adaptivity-gap was unknown prior to this thesis’s contributions. Fur-
thermore, recovery in the blue area is information-theoretically possible on the random-regular model
which was previously only known for θ > ln2

1+ln2 while the efficient DD algorithm was proven to fail in the
light blue area. Finally, we introduced the spatially coupled test-design and the efficient SPIV algorithm
which already succeeds in this light blue area. Observe that we also managed to proof that inference of
all but o(k) individuals is possible within one round and inference of all individuals within two rounds
by SPIV outside of the dark-red area.

0 ln2
1+ln2

1
2

1

ln−2 2

ln−1 2

(2ln2 2)−1

((1+ ln2) ln2)−1

density parameter θ

m̃non-ada

m̃DD

m̃inf

Figure 2.3.: The phase transitions in non-adaptive unrestricted hypergeometric group testing. The
graphic is modified after [46, Figure 1]. We write m̃ = m · (k ln(n))−1.

With respect to the ∆−divisible group testing problem, we present the (not completely understood)
phase diagram in Figure 2.4. In the dark blue area, the simple COMP algorithm was known to perform on
the random-regular model non-adaptively [86] while we proved that DD performs on the same model
already in the light blue area. Furthermore, below the black line (red area), every testing scheme (even
adaptive schemes) fail while below the red-dotted line all non-adaptive schemes do not succeed. Thus,
the yellow area shows a regime where there might be non-adaptive schemes coming with efficient al-
gorithms (e.g. SPIV-like ideas) but they are currently not known. Further, in the yellow and orange area
there might be adaptive algorithms for inference of σ but they are also currently not known. Finally,
the light red area marks a regime where we proved the existence of an adaptivity-gap, thus we found
an efficient adaptive algorithm performing in this regime but there cannot be a non-adaptive pooling
scheme facilitating inference.

Finally, the discussed phase transitions in the Γ−sparse group testing problem for Γ=Θ(1) are given in
Figure 2.5. Above the blue line, the COMP algorithm studied by Gandikota et al. [86] succeeds at inference
on the random regular model. In contrast, we can observe that DD (succeeding at mnon−ada(Γ) on all
θ outside of a set of measure zero) requires n/Γ tests less almost everywhere for θ > 1/2 on the same
model. Furthermore, DD performs slightly better in sparse instances on the matching model. Moreover,
no algorithm (efficient or not) can succeed at inference below the red line on any non-adaptive pooling
scheme. Finally, any adaptive testing scheme fails below the black line while we presented an algorithm
who succeeds at this point (up to rounding). We stress that the points on which the achievability bound
of DD satisfies m̃DD(Γ) = m̃non-ada(Γ)+1 rather than being equal correspond to the jumps in the phase
diagram.
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Figure 2.4.: Important phase transitions in ∆−divisible hypergeometric group testing with ∆ =
O

(
ln1−δn

)
for some δ ∈ (0,1]. The plot is with respect to the choice of parameters ∆ = 5,

n = 105. The phase-transition lines correspond to the exponents of the actual phase trans-
ition points, thus we have m =∆km̃ .
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Figure 2.5.: The phase transitions in non-adaptive hypergeometric group testing under the Γ−sparse
restriction for Γ = Θ(1). We define m = m̃ n

Γ and tacitly assume that n/Γ ∈ Z. Furthermore,
the plot is with respect to the choice Γ= 4.

In the next section, we will present how to achieve a formula that counts the number of solutions for
a random 2−SAT formula.

2.2. Counting solutions of a random 2-SAT formula

As already discussed in the introduction, it was a prominently posed open question, how many satisfy-
ing assignments a random 2−SAT formula typically possesses [78]. Fortunately, the marginals obtained
through Belief Propagation plugged into the Bethe functional yield a precise prediction. In the contri-
bution

The number of satisfying assignments of random 2-SAT formulas [2]

we prove that this non-rigorous prediction is indeed correct. Before stating the main theorem, we re-
quire a bit of additional notation. Suppose we have n variables x1, . . . , xn taking spins in Ω = {±1} and



Results 63

a parameter 0 < d < 2. Then we create m ∼ Po(dn/2) clauses and obtain a formula Φ by choosing
one uniformly at random from all possible formulas that have two distinct variables per clause. As be-
fore, Z (Φ) denotes the corresponding partition function. Let us introduce a Belief Propagation operator
BPd : P ((0,1)) → P ((0,1)) that maps a probability measure π onto π′ as follows. Let d+,d− ∼ Po(d/2)

and
{
µπ, j

}
j

be a family of independent samples from π. Thus, µπ, j is a random probability measure on

(0,1). Then we define π′ = BPd (π) as the distribution of

∏d−
i=1µπ, j

∏d−
i=1µπ, j +

∏d+
i=1µπ, j+d−

.

We will see in due course that this operator basically coincides with the Belief Propagation estimate of
the marginals (1.1.20). We furthermore denote by BP`d the `−fold iteration of the BPd operator. Finally,
we let δx ∈P ((0,1)) denote the atom on x. Now we can finally state our main theorem.

Theorem 2.2.1 (Theorem 1.1 of [2]). For any 0 < d < 2 the limit πd = lim`→∞BP`(δ0.5) exists and

lim
n→∞

1

n
ln Z (Φ) = E

[
ln

(
d−∏
i=1

µπd ,i +
d+∏
i=1

µπ,i+d−

)
− d

2
ln

(
1−µπd ,1µπd ,2

)
]

in probability.

Theorem 2.2.1 implies that the free entropy density is really given through the Bethe functional (1.1.22).
Let us stress that the paper’s main contribution is actually a lower bound on ln Z (Φ) as a tight upper
bound could be computed by the so-called interpolation method [142]. Furthermore we stress that, of
course, the result of the theorem might be hard to digest as it is far from obvious how to calculate a
closed form. Nevertheless, it turns out that numerical approximations are easy to get.

How can we proof the statement of Theorem 2.2.1? To this end, let µΦ ∈ P ({±1}n) be the Boltzmann
distribution of the physical system given through the random factor graph corresponding to the random
formulaΦ. As we are in the zero-temperature limit, µΦ corresponds to the uniform distribution over all
satisfying assignments (see (1.1.7)).

Supposing that the BP prediction is correct, it is not very surprising that πd can actually be written in
terms of the marginals of the Boltzmann distribution, more precisely as the random probability measure
which is the P−weak limit of

πΦ = 1

n

n∑
i=1

δµΦ(σxi =1).

A core argument of the proof is that Belief Propagation is able to not only find the correct marginals
but even the correct marginals for any boundary condition. Letσ∼µΦ be a sample from the Boltzmann
distribution and τ be a second satisfying assignment. We define ∂2`x as the variables of distance exactly
2` from variable x and ν` as the Belief Propagation estimation of the marginals. For the sake of the
reading flow we recall the Belief Propagation messages and its estimation of the marginals from the
introduction and plug in the specific setup at hand. A more detailed derivation can be found in [2].
We let r ∈ {±1} indicate whether variable x appears positively or negatively in clause a and let s be the
corresponding sign of variable y . Then we let

ν(`)
Φ,a→x (t ) =

1−1 {r 6= t }ν(`−1)
Φ,y→a(−s)

1+ν(`−1)
Φ,y→a(s)

, ν(`)
Φ,x→a(t ) =

∏
b∈∂x\{a}ν

(`)
Φ,b→x (t )

∏
b∈∂x\{a}ν

(`)
Φ,b→x (1)+∏

b∈∂x\{a}ν
(`)
Φ,b→x (−1)

be the Belief Propagation messages and define

ν(`)
Φ,x (t ) =

∏
a∈∂x ν

(`)
Φ,a→x (t )

∏
a∈∂x ν

(`)
Φ,a→x (1)+∏

a∈∂x ν
(`)
Φ,a→x (−1)

,
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as the BP estimate of the marginals. Finally, we let

µΦ
(· |σ∂2`x1

= τ∂2`x1

)=µΦ
(
· | ∀y ∈ ∂2`x1 :σy = τy

)

be the Boltzmann distribution conditioned on having a specific boundary condition on variables of
distance 2` from x1.

Then, ifΦ is satisfiable with high probability, we have [2, Theorem 1.2]

lim
`→∞

limsup
n→∞

E
[∣∣∣µΦ(σx1 =±1)−ν(`)

Φ,x1
(±1)

∣∣∣ | Z (Φ) > 0
]
= 0

and
lim
`→∞

limsup
n→∞

E
[

max
τ

∣∣∣µΦ(σx1 = 1 |σ∂2`x1
= τ∂2`x1

)−ν(`)
Φ,x1

(1)
∣∣∣ |Z (Φ) > 0

]
= 0.

We emphasise again that this observation is really strong and it is clearly one of the most important
features of the contribution to prove this assertion. Indeed, it shows that Belief Propagation does render
the correct marginals given any boundary condition. Why is this so important? It formally justifies core
assumptions of the statistical physics’ 1-RSB Ansatz (see Section 1.1.5.1) in the 2−SAT problem. Having
the (non-rigorous) discussion of Section 1.1.5.1 in mind, let S(Φ) be the set of all satisfying assignments
of Φ. Then we can observe by the triangle inequality that the Boltzmann distribution itself is a Bethe
state as

lim
`→∞

limsup
n→∞

E

[
max
τ∈S(Φ)

∣∣µΦ(σx1 = 1 |σ∂2`x1
= τ∂2`x1

)−µΦ(σx1 = 1)
∣∣ |Z (Φ) > 0

]
= 0.

Thus, as in Sections 1.3.1 and 1.1.5.1, we established being in a replica symmetric phase, hence the
Boltzmann distribution does not exhibit long-range correlations but is o(1)−symmetric.

We recall, that o(1)−symmetry is defined as

∑
s,t∈{±1}

E
[∣∣µΦ(σx1 = s,σx2 = t )−µΦ(σx1 = s) ·µΦ(σx2 = t )

∣∣ |Z (Φ) > 0
]= o(1).

Let us now sketch in four steps how to obtain the results, of course, as in the previous sections, this
sketch only carries the main ideas of the proof and is not meant to be complete nor rigorous.

Existence of the limit. First, we need to verify that the limit πd actually exists. This can be done
rigorously by showing that the Belief Propagation operator BP is a contraction and actually converges
quite fast towards a unique fixed-point. Furthermore, we can prove that the limit πd does not only exist
but satisfies a tail-bound of the form E

[
ln2 (

µπd
/
(
1−µπd

))]<∞.

The Boltzmann distribution is a Bethe state. Second, we prove that BP renders the correct con-
ditional marginals and that the marginals do not depend on the boundary conditions. We stress that
the formula locally looks like a Galton-Watson tree, thus we suppose working on a tree. We make use of
a feature which might be exclusive in the 2−SAT problem compared to general k−SAT, namely that we
can actually construct the worst-case boundary conditions. Indeed, suppose we start at a root vertex
x0 and we want BP to output an as-high-as-possible marginal of the truth value +1 for x0. Look at the
clauses x0 is part of, more precisely, partition them into those clauses A− in which x0 is negated and
those clauses in which x0 comes positively (A+). As we want to nudge x0 towards taking the value +1,
we set all the variables being its partner in a clause of A+ to a value that does not satisfy the clause, thus
x0 needs to be set to +1 in order to satisfy all clauses in A+. Analogously, we set all its partner-variables
in the tests of A− to the value that satisfies the clauses already, thus x0 does not need to satisfy them.
This procedure can now be iterated until depth 2` and a visualisation is given in Figure 2.6.

Of course, there are two different worst-case boundary conditions, one that nudges x0 to +1 and one
which nudges it to −1. Due to symmetry, it actually suffices to prove that the marginals of the +1-
nudging configuration, call it σ+, coincide with the unconditional marginals. As the construction of
σ+ clearly depends on the formula Φ, respectively on the Galton-Watson tree with root x0, we have to
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+1 +1
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−1 −1
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Figure 2.6.: Construction of a worst-case boundary condition. The value of the variables are chosen in
the (unique) way that nudges the parent variables in the direction provided by setting x0

(grey vertex) to +1. The graphic is modified after [2, Figure 2].

deal with delicate dependencies. More precisely, if we really went down the tree starting at x0 to create
σ+, we already would have revealed all randomness and it is far from clear how to work up this tree
afterwards in order to compute the BP marginals. Fortunately, we can associate a random variable
ηx ∈R∪ {±∞} with each variable x of this tree which expresses how much x can nudge its grand-parent
to the value it should take under σ+. These random variables ηx have a very comfortable (Markov-like)
property which basically says that the value at vertices of distance k À k ′ from x0 does not depend on
the vertices of distance at most k ′ from x0.

How could such a random variable look like? To this end let Z (T x0 ,σ+,σ+
x ) denote the number of

satisfying assignments with boundary σ+ on the tree T x0 of depth 2` rooted at x0 and truth value σ+
x at

x. Analogously, let Z (T x0 ,σ+,−σ+
x ) count exactly those such assignments that have truth value −σ+

x at
x. Now we define ηx as the log-likelihood ratio between those quantities

ηx = ln
Z (T x0 ,σ+,σ+

x )

Z (T x0 ,σ+,−σ+
x )

.

Intuitively, as BP should calculate the marginal of x0 with respect to a uniformly chosen satisfying
assignment, the fraction between Z (T x0 ,σ+,σ+

x ) and Z (T x0 ,σ+,−σ+
x ) exactly expresses the extend to

which x can be used to nudge its grand-parent into the correct direction. It turns out that the distribu-
tion of ηx0

can be expressed as the iterative application of a suitable operator which itself turns out to be
a W1-contraction. Analysing this operator is technically challenging, i.e. due to studying the problem at
zero temperature which allows Z to decrease from an exponentially large number to zero by setting just
a single variable to a certain truth value. But at least it is possible to analyse it and therefore prove that
BP renders the correct marginals. The details can be found in [2, Section 5].

The Aizenman-Sims-Starr scheme. The third step is to prove that

1

n
E[ln(Z (Φ)∨1)] → E

[
ln

(
d−∏
i=1

µπd ,i +
d+∏
i=1

µπ,i+d−

)
− d

2
ln

(
1−µπd ,1µπd ,2

)
]

(2.2.1)

in probability where we suppose that d+,d− ∼ Po(d/2) denote the number of clauses in which a variable
appears positively and negated respectively and where ∨ abbreviates the maximum. This truncation
inside of the mean is actually necessary to deal with the case that, with very little probability, the formula
could be unsatisfiable. The proof is done by the so-called Aizenman-Sims-Starr scheme [5]. To explain
the main-idea, let Zn denote the partition function of a particle system with n variables. Then we clearly
find

lim
n→∞

1

n
E [ln Zn] = lim

n→∞
1

n

n−1∑
i=1

(E [ln Zi+1]−E [ln Zi ]) = lim
n→∞

1

n

n−1∑
i=1

E

[
ln

Zi+1

Zi

]
.
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Therefore, in order to calculate the partition function, we only need to understand its development
when going from a system of size n to a system of size n +1. How can this be calculated? We need to
couple a system with n particles and a corresponding system with n +1 particles by adding a particle
and a few random clauses such that both systems follow the correct distribution. Let us discuss this in
the setting of the 2−SAT problem. SupposeΦn is a random formula with n variables and mn ∼ Po(dn/2)
clauses whileΦn+1 has n+1 variables and mn+1 ∼ Po(d(n+1)/2) clauses. How could we possibly couple
the formulas?

We start by a formula Φ′ on n variables that obtains some cavities, thus a few clauses less than it
actually requires. More precisely, it has m′ ∼ Po (dn/2−d/2) clauses. Now we obtain Φn from Φ′ by
adding Po(d/2) uniformly at random chosen clauses and Φn+1 by adding one variable xn+1 coming
along with Po(d) clauses to Φ′, each of them taking a uniformly at random chosen second variable.
Suppose we add fromΦ′ toΦn+1 the clauses a1, . . . , ad such that the sign of xn+1 in clause ai is randomly
sampled as si from {−1,+1}. A visualisation is given in Figure 2.7.

Figure 2.7.: A sketch of the Aizenmann-Sims-Starr scheme in the random 2−SAT problem. The formula
Φ′ contains too few clauses and can be used to coupleΦn andΦn+1. The signs of the literals
(red and blue edges) are drawn uniformly at random.

Then it suffices to prove that

E

[
ln

Z (Φn)

Z (Φ′)

]
∼ d

2
E
[
ln

(
1−µπd ,1µπd ,2

)]
and E

[
ln

Z (Φn+1)

Z (Φ′)

]
∼ E

[
ln

( ∑
ω=±1

d∏
i=1

(
1−1 {ω 6= si }µπd ,i

)
)]

.

(2.2.2)

Indeed, suppose this is true. Then the second summand of (2.2.1) is already found as

E

[
ln

Z (Φn+1)

Z (Φn)

]
= E

[
ln

Z (Φn+1)

Z (Φ′)

]
−E

[
ln

Z (Φn)

Z (Φ′)

]
.

Furthermore, if we partition the newly added clauses with respect to the sign of xn+1 in the clause, we
find that the last term can be written as

E

[
ln

Z (Φn)

Z (Φ′)

]
∼ E

[
ln

( ∑
ω=±1

d∏
i=1

(
1−1 {ω 6= si }µπd ,i

)
)]

∼ E
[

ln

(
d−∏
i=1

(
1−µπd ,i

)+
d+∏
i=1

(
1−µπd ,i+d−

)
)]

.

This equals the first summand of (2.2.1) as 1−µπ,i and µπ,i are equally distributed due to the symmetry
of the signs of the single clauses. Thus, let as argue why (2.2.2) should intuitively hold.
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Suppose we equippedΦ′ with a randomly chosen satisfying assignmentτ, thus with a random sample
from the Boltzmann distribution. Upon adding xn+1 with its connected clauses, there are two possibil-
ities. Either, the truth value of xn+1 already satisfies a clause. In this case, the probability of extending τ
is one. If xn+1 does not satisfy clause ai , then the second (randomly chosen) variable needs to satisfy it.
This does happen with probability (1−µπd ,i ). Altogether, this yields

E

[
ln

Z (Φn+1)

Z (Φ′)

]
∼ E

[
ln

( ∑
ω=±1

d∏
i=1

(
1−1 {ω 6= si }µπd ,i

)
)]

.

On the other hand, if we add Po(d/2) clauses and connect them randomly to two variables and equip
them with random signs, the probability that those two chosen variables both do not satisfy the clause
under τ is given by µπd ,1µπd ,2. Therefore, the proportion of satisfying assignments of Φ′ that are still

satisfying forΦn is expected to be
(
1−µπd ,1µπd ,2

) d
2 yielding

E

[
ln

Z (Φn)

Z (Φ′)

]
∼ d

2
E
[
ln

(
1−µπd ,1µπd ,2

)]
.

Of course, in a rigorous proof we need to deal with a lot of technical challenges. First, one needs to
explicitly find a valid coupling (Φn ,Φn+1). Second, randomly chosen variables might be almost and
on average independent due to replica symmetry, but they are not completely independent. Third and
most importantly, we are in the low-temperature limit. Therefore, adding one single clause could erase
all satisfying assignments. A detailed proof how to handle those delicate technicalities can be found in
[2, Section 6].

Concentration of the free entropy. Finally, as a last step, we need to show that ln(Z (Φ)∨1) is concen-
trated around its mean. Proving this assertion seems on the first glance very challenging due to the huge
fluctuations occurring in the low-temperature limit. Indeed, standard tools like the Azuma-Hoeffding
inequality are doomed to fail as with little probability there might be exponentially large changes in the
partition function. But fortunately, we are in the good shape that Panchenko and Talagrand [142] already
proved that the partition function of the 2−SAT problem at positive temperature is concentrated apply-
ing the interpolation method of statistical physics. Let Zβ(Φ) be the partition function with respect to
formulaΦ of the 2−SAT problem at inverse temperatureβ. It is clear by the definition that Zβ(Φ) ≥ Z (Φ)
and it is known from [142] that n−1 ln Zβ(Φ) does only exceed the value of the corresponding Bethe func-
tional Bβ by a factor of (1+o(1)) with high probability. Even more importantly, we find that the Bethe
functional has a natural limit B∞(πd ) <∞ which coincides with the expectation of (2.2.1) and therefore,
it is possible to show that ln Z (Φ) does not exceed its expectation by more than ±εn (for any ε> 0). The
details dealing with the exact functions, calculations and requirements for taking the limit can be found
in [2, Section 7].

Therefore, the four described steps suffice to calculate the number of satisfying assignments of a ran-
dom 2−SAT formula with high probability. In the next section we will discuss results with respect to a
limit theory for discrete probability measures akin to the graph limit theory.

2.3. Limits of discrete probability measures and the cut-distance

All results of this section were obtained in

The cut metric for probability distributions [47]

and establish a consistent limit theory for discrete probability measures.
We recall from the introduction that the cut-distance of two probability measures µ,ν ∈ P (Ωn) is
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defined as

∆�
(
µ,ν

)= inf
γ∈Γ(µ,ν),
φ∈Sn

sup
S⊂Ωn×Ωn ,

X⊂[n],
ω∈Ω

∣∣∣∣∣∣∣

∑
(σ,τ)∈S,

x∈X

γ(σ,τ)
(
1 {σx =ω}−1

{
τφ(x) =ω

})
∣∣∣∣∣∣∣
,

where Γ(µ,ν) is the set of couplings of µ and ν and Sn is the set of permutations on [n]. Further, Ln(Ω)
is the set of equivalence classes over P (Ωn) identifying those measures with cut-distance zero.

Embedding discrete measures Moreover, we already learned about some kind of continuous em-
bedding of configurations σ ∈Ωn into the space ΣΩ of measurable functions from [0,1) →P (Ω) by

σ̂ : [0,1) →P (Ω) s.t. x 7→
n∑

i=1
δσi 1

{
x ∈

[
i −1

n
,

i

n

)}

such that an associated probability measure µ ∈P (Ωn) can be expressed as

µ̂=
∑
σ∈Ωn

µ(σ)δσ̂ s.t. µ̂ ∈P (ΣΩ) .

Finally, we recall that the cut-distance of two such measures µ,ν ∈P (ΣΩ) is defined as

D�(µ,ν) = inf
γ∈Γ(µ,ν),
ϕ∈S[0,1)

sup
B⊂Σ2

Ω,
U⊂[0,1),
ω∈Ω

∣∣∣∣
∫

B

∫

U
σx (ω)−τϕ(x)(ω)dxdγ(σ,τ)

∣∣∣∣

and identify measures with cut-distance zero. The resulting space of Ω−laws is denoted by L = LΩ.
From the definition it is immediate that D�(µ̂, ν̂) ≤∆�(µ,ν) but it is less clear if the other direction holds.
We provide an argument that the embedding is, nevertheless, consistent as we have the following.

Theorem 2.3.1 (Theorem 1.2 of [47]). There is a function f : [0,1] → [0,1] with f −1(0) = {0} such that for
all n ≥ 1 and all µ,ν ∈P (Ωn) we have

f
(
∆�(µ,ν)

)≤ D�(µ̂, ν̂) ≤∆�(µ,ν).

This assertion is far from being obvious. Indeed, equality would hold if the measure preserving bijec-
tion in the definition of D�(·, ·) was restricted to map intervals Ii = [(i −1)/n, i /n) onto intervals I j com-
pletely. But one can proof that the mass of one such interval does at least not split too much, more pre-
cisely, any reasonable such bijection maps at least mass n−3 from one interval into another one. There-
fore, we get instantly∆�(µ,ν) ≤ n3D�(µ̂, ν̂). If n is small, this observation suffices clearly. If, on the other
hand, n is sufficiently large, we partition the phase space Ωn as well as the coordinates [n] by the regu-
larity lemma in such a way that on each little part of the partition, we can argue that the induced step
functions µ̂, ν̂ have to be very close to µ,ν under any permutation and obtain ∆�(µ,ν) ≤ D�(µ̂, ν̂)+o(1),
establishing the theorem.

We will first show that there is a different, very elegant possibility to describeΩ−laws. More precisely,
such a description was already introduced in [42].

The kernel representation The kernel representation of Ω−laws says briefly that it is possible to
describe such a measure as something very similar to a graph limit if we define an appropriate distance.
We will start discussion the other way round, thus we first define the space of kernels K by identifying
all measurable functions κ,κ′ : [0,1]2 → P (Ω) with cut-distance zero where the cut-distance is defined
as

D�(κ,κ′) = inf
φ,φ′∈S[0,1]

sup
S,X⊂[0,1],
ω∈Ω

∣∣∣∣
∫

S

∫

X
κs,x (ω)−κ′φ(s),φ′(x)(ω)dxds

∣∣∣∣ .
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Comparing D�(·, ·) with the usual cut-distance for kernels from the graph limit theory D�(·, ·), we ob-
serve that (for a given ω) the major difference is that we may permute the entries on the two axis in-
dependently which clearly accounts for the fact that in the graph limit case both axes correspond to
vertices of a graph while in the setting at hand, the x−axis represents coordinates while the s−axis rep-
resents configurations. Furthermore, we allow maximisation with respect to the spin ω while in the
graph case we already have κs,x ∈R.

Now, suppose we have a kernel κ, then it induces a function κs : [0,1] →P (Ω) ∈ΣΩ mapping x → κs,x .
We define µκ ∈L as the distribution of κs for an uniformly at random chosen s ∈ [0,1]. Of course, each
Ω−law µ can be seen as the distribution of some κµs as well, i.e. κµ coincides with s : [0,1] →P (Ω) on a
set of measure µ(s).

With this picture in mind, it is actually not very surprising that those two objects are basically the
same.

Theorem 2.3.2 (Theorem 1.4 of [47]). The map K →L induced by κ 7→µκ is an isometric bijection.

The actual proof which can be found in [47, Section 3] is quite technical but its main idea is to start
with an arbitrary map f : [0,1] →P (Ω) that maps s 7→ fs and to associate a kernel κ f : [0,1]2 →P (Ω) (by

κ
f
s,x = fs,x ) with it. Analogously, the same map f can be used to transform the Lebesgue measure into a
Ω−law µ f . All we need to show is that for two such functions f , g we find

D�(κ f ,κg ) = D�
(
µ f ,µg

)
.

Let us shortly come back to the connection between graph limits and our kernels. For the sake of
clarity, we will refer to the graph limit kernels as graphons from now on. First, a graphon is a symmetric
mapping and it turns out that we can make our kernels symmetric as follows. To this end, we define the
transpose κ† : (s, x) 7→ κx,s of a kernel κ and observe that κ is symmetric if κ = κ†. For κ ∈ K , define a
family

{
κ(ω)

}
ω∈Ω of symmetric functions by

κ(ω)
s/2,(1+x)/2 = κs,x (ω), κ(ω)

(1+s)/2,x/2 = κx,s(ω), κ(ω)
s/2,x/2 = κ

(ω)
(1+s)/2,(1+x)/2 = 0. (2.3.1)

Intuitively, we squeeze the kernel from [0,1]2 to [0, 1
2 ]2 and put it in the bottom left part of a unit square

and add its transpose as the upper right part. The upper left as well as the upper right part will just equal
zero. Clearly, each κ(ω) is a symmetric function from [0,1]2 → [0,1], thus a (bipartite) graphon where κ(ω)

s,x

is the corresponding edge weight.
Therefore, it is not surprising that various of the properties and results of graph limit theory carry over

to the limit theory for discrete probability measures. We start by presenting one very important feature
of graph limits, namely that it is possible to find a representation as an exchangeable array.

Exchangeable arrays We recall from the introduction that the graph limits were originally defined
by the convergence of all series of homomorphism densities which basically expresses the density of
how often which subgraph is present in the sequence of graphs. We will see that a similar equivalence
is correct in the case of convergence of a sequence of probability measures (µn)n to an Ω−law µ with
specificΩn×n-matrices replacing subgraphs.

To this end, we call a probability distributionΞ ∈P
(
ΩN×N

)
exchangeable if the distribution of X Ξ(i , j )

coincides with the distribution of X Ξ(ϕ(i ),ψ( j )) for any ϕ,ψ ∈ Sn where i , j ∈ [n] and X Ξ is a two-
dimensional infinite array overΩ sampled fromΞ. The space of such exchangeable arrays has nice prop-
erties, for instance, it is compact and separable if equipped with the weak topology (Tychonoff’s the-
orem). It is easy to generate such an infinite array from a kernel. Indeed, sample s1, x1, s2, x2, . . . ∈ [0,1]
uniformly at random and independently and create an array X κ such that each entry X κ(i , j ) is just
an independent sample from κs i ,x j ∈ P (Ω). For the sake of brevity, we denote by X µ the infinite array
obtained from κµ if κµ is the corresponding kernel to theΩ−law µ.

Of course, if π ∈ P (K ) is a distribution on such kernels, the same procedure induces a distribution
Ξπ on infinite arrays by first drawing κ from π and then creating X κ. It turns out that this operation
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is indeed a homeomorphism. If both probability spaces, P
(
ΩN×N

)
and P (K ) are equipped with the

weak topology1, we have the following theorem.

Theorem 2.3.3 (Theorem 1.8 of [47]). The map π 7→Ξπ is a homeomorphism.

This theorem is kind of an extension of a result in graph limit theory. Indeed, in the special case
Ω = {0,1} it boils down to the the directed graph version of [63, Theorem 5.3]. Now we can see that a
similar principle as the subgraph count is really an important feature in the theory of convergence of
probability measures. Suppose that (µN )N≥1 is a sequence ofΩ-laws that converges to µ ∈L . Then we
find an exchangeable array X µN such that for all n ≥ 1 and all matrices A ∈Ωn×n we have that

lim
N→∞

P
[∀i , j ∈ [n] : X µN (i , j ) = Ai , j

]=P[∀i , j ∈ [n] : X µ(i , j ) = Ai , j
]

. (2.3.2)

If on the other hand (2.3.2) holds for all n ≥ 1 and all A ∈Ωn×n , then the theorem implies

lim
N→∞

D�(µN ,µ) = 0.

The existence of such a representation as an exchangeable array for an Ω−law enables us to obtain a
very basic result of graph limit theory in the context ofΩ−laws very elegantly: the sampling lemma.

Sampling from an Ω−law A further feature of graph limit theory is the sampling operation. Given a
large enough random graph obtained from a graphon by sampling, this finite graph will be very close to
the original graphon under the cut-distance. We will use the possibility to expressΩ−laws as exchange-
able infinite arrays to obtain a similar result for discrete probability measures. More precisely, given an
Ω−law µ and its representation as an exchangeable array X µ, we define µn as the empirical distribution
of the rows of the upper n ×n−submatrix of (X µ), thus formally

µn(σ) = 1

n

n∑
i=1

1
{∀ j ∈ [n] : X µ(i , j ) =σ j

}
(σ ∈Ωn).

As X µ is clearly dependent on the random coordinates (si , x j )i , j≥1, the obtained measureµn is a random
probability distribution. We obtain the following sampling lemma.

Theorem 2.3.4 (Theorem 1.9 of [47]). There is c > 0 such that for all n > 1 and all µ ∈ L we have
E
[
D�(µ,µn)

]≤ c/
p

lnn.

It turns out that this dependence on n is actually best possible (besides a possibly optimised choice
of the constant c).

Theorem 2.3.5 (Theorem 1.10 of [47]). There is a constant d > 0 such that for any ε > 0 we find some
Ω−law µ such that D�(µ,ν) ≥ ε for every ν ∈L which is supported on at most exp(d/ε2) configurations.

The proofs of Theorems 2.3.4 and 2.3.5 make extensive use of the close connection to graph limit the-
ory. The sampling lemma itself is proven analogously as its corresponding form in the case of graph
limits (see, for instance, [127, Section 10]) and can be found in [47, Section 3]. While the proof idea
is similar, technical challenges appear due to the missing symmetry of the kernels. Let κ be a kernel,
then we begin by obtaining a (finite) kernel κn as the matrix (κs i ,x j )i , j which is obtained by sampling
x1, s1, . . . , xn , sn ∈ [0,1] u.a.r.. Furthermore, κ̂n is the n ×n upper left sub-matrix of X κ. We first show
that, with sufficiently high probability, the cut-distance between two kernels κ,κ′ is sufficiently well
approximated by the cut-distance between the corresponding finite kernels κn ,κ′n which follows from a
carefully applied result from the graph limit theory. Afterwards, we use a standard large deviation bound
to prove that E [D�(κn , κ̂n)] = o(1). To obtain the result itself, we require the the regularity lemma. More
precisely, we find that the step-kernel κ̂ coincides with the step-kernel guaranteed by the regularity

1We define the weak topology on a set with respect to a family of functions as the coarsest topology under which all those
functions are continuous.
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lemma, thus it is close to κ under the cut-distance and therefore κn and κ̃n are close as well. Finally, it
suffices to see that the two step-kernels κ̂ and κ̂n are close to each other which can be done by compar-
ing them on each step.

We furthermore want to show that the dependency on n in the sampling lemma is roughly optimal.
In this case apply a result from graph theory directly. It is known that there are graphons WG such
that each partition P of the vertex set which induces a step-graphon satisfying D�(WG ,WGP ) < ε (c.f.
Section 1.3.1.2) has to consist of at least exp

(
Θ(ε−2)

)
parts [56, Theorem 7.1]. Now, given such a graphon

WG , we create a kernel κG by (2.3.1) and apply the sampling lemma. If the assertion of Theorem 2.3.5
was false, we would obtain a step-kernel κG

n on fewer steps satisfying D�(κG ,κG
n ) < ε/2. But asΩ= {0,1},

we have
D�(κG ,1,κG ,1

n ) ≤ 2D�(κG ,κG
n ) < ε

which is a contradiction to the aforementioned result from graph limit theory [56, Theorem 7.1].
In the next paragraph we will discuss the pinning operation (c.f. Section 1.3.1.4) in the general context

ofΩ−laws.

Pinning Recall from the introduction that the pinning operation says roughly that conditioned on
pinning a few coordinates to specific values each probability measure over Ωn becomes extremal. For
the convenience of the reader, we recall that for µ ∈P (Ωn) we denote by

µ̄(σ) =
n∏

i=1
µi (σi )

the corresponding product measure on the same marginals. Furthermore, we call a measure ε−extremal
if we have ∆�(µ, µ̄) < ε.

It is possible to generalise this notion toΩ−laws. Indeed, if µ ∈L is anΩ−law, we define µ̄ ∈L as the
generalised product measure on the same marginals, thus it is the atom concentrated on

[0,1] →P (Ω), x 7→
∫

ΣΩ

σx dµ(σ). (2.3.3)

We find clearly that D�(µ̄, ν̄) = 0 whenever D�(µ,ν) = 0, therefore, (2.3.3) induces a mapping from the
space ofΩ−laws into itself by µ 7→ µ̄. It turns out that those generalised product measures carry a lot of
information about the actualΩ−laws.

Theorem 2.3.6 (Theorem 1.11 of [47]). Letµ,ν beΩ−laws and µ̄, ν̄ the corresponding generalised product
measures given via (2.3.3). Then we have

D�(µ̄, ν̄) ≤ D�(µ,ν) and D�(µ̄, ν̄) ≤ max
ω∈Ω

∫ 1

0

∣∣∣∣
∫

ΣΩ

σx dµ(σ)−
∫

ΣΩ

σx dν(σ)

∣∣∣∣dx ≤ 2D�(µ̄, ν̄). (2.3.4)

Furthermore, the set of extremal laws is a closed subset of allΩ−laws.

The proof of this lemma follows from a fairly short technical calculation whose most important idea
it is to partition the space of coordinates [0,1] into X +(ω) and X −(ω) such that

X +(ω) =
{

x ∈ [0,1] :
∫

ΣΩ

σx (ω)dµ(σ)−
∫

ΣΩ

σx (ω)dν(σ) ≥ 0

}
.

This helps to cope with the possible cancelling out of contributions with different signs in the definition
of the cut-distance.

Once we introduced ε−extremity also in the limit case ofΩ−laws, it is a natural question whether the
pinning operation of Coja-Oghlan et al. [49] generalises and yields ε−extremal Ω−laws. To this end, let
us define the pinning operation for anΩ−law µ. Given some integer θ ≥ 1 and θ coordinates x1, . . . , xθ ∈
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[0,1] as well as a configuration τ ∈Ωθ, we define a normalising constant

Z = Zµ(τ, x1, . . . , xθ) =
∫

ΣΩ

θ∏
i=1

σxi (τi )dµ(σ).

Furthermore, if Z > 0, let µτ↓x1,...,xθ be defined as

dµτ↓x1,...,xθ (σ) = 1

Z

θ∏
i=1

σxi (τi )dµ(σ) (2.3.5)

and µτ↓x1,...,xθ =µ if Z = 0.
This pinning operation looks very similar to the discrete version and indeed, the discrete version is

contained as a special case in which each of the factors on the r.h.s. of (2.3.5) is either one or zero.
As in the discrete case, it becomes interesting if we chose x1, . . . , xθ randomly. More specifically, for a

given θ ≥ 1,

(i) let x1, x2, . . . ∈ [0,1] be u.a.r. and mutually independent,

(ii) draw τ ∈ΣΩ from the distribution µ,

(iii) pick a reference configuration τ̂ from τx1 ⊗·· ·⊗τxθ ∈P
(
Ωθ

)
,

(iv) obtain µτ̂↓θ =µτ̂↓x̂1,...,x̂θ via (2.3.5).

By the choice of τ being sampled from µ, we clearly find that Z µ(τ̂) > 0 almost surely. Finally, we let

µ↓θ = E
[
µτ̂↓θ | x1, . . . , xθ

] ∈L .

Intuitively spoken, µ↓θ is a weighted probability measure such that each configuration’s probability is
weighted according to the probability of its reference configuration.

The pinning lemma itself in the continuous case does guarantee that we find with high probability an
approximation of anΩ−law µ supported on few ε−extremalΩ−laws. More precisely, it reads as follows.

Theorem 2.3.7 (Theorem 1.12 of [47]). Given ε ∈ (0,1) and anΩ−law µ, draw 0 ≤ θ = θ(ε) ≤ 64ε−8 ln |Ω|
uniformly and independently of everything else. Then we find with probability at least 1−ε that µτ̂↓θ is
ε−extremal and E[D�(µ,µ↓θ)] < ε.

While the proof of the pinning lemma is the technical main contribution of [47] and relies on delicate
and technically challenging results, it is surprisingly easy to give a high level sketch. In the following
sketch, let δ,δ′, . . . be small and suitable chosen constants.

First, we need to verify that the pinning operation is continuous with respect to the cut-distance.
Second, given an Ω−law µ, we use the sampling lemma to obtain a discrete probability measure ν ∈
P (Ωn) such that D�(µ,ν) < δ. Now we apply the pinning operation to µ as well as to ν and obtain
(written a bit shortly) µ↓n and ν↓n . By the continuity of the pinning operation we have

D�(µ↓n ,ν↓n) < δ′

and as the pinning operation reduces to the discrete pinning regarding ν, the discrete pinning lemma
guarantees that

E
[
∆�

(
ν↓θ,ν↓θ

)]< δ′′.
Now, as the embedding of discrete probability measures into theΩ−laws respects the cut-distance (The-
orem 2.3.1), we directly get

E
[
D�

(
ν↓θ,ν↓θ

)]< δ′′′.
Now the results on how far the generalised product measures are from the actual measures in the cut-
distance (Theorem 2.3.6) and the triangle inequality give

D�
(
µ↓θ,µ↓θ

)< δ′′′′+D�
(
ν↓θ,ν↓θ

)
.
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Therefore, it is possible to reduce the continuous pinning to the discrete version and the assertion fol-
lows from Markov’s inequality.

While the pinning operation stands at the heart of the contribution we obtained two more results. The
first of those two is with respect to multi-overlaps.

Overlaps We will first describe two very basic operations on probability measures that turn out to be
continuous with respect to the cut-distance. For the sake of simplicity, we will describe their meaning
for discrete measures overΩn and will just shortly state the corresponding operation onΩ−laws.

The first such operation is the construction of a product measure. More precisely, suppose we have
two probability measuresµ,ν ∈P (Ωn). Then their productµ⊗ν is a probability distribution on (Ω×Ω)n

such that (µ⊗ν)(σ,τ) =µ(σ)ν(τ).
Analogously, we could define a tensor µ⊗ν such that for σ1,τ1, . . . ,σn ,τn ∈Ωwe obtain

µ⊗ν
((
σ1

τ1

)
, . . . ,

(
σn

τn

))
=µ(σ1, . . . ,σn)ν(τ1, . . . ,τn).

Clearly, both constructions are equivalent but the – perhaps less intuitive – tensor variant naturally ex-
tends to Ω−laws [49]. More precisely, it is convenient to identify the Ω−laws with their corresponding
kernel. To be more precise, suppose that Λ : [0,1] → [0,1]× [0,1], x 7→ (Λ1(x),Λ2(x)) is any measurable
bijection mapping the Lebesgue measure λ1 on [0,1] onto the Lebesgue measure λ2 on [0,1]2. Further-
more, Λ needs to satisfy that Λ−1 maps the Lebesgue measure on [0,1]2 to the Lebesgue measure on
[0,1]. Such transformations of the Lebesgue measure clearly exist, for instance, a proof is given by [102,
Theorem A.7]. If now κ and κ′ are the kernel representations of twoΩ−laws, we define their generalised
product as

κ⊗κ′ : [0,1]2 →P (Ω2), (s, x) ∈ [0,1]× [0,1] 7→ κΛ1(s),x ⊗κ′Λ2(s),x ∈P (Ω2).

Thus, by re-translating the kernels into Ω−laws we immediately find that, given Ω-laws µ,ν, above’s
procedure yields anΩ2-law µ⊗ν. As already pointed out, this operation is continuous.

Theorem 2.3.8 (Theorem 1.15 of [47]). The map (µ,ν) ∈L (Ω) 7→µ⊗ν ∈L (Ω2) is continuous with respect
to the cut-distance.

The second basic operation resembles the procedure which is used to generate an n ×n (rank one)
matrix over Ω from two vectors σ,τ ∈ Ωn . More precisely, if σ,τ ∈ Ωn are two vectors we define σ⊕
τ ∈ (Ω2)n×n as the n ×n-matrix with entries (σ⊕τ)i j = (σi ,τ j ) for all i , j ∈ [n]. Given two probability
distributions µ,ν ∈ P (Ωn), we define µ⊕ν as follows. First, sample σ ∼ µ and τ ∼ ν. Second, obtain
µ⊕ν as σ⊕τ.

Of course, this operation can be generalised to Ω−laws directly and interestingly, it can be expressed
by the generalised product measure ⊗. Suppose that κ,κ′ are kernel representations of Ω−laws and
define

κ⊕κ′ : [0,1]2 →P (Ω2), (s, x) 7→ κs,Λ1(x) ⊗κs,Λ2(x).

As the ⊕−operation boils down to the ⊗−operation, it is not hard to guess that it is continuous as well.

Theorem 2.3.9. The map L (Ω) →L (Ω2), (µ,ν) 7→µ⊕ν is continuous with respect to the cut-distance.

This two (very fundamental) operations are everything we need to express the quantity of multi-
overlaps quite elegantly. Recall from the introduction that the overlap matrix of two configurations σ,τ
was denoted by 〈σ,τ〉 and expresses on how many particles the spins of σ and τ coincide. This can
be naturally extended with regard to two aspects. First, instead of comparing discrete configurations
we can calculate the overlap of two generalised configurations σ,τ ∈ ΣΩ. Second, we can compute the
overlap of more than two (generalised) configurations. Thus, let σ1, . . . ,σn ∈ ΣΩ and ω1, . . . ,ωn ∈Ω and
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define

Rω1,...,ωn (σ1, . . . ,σn) =
∫ 1

0

n∏
i=1

σi ,x (ωi )dx.

Given an Ω−law µ and an integer ` ≥ 1 we calculate a similar quantity by averaging over the choice of
the configuration through µ, thus

R`,ω1,...,ωn (µ) =
∫

ΣΩ

· · ·
∫

ΣΩ

Rω1,...,ωn (σ1, . . . ,σn)`dµ(σ1) · · ·dµ(σn).

This finally enables us to define the multi-overlap of anΩ−law µ as the array

R`,n(µ) = (R`,ω1,...,ωn (µ))ω1,...,ωn∈Ω.

As those multi-overlaps are built by concatenations of ⊗ and ⊕, it is no surprise that the following holds.

Corollary 2.3.10 (Corollary 1.15 of [47]). The functions µ ∈L 7→ R`,n(µ) with `,n ≥ 1 are continuous.

Let us now come to the last result obtained in [47] which can be seen as one of the most fundamental
properties of a consistent limit theory.

Compactness of the space of Ω−laws While [49] already provided an argument that the space
(L ,D�) is a compact metric space by comparing it to the space of decorated graph limits, we give a self-
contained argument which is based on previous results within the theory of limits of discrete probability
measures.

We will first analyse the space of kernels K . To this end, we define three different variants of the
cut-distance. More precisely, we define

D�(κ,κ′) = inf
φ,ψ∈S[0,1]

sup
S,X⊂[0,1]
ω∈Ω

∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κ′φ(s),ψ(x)(ω)

)
dxds

∣∣∣∣ ,

D�(κ,κ′) = inf
φ∈S[0,1]

sup
S,X⊂[0,1]
ω∈Ω

∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κ′φ(s),x (ω)

)
dxds

∣∣∣∣ ,

D@(κ,κ′) = sup
S,X⊂[0,1]
ω∈Ω

∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κ′s,x (ω)

)
dxds

∣∣∣∣ .

Therefore, the strongest version of the cut-distance is D@(·, ·) which does not allow for any measure
preserving transformations while the slightly weaker variant D�(·, ·) allows to permute the coordinates
corresponding to the generalised configurations. Finally, D�(·, ·) which we previously studied, is the
weakest form of the cut-distance which allows measure preserving transformations in both dimensions.

In a first step we verify that the set of kernels is complete with respect to D@(·, ·) which requires a
delicate technical analysis employing the Riesz representation theorem as well as the Radon-Nikodym
theorem. Then, the second and third step adapt the well known fact that the quotient space with respect
to a linear subspace of each complete metric space is complete itself. Indeed, (K ,D�) is a quotient
space of (K ,D@) by identifying kernels κ,κ′ with D�(κ,κ′) = 0. Analogously, (K ,D�) is a quotient
space of (K ,D�). By the kernel representation (Theorem 2.3.2) this immediately implies that the space
ofΩ−laws is complete with respect to D�(·, ·) as well.

We are left to show that the space of kernels is separable. Fortunately, by the regularity lemma we
know that the Ω−laws with finite support are actually a dense subset of L . Therefore, it suffices to
prove that ΣΩ is separable. But the latter is clear as the set of all finite linear combinations of indicator
functions x 7→ 1{a < x < b} with a,b ∈Q is a dense subset of all measurable continuous functions from
[0,1] → R. Again employing the kernel representation, we find that this separability carries over to the
space of kernels.
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Up to now we found that L is complete and separable but of course this does not necessarily imply
compactness. We use the representation ofπ ∈P (L ) as a distribution over exchangeable infinite arrays
in E ⊂ P

(
ΩN×N

)
to prove compactness. As the latter space is known to be compact it suffices to find a

continuous mapping from E to P (L ).
Let us sketch how such a mapping could look like. Let ξ ∈ E be a distribution over infinite arrays, then

we define a mapping ξ 7→ ρξ,n as follows. First, we draw an array X ξ from ξ. Subsequently, we define
µξ,n ∈P (Ωn) as the empirical distribution of the rows of the top-left n ×n submatrix of X ξ and identify
it with its embedding into L . Finally, ρξ,n is the distribution of µξ,n w.r.t. the choice of X ξ. It turns out
that we have for every ξ ∈ E that ρξ = limn→∞ρξ,n exists and ξ 7→ ρξ is continuous [47, Lemma 3.13].

Into the other direction, it is also possible to associate a distribution ξµ ∈ E with anΩ−law µ. Indeed,
as discussed in the paragraph about the representation as exchangeable arrays, we can simply define ξµ

as the distribution of X µ. This mapping actually shows that the space ofΩ−laws can be embedded into
E as ρξ

µ

turns out to be the atom on µ (e.g. δµ ∈ P (L )). Again, the corresponding mapping µ 7→ ξµ is
continuous which directly implies that the mapping E → P (L ), ξ 7→ ρξ is surjective [47, Lemma 3.14,
Corollary 3.15]. Altogether, this implies the compactness of the space ofΩ−laws.

2.3.1. Summary: the cut-distance for probability measures

We established a self-contained and consistent limit theory for discrete probability measures on Ωn

akin to the graph limit theory. We showed that the limit space L =L (Ω) ofΩ−laws is a compact space
closely related to the space of graphons.

We furthermore analysed different representations for anΩ−law µ. First, it is possible to define a cor-
responding kernel, thus a function from the unit square into the probability measures over Ω. Second,
each µ is in correspondence with a (random) exchangeable two-dimensional infinite arrayΞµ ∈ΩN×N.

The latter representation enabled us to prove a sampling lemma comparable to the sampling lemma
of graph limit theory. Moreover, we extended the pinning operation of [49] to the more general case of
Ω−laws. Finally, we proved that the operation of obtaining multi-overlaps is continuous with respect to
the cut-distance which might be an important step towards rigorising some statistical physics’ predic-
tions as the (multi-)overlap is a frequently studied observable.

Let us in the next section leave the world of statistical physics once more and discuss results with
respect to perturbed random graphs.

2.4. Spanning structures in randomly perturbed sparse graphs

Recall that in the setting of randomly perturbed graphs some arbitrary (possibly deterministic) graph
Gα = (Vα,Eα) with minimum degree αn is given. Furthermore, we take the edges from an instance
G of G (n, p) and examine whether there are certain spanning structures present in Gα ∪G with high
probability. We start by stating the obtained results.

Theorem 2.4.1 (Theorems 1.1 and 1.2 of [93]). Let Gα be a graph with minimum degree αn and G an
instance of G (n,β/n).

• If β≥−(6+o(1)) lnα, Gα∪G contains a Hamilton cycle with high probability.

• If β≥−(4+o(1)) lnα, Gα∪G contains a perfect matching with high probability.

Let us first observe that the theorem is tight (up to a constant factor). Indeed, if Gα is the complete
bipartite graph on classes Vα,V1−α of size αn and (1−α)n, we cannot find a perfect matching if there is
an independent set of size larger than αn in V1−α. It is known that the number of isolated vertices in the
random graph is ∼ n exp

(−β)Àαn if β= o(− lnα). Therefore, one requires β=Ω (− lnα), and of course,
if there is no perfect matching, we cannot find a Hamilton cycle either.

Furthermore, we obtained results with respect to the existence of spanning bounded degree trees.
More precisely, we state some kind of a meta-theorem which allows – given an almost spanning structure
of sufficient size in G (n,β/n) – to find the spanning structure by the edges in the deterministic graph.
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Theorem 2.4.2 (Theorem 1.6 of [93]). Let∆≥ 2 be an integer and suppose that α,β,ε : N 7→ [0,1] are such
that 4(∆+1)ε < α∆+1. Furthermore suppose that G

(
n,β/n

)
contains a given tree with maximum degree

∆ on (1−ε)n vertices w.h.p. and that Gα is an arbitrary graph with minimum degree αn.
Then any tree with maximum degree ∆ on n vertices can be found in Gα∪G

(
n,β/n

)
with high probab-

ility.

The theorem solely does of course not answer the question whether we find spanning trees or not.
But with a recent result of Balogh et al. [19], we find the following.

Corollary 2.4.3 (Corollary 1.8 of [93]). For ∆≥ 2 there exists C > 0 such that for α=α(n) :N 7→ (0,1) and
β=β(α) =−Cα−(∆+1) lnα the following holds. Any n-vertex tree T with maximum degree∆ is a subgraph
of Gα∪G

(
n,β/n

)
with high probability.

How can we proof such statements? We will only give an idea of the proof with respect to the Hamilton
cycle as the other theorems follow fairly similar ideas. We need two major ingredients. First, we require
a long cycle in the random graph. Fortunately, such a result already exists.

Lemma 2.4.4 (Frieze [83]). Let 0 <β=β(n) ≤ lnn. Then the random graph G (n,β/n) contains a cycle of
length at least

(
1− (1−o(1))βexp

(−β))
n with high probability.

Second, we will use the previously explained multiple round exposure technique with the difference
that we in this case reveal edges of the random graph in multiple rounds instead of infected individuals
like in the group testing problem. Now we already have everything at hand to sketch the proof of (the
first part of) Theorem 2.4.1.

Proof sketch of the first part of Theorem 2.4.1. Observe that for very small α = O(n−1/6) our choice of β
already guarantees that the random graph is known to contain a Hamilton cycle w.h.p..

Thus, suppose that α = ω(n−1/6). We start by revealing almost all edges of the random graph. More
precisely, we reveal the edges of G (n, (β−1)/n).

Within this random graph we find by the previous lemma a path P on all but at most βexp
(−β)

n
vertices. Say that those left-over vertices are denoted by V ′. We will subsequently absorb all but two
such vertices onto the path P using edges from the deterministic graph Gα.

To this end, let B (u, v) denote the set of vertices x that lie on P and are a neighbour of u in Gα such
that the neighbours of u on the path P are also connected to v via edges in Gα. Formally,

B (u, v) = {
x ∈ ∂Gα

(u)∩P | ∂P (x) ⊂ ∂Gα
(v)

}
.

A visualisation is given in Figure 2.8. Suppose P = p1 . . . p` is the path. Then clearly, if for a vertex

p1 p2 p3 . . . p j−1 p j p j+1 . . . p`

v

Figure 2.8.: Absorbing structure for vertex v onto the path p1 . . . p` using edges from Gα (red). The
graphic is modified after [93].

v ∈ V ′ there is some p j ∈ B (p`, v), we can create a longer path p1 . . . p j−1v p j+1 . . . p`p j which contains
v . It turns out that, up to some technicalities which guarantee that those absorbing structures do not
overlap too much, we can follow this approach greedily until all but 2 vertices are absorbed. Indeed, as
B (u, v) is a uniformly at random chosen set of vertices due to the randomness of G (n, (β−1)/n), we find

|B (u, v)| ≥ 2

5
α3βexp

(−β)≥ α3n

4
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with high probability for the choice of β. While absorbing the left-over vertices greedily for

∣∣V ′∣∣−2 ≤βexp
(−β)

n

rounds, we remove in every step all used vertices from all sets B (u, v) and the absorbed vertex from V ′.
As after βexp

(−β)
n rounds the size of B (u, v) only decreased by at most βexp

(−β)
n (for any pair of

vertices u, v), we have after absorbing that

|B (u, v)| ≥ α3n

4
−βexp

(−β)
n ≥ α3n

8

if α=ω(
n−1/6

)
. Thus, absorbing all but two vertices is indeed possible to be done greedily.

Therefore, all we need to do at this point is to close the cycle. Recall that we obtained a path P =
p1 . . . pn−2 and are left with two additional vertices a,b. If there is an edge pi p j between B (p1, a) and
B (pn−2,b), we already found a Hamilton cycle C = pi p1 . . . pi−1api+1 . . . p j−1p j+1 . . . pn−2p j pi . And in-
deed, by revealing the missing edges from G (n,1/n), we find that such an edge is present with high
probability.
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3. Outlook

This chapter will state open problems related with this thesis’s contributions and aims for giving rise
to possibly interesting further research directions within the respective fields. We start by stating such
research questions with respect to the group testing problem.

3.1. Group testing

Non-adaptive group testing in the sublinear regime In the sublinear regime where the number
of infected individuals scales as k = nθ, this thesis’s contributions draw a somehow complete picture
of non-adaptive noiseless hypergeometric group testing. While the analysis of SPIV and the proof of
the universal information theoretic converse does not require exact knowledge about k but its order
of magnitude suffices, it seems very likely that those results might carry over to i.i.d. models as well.
Nevertheless, while SPIV is an efficient algorithm from a theoretical point of view, requiring lnlnn →∞
shows that the result is only of theoretical nature. Furthermore, the spatially coupled design is clearly
much more complicated than the random regular model. Therefore, an intriguing question would be
the following.

Question 3.1.1. Is there an efficient algorithm succeeding at mnon−ada on the random regular model?
Furthermore, is there a deterministic graph G with (1+ε)mnon−ada tests coming with an efficient algorithm
for high probability recovery of σ from (G ,σ̂)?

Besides searching for more practical algorithms, one could ask what happens when we leave the
Bayes optimal setting. Suppose the student does only receive an estimate k̃ of k (thus, not the com-
plete teacher’s prior). If k̃ > k, inference will still be possible by SPIV as we conduct only too many
tests and each test is more likely to be negative. If, on the other hand, k exceeds the guess k̃, complete
recovery is not possible under the studied designs. Therefore, the following question might arise.

Question 3.1.2. Given an estimate k̃ < k of the number of infected individuals, how many tests suffice
to infer the ground-truth completely or at least up to small errors depending on k̃ and k? How would an
optimal design look like?

Similarly, while we proved that (1−o(1))−recovery is possible at minf using the spatially coupled design
with SPIV, it is also known that, information-theoretically, it is possible to achieve (1−γ)−recovery on
a Bernoulli test-design with no more than minf tests. Up to our knowledge, there are only non-rigorous
contributions which provide evidence that it might be possible algorithmically [99]. Further, there can-
not be any design on less than (1−γ)minf tests achieving (1−γ)− recovery [152].

Question 3.1.3. Is partial recovery of all butγk infected individuals possible algorithmically under Bernoulli
group testing at the information-theoretic threshold?

But nevertheless, this part of group testing is fairly well understood. Things are completely different
for sparsity constrained group testing.

Sparsity constrained group testing As already seen in the previous chapter, the sparsity constrained
group testing problem is not as well understood as the unrestricted case. A fairly natural question is if
the phase diagram in the ∆−divisible case does actually look similar to the one in unrestricted group
testing.

Question 3.1.4. Is there an adaptive algorithm testing each individual at most ∆ times succeeding at
minf(∆) or can we proof that minf(∆) is not tight? Furthermore, is there a spatially coupled design coming
with an efficient algorithm performing as well as the binary splitting approach (or even better)?
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In the Γ−sparse case we completely understood the problem if Γ is a constant.

Question 3.1.5. Does the analysis of the Γ = Θ(1) case extend to larger values of Γ? And, if so, does it
strengthen existing bounds?

Finally, one might be slightly irritated by the fact that the achievability and converse bounds in the
∆−divisible case do not converge to their unrestricted counterpart.

Question 3.1.6. How does the group testing problem behave in the critical regimeω(ln1−δn) =∆= o(lnn)
and what happens at the phase transition ∆→ lnn?

Furthermore, there is already extensive work on noisy group testing.

Noisy group testing Without going too much in detail, the state of the play is comparable to the
state of the art in noiseless non-adaptive group testing prior to this thesis’s contributions. While simple
algorithms are well understood [89, 108, 155], it is even not known under simplistic noise models like the
binary symmetric channel if recovery of the ground-truth is possible efficiently at the Shannon capacity
bound. It might be tempting to analyse whether a spatially coupled design could improve bounds in the
noisy setting as well.

Question 3.1.7. Does a spatially coupled design coming with a SPIV like algorithm perform better at
inference under a noisy setting than currently known algorithms?

Returning to the noiseless case, we find that even the linear case is not completely understood.

Linear group testing More precisely, while non-adaptive algorithms need to fail with high probability,
it is possible to infer the ground-truth within multiple rounds of testing at the universal converse [13,
98]. Nevertheless, one important question is still open.

Question 3.1.8. Are there any (potentially exponential-time) algorithms on less than n − 1 tests which
succeed at inference of the ground-truth if the prevalence is larger than 1/3 in the hypergeometric group
testing problem? Or conversely, can we proof that such algorithms do not exist?

A bit more application-driven question is the following. Which influence do such asymptotic designs
have on real world group testing?

Applications Suppose we have k = 5 infected individuals within a population of n = 1000. Then the
following statement sounds correct.

By the given prevalence of 0.5% we are clearly in the setting of linear group testing. There-
fore, any non-adaptive group testing strategy fails due to Aldridge [7] and we need 1000 tests
for inference within one round.

While this seems to be indeed true, let us provide a second statement which might also sound plausible.

As the number of infected individuals k scales like n0.233, we require 1
ln2 2

· 5 · ln(200) ≈ 56
tests such that DD infers the infected individuals correctly.

Finally, the folklore counting bound yields that we require 2m > (1000
5

)
, thus we need at least m ≥ 43 tests.

Of course, above’s statements do not only contradict each other, they are also false. All provided proofs
in all contributions (besides the universal counting bound) are obtained under the assumption that n
tends to ∞. Therefore, all we can say is that something in between 43 and 1000 tests will be the correct
answer. But this is of course very unsatisfactory.

Question 3.1.9. Given a real world instance on n individuals with an infection rate of α with a realistic
false positive and false negative rate, how could an almost optimal non-adaptive or two-stage design look
like in order to infer almost all individuals correctly?
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An answer to this question would be of high interest in applications. First intends are done by, for
instance, Aldridge [12] and Cuturi et al. [57], but we are far from knowing precise statements. A natural
suggestion is that an inference algorithm based on Belief Propagation might facilitate best-possible.

This question directly extends to different inference problems. It might be a fruitful research direc-
tion to apply message passing algorithms coming with a spatially coupled design to various inference
problems. Unfortunately, in general it is much harder to find combinatorial descriptions of those mes-
sage passing algorithms as in the group testing problem. Therefore, they might be highly challenging to
analyse.

3.2. Random satisfiability

As described earlier, we could exactly pin down the number of satisfying assignments of a random
2−SAT formula in terms of the Bethe functional. A natural question would be if the result can be ex-
tended to general random k−SAT formulas. It is at least far from clear if this is possible. Indeed, the
core of our proof technique is the possibility to construct worst-case conditions at the boundary of a
random tree in order to prove that the Boltzmann distribution is a Bethe state itself. Even in a random
3−SAT formula it is not clear how such worst-case conditions might be constructed as the number of
possibilities to nudge the marginal of a parent variable into a certain direction is huge and dependent
on decisions in different sub-trees.

Within the setting of random 2−SAT we could furthermore ask if we can pin down the distribution of
ln Z (Φ) exactly.

Question 3.2.1. Does n−1/2(ln Z (Φ)−E ln Z (Φ)) converge to a Gaussian random variable?

3.3. The cut-distance, regularity and limits of probability measures

We managed to develop a consistent limit theory for discrete probability measures akin to the graph
limit theory. Furthermore, we introduced the pinning operation on the limit objects (Ω−laws) as an
elegant and easy algorithm to obtain a decomposition of the phase state on which the respective prob-
ability measures are extremal, thus close to product measures under the cut-distance. This is a kind
of a regularity lemma which allows to write a probability measure as a convex combination of simple
measures.

There is a second string of research, primarily by Austin [17], which develops similar regularity lemmas
based on the so-called dual total correlation (DTC). The latter can be seen as a generalisation of the
classical mutual information from 2 to n random variables which reads as

DT C (µ) = H(X 1, . . . , X n)−
n∑

i=1
H(X i | X 1, . . . , X i−1, X i+1, . . . , X n)

with H(·) being the entropy and X 1, . . . , X n random variables with joint distribution µ.
Described very briefly, it says that a small dual total correlation implies that a probability measure is

close to a product measure with respect to a specific transportation metric [17, Theorem A]. Further, a
regularity lemma is known which guarantees that there is a partition of the phase space which allows
to write a probability measure as a convex combination of measures with low dual total correlation [17,
Theorem 1.1]. An intriguing question is the following.

Question 3.3.1. Is there a natural connection between the cut-distance of µ and µ̄ and the dual total
correlation of µ?

A second and a third question regarding regularity arise with respect to the pinning operation itself.
First, we need to pin a random number of coordinates in order to achieve an extremal measure. It is not
clear whether this part of the statement has a deeper reason or if it is just a relic of the proof technique
which is originally based on a contribution of Raghavendra and Tan [148]. Furthermore, the pinning



Outlook 81

lemma yields a sufficient condition on how many variables have to be pinned to specific spins. A lower
bound on how many variables are necessary is currently unknown.

Question 3.3.2. What is a lower bound on the number of variables which are necessary to be pinned in
the pinning operation? Is it necessary that this number is random?

3.4. Perturbed graphs

The note on spanning structures in randomly perturbed sparse graphs establishes sufficient results for
Hamilton cycles and matchings in graphs that are optimal up to a constant. Furthermore, it gives a
meta-theorem which proves that the existence of almost spanning bounded degree trees in G (n,β/n)
suffices in order to gain the complete spanning structure in G (n,β/n) forβ=−Ω ((∆+1)ln(α)) if∆ is the
maximum degree of the tree. Thus, the first question which was also stated in the note reads as follows.

Question 3.4.1. Is any given tree with maximum degree ∆ on (1 −C exp(−β))n vertices contained in
G (n,β/n) for 0 <β≤ lnn and a suitable chosen constant C ?

Moreover, we already discussed that the sufficient conditions proven in the note are probably not tight
but the proof technique yields to those expressions. It is likely to be true that the choice of other, more
complicated, absorbing structures and a more carefully applied large deviations analysis might yield to
better constants in the theorems. Therefore, it is an interesting question to pin down the exact phase
transition points.

Question 3.4.2. Can we establish strict phase transitions for the existence of a Hamilton cycle and a per-
fect matching in G (n,β/n)∪Gα?

Finally, while we only studied certain spanning structures in graphs, the objects of interest can be
extended. First, we can study different spanning structures in graphs like for instance triangle factors.
Second, one can extend the analysis from perturbed sparse graphs to perturbed sparse hypergraphs.
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4. Zusammenfassung

Die Analyse sehr großer diskreter Systeme ist ein wesentlicher Bestandteil aktueller Forschung in, unter
anderem, der Diskreten Mathematik, der Informatik sowie der Statistischen Physik. Von besonders ho-
her Relevanz ist das Phänomen der Phasenübergänge [78, 82, 121]. Hierbei handelt es sich um Momente
in der Evolution eines Systems, an welchen sich dessen Verhalten dramatisch verändert. Solche Phasen-
übergänge wurden und werden beispielsweise in zufälligen Graphen, Spin-Gläsern und bezüglich der
Performance von Algorithmen untersucht.

Seit einigen Jahrzehnten kristallisiert sich immer weiter heraus, dass einige Ideen der Statistischen
Physik auf die Untersuchung von eigentlich rein kombinatorischen Problemen übertragen werden kön-
nen [168]. Zu solchen Problemen zählen zum Beispiel die Beantwortung der Frage nach Erfüllbarkeit ge-
gebener zufälliger Formeln oder auch die Analyse der algorithmischen und informationstheoretischen
Lösbarkeit von Inferenzproblemen wie dem Group-Testing Problem [68, 133]. Eine wesentliche Heraus-
forderung aus Sicht der Mathematik besteht darin, die Ideen der physikalischen Heuristiken in rigorose
mathematische Verfahren und Beweise zu übersetzen.

In dieser Dissertation untersuchen wir, wie Ideen aus der physikalischen Theorie der diluted mean-
field models für Spin-Gläser dazu genutzt werden können, zufällige Erfüllbarkeitsprobleme zu analysie-
ren. Insbesondere nutzen wir diese Ideen, um zu berechnen, wie viele Lösungen eine zufällige 2-SAT
Formel in der Regel besitzt. Zudem werden wir die sogenannte planted Version von solchen zufälligen
Erfüllbarkeitsproblemen untersuchen. Es stellt sich durch die Brille der Statistischen Physik betrachtet
heraus, dass solche Modelle genutzt werden können, um statistische Inferenzprobleme auszudrücken
[168].

Sowohl durch die Analyse von Problemen der statistischen Inferenz als auch durch das Untersuchen
der zufälligen Erfüllbarkeit stellen wir fest, dass eine geschickte Kombination von Ideen der statistischen
Physik mit ureigenen kombinatorischen Eigenschaften zufälliger Graphen zu rigorosen, neuen Resulta-
ten führt. Wir beginnen mit einer knappen Einführung in wesentliche Begriffe der statistischen Physik.

Grundlagen der statistischen Physik Gegeben sei eine Menge V = {x1, . . . , xn} von n Partikeln. Ein
Spin-System mit diesen Partikeln besteht aus einer endlichen Menge Ω von möglichen Spins sowie ei-
nem k−uniformen dekorierten Hypergraphen G = (V ,E , J ), welcher die Interaktionen zwischen den Par-
tikeln beschreibt. Genauer gesagt bezeichnen wir mit σ ∈Ωn eine Konfiguration, welche jedem Partikel
einen der möglichen Spins aus Ω zuordnet und mit H :Ωn → R eine Energie-Funktion, die jeder Konfi-
guration ihre Energie zuweist. Formal definieren wir die Energie-Funktion H als

H(σ) =−
∑

(i1,...,ik )∈E(G)
Ji1,...,ik (σi1 , . . . ,σik ).

Im Spezialfall k = 1 bezeichnen wir das System als ein nicht-interagierendes System, da die verschiede-
nen Partikel gar nicht miteinander interagieren, während höhere Werte von k ein sogenanntes k−body
interacting System beschreiben. In dieser Dissertation werden wir nur den Fall k = 2 untersuchen, das
heißt, der zugrunde liegende Hypergraph G ist ein einfacher Graph. Die Familie

{
Ji , j

}
i j∈E(G) beschreibt

die Stärke und Art der Interaktion der interagierenden Partikel.
Jede Wahl der Coupling-Konstanten Ji j sowie der Energie-Funktion H und des Interaktionsgraphen

G beschreibt ein spezifisches Spin-System. Klassische Systeme, wie das Potts-Modell oder das Edwards-
Anderson-Modell sind Modelle, in denen G einem Gitter-Graphen (zum Beispiel Z3) entspricht. Diese
Modelle mögen die naheliegensten Interaktionsmodelle für zum Beispiel Ferromagnetismus sein, al-
lerdings sind diese auf Grund der geometrischen Beziehungen im Graphen mathematisch sehr schwer
zu analysieren [135]. Eine mögliche Vereinfachung sind sogenannte mean-field-Modelle wie das SK-
Modell [158], in denen der Interaktionsgraph dem vollständigen Graphen entspricht. Ferner wird eine
Energie-Funktion gewählt, deren Wert invariant gegenüber Permutationen der Partikel ist. Auf diese Art
und Weise werden einfachere Modelle definiert, welche die lokale und globale Struktur sowie Abhängig-
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keit verschiedener Partikel ignorieren. Es stellt sich heraus, dass diese Modelle einfacher zu analysieren
sind als ihre zugehörigen Gitter-Pendants [143, 162], allerdings wichtige physikalische Eigenschaften
nicht korrekt beschreiben können [157].

Die sogenannten diluted mean-field Modelle, wie das Viana-Bray-Modell [166], versuchen die ma-
thematische Einfachheit der mean-field-Theorie möglichst beizubehalten und dennoch wesentliche
Eigenschaften realer Systeme möglichst gut zu modellieren. Der Kerngedanke ist, dass der zugrunde
liegende Interaktionsgraph ein (zufälliger) dünner Graph ist, das heißt, dass zwar die globale Geome-
trie sicherlich nicht gegeben ist, der Graph lokal aber an einen Gittergraphen erinnert. Tatsächlich ist
es so, dass die Analyse gut gewählter diluted mean-field Modelle zu exakten Lösungen von Problemen
in (echten) Spin-Glas-Modellen führen kann [144], das heißt, diese Modelle tragen noch wesentliche
Informationen von realitätsnahen Modellen in sich, während sie mathematisch analysierbar bleiben.

Außerdem können wesentliche Probleme der Informatik, wie das zufällige Erfüllbarkeitsproblem und
weitere Constraint Satisfaction-Probleme (CSPs), als diluted mean-field Modell beschrieben werden.

Bevor wir uns diesem Punkt zuwenden, werden wir noch eine wichtige Wahrscheinlichkeitsvertei-
lung, die sogenannte Boltzmann-Verteilung, einführen. Dazu erinnern wir uns an ein wesentliches Prin-
zip der Physik: Ein System versucht immer einen Zustand minimaler Energie einzunehmen. Auch Mo-
delle von Partikelsystemen sollten diese Eigenschaft widerspiegeln. Wir sagen, dass das System in einem
Zustand minimaler Energie ist, wenn H(σ) durch die Konfiguration σ ∈Ωn minimiert wird. Außerdem
bezeichnen wir mitΩn

0 ⊂Ωn die Menge der Konfigurationen, welche die Energie minimieren. Eine ver-
nünftige und natürliche Wahrscheinlichkeitsverteilung sollte also Konfigurationen inΩn

0 bevorzugen.
Dazu führen wir die inverse Temperatur β> 0 ein und definieren die Boltzmann-Verteilung aufΩn als

µβ(σ) = exp
(−βH(σ)

)

Zβ
, wobei Zβ =

∑
σ∈Ωn

exp
(−βH(σ)

)
.

Die Normalisierungskonstante Zβ der Boltzmann-Verteilung wird auch Partitionsfunktion genannt. Die
Boltzmann-Verteilung spiegelt die Idee, dass das System einen Zustand minimaler Energie anstrebt,
wider. Je geringer die Energie H(σ), desto höher ist die Wahrscheinlichkeit σ unter µβ zu beobach-
ten. Steigt die Temperatur des Systems stark an (β wird klein), so verringert sich dieser Effekt und für
β→ 0, also im high-temperature limit, wird die Boltzmann-Verteilung zur uniformen Verteilung aufΩn .
Wächst β hingegen, wird das System also abgekühlt, so verstärkt sich o.g. Effekt, sodass die Boltzmann-
Verteilung im zero-temperature limit die uniforme Verteilung auf allen Zuständen minimaler Energie
wird. Formal ausgedrückt finden wir die folgenden Zusammenhänge:

lim
β→0

µβ(σ) = 1

|Ωn | und lim
β→∞

µβ(σ) = 1
{
σ ∈Ωn

0

}
∣∣Ωn

0

∣∣ .

Da in der statistischen Physik (und auch in der theoretischen Informatik) oft das makroskopische Ver-
halten von sehr großen Systemen (n →∞) von Interesse ist, wird häufig der sogenannte thermodynami-
sche Grenzwert eines Systems betrachtet [135]. Wir bezeichnen mit φn,β = ln(Zβ) die freie Entropie und

mitφβ = limn→∞
ln(Zβ)

n die freie Entropiedichte (free entropy density). Innerhalb eines physikalischen Sy-
stems definieren wir nun die nicht-analytischen Punkte von φβ als Phasenübergänge. Das sind Punkte,
an denen sich das qualitative Verhalten des Systems drastisch ändert [135]. Wir betrachten insbesondere
Phasenübergänge von den bereits angesprochenen CSPs.

Constraint Satisfaction und Phasenübergänge Zunächst definieren wir, was wir unter CSPs ver-
stehen. Ein besonders prominentes Beispiel ist das k−SAT Problem, also die Frage nach Erfüllbarkeit
einer aussagenlogischen Formel in konjunktiver Normalform mit Klauseln der Größe k. Genauer gesagt
ist eine k−SAT FormelΦ eine Konjunktion von m Klauseln

Φ=Φ1 ∧ . . .∧Φm ,

sodass jede Klausel selbst eine Disjunktion von exakt k Literalen der Variablen x1 . . . xn ist.
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Ist eine Formel Φ gegeben, so lautet eine der wichtigsten Fragen offenbar, ob es eine Belegung σ :
{x1, . . . , xn} → {−1,+1}n gibt, welche jeder der Variablen einen der Wahrheitswerte WAHR und FALSCH
zuordnet, sodass jede Klausel Φ j (und somit die gesamte Formel Φ) erfüllt ist. Wir interpretieren den
Spin +1 als WAHR und den Spin -1 als FALSCH. Eine solche Formel Φ kann als Faktorgraph visualisiert
werden.

Ein Faktorgraph G = (V ∪F,E ,Ψ) ist ein bipartiter Graph mit einer Menge von Variablenknoten V und
einer Menge von Faktorknoten F , einer Kantenmenge E sowie einer Familie von GewichtsfunktionenΨ
[81].

Wir beschreiben im Folgenden eine Konstruktionsanweisung für einen Faktorgraphen GΦ, der die
k−SAT FormelΦ repräsentiert [135]. Seien die Knotenmengen als

V = {x1, . . . , xn} sowie F = {
aΦ1 , . . . , aΦm

}

gegeben. Ferner besteht die Kantenmenge E = {
aΦ1 , . . . , aΦm

}
aus zwei disjunkten Klassen E+ und E−,

sodass die Kante xi aΦj genau dann in E− liegt, wenn Variable xi negiert in Klausel Φ j vorkommt, und

in E+, falls xi positiv in Φ j enthalten ist. An jedem Faktorknoten a j existiert eine lokale Funktion Ψa j :

{−1,+1}|∂a j | → {−1,+1}, sodass für eine Belegung σ ∈ {−1,+1}n das Folgende gilt:

Ψa j (σ∂a j ) = 1
{

max
xi∈∂a j

{
σi si j = 1

}}
.

Eine Visualisierung eines solchen Faktorgraphen findet sich in Abbildung 4.1.

x1 x2 x3 x4 x5

a1 a2 a3 a4

Abbildung 4.1.: Der Faktor-Graph GΦ zur 3−SAT FormelΦ : (x1 ∨x2 ∨x3)∧ (¬x2 ∨x3 ∨x4)∧ (¬x1 ∨¬x3 ∨
¬x5)∧(x2∨¬x3∨x5). Die n = 5 Variablenknoten sind als Kreise dargestellt, die m = 4 Fak-
torknoten als Rechtecke und die Farbe der Kanten beschreibt, ob eine Variable negiert
oder nicht negiert in einer Klausel vorkommt.

Während für k ≥ 3 das Entscheidungsproblem, ob eine k−SAT Formel mindestens eine erfüllende
Belegung besitzt, N P -schwer ist [109], kann es leicht als physikalisches System aufgefasst werden [111].
Die n Variablen entsprechen den Partikeln des Systems und die Wahrheitswerte den SpinsΩ= {−1,+1}.
Eine Belegung entspricht nun einer Konfiguration σ ∈Ωn und eine mögliche Energie-Funktion ist

Hk−S AT (σ) =
∑

aΦj ∈F

1−Ψa j (σ∂a j ).

Also entspricht Hk−S AT (σ) genau der Anzahl an nicht-erfüllten Klauseln unter einer gegebenen Konfigu-
ration. Betrachten wir nun den zero-temperature limit, so ist die entsprechende Boltzmann-Verteilung
µ∞ = limβ→∞µβ die uniforme Verteilung auf solchen Konfigurationen, die am wenigsten Klauseln ver-
letzen. Das heißt, wenn σ ∼ µ∞ eine zufällige Konfiguration (gezogen von µ∞) ist, so ist Φ genau dann
erfüllbar, wenn Hk−S AT (σ) = 0 gilt. Da wir wissen, dass k−SAT N P -schwer ist, folgt direkt, dass es im
Allgemeinen auch schwer ist, eine Konfiguration minimaler Energie in einem Spin-System zu finden.

An dieser Stelle fällt auf, dass sich die Boltzmann-Verteilung eines CSPs sehr elegant faktorisieren
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lässt, das heißt,

µ∞(σ) = lim
β→∞

∏
aΦj ∈F

exp
(
−β1

{
aΦj is not satisfied under σ

})

Z (Φ)
.

Das ist keine Eigenart spezieller CSPs, sondern eine sehr universelle Eigenschaft aller CSPs, die sich als
Faktorgraph ausdrücken lassen. Wir bemerken, dass ...

• ... jeder Faktor in der Boltzmann-Verteilung zu einem Faktorknoten in GΦ korrespondiert,

• ... fürβ> 0 jede nicht-erfüllte Klausel eine Art Strafe von exp(−β) auf die Wahrscheinlichkeit, diese
Konfiguration zu beobachten, addiert.

• ... falls Φ erfüllbar ist, der Träger der Boltzmann-Verteilung im low-temperature limit den erfül-
lenden Belegungen einer Formel entspricht.

• ... fallsΦ erfüllbar ist, die Partitionsfunktion im low-temperature limit der Anzahl der erfüllenden
Belegungen entspricht.

Oft werden im Kontext von CSPs sogenannte zufällige CSPs betrachtet [156]. Was meint zufällig hier-
bei? Sind n Variablenknoten und m Faktorknoten (wobei m durchaus auch zufällig sein kann) sowie
deren Grade gegeben, so bilden wir einen zufälligen bipartiten Graphen. Je nach CSP können die Grad-
sequenzen der Knoten selbst zufällig sein. Sind die Gradsequenzen gegeben, so ziehen wir uniform und
unabhängig von allem anderen Zufall einen Faktorgraphen, der die entsprechenden Gradsequenzen
hat.

Im Falle von k−SAT werden n Variablenknoten und m Faktorknoten gegeben. Jeder Faktorknoten hat
Grad k und jede Variable hat Grad Po(mk/n). Wir wählen, gegeben

{∑n
i=1 d i = mk

}
, einen zufälligen

einfachen Graphen mit den gegebenen Gradsequenzen. Ferner markieren wir jede Kante unabhängig
und uniform mit +1 mit Wahrscheinlichkeit 1/2 und mit −1 mit Wahrscheinlichkeit 1/2. Eine sehr einfa-
che Frage lautet: Ist für n →∞ die entstandene zufällige Formel mit hoher Wahrscheinlichkeit erfüllbar?
Diese Frage wurde exzessiv untersucht, unter anderem auch mit Methoden der statistischen Physik [37,
111], und es wurde eine präzise Vermutung für ein kritisches Verhältnis αs = ms/n zwischen Klauseln
und Variablen formuliert, sodass eine zufällige Formel mit geringerem Verhältnis erfüllbar und mit hö-
herem Verhältnis nicht erfüllbar ist. Wir haben also einen Phasenübergang gefunden. Genauer gesagt
wurde dieses Problem aufbauend auf vielfältigen Arbeiten [4, 51, 54, 91] schlussendlich von Ding, Sly
und Sun [64] gelöst, die beweisen konnten, dass für k groß genug der Erfüllbarkeits-Schwellenwert bei

αs = 2k ln2− 1+ ln2

2
+O(2−k )

liegt. Natürlich finden solche Phasenübergänge auch in allgemeinen zufälligen CSPs statt [136] und der
Erfüllbarkeits-Schwellenwert ist nicht der einzige interessante Schwellenwert. Sei dazu S die Menge
aller erfüllenden Belegungen einer zufälligen Formel. Wir sagen, dass zwei Lösungen verbunden sind,
wenn ihr Hamming-Abstand 1 ist, und bezeichnen die Menge aller verbundenen Lösungen als Cluster.
Es zeigt sich, dass die Geometrie von S hoch komplex ist, aber glücklicherweise liefert der 1-RSB-Ansatz
der statistischen Physik ein nicht-rigoroses aber detailliertes Bild, wie sich S mit wachsendem Faktor-
zu-Variablen-Verhältnis α entwickelt (siehe Abbildung 4.2).

Wir starten beiα= 0 und lassenα stetig wachsen. Dann beobachten wir die Existenz von vier Schwel-
lenwerten αu ≤αclus ≤αcond ≤αs , an denen sich die Struktur von S drastisch verändert [121, 138, 169,
170]. Wir bezeichnen S manchmal als Lösungsraum und die erfüllenden Belegungen analog als Lösun-
gen.

1. Istα<αu , so existiert exakt ein Cluster von Lösungen. Diese Phase wird als unique phase bezeich-
net.
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Abbildung 4.2.: Übersicht über die Geometrie des Lösungsraums in zufälligen CSPs. Der 1-RSB-Ansatz
sagt die Existenz von vier wichtigen Phasenübergängen vorher. Die Abbildung ist modi-
fiziert nach [138, 169, 170].

2. Sobald α größer wird als αu , befindet sich das System in der extremalen Phase. Wenige und ex-
ponentiell kleine Cluster von Lösungen entstehen, die neben einem großen Cluster einige wenige
Lösungen enthalten.

3. Am clustering-Schwellenwert αclus zerfällt die Menge der Lösungen in exponentiell viele, expo-
nentiell kleine Cluster.

4. Wenn α nun größer wird als der condensation-Schwellenwert, so befinden sich fast alle Lösungen
in endlich vielen verschiedenen Clustern.

5. Schlussendlich, sobald α größer wird als der Erfüllbarkeits-Schwellenwert αs , enthält S keine
Lösungen mehr.

Formal betrachtet existieren strikte und schwache Schwellenwerte. Ist P irgendeine Eigenschaft und
α eine Parametrisierung eines zufälligen Systems (im obigen Beispiel ist P die Menge der nicht erfüllba-
ren Formeln undα die Faktoren-zu-Variablen-Dichte), dann durchläuft das System G (der Faktorgraph)
einen strikten Phasenübergang am strikten Schwellenwert α∗, falls für jedes ε> 0:

P
(
G ∈P |α≤ (1−ε)α∗)= o(1) und P

(
G ∈P |α≥ (1+ε)α∗)= 1−o(1).

Analog findet ein schwacher Phasenübergang statt, falls

P
(
G ∈P |α= o(α∗)

)= o(1) sowie P
(
G ∈P |α=ω(α∗)

)= 1−o(1).

Die Definition verlangt offenbar, dass P mit wachsendem α wahrscheinlicher wird. Natürlich kann
es analog auch für Eigenschaften definiert werden, die mit fallendem α wahrscheinlicher werden.

Friedgut und Bourgain [82] haben gezeigt, dass jedes zufällige System bezüglich einer monoton stei-
genden oder fallenden Eigenschaft einen nicht-uniformen strikten Phasenübergang durchläuft. Bei-
spielsweise fällt die Frage, ob eine zufällige k−SAT Formel erfüllbar ist, darunter, da das Hinzufügen
von Klauseln die Wahrscheinlichkeit reduziert, dass die Formel erfüllbar bleibt. Selbstverständlich lie-
fert das Resultat nur eine Existenzaussage, das heißt, es bleibt unklar, was die entsprechenden Schwel-
lenwerte sind. Für viele Eigenschaften bezüglich des zufälligen Graphen G (n, p)1 ist der Schwellenwert
bekannt [103], aber in Bezug auf zufällige CSPs sieht die Welt anders aus, auch wenn in den letzten
Jahren Schwellenwerte für manche zufälligen CSPs gefunden wurden [25, 43, 55, 64].

In dieser Dissertation beantworten wir eine offene Frage bezüglich des Lösungsraums des zufälligen
2−SAT Problems. Das 2−SAT Problem ist ein Spezialfall des bereits diskutierten k−SAT und auf eine
gewisse Art und Weise eine Besonderheit. Es ist das einzige k−SAT Problem, in welchem es komplexi-
tätstheoretisch einfach ist, eine erfüllende Belegung zu finden (sofern eine solche existiert) [120]. Auch

1Wir definieren G (n, p) wie Gilbert [90], das heißt, jede Kante ist existent mit Wahrscheinlichkeit p unabhängig von allem
anderen Zufall.
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der Erfüllbarkeits-Schwellenwert des zufälligen 2−SAT Problems ist seit den frühen 1990er Jahren be-
kannt [40, 91] und hängt eng mit dem Perkulationsphasenübergang im zufälligen Graphen zusammen
[30]. Dennoch blieb eine sehr unschuldig vermutende, aber zentrale Frage offen [78]: Falls eine zufällige
Formel erfüllbar ist, wie viele erfüllbare Belegungen gibt es? Es stellt sich heraus, dass dies schwer zu
beantworten ist, insbesondere ist im (nicht-zufälligen) 2−SAT das Zählen der Lösungen komplexitäts-
theoretisch schwierig, es liegt in #P [165]. Die in der vorliegenden Dissertation enthaltene Publikation

The number of satisfying assignments of random 2-SAT formulas [2]

beantwortet diese Frage vollständig. Dies gelingt, indem wir zeigen, dass im Falle des zufälligen 2−SAT
Problems bestimmte Heuristiken der statistischen Physik in einen rigorosen mathematischen Beweis
verwandelt werden können. Genauer gesagt zeigen wir, dass die durch Belief Propagation berechnete
Lösung der Marginale der zugehörigen Boltzmann-Verteilung korrekt ist.

Die Cut-Distanz Dies führt uns zum nächsten, in dieser Dissertation enthaltenen Beitrag mit dem
Titel

The cut metric for probability distributions [47].

Die Boltzmann-Verteilung ist eine diskrete Wahrscheinlichkeitsverteilung auf Ωn und in vielen zu stu-
dierenden Problemen betrachten wir den sogenannten thermodynamischen Grenzwert n →∞. Es liegt
daher nahe, kontinuierliche Grenzobjekte von solchen diskreten Wahrscheinlichkeitsverteilungen zu
betrachten. DieΩ−laws, ursprünglich eingeführt durch Coja-Oghlan, Perkins und Skubch [42] beschrei-
ben solche Grenzobjekte. Genauer gesagt verwandeln wir eine Konfiguration σ ∈Ωn in eine messbare
Funktion σ̂ von [0,1) in die Menge der Wahrscheinlichkeitsmaße über Ω, wobei diese Menge als P (Ω)
bezeichnet wird. Es sei ferner ΣΩ der Raum aller messbaren Funktionen f : [0,1) →P (Ω) bis auf Gleich-
heit fast überall. Nun definieren wir σ̂ als

σ̂ : [0,1) →P (Ω) , sodass x 7→
n∑

i=1
δσi 1

{
x ∈

[
i −1

n
,

i

n

)}
.

Das zugehörige Wahrscheinlichkeitsmaßµ ∈P (Ωn) wird nun in den Raum der Wahrscheinlichkeitsma-
ße P (ΣΩ) wie folgt eingebettet. Wir definieren

µ̂=
∑
σ∈Ωn

µ(σ)δσ̂, sodass µ̂ ∈P (ΣΩ) .

Offenbar besteht eine 1-zu-1-Beziehung zwischen µ und µ̂. Es ist weiterhin möglich eine sehr schwache
Metrik, die Cut-Distanz, auf P (ΣΩ) zu definieren. Dazu bezeichnen wir mit S[0,1) die Menge der ma-
ßerhaltenden, invertierbaren Bijektionen auf [0,1) sowie mit Γ(µ,ν) die Menge der Couplings von µ,ν,
also gemeinsamen Wahrscheinlichkeitsverteilungen mit Marginalen µ und ν. Die Cut-Distanz ist nun
definiert als

D�(µ,ν) = inf
γ∈Γ(µ,ν),
ϕ∈S[0,1)

sup
B⊂Σ2

Ω,
U⊂[0,1),
ω∈Ω

∣∣∣∣
∫

B

∫

U
σx (ω)−τϕ(x)(ω)dxdγ(σ,τ)

∣∣∣∣

und ist als eine Art 2-Spieler Spiel zu verstehen. Spieler 1 wählt ein mögliches Coupling von zwei Wahr-
scheinlichkeitsverteilungen, unter welchem sich die Verteilungen möglichst ähnlich sehen. Nun wählt
Spieler 2 eine Menge von (verallgemeinerten) Koordinaten und (verallgemeinerten) Konfigurationen,
an denen sich µ und ν stark unterscheiden. Selbstverständlich gibt es von der Cut-Distanz auch eine
diskrete Variante, nämlich

∆�
(
µ,ν

)= inf
γ∈Γ(µ,ν),
φ∈Sn

sup
S⊂Ωn×Ωn ,

X⊂[n],
ω∈Ω

∣∣∣∣∣∣∣

∑
(σ,τ)∈S,

x∈X

γ(σ,τ)
(
1 {σx =ω}−1

{
τφ(x) =ω

})
∣∣∣∣∣∣∣
.
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Hierbei bezeichnet Sn die Menge der Permutationen von [n]. In der o.g. Publikation zeigen wir unter
anderem, dass für Maße µ,ν ∈ P (Ωn) die Abstände ∆�(µ,ν) und D�(µ̂, ν̂) eng zusammenhängen, wie
man es intuitiv auch erwarten sollte.

Mit Hilfe der Cut-Distanz können wir P (ΣΩ) in einen kompakten metrischen Raum verwandeln. Ge-
nauer gesagt müssen wir Maße mit Cut-Distanz 0 identifizieren und definieren den Raum der Ω−laws
L (Ω) als den Raum der Äquivalenzklassen unter dieser Identifikation.

Während L (Ω), wie bereits erwähnt, durch Coja-Oghlan, Perkins und Skubch [42] eingeführt wurde,
etablieren wir eine komplette und in sich konsistente Grenzwerttheorie für diskrete Wahrscheinlich-
keitsmaße, die an die Theorie der Graph-Grenzwerte [31, 32, 128] angelehnt ist. Unter anderem bewei-
sen wir, dass (L (Ω),D�(·, ·)) ein kompakter metrischer Raum ist, und geben eine Art schwaches Regu-
laritätslemma [84] für Ω−laws, was ein zuvor bekanntes Resultat auf diskreten Maßen verallgemeinert
[49]. Besonders elegant hierbei ist, dass das Regularitätslemma nicht nur eine Existenzaussage umfasst,
sondern auch einen einfachen Algorithmus, das sogenannte Pinning, liefert, mit welchem eine entspre-
chende Partition des PhasenraumsΣΩ bzw.Ωn gefunden wird. Ohne zu sehr ins Detail zu gehen, verste-
hen wir hierbei unter Regularität, dass das Wahrscheinlichkeitsmaß - eingeschränkt auf die Partition -
unter der Cut-Distanz sehr ähnlich wie das Produktmaß mit denselben Marginalen aussieht. Wir zeigen
unter anderem, dass diese Eigenschaft, welche wir Extremität nennen, mit der schwachen Regularität
der Graphentheorie eng verknüpft ist. Ferner zeigen wir, dass verschiedene wesentliche Operationen
der statistischen Physik (wie zum Beispiel das Bilden von Overlaps) unter der Cut-Distanz stetig sind.

Insgesamt hilft die rigorose Analyse der Cut-Distanz in Spezialfällen dabei, Heuristiken der statisti-
schen Physik in mathematische Beweise zu verwandeln. An dieser Stelle kehren wir zurück zur direkten
Analyse von CSPs. Bislang haben wir Faktorgraphen von (zufälligen) CSPs betrachtet und uns deren
Phasenraum angeschaut. Dieser Lösungsraum ändert sich drastisch, wenn wir die sogenannte planted-
Version von CSPs betrachten.

Planted-Modelle und statistische Inferenz Wir betrachten dazu zunächst ein Beispiel. Nehmen
wir an, wir haben n Variablenknoten gegeben sowie eine Färbung σ der Knoten mit q Farben. Nun
erzeugen wir einen zufälligen Graphen derart, dass jede Kante i j mit Wahrscheinlichkeit p1 existiert,
fallsσi =σ j (das heißt, i j ist monochromatisch) beziehungsweise mit Wahrscheinlichkeit p2, fallsσi 6=
σ j . Nach dem Einfügen der Kanten vergessen wir die zugrunde liegende Färbung σ. Je nach Wahl von
p1 und p2 sieht der Graph sehr unterschiedlich aus. Ist p1 = p2, so kann der entstandene Graph nicht
von einem rein zufälligen G (n, p1) unterschieden werden, ist hingegen p1 ¿ p2 oder p1 À p2, so sollten
wir - gegeben der zufällige Graph - in der Lage sein, eine Färbung σ̃ zu finden, die σ ähnelt.

Etwas formaler erklärt dieses Vorgehen das Lehrer-Schüler-Modell der statistischen Inferenz [168].
Im einfachsten Fall erzeugt ein Lehrer eine Grundwahrheit σ, ein planted-Modell basierend auf dieser
Grundwahrheit, und übermittelt einem Schüler das Modell und die Information, wie σ und das Modell
erzeugt wurden. Die Aufgabe des Schülers ist es nun, eine Vermutung σ̃ zu formulieren, die möglichst
nah an der Grundwahrheit liegt. Im obigen Beispiel, was eine simple Form des stochastischen Blockmo-
dells [62, 85, 95] darstellt, muss der Schüler die Färbungσmöglichst genau aus dem zufälligen Graphen
rekonstruieren.

Es stellt sich heraus, dass solche Inferenzprobleme als physikalisches Modell wie zuvor ausgedrückt
werden können und sich somit Heuristiken zur Lösung von CSPs auch auf statistische Inferenzproble-
me übertragen [168]. Daher ist es nicht überraschend, dass wir auch hier Phasenübergänge untersuchen
können. Wir betrachten im Wesentlichen zwei Phasenübergänge. Sei I die Information, die der Schüler
erhält (z.B. der zufällige Graph sowie p1 und p2). Die Menge der Information sei durchα parametrisiert.
Beispielsweise kann α die Differenz von p1 und p2 sein oder die Anzahl von Messungen eines kompri-
mierten Signals.

• Der informationstheoretische Schwellenwert bezeichnet den Moment, ab welchem der Schüler σ
aus I (α) rekonstruieren kann.

• Der algorithmische Schwellenwert bezeichnet die Menge an Information, die notwendig ist, damit
ein effizienter Algorithmus bekannt ist, welcher σ aus I (α) rekonstruieren kann.
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In dieser Disseration betrachten wir ein spezielles Inferenzproblem – das Group-Testing – und studie-
ren sowohl informationstheoretische Schwellenwerte als auch algorithmische Schwellenwerte.

Group Testing Das Group-Testing Problem fand in den 1940er Jahren den Weg in die mathematische
Literatur [68] und wurde über die Jahrzehnte hinweg stetig untersucht [8, 9, 58, 59, 73, 80, 86, 98, 108,
132, 133, 154, 164]. In einer Population von n À 1 Individuen sind k mit einer Krankheit infiziert. Es
ist möglich mehrere Individuen auf einmal zu testen und das Ergebnis eines solchen Gruppentests ist
positiv, genau dann wenn mindestens ein infiziertes Individuum in dem Test enthalten ist. Gesucht
ist nun eine Strategie, die möglichst wenige Tests benötigt um die infizierten Individuen (mit hoher
Wahrscheinlichkeit) korrekt zu identifizieren. Eine Visualisierung findet sich in Abbildung 4.3.

x1 x2 x3 x4 x5 x6 x7

0 1 1 0 1

Abbildung 4.3.: Faktorgraph-Darstellung einer Group-Testing Strategie mit n = 7 Individuen von denen
k = 2 infiziert sind. Blaue Individuen sind nicht infiziert und rote Individuen sind infi-
ziert.

Das Group-Testing Problem kann unter vielen verschiedenen Modellen studiert werden. Beispiels-
weise können wir annehmen, dass jedes Individuum mit Wahrscheinlichkeit k/n infiziert ist oder dass
es exakt k Infizierte gibt. Ferner können wir die Teststrategien insofern beschränken, als dass nur ei-
ne, zwei oder drei Runden Tests durchgeführt werden können, oder derart, dass Individuen nicht öfter
als ∆mal getestet werden dürfen bzw. ein Gruppentest eine Maximalkapazität aufweist. Schlussendlich
können die Tests immer ein korrektes Ergebnis liefern oder aber mit einer bestimmten Wahrscheinlich-
keit ein falsches Ergebnis liefern. Die hier aufgelisteten Varianten sind weit entfernt davon vollständig
zu sein und wir verweisen interessierte Leser auf einen Übersichtsartikel von Aldridge, Johnson und
Scarlett [10].

In dieser Disseration beschäftigen wir uns mit dem sogenannten hypergeometrischen sublinearen pro-
babilistischen Group-Testing. Das heißt, wir nehmen an, dass wir die Anzahl der infizierten Individuen
k exakt kennen und sich k sublinear in n verhält, also k = nθ(θ ∈ (0,1)). Ferner möchten wir die in-
fizierten Individuen mit hoher Wahrscheinlichkeit rekonstruieren. Hierbei betrachten wir sowohl das
uneingeschränkte Group-Testing Problem, in welchem Individuen beliebig oft getestet werden können
und Tests beliebig groß werden dürfen, als auch das eingeschränkte Group-Testing Problem, in wel-
chem dies nicht der Fall ist. Insbesondere sind wir an Schwellenwerten interessiert, welche die Anzahl
der Tests m = m(n,k) beschreiben, die notwendig bzw. hinreichend sind, um den Infektionsstatus aller
Individuen zu rekonstruieren. Genauer gesagt enthält diese Dissertation drei Prublikationen, in denen
wir uns mit dem Group-Testing Problem auseinandersetzen, nämlich

Information-Theoretic and Algorithmic Thresholds for Group Testing [41]

und sowohl

Optimal group testing [46]

als auch

Near optimal sparsity-constrained group testing: improved bounds and algorithms [88].
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Im nicht-adaptiven Fall, das heißt, dass alle betrachteten Teststrategien alle Tests parallel ausführen
müssen, war vor den Beiträgen der Dissertation die beste bekannte Strategie das sogenannte zufällige
reguläre Modell [9]. In diesem Modell wählt jedes Individuum ∆=Θ (lnn) Tests zufällig aus und nimmt
an ihnen teil. Zudem war der beste bekannte Algorithmus der DD-Algorithmus, in welchem zunächst al-
le Individuen in negativen Tests als gesund deklariert werden und alle Individuen, die nun alleine in ei-
nem positiven Test vorkommen, als infiziert. Alle übrigen Individuen werden ebenfalls als nicht-infiziert
deklariert [108]. In Abbildung 4.4 sind die Ergebnisse der Publikationen [41, 46] zusammengefasst.

0 ln2
1+ln2

1
2

1

ln−2 2

ln−1 2

(2ln2 2)−1

((1+ ln2) ln2)−1

Prävalenz gegeben durch θ

m̃non-ada

m̃DD

m̃inf

Abbildung 4.4.: Die Phasenübergänge im hypergeometrischen probabilistischen Group-Testing. Die
Abbildung ist modifiziert nach [46, Abbildung 1]. Wir definieren m̃ = m · (k ln(n))−1.

Beginnen wir mit den bereits zuvor bekannten Tatsachen. Im dunkelroten Bereich, unter minf, ist es
weder nicht-adaptiv noch adaptiv (in mehreren Runden) möglich, die infizierten Individuen zu identi-
fizieren, wie aus dem Zählargument folgt, dass die Anzahl der möglichen Testergebnisse 2m mindestens
der Anzahl der Konfigurationen mit k infizierten Individuen

(n
k

)
entsprechen muss. Überhalb dieser

Schwellenwertfunktion gibt es Algorithmen, die in mehreren Runden die infizierten Individuen rekon-
struieren können [13, 60, 98, 153]. Ferner beschreibt die dunkelblaue Fläche (über mDD) den Bereich,
in welchem der DD-Algorithmus auf dem zufälligen regulären Modell funktioniert [108]. Es war ferner
bekannt, dass es informationstheoretisch auf selbigem Modell unterhalb von mnon−ada unmöglich ist,
die Infizierten zu rekonstruieren [8]. Unsere Beiträge lassen sich wie folgt zusammenfassen, wobei alle
angegebenen Schwellenwertfunktionen strikte Phasenübergänge ausdrücken.

• Unterhalb von mDD ist keine Inferenz durch den DD-Algorithmus möglich.

• Unterhalb von mnon−ada kann es keine nicht-adaptive Teststrategie geben, welche die Inferenz
der infizierten Individuen ermöglicht. Das heißt, dass die hellrote Fläche einen Bereich darstellt,
in welchem adaptive Algorithmen bekannt sind und funktionieren, während nicht-adaptive Stra-
tegien keinen Erfolg haben.

• Das zufällige reguläre Modell ermöglicht informationstheoretisch die Inferenz ab mnon−ada, ist
also informationstheoretisch optimal.

• Wir definieren basierend auf Ideen der Coding-Theorie eine neuartige nicht-adaptive, spatially-
coupled Teststrategie und einen effizienten Algorithmus, der ab mnon−ada, also auch bereits im
hellblauen Bereich, funktioniert.

• Die Inferenz von allen bis auf o(k) Individuen ist ab minf durch das eben genannte Modell mit
demselben Algorithmus möglich. Ebenso kann der Algorithmus leicht zu einem zweistufigen Al-
gorithmus verändert werden, der die Inferenz aller Individuen ab minf ermöglicht.

Zusammenfassend ist somit das hypergeometrische probabilistische Group-Testing im sublinearen Fall
vollständig verstanden. Schränken wir die zulässige Anzahl an Tests pro Individuum ein, das heißt, je-

des Individuum ist nur in maximal ∆ = O
(
ln1−δn

)
(δ ∈ (0,1]) Tests enthalten, so ist das Problem noch
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nicht vollständig erforscht. Bekannte Resultate sowie unsere erzielten Ergebnisse sind in Abbildung 4.5
dargestellt.

0 1
2 − ∆

2lnn
1
2

1

1+ 1
∆

Prävalenz gegeben durch θ

m̃inf(∆)
m̃ada-alg(∆)

m̃DD(∆)
m̃non-ada(∆)
m̃COMP, G(∆)

Abbildung 4.5.: Wichtige Phasenübergänge im hypergeometrischen probabilistischen Group-Testing
Problem, falls jedes Individuum höchstens ∆-mal getestet werden darf mit ∆ =
O

(
ln1−δn

)
für ein δ ∈ (0,1]. Die Abbildung zeigt die Phasenübergänge für die Wahl∆= 5

und n = 105. Wir parametrisieren die eigentliche Schwellenwertfunktion als m =∆km̃ .

Die relevantesten zuvor bekannten Resultate gehen auf Gandikota et al. [86] zurück. Insbesondere
analysieren die Autoren das zufällige reguläre Modell und einen einfachen Algorithmus COMP, der im
dunkelblauen Bereich die Inferenz ermöglicht. Dieser sehr einfache Algorithmus deklariert alle Indivi-
duen, die in einem negativen Test vorkommen, als uninfiziert während alle weiteren Individuen als infi-
ziert deklariert werden. Dieselben Autoren zeigen, dass jede nicht-adaptive Teststrategie mit höchstens
(eminf(∆))1−ε Tests scheitert. Wir erweitern diese Resultate wie folgt und nehmen wiederum implizit an,
dass Schwellenwertfunktionen zu strikten Phasenübergängen korrespondieren.

• Der DD-Algorithmus auf dem zufälligen regulären Modell ermöglicht Inferenz im blauen Bereich,
ist also strikt besser als COMP. Außerdem ermöglicht der DD-Algorithmus unterhalb von m̃DD mit
hoher Wahrscheinlichkeit keine Inferenz auf dem zufälligen regulären Modell.

• Unterhalb von minf(∆) kann keine – auch keine adaptive – Teststrategie erfolgreich sein.

• Unterhalb von mnon−ada(∆) kann keine nicht-adaptive Teststrategie die Inferenz der infizierten
Individuen ermöglichen.

• Überhalb von madap−alg(∆) existiert ein effizienter adaptiver Algorithmus, der die Inferenz mit ho-
her Wahrscheinlichkeit ermöglicht. Das heißt insbesondere, dass adaptive Algorithmen im hell-
roten Bereich wie zuvor eine bessere Performance als nicht-adaptive Strategien liefern.

In diesem Setting bleibt somit offen, wo der informationstheoretische Phasenübergang für adaptive
Algorithmen stattfindet (orangener Bereich) und ob es nicht-adaptive Teststrategien (ggf. mit effizienten
Algorithmen) gibt, welche Inferenz im gelben Bereich ermöglichen.

Zuletzt haben wir uns ebenfalls mit einer anderen Art der Einschränkung im Group-Testing Problem
beschäftigt. Falls jeder Test nur Γ=Θ(1) Individuen beinhalten darf, so war vor dem Beitrag der Disser-
tation nur wenig bekannt. Die Ergebnisse sind in Abbildung 4.6 visualisiert.

Gandikota et al. [86] analysieren wiederum den COMP-Algorithmus auf dem zufälligen regulären Mo-
dell, welcher ab der blauen Linie Inferenz ermöglicht. Ferner zeigt eine einfache Zählschranke, dass
mindestens n/Γ Tests in jeder (adaptiven) Teststrategie benötigt werden (schwarze Linie). Wir erzielen
die folgenden Resultate.

• Wir etablieren eine universelle informationstheoretische Schranke für alle nicht-adaptiven Test-
strategien, das heißt, jede nicht-adaptive Teststrategie kann unterhalb der roten Linie mit hoher
Wahrscheinlichkeit nicht die infizierten Individuen rekonstruieren.
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Abbildung 4.6.: Übersicht über die Phasenübergänge im hypergeometrischen probabilistischen Group-
Testing, sofern jeder Test höchstens Γ= 4 Individuen beinhalten darf. Wir parametrisie-
ren die Anzahl der Tests m = m̃ n

Γ und nehmen implizit an, dass n/Γ ∈Z.

• Wir definieren eine neue nicht-adaptive Teststrategie, die bei niedriger Prävalenz (θ < 1/2) vom
regulären Modell abweicht, und zeigen, dass der DD-Algorithmus für alle Werte von θ außerhalb
einer Nullmenge auf diesem Modell ab der roten Linie die Infizierten mit hoher Wahrscheinlich-
keit rekonstruiert. Dieses Modell mit dem DD-Algorithmus ist also optimal.

• Es existiert ein effizienter adaptiver Algorithmus, der – bis auf Rundung – oberhalb der schwarzen
Linie die Infizierten erfolgreich rekonstruiert.

Entsprechend ist dieser Fall des Group-Testings auch nahezu vollständig verstanden. Es bleibt allerdings
offen, ob ähnliche Analysen auch für ω(1) = Γ= o(n/k) durchgeführt werden können.

Schlussendlich befasst sich die vorliegende Dissertation mit sogenannten zufällig perturbierten Gra-
phmodellen.

Zufällig perturbierte Graphen Ursprünglich stammt die Idee der zufälligen Perturbation determi-
nistischer Systeme aus der smooth analysis of algorithms, also der stufenlosen Analyse von Algorithmen
[159]. Während viele Algorithmen eine exponentielle Laufzeit im schlimmsten Fall (Worst-Case-Analyse)
aufweisen, so zeigt sich in realen Anwendungen, dass sie meistens sehr effizient funktionieren. Das be-
kannteste Beispiel ist vermutlich der Simplex-Algorithmus [61] zum Lösen linearer Optimierungspro-
bleme. In Anwendungen scheinen somit oft die Worst-Case-Bedingungen nicht einzutreten, allerdings
ist es wichtig zu verstehen, wie hoch die Laufzeit auf einer anwendungsspezifischen Eingabe vermutlich
werden kann. Die Analyse der typischen Laufzeit auf einer zufälligen Eingabe (Average-Case-Analyse)
beantwortet diese Frage nur ungenügend, da in einer Anwendung durchaus Konstellationen auftreten
können, die weit entfernt von einer durchschnittlichen Eingabe sind. Allerdings ist es ebenso unwahr-
scheinlich, eine Worst-Case-Konfiguration zu beobachten. Aus diesem Grund werden perturbierte Mo-
delle untersucht. Wir beginnen bei einer Worst-Case-Konfiguration, fügen (ein wenig) Zufall hinzu und
möchten die Laufzeit des Algorithmus in Abhängigkeit der Menge des hinzugefügten Zufalls untersu-
chen [159].

Kurz nach Einführung dieser Betrachtungsweise von Algorithmen wurde das Prinzip auf die Existenz
aufspannender Strukturen in Graphen übertragen. Eine zentrale aufspannende Struktur ist beispielwei-
se der Hamiltonkreis, also ein Rundweg, der jeden Knoten exakt einmal besucht. Es sind zahlreiche hin-
reichende Bedingungen, wie Diracs Theorem [65] bekannt, welche zum Beispiel durch Minimalgradbe-
dingungen die Existenz eines Hamiltonkreises in einem beliebigen deterministischen Graphen garan-
tieren. Diese Art von Theoremen kann mit der Worst-Case-Analyse verglichen werden. Auf der anderen
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Seite ist der exakte Schwellenwert p = p(n) bekannt, ab welchem der zufällige Graph G (n.p) mit hoher
Wahrscheinlichkeit einen solchen aufspannenden Kreis besitzt (Average-Case-Analyse) [116, 117, 147].
Selbstverständlich existieren solche Analysen nicht nur für Hamiltonkreise, sondern auch unter ande-
rem für Spannbäume, Matchings, Potenzen von Hamiltonkreisen sowie für allgemeine aufspannende
Graphen mit beschränktem Maximalgrad, sowohl in deterministischen Graphen [36, 94, 113, 114, 115]
als auch in zufälligen Graphen [14, 33, 72, 76, 107, 118, 125, 139, 141, 150].

Das Modell der zufälligen perturbierten Graphen ist nun wie folgt zu verstehen. Gegeben sei ein be-
liebiger Graph Gα mit Minimalgrad αn sowie ein zufälliger Graph G (n, p) mit p = p(α). Nun stellt sich
die Frage, wann Gα ∪G (n, p) mit hoher Wahrscheinlichkeit einen Hamiltonkreis besitzt. Offenbar ist
der Schwellenwert nicht nur abhängig vonα, sondern auch von dem gegebenen Graphen Gα, das heißt,
wir suchen einen Schwellenwert p∗ im folgenden Sinne. Sofern p > p∗, so enthält Gα∪G (n, p) einen
Hamiltonkreis mit hoher Wahrscheinlichkeit unabhängig von der Wahl von Gα. Ist andererseits p < p∗,
so existiert mindestens ein Graph Gα mit Minimalgrad αn, sodass die Vereinigung mit dem zufälligen
Graphen keinen Hamiltonkreis besitzt.

Dieses Modell wurde erstmalig von Bohman, Frieze und Martin [28] diskutiert. Es folgten mehrere
Publikationen, welche hinreichende Bedingungen für die Existenz verschiedener aufspannender Struk-
turen in Gα∪G (n, p) geben [20, 26, 35, 34, 119], allerdings liegt all diesen Beiträgen zu Grunde, dass der
betrachtete deterministische Graph ein dichter Graph ist, das heißt, dass α = Θ(1) eine Konstante ist.
Das letzte in dieser Dissertation enthaltene Manuskript,

Random perturbation of sparse graphs [93],

beschäftigt sich mit dem Fall α = o(1), also mit dem Fall, dass der zugrunde liegende deterministische
Graph dünn ist. In diesem Beitrag geben wir hinreichende Bedingungen für die Existenz von Matchings
und Hamiltonkreisen sowie für die Existenz aufspannender Bäume mit beschränktem Maximalgrad,
indem wir die Frage nach der Existenz einer aufspannenden Struktur in Gα∪G (n, p) auf die Existenz
nahezu-aufspannender Strukturen in G (n, p) zurückführen.
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applications 2 (1970), pp. 601–623.

[95] P. W. Holland, K. B. Laskey and S. Leinhardt. ‘Stochastic blockmodels: First steps’. In: Social Net-
works 5.2 (1983), pp. 109–137.

[96] D. Hoover. Relations on Probability Spaces and Arrays of Random Variables. 1979.

[97] M. C. Hu, F. K. Hwang and J. K. Wang. ‘A Boundary Problem for Group Testing’. In: SIAM Journal
on Algebraic Discrete Methods 2.2 (1981), pp. 81–87.

[98] F. K. Hwang. ‘A Method for Detecting All Defective Members in a Population by Group Testing’.
In: Journal of the American Statistical Association 67.339 (1972), pp. 605–608.

[99] F. Iliopoulos and I. Zadik. Group testing and local search: is there a computational-statistical gap?
2020. arXiv: 2011.05258 [math.ST].

[100] E. Ising. ‘Beitrag zur Theorie des Ferromagnetismus’. In: Zeitschrift für Physik 31.1 (1925), pp. 253–
258.

[101] A. Jagannath. ‘Approximate Ultrametricity for Random Measures and Applications to Spin Glasses’.
In: Communications on Pure and Applied Mathematics 70.4 (2017), pp. 611–664.

[102] S. Janson. Graphons, cut norm and distance, couplings and rearrangements. Vol. 4. NYJM Mono-
graphs. New York Journal of Mathematics, 2013.

[103] S. Janson, T. Luczak, A. Rucinski and R. Rucinski. Random Graphs. New York: Wiley, 2000.

[104] E. T. Jaynes. ‘Information Theory and Statistical Mechanics’. In: Phys. Rev. 106 (4 1957), pp. 620–
630.

[105] M. Jerrum. ‘Large Cliques Elude the Metropolis Process’. In: Random Structures and Algorithms
3.4 (1992), pp. 347–359.

https://arxiv.org/abs/2004.11860
https://arxiv.org/abs/2007.01376
https://arxiv.org/abs/2004.04672
https://arxiv.org/abs/2011.05258


References 99

[106] A. Jimenez Felstrom and K. S. Zigangirov. ‘Time-varying periodic convolutional codes with low-
density parity-check matrix’. In: IEEE Transactions on Information Theory 45.6 (1999), pp. 2181–
2191.

[107] A. Johansson, J. Kahn and V. Vu. ‘Factors in random graphs’. In: Random Structures & Algorithms
33.1 (2008), pp. 1–28.

[108] O. Johnson, M. Aldridge and J. Scarlett. ‘Performance of Group Testing Algorithms With Near-
Constant Tests Per Item’. In: IEEE Transactions on Information Theory 65.2 (2019), pp. 707–723.

[109] R. M. Karp. ‘Reducibility among Combinatorial Problems’. In: Complexity of Computer Compu-
tations. Springer US, 1972, pp. 85–103.

[110] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. ‘Optimization by Simulated Annealing’. In: Science
220.4598 (1983), pp. 671–680.

[111] S. Kirkpatrick, G. Györgyi, N. Tishby and L. Troyansky. ‘The Statistical Mechanics of k-Satisfaction’.
In: Advances in Neural Information Processing Systems 6. Ed. by J. D. Cowan, G. Tesauro and J.
Alspector. Morgan-Kaufmann, 1994, pp. 439–446.

[112] J. Komlos, A. Shokoufandeh, M. Simonovits and E. Szemerédi. ‘The Regularity Lemma and Its
Applications in Graph Theory’. In: vol. 2292. 2000, pp. 84–112.

[113] J. Komlós, G. N. Sárközy and E. Szemerédi. ‘On the Pósa-Seymour conjecture’. In: Journal of
Graph Theory 29.3 (1998), pp. 167–176.

[114] J. Komlós, G. N. Sárközy and E. Szemerédi. ‘Proof of the Seymour conjecture for large graphs’. In:
Annals of Combinatorics 2.1 (1998), pp. 43–60.

[115] J. Komlós, G. N. Sárközy and E. Szemerédi. ‘Spanning trees in dense graphs’. In: Combinatorics,
Probability and Computing 10.5 (2001), pp. 397–416.

[116] J. Komlós and E. Szemerédi. ‘Limit distribution for the existence of hamiltonian cycles in a ran-
dom graph’. In: Discrete Mathematics 43.1 (1983), pp. 55–63.

[117] A. D. Korshunov. ‘Solution of a problem of Erdős and Rényi on Hamiltonian cycles in nonori-
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A. Contained publications and the author’s
contributions

All contained publications of this dissertation are included in their current arXiv version. This section
provides a detailed overview about the author’s contributions as well as the publication status of each of
those manuscripts. We will explicitly only state the contributions of this thesis’s author (MHK). There-
fore, the papers might contain results achieved by different authors whose contributions are not dis-
cussed below. For the sake of readability, we will abbreviate all author’s names to their initials.

Information-theoretic and algorithmic thresholds for group testing This manuscript by A. Coja-
Oghlan, O. Gebhard, M. Hahn-Klimroth and P. Loick appeared in the IEEE Transactions on Information
Theory [41] and a short version appeared in the Proceedings of the 46th ICALP [44].

While the idea of this paper was found during the master’s thesis of OG (supervised by MHK and PL),
the further main contributions of MHK are the development and formalisation of Theorem 1.1 and its
proof in joint work with PL as well as the formalisation of the proof of Theorem 1.2 based on an idea of
PL.

Optimal Group Testing A short version of this article by A. Coja-Oghlan, O. Gebhard, M. Hahn-
Klimroth and P. Loick appeared in the Proceedings of 33rd Conference on Learning Theory (COLT) [45]
and the full version is accepted for publication at Combinatorics, Probability and Computing.

The algorithmic achievability result with respect to adaptive group testing (Theorem 1.3) was formally
proven by MHK and PL while the corresponding non-adaptive result (Theorem 1.2) is joint work of all
authors. The main technical contribution to Theorem 1.2, thus the derivation of the correct weights as
well as the formal proof are due to ACO, MHK and PL. Furthermore, the proof idea of Theorem 1.1 based
on a generalised argument of Aldridge was discussed by MHK and PL while the formal derivation, i.e.
the reduction on a different prevalence is due to ACO, MHK and PL. Finally, all authors contributed to
the writing of the manuscript.

Near-Optimal Sparsity-Constrained Group Testing: Improved Bounds and Algorithms This
paper by O. Gebhard, M. Hahn-Klimroth, O. Parczyk, M. Penschuck, M. Rolvien, J. Scarlett and N. Tan is
under review at IEEE Transactions on Information Theory.

To be more precise, OG, MHK, OP, MP, MR uploaded a draft on non-adaptive sparsity constrained
group testing to arXiv and contemporaneously JS and NT published a preprint on adaptive methods. As
those contributions could be perfectly merged all authors decided to extend their results and combine
them.

While the writing of the manuscript was led by OG, MHK and JS, the development and formal elabor-
ation of the non-adaptive converse bounds with respect to information theory (Theorem 3.2 and The-
orem 4.1) are joint equal work of MHK and OP. A further contribution of MHK is the development of the
proof idea of Theorem 3.4 ( DD converse in the ∆−divisible model) and its formal justification was joint
work of MHK and OP. The corresponding achievability statement (Theorem 3.3) is joint work of OG and
MHK. Moreover, the achievability statement for DD in the Γ−sparse model is joint work of OG and MHK
(Theorem 4.10) and MHK and OP (Theorem 4.18) respectively.

The number of satisfying assignments of random 2-SAT formulas. This paper is joint work of
D. Achlioptas, A. Coja-Oghlan, M. Hahn-Klimroth, J. Lee, N. Müller, M. Penschuck and G. Zhou and it
appeared in Random Structures & Algorithms. The current arXiv version is entitled The random 2-SAT
partition function. The main contribution of MHK is the intuitive description of how to obtain a worst-
case boundary condition in order to prove that the Boltzmann distribution is a Bethe state while its
formal justification is due to NM. A further contribution of MHK are some technical derivations in order



Contained publications and the author’s contributions A-2

to extend the positive temperature concentration result to the zero temperature limit while the main
idea of this approach and the detailed proof were provided by ACO.

The cut metric for probability distributions This article by A. Coja-Oghlan and M. Hahn-Klimroth
is accepted for publication at the SIAM Journal of Discrete Mathematics. It is a joint project of MHK with
his PhD advisor ACO. While the latter led the writing of the manuscript, the theorems and their proofs
were obtained and discussed jointly.

Random perturbation of sparse graphs This manuscript by M. Hahn-Klimroth, G. Maesaka, Y.
Mogge, S. Mohr and O. Parczyk is currently submitted to the Electronic Journal of Combinatorics.

While the idea for the paper was brought by OP to a workshop on extremal and probabilistic combin-
atorics, Theorems 1.1 and 1.2 which establish a sufficient condition for observing a Hamilton cycle and
a perfect matching in G (n,β/n)∪Gα were discussed intensively by OP and MHK and formally proven
and written down by MHK.
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INFORMATION-THEORETIC AND ALGORITHMIC THRESHOLDS FOR GROUP TESTING

AMIN COJA-OGHLAN, OLIVER GEBHARD, MAX HAHN-KLIMROTH, PHILIPP LOICK

ABSTRACT. In the group testing problem we aim to identify a small number of infected individuals within a large popula-
tion. We avail ourselves to a procedure that can test a group of multiple individuals, with the test result coming out posi-
tive iff at least one individual in the group is infected. With all tests conducted in parallel, what is the least number of tests
required to identify the status of all individuals? In a recent test design [Aldridge et al. 2016] the individuals are assigned
to test groups randomly with replacement, with every individual joining an almost equal number of groups. We pinpoint
the sharp threshold for the number of tests required in this randomised design so that it is information-theoretically
possible to infer the infection status of every individual. Moreover, we analyse two efficient inference algorithms. These
results settle conjectures from [Aldridge et al. 2014, Johnson et al. 2019].

1. INTRODUCTION

1.1. Background and motivation. The group testing problem goes back to the work of Dorfman from the 1940s [24].
Among a large population a few individuals are infected with a rare disease. The objective is to identify the infected
individuals effectively. At our disposal we have a testing procedure capable of not merely testing one individual, but
several. The test result will be positive if at least one individual in the test group is infected, and negative otherwise;
all tests are conducted in parallel. We are at liberty to assign a single individual to several test groups. The aim is to
devise a test design that identifies the status of every single individual correctly while requiring as small a number
of tests as possible. A recently proposed test design allocates the individuals to tests randomly [10, 12, 13, 30, 33].
To be precise, given integers n,m,∆ > 0 we create a random bipartite multi-graph by choosing independently for
each of the n vertices x1, . . . , xn ‘at the top’ ∆ neighbours among the m vertices a1, . . . , am ‘at the bottom’ uniformly
at random with replacement. The vertices x1, . . . , xn represent the individuals, the a1, . . . , am represent the test
groups and an individual joins a test group iff the corresponding vertices are adjacent (see Figure 1). The wisdom
behind this construction is that the expansion properties of the random bipartite graph precipitate virtuous corre-
lations, facilitating inference. Given n and (an estimate of) the number k of infected individuals, what is the least
m for which, with a suitable choice of∆, the status of every individual can be inferred correctly from the test results
with high probability?Like in many other inference problems the answer comes in two instalments. First, we might
ask for what m it is information-theoretically possible to detect the infected individuals. In other words, regardless
of computational resources, do the test results contain enough information in principle to identify the infection
status of every individual? Second, for what m does this problem admit efficient algorithms? The first main result
of this paper resolves the information-theoretic question completely. Specifically, Aldridge, Johnson and Scar-
lett [13] obtained a function minf = minf(n,k) such that for any fixed ε > 0 the inference problem is information-
theoretically infeasible if m < (1−ε)minf. They conjectured that this bound is tight, i.e., that for m > (1+ε)minf(n,k)
there is an (exponential) algorithm that correctly identifies the infected individuals with high probability. We prove
this conjecture. Furthermore, concerning the algorithmic question, Johnson, Aldridge and Scarlett [30] obtained
a function malg = malg(n,k) that exceeds minf by a constant factor for small k such that for m > (1+ ε)malg cer-
tain efficient algorithms successfully identify the infected individuals with high probability. They conjectured that
SCOMP, their most sophisticated algorithm, actually succeeds for smaller values of m. We refute this conjecture
and show that SCOMP asymptotically fails to outperform a much simpler algorithm called DD. A technical novelty
of the present work is that we investigate the group testing problem from a new perspective. While most prior
contributions rely either on elementary calculations and/or information-theoretic arguments [12, 13, 30, 39], here
we bring to bear techniques from the theory of random constraint satisfaction problems [5, 32].

Supported by DFG CO 646/3 and Stiftung Polytechnische Gesellschaft. An extended abstract of this work appeared in the 2019 ICALP pro-
ceedings. A revised version is to appear in IEEE Transactions on Information Theory (Copyright (c) 2017 IEEE DOI: 10.1109/TIT.2020.3023377).
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x1 x2 x3 x4 x5 x6 x7

a1 a2 a3 a4 a5

FIGURE 1. The graph illustrates a small example of a group testing instance, with the individuals x1, . . . , x7

at the top and the tests a1, . . . , a5 at the bottom. Infected individuals and positive tests are coloured in grey.

Indeed, group testing can be viewed naturally as a constraint satisfaction problem: the tests provide the con-
straints and the task is to find all possible ways of assigning a status (‘infected’ or ‘not infected’) to the n individuals
in a way consistent with the given test results. Since the allocation of individuals to tests is random, this question
is similar in nature to, e.g., the random k-SAT problem that asks for a Boolean assignment that satisfies a random
collection of clauses [4, 6, 20, 23]. It also puts the group testing problem in the same framework as the consid-
erable body of recent work on other inference problems on random graphs such as the stochastic block model
(e.g., [1, 18, 22, 35, 37, 43]) or decoding from pooled data [7, 8].

We proceed to state the main results of the paper precisely, followed by a detailed discussion of the prior litera-
ture on group testing. The proofs of the information-theoretic and algorithmic bounds follow in 3, Section 4, and
5. The technical details can be found in the appendix.

1.2. The information-theoretic threshold. Throughout the paper we labour under the assumptions commonly
made in the context of group testing; we will revisit their merit in Section 1.4. Specifically, we assume that the
number k of infected individuals satisfies k ∼ nθ for a fixed 0 < θ < 1 1. Moreover, let σ ∈ {0,1}{x1 ,...,xn } be a vector
of Hamming weight k chosen uniformly at random. The (one-)entries of σ indicate which of the n individuals are
infected. Moreover, let G =G(n,m,∆) signify the aforementioned random bipartite graph with multi-edges. Then
σ induces a vector σ̂ ∈ {0,1}{a1 ,...,am } that indicates which of the m tests come out positive. To be precise, σ̂i = 1 iff
test ai is adjacent to an individual x j with σx j = 1. For what m is it possible to recover σ from G,σ̂? (Throughout
the paper all logarithms are base e.)

Theorem 1.1. Suppose that 0 < θ < 1, k ∼ nθ and ε> 0 and let

minf = minf(n,θ) = k log (n/k)

min
{

1, 1−θ
θ log2

}
log2

.

(i) If m > (1+ε)minf(n,θ), then there exists an algorithm that given G,σ̂ outputs σwith high probability.
(ii) If m < (1 − ε)minf(n,θ), then there does not exist any algorithm that given G,σ̂,k outputs σ with a non-

vanishing probability.

Since for θ ≤ log(2)/(1+ log(2)) the first part of Theorem 1.1 readily follows from a folklore argument [25], the
interesting regime is θ > log(2)/(1+ log(2)) ≈ 0.41. The negative part of Theorem 1.1 strengthens a result from [13],
who showed that for m < (1−ε)minf any inference algorithm has a strictly positive error probability. By comparison,
Theorem 1.1 shows that any algorithm fails with high probability.

But the main contribution of Theorem 1.1 is the first, positive statement. While the problem was solved for
θ < 1/3 for a different test design [39, 40] and the case θ > 1/2 is easy because a plain greedy algorithm suc-
ceeds [30], the case 1/3 < θ < 1/2 proved more challenging. Only heuristic arguments predicting the result of
Theorem 1.1 have been put forward for this regime so far [33]. Indeed, Aldridge et al. [12] conjectured that in
this case inferring σ from G ,σ̂ is equivalent to solving a hypergraph minimum vertex cover problem. The proof
of Theorem 1.1 vindicates this conjecture. Specifically, the vertex set of the hypergraph comprises all ‘potentially
infected’ individuals, i.e., those that do not appear in any negative test. The hyperedges are the neighbourhoods

1While we write that k ∼nθ for the sake of brevity, our results immediately extend to the case k ∼Cnθ for some constant C .
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∂ai of the positive tests ai in G . Exhaustive search solves this vertex cover problem in time exp(O(nθ logn)). But
how about efficient algorithms for general θ?

0 1
2

1

log2(2)

log(2)

Density parameter θ

k
lo

g(
n

/k
)/

m

k log(n/k)/minf

k log(n/k)/malg

FIGURE 2. The red line shows the information theoretic
threshold minf, the dashed black line signifies the bound
malg which is achieved by the both the SCOMP and the DD
algorithm.

1.3. Efficient algorithms for group testing. Several
polynomial time group testing algorithms have been
proposed. A very simple greedy strategy called DD (for
‘definitive defectives’) first labels all individuals that
are members of negative test groups as uninfected.
Subsequently it checks for positive tests in which all in-
dividuals but one have been identified as uninfected in
the first step. Clearly, the single as yet unlabelled indi-
vidual in such a test group must be infected. Up to this
point all decisions made by DD are correct. But in the
final step DD marks all as yet unclassified individuals
as uninfected, possibly causing false negatives. In fact,
the output of DD may be inconsistent with the test re-
sults as possibly some positive tests may fail to include
an individual classified as ’infected’. While an achiev-
ability result is known for the DD algorithm, a corollary
of the work in this paper is a matching converse.

The more sophisticated SCOMP algorithm is roughly
equivalent to the well-known greedy algorithm for the
hypergraph vertex cover problem applied to the hyper-
graph from the previous paragraph. Specifically, in its
first step SCOMP proceeds just like DD, classifying all individuals that occur in negative tests as uninfected. Then
SCOMP identifies as infected all unmarked individuals that appear in at least one test whose other participants are
already known to be uninfected. Subsequently the algorithm keeps picking an individual that appears in the largest
number of as yet ‘unexplained’ (viz. uncovered) positive tests and marks that individual as infected, with ties bro-
ken randomly, until every positive test contains an individual classified as infected. Clearly, SCOMP may produce
false positives as well as false negatives. But at least the output is consistent with the test results. Algorithm 1
summarises the procedure of SCOMP.

Input: G , σ̂, k
Output: estimate of σ

1 Classify all individuals in negative tests as healthy & remove such individuals and tests from G ;
2 Classify all individuals that appear in at least one positive test as the only yet unclassified individuals as

infected & remove such individuals and tests from G;
3 while there exists at least one test in G do
4 Classify the individual appearing in the largest number of remaining tests as infected & remove this

individual and all adjacent tests from G
5 Classify all remaining individuals as healthy;

Algorithm 1: Description of the SCOMP algorithm

Analysing SCOMP has been prominently posed as an open problem in the group testing literature [9, 12, 30].
Indeed, Aldridge et al. [12] opined that “the complicated sequential nature of SCOMP makes it difficult to analyse
mathematically”. On the positive side, [12] proved that SCOMP succeeds in recovering σ correctly given (G ,σ̂) if
m > (1+ε)malg(n,θ) w.h.p.2, where

malg = malg(n,θ) = k log (n/k)

min
{

1, 1−θ
θ

}
log2 2

. (1)

2W.h.p.refers to a probability of 1−o(1) as n →∞.
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However, the algorithm succeeds for a trivial reason; namely, for m > (1+ ε)malg even DD suffices to recover σ
w.h.p. Yet based on experimental evidence [12, 30] conjectured that SCOMP strictly outperforms DD. The following
theorem refutes this conjecture.

Theorem 1.2. Suppose that 0 < θ < 1 and ε > 0. If m < (1−ε)malg(n,θ), then given G,σ̂ w.h.p. both SCOMP and DD
fail to output σ.

For θ < 1/2 the information-theoretic bound provided by Theorem 1.1 and the algorithmic bound malg supplied
by Theorem 1.2 remain a modest constant factor apart; see Figure 2. Whether there exists an efficient algorithm for
group testing that can close the gap to the information-theoretic bound has long been an open research question.
A recent result by Coja-Oghlan et al. [19] shows that such a polynomial-time algorithm indeed exists. The proposed
algorithm which is inspired by the notion of spatial coupling from coding theory is able to recover σ whenever
m > (1+ε)minf. Moreover, the authors prove that below the information-theoretic threshold from Theorem 1.1 no
non-adaptive algorithm can succeed under any test design (not only the random regular test design considered
here) thereby establishing the presence of an adaptivity gap in the group testing problem. An exciting avenue for
future research is to investigate the merits of the results and techniques of this paper and [19, 28] for the noisy
variant of group testing.

1.4. Discussion and related work. Dorfman’s original group testing scheme, intended to test the American army
for syphilis, was adaptive. In a first round of tests each soldier would be allocated to precisely one test group. If
the test result came out negative, none of the soldiers in the group were infected. In a second round the soldiers
whose group was tested positively would be tested individually. Of course, Dorfman’s scheme was not information-
theoretically optimal. A first-order optimal adaptive scheme that involves several test stages, with the tests con-
ducted in the present stage governed by the results from the previous stages, is known [15, 25]. In the adaptive
scenario the information-theoretic threshold works out to be

madapt
inf (n,θ) = k log (n/k)

log2
.

The lower bound, i.e., that no adaptive design gets by with (1− ε)madapt
inf (n,θ) tests, follows from a very simple

information-theoretic consideration. Namely, with a total of m tests at our disposal there are merely 2m possible
test outcomes, and we need this number to exceed the count

(n
k

)
of possible vectors σ, i.e., [14].

More recently there has been a great deal of interest in non-adaptive group testing, where the infection status of
each individual is to be determined after just one round of tests [14, 17, 27, 33]. This is the version of the problem
that we deal with in the present paper. An important advantage of the non-adaptive scenario is that tests, which
may be time-consuming, can be conducted in parallel. Indeed, some of today’s most popular applications of
group testing are non-adaptive such as DNA screening [17, 31, 38] or protein interaction experiments [36, 42] in
computational molecular biology. The randomised test design that we deal with here is the best currently known
non-adaptive design (in terms of the number of tests required).

The most interesting regime for the group testing problem is when the number k of infected individuals scales
as a power nθ of the entire population. Mathematically this is because in the linear regime k =Ω(n) the optimal
strategy is to perform n individual tests [11] in order to achieve a vanishing error probability. Similarly, the case
of constant k has been solved for some time [41]. Thus, for k linear in n and k constant the theory is already well
established. But the sublinear case is also of practical relevance, as witnessed by Heap’s law in epidemiology [16]
or biological applications [27].

Apart from the randomised test design G where each individual chooses precisely ∆ tests (with replacement),
the so-called Bernoulli design assigns each individual to every test with a certain probability independently. A
considerable amount of attention has been devoted to this model, and its information-theoretic threshold as well
as the thresholds for various algorithms have been determined [9, 10, 12, 39]. However, the Bernoulli test design,
while easier to analyse, for θ > 1/3 is provably inferior to the test design G that we study here. This is because
in the Bernoulli design there are likely quite a few individuals that participate in far fewer tests than expected
due to degree fluctuations. We note that our proofs can easily be adapted to reprove the known results for the
Bernoulli design. In fact, many technical parts of the proofs become significantly easier and shorter, since we can
assume independence between tests, whereas for the constant-column design under consideration here gives rise
to subtle dependencies between the tests. A significant portion of the tests is devoted to getting a handle o these
dependencies.
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1.5. Notation. Throughout the paper G = G(n,m,∆) denotes the random bipartite graph that describes which
individuals take part in which test groups, the vector σ ∈ {0,1}{x1 ,...,xn } encodes which individuals are infected, and
σ̂ ∈ {0,1}{a1,...,am } indicates the test results. Clearly, G is independent ofσ. Moreover, k ∼ nθ signifies the number of
infected individuals. Additionally, we write

V =Vn = {x1, . . . , xn } , V0 =
{

xi ∈V :σxi = 0
}

and V1 =V \V0

for the set of all individuals, the set of uninfected and infected individuals, respectively. For an individual x ∈ V
we write ∂x for the multi-set of tests ai adjacent to x with |∂x| =∆. Analogously, for a test ai we denote by ∂ai the
multi-set of individuals that take part in the test and Γi = |∂ai |. These are multi-sets since individuals are assigned
to tests uniformly at random with replacement and therefore G features multi-edges w.h.p.. Let Γ be the vector
(Γi )i∈[m]. Furthermore, all asymptotic notation refers to the limit n →∞. Thus, o(1) denotes a term that vanishes
in the limit of large n, while ω(1) stands for a function that diverges to ∞ as n →∞. We also let c,d > 0 denote reals
such that

m = ck log(n/k) ∆= d log(n/k).

Later, we will prove that c,d = Θ(1) as n → ∞ is optimal for inference. Finally, let Γmin = mini∈[m] Γi , Γmax =
maxi∈[m]Γi . The following sections will outline the proofs of the information-theoretic bounds and the analysis of
the SCOMP algorithm and feature the important proofs. The technical details are left to the appendix

2. GETTING STARTED

The very first item on the agenda is to get a handle on the posterior distribution ofσ given G and σ̂. To this end,
let Sk (G,σ̂) be the set of all vectors σ ∈ {0,1}V of Hamming weight k such that

σ̂ai = 1{∃x ∈ ∂ai :σx = 1} for all i ∈ [m].

In words, Sk (G,σ̂) contains the set of all vectors σ with k ones that label the individuals infected/uninfected in a
way consistent with the test results, i.e. that are "satisfying sets" [12, 14]. Let Zk(G ,σ̂) = |Sk (G,σ̂)|. The following
proposition shows that the posterior of σ given G ,σ̂ is uniform on Sk (G,σ̂).

Proposition 2.1 ([10]). For all τ ∈ {0,1}{x1 ,...,xn } we have P [σ= τ |G,σ̂]= 1 {τ ∈ Sk (G,σ̂)}

Zk (G,σ̂)
.

Adopting the jargon of the recent literature on inference problems on random graphs, we refer to Proposition 2.1
as the Nishimori identity [18, 43]. The proposition shows that apart from the actual test results, there is no further
‘hidden information’ aboutσ encoded in G ,σ̂. In particular, the information-theoretically optimal inference algo-
rithm just outputs a uniform sample from Sk (G,σ̂). In effect, we obtain the following.

Corollary 2.2. (1) If Zk (G,σ̂) =ω(1) w.h.p., then for any algorithm A we have

P [A (G,σ̂,k) =σ]= o(1).

(2) If Zk(G ,σ̂) = 1 w.h.p., then there is an algorithm A such that

P [A (G,σ̂,k) =σ]= 1−o(1).

Both the positive and the negative part of Corollary 2.2 assume that the precise number k of infected individuals is
known to the algorithm. This assumption makes the negative part stronger, but weakens the positive part. Yet we
will see in due course how in the positive scenario the assumption that k be known can be removed.

For the information-theoretic bound, the proof hinges on analysing the number of individuals that can be
flipped without affecting the test results. We encounter two kinds of such individuals. The first kind consists of
healthy individuals that only appear in positive tests and which we will denote by V +

0 . In symbols,

V +
0 = {

xi ∈V0 : ∀a ∈ ∂xi∃y ∈ ∂a :σy = 1
}

. (2)

Similarly, let V +
1 be the set of all infected individuals xi such that every test in which xi occurs features another

infected individual; in symbols,

V +
1 = {

xi ∈V1 :∀a ∈ ∂xi∃y ∈ ∂a \ {xi } :σy = 1
}

.

5
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We think of the individuals in V +
0 as the ‘potential false positives’. Indeed, if for any xi ∈V +

0 we obtainσ′ fromσ by
setting xi to one, then σ′ will render the same test results as σ. Similarly, the individuals in V +

1 are potential false
negatives. For completeness, we also define V −

0 and V −
1 as

V −
0 =V0 \V +

0 and V −
1 =V1 \V +

1 (3)

In the following, let us get a handle on the size of sets V +
0 and V +

1 . Specifically, we prove the following five state-
ments.

Proposition 2.3. Let c,d =Θ(1). Then, the following statements hold w.h.p.

(1)
∣∣V +

0

∣∣= (1+n−Ω(1))n
(
1−exp(−d/c)

)∆ .
(2) If k(1−exp(−d/c))∆ ≥ nΩ(1), then

∣∣V +
1

∣∣= nΩ(1).
(3) If k(1−exp(−d/c))∆ = o(1), then

∣∣V +
1

∣∣= o(1).

(4) If c < θ
1−θ

1
log2 2

, then
∣∣V +

1

∣∣ ,
∣∣V +

0

∣∣ = nΩ(1).

(5) If c > θ
1−θ

1
log2 2

, then
∣∣V +

1

∣∣ = o(1).

The proof of Proposition 2.3, while not fundamentally difficult, requires a bit of care because we are dealing with
a random bipartite multi-graph whose (test-)degrees scale as a power of n. In effect, the diameter of the bipartite
graph is quite small and the neighbourhoods of different tests may have a sizeable intersection. The technical
workout follows in Section B.6. In the next step, let us get a handle on the size of the test degrees.

Lemma 2.4. With probability at least 1−o(n−2) we have

∆n/m −
p
∆n/m logn ≤ Γmin ≤ Γmax ≤∆n/m +

p
∆n/m logn.

The proof of this and the subsequent elementary lemmas are included in Section B. Next, we calculate the
number of positive and negative tests. Let m1 be the number of positive tests and let m0 be the number of negative
tests. Clearly m0 +m1 = m.

Lemma 2.5. With probability at least 1−o(n−2) we have

m0 = exp(−d/c)m +O(
p

m log2 n).

Finally, we justify that setting c,d =Θ(1) as n →∞ is optimal for inference. The fact that c =Θ(1) immediately
follows from the information-theoretic counting bound, i.e., [14].

Lemma 2.6. (1) If ∆= o(log(n/k)) and m =Θ(k log(n/k)), then Zk(G,σ̂) =ω(1) w.h.p.
(2) If ∆=ω(log(n/k)) and m =Θ(k log(n/k)), then Zk (G,σ̂) =ω(1) w.h.p.

3. THE INFORMATION-THEORETIC UPPER BOUND

We proceed to discuss the proof of Theorem 1.1. The proof of the first, positive statement and of the second,
negative statement hinge on two separate arguments. We begin with the proof of the information-theoretic upper
bound which is the principal achievement of the present work. The proof rests upon techniques that have come
to play an important role in the theory of random constraint satisfaction problems. Specifically, we need to show
that Zk (G,σ̂) = 1 w.h.p., i.e., that σ is the only assignment compatible with the test results w.h.p. We establish this
result by combining two separate arguments. First, we use a moment calculation to show that w.h.p. there are no
other solutions that have a small ‘overlap’ with σ. Then we use an expansion argument to show that w.h.p. there
are no alternative solutions with a big overlap. Both these arguments are variants of the arguments that have been
used to study the solution space geometry of random constraint satisfaction problems such as random k-SAT or
random k-XORSAT [3, 4, 26], as well as the freezing thresholds of random constraint satisfaction problems [2, 34].
Yet to our knowledge these methods have thus far not been applied to the group testing problem. In this section
we choose ∆= ⌈m

k log2⌉ which maximises the entropy of the test results. Formally, we define

Zk ,ℓ(G,σ̂) = |{σ ∈ Sk (G ,σ̂) : 〈σ,σ〉 = ℓ}|
as the number of assignments σ ∈ Sk (G,σ̂) different from the true configuration σwhose overlap

〈σ,σ〉 =
n∑

i=1
1{σxi =σxi = 1}

6
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with σ is equal to ℓ. The following two propositions rule out assignments with a small and a big overlap, respec-
tively. In either case we choose ∆= ⌈m

k log2⌉ to take its optimal value.

Proposition 3.1. Let ε> 0 and 0 < θ < 1 and assume that m > (1+ε)minf(k,θ). W.h.p. we have Zk ,ℓ(G ,σ̂) = 0 for all
ℓ< (1−1/log n)k.

Proof. For i ∈ [m] let Γi be the degree of ai in G, i.e., the number of edges incident with ai ; this number may
exceed the number of different individuals that participate in test ai as G may feature multi-edges. Let Γ be the
σ-algebra generated by the random variables (Γi )i∈[m]. Whenever we condition on Γ, we assume that the bounds
from Lemma 2.4 and 2.5 hold. Given Γ we can generate G from the well-known pairing model [29]. Specifically,
we create a set {xi }× [∆] of ∆ clones of each individual as well as sets {ai }× [Γi ] of clones of the tests. Then we
draw a perfect matching of the complete bipartite graph on the vertex sets

⋃n
i=1 {xi }×[∆],

⋃m
i=1 {ai }×[Γi ] uniformly

at random. For each matching edge linking a clone of xi with a clone of a j we insert an i - j -edge. The resulting
bipartite random multi-graph has the same distribution as G given Γ. As an application of this observation we
obtain for every integer 0 ≤ ℓ< k

E[Zk ,ℓ(G,σ̂) |Γ]≤O
(
(∆k)3/2) ·

(
k

ℓ

)(
n−k

k −ℓ

)
m∏

i=1

(
1−2(1−k/n)Γi +2(1−2k/n+ℓ/n)Γi

)
(4)

To see why (4) holds we use the linearity of expectation. The product of the two binomial coefficients simply
accounts for the number of assignments σ that have overlap ℓ with σ. Hence, with S the event that one specific
σ ∈ {0,1}V that has overlap ℓ with σ belongs to Sk ,ℓ(G,σ̂), we need to show that

P [S | Γ]≤O
(
(∆k)3/2) m∏

i=1
1−2(1−k/n)Γi +2(1−2k/n+ℓ/n)Γi . (5)

By symmetry we may assume that σxi = 1{i ≤ k} and that σxi = 1{i ≤ ℓ}+1{k < i ≤ 2k −ℓ}.
To establish (5) we harness the pairing model. Namely, given Γ we can think of each test ai as a bin of capacity

Γi . Moreover, we think of each clone (xi ,h), h ∈ [∆], of an individual as a ball. The ball is labelled (σxi ,σxi ) ∈ {0,1}2 .
The random matching that creates G effectively tosses the ∆n balls randomly into the bins. Hence, for i ∈ [m] and
for j ∈ [Γi ] let us write Ai , j = (Ai , j ,1 , Ai , j ,2) ∈ {0,1}2 for the label of the j th ball that ends up in bin number i . Then
we are left to calculate the probability that for every test ai either Ai , j ,1 = Ai , j ,2 = 0 for every j ∈ [Γi ] or there is at
least one pair ( j ,k) ∈ [Γi ]2 such that Ai , j ,1 = Ai ,k ,2 = 1

P [S |Γ] =P
[
∀i ∈ [m] : max

j∈[Γi ]
Ai , j ,1 = max

j∈[Γi ]
Ai , j ,2

∣∣Γ
]

, (6)

To calculate this probability we borrow a trick from the analysis of the random k-SAT model [20]. Namely, we
consider a new set of {0,1}2-valued random variables A′

i , j = (A′
i , j ,1, A′

i , j ,2) such that (A′
i , j )i∈[m], j∈[Γi ] are mutually

independent and such that

P
[

A′
i , j = (1,1)

]
= ℓ/n, P

[
A′

i , j = (0,1)
]
=P

[
A′

i , j = (1,0)
]
= (k −ℓ)/n,

P
[

A′
i , j = (0,0)

]
= (n−2k +ℓ)/n

for all i , j . Due to their independence, these multinomially distributed random variables are much easier to handle
than Ai , j . It will turn out, that given a (not too unlikely) event, it suffices to analyse these independent variables
instead of Ai , j . Now, let T be the event that

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,1)

}
= ℓ∆,

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,0)

}
= (n−2k +ℓ)∆, (7)

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,0)

}
=

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,1)

}
= (k −ℓ)∆, (8)

i..e, that all of the sums on the l.h.s. are precisely equal to their expected values. Then A′ = (A′
i , j )i , j given T is

distributed precisely as A = (Ai , j )i , j . Hence, (6) yields

P [S | Γ] =P
[
∀i ∈ [m] : max

j∈[Γi ]
A′

i , j ,1 = max
j∈[Γi ]

A′
i , j ,2 |Γ,T

]
. (9)
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Thus, let

A =
{
∀i ∈ [m] : max

j∈[Γi ]
A′

i , j ,1 = max
j∈[Γi ]

A′
i , j ,2

}
.

The grand idea is now to calculate the probability P [A | Γ]. Subsequently, we employ Bayes’ Theorem to derive a
bound for the conditional probability P [A |T ,Γ] for which we know by the above application of the balls-into-
bins principle

P [S |Γ]=P [A |T ,Γ] .

Because the (A′
i , j )i , j are mutually independent, we can easily compute the unconditional probability P [A |Γ]: by

inclusion/exclusion,

P [A |Γ]=
m∏

i=1

(
1−2(1−k/n)Γi +2(1−2k/n+ℓ/n)Γi

)
(10)

(the probability that max j∈[Γi ] A′
i , j ,1 = max j∈[Γi ] A′

i , j ,2 = 1, i.e., both tests positive, equals one minus the probability

that max j∈[Γi ] A′
i , j ,1 = 0 minus the probability that max j∈[Γi ] A′

i , j ,2 = 0 plus the probability that max j∈[Γi ] A′
i , j ,1 =

max j∈[Γi ] A′
i , j ,2 = 0; then add the probability that max j∈[Γi ] A′

i , j ,1 = max j∈[Γi ] A′
i , j ,2 = 0, i.e., both tests negative).

Finally, to deal with the conditioning we use Bayes’ rule:

P [A |T ,Γ] = P [A |Γ]P [T |A ,Γ]

P [T |Γ]
. (11)

Since the (A′
i , j )i , j are independent, Stirling’s formula yields

P [T |Γ]=Ω
(
(∆k)−3/2) .

A short justification can be found in Section B.1. Moreover, by definition we have P [T |A ,Γ] ≤ 1. Hence, (5)
follows from (9)–(11). To complete the proof of the proposition, we claim that

∑
0≤ℓ≤⌈(1−1/logn)k⌉

O
(
(∆k)3/2)

(
k

ℓ

)(
n−k

k −ℓ

)
m∏

i=1

(
1−2(1−k/n)Γi +2(1−2k/n+ℓ/n)Γi

)
= o(1). (12)

To prove Equation (12), let α= ℓ/k. Using Lemma 2.4 and recalling m = ck log(n/k) and ∆= d log(n/k), we find

E[Zk ,l (G,σ)]≤O
(
(∆k)3/2)

(
k

(1−α)k

)(
n−k

(1−α)k

)
m∏

i=1

(
1−2

(
1− k

n

)Γi

+2

(
1− 2k

n
+ αk

n

)Γi
)

≤O
(
(∆k)3/2)

(
e

(1−α)

en

(1−α)k

)(1−α)k
(

1−2

(
1− k

n

)Γmax

+2

(
1− 2k

n
+ αk

n

)Γmin
)m

≤O
(
(∆k)3/2)

(
e

(1−α)

en

(1−α)k

)(1−α)k (
1−2

(
1− k

n

) n log 2
k

(
1+n−Ω(1))

(13)

+2

(
1− 2k

n
+ αk

n

) n log 2
k

(
1+n−Ω(1)) )m

≤O
(
(∆k)3/2)

(
e

(1−α)

en

(1−α)k

)(1−α)k (
1− (

1−2−(1−α))exp
(
n−Ω(1)))m

=O
(
(∆k)3/2)

(
e

(1−α)

en

(1−α)k
(k/n)c log(2)+n−Ω(1)

(1+o(1))

)(1−α)k

=O
(
(∆k)3/2)

(
e2(k/n)c log(2)−1+n−Ω(1)

(1−α)2

)(1−α)k

. (14)

By the definition of m > (1+ε)minf and ℓ< ⌈
k(1− log−1 n)

⌉
, we have

c log2 = 1+ε and (1−α)2 ≥ 1/log2 n (15)

Moreover, as ℓ < ⌈
k(1− log−1 n)

⌉
we have (1−α)k = ω(1). Thus (15) implies that (14) tends to zero with n → ∞.

Therefore, the proposition follows from Equations (14), (15) and Markov’s inequality.
�
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The argument from Proposition 3.1 does not extend to large overlaps (close to k) because the expression on the
r.h.s. of (4) gets too large. In other words, merely computing the expected number of solutions with a given overlap
does not do the trick. This ‘lottery phenomenon’ is ubiquitous in random constraint satisfaction problems: for big
overlap values rare solution-rich instances drive up the expected number of solutions [4, 5]. Fortunately, we can
find a remedy.

Proposition 3.2. Let ε> 0 and 0 < θ < 1 and assume that m > (1+ε)minf(k,θ). W.h.p. we have Zk ,ℓ(G ,σ̂) = 0 for all
(1−1/log n)k ≤ ℓ< k.

In order to cope with this issue we take another leaf out of the random CSP literature [2, 34]. Namely, we show
that the solution σ is locally rigid. That is, the expansion properties of the random bipartite graph G preclude the
existence of other solutions that have a big overlap with σ. The following lemma holds the key to this effect.

Lemma 3.3. For any ε> 0 there exists δ= δ(ε) > 0 such that for all m > (1+ε)minf the following is true. Let R be the
event that for every xi withσxi = 1 there are at least δ∆ tests a ∈ ∂xi such that ∂a \ {xi } ⊆V0. Then P [R] = 1−o(1).

Proof. Let (X i )i∈[m] be a sequence of independent Bin(Γi ,k/n)-variables as in Section 2. Also let W =∑m
i=1 1 {Y i = 1}

as in Section 2. Proceeding along the lines of the proof of Lemma 2.3 (see (35) in Section B.6), we obtain

P
[
W = (

1+n−Ω(1))k∆/2 | Γ]= 1−o(n−7). (16)

Let T be the number of infected individuals which only show up less than δ∆ of their tests as the only infected
individual, i.e.

T =
∣∣∣∣∣x ∈V1 :

∑
a∈∂x

1{∂a \ {x} ⊆V0} < δ∆

∣∣∣∣∣ .

Moreover, let H = H (N ,K ,n′) be a hypergeometric random variable with parameters N = k∆ (total eligible assign-
ments for infected individuals), K = W (tests with only one infected individual) and n′ = ∆ (number of tests per
individuals). Then the union bound over k infected individuals yields

E [T | Γ,W ] ≤ kP [H < δ∆] . (17)

Further, the Chernoff bound for the hypergeometric distribution implies

P [H < δ∆]≤ exp(−∆DKL (δ‖W /(k∆))) (18)

Recall∆= d log(n/k). Since DKL (δ‖1/2+o(1)) = δ logδ+(1−δ) log(1−δ)+log 2+o(1) andδ logδ+(1−δ) log(1−δ) ր 0
as δ→ 0 and c > θ

(1−θ) log2 2
, we can choose δ> 0 small enough so that

∆(δ logδ+ (1−δ) log(1−δ)+ log2+o(1)) > logk (19)

Finally, the assertion follows from (16)–(19). �

Hence, w.h.p. any infected individual appears in plenty of tests where all the other individuals are uninfected.
This property causes σ to be locally rigid. To see why, consider the repercussions of just changing the status of a
single individual xi from infected to uninfected. Because given R the individual xi appears as the only infected
individual in at least δ∆ tests, in order to maintain the same tests results we will also need to flip at least one
individual in each of these tests from ‘uninfected’ to ‘infected’. Since tests typically have relatively few individuals
in common, the necessary number of flips from 0 to 1 will be Ω(∆) =Ω(logn). But then in order to keep the total
number of infected individuals constant k, we will need to perform another Ω(∆) flips from 1 to 0. Yet given R

each of these ‘second generation’ individuals that we flip from infected to uninfected is itself the only infected
individual in many tests. Thus, the single flip that we started from triggers a veritable avalanche of flips, which will
stop only after the overlap has dropped significantly. The next lemma formalises this intuition. The lemma shows
that while the unconditional expectation of Zk ,ℓ(G ,σ̂) is ‘too big’, the conditional expectation of Zk ,ℓ(G,σ̂) given
R (as defined in Lemma 3.3) is much smaller. Let m0 = m0(G ,σ̂) be the total number of negative tests.

Lemma 3.4. Suppose that (1−1/log n)k ≤ ℓ< k and let Γmin = mini∈[m] Γi , Γmax = maxi∈[m] Γi . Then

E[Zk ,ℓ(G,σ̂) | Γ,R,m0]≤O
(
(∆k)3/2)

(
k

ℓ

)(
n−k

k −ℓ

)(
1−

(
1− k −ℓ

n−k

)Γmax
)δ∆(k−ℓ) (

n−2k +ℓ
n−k

)(
1+n−Ω(1))Γmin m0

. (20)
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The proof of Lemma 3.4 is somehow subtle as we need to get a handle on the dependencies in G and is included
in Section C.1. To convey the intuition behind the expression in Lemma 3.4, the term

(k
ℓ

)(n−k
k−ℓ

)
accounts for the

number of assignments τ ∈ {0,1}V of Hamming weight k whose overlap with σ is equal to ℓ. The terms thereafter
capture the probability that such an assignment τ exhibits the same test results as the true configuration σ. The
first term provides a necessary condition for a positive test under σ to stay positive under τ. By Lemma 3.3, we
know that every infected individual shows up in at least δ∆ tests as the only infected individual. Now, there are
k−ℓ infected underσ, but healthy under τ. For any of these δ∆(k−ℓ) tests, we need to have at least one individual
that is healthy under σ, but infected under τ included in this test. Next, we need to ensure that any negative test
under σ stay negative under τ. To this end, every individual included in a negative test under σ of which we have
at least Γminm0 must be healthy under τ. The second term captures this probability.

Proof of Proposition 3.2. In order to establish the proposition it suffices to show that there is ε′ ≤ (1−1/log(n))k
such that

∑
ε′≤ℓ≤k

E[Zk ,ℓ(G ,σ̂)|Γ,R,m0]= o(1). (21)

Starting from the expression in Lemma 3.4, setting α = ℓ/k and recalling m = ck log(n/k) and ∆ = d log(n/k), we
obtain

E[Zk ,ℓ(G,σ̂)|Γ,R,m0]

≤O
(
(∆k)3/2)

(
k

k −ℓ

)(
n−k

k −ℓ

)(
n−2k +ℓ

n−k

)(
1+n−Ω(1))Γmin m0

(
1−

(
1− k −ℓ

n−k

)Γmax
)δ∆(k−ℓ)

≤O
(
(∆k)3/2)( e

1−α
)(1−α)k

(
e(n−k)

(1−α)k

)(1−α)k (
1− (1−α)k

n−k

) mn log 2
2k

(
1+n−Ω(1)) (

1−2−(1−α)
(
1+n−Ω(1)))δ∆(1−α)k

(22)

≤O
(
(∆k)3/2)

(
e2n

(1−α)2k

)(1−α)k

exp

(
(1−α)k

c log 2

2

(
1+n−Ω(1)) log(k/n)

)

·exp
(
−cδ log(2) log

(
1−2−(1−α)

(
1+n−Ω(1)))

log(k/n)(1−α)k
)

≤O
(
(∆k)3/2)

(
e2n

(1−α)2k
exp

(
log(k/n)

(
1+n−Ω(1))

(
c log2

2
−cδ log(2) log

(
1−2−(1−α)

(
1+n−Ω(1))))))(1−α)k

. (23)

As long as 1−α= o(1), we find

(k/n)− log
(
1−2−(1−α))

(1−α)−2 → 0 as n →∞.

Moreover, (1−α)k ≥ 1. Thus, the expression (23) is of order

O
(
(∆k)3/2)(k/n)ω(1) = n−ω(1). (24)

Since (24) holds for any constant c > 0 and any value of α s.t. 1−α= o(1), it also holds for α≥ 1−1/log n. Conse-
quently (21) is established w.h.p. �

Propositions 3.1 and 3.2 readily imply that Zk (G,σ̂) = 1 w.h.p. if m > (1 + ε)minf(k,θ). Hence, Corollary 2.2
shows that there exists an inference algorithm that given G,σ̂ and k outputs σ w.h.p. Up to now, the algorithm
relies on exactly knowing the number of infected individuals k, which in practice could be rather difficult to learn.
Fortunately, this assumption can be removed. Namely, the following proposition shows that w.h.p. there is no
assignment σ that is compatible with the test results and that has Hamming weight less than k.

Proposition 3.5. Let ε> 0 and 0< θ < 1 and assume that m > (1+ε)minf(k,θ). W.h.p. we have
∑

k ′<k Zk ′(G,σ̂) = 0.

Proof. To get started, suppose that 0 < θ < 1 and c < log−2 2. We claim that for any value of d > 0,
∣∣V +

0

∣∣ ≥ k log n
w.h.p.. Indeed, from Proposition 2.3(1), we know that

∣∣V +
0

∣∣= (
1+n−Ω(1))n

(
1−exp(−d/c)

)∆ .

Recalling ∆= d log(n/k), the expression takes the minimum at d = c log2. It follows that
∣∣V +

0

∣∣≥ (
1+n−Ω(1))n(k/n)c log2 2.
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If c = (1−ε) log−2 2 for ǫ> 0, then
∣∣V +

0

∣∣≥ (
1+n−Ω(1))n(k/n)1−ǫ = (

1+n−Ω(1))kn(1−θ)ǫ ≥ k log n w.h.p. (25)

Now, the following two statements establish that if there does not exist a second satisfying set of Hamming weight
k, there does also not exist a satisfying set with smaller Hamming weight w.h.p..

First, we claim that if m > (1+ ǫ)minf(k,θ), w.h.p. there does not exist a satisfying configuration with Hamming
weight smaller than the correct configuration, where the set of infected individuals is not a subset of the true set of
infected individuals. To see why, suppose there existed a satisfying configuration with a smaller Hamming weight,
whose infected individuals are not a subset of the true infected individuals. By (25), we know that

∣∣V +
0

∣∣ ≫ k for
m < (1−ǫ)malg w.h.p. Therefore, we could construct a satisfying configuration of identical Hamming weight as the
true configuration by flipping individuals in V +

0 from healthy to infected. Observe that by the definition of V +
0 ,

flipping individuals in V +
0 does not change the test result. Therefore, we would be left with a second satisfying

configuration of identical Hamming weight as the true configuration, a contradiction to Propositions 3.1 and 3.2.
Second, we argue that if m > (1+ ǫ)minf(k,θ), w.h.p. there does not exist a satisfying configuration with Ham-

ming weight smaller than the correct configuration, where the set of infected individuals is a subset of the true set
of infected individuals. Suppose there existed a satisfying configuration with a smaller Hamming weight, whose
infected individuals are a subset of the true infected individuals. Then, the true configuration would need to con-
tain individuals in V +

1 , which can be flipped from infected to healthy without affecting the test result. However,
Proposition 2.3(5) shows that for m > (1+ǫ)minf, V +

1 =; w.h.p. �

As an immediate consequence of Proposition 3.5 we conclude that for m > (1+ ε)minf(k,θ) the problem of
inferring σ boils down to a minimum vertex cover problem, as previously conjectured by Aldridge, Baldassini and
Johnson [12]. Namely, let P be the set of all positive tests, i.e., all tests ai , i ∈ [m], with σ̂ai = 1. Moreover, let V + be
the set of all variables xi ∈V such that ∂xi ⊆P ; in words, xi takes part in positive tests only. We set up a hypergraph
H with vertex set V + and hyperedges ∂ai ∩V +, ai ∈ P . Clearly, the set of all individuals xi with σxi = 1 provides
a valid vertex cover of H (as any positive test must feature an infected individual). Conversely, Propositions 3.1
and 3.2 show that w.h.p. this is the unique vertex cover of size k, and Proposition 3.5 shows that there is no strictly
smaller vertex cover w.h.p. Therefore, w.h.p. we can infer σ even without prior knowledge of k by way of solving
this minimum vertex cover instance.

4. THE INFORMATION-THEORETIC LOWER BOUND

We proceed with the negative statement that w.h.p. σ cannot be inferred if m < (1− ε)minf. In light of Corol-
lary 2.2 in order to prove the first part of Theorem 1.1 we need to show that the number Zk(G,σ̂) of assignments
consistent with the test results σ̂ is unbounded w.h.p. The proof of this fact is based on a very simple idea: we just
identify a moderately large number of individuals whose infection status could be flipped without affecting the
test results. The following lemma yields a bound on m below which the number of such potential false positives
(
∣∣V +

0

∣∣) and negatives (
∣∣V +

1

∣∣) abound.

Proposition 4.1. Let ε> 0 and 0< θ < 1 and assume that

m < (1−ε)θ

(1−θ) log2 2
nθ(1−θ) log n.

Then for any choice of ∆we have |V +
0 |, |V +

1 | = nΩ(1) w.h.p.

Proof. Thanks to Lemma 2.6 we may assume that ∆ = d(log(n/k)), for a constant d as this choice minimizes
the number of individuals in V +

1 . Then Proposition 2.3(4) guarantees that for every such constant as long as

c < θ
1−θ

1
log2 2

, there are nΩ(1) individuals in both V +
1 and V +

0 , which yields to Proposition 4.1. �

As an immediate application we obtain the following information-theoretic lower bound.

Corollary 4.2. Let ε> 0 and 0 < θ < 1 and assume that

m < (1−ε)θ

(1−θ) log2 2
nθ(1−θ) log n. (26)

Then Zk(G ,σ̂) =ω(1) w.h.p.
11
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Proof. We need to exhibit alternative vectors σ′ ∈ {0,1}V with Hamming weight k that render the same test results
asσ. Thus, pick any xi ∈V +

0 and any x j ∈V +
1 and obtainσ′ fromσ by setting σ′

xi
= 1 andσ′

x j
= 0. By construction,

σ′ has Hamming weight k and renders the same test results. Hence, Proposition 4.1 shows that Zk(G,σ̂) ≥ |V +
0 ×

V +
1 | =Ω(n2θ) ≫ 1 w.h.p. �

The bound (26) matches minf for θ' 0.41. A simpler, purely information-theoretic argument covers the remain-
ing θ.

Proposition 4.3. Let ε> 0, 0 < θ < 1. If m < 1−ε
log 2 nθ(1−θ) log n, then Zk(G,σ̂) =ω(1) w.h.p.

Proof. This Lemma follows from the classical information-theoretic lower bound for the group testing problem.
Namely, m tests allow for 2m possible test results. Hence, if

m < (1−ε)

log 2
nθ(1−θ) log n,

then the number of possible test results is far smaller than the number of vectorsσ ∈ {0,1}V with Hamming weight
k. Therefore, w.h.p. there exists an unbounded number of vectors of Hamming weight k that render the same test
results as σ. �

We thus conclude that for all 0 < θ < 1, w.h.p. Zk (G,σ̂) =ω(1) if m < (1−ε)minf. Therefore, the desired information-
theoretic lower bound follows from Corollary 2.2.

5. THE SCOMP ALGORITHM

For θ ≥ 1/2 we have malg = minf and thus Theorem 1.1 implies that SCOMP as described in Section 1.3 w.h.p. fails
to infer σ for m < (1−ε)malg. Therefore, we are left to establish Theorem 1.2 for θ < 1/2, in which case

malg =
k log(n/k)

log2 2
. (27)

The proof of Theorem 1.2 for θ < 1/2 hinges on two propositions. First we show that below malg, the set V −−
1 of

infected individuals that the second step of SCOMP identifies correctly is empty. Formally, with V −
0 from (3), let

V −−
1 = {

x ∈V1 : ∃a ∈ ∂x : ∂a \ {x} ⊆V −
0

}
.

Proposition 5.1. Suppose that 0 < θ < 1/2 and ε > 0. If m < (1−ε)malg, then for all ∆ > 0 we have V −−
1 (G ,σ̂∗) =;

w.h.p.

The proofs of Propositions 5.1 and 5.2 are based on moment calculations that turn out to be mildly subtle due
to the potentially very large degrees of the underlying graph G . The technical workout in included in Section D.1
and D.2.

With the second step of SCOMP failing to ‘explain’ (viz. cover) any positive tests, the greedy vertex cover algorithm
takes over. This algorithm is applied to the hypergraph whose vertices are the as yet unclassified individuals and
whose edges are the neighbourhoods of the positive tests. Our second lemma shows that the set V +,∆ of poten-
tentially false positive individuals x ∈V +

0 that participate in the maximum number∆ of different tests is far greater
than the actual number k of infected individuals. Formally, let

V +,∆
0 = {

x ∈V +
0 : |∂x| =∆}

.

Proposition 5.2. Suppose that 0 < θ < 1/2 and ε> 0. If m < (1−ε)malg, then for∆= d log (n/k) for all constant d we

have
∣∣∣V +,∆

0

∣∣∣≥ k log n w.h.p.

We complete the proof of Theorem 1.2 as follows.

Proof of Theorem 1.2. The first step ofSCOMP (correctly) marks all individuals that appear in negative tests as healthy.
Moreover, Proposition 5.1 implies that the second step of SCOMP is void w.h.p., because there is no single infected
individual that appears in a test whose other individuals have already been identified as healthy by the first step.
Consequently, SCOMP simply applies the greedy vertex cover algorithm. Now, thanks to Proposition 5.2 it suffices

to prove that SCOMP will fail w.h.p. if
∣∣∣V +,∆

0

∣∣∣=ω(k). Because they belong to positive tests only, all the individuals of

V +,∆
0 are present in the vertex cover instance that SCOMP attempts to solve. Moreover, in the hypergraph no vertex

12
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has degree greater than ∆, because the degrees of x1, . . . , xn in G are equal to ∆. (Some of the hypergraph degrees
may be strictly smaller than ∆ because G is a multi-graph.) Therefore, since |V +,∆

0 | ≥ k log n while the actual set of
infected individuals only has size k, w.h.p. the individual classified as infected by the very first step of the greedy
set cover algorithm belongs to V +

0 . Hence, this individual is not actually infected, i.e., SCOMP errs w.h.p. �
Since the success probability of the SCOMP algorithm is at least as high as of the DD algorithm, we can prove the

conjecture of [30] regarding the upper bound of the DD algorithm.

Corollary 5.3. If m < (1−ε)malg, the DD algorithm will fail to retrieve the correct set of infected individuals w.h.p..

Acknowledgment. We thank Arya Mazumdar for bringing the group testing problem to our attention.
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A. NOTATION

Notation Definition & Properties Description

n population size
k k ∼ nθ for θ ∈ (0,1) number of infected individuals
m m = ck log(n/k) number of tests
x1, . . . , xn variable nodes
V =Vn {xi , . . . , xn } set of all individuals
a1, . . . , an factor nodes
F = Fm {ai , . . . , am} set of all tests
∆ ∆= d log(n/k) tests per individual, variable node degree
Γ1, . . . ,Γm

(∑m
i=1Γi

)
/m = dn/(ck) individuals per test, factor node degree

Γ (Γi )i∈[m] σ-algebra generated by the random vari-
ables (Γi )i∈[m]

σ ∈ {0,1}V ∑n
i=1σi = k n-dimensional vector of Hamming

weight k indicating the individuals’
infection status

G =G(n,m,∆) random bipartite graph on n variable
nodes, m factor nodes and variable de-
gree ∆

∂xi = ∂G xi

for i ∈ [n]
∂xi ⊆ F, |∂xi | =∆ set of tests that individual xi participates

in under G
∂ai = ∂G ai

for i ∈ [m]
∂ai ⊆V , |∂ai | = Γi set of individuals in test ai under G

σ̂ ∈ {0,1}F σ̂i = 1 {∃x ∈ ∂ai :σx = 1} m-dimensional vector indicating the test
outcomes

m1,m0 m1 = |{a ∈ F : σ̂a = 1}| ,m0 = m −m1 number of positive and negative tests
V0 V0 = {x ∈V :σx = 0} set of healthy individuals
V1 V1 =V \V0, |V | = k set of infected individuals
V +

0 {x ∈V0 :∀a ∈ ∂x : σ̂a = 1} set of healthy individuals only included in
positive tests

V −
0 V −

0 =V0 \V +
0 set of healthy individuals included in at

least one negative test
V +

1

{
x ∈V1 : ∀a ∈ ∂x : ∃y ∈ ∂a \ {x} :σy = 1

}
set of infected individuals that have an-
other infected individual in all their tests

V −−
1

{
x ∈V1 : ∃a ∈ ∂x : ∂a \ {x} ⊆V −

0

}
Set of infected individuals that occur in at
least one test with only healthy individu-
als

Γmin,Γmax Γmin = mini∈[m] Γi ,Γmax = maxi∈[m] Γi minimum and maximum test degree
Sk (G,σ̂) Sk (G,σ̂) =

{
σ ∈ {0,1}V :

∀ai ∈ [m] : σ̂ai = 1 {∃x ∈ ∂ai :σx = 1}
} set of configurations consistent with the

test results under G
Zk(G ,σ̂) Zk (G,σ̂) = |Sk (G ,σ̂)| number of configurations consistent with

the test results
Zk ,ℓ(G,σ̂) Zk ,ℓ(G,σ̂) = |{σ ∈ Sk (G,σ̂) : 〈σ,σ〉 = ℓ}| number of configuration consistent with

the test results and with overlap ℓ withσ
Y i for i ∈ [m] Y i = |{x ∈ ∂ai :σx = 1}| number of edges that connect test ai with

an infected individual
X i for i ∈ [m] X i ∼ Bin (Γi ,k/n) binomially-distributed random variable

with parameters Γi and k/n
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W,W ′ W =∑m
i=1 1{Y i = 1} ,W ′ =∑m

i=1 1 {X i = 1} W is the number of tests containing a sin-
gle infected individual, W ′ is a random
variable depending on (X i )i∈[m]

U U = |{x ∈V1 : ∀ai ∈ ∂x : Y i > 1}| number of infected individuals not adja-
cent not any test with precisely one in-
fected individual

T
∣∣{x ∈V1 :

∑
a∈∂x 1 {∂a \ {x} ⊆V0} < δ∆

}∣∣ number of infected individuals who ap-
pear in less than δ∆ tests as the only in-
fected individual for some constant δ> 0

R R = |{x ∈ V1 : ∃ai ∈ ∂x :
Y i > 1 and ∂a \ {x} ⊆V0

}|
number of infected individual adjacent to
some test multiple times with no other
infected individual besides themselves

A′
i , j , A′

i , j ,k auxiliary random variables, defined in
proof of Proposition 3.1

A A = {∀i ∈ [m] :
max j∈[Γi ] A′

i , j ,1 = max j∈[Γi ] A′
i , j ,2

} event that every test under the balls-and-
bins experiment features the same test
result

E E = {∑
i∈[m] X i = k∆

}
event that the sum of X i is exactly k∆

M set of all indices i ∈ [m] for which there
exists precisely one gi ∈ [Γi ] such that
A′

i ,gi ,1 = 1

N set of indices i ∈ [m] such that
max j∈[Γi ] A′

i , j ,1 = 0

R R = {∀x ∈V1 : |{a ∈ ∂x : ∂a \ {x} ⊆V0}| ≥ δ∆} event that for every x ∈ V1 there are at
least δ∆ tests a ∈ ∂x for some δ > 0 such
that ∂a \ {x} ⊆V0.

S event that one specific σ that has overlap
ℓ with σ belongs to Sk (G,σ̂)

T event that sum of independent random
variable is equal to specific value, defined
in (7)

V V =
{

m1 = m
2 (1+o(1))

}
event that around half of the tests are pos-
itive

W W ={|V +
0 | = (1+o(1))(n−k)(1−exp(−d/c))∆

} event that the size of V +
0 is concentrated

around its mean
o(1),ω(1) o(1) [ω(1)] denotes a term that vanishes

[diverges] in the limit of large n
w.h.p. probability of 1−o(1) as n →∞

The following sections contain the proofs of the lemmas omitted so far.

B. PRELIMINARIES

B.1. Preliminaries. We start by stating the Chernoff bound as applied in this paper.

Lemma B.1 (Chernoff bound, [29] (Section 2.1)). Let X ∼ Bin(n, p) be a binomially-distributed random variable
with λ= E[X ]. Further, let

ϕ : (−1,∞) →R≥0, x 7→ (1+ x) log(1+ x)− x

Then for some t ≥ 0,

P (|X −λ| ≥ t) ≤ exp
(
−λϕ (t/λ)− (n−λ)ϕ (−t/(n−λ))

)
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As an application, we readily find

P
(|X −λ| ≥p

n logn
)
≤ n−ω(1)

Next, we justify that the Stirling approximation of Section 3 is accurate. Namely, let A′
i , j = (A′

i , j ,1 , A′
i , j ,2) be

{0,1}2-valued random variables such that (A′
i , j )i∈[m], j∈[Γi ] are mutually independent and such that

P
[

A′
i , j = (1,1)

]
= ℓ/n, P

[
A′

i , j = (0,1)
]
=P

[
A′

i , j = (1,0)
]
= (k −ℓ)/n,

P
[

A′
i , j = (0,0)

]
= (n−2k +ℓ)/n

for all i , j . As before, we denote by T the event that

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,1)

}
= ℓ∆,

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,0)

}
= (n−2k +ℓ)∆,

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,0)

}
=

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,1)

}
= (k −ℓ)∆,

i..e, that all of the sums on the l.h.s. are precisely equal to their expected values. Since the (A′
i , j )i , j are independent,

Stirling’s formula yields

P [T ]=Ω((∆k))−3/2 . (28)

This can be seen as follows. For the sake of brevity, define

p00 = (n−2k +ℓ)/n, p11 = ℓ/n, and p10 = p01 = (k −ℓ)/n.

As A′
i , j is a family of independent multinomial variables

A′
i , j ∼ Mult

(
1,(p11, p00, p10, p01)

)
,

we find

X ∼
m∑

i=1

Γi∑
j=1

A′
i , j ∼ Mult

(
n∆, (p11, p00, p10, p01)

)
.

Hence, the probability of event T occurring is the probability, that X hits its expectation. Thus, using the very
basic approximation n! =Θ

(p
n

)
(n/e)n we find

P (T ) = (n∆)!(ℓ/n)ℓ∆((n−2k +ℓ)/n)(n−2k+ℓ)∆((k −ℓ)/n)2(k−ℓ)∆

(ℓ∆)!((n−2k +ℓ)∆)!((k −ℓ)∆)!((k −ℓ)∆)!

=Θ
( p

n∆√
ℓ(n−2kℓ)(k −ℓ)2∆4

)(
(n∆)n (ℓ/n)ℓ((n−2k +ℓ)/n)n−2k+ℓ((k −ℓ)/n)2(k−ℓ)

ℓℓ(n−2k +ℓ)n−2k+ℓ(k −ℓ)2(k−ℓ)

)∆

= (1+O(1/n))Θ




p
n

p
n

√
ℓk2 −2ℓ2k +ℓ3 −k

(
2ℓk2/n−2kℓ2/n

)+ℓ4/n




=Ω
(√
∆−3(ℓk2 +ℓ2k +ℓ3)−1

)
=Ω(

(∆k)−3/2) , (29)

where (29) follows immediately from ℓ≤ k = o(n) and directly implies (28). In due course we apply similar calcu-
lations often, some calculations involve conditional probabilities. These conditions are only restricting Γi to take
specific (common) values and clearly the above argument is totally invariant under different values of Γi , as long
as

∑m
i Γi = n∆.
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B.2. Getting started. In the next step, recall that neighbourhoods of different tests in the random multi-graph
seizably intersect. To cope with the ensuing correlations, we introduce a new family of random variables that, as
we will see, are closely related to the statistics of the appearances of infected/uninfected individuals in the various
tests. Specifically, recalling that Γi signifies the degree of test ai and that

∑m
i=1Γi = n∆, let (X i )i∈[m] be a sequence

of independent Bin(Γi ,k/n)-variables. Moreover, let

E =
{ ∑

i∈[m]
X i = k∆

}
.

Because the X i are mutually independent, Stirling’s formula shows that

P [E ] =Ω(1/
p
∆k), (30)

which follows along the lines of Section B.1. Additionally, let Y i be the number of edges that connect test ai with
an infected individual. (Since G is a multi-graph, it is possible that an infected individual contributes more than
one to Y i .) Further, let Γ be the σ-algebra generated by the random variables (Γi )i∈[m]. Whenever we condition on
Γ, we assume that the bounds from Lemma 2.4 and 2.5 hold.

Lemma B.2. Given Γ, the vectors (Y 1, . . . ,Y m) and (X 1, . . . , X m) given E are identically distributed.

Proof. For any integer sequence (yi )i∈[m] with yi ≥ 0 and
∑

i∈[m] yi = k∆we have

P
[∀i ∈ [m] : Y i = yi | Γ

]=
( k∆

y1,...,ym

)( (n−k)∆
Γ1−y1,...,Γm−ym

)
( n∆
Γ1 ,...,Γm

) =
∏m

i=1
Γi !

yi !(Γi −yi )!

(n∆)!
(k∆)!((n−k)∆)!

=
(

n∆

k∆

)−1 m∏
i=1

(
Γi

yi

)
.

Hence, for any sequences (yi ), (y ′
i ) we obtain

P
[∀i ∈ [m] : Y i = yi |Γ

]

P
[∀i ∈ [m] : Y i = y ′

i |Γ
] =

m∏
i=1

(Γi
yi

)
(Γi

y ′
i

) =
P

[∀i ∈ [m] : X i = yi |Γ,E
]

P
[∀i ∈ [m] : X i = y ′

i |Γ,E
] ,

as claimed. �

B.3. Proof of Lemma 2.4. Since each variable draws a sequence of ∆ tests uniformly at random, for every i ∈ [m]
the degree Γi has distribution Bin(n∆,1/m). Therefore, the assertion follows from the Chernoff bound.

B.4. Proof of Lemma 2.5. Let m′
0 = ∑m

i=1 1 {X i = 0}. Then E[m′
0] = ∑m

i=1P [Bin(Γi ,k/n)) = 0] = ∑m
i=1(1 − k/n)Γi .

Hence, Lemma 2.4 shows that with probability 1−o(n−2),

E[m′
0 | Γ]≥ m(1−k/n)Γmax = m exp

(
(∆n/m +O(

p
∆n/m logn)) log(1−k/n)

)
(31)

= m
(
exp(−d/c)+O(

p
k/n logn)

)
, (32)

E[m′
0 | Γ]≤ m(1−k/n)Γmin = m

(
exp(−d/c)+O(

p
k/n logn)

)
. (33)

Because the X i are mutually independent, m′
0 is a binomial variable. Therefore, the Chernoff bound (e.g. Lemma B.1)

shows that

P
[∣∣m′

0 −E[m ′
0 |Γ]

∣∣>p
m log n | Γ

]
= o(n−10). (34)

Finally, the assertion follows from (30), (31)–(34) and Lemma B.2.

B.5. Proof of Lemma 2.6. The expected degree of a test ai equals ∆n/m. Therefore, if ∆ = o(log(n/k)), then by
Lemma 2.5, m1 = o(m) w.h.p. To exploit this fact, call σ ∈ {0,1}V of Hamming weight k bad for G if given σ=σ we
indeed have m1 = o(m). Let B(G) be the set of all such bad σ. Then w.h.p. G has the property that |B(G)| ∼ (n

k

)
,

i.e. asymptotically most configurations will have few positive tests. Now, condition on the event that |B(G)| ∼ (n
k

)

and let B be the set of all subsets of [m] of size o(m). Further, let fG : B(G) →B map σ ∈ {0,1}V to the correspond-
ing set of positive tests. Finally, let B ′(G) be the set of all σ ∈ B(G) such that | f −1

G ( fG (σ))| < n, i.e. the set of all
configurations for which there are less than n other configurations rendering the same test results. Then

|B ′(G)| ≤ n|B| ≤ n

(
m

o(m)

)
= exp(o(m))= o

((
n

k

))
.
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Consequently, w.h.p. over the choice of G and σ we have Zk (G,σ̂) ≥ n. The same argument applies for log(n/k) =
o(∆) with the term ‘positive test’ replaced by ‘negative test’.

B.6. Proof of Proposition 2.3. We start by proving part (1) using a straightforward second-moment calculation.
Recall∆= d log(n/k) and m = ck log(n/k). Lemma 2.4 and Lemma 2.5 show that with probability at least 1−o(n−2)
the total degree of the negative tests comes to

m∑
i=1

1 {∂ai ⊆V0}Γi =∆n exp(−d/c)+O
(p

m log2(n)∆n/m +m
p
∆n/m log n

)

=∆n exp(−d/c)+O
((p

nk +n/
p

k
)

log3 n
)
=∆n

(
exp(−d/c)+n−Ω(1)) .

Consequently, with probability at least 1− o(n−2) the total number of edges between V0 and the set of positive
tests is ∆n

(
1−exp(−d/c)+n−Ω(1)

)
. Moreover, the total number of edges between V0 and all tests comes down to

∆(n−k). Given these events and since each individual is assigned to tests uniformly at random with replacement,
the probability that a given x ∈V0 belongs to V +

0 comes out as
(
∆n

(
1−exp(−d/c)+n−Ω(1)

)

∆

)(
∆(n−k)

∆

)−1

=
(
1+n−Ω(1))(1−exp(−d/c)

)∆ .

Next, we estimate the probability that x, x′ ∈V0 both belong to V +
0 :

(
∆n

(
1−exp(−d/c)+n−Ω(1)

)

2∆

)(
∆(n−k)

2∆

)−1

= (
1+n−Ω(1))(1−exp(−d/c)

)2∆ ,

Hence, E[|V +
0 |2 |Γ]−E[|V +

0 | |Γ]2 =O(n2−Ω(1)). Therefore, the assertion follows from Chebyshev’s inequality.
Proceeding with part (2), let the number of tests containing a single infected individual be

W =
m∑

i=1
1 {Y i = 1} , W ′ =

m∑
i=1

1 {X i = 1} .

Then Lemma 2.4 shows that w.h.p.

E[W ′] =
m∑

i=1

Γi k

n
(1−k/n)Γi−1 ≤ Γmaxkm

n
(1−k/n)Γmin−1

=
(
1+n−Ω(1))k∆(1−k/n)∆n/m =

(
1+n−Ω(1))k∆exp(−d/c)

Analogously,

E[W ′]≥ Γminkm

n
(1−k/n)Γmax = (

1+n−Ω(1))k∆exp(−d/c).

Hence, because W ′ is a binomial random variable, the Chernoff bound (e.g. Lemma B.1) shows that

P
[
W ′ = (

1+n−Ω(1))k∆exp(−d/c) |Γ]= 1−o(n−9).

Therefore, (30) yields

P
[
W =

(
1+n−Ω(1))k∆exp(−d/c) |Γ

]
= 1−o(n−7). (35)

Now, let U be the number of x ∈ V1 that are not adjacent to any test with precisely one positive individual. An
individual x ∈ V1 counts towards U , if out of all possible assignment k∆, it is only assigned to those tests where
it is not the only infected individual (there are a total of k∆−W such assignments). Using the notation nk =
n(n−1) . . . (n−k +1) and recalling ∆=Θ(logn), the bound on W yields

E[U | Γ,W ] = k

(
k∆−W

∆

)(
k∆

∆

)−1

= k
(k∆−W )∆

(k∆)∆
= (

1+n−Ω(1))k

(
k∆−W

k∆

)∆

= (
1+n−Ω(1))k(1−W /k∆)∆ = (

1+n−Ω(1))k(1−exp(−d/c))∆.

By a similar token we obtain

E[U 2 | Γ,W ] = k2

(
k∆−W

2∆

)(
k∆

2∆

)−1

= (
1+n−Ω(1))E[U | Γ,W ]2.
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Therefore, Chebyshev’s inequality shows that w.h.p.

U = (
1+n−Ω(1))k(1−exp(−d/c))∆. (36)

To complete the proof we need to compare U and
∣∣V +

1

∣∣ . Clearly, U ≥
∣∣V +

1

∣∣ . But the inequality may be strict because
U includes positive individuals that appear twice in the same test. To be precise, an individual might be assigned
to one test twice as the only infected individual. Such an individual should not be in V +

1 , but it shows up in U .
Indeed, letting R be the number of such individuals, we obtain

∣∣V +
1

∣∣ ≥ U −R. Hence, we are left to estimate R.
To this end, we observe that the probability that an individual appears in a specific test twice is upper-bounded
by (∆/m)2. Recall m = ck log(n/k) and ∆ = d log(n/k). Consequently, taking the union bound over all tests and
infected individuals we yield

E[R |Γ]≤ km

(
∆

m

)2

=O(logn).

Since by assumption the r.h.s. of (36) is nΩ(1), we conclude that
∣∣V +

1

∣∣ ≥U −R = nΩ(1) w.h.p., as claimed.
Next, we consider (3). Define U as in the proof of Proposition 2.3(2). Then we know that U ≥

∣∣V +
1

∣∣ . Hence, if
k(1−exp(−d/c))∆ = o(1) then

∣∣V +
1

∣∣= o(1) due to (36).
For part (4), we observe for a given c that mind (1−exp(−d/c))∆ is attained at d = c log2. To see this, consider

the function f (d) = (1−exp(−d/c))∆ = n(1−θ)d log(1−exp(−d/c)) and observe that the minimum of f (d) coincides with
the minimum of g (d) = d log(1−exp(−d/c)). Letting x = d/c, the derivatives read as

g (x) = cx log(1−exp(−x))

g ′(x) = c

(
log(1−exp(−x))+ x exp(−x)

1−exp(−x)

)

g ′′(x) = c

(
− (x −2)exp(x)+2

(exp(x)−1)2

)

For d > 0, the unique maximum is attained at x = log2 and accordingly, d = c log2. Furthermore, it is the case
that k(1−exp(− log2))c log2log(n/k) ≥ nΩ(1) and therefore by Proposition 2.3(2),

∣∣V +
1

∣∣ = nΩ(1). By a similar token by
Proposition 2.3(1),

∣∣V +
0

∣∣ = nΩ(1).

Finally, for part (5), setting d = c log2, we see that k(1−exp(− log2))c log 2log(n/k) = o(1) and therefore by Proposi-
tion 2.3(3),

∣∣V +
1

∣∣ = o(1).

C. THE INFORMATION-THEORETIC UPPER BOUND

C.1. Proof of Lemma 3.4. The term
(k
ℓ

)(n−k
k−ℓ

)
accounts for the number of assignments σ ∈ {0,1}V of Hamming

weight k whose overlap with σ is equal to ℓ. Hence, with S being the event that one specific σ ∈ {0,1}V that has
overlap ℓ withσ belongs to Sk ,ℓ(G ,σ̂), we need to show that

P [S |Γ,R,m0]≤O
(
(∆k)3/2) ·

(
1−

(
1− k −ℓ

n−k

)Γmax
)δ∆(k−ℓ) (

n−2k +ℓ
n−k

)Γmin m0

(37)

Due to symmetry we may assume that σxi = 1{i ≤ k} and that σxi = 1{i ≤ ℓ}+1{k < i ≤ 2k −ℓ}.
Proceeding as in the proof of Proposition 3.1, we think of each test ai as a bin of capacity Γi and of each clone

(xi ,h), h ∈ [∆], of an individual as a ball labelled (σxi ,σxi ) ∈ {0,1}2 . We toss the∆n balls randomly into the bins. For
i ∈ [m] and for j ∈ [Γi ] we let Ai , j = (Ai , j ,1, Ai , j ,2) ∈ {0,1}2 be the label of the j th ball that ends up in bin number i .
To cope with this experiment we introduce a new set {0,1}2-valued random variables A′

i , j = (A′
i , j ,1 , A′

i , j ,2) such that

(A′
i , j )i∈[m], j∈[Γi ] are mutually independent and

P
[

A′
i , j = (1,1)

]
= ℓ/n, P

[
A′

i , j = (0,1)
]
=P

[
A′

i , j = (1,0)
]
= (k −ℓ)/n,

P
[

A′
i , j = (0,0)

]
= (n−2k +ℓ)/n
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for all i , j . With T being the event that

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,1)

}
= ℓ∆,

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,0)

}
= (n−2k +ℓ)∆, (38)

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,0)

}
=

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,1)

}
= (k −ℓ)∆, (39)

the vector A′ = (A′
i , j )i , j given T is distributed as A = (Ai , j )i , j given Γ. Moreover, with similar arguments as in

Section B.1, Stirling’s formula yields

P [T ]=Ω((∆k)−3/2). (40)

Let N be the set of indices i ∈ [m] such that max j∈[Γi ] A′
i , j ,1 = 0. Moreover, let M be the set of all indices i ∈ [m]

for which there exists precisely one gi ∈ [Γi ] such that A′
i ,gi ,1 = 1 and such that for this index we have A′

i ,gi ,2 = 0.

Further, let

S ′ =
{
∀i ∈N : max

j∈[Γi ]
A′

i , j ,2 = 0

}
, S ′′ =

{
∀i ∈M : max

j∈[Γi ]
A′

i , j ,2 = 1

}
.

Then

A =
{
∀i ∈ [m] : max

j∈[k]
A′

i , j ,1 = max
j∈[k]

A′
i , j ,2

}
⊆S ′∩S ′′.

Furthermore, given N ,M the events S ′,S ′′ are independent and

P
[
S ′ |N ]=

∏
i∈N

(
n−2k +ℓ

n−k

)Γi

≤
(

n−2k +ℓ
n−k

)Γmin |N |
,

P
[
S ′′ |M

]
=

∏
i∈M

(
1−

(
1− k −ℓ

n−k

)Γi−1
)
≤

(
1−

(
1− k −ℓ

n−k

)Γmax
)|M |

.

For an intuitive explanation of the above expressions, please refer to the section immediately following the
statement of the Lemma 3.4. Given |N | ≥

(
1−n−Ω(1)

)
m0 and |M | ≥ δ∆(k −ℓ), we obtain

P
[
A | |N | ≥ (

1−n−Ω(1))m0, |M | ≥ δ∆(k −ℓ)
]≤

(
n−2k +ℓ

n−k

)Γmin m0
(

1−
(

1− k −ℓ
n−k

)Γmax
)δ∆(k−ℓ)

. (41)

Moreover, we find by 3.3, the concentration of |N | and the fact that E [|N |]= E [m0]= m/2

P
(|N | ≥ (

1−n−Ω(1))m0, |M | ≥ δ∆(k −ℓ)
)= 1−o(1)

and thus

P
[
T | |N | ≥

(
1−n−Ω(1))m0, |M | ≥ δ∆(k −ℓ)

]
=Ω((∆k)−3/2).

Combining (40)–(41) and using the trivial bound

P
[
T |S ,S ′, |N | ≥ (

1−n−Ω(1))m0, |M | ≥ δ∆(k −ℓ)
]≤ 1, (42)

we obtain by Bayes Theorem

P
[
A |T , |N | ≥ (

1−n−Ω(1))m0, |M | ≥ δ∆(k −ℓ)
]≤O

(
(∆k)3/2)

(
n−2k +ℓ

n−k

)(
1−n−Ω(1))Γmin m0

(
1−

(
1− k −ℓ

n−k

)Γmax
)δ∆(k−ℓ)

.

(43)

Because A′ = (A′
i , j )i , j given T is distributed as A = (Ai , j )i , j given Γ, (37) follows from (43).
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D. THE SCOMP ALGORITHM

D.1. Proof of Proposition 5.1. The proof of Proposition 5.1 proceeds in three steps. First, we show that
∣∣V +

0

∣∣ is
concentrated around its expectation. W denotes the corresponding event. Second, we need to get a handle on the
subtle dependencies in G. To this end, we introduce a set of independent multinomial random variables indexed
over the tests. Whereas Y i

1,Y i
0+,Y i

0− denotes the number of infected, potentially false positive and definitively
healthy individuals in test ai , respectively, the triple (X i

1, X i
0+, X i

0−) denote the corresponding multinomial random
variable. We will show that conditioned on the sum of X i

1, X i
0+, X i

0− hitting the total number of individuals of
the three types, (X i

1, X i
0+, X i

0−) is distributed like Y i
1,Y i

0+,Y i
0−. The technical workout is delicate, but is based on

standard results from balls-into-bins experiments. Third, we show that for m < (1−ε)malg, the number of tests W

for which X i
1 = 1 and X i

0+ = 0 decays exponentially in n, which implies that V −−
1 =; w.h.p.

Proof. Lemma 2.6 implies that the optimal choice for the variable degree is∆= d log(n/k) for a constant d . Let m1

be the amount of positive tests and, w.l.o.g. assume that a1...am1 are the positive tests and define

W =
{
|V +

0 | = (1+o(1))(n−k)(1−exp(−d/c))∆
}

.

as the event that the number of ‘potential false positives’
∣∣V +

0

∣∣ is highly concentrated around its mean. Then by
Proposition 2.3(1), we find

P[W ] ≥ 1−o(1) (44)

Similarly as before, we introduce a family of independent random variables corresponding to the tests.
Let Y 1

1, . . . ,Y m1
1 be the number of ones in the tests corresponding to a1, . . . , am1 respectively. Let Y 1

0+, . . . ,Y m1
0+

count the V +
0 occurrences in a1, . . . , am1 . Let Y 1

0−, . . . ,Y m1
0− count the V −

0 occurrences in a1, . . . , am1 . By definition
we find Y i

0− = Γi −Y i
0+−Y i

1. We introduce auxiliary variables X 1
1, . . . , X m1

1 , X 1
0+, . . . , X m1

0+ , X 1
0−, . . . , X m1

0− such that
(X i

1, X i
0+, X i

0−) have distribution
Mult≥(1,0,0)(Γi , p, q,1−p −q),

a multinomial distribution conditioned on the first variable being at least one. The triples
(
(X i

1 , X i
0+ , X i

0−)
)

i∈m1
are

mutually independent. We seek a choice of p satisfying the equation

p := k∆
∑m1

i=1
Γi

1−(1−p)Γi

and q :=
∣∣V +

0

∣∣∆
∑m1

i=1
Γi

1−(1−p)Γi

.

and will show following equation (48) that such a choice exists. Define

E =
{

m1∑
i=1

X i
1 = k∆,

m1∑
i=1

X i
0+ = |V +

0 |∆
}

.

Along the lines of Section B.1 , Stirling’s formula implies

P [E ] =Ω(1/n). (45)

Moreover, (Y 1
1,Y 1

0+,Y 1
0−, . . . ,Y m1

1 ,Y m1
0+ ,Y m1

0− ) and (X 1
1, X 1

0+, X 1
0−, . . . , X m1

1 , X m1
0+ , X m1

0− ) given E are identically distributed.
This can be seen as follows:

P
[
∀i ∈ [m1] : (Y i

1,Y i
0+,Y i

0−) = (yi , y ′
i , y ′′

i ) | Γ, |V +
0 |,m1

]

=

( k∆
y1 ...ym1

)( |V +
0 |∆

y ′
1...y ′

m1

)( ∑m1
i=1Γi −

(
k+|V +

0 |)∆
Γ1−y1−y ′

1,...,Γm1−ym1−y ′
m1

)

( ∑m1
i=1Γi

Γ1 ,...,Γm1

) 111{∀i ∈ [m1] : y ′′
i = Γi − yi − y ′

i }

=
( ∑m1

i=1Γi

k∆, |V +
0 |∆,

∑m1
i=1Γi −

(
k +|V +

0 |)∆

)
m1∏
i=1

(
Γi

yi , y ′
i ,Γ− yi − y ′

i

)
111{∀i ∈ [m1] : y ′′

i = Γi − yi − y ′
i }.

Thus, given y ′′
i = Γi − yi − y ′

i and ỹ ′′
i = Γi − ỹi − ỹ ′

i for all i ∈ [m1], we find

P
[∀i ∈ [m1] : (Y 1

1,Y 1
0+,Y 1

0−) = (yi , y ′
i , y ′′) |Γ, |V0|+,m1

]

P
[∀i ∈ [m1] : (Y 1

1,Y 1
0+,Y 1

0−) = (ỹi , ỹ ′
i , ỹ ′′

i ) |Γ, |V0|+,m1
] =

m1∏
i=1

( Γi
yi ,y ′

i ,Γ−yi −y ′
i

)

( Γi
ỹi ,ỹ ′

i ,Γ−ỹi −ỹ ′
i

) . (46)
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Given x′′
i = Γi − xi − x′

i , we find:

P
[
∀i ∈ [m1] : (X 1

1, X 1
0+, X 1

0−) = (xi , x′
i , x′′

i ) | E ,Γ, |V0|+,m1
]

=
m1∏
i=1

(
Γi

xi , x′
i , x′′

i

)
pxi qx′

i (1−p −q)x′′
i

1

1− (1−p)Γi

= pk∆q |V +
0 |∆(1−p −q)

∑m1
i=1Γi −∆(k+|V +

0 |)
m1∏
i=1

1

1− (1−p)Γi

(
Γi

xi , x′
i , x′′

i

)

where the last equality follows from the fact that we conditioned on E . Since the first terms are independent of
xi , x′

i , x′′
i , we find

P
[
∀i ∈ [m1] : (X i

1, X i
0+, X i

0−) = (xi , x′
i , x′′

i ) | E ,Γ, |V0|+,m1
]

P
[∀i ∈ [m1] : (X i

1, X i
0+, X i

0−) = (x̃i , x̃′
i , x̃′′

i ) | E ,Γ, |V0|+,m1
] =

m1∏
i=1

( Γi
xi ,x′

i ,Γ−xi −x′
i

)

( Γi
x̃i ,x̃′

i ,Γ−x̃i −x̃′
i

) .

Therefore, given Γi = xi + x′
i + x′′

i = x̃i + x̃′
i + x̃′′

i , we have by comparison with (46),

P
[∀i ∈ [m1] : (X i

1, X i
0+, X i

0−) = (xi , x′
i , x′′

i ) | E ,Γ, |V0|+,m1
]

P
[∀i ∈ [m1] : (X i

1, X i
0+, X i

0−) = (x̃i , x̃′
i , x̃′′

i ) | E ,Γ, |V0|+,m1
]

=
P

[∀i ∈ [m1] : (Y i
1,Y i

0+,Y i
0−) = (xi , x′

i , x′′
i ) | Γ,m1

]

P
[
∀i ∈ [m1] : (Y i

1,Y i
0+,Y i

0−) = (x̃i , x̃′
i , x̃′′

i ) | Γ,m1
] ,

which yields the claim. Let

W =
m1∑
i=1

1
{

X i
1 +X i

0+ = 1
}

.

be the number of positive tests that contain exactly one infected individual and no healthy individuals in V +
0 . Note

that this split is the only possibility for the test to be positive. Then

E[W |Γ,E ,
∣∣V +

0

∣∣ ,m1] =
m1∑
i=1

P[X i
1 = 1, X i

0+ = 0, X i
0− = Γi −1] =

m1∑
i=1

Γi p(1−p −q)Γi−1

1− (1−p)Γi
.

By Lemma 2.5 we readily find for any choice of c,d =Θ(1) that
m1∑
i=1

Γi p(1−p −q)Γi−1

1− (1−p)Γi
= (1+o(1))

m∑
i=1
Γi p(1−p −q)Γi−1 (47)

Hence,

mΓminp(1−p −q)Γmax ≤ E[W |Γ,E , |V +
0 |,m1] ≤ mΓmaxp(1−p −q)Γmin−1.

Moreover, since W is a binomial random variable, the Chernoff bound (e.g. Lemma B.1) shows that

P
[∣∣W −E[W | Γ,E , |V +

0 |]
∣∣>p

m logn
]≤O(n−2).

Further, Lemma 2.4 yields approximations for Γmin and Γmax. Now assume that c < log−2 2. Using a similar refor-
mulation as in (47), we find that p = (1+o(1))k/n. Thus, we have

E[W |Γ,E ,W ]

= (1+o(1))m
dn

ck

k

n
exp

(
(1+o(1))

dn

ck
log

(
(1−k/n)

(
1+n−Ω(1))(1− (1−exp(−d/c)))∆

))

= (1+o(1))m exp(−d/c)
d

c

(
1− (k/n)−d log(1−exp(−d/c))

)dn/(ck)
(48)

As Lemma 2.6 shows, the optimal value of d is a constant. For a fixed c the same d that maximizes −d/c log(1−
exp(−d/c)) in (48), also maximizes E[W |Γ,E ,

∣∣V +
0

∣∣]. This maximum is attained at d = c log2. Consequently p = o(q)
and

q ∼
(

k

n

)c log2 2

.
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Hence,

E[W |Γ,E ,W ] ∼ k∆

2
exp

(
−(log2)

(n

k

)1−c log2 2
)
= exp(−nΩ(1)).

As before, we find E[W ] → 0 w.h.p. since P(W ) = 1−o(1) and P(E ) = Ω(1/
p
∆k) and Markov’s inequality leads to

V −−
1 =;. Proposition 5.1 follows. �

D.2. Proof of Proposition 5.2. By Lemma 2.3, we have
∣∣V +

0

∣∣≥ k logn for m < (1−ε)malg. To prove Proposition 5.2,

we need to show that for such m, we also have
∣∣∣V +,∆

0

∣∣∣ ≥ k logn. We proceed in two steps. First, we show that

every individual x ∈ V is assigned to at least ∆−O(1) distinct tests. Second, we show that a constant fraction of
individuals x ∈V +

0 are assigned to exactly ∆ tests establishing Proposition 5.2.

Proof. Let d⋆(x) be the number of distinct neighbors of a vertex x. We claim that w.h.p. the following statements
are true.

min
x∈V

d⋆(x) ≥∆−2/θ2 .

The probability that a given x ∈V appears ℓ≥ 2 times in the same test is upper-bounded by
(
∆

ℓ

)
m1−ℓ ≤ m

ℓ!

(
d

ck

)ℓ
= ck log(n/k)

ℓ!

(
d

ck

)ℓ
≤ c(d/c)ℓ

ℓ!
n(1−ℓ)θ+o(1) = o(1/n),

provided that ℓ > 1+1/θ. Moreover, the probability that x appears in one test twice is upper-bounded by ∆∆̇/m.
Thus, the probability that x appears in at least ℓ tests at least twice is upper-bounded by

⌊∆/2⌋∑
i=ℓ

(
∆2

m

)i

= (1+o(1))

(
∆2

m

)ℓ
≤ (1+o(1))

(
O(log2 n)

ck log(n/k)

)ℓ
= n−θℓ+o(1) = o(1/n),

provided that ℓ> 1/θ and since m = ck log(n/k) and ∆= d log(n/k). The bound follows.
By Lemma 2.3, we know that for m < (1−ε)malg,

∣∣V +
0

∣∣≥ k logn w.h.p.. Since the SCOMP algorithm in its third stage

selects the individual with the highest number of adjacent unexplained tests, we are left to show that also
∣∣∣V +

0
,∆

∣∣∣≥
k log n, which implies that w.h.p. we erroneously classify a healthy individual as infected. The prior bounds ensure
that each individual is in at least ∆−O(1) tests. The question remains which fraction of individuals in V +

0 are in

V +
0

,∆. In principle, it could be the case that most potentially false positive individuals of V +
0 appear in less than ∆

different tests. Indeed, it is more likely for such an individual in V +
0 to be in fewer than ∆ different tests since each

additional test increases the probability for such an individual to be assigned to a negative test. However, we claim
that a constant fraction of all potentially false positive individuals in V +

0 will have degree∆, thus be in V +
0

,∆. To see

this, let p be the maximum proportion of
∣∣∣V +

0
,∆−i

∣∣∣ and
∣∣∣V +

0
,∆−i+1

∣∣∣ for i ∈ [2/θ2], i.e.

p = max
i∈[2/θ2]

∣∣∣V +
0

,∆−i
∣∣∣

∣∣∣V +
0

,∆−i+1
∣∣∣

By conditioning on a test degree sequence Γ1, . . . ,Γm , we find

p ≥ (1− (1− (k/n))Γmin ) =Θ(1),

as long as c,d =Θ(1), which by Lemma 2.6 we can safely assume. Since each individual in V +
0 is in at least ∆−O(1)

different tests and the probability of being in any number of different tests∆,∆−1. . . is constant, a constant fraction
of individuals in V +

0 will be in exactly ∆ tests. Since
∣∣V +

0

∣∣=Ω(k log n), the claim follows. �
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OPTIMAL GROUP TESTING

AMIN COJA-OGHLAN, OLIVER GEBHARD, MAX HAHN-KLIMROTH, PHILIPP LOICK

ABSTRACT. In the group testing problem the aim is to identify a small set of k ∼ nθ infected individuals out of a pop-
ulation size n, 0 < θ < 1. We avail ourselves of a test procedure capable of testing groups of individuals, with the test
returning a positive result iff at least one individual in the group is infected. The aim is to devise a test design with as
few tests as possible so that the set of infected individuals can be identified correctly with high probability. We establish
an explicit sharp information-theoretic/algorithmic phase transition minf for non-adaptive group testing, where all tests
are conducted in parallel. Thus, with more than minf tests the infected individuals can be identified in polynomial time
w.h.p., while learning the set of infected individuals is information-theoretically impossible with fewer tests. In addition,
we develop an optimal adaptive scheme where the tests are conducted in two stages. MSc: 05C80, 60B20, 68P30

1. INTRODUCTION

1.1. Background and motivation. Various intriguing combinatorial problems come as inference tasks where we
are to learn a hidden ground truth by means of indirect queries. The goal is to get by with as small a number of
queries as possible. The ultimate solution to such a problem should consist of a positive algorithmic result show-
ing that a certain number of queries suffice to learn the ground truth efficiently, complemented by a matching
information-theoretic lower bound showing that with fewer queries the problem is insoluble, regardless of com-
putational resources.

Group testing is a prime example of such an inference problem [6]. The objective is to identify within a large
population of size n a subset of k individuals infected with a rare disease. We presume that the number of infected
individuals scales as a power k = ⌈nθ⌉ of the population size with an exponent θ ∈ (0,1), a parametrisation suited
to modelling the pivotal early stages of an epidemic [36]. Indeed, since early on in an epidemic test kits might be
in short supply, it is vital to get the most diagnostic power out the least number of tests. To this end we assume
that the test gear is capable of not merely testing a single individual but an entire group. The test comes back
positive if any one individual in the group is infected and negative otherwise. While in non-adaptive group testing
all tests are conducted in parallel, in adaptive group testing test are conducted in several stages. In either case we
are free to allocate individuals to test groups as we please. Randomisation is allowed. What is the least number
of tests required so that the set of infected individuals can be inferred from the test results with high probability?
Furthermore, in adaptive group testing, what is the smallest depth of test stages required?

Closing the considerable gaps that the best prior bounds left, the main results of this paper furnish matching
algorithmic and information-theoretic bounds for both adaptive and non-adaptive group testing. Specifically,
the best prior information-theoretic lower bound derives from the following folklore observation. Suppose that
we conduct m tests that each return either ‘positive’ or ‘negative’. Then to correctly identify the set of infected
individuals we need the total number 2m of conceivable test results to asymptotically exceed the number

(n
k

)
of

possible sets of infected individuals. Hence, 2m ≥ (1+o(1))
(n

k

)
. Thus, Stirling’s formula yields the lower bound

mad = 1−θ
ln2

nθ ln n, (1.1)

which applies to both adaptive and non-adaptive testing. On the positive side, a randomised non-adaptive test
design with

mDD ∼
max {θ,1−θ}

ln2 2
nθ lnn (1.2)

Supported by DFG CO 646/3 and Stiftung Polytechnische Gesellschaft. An extended abstract version of this work has been submitted to the
COLT 2020 conference.
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tests exists from which a greedy algorithm called DD correctly infers the set of infected individuals w.h.p. [22].
Clearly, mad < mDD for all infection densities θ and mDD/mad → ∞ as θ → 1. In addition, there is an efficient
adaptive three-stage group testing scheme that asymptotically matches the lower bound mad [33].

We proceed to state the main results of the paper. First, improving both the information-theoretic and the algo-
rithmic bounds, we present optimal results for non-adaptive group testing. Subsequently we show how the non-
adaptive result can be harnessed to perform adaptive group testing with the least possible number (1+o(1))mad

of tests in only two stages.

1.2. Non-adaptive group testing. A non-adaptive test design is a bipartite graph G = (V ∪F,E ) with one vertex
class V =Vn = {x1, . . . , xn } representing individuals and the other class F = Fm = {a1, . . . , am } representing tests. For
a vertex v of G denote by ∂v = ∂G v the set of neighbours of v . Thus, an individual x j takes part in a test ai iff
x j ∈ ∂ai . Since we can shuffle the individuals randomly, we may safely assume that the vector σ ∈ {0,1}V whose
1-entries mark the infected individuals is a uniformly random vector of Hamming weight k. Furthermore, the test
results induced byσ read

σ̂ai = σ̂G ,ai = max
x∈∂ai

σx .

Hence, given σ̂ = σ̂G = (σ̂G ,a )a∈F and G we aim to infer σ. Thus, we can represent an inference procedure by a
function AG : {0,1}m → {0,1}n . The following theorem improves the lower bound on the number of tests required
for successful inference. Let

minf = minf(n,θ) = max

{
θ

ln2 2
,

1−θ
ln 2

}
nθ lnn. (1.3)

Theorem 1.1. For any 0 < θ < 1, ε > 0 there exists n0 = n0(θ,ε) such that for all n > n0, all test designs G with
m ≤ (1−ε)minf tests and for every function AG : {0,1}m → {0,1}n we have

P [AG (σ̂G ) =σ] < ε. (1.4)

Theorem 1.1 rules out both deterministic and randomised test designs and inference procedures because (1.4)
holds uniformly for all G and all AG . Thus, no test design, randomised or not, with fewer than minf tests allows
to infer the set of infected individuals with a non-vanishing probability. Since minf matches mDD from (1.2) for
θ ≥ 1/2, Theorem 1.1 shows that the positive result from [22] is optimal in this regime. The following theorem
closes the remaining gap by furnishing an optimal positive result for all θ.

Theorem 1.2. For any 0 < θ < 1, ε > 0 there is n0 = n0(θ,ε) such that for every n > n0 there exist a randomised test
design G comprising m ≤ (1+ ε)minf tests and a polynomial time algorithm SPIV that given G and the test results
σ̂G outputs σw.h.p.

An obvious candidate for an optimal test design appears be a plain random bipartite graph. In fact, prior to
the present work the best known test design consisted of a uniformly random bipartite graph where all vertices in
Vn have the same degree ∆. In other words, every individual independently joins ∆ random test groups. Applied
to this random ∆-out test design the DD algorithm correctly recovers the set of infected individuals in polynomial
time provided that the number of tests exceeds mDD from (1.2). However, mDD strictly exceeds minf for θ < 1/2.
While the random ∆-out test design with (1+o(1))minf tests is known to admit an exponential time algorithm that
successfully infers the set of infected individuals w.h.p. [11], we do not know of a polynomial time that solves this
inference problem. Instead, to facilitate the new efficient inference algorithm SPIV the test design for Theorem 1.2
relies on a blend of a geometric and a random construction that is inspired by recent advances in coding theory
known as spatially coupled low-density parity check codes [18, 26].

Finally, for

θ ≤ ln 2

1+ ln 2
≈ 0.41 (1.5)

the number minf of tests required by Theorem 1.2 matches the folklore lower bound mad from (1.2) that applies to
both adaptive and non-adaptive group testing. Hence, in this regime adaptivity confers no advantage. By contrast,
for θ > ln(2)/(1+ ln 2) the adaptive bound mad is strictly smaller than minf. Consequently, in this regime at least
two test stages are necessary to match the lower bound. Indeed, the next theorem shows that two stages suffice.
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FIGURE 1. The phase transitions in group testing. The best previously known algorithm DD suc-
ceeds in the blue but not in the green region. The new algorithm SPIV succeeds in both the blue
and the green region. The black line indicates the non-adaptive information-theoretic threshold
minf, below which non-adaptive group testing is impossible. In the red area even (multi-stage)
adaptive inference is impossible. Finally, the two-stage adaptive group testing algorithm from
Theorem 1.3 succeeds in the yellow region.

1.3. Adaptive group testing. A two-stage test design consists of a bipartite graph G = (V ,F ) along with a second
bipartite graph G ′ =G ′(G,σ̂G ) = (V ′,F ′) with V ′ ⊂V that may depend on the tests results σ̂G of the first test design
G. Hence, the task is to learnσ correctly w.h.p. from G,σ̂G ,G ′ and the test results σ̂G ′ from the second stage while
minimising the total number |F | + |F ′| of tests. The following theorem shows that a two-stage test design and an
efficient inference algorithm exist that meet the multi-stage adaptive lower bound (1.1).

Theorem 1.3. For any 0 < θ < 1, ε > 0 there is n0 = n0(θ,ε) such that for every n > n0 there exist a two-stage test
design with no more than (1+ ε)mad tests in total and a polynomial time inference algorithm that outputs σ with
high probability.

Theorem 1.3 improves over [33] by reducing the number of stages from three to two, thus potentially significantly
reducing the overall time required to complete the test procedure [10, 28]. The proof of Theorem 1.3 combines the
test design and efficient algorithm from Theorem 1.2 with ideas from [32].

The question of whether an ‘adaptivity gap’ exists for group testing, i.e., if the number of tests can be reduced
by allowing multiple stages, has been raised prominently [6]. Theorems 1.1–1.3 answer this question compre-
hensively. While for θ ≤ ln(2)/(1 + ln(2)) ≈ 0.41 adaptivity confers no advantage, Theorem 1.1 shows that for
θ > ln(2)/(1+ ln(2)) there is a widening gap between mad and the number minf of tests required by the optimal
non-adaptive test design. Further, Theorem 1.3 demonstrates that this gap can be closed by allowing merely two
stages. Figure 1 illustrates the thresholds from Theorems 1.1–1.3.

1.4. Discussion. The group testing problem was first raised in 1943, when Dorfman [15] proposed a two-stage
adaptive test design to test the US Army for syphilis: in a first stage disjoint groups of equal size are tested. All
members of negative test groups are definitely uninfected. Then, in the second stage the members of positive test
groups get tested individually. Of course, this test design is far from optimal, but Dorfman’s contribution triggered
attempts at devising improved test schemes.

At first combinatorial group testing, where the aim is to construct a test design that is guaranteed to succeed
on all vectors σ, attracted significant attention. This version of the problem was studied, among others, by Erdős
and Rényi [17], D’yachkov and Rykov [16] and Kautz and Singleton [23]. Hwang [20] was the first to propose an
adaptive test design that asymptotically meets the information-theoretic lower bound mad from (1.1) for all θ ∈
[0,1]. However, this test design requires an unbounded number of stages. Conversely, D’yachkov and Rykov [16]
showed that mad tests do not suffice for non-adaptive group testing. Indeed, m ≥ min

{
Ω(k2),n

}
tests are required

non-adaptively, making individual testing optimal for θ > 1/2. For an excellent survey of combinatorial group
testing see [6].

Since the early 2000s attention has shifted to probabilistic group testing, which we study here as well. Thus, in-
stead of asking for test designs and algorithms that are guaranteed to work for allσ, we are content with recovering
σ with high probability. Berger and Levenshtein [8] presented a two-stage probabilistic group testing design and
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algorithm requiring

mBL,ad ∼ 4nθ ln n

tests in expectation. Their test design, known as the Bernoulli design, is based on a random bipartite graph where
each individual joins every test independently with a carefully chosen edge probability. For a fixed θ the number
mBL,ad of tests is within a bounded factor of the information-theoretic lower bound mad from (1.1), although the
gap mad/mBL,ad diverges as θ→ 1. Unsurprisingly, the work of Berger and Levenshtein spurred efforts at closing
the gap. Mézard, Tarzia and Toninelli proposed a different two-stage test design whose first stage consists of a
random bipartite graph called the constant weight design [29]. Here each individual independently joins an equal
number of random tests. For their two-stage design they obtained an inference algorithm that gets by with about

mMTT,ad ∼ 1−θ
ln2 2

nθ ln n. (1.6)

tests, a factor of 1/ln 2 above the elementary bound mad. Conversely, Mézard, Tarzia and Toninelli showed by
means of the FKG inequality and positive correlation arguments that two-stage test algorithms from a certain
restricted class cannot beat the bound (1.6). Furthermore, Aldridge, Johnson and Scarlett analysed non-adaptive
test designs and inference algorithms [4, 22]. For the Bernoulli test design their best efficient algorithm DD requires

mDD,Be ∼ e ·max {θ,1−θ}nθ ln n.

tests. For the constant weight design they obtained the bound mDD from (1.2). In addition, in a previous arti-
cle [11] we showed that on the constant weight design an exponential time algorithm correctly identifies the set of
infected individuals w.h.p. if the number of tests exceeds minf from (1.3). Furthermore, Scarlett [33] discovered the
aforementioned three-stage test design and polynomial time algorithm that matches the universal lower bound
mad from (1.1). Finally, concerning lower bounds, in the case of a linear number k = Θ(n) infected individuals
Aldridge [5] showed via arguments similar to [29] that individual testing is optimal in the non-adaptive case, while
Ungar [35] proved that individual testing is optimal even adaptively once k ≥ (3−p

5)n/2.
A further variant of group testing is known as the quantitative group testing or the coin weighing problem. In

this problem tests are assumed to not merely indicate the presence of at least one infected individual but to return
the number of infected individuals. Thus, the tests are significantly more powerful. For quantitative group testing
with k infected individuals Alaoui, Ramdas, Krzakala, Zdeborová and Jordan [3] presented a test design with

mQGT ∼ 2

(
1+ (n−k) ln(1−k/n)

k ln(k/n)

)
k ln(n/k)

ln(k)
for k =Θ(n)

tests from which the set of infected individuals can be inferred in exponential time; the paper actually deals with
the slightly more general pooled data problem. However, no efficient algorithm is known to come within a constant
factor of mQGT. Indeed, the best efficient algorithm, due to the same authors [2], requiresΩ(k ln(n/k)) tests.

More broadly, the idea of harnessing random graphs to tackle inference problems has been gaining momen-
tum. One important success has been the development of capacity achieving linear codes called spatially coupled
low-density parity check (‘LDPC’) codes [26, 27]. The Tanner graphs of these codes, which represent their check
matrices, consist of a linear sequence of sparse random bipartite graphs with one class of vertices corresponding
to the bits of the codeword and the other class corresponding to the parity checks. The bits and the checks are
divided equitably into a number of compartments, which are arranged along a line. Each bit of the codeword takes
part in random checks in a small number of preceding and subsequent compartments of checks along the line.
This combination of a spatial arrangement and randomness facilitates efficient decoding by means of the Belief
Propagation message passing algorithm. Furthermore, the general design idea of combining a linear spatial struc-
ture with a random graph has been extended to other inference problems. Perhaps the most prominent example is
compressed sensing, i.e., solving an underdetermined linear system subject to a sparsity constraint [13, 14, 24, 25],
where a variant of Belief Propagation called Approximate Message Passing matches an information-theoretic lower
bound from [37].

While in some inference problems such as LDPC decoding or compressed sensing the number of queries re-
quired to enable an efficient inference algorithm matches the information-theoretic lower bound, in many other
problems gaps remain. A prominent example is the stochastic block model [1, 12, 30], an extreme case of which
is the notorious planted clique problem [7]. For both these models the existence of a genuine computationally
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intractable phase where the problem can be solved in exponential but not in polynomial time appears to be an in-
triguing possibility. Further examples include code division multiple access [34, 38], quantitative group testing [2],
sparse principal component analysis [9] and sparse high-dimensional regression [31]. The problem of solving the
group testing inference problem on the test design from [22] could be added to the list. Indeed, while an expo-
nential time algorithm (that reduces the problem to minimum hypergraph vertex cover) infers the set of infected
individuals w.h.p. with only (1+ε)minf tests, the best known polynomial algorithm requires (1+ε)mDD tests.

Instead of developing a better algorithm for the test design from [22], here we exercise the discretion of con-
structing a different test design that the group testing problem affords. The new design is tailored to enable
an efficient algorithm SPIV for Theorem 1.2 that gets by with (1+ ε)minf tests. While prior applications of the
idea of spatial coupling such as coding and compressed sensing required sophisticated message passing algo-
rithms [18, 26, 27], the SPIV algorithm is purely combinatorial and extremely transparent. The main step of the
algorithm merely computes a weighted sum to discriminate between infected individuals and ‘disguised’ healthy
individuals. Furthermore, the analysis of the algorithm is based on a technically subtle but conceptually clean
large deviations analysis. This technique of blending combinatorial ideas and large deviations methods with spa-
tial coupling promises to be an exciting route for future research. Applications might include noisy versions of
group testing, quantitative group testing or the coin weighing problem [2]. Beyond these immediate extensions, it
would be most interesting to see if the SPIV strategy extends to other inference problems for sparse data.

1.5. Organisation. After collecting some preliminaries and introducing notation in Section 2, we prove Theo-
rem 1.1 in Section 3. Section 4 then deals with the test design and the inference algorithm for Theorem 1.2. Finally,
in Section 5 we prove Theorem 1.3.

2. PRELIMINARIES

As we saw in Section 1.2 a non-adaptive test design can be represented by a bipartite graph G = (V ∪F,E ) with one
vertex class V representing the individuals and the other class F representing the tests. We refer to the number |V |
of individuals as the order of the test design and to the number |F | of tests as its size. For a vertex v of G we denote
by ∂G v the set of neighbours. Where G is apparent from the notation we just write ∂v . Furthermore, for an integer
k ≤ |V | we denote byσG ,k = (σG ,k ,x )x∈V ∈ {0,1}V a random vector of Hamming weight k. Additionally, we let

σ̂G ,k = (σ̂G ,k ,a)a∈F ∈ {0,1}F with σ̂G ,k ,a = max
x∈∂G a

σG ,k ,x (2.1)

be the associated vector of test results. Where G and/or k are apparent from the context, we drop them from
the notation. More generally, for a given vector τ ∈ {0,1}V we introduce a vector τ̂G = (τ̂G ,a)a∈F by letting τ̂G ,a =
maxx∈∂G a τx , just as in (2.1). Furthermore, for a given τ ∈ {0,1}V we let

V0(G,τ) = {x ∈V : τx = 0} , V1(G,τ) = {x ∈V : τx = 1} , F0(G,τ) = {
a ∈ F : τ̂G ,a = 0

}
, F1(G,τ) = {

a ∈ F : τ̂G ,a = 1
}

.

The Kullback-Leibler divergence of p, q ∈ (0,1) is denoted by

DKL
(
q‖p

)
= q ln

(
q

p

)
+ (1−q) ln

(
1−q

1−p

)
.

We will occasionally apply the following Chernoff bound.

Lemma 2.1 ([21]). Let X be a binomial random variable with parameters N , p. Then

P
[
X ≥ qN

]≤ exp
(−N DKL

(
q‖p

))
for p < q < 1, (2.2)

P
[
X ≤ qN

]≤ exp
(−N DKL

(
q‖p

))
for 0 < q < p. (2.3)

In addition, we recall that the hypergeometric distribution Hyp(L, M , N ) is defined by

P
[
Hyp(L, M , N ) = k

]=
(

M

k

)(
L−M

N −k

)(
L

N

)−1

. (k ∈ {0,1, . . . , M ∧N }).

Hence, out of a total of L items of which M are special we draw N items without replacement and count the number
of special items in the draw. The mean of the hypergeometric distribution equals M N /L. It is well known that the
Chernoff bound extends to the hypergeometric distribution.

Lemma 2.2 ([19]). For a hypergeometric variable X ∼ Hyp(L, M , N ) the bounds (2.2)–(2.3) hold with p = M/L.
5
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Throughout the paper we use asymptotic notation o( ·),ω( ·),O( ·),Ω( ·),Θ( ·) to refer to limit n →∞. It is under-
stood that the constants hidden in, e.g., a O( ·)-term may depend on the density parameter θ or other parameters.

3. THE INFORMATION THEORETIC LOWER BOUND

In this section we prove Theorem 1.1. The proof combines techniques based on the FKG inequality and positive
correlation that were developed in [6, 29] with new combinatorial ideas. Throughout this section we fix a number
θ ∈ (0,1) and we let k = ⌈nθ⌉.
3.1. Outline. The starting point is a simple and well known observation. Namely, for a test design G = Gn,m =
(Vn ,Fm) and a vector τ ∈ {0,1}Fm of test results let

Sk (G,τ) =
{
σ ∈ {0,1}Vn :

∑
x∈Vn

σx = k, σ̂G = τ

}

be the set of all possible vectors σ of Hamming weight k that give rise to the test results τ. Further, let Zk (G,τ) =
|Sk (G,τ)| be the number of such vectors σ. Also recall that σ = σG ,k ∈ {0,1}Vn is a random vector of Hamming
weight k and that σ̂= σ̂G ,k comprises the test results that σ renders under the test design G. We observe that the
posterior ofσ given σ̂ is the uniform distribution on Sk (G,σ̂).

Fact 3.1. For any G, σ ∈ {0,1}Vn we have P [σ=σ | σ̂] = 1 {σ ∈Sk (G,σ̂)}/Zk (G,σ̂).

As an immediate consequence of Fact 3.1, the success probability of any inference scheme AG : {0,1}Fm → {0,1}Vn

is bounded by 1/Zk (G,σ̂). Indeed, an optimal inference algorithm is to simply return a uniform sample from
Sk (G,σ̂).

Fact 3.2. For any test design G and for any AG : {0,1}Fm → {0,1}Vn we have P [AG (σ̂) =σ | σ̂]≤ 1/Zk (G,σ̂).

Hence, in order to prove Theorem 1.1 we just need to show that Zk(G,σ̂) is large for any test design G with m <
(1−ε)minf tests. In other words, we need to show that w.h.p. there are many vectors σ ∈ Sk (G,σ̂) that give rise to
the test results σ̂.

We obtain these σ by making diligent local changes to σ. More precisely, we identify two sets V0+ = V0+(G,σ),
V1+ = V1+(G,σ) of individuals whose infection status can be flipped without altering the test results. Specifically,
following [5] we call an individual x ∈ Vn disguised if every test a ∈ ∂G x contains another individual y ∈ ∂G a \ {x}
with σy = 1. Let V+ =V+(G,σ) be the set of all disguised individuals. Moreover, let

V0+ =V0+(G,σ) = {x ∈V+ :σx = 0} , V1+ =V1+(G,σ)= {x ∈V+ :σx = 1} . (3.1)

Hence, V0+ is the set of all healthy disguised individuals while V1+ contains all infected disguised individuals.

Fact 3.3. We have Zk (G,σ̂) ≥ |V0+(G,σ)| · |V1+(G,σ)|.
Proof. For a pair (x, y) ∈V0+(G,σ)×V1+(G,σ) obtain τ from σ by letting τx = 1,τy = 0 and τz =σz for all z 6= x, y .
Then τ has Hamming weight k and τ̂G = σ̂. Thus, τ ∈Sk (G,σ̂). �

Hence, an obvious proof strategy for Theorem 1.1 is to exhibit a large number of disguised individuals. A similar
strategy has been pursued in the proof of the conditional lower bound of Mézard, Tarzia and Toninelli [29] and
the proof of Aldridge’s lower bound for the linear case k = Θ(n) [5]. Both [5, 29] exhibit disguised individuals via
positive correlation and the FKG inequality. However, we do not see how to stretch such arguments to obtain
the desired lower bound for all θ ∈ (0,1). Yet for θ extremely close to one it is possible to combine the positive
correlation argument with new combinatorial ideas to obtain the following.

Proposition 3.4. For any ε> 0 there exists θ0 = θ0(ε) < 1 such that for every θ ∈ (θ0,1) there exists n0 = n0(θ,ε) such
that for all n > n0 and all test designs G =Gn,m with m ≤ (1−ε)minf we have

P [|V0+(G,σ)|∧ |V1+(G,σ)| ≥ ln n]> 1−ε.

The proof of Proposition 3.4 can be found in Section 3.2.
The second step towards Theorem 1.1 is a reduction from larger to smaller values of θ. Suppose we wish to apply

a test scheme designed for an infection density θ ∈ (0,1) to a larger infection density θ′ ∈ (θ,1). Then we could
dilute the larger infection density by adding a large number of healthy ‘dummy’ individuals. A careful analysis of
this dilution process yields the following result. Due to the elementary lower bound (1.1) we need not worry about
θ ≤ ln(2)/(1+ ln 2).
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Proposition 3.5. For any ln(2)/(1+ ln(2)) < θ < θ′ < 1, t > 0 there exists n0 = n0(θ,θ′, t) > 0 such that for every n > n0

and for every test design G of order n there exist an integer n′ such that

k = ⌈nθ⌉ = ⌈n′ θ′⌉
and a test design G ′ of order n′ with the same number of tests as G such that the following is true. Let τ ∈ {0,1}Vn′ be
a random vector of Hamming weight k and let τ̂a = maxx∈∂G′ a τx comprise the tests results of G ′. Then

P [Zk(G,σ̂) ≤ t ] ≤P
[
Zk (G ′, τ̂) ≤ t

]
.

Hence, if a test design exists for θ < θ′ that beats minf(n,θ), then there is a test design for infection density θ′ that
beats minf(n′,θ′). We prove Proposition 3.4 in Section 3.2. Theorem 1.1 is an easy consequence of Propositions 3.4
and 3.5.

Proof of Theorem 1.1. For θ ≤ ln(2)/(1+ ln(2)) the assertion follows from the elementary lower bound (1.1). Hence,
fix ε> 0 and assume for contradiction that some θ ∈ (ln(2)/(1+ln(2)),1) for infinitely many n admits a test design G
of order n and size m ≤ (1−ε)minf(n,θ) such that P [Zk(G,σ̂G ) ≤ t ] ≥ ε. Then Proposition 3.5 shows that for θ′ > θ

arbitrarily close to one for an integer n′ with k = ⌈n′ θ′⌉ a test design G ′ =Gn′,m exists such that

P
[

Zk(G ′, τ̂) ≤ 1/ε
]≥ ε. (3.2)

Furthermore, (1.3) shows that for large n,

minf(n′,θ′) = θ′

ln2 2
n′ θ′ ln n′ = θ+o(1)

ln2 2
nθ ln n = (1+o(1))minf(n,θ).

Hence, the number m of tests of G ′ satisfies m ≤ (1− ε+ o(1))minf(n′,θ′). Thus, (3.2) contradicts Fact 3.3 and
Proposition 3.4. �

3.2. Proof of Proposition 3.4. Given a small ε > 0 we choose θ0 = θ0(ε) ∈ (0,1) sufficiently close to one and fix
θ ∈ (θ0,1). Additionally, pick ξ= ξ(ε,θ) ∈ (0,1) such that

2(1−θ) < ξ< θε. (3.3)

We fix ε,θ,ξ throughout this section.
To avoid the (mild) stochastic dependencies that result from the total number of infected individuals being

fixed, instead of σ we will consider a vector χ ∈ {0,1}Vn whose entries are stochastically independent. Specifically,
every entry of χ equals one with probability

p = k −
p

k ln n

n

independently. Let χ̂G ∈ {0,1}Fm be the corresponding vector of test results. The following lemma shows that it
suffices to estimate |V0+(G,χ)|, |V1+(G,χ)|. Let G denote an arbitrary test design with individuals Vn = {x1, . . . , xn }
and tests Fm = {a1, . . . , am}.

Lemma 3.6. There is n0 = n0(θ,ε) such that for all n > n0 and for all G with m ≤ minf the following is true:

if P
[|V0+(G,χ)|∧ |V1+(G,χ)| ≥ 2ln n

]> 1−ε/4, then P [|V0+(G,σ)|∧ |V1+(G,σ)| ≥ ln n] > 1−ε.

Proof. Let X = {k −2
p

k ln n ≤∑
x∈Vn χx ≤ k}. The Chernoff bound shows for large enough n,

P [X ]> 1−η/4. (3.4)

Further, given X we can coupleχ,σ such that the latter is obtained by turning k−∑
x∈Vn χx random zero entries of

the former into ones. Since turning zero entries into ones can only increase the number of disguised individuals,
on X we have

V1+(G,σ) ≥V1+(G,χ). (3.5)

Of course, it is possible that |V0+(G,σ)| < |V0+(G,χ)|. But since on X the two vectors σ,χ differ in no more than
2
p

k lnn entries, we obtain the bound

E
[
|V0+(G,χ)|− |V0+(G,σ)| |X

]
≤ 2

p
k ln n

n−k
|V0+(G,χ)| < n−1/3|V0+(G,χ)|,
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provided n is sufficiently large. Hence, Markov’s inequality shows that for large enough n,

P
[|V0+(G,χ)|− |V0+(G,σ)| > |V0+(G,χ)|/2 |X ]< ε/4. (3.6)

Combining (3.4), (3.5) and (3.6) completes the proof. �

As a next step we show that there is no point in having very big tests a that contain more than, say, Γ= Γ(n,θ) =
n1−θ ln n individuals. This is because anyway all such tests are positive w.h.p., so there is little point in actually
conducting them. Indeed, the following lemma shows that w.h.p. all tests of very high degree contain at least two
infected individuals.

Lemma 3.7. There exists n0 = n0(θ,ε) > 0 such that for all n > n0 and all test designs G with m ≤ minf tests,

P
[
∃a ∈ Fm : |∂G a| > Γ∧|∂G a ∩V1(G,χ)| ≤ 1

]
< ε/8.

Proof. Consider a test a of degree γ= |∂G a| ≥ Γ. Because inχ each of the γ individuals that take part in a is infected
with probability p independently, we have

P [|∂G a ∩V1(G,σ)| ≤ 1]=P
[
Bin(γ, p)≤ 1

]= (1−p)γ+γp(1−p)γ−1 ≤ (1+γp/(1−p))exp(−γp)= no(1)−1. (3.7)

Since m ≤ minf =O(nθ) for a fixed θ < 1, the assertion follows from (3.7) and the union bound. �

Let G∗ be test design obtained from G =Gn,m by deleting all tests of degree larger than Γ. If indeed every test of
degree at least Γ contains at least two infected individuals, then V0+(G∗,χ) =V0+(G,χ) and V1+(G∗,χ) =V1+(G,χ).
Hence, Lemma 3.7 shows that it suffices to bound |V0+ (G∗,χ)|, |V1+(G∗,χ)|. To this end we observe that G∗ contains
few individuals of very high degree.

Lemma 3.8. There is n0 = n0(θ,ε) > 0 such that for all n > n0 and all test designs G with m ≤ minf we have

∣∣{x ∈Vn : |∂G∗x| > ln3 n
}∣∣≤ n ln lnn

lnn
.

Proof. Since maxa∈Fm |∂G∗ a| ≤ Γ= n1−θ ln n, double counting yields
∑

x∈Vn

|∂G∗ x| =
∑

a∈Fm

|∂G∗ a| ≤ minfΓ=O(n ln2 n).

Consequently, there are no more than O(n/ln n) individuals x ∈Vn with |∂G∗x| > ln3 n. �

Further, obtain G(0) from G∗ by deleting all individuals of degree greater than ln3 n (but keeping all tests). Then the
degrees of G(0) satisfy

max
a∈F (G (0))

|∂G (0) a| ≤ Γ, max
x∈V (G (0))

|∂G (0) x| ≤ ln3 n. (3.8)

Let χ(0) = (χx )x∈V (G (0)) signify the restriction of χ to the individuals that remain in G(0).
With these preparations in place we are ready to commence the main step of the proof of Proposition 3.4. Given

a test design G with m ≤ (1−ε)minf we are going to construct a sequence y1, y2, . . . , yN , N = ⌈n1−ξ⌉, of individuals
of G(0) such that each yi individually has a moderately high probability of being disguised. Of course, to conclude
that in the end a large number of disguised yi actually materialise, we need to cope with stochastic dependencies.
To this end we will pick individuals yi that have pairwise distance at least five in G(0). The degree bounds (3.8)
guarantee a sufficient supply of such far apart individuals.

To be precise, starting from G(0) we construct a sequence of test designs G(1),G(2), . . . ,G(N) inductively as follows.
For each i ≥ 1 select a variable yi−1 ∈V (G(i−1)) whose probability of being disguised is maximum; ties are broken
arbitrarily. In formulas,

P
[

yi−1 ∈V+(G(i−1),χ(i−1))
]
= max

y∈V (G (i−1))
P

[
y ∈V+(G(i−1),χ(i−1))

]
,

where, of course, χ(i−1) is the only random object. Then obtain G(i) from G(i−1) by removing yi−1 along with
all vertices (i.e., tests or individuals) at distance at most four from yi−1. Moreover, let χ(i) denote the restriction
(χx )x∈V (G (i )) of χ to G(i). The following lemma estimates the probability of yi being disguised. Let m∗ = |F (G∗)| be
the total number of tests of G of degree at most Γ.
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Lemma 3.9. There exists n0 = n0(ε,θ,ξ) such that for all n > n0 and all G with m ≤ (1−ε)minf we have

min
1≤i≤N

P
[

yi ∈V+(G(i))
]
≥ exp

(
−m ln2 2

nθ
−1

)
.

The proof of Lemma 3.9 requires three intermediate steps. First, we need a lower bound on number of individ-
uals in G(i). Recall that N = ⌈n1−ξ⌉.
Claim 3.10. We have min0≤i≤N |V (G(i))| ≥ n−NΓ2 ln6 n.

Proof. Since throughout the construction of the G(i) we only delete vertices, the degree bound (3.8) implies

max
a∈F (G (i ))

|∂G (i ) a| ≤ Γ= n1−θ ln n, max
x∈V (G (i ))

|∂G (i ) x| ≤ ln3 n for all i ≤ N . (3.9)

We now proceed by induction on i . For i = 0 there is nothing to show. Going from i to i +1 ≤ N , we notice that
because all individuals x ∈V (G(i)) \V (G(i+1)) have distance at most four from yi+1 , (3.9) ensures that

|V (G(i)) \V (G(i+1))| ≤ Γ2 ln6 n. (3.10)

Iterating (3.10), we obtain |V (G(0)) \V (G(i+1))| ≤ (i +1)Γ2 ln6 n, whence |V (G(i+1))| ≥ n− (i +1)Γ2 ln6 n. �
The following claim resembles the proof of [5, Theorem 1] (where the case k =Ω(n) is considered).

Claim 3.11. Let D(i)(x) = {x ∈V+(G(i))} and let

L(i) = 1

|V (G(i))|
∑

x∈V (G (i ))

lnP
[
D(i)(x)

]
. (3.11)

Then

L(i) ≥ |F (G(i))|
|V (G(i))| min

a∈F (G (i ))

∣∣∂G (i ) a
∣∣ ln

(
1− (1−p)|∂G(i ) a|−1

)
. (3.12)

Proof. For an individual x ∈V (G(i)) and a test a ∈ ∂G (i ) x let D(i)(x, a) be the event that there is another individual
z ∈ ∂G (i ) a \ {x} such that χz = 1. Then for every x ∈V (G(i)) we have

P
[
D(i) (x)

]
=P


 ⋂

a∈∂G(i ) x
D(i)(x, a)


 . (3.13)

Furthermore, the events D(i)(x, a) are increasing with respect to χ. Therefore, (3.13) and the FKG inequality imply

P
[
D(i) (x)

]
≥

∏
a∈∂G(i ) x

P
[
D(i)(x, a)

]
. (3.14)

Moreover, because each entry of χ is one with probability p independently, we obtain

P
[
D(i)(x, a)

]
= 1− (1−p)|∂G(i ) a|−1 (3.15)

Finally, combining (3.13)–(3.15), we obtain

|V (G(i))|L(i) ≥
∑

x∈V (G (i ))

∑
a∈F (G (i ))

1
{

a ∈ ∂G (i ) x
}

ln
(
1− (1−p)|∂G(i ) a|−1

)

=
∑

a∈F (G (i ))

∣∣∂G (i ) a
∣∣ ln

(
1− (1−p)|∂G(i ) a|−1

)
≥ |F (G(i))| min

a∈F (G (i ))

∣∣∂G (i ) a
∣∣ ln

(
1− (1−p)|∂G(i ) a|−1

)
,

as claimed. �
As a final preparation for the proof of Lemma 3.9 we need the following estimate.

Claim 3.12. The function z ∈ (0,∞) 7→ z ln(1− (1−p)z−1) attains its minimum at z = (
1+O(n−Ω(1))

)
ln(2)/p.

Proof. We consider three separate cases.

Case 1: z = o(1/p): we obtain

z ln
(
1− (1−p)z−1)= z ln

(
1−exp

(−pz +O(p2z)
))= z ln

(
1− (

1−pz +O(p2z2)
))

= z

ln
(zp +O(zp)2) = o(1/p). (3.16)
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Case 2: z =ω(1/p): we find

z ln
(
1− (1−p)z−1)= z ln

(
1−exp

(−pz +O(p2z)
))=−z

(
exp(−pz)+O

(
exp(−2pz)

))

=− 1

p
pz

(
exp

(
−pz

)
+exp

(
−2pz

))
= o(1/p). (3.17)

Case 3: z =Θ(1/p): letting d = zp, we obtain

z ln
(
1− (1−p)z−1)= d

p
ln

(
1−exp

(−d +O(p)
))= d

p
ln

(
1−exp (−d )

)+O(1). (3.18)

Since the strictly convex function d ∈ (0,∞) 7→ d ln(1−exp(−d)) attains its minimum at d = ln 2, (3.18) dominates
(3.16) and (3.17). Thus, the minimiser reads z = ln(2)/p +O(p−1/2). �

Proof of Lemma 3.9. Combining Claims 3.11 and 3.12, we see that for all test designs G with m ≤ (1−ε)minf and for
all i ≤ N ,

L(i) ≥−
(
1+O(n−Ω(1))

) |F (G(i))| ln2 2

|V (G(i))|p ≥−
(
1+O(n−Ω(1))

) m ln2 2

|V (G(i))|p .

Hence, Claim 3.10, (3.3) and the choice p = (k +
p

k ln n)/n imply that for all i ≤ N ,

L(i) ≥−(
1+O(n−Ω(1))

) m ln2 2

(n−N∆2 ln6 n)p
≥−(

1+O(n−Ω(1))
) m ln2 2

nθ
. (3.19)

Further, combining the definition (3.11) of L(i) with (3.19), we conclude that for every i ≤ N there exists an individ-
ual yi ∈V (G(i)) such that

P
[

yi ∈V+(G(i))
]
=P

[
D(i)(yi )

]
≥ exp

(
L(i)

)
≥ exp

(
−

(
1+O(n−Ω(1))

) m ln2(2)

nθ

)
,

which implies the assertion. �

Lemma 3.9 implies the following bound on |V0+(G∗,χ)|, |V1+(G∗,χ)|.

Corollary 3.13. There exists n0 = n0(ε,θ,ξ) such that for all n > n0 and all G =Gn,m with m ≤ (1−ε)minf we have

P
[∣∣V0+(G∗,χ)

∣∣∧
∣∣V1+(G∗,χ)

∣∣< ln4 n
]< ε/8.

Proof. We observe that V+(G(i),χ) ⊂ V+(G∗,χ) for all i ≤ N because by construction for any individual x ∈ V (G(i))
every test a ∈ ∂G∗ x of G∗ that x belongs to is still present in G(i). Consequently, we obtain the bound

P
[
x ∈V+(G∗)

]≥P
[

x ∈V (G(i))
]

for all i ∈ [N ], x ∈V (G∗). (3.20)

Combining (3.20) with Lemma 3.9 we obtain

P
[

y (i) ∈V+(G∗)
]
≥ exp

(
− ln2(2)n−θm −1

)
≥ exp

(
−(1−ε) ln2(2)n−θminf −1

)
for all i ∈ [N ].

Hence, recalling the definition of minf from (1.3), we obtain

P
[

y (i) ∈V+(G∗)
]
≥ exp(−(1−ε)θ ln(n)−1) = n(ε−1)θ/e. for all i ∈ [N ]. (3.21)

Since the entry χy (i ) is independent of the event {y (i) ∈ V+(G∗)}, the definitions (3.1) of V0+(G∗,χ) and V1+(G∗,χ)
and (3.21) yield

P
[

y (i) ∈V0+(G∗,χ)
]
≥ (1−p) · n(ε−1)θ

e
≥ nεθ−1

3
, P

[
y (i) ∈V1+(G∗,χ)

]
≥ p · n(ε−1)θ

e
≥ nεθ−1

3
for all i ∈ [N ],

provided n is sufficiently large. Therefore, recalling N = ⌈n1−ξ⌉ we obtain for large enough n,

E
∣∣{y (1), . . . , y (N)}∩V0+(G∗,χ)

∣∣≥ nεθ−ξ/3, E
∣∣{y (1), . . . , y (N)}∩V1+(G∗,χ)

∣∣≥ nεθ−ξ/3. (3.22)
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Further, because the pairwise distances of y (1), . . . , y (N) in G∗ exceed four, the events {y (i) ∈ V0+(G∗,χ)}i≤N are
mutually independent. So are the events {y (i) ∈ V1+(G∗,χ)}i≤N . Finally, since (3.3) ensures that εθ− ξ > 0, (3.22)
and the Chernoff bound yield

P
[∣∣{y (1), . . . , y (N)}∩V0+(G∗,χ)

∣∣≤ ln2 n
]
≤P

[
Bin(N ,nεθ−1/3) ≤ ln2 n

]
≤ exp(−nΩ(1)),

P
[∣∣{y (1), . . . , y (N)}∩V1+(G∗,χ)

∣∣≤ ln2 n
]≤P

[
Bin(N ,nεθ−1/3) ≤ ln2 n

]
≤ exp(−nΩ(1)),

whence the assertion is immediate. �

Proof of Proposition 3.4. Suppose that n > n0(ε,θ,ξ) is large enough and let G = Gn,m be a test design with m ≤
(1−ε)minf tests. If for every test a ∈ Fm of degree |∂G a| > Γwe have |∂G a∩V1(G,χ)| ≥ 2, then V0+(G,χ) =V0+(G∗,χ)
and V1+(G,χ) =V1+(G∗,χ). Therefore, the assertion is an immediate consequence of Lemma 3.6, Lemma 3.7 and
Corollary 3.13. �

3.3. Proof of Proposition 3.5. Given ε> 0 and ln(2)/(1+ln(2)) ≤ θ < θ′ < 1 we choose a large enough n0 = n0(ε,θ,θ′)
and assume that n > n0. Furthermore, let G be a test design with m ≤ (1−ε)minf(n,θ) for the purpose of identifying
k = ⌈nθ⌉ infected individuals. Starting from the test design G infection for density θ we are going to construct a
random test design G ′ for infection density θ′ with the same number m of tests as G. The following lemma fixes
the order of G ′.

Lemma 3.14. There exists an integer nθ/θ′/2 ≤ n′ ≤ 2nθ/θ′ ∧n such that k ′ = ⌈n′ θ′⌉ = k.

Proof. Let n′′ = ⌈nθ/θ′/2⌉. Then (4n′′)θ
′ > k but n′′ θ′ < k because the function z ∈ (1,∞) 7→ zθ

′
has derivative less

than one. For the same reason for any integer n′′ < N < 4n′′ we have (N +1)θ
′ −Nθ′ ≤ 1 and thus

⌈(N +1)θ
′ ⌉−⌈Nθ′⌉ ≤ 1.

Consequently, there exists an integer n′ ∈ (n′′,4n′′) such that ⌈n′ θ′⌉ = k. �

Given the test design G with individuals Vn = {x1, . . . , xn } and tests Fm = {a1, . . . , am } we now construct the test
design G ′ as follows. Choose a subset V (G ′) ⊂ Vn of n′ individuals uniformly at random. Then G ′ is the subgraph
that G induces on V (G ′)∪Fm . Thus, G ′ has the same tests as G but we simply leave out from every test the indi-
viduals that do not belong to the random subset V (G ′). Let τ ∈ {0,1}V (G ′) be a random vector of Hamming weight
k and let τ̂ ∈ {0,1}Fm be the induced vector of tests results

τ̂a = max
x∈∂G′ a

τx (a ∈ Fm ).

Lemma 3.15. For any integer t > 0 we have P [Zk (G,σ̂) ≥ t ]≥P
[

Zk (G ′, τ̂) ≥ t
]
.

Proof. The choice of n′ ensures that k ′ = ⌈n′ θ′⌉ = k. Therefore, the random sets {x ∈ V : σx = 1} and {x ∈ V (G ′) :
τx = 1} are identically distributed. Indeed, we obtain the latter by first choosing the random subset V (G ′) of Vn

and then choosing a random subset of V (G ′) size k. Clearly, this two-step procedure is equivalent to just choosing
a random subset of size k out of Vn . Hence, we can couple σ,τ such that the sets {x ∈ V :σx = 1}, {x ∈ V : τx = 1}
are identical. Then the construction of G ′ ensures that the vectors σ̂, τ̂ coincide as well.

Now consider a vector σ′ ∈ Sk (G ′, τ̂) that explains the test results. Extend σ′ to a vector σ ∈ {0,1}Vn by setting
σx = 0 for all x ∈Vn \V (G ′). Then σ ∈Sk (G ,σ̂). Hence, Zk (G,σ̂) ≥ Zk (G ′, τ̂). �

Proof of Proposition 3.5. Lemma 3.15 shows that for any t > 0,

P [Zk(G,σ̂) ≥ t ] ≥P
[
Zk (G ′, τ̂) ≥ t

]
= E

[
P

[
Zk (G ′, τ̂) ≥ t |G ′]] .

Consequently, there exists an outcome G ′ of G ′ such that P [Zk (G,σ̂) ≥ t ]≥P
[

Zk(G ′, τ̂) ≥ t
]
. �

4. THE NON-ADAPTIVE GROUP TESTING ALGORITHM SPIV

In this section we describe the new test design and the associated inference algorithm SPIV for Theorem 1.2.
Throughout we fix θ ∈ (0,1) and ε > 0 and we tacitly assume that n > n0(ε,θ) is large enough for the various es-
timates to hold.
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4.1. The random bipartite graph and the DD algorithm. To motivate the new test design we begin with a brief
discussion of the plain random design used in prior work and the best previously known inference algorithm
DD [11, 22]. At first glance a promising candidate test design appears to be a random bipartite graph with one vertex
class Vn = {x1, . . . , xn } representing individuals and the other class Fm = {a1, . . . , am} representing tests. Indeed, two
slightly different random graph models have been proposed [6]. First, in the Bernoulli model each Vn–Fm -edge is
present with a certain probability (the same for every pair) independently of all others. However, due to the rela-
tively heavy lower tail of the degrees of the individuals, this test design turns out to be inferior to a second model
where the degrees of the individuals are fixed. Specifically, in the∆-out model every individual independently joins
an equal number of ∆ tests drawn uniformly at random without replacement [29].

Clearly, in order to extract the maximum amount of information ∆ should be chosen so as to maximise the en-
tropy of the vector of test results. Specifically, since the average test degree equals∆n/m and a total of k individuals
are infected, the average number of infected individuals per test comes to ∆k/m. Indeed, since k ∼ nθ for a fixed
θ < 1, the number of infected individuals in test ai can be well approximated by a Poisson variable. Therefore,
setting

∆∼ m

k
ln 2 (4.1)

ensures that about half the tests are positive w.h.p.
With respect to the performance of the ∆-out model, [11, Theorem 1.1] implies together with Theorem 1.1 that

this simple construction is information-theoretically optimal. Indeed, m = (1+ ε+ o(1))minf test suffice so that
an exponential time algorithm correctly infers the set of infected individuals. Specifically, the algorithm solves
a minimum hypergraph vertex cover problem with the individuals as the vertex set and the positive test groups
as the hyperedges. For m = (1+ ε+o(1))minf the unique optimal solution is precisely the correct set of infected
individuals w.h.p. While the worst case NP-hardness of hypergraph vertex cover does not, of course, preclude the
existence of an algorithm that is efficient on random hypergraphs, despite considerable efforts no such algorithm
has been found. In fact, as we saw in Section 1.4 for a good number of broadly similar inference and optimisation
problems on random graphs no efficient information-theoretically optimal algorithms are known.

But for m exceeding the threshold mDD from (1.2) an efficient greedy algorithm DD correctly recovers σ w.h.p.
The algorithm proceeds in three steps.

DD1: declare every individual that appears in a negative test uninfected and subsequently remove all nega-
tive tests and all individuals that they contain.

DD2: for every remaining (positive) test of degree one declare the individual that appears in the test infected.
DD3: declare all other individuals as uninfected.

The decisions made by the first two steps DD1–DD2 are clearly correct but DD3 might produce false negatives.
Prior to the present work DD was the best known polynomial time group testing algorithm. While DD correctly
identifies the set of infected individuals w.h.p. if m > (1+ε)mDD [22], the algorithm fails if m < (1−ε)mDD w.h.p. [11].

4.2. Spatial coupling. The new efficient algorithm SPIV for Theorem 1.2 that gets by with the optimal number
(1+ε+o(1))minf of tests comes with a tailor-made test design that, inspired by spatially coupled codes [18, 26, 27],
combines randomisation with a superimposed geometric structure. Specifically, we divide both the individuals
and the tests into

ℓ= ⌈ln1/2 n⌉ (4.2)

compartments of equal size. The compartments are arranged along a ring and each individual joins an equal
number of random tests in the

s = ⌈ln ln n⌉ = o(ℓ) (4.3)

topologically subsequent compartments. Additionally, to get the algorithm started we equip the first s compart-
ments with extra tests so that they can be easily diagnosed via the DD algorithm. Then, having diagnosed the initial
compartments correctly, SPIV will work its way along the ring, diagnosing one compartment after the other.

To implement this idea precisely we partition the set V = Vn = {x1, . . . , xn } of individuals into pairwise disjoint
subsets V [1], . . . ,V [ℓ] of sizes |V [ j ]| ∈ {⌊n/ℓ⌋,⌈n/ℓ⌉}. With each compartment V [i ] of individuals we associate a
compartment F [i ] of tests of size |F [i ]| = m/ℓ for an integer m that is divisible by ℓ. Additionally, we introduce
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V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]

F [0] F [0] F [0]

· · · · · ·

FIGURE 2. The spatially coupled test design with n = 36,ℓ = 9, s = 3. The individuals in the seed
groups V [1]∪·· ·∪V [s] (blue) are equipped with additional test F [0] (blue rectangles). The black
rectangles represent the tests F [1]∪·· ·∪F [ℓ].

a set F [0] of 10⌈(ks/ℓ) ln n⌉ extra tests to facilitate the greedy algorithm for diagnosing the first s compartments.
Thus, the total number of tests comes to

|F [0]|+
ℓ∑

i=1
|F [i ]| = (1+O(s/ℓ))m = (1+o(1))m. (4.4)

Finally, for notational convenience we define V [ℓ+ i ]=V [i ] and F [ℓ+ i ]= F [i ] for i = 1, . . . , s.
The test groups are composed as follows: let

k = ⌈nθ⌉ and let ∆= m ln 2

k
+O(s) (4.5)

be an integer divisible by s; cf. (4.1). Then we construct a random bipartite graph as follows.

SC1: for i = 1, . . . ,ℓ and j = 1, . . . , s every individual x ∈V [i ] joins ∆/s tests from F [i + j −1] chosen uniformly
at random without replacement. The choices are mutually independent for all individuals x and all j .

SC2: additionally, each individual from V [1]∪·· ·∪V [s] independently joins ⌈10ln(2) ln n⌉ random tests from
F [0], drawn uniformly without replacement.

Thus, SC1 provides that the individuals in compartment V [i ] take part in the next s compartments F [i ], . . . ,F [i +
s −1] of tests along the ring. Furthermore, SC2 supplies the tests required by the DD algorithm to diagnose the first
s compartments. Figure 2 provides an illustration of the resulting random test design,

From here on the test design produced by SC1–SC2 is denoted by G. Furthermore σ ∈ {0,1}V denotes a uni-
formly random vector of Hamming weight k, drawn independently of G, and σ̂ = (σ̂a)a∈F [0]∪···∪F [ℓ] signifies the
vector of test results

σ̂a = max
x∈∂a

σx .

In addition, let V1 = {x ∈ V : σx = 1} be the set of infected individuals and let V0 = V \ V1 be the set of healthy
individuals. Moreover, let F = F [0]∪F [1]∪·· · ∪F [ℓ] be the set of all tests, let F1 = {a ∈ F : σ̂a = 1} be the set of all
positive tests and let F0 = F \ F1 be the set of all negative tests. Finally, let

V0[i ]=V [i ]∩V0, V1[i ]=V [i ]∩V1, F0[i ]= F [i ]∩F0, F1[i ] = F [i ]∩F1.

The following proposition summarises a few basic properties of the test design G.

Proposition 4.1. If m =Θ(nθ lnn) then G enjoys the following properties with probability 1−o(n−2).

(i) The infected individual counts in the various compartments satisfy

k

ℓ
−

√
k

ℓ
lnn ≤ min

i∈[ℓ]
|V1[i ]| ≤ max

i∈[ℓ]
|V1[i ]| ≤ k

ℓ
+

√
k

ℓ
ln n.

(ii) For all i ∈ [ℓ] and all j ∈ [s] the test degrees satisfy

∆n

ms
−

√
∆n

ms
ln n ≤ min

a∈F [i+ j−1]
|V [i ]∩∂a| ≤ max

a∈F [i+ j−1]
|V [i ]∩∂a| ≤ ∆n

ms
+

√
∆n

ms
lnn.
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(iii) For all i ∈ [ℓ] the number of negative tests in compartment F [i ] satisfies

m

2ℓ
−p

m ln3 n ≤ |F0[i ]| ≤ m

2ℓ
+p

m ln3 n.

We prove Proposition 4.1 in Section 4.4. Finally, as a preparation for things to come we point out that for any
specific individual x ∈V [i ] and any particular test a ∈ F [i + j ], j = 0, . . . , s −1, we have

P [x ∈ ∂a]= 1−P [x 6∈ ∂a]= 1−
(
|F [i + j ]|−1

∆/s

)(
|F [i + j ]|
∆/s

)−1

= ∆ℓ

ms
+O

((
∆ℓ

ms

)2)
. (4.6)

4.3. The Spatial Inference Vertex Cover (‘SPIV’) algorithm. TheSPIV algorithm for Theorem 1.2 proceeds in three
phases. The plan of attack is for the algorithm to work its way along the ring, diagnosing one compartment after the
other aided by what has been learned about the preceding compartments. Of course, we need to start somewhere.
Hence, in its first phase SPIV diagnoses the seed compartments V [1], . . . ,V [s].

4.3.1. Phase 1: the seed. Specifically, the first phase of SPIV applies the DD greedy algorithm from Section 4.1 to
the subgraph of G induced on the individuals V [1]∪ . . .∪V [s] and the tests F [0]. Throughout the vector τ ∈ {0,1}V

signifies the algorithm’s current estimate of the ground truth σ.

Input: G , σ̂
Output: an estimate ofσ

1 Let (τx )x∈V [1]∪···∪V [s] ∈ {0,1}V [1]∪···∪V [s] be the result of applying DD to the tests F [0];
2 Set τx = 0 for all individuals x ∈V \ (V [1]∪·· ·∪V [s]);

Algorithm 1: SPIV, phase 1

The following proposition, whose proof can be found in Section 4.5, summarises the analysis of phase 1.

Proposition 4.2. W.h.p. the output of DD satisfies τx =σx for all x ∈V [1]∪·· · ∪V [s].

4.3.2. Phase 2: enter the ring. This is the main phase of the algorithm. Thanks to Proposition 4.2 we may assume
that the seed has been diagnosed correctly. Now, the programme is to diagnose one compartment after the other,
based on what the algorithm learned previously. Hence, assume that we managed to diagnose compartments
V [1], . . . ,V [i ] correctly. How do we proceed to compartment V [i +1]?

For a start, we can safely mark as uninfected all individuals in V [i+1] that appear in a negative test. But a simple
calculation reveals that this will still leave us with many more than k undiagnosed individuals w.h.p. To be precise,
consider the set of uninfected disguised individuals

V0+[i +1] = {x ∈V0[i +1] : σ̂a = 1 for all a ∈ ∂x} ,

i.e., uninfected individuals that fail to appear in a negative test. In Section 4.6 we prove the following.

Lemma 4.3. Suppose that (1+ε)mad ≤ m =O(nθ ln n). Then w.h.p. for all s ≤ i < ℓ we have

|V0+[i +1]| = (
1+O

(
n−Ω(1))) n

ℓ2∆
.

Hence, by the definition (4.5) of ∆ for m close to minf the set V0+[i +1] has size k1+Ω(1) ≫ k w.h.p.
Thus, the challenge is to discriminate between V0+[i +1] and the set V1[i +1] of actual infected individuals in

compartment i +1. The key observation is that we can tell these sets apart by counting currently ‘unexplained’
positive tests. To be precise, for an individual x ∈ V [i +1] and 1 ≤ j ≤ s let W x, j be the number of tests in com-
partment F [i + j ] that contain x but that do not contain an infected individual from the preceding compartments
V [1]∪·· ·∪V [i ]. In formulas,

W x, j =
∣∣{a ∈ ∂x ∩F [i + j ] : ∂a ∩ (V1[1]∪·· · ∪V1[i ]) =;

}∣∣ . (4.7)

Crucially, the following back-of-the-envelope calculation shows that the mean of this random variable depends on
whether x is infected or healthy but disguised.
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Infected individuals (x ∈V1[i +1]): consider a test a ∈ ∂x ∩F [i + j ], j = 1, . . . , s. Because the individuals join
tests independently, conditioning on x being infected does not skew the distribution of the individuals
from the s − j prior compartments V [i + j − s +1], . . . ,V [i ] that appear in a. Furthermore, we chose ∆ so
that for each of these compartments V [h] the expected number of infected individuals that join a has
mean (ln 2)/s. Indeed, due to independence it is not difficult to see that |V1[h]∩ ∂a| is approximately a
Poisson variable. Consequently,

P
[
(V1[i + j − s +1]∪·· ·∪V1[i ])∩∂a =;]∼ 2−(s− j )/s . (4.8)

Hence, because x appears in ∆/s tests a ∈ F [i + j ], the linearity of expectation yields

E
[
W x, j | x ∈V1[i +1]

]
∼ 2 j /s−1∆

s
. (4.9)

Disguised healthy individuals (x ∈V0+[i +1]): similarly as above, for any individual x ∈V [i +1] and any a ∈
∂x ∩F [i + j ] the unconditional number of infected individuals in a is asymptotically Po(ln2). But given
x ∈V0+[i+1] we know that a is positive. Thus, ∂a\{x} contains at least one infected individual. In effect, the
number of positives in a approximately turns into a conditional Poisson Po≥1(ln 2). Consequently, for test
a not to include any infected individual from one of the known compartments V [h], h = i + j − s +1, . . . , i ,
every infected individual in test a must stem from the j yet undiagnosed compartments. Summing up the
conditional Poisson and recalling that x appears in ∆/s tests a ∈ F [ j ], we thus obtain

E
[
W x, j | x ∈V0+[i +1]

]
∼ ∆

s

∑
t≥1

P [Po≥1(ln2) = t] ( j /s)t = (2 j /s −1)
∆

s
. (4.10)

A first idea to tell V0+[i +1] and V1[i +1] apart might thus be to simply calculate

W x =
s−1∑
j=1

W x, j (x ∈V [i +1]). (4.11)

Indeed, (4.9) and (4.10) yield

E [W x | x ∈V1[i +1]]∼ ∆

2ln 2
= 0.721. . . ∆ whereas E [W x | x ∈V0+[i +1]]∼ ∆(1− ln 2)

ln 2
= 0.442. . . ∆.

But unfortunately a careful large deviations analysis reveals that W x is not sufficiently concentrated. More pre-
cisely, even for m = (1+ε+o(1))minf there are as many as k1+Ω(1) ‘outliers’ x ∈V0+[i +1] whose W x grows as large
as the mean ∆/(2ln 2) of actual infected individuals w.h.p.

At second thought the plain sum (4.11) does seem to leave something on the table. While W x counts all as yet
unexplained positive tests equally, not all of these tests reveal the same amount of information. In fact, we should
really be paying more attention to ‘early’ unexplained tests a ∈ F [i+1] than to ‘late’ ones b ∈ F [i+s]. For we already
diagnosed s−1 out of the s compartments of individuals that a draws on, whereas only one of the s compartments
that contribute to b has already been diagnosed. Thus, the unexplained test a is a much stronger indication that x
might be infected. Consequently, it seems promising to replace W x by a weighted sum

W ⋆
x =

s−1∑
j=1

w j W x, j (4.12)

with w1, . . . , ws−1 ≥ 0 chosen so as to gauge the amount of information carried by the different compartments.
To find the optimal weights w1, . . . , ws−1 we need to investigate the rate function of W ⋆

x given x ∈ V0+[i + 1].
More specifically, we should minimise the probability that W ⋆

x given x ∈ V0+[i +1] grows as large as the mean of
W ⋆

x given x ∈V1[i +1], which we read off (4.9) easily:

E
[
W ⋆

x | x ∈V1[i +1]
]∼ ∆

s

s−1∑
j=1

2 j /s−1w j . (4.13)

A careful large deviations analysis followed by a Lagrangian optimisation leads to the optimal choice

w j = ln
(1−2ζ)2 j /s−1(2−2 j /s )

(1− (1−2ζ)2 j /s−1)(2 j /s −1)
where ζ= 1/s2. (4.14)
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The following two lemmas show that with these weights the scores W ⋆
x discriminate well between the potential

false positives and the infected individuals. More precisely, thresholding W ⋆
x we end up misclassifying no more

than o(k) individuals x w.h.p.

Lemma 4.4. Suppose that (1+ε)mad ≤ m =O(nθ ln n). W.h.p. we have

∑
s≤i<ℓ

∑
x∈V1[i]

1

{
W ⋆

x < (1−ζ/2)
∆

s

s−1∑
j=1

2 j /s−1w j

}
≤ k exp

(
− Ω(ln n)

(lnln n)4

)
. (4.15)

Lemma 4.5. Suppose that (1+ε)mad ≤ m =O(nθ ln n). W.h.p. we have

∑
s≤i<ℓ

∑
x∈V0+[i]

1

{
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j

}
≤ k1−Ω(1). (4.16)

We prove these two lemmas in Sections 4.7 and 4.8.
Lemmas 4.4–4.5 leave us with only one loose end. Namely, calculating the scores W ⋆

x requires knowledge of the
correct infection status σx of all the individuals x ∈ V [1]∪ ·· · ∪V [i ] from the previous compartments. But since
the r.h.s. expressions in (4.15) and (4.16) are non-zero, it is unrealistic to assume that the algorithm’s estimates τx

will consistently match the ground truth σx beyond the seed compartments. Hoping that the algorithm’s estimate
will not stray too far, we thus have to make do with the approximate scores

W ⋆
x (τ) =

s−1∑
j=1

w j Wx, j (τ), where Wx, j (τ)=
∣∣∣∣
{

a ∈ ∂x ∩F [i + j −1] : max
y∈∂a∩(V [1]∪···V [i])

τy = 0

}∣∣∣∣ . (4.17)

Hence, phase 2 of SPIV reads as follows.

3 for i = s, . . . ,ℓ−1 do
4 for x ∈V [i +1] do
5 if ∃a ∈ ∂x : σ̂a = 0 then
6 τx = 0 // classify as uninfected
7 else if W ⋆

x (τ)< (1−ζ)∆s
∑s−1

j=1 2 j /s−1w j then

8 τx = 0 // tentatively classify as uninfected
9 else

10 τx = 1 // tentatively classify as infected
Algorithm 2: SPIV, phase 2.

Since phase 2 of SPIV uses the approximations from (4.17), there seems to be a risk of errors amplifying as we
move along. Fortunately, it turns out that errors proliferate only moderately and the second phase of SPIV will
misclassify only o(k) individuals. The following proposition summarises the analysis of phase 2.

Proposition 4.6. Suppose that (1+ε)mad ≤ m =O(k ln n). W.h.p. the assignment τ obtained after steps 1–10 satisfies

∑
x∈V

1 {τx 6=σx } ≤ k exp

(
− ln n

(ln lnn)6

)
.

The proof of Proposition 4.6 can be found in Section 4.9.

4.3.3. Phase 3: cleaning up. The final phase of the algorithm rectifies the errors incurred during phase 2. The com-
binatorial insight that makes this possible is that for m ≥ (1+ ε)minf every infected individual has at least Ω(∆)
positive tests to itself w.h.p. Thus, these tests do not feature a second infected individual. Phase 3 of the algorithm
exploits this observation by simply thresholding the number Sx of tests where there is no other infected individual
besides potentially x. Thanks to the expansion properties of the graph G, each iteration of the thresholding pro-
cedure reduces the number of misclassified individuals by at least a factor of three. In effect, after ln n iterations
all individuals will be classified correctly w.h.p. Of course, due to Proposition 4.2 we do not need to reconsider the
seed V [1]∪·· · ∪V [s].
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11 Let τ(1) = τ;
12 for i = 1, . . . ,⌈ln n⌉ do
13 For all x ∈V [s +1]∪·· · ∪V [ℓ] calculate

14 Sx (τ(i)) =
∑

a∈∂x:σ̂a=1
1

{
∀y ∈ ∂a \ {x} : τ(i)

y = 0
}

;

15 Let τ(i+1)
x =

{
τ(i)

x if x ∈V [1]∪·· · ∪V [s],

1
{

Sx
(
τ(i)

)> ln1/4 n
}

otherwise
;

16 return τ(⌈lnn⌉)

Algorithm 3: SPIV, phase 3.

Proposition 4.7. Suppose that (1+ε)minf ≤ m =O(nθ ln n). W.h.p. for all 1≤ i ≤ ⌈ln n⌉ we have

∑
x∈V

1{τ(i+1)
x 6=σx } ≤ 1

3

∑
x∈V

1{τ(i)
x 6=σx }.

We prove Proposition 4.7 in Section 4.10.

Proof of Theorem 1.2. The theorem is an immediate consequence of Propositions 4.2, 4.6 and 4.7. �

4.4. Proof of Proposition 4.1. The number |V1[i ]| of infected individuals in compartment V [i ] has distribution
Hyp(n,k, |V [i ]|). Since ||V [i ]|−n/ℓ| ≤ 1, (i) is an immediate consequence of the Chernoff bound from Lemma 2.2.

With respect to (ii), we recall from (4.6) that P [x ∈ ∂a] = ∆ℓ
ms (1+O( ∆ℓms )). Hence, because the various individuals

x ∈V [i ] join tests independently, the number |V [i ]∩∂a| of test participants from V [i ] has distribution

|V [i ]∩∂a| ∼ Bin(|V [i ]|,∆ℓ/(ms)+O((∆ℓ/ms)2)).

Since |V [i ]| = n/ℓ+O(1), assertion (ii) follows from (4.5) and the Chernoff bound from Lemma 2.1.
Coming to (iii), due to part (i) we may condition on E = {∀i ∈ [ℓ] : |V1[i ]| = k/ℓ+O(

p
k/ℓ ln n)}. Hence, with h

ranging over the s compartments whose individuals join tests in F [i ], (4.6) implies that for every test a ∈ F [i ] the
number of infected individuals |V1 ∩∂a| is distributed as a sum of independent binomial variables

|V1 ∩∂a| ∼
∑
h

X h with X h ∼ Bin

(
V1[h],

∆ℓ

ms
+O

((
∆ℓ

ms

)2))
.

Consequently, (4.5) ensures that the event V1 ∩∂a =; has conditional probability

P [V1 ∩∂a =; | E ] =
∏
h
P [X h = 0 | E ] = exp


s


k

ℓ
+O



√

k

ℓ
ln n




 ln

(
1− ∆ℓ

ms
+O

((
∆ℓ

ms

)2))



= exp


− sk

ℓ
· ∆ℓ

ms
+O



√

k

ℓ
· ∆ℓ

m


+O

(
sk

ℓ
·
(
∆ℓ

ms

)2)

= 1

2
+O(

p
ℓ/k).

Therefore, we obtain the estimate

E [|F0[i ]| | E ] = m

2ℓ
+O(

p
m ln n). (4.18)

Finally, changing the set of tests that a specific infected individual x ∈V1[h] joins shifts |F0[i ]| by at most ∆ (while
tinkering with uninfected ones does not change |F0[i ]| at all). Therefore, the Azuma–Hoeffding inequality yields

P [||F0[i ]|−E [|F0[i ]| | E ]| ≥ t | E ]≤ 2exp

(
− t 2

2k∆2

)
for any t > 0. (4.19)

Thus, (iii) follows from (4.5), (4.18) and (4.19) with t =p
m ln3 n.
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4.5. Proof of Proposition 4.2. Let D = ⌈10ln(2) ln n⌉ and recall that |F [0]| = ⌈10ks ln(n)/ℓ⌉. Since by SC2 every
individual from ∈V [1]∪·· ·∪V [s] joins D random tests from F [0], in analogy to (4.6) for every x ∈V [1]∪·· ·∪V [s]
and every test a ∈ F [0] we obtain

P [x ∈ ∂a]= 1−P [x 6∈ ∂a]= 1−
(
|F [0]|−1

D

)(
|F [0]|

D

)−1

= D

|F [0]|

(
1+O

(
D

|F [0]|

))
= ℓ ln 2

ks

(
1+O(n−Ω(1))

)
. (4.20)

Let F1[0] be the set of tests a ∈ F [0] with σ̂a = 1.

Lemma 4.8. W.h.p. the number of positive tests a ∈ F [0] satisfies |F1[0]| = |F [0]|( 1
2 +O(n−Ω(1))).

Proof. By Proposition 4.1 we may condition on the event E that |V1[1]∪·· ·∪V1[s]| = ks
ℓ (1+O(n−Ω(1))). Hence, (4.20)

implies that given E the expected number of infected individuals in a test a ∈ F [0] comes to

E[|∂a ∩V1| | E ]= ln2+O(n−Ω(1)). (4.21)

Moreover, since individuals join tests independently, |∂a∩V1| is a binomial random variable. Hence, (4.21) implies
P[∂a ∩V1 =; | E ]= 1

2 +O(n−Ω(1)). Consequently, since P [E ]= 1−o(n−2) by Proposition 4.1,

E|F1 ∩F [0]| = E|F1[0]| = |F [0]|
2

(1+O(n−Ω(1))). (4.22)

Finally, changing the set ∂x of neighbours of an infected individual can shift |F1[0]| by at most D. Therefore, the
Azuma–Hoeffding inequality implies that

P [||F1[0]|−E|F1[0]|| > t ]≤ 2exp

(
− t 2

2D2k

)
for any t > 0. (4.23)

Since D =O(ln n), combining (4.22) and (4.23) and setting, say, t = k2/3 completes the proof. �

As an application of Lemma 4.8 we show that w.h.p. every seed individual x appears in a test a ∈ F [0] whose
other individuals are all healthy.

Corollary 4.9. W.h.p. every individual x ∈V [1]∪·· ·∪V [s] appears in a test a ∈ F [0]∩∂x such that ∂a \ {x} ⊂V0.

Proof. We expose the random bipartite graph induced on V [1]∪ ·· · ∪V [s] and F [0] in two rounds. In the first
round we expose σ and all neighbourhoods (∂y)y∈(V [1]∪···∪V [s])\{x}. In the second round we expose ∂x. Let X be
the number of negative tests a ∈ F [0] after the first round. Since x has degree D =O(ln n), Lemma 4.8 implies that
X = |F [0]|( 1

2 +O(n−Ω(1))) w.h.p. Furthermore, given X the number of tests a ∈ ∂x all of whose other individuals are
uninfected has distribution Hyp(|F [0]|, X ,D). Hence,

P [∀a ∈ ∂x : V1 ∩∂a \ {x} 6= ; | X ]=
(
|F [0]|−X

D

)(
|F [0]|

D

)−1

≤ exp(−D X /|F [0]|). (4.24)

Assuming X /|F [0]| = 1
2 +O(n−Ω(1)) and recalling that D = ⌈10ln(2) lnn⌉, we obtain exp(−D X /|F [0]|) = o(1/n). Thus,

the assertion follows from (4.24) and the union bound. �

Proof of Proposition 4.2. Due to Corollary 4.9 we may assume that for every x ∈ V [1] ∪ ·· · ∪V [s] there is a test
ax ∈ F [0] such that ∂ax \{x} ⊂V0. Hence, recalling the DD algorithm from Section 4.1, we see that the first step DD1
will correctly identify all healthy individuals x ∈ V0[1]∪ ·· · ∪V0[s]. Moreover, the second step DD2 will correctly
classify all remaining individuals V1[1]∪·· · ∪V1[s] as infected, and the last step DD3 will be void. �

4.6. Proof of Lemma 4.3. Let E be the event that properties (i) and (iii) from Proposition 4.1 hold; then P [E ] =
1− o(n−2). Moreover, let E be the σ-algebra generated by σ and the neighbourhoods (∂x)x∈V1 . Then the event
E is E-measurable while the neighbourhoods (∂x)x∈V0 of the healthy individuals are independent of E. Recalling
from SC1 that the individuals x ∈V0[i ] choose ∆/s random tests in each of the compartments F [i + j ], 0 ≤ j ≤ s−1
independently and remembering that x ∈V0+[i ] iff none of these tests is negative, on E we obtain

P [x ∈V0+[i ] |E] =
(

m/(2ℓ)+O(
p

m ln3 n)

∆/s

)s(
m/ℓ

∆/s

)−s

=
(

1+O(m−1/2ℓ ln3 n)

2

)∆

= 2−∆+O(m−1/2∆ℓ ln3 n) = 2−∆(1+O(n−θ/2 ln4 n)) [due to (4.2) and (4.5)]. (4.25)
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Because all x ∈ V0[i ] choose their neighbourhoods independently, (4.25) implies that the conditional random
variable |V0+[i ]| given E has distribution Bin(|V0[i ]|,2−∆(1+O(n−Ω(1)))). Therefore, since on E we have |V0[i ]| =
|V [i ]|+O(nθ) = n/ℓ+O(nθ), the assertion follows from the Chernoff bound from Lemma 2.1.

4.7. Proof of Lemma 4.4. The aim is to estimate the weighted sum W ⋆
x for infected individuals x ∈ V [i +1] with

s ≤ i < ℓ. These individuals join tests in the s compartments F [i + j ], j ∈ [s]. Conversely, for each such j the tests
a ∈ F [i + j ] recruit their individuals from the compartments V [i + j − s +1], . . . ,V [i + j ]. Thus, the compartments
preceding V [i +1] that the tests in F [i + j ] draw upon are V [h] with i + j − s < h ≤ i . We begin by investigating the
set Wi , j of tests a ∈ F [i + j ] without an infected individual from these compartments, i.e.,

Wi , j =
{

a ∈ F [i + j ] : (V1[1]∪·· · ∪V1[i ])∩∂a =;}=
{

a ∈ F [i + j ] :
⋃

i+ j−s+1<h≤i
V1[h]∩∂a =;

}
.

Claim 4.10. With probability 1−o(n−2) for all s ≤ i < ℓ, j ∈ [s] we have |Wi , j | = 2−(s− j )/s m
ℓ (1+O(n−Ω(1))).

Proof. We may condition on the event E that (i) from Proposition 4.1 occurs. To compute the mean of |Wi , j |fix a test
a ∈ F [i + j ] and an index i + j − s < h ≤ i . Then (4.6) shows that the probability that a fixed individual x ∈V [h] joins
a equals P [x ∈ ∂a]= ∆ℓ

ms (1+O( ∆ℓms )). Hence, the choices (4.2) and (4.5) of∆ and ℓ and the assumption m =Θ(k ln n)
ensure that

E
[∣∣(V1[i + j − s +1]∪·· · ∪V1[i ])∩∂a

∣∣ | E ]= (
s − j

)
(
∆ℓ

ms
· k

ℓ
+O

(
∆2k

m2s2

)
+O

(
∆ℓ

p
k ln n

ms

))

= s − j

s
ln2+O(n−Ω(1)). (4.26)

Since by SC1 the events {x ∈ ∂a}x are independent, |V1[h]∩∂a| is a binomial random variable for every h and all
these random variables (|V1[h]∩∂a|)h are mutually independent. Therefore, (4.26) implies that

P
[
(V1[i + j − s +1]∪·· ·V1[i ])∩∂a =; | E

]
= 2−(s− j )/s +O(n−Ω(1)). (4.27)

Hence,

E
[|Wi , j | | E

]=
∑

a∈F [i+ j ]
P

[
(V1[i + j − s +1]∪·· · ∪V1[i ])∩∂a =; | E ]= m

ℓ
2−(s− j )/s(1+O(n−Ω(1))). (4.28)

Finally, changing the neighbourhood ∂x of one infected individual x ∈ V1 can alter |Wi , j | by at most ∆. Therefore,
the Azuma–Hoeffing inequality shows that for any t > 0,

P
[∣∣|Wi , j |−E[|Wi , j | | E ]

∣∣> t | E
]
≤ 2exp

(
− t 2

2k∆2

)
. (4.29)

Combining (4.28) and (4.29), applied with t =p
m ln2 n, and taking a union bound on i , j completes the proof. �

As a next step we use Claim 4.10 to estimate the as yet unexplained tests counts W x, j from (4.7).

Claim 4.11. For all s ≤ i < ℓ, x ∈V1[i +1] and j ∈ [s] we have

P
[

W x, j < (1−ε/2)2 j /s−1∆/s
]
≤ exp

(
− Ω(ln n)

(lnln n)4

)
.

Proof. Fix a pair of indices i , j and an individual x ∈ V1[i + 1]. We also condition on the event E that (i) from
Proposition 4.1 occurs. Additionally, thanks to Claim 4.10 we may condition on the event

E ′ =
{
|Wi , j | = 2−(s− j )/s m

ℓ
(1+O(n−Ω(1)))

}
.

Further, let E be the σ-algebra generated by σ and by the neighbourhoods (∂y)y∈V [1]∪···∪V [i]. Recall from SC1 that
x simply joins ∆/s random tests in compartment F [i + j ], independently of all other individuals, and remember
from (4.7) that W x, j counts tests a ∈Wi+ j ∩∂x. Therefore, since the events E ,E ′ and the random variable |Wi , j | are
E-measurable while ∂x is independent of E, given E the random variable W x, j has a hypergeometric distribution
Hyp(m/ℓ, |Wi , j |,∆/s). Thus, the assertion follows from the hypergeometric Chernoff bound from Lemma 2.2 and
the choice (4.14) of ζ. �
Proof of Lemma 4.4. Since W ⋆

x = ∑s
j=1 w j W x, j , the lemma is an immediate consequence of Markov’s inequality

and Claim 4.11. �
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4.8. Proof of Lemma 4.5. We need to derive the rate functions of the random variable W x, j that count as yet
unexplained tests for x ∈ V0+[i +1]. To this end we first investigate the set of positive tests in compartment i + j
that do not contain any infected individuals from the first i compartments. In symbols,

P i+1, j =
{

a ∈ F1[i + j ] : ∂a ∩ (V1[1]∪·· ·∪V1[i ]) =;
}

(s ≤ i < ℓ, j ∈ [s]).

Claim 4.12. W.h.p. for all s ≤ i < ℓ, j ∈ [s] we have |P i+1, j | =
(
1+O(n−Ω(1))

)(
2 j /s −1

) m
2ℓ .

Proof. We may condition on the event E that (i) from Proposition 4.1 occurs. As a first step we calculate the prob-
ability that (V1[i + 1] ∪ ·· · ∪V1[i + j ]) ∩ ∂a 6= ; for a specific test a ∈ F [i + j ]. To this end we follow the steps
of the proof of Claim 4.10. Since by (4.6) a specific individual x ∈ V [h], i < h ≤ i + j , joins a with probability
P [x ∈ ∂a] = (∆ℓ/(ms))(1+O(∆ℓ/(ms))) and since given E each compartment V [h] contains k/ℓ+O(

p
k/ℓ ln n)

infected individuals, we obtain, in perfect analogy to (4.26),

E
[∣∣(V1[i +1]∪·· ·∪V1[i + j ])∩∂a

∣∣ | E ]= j

s
ln 2+O(n−Ω(1)). (4.30)

Since the individuals x ∈V [i +1]∪·· ·∪V [i + j ] join tests independently, (4.30) implies that

P
[
(V1[i +1]∪·· · ∪V1[i + j ])∩∂a 6= ; | E

]
= 1−2− j /s +O(n−Ω(1)). (4.31)

Furthermore, we already verified in (4.27) that

P
[
(V1[i + j − s +1]∪·· ·V1[i ])∩∂a =; | E ]= 2−(s− j )/s +O(n−Ω(1)). (4.32)

Because the choices for the compartments V [i + j − s +1]∪ ·· · ∪V [i + j ] from which a draws its individuals are
mutually independent, we can combine (4.31) with (4.32) to obtain

P

[
⋃

i+ j−s<h≤i
V1[h]∩∂a =; 6=

⋃
i<h≤i+ j

V1[h]∩∂a | E
]
= 2 j /s −1

2
+O(n−Ω(1)). (4.33)

Further, (4.33) implies

E
[|P i+1, j | | E

]= E

[∣∣∣∣∣

{
a ∈ F1[i + j ] :

⋃
h≤i

V1[h]∩∂a =; 6=
⋃
i<h

V1[h]∩∂a

}∣∣∣∣∣ | E
]
= (2 j /s −1)

m

2ℓ

(
1+O(n−Ω(1))

)
. (4.34)

Finally, altering the neighbourhood ∂x of any infected individual can shift |P i+1, j | by at most ∆. Therefore, the
Azuma–Hoeffding inequality implies that

P
[∣∣|P i+1, j |−E[|P i+1, j | | E ]

∣∣> t | E
]
≤ 2exp

(
− t 2

2k∆2

)
. (4.35)

Thus, the assertion follows from (4.5), (4.34) and (4.35) by setting t =p
m ln2 n. �

Thanks to Proposition 4.1 (iii) and Lemma 4.12 in the following we may condition on the event

U =
{
∀s < i ≤ ℓ, j ∈ [s] : |F1[i + j ]| = (

1+O(n−Ω(1))
) m

2ℓ
∧|P i+1, j | =

(
1+O(n−Ω(1))

)(
2 j /s −1

) m

2ℓ

}
. (4.36)

As a next step we will determine the conditional distribution of W x, j for x ∈V0+[i +1] given U .

Claim 4.13. Let s < i ≤ ℓ and j ∈ [s]. Given U for every x ∈V0+[i +1] we have

W x, j ∼ Hyp

((
1+O(n−Ω(1))

) m

2ℓ
,
(
1+O(n−Ω(1))

)(
2 j /s −1

) m

2ℓ
,
∆

s

)
. (4.37)

Proof. By SC1 each individual x ∈V0+[i +1] joins ∆/s positive test from F [i + j ], drawn uniformly without replace-
ment. Moreover, by (4.7) given x ∈V0+[i +1] the random variable W x, j counts the number of tests a ∈P i+1, j ∩∂x.
Therefore, W x, j ∼ Hyp(|F1[i + j ], |P i+1, j |,∆/s). Hence, given U we obtain (4.37). �

The estimate (4.37) enables us to bound the probability that W ⋆
x gets ‘too large’.
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Claim 4.14. Let

M =min
1

s

s−1∑
j=1

1
{

z j ≥ 2 j /s −1
}

DKL

(
z j‖2 j /s −1

)

s.t.
s−1∑
j=1

(
z j − (1−2ζ)2 j /s−1

)
w j = 0, z1, . . . , zs−1 ∈ [0,1].

Then for all s ≤ i < ℓ and all x ∈V [i +1] we have

P

[
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]
≤ exp(−(1+o(1))M∆).

Proof. Let s ≤ i < ℓ and x ∈ V0+[i +1]. Step SC1 of the construction of G ensures that the random variables
(W x, j ) j∈[s] are independent because the tests in the various compartments F [i + j ], j ∈ [s], that x joins are drawn
independently. Therefore, the definition (4.12) of W ⋆

x and Lemma 4.13 yield

P

[
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]
=P

[
s−1∑
j=1

w j W x, j ≥
1−2ζ

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]

≤
∆∑

y1 ,...,ys=0
1

{
s−1∑
j=1

w j y j ≥
1−2ζ

s

s−1∑
j=1

2 j /s−1w j

}
s−1∏
j=1

P[W x, j ≥ y j |U , x ∈V0+[i +1]]. (4.38)

Further, let

Z =
{

(z1, . . . , zs−1) ∈ [0,1]s−1 :
s−1∑
j=1

(
z j − (1−2ζ)2 j /s−1

)
w j = 0

}
.

Substituting y j =∆z j /s in (4.38) and bounding the total number of summands by (∆+1)s , we obtain

P

[
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]
≤ (∆+1)s max

(z1 ,...,zs )∈Z

s−1∏
j=1

P[W x, j ≥∆z j /s |U , x ∈V0+[i +1]].

(4.39)

Moreover, Claim 4.13 and the Chernoff bound from Lemma 2.2 yield

P[W x, j ≥∆z j /s |U , x ∈V0+[i +1]] ≤ exp

(
−1

{
z j ≥ p j

} ∆
s

DKL
(
z j ‖p j

))
where p j = 2 j /s −1+O(n−Ω(1)).

Consequently, since (4.5) and the assumption m =Θ(k ln n) ensure that ∆=Θ(lnn), we obtain

P[W x, j ≥∆z j /s |U , x ∈V0+[i +1]] ≤ exp

(
−1

{
z j ≥ 2 j /s −1

} ∆
s

DKL

(
z j ‖2 j /s −1

)
+O(n−Ω(1))

)
. (4.40)

Finally, the assertion follows from (4.39) and (4.40). �

As a next step we solve the optimisation problem M from Claim 4.14.

Claim 4.15. We have M = 1− ln 2+O(ln(s)/s).

Proof. Fixing an auxiliary parameter δ≥ 0 we set up the Lagrangian

Lδ(z1, . . . , zs ,λ) =
s−1∑
j=1

(
1

{
z j ≥ 2 j /s −1

}
+δ1

{
z j < 2 j /s −1

})
DKL

(
z j ‖2 j /s −1

)
+ λ

s

s−1∑
j=1

w j

(
z j − (1−2ζ)2 j /s−1

)
.

The partial derivatives come out as

∂Lδ

∂λ
=−1

s

s−1∑
j=1

((1−2ζ)2 j /s−1 − z j )w j ,
∂Lδ

∂z j
=−λw j +

(
1

{
z j ≥ 2 j /s −1

}
+δ1

{
z j < 2 j /s −1

})
ln

z j (2−2 j /s )

(1− z j )(2 j /s −1)
.

Set z∗
j = (1−2ζ)2 j /s−1 and λ∗ = 1. Then clearly

∂Lδ

∂λ

∣∣∣
λ∗,z∗1 ,...,z∗s−1

= 0. (4.41)
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Moreover, the choice (4.14) of ζ guarantees that z∗
j ≥ 2 j /s −1. Hence, by the choice (4.14) of the weights w j ,

∂Lδ

∂z j

∣∣∣
λ∗,z∗1 ,...,z∗s−1

= 0. (4.42)

Since Lδ(y1, . . . , ys ,λ) is strictly convex in z1, . . . , zs for every δ> 0, (4.41)–(4.42) imply that λ∗, z∗
1 , . . . , z∗

s−1 is a global
minimiser. Furthermore, since this is true for any δ> 0 and since z∗

j ≥ 2 j /s −1, we conclude that (z∗
1 , . . . , z∗

s−1) is an

optimal solution to the minimisation problem M . Hence,

M = 1

s

s−1∑
j=1

DKL

(
z∗

j ‖2 j /s −1
)
= 1

s

s−1∑
j=1

DKL

(
(1−2ζ)2 j /s−1‖2 j /s −1

)
. (4.43)

Since

∂

∂α
DKL

(
(1−2α)2z−1‖2z −1

)= 2z [−z ln(2)+ ln(1−2z−1 +α2z )− ln(1−2z−1)− ln(1−2α)+ ln(2z −1)
]

,

we obtain ∂
∂αDKL

(
(1−2α)2z−1‖2z −1

)
= O(ln s) for all z = 1/s, . . . , (s −1)/s and α ∈ [0,2ζ]. Combining this bound

with (4.43), we arrive at the estimate

M =O(ζ ln s)+ 1

s

s−1∑
j=1

DKL

(
2 j /s−1‖2 j /s −1

)
. (4.44)

Additionally, the function f : z ∈ [0,1] 7→ DKL
(
2z−1‖2z −1

)
is strictly decreasing and convex. Indeed,

f ′(z)= 2z−1 ln 2

2z −1

(
(2z −1) ln

(
2z

2z −1

)
−1

)
, f ′′(z) =

(
2z−1 ln2 2

)(
ln

(
2z

2z −1

)
+ 2−2z

(2z −1)2

)
.

The first derivative is negative because 2z−1/(2z −1) > 0 while (2z −1) ln (2z /(2z −1)) < 1 for all z ∈ (0,1). Moreover,
since evidently f ′′(z) > 0 for all z ∈ (0,1), we obtain convexity. Further, l’Hôpital’s rule yields

DKL
(
21/s−1‖21/s −1

)=O(ln s).

As a consequence, we can approximate the sum (4.44) by an integral and obtain

M =O(ln(s)/s)+
∫1

0
DKL

(
2z−1‖2z −1

)
dz

=O(ln(s)/s)+ 2(1− z) ln2(2)+2z ln2z + (1−2z ) ln(2z −1)

2ln 2

∣∣∣
z=1

z=0
= 1− ln(2)+O(ln(s)/s),

as claimed. �

Proof of Lemma 4.5. Fix s ≤ i < ℓ and let X i be the number of x ∈ V0+[i ] such that W ⋆
x > (1−2ζ)∆s

∑s−1
j=1 2 j /s−1w j .

Also recall that Proposition 4.1 (iii) and Claim 4.12 imply thatP [U ]= 1−o(1). Combining Lemma 4.3 with Claims 4.14
and 4.15, we conclude that

E[X i |U ]≤ (
1+O

(
n−Ω(1)))2−∆n exp(−(1− ln(2)+o(1))∆) = exp(ln n− (1+o(1))∆) . (4.45)

Recalling the definition (4.5) of ∆ and using the assumption that m ≥ (1+ ε)mad for a fixed ε > 0, we obtain ∆ ≥
(1−θ+Ω(1)) ln n. Combining this estimate with (4.45), we find

E[X i |U ]≤ nθ−Ω(1). (4.46)

Finally, the assertion follows from (4.46) and Markov’s inequality. �

4.9. Proof of Proposition 4.6. The following lemma establishes an expansion property of G. Specifically, if T is a
small set of individuals, then there are few individuals x that share many tests with another individual from T .

Lemma 4.16. Suppose that m =Θ(nθ ln n). W.h.p. for any set T ⊂V of size at most exp(− ln7/8 n)k we have
∣∣∣∣∣

{
x ∈V :

∑
a∈∂x\F [0]

1{T ∩∂a \ {x} 6= ;} ≥ ln1/4 n

}∣∣∣∣∣≤
|T |
3

.
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Proof. Fix a set T ⊂V of size t = |T | ≤ exp(− ln7/8 n)k, a set R ⊂V of size r = ⌈t/3⌉ and let γ= ⌈ln1/4 n⌉. Furthermore,
let U ⊂ F [1]∪·· · ∪F [ℓ] be a set of tests of size γr ≤ u ≤ ∆t . Additionally, let E (R,T,U ) be the event that every test
a ∈U contains two individuals from R ∪T . Then

P

[
R ⊂

{
x ∈V :

∑
a∈∂x\F [0]

1 {T ∩∂a \ {x} 6= ;} ≥ γ

}]
≤P [E (R,T,U )] . (4.47)

Hence, it suffices to estimate P [E (R,T,U )].
Given a test a ∈ U there are at most

(r+t
2

)
way to choose two individuals xa , x′

a ∈ R ∪T . Moreover, (4.6) shows
that the probability of the event {xa , x′

a ∈ ∂a} is bounded by (1+o(1))(∆ℓ/(ms))2. Therefore,

P [E (R,T,U )]≤
[(

r + t

2

)(
(1+o(1))∆ℓ

ms

)2
]u

.

Consequently, the event E (t ,u) that there exist sets R ,T,U of sizes |R| = r = ⌈t/3⌉, |T | = t , |U | = u such that E (R,T,U )
occurs has probability

P [E (t ,u)]≤
(

n

r

)(
n

t

)(
m

u

)[(
r + t

2

)(
(1+o(1))∆ℓ

ms

)2
]u

.

Hence, the bounds γt/3≤ γr ≤ u ≤∆t yield

P [E (t ,u)]≤
(

n

t

)2(
m

u

)[(
2t

2

)(
(1+o(1))∆ℓ

ms

)2
]u

≤
(en

t

)2t
(

2e∆2ℓ2t 2

ms2u

)u

≤
[(en

t

)3/γ 6e∆2ℓ2t

γms2

]u

≤
[(en

t

)3/γ
· t ln4 n

m

]u

[due to (4.2), (4.5)].

Further, since γ = Ω(ln1/4 n) and m = Ω(k ln n) while t ≤ exp(− ln7/8 n)k, we obtain P [E (t ,u)] ≤ exp(−u
p

ln n).
Thus,

∑
1≤t≤k1−α
γt/3≤u≤∆t

P [E (t ,u)] ≤
∑

1≤u≤∆t
u exp(−u

p
ln n) = o(1). (4.48)

Finally, the assertion follows from (4.47) and (4.48). �

Proof of Proposition 4.6. With τ the result of steps 1–10 of SPIV let M [i ]= {x ∈V [i ] : τx 6=σx } be the set of misclas-
sified individuals in compartment V [i ]. Proposition 4.2 shows that w.h.p. M [i ] =; for all i ≤ s. Further, we claim
that for every s ≤ i < ℓ and any individual x ∈M [i +1] one of the following three statements is true.

M1: x ∈V1[i +1] and W ⋆
x < (1−ζ/2)∆s

∑s−1
j=1 2 j /s−1w j ,

M2: x ∈V0+[i +1] and W ⋆
x > (1−2ζ)∆s

∑s−1
j=1 2 j /s−1w j , or

M3: x ∈V [i +1] and
∑

a∈∂x 1{∂a ∩ (M [1]∪·· ·∪M [i ]) 6= ;} ≥ ln1/4 n.

To see this, assume that x ∈M [i +1] while M3 does not hold. Then comparing (4.7) and (4.17) we obtain
∣∣Wx, j (τ)−W x, j

∣∣≤ ln1/4 n for all 1≤ j < s. (4.49)

Moreover, the definition (4.14) of the weights, the choice (4.3) of s, and the choices (4.14) of ζ and the weights w j

ensure that 0 ≤ w j ≤O(s) =O(lnln n). This bound implies together with the definition (4.12) of the scores W ⋆
x and

(4.49) that

|W ⋆
x −W ⋆

x (τ)| = o(ζ∆). (4.50)

Thus, combining (4.50) with the definition of τx in Steps 5–10 of SPIV, we conclude that either M1 or M2 occurs.
Finally, to bound M [i +1] let M1[i +1], M2[i +1], M3[i +1] be the sets of individuals x ∈V [i +1] for which M1,

M2 or M3 occurs, respectively. Then Lemmas 4.4 and 4.5 imply that w.h.p.

|M1[i +1]| , |M2[i +1]| ≤ k exp

(
− ln n

(lnln n)5

)
.
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Furthermore, Lemma 4.16 shows that |M3[i +1]| ≤∑i
h=1 |M [h]| w.h.p. Hence, we obtain the relation

|M [i +1]| ≤ k exp

(
− ln n

(lnln n)5

)
+

i∑
h=1

|M [h]| . (4.51)

Because (4.2) ensures that the total number of compartments is ℓ = O(ln1/2 n), the bound (4.51) implies that
|M [i +1]| ≤O(ℓ2k exp(−(lnn)/(lnln n)5) for all i ∈ [ℓ] w.h.p. Summing on i completes the proof. �

4.10. Proof of Proposition 4.7. For an infected individual x ∈V let

Sx [ j ]=
∣∣{a ∈ F [ j ]∩∂x : V1 ∩∂a = {x}

}∣∣ and Sx =
ℓ∑

j=1
Sx [ j ].

Thus, Sx [ j ] is the number of positive sets a ∈ F [ j ] that x has to itself, i.e., tests that do not contain a second infected
individual, and Sx is the total number of such tests.

Lemma 4.17. Assume that m ≥ (1+ε)minf. W.h.p. we have minx∈V1 Sx ≥
p
∆.

Proof. Due to Proposition 4.1 we may condition on the event

N =
{
∀i ∈ [ℓ] :

m

2ℓ
−p

m ln n ≤ |F0[i ]| ≤ m

2ℓ
+p

m ln n
}

.

We claim that given N for each x ∈V1[i ], i ∈ [ℓ], the random variable Sx has distribution

Sx [i + j −1] ∼ Hyp

(
m

ℓ
,

m

2ℓ
+O(

p
m lnn),

∆

s

)
. (4.52)

To see this, consider the set Fx [i + j −1] = {
a ∈ F [i + j −1] : ∂a ∩V1 \ {x} =;}

of all tests in compartment F [i + j −1]
without an infected individual besides possibly x. Since x joins ∆/s =O(lnn) tests in F [i + j −1], given N we have

∣∣F0,x [i + j ]
∣∣= |F0[i + j ]|+O(ln n) = m

2ℓ
+O(

p
m ln n). (4.53)

Furthermore, consider the experiment of first constructing the test design G and then re-sampling the set ∂x of
neighbours of x; i.e., independently of G we have x join ∆/s random tests in each compartment F [i + j ]. Then
the resulting test design G ′ has the same distribution as G and hence the random variable S ′

x [i + j −1] that counts
tests a ∈ F [i + j −1]∩∂x that do not contain another infected individual has the same distribution as Sx [i + j −1].
Moreover, the conditional distribution of S ′

x [i + j −1] given G reads

S ′
x [i + j −1] ∼ Hyp

(
m

ℓ
, |F0,x [i + j −1]|, ∆

s

)
. (4.54)

Combining (4.53) and (4.54), we obtain (4.52).
To complete the proof we combine (4.52) with Lemma 2.2, which implies that

P
[

Sx [i + j −1] ≤
p
∆ | x ∈V1

]
≤ exp

(
−∆

s
DKL

(
(1+o(1))s/

p
∆‖1/2+o(1)

))
= exp

(
−(1+o(1))

∆ ln 2

s

)
. (4.55)

Since SC1 ensures that the random variables (Sx [i + j −1]) j∈[s] are mutually independent, (4.55) yields

P
[

Sx ≤
p
∆ | x ∈V1

]
≤ 2−(1+o(1))∆. (4.56)

Finally, the assumption m ≥ (1+ε)minf for a fixed ε > 0 and the choice (4.5) of ∆ ensure that 2−(1+o(1))∆ = o(1/k).
Thus, the assertion follows from (4.56) by taking a union bound on x ∈V1. �

Proof of Proposition 4.7. For j = 1. . . ⌈ln n⌉, let

M j =
{

x ∈V : τ
( j )
x 6=σx

}

contain all individuals that remain misclassified at the j -th iteration of the clean-up step. Proposition 4.6 shows
that w.h.p.

|M1| ≤ k exp

(
− lnn

(ln lnn)6

)
. (4.57)

Furthermore, in light of Lemma 4.17 we may condition on the event A = {minx∈V1 Sx ≥
p
∆}.
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We now claim that given A for every j ≥ 1

M j+1 ⊂
{

x ∈V :
∑

a∈∂x\F [0]

∣∣∂a ∩M j \ {x}
∣∣≥ ⌈

ln1/4 n
⌉
}

. (4.58)

To see this, suppose that x ∈M j+1 and recall that the assumption m ≥ minf and (4.5) ensure that ∆=Ω(ln n). Also
recall that SPIV’s Step 15 thresholds the number

Sx (τ( j )) =
∑

a∈∂x:σ̂a=1
1

{
∀y ∈ ∂a \ {x} : τ( j )

y = 0
}

of positive tests containing x whose other individuals are deemed uninfected. There are two cases to consider.

Case 1: x ∈V0: in this case every positive tests a ∈ ∂x contains an individual that is actually infected. Hence, if

τ
( j )
y = 0 for all y ∈ ∂a \{x}, then ∂a∩M j \{x} 6= ;. Consequently, since Step 15 of SPIV applies the threshold

of Sx (τ( j )) ≥ ln1/4 n, there are at least ln1/4 n tests a ∈ ∂x such that ∂a ∩M j \ {x} 6= ;.

Case 2: x ∈V1: given A every infected x participates in at least Sx ≥
p
∆=Ω(ln1/2 n) tests that do not actually

contain another infected individual. Hence, if Sx (τ( j )) ≤ ln1/4 n, then at least
p
∆− ln1/4 n ≥ ln1/4 n tests

a ∈ ∂x contain an individual from M j \ {x}.

Thus, we obtain (4.58). Finally, (4.57), (4.58) and Lemma 4.16 show that w.h.p. |M j+1| ≤ |M j |/3 for all j ≥ 1. Con-
sequently, M⌈lnn⌉ =; w.h.p. �

5. OPTIMAL ADAPTIVE GROUP TESTING

In this final section we show how the test design G from Section 4 can be extended into an optimal two-stage
adaptive design. The key observation is that Proposition 4.6, which summarises the analysis of the first two phases
of SPIV (i.e., steps 1–10) only requires m ≥ (1+ε)mad tests. In other words, the excess number (1+ε)(minf −mad)
of tests required for non-adaptive group testing is necessary only to facilitate the clean-up step, namely phase 3 of
SPIV.

Replacing phase 3 of SPIV by a second test stage, we obtain an optimal adaptive test design. To this end we
follow Scarlett [32], who observed that a single-stage group testing scheme that correctly diagnoses all but o(k)
individuals with (1+o(1))mad tests could be turned into a two-stage design that diagnoses all individuals correctly
w.h.p. with (1+o(1))mad tests in total. (Of course, at the time no such optimal single-stage test design and algorithm
were known.) The second test stage works as follows. Let τ denote the outcome of phases 1 and 2 of SPIV applied
to G with m = (1+ε)mad.

T1: Test every individual from the set V1(τ) = {x ∈ V : τx = 1} of individuals that SPIV diagnosed as infected
separately.

T2: To the individuals V0(τ) = {x ∈ V : τx = 0} apply the random d-out design and the DD-algorithm from
Section 4.1 with a total of m = k tests and d = ⌈10ln n⌉.

Let τ′ ∈ {0,1}V be the result of T1–T2.

Proposition 5.1. W.h.p. we have τ′x =σx for all x ∈V .

As a matter of course T1 renders correct results, i.e., for all individuals x ∈ V1(τ) we have τ′x = σx . Further, to
analyse T2 we use a similar argument as in the analysis of the first phase of SPIV in Section 4.5; we include the
analysis for the sake of completeness. We begin by investigating the number of negative tests. Let G ′ denote the
test design set up by T2, let F ′ = {b1, . . . ,bk } denote its set of tests and let σ̂b1 , . . . ,σ̂bk signify the corresponding
test results. Further, let F ′

0 = {b ∈ F ′ : σ̂b = 0} and F ′
1 = {b ∈ F ′ : σ̂b = 1} be the set of negative and positive tests,

respectively.

Lemma 5.2. W.h.p. we have |F ′
1| ≤ k

2 .

Proof. Proposition 4.6 implies that w.h.p.

|V0(τ)∩V1| ≤
∑

x∈V
1{τx 6=σx } ≤ k exp

(
− ln n

(lnln n)6

)
. (5.1)
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Moreover, since every individual x ∈V0(τ) joins d random tests, for any specific test b ∈ F ′ we have

P
[
x ∈ ∂G ′b

]= 1−P[
x 6∈ ∂G ′b

]= 1−
(

k −1

d

)(
k

d

)−1

= d

k
(1+O(n−Ω(1))).

Hence, for every test b ∈ F ′,

E

[
|∂b ∩V1|

∣∣∣ |V0(τ)∩V1| ≤ k exp

(
− ln n

(ln lnn)6

)]
=O(1/ln n).

Consequently,

E
[
|F ′

1| | |V0(τ)∩V1| ≤ k/ln n
]
=O(k/ln n). (5.2)

Finally, combining (5.1) and (5.2) and applying Markov’s inequality, we conclude that |F ′
1| ≤ k

2 w.h.p. �
Corollary 5.3. W.h.p. for every x ∈V0(τ) there is a test b ∈ F ′ such that ∂b \ {x} ⊂V0.

Proof. We construct the random graph G ′ in two rounds. In the first round we first expose the neighbourhoods
(∂G ′ y)y∈V0(τ)\{x}. Lemma 5.2 implies that after the first round the number X of tests that do not contain an infected
individual y ∈ V0(τ)∩V1 exceeds k/2 w.h.p. In the second round we expose ∂G ′ x. Because ∂G ′x is chosen inde-
pendently of the neighbourhoods (∂G ′ y)y∈V0(τ)\{x}, the number of tests b ∈ ∂G ′ x that do not contain an infected
individual y ∈V0(τ)∩V1 has distribution Hyp(k, X ,d). Therefore, since d ≥ 10ln n we obtain

P [∀b ∈ ∂x : V1 ∩∂b \ {x} 6= ; | X ≤ k/2]≤P
[
Hyp(k,k/2,d) = 0

]≤ 2−d = o(1/n). (5.3)

Finally, the assertion follows (5.3) and the union bound. �
Proof of Proposition 5.1. Corollary 5.3 shows that we may assume that for every x ∈V0(τ) there is a test bx ∈ F ′ with
∂bx \ {x} ⊂V0. As a consequence, upon executing the first step DD1 of the DD algorithm, T2 will correctly diagnose
all individuals x ∈V0(τ)∩V0. Therefore, if x ∈V0(τ)∩V1, then DD2 will correctly identify x as infected because all
other individuals y ∈ ∂bx were already identified as healthy by DD1. Thus, τ′x =σx for all x ∈V . �
Proof of Theorem 1.3. Proposition 5.1 already establishes that the output of the two-stage adaptive test is correct
w.h.p. Hence, to complete the proof we just observe that the total number of tests comes to (1+ε)mad for the first
stage plus |V1(τ)|+k for the second stage. Furthermore, Proposition 4.6 implies that w.h.p.

|V1(τ)| ≤ |V1|+
∑

x∈V
1 {τx 6=σx } ≤ k

(
1+exp

(
− lnn

(ln lnn)6

))
= (1+o(1))k.

Thus, the second stage conducts O(k) = o(mad) tests. �
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NEAR-OPTIMAL SPARSITY-CONSTRAINED GROUP TESTING:
IMPROVED BOUNDS AND ALGORITHMS

OLIVER GEBHARD, MAX HAHN-KLIMROTH, OLAF PARCZYK, MANUEL PENSCHUCK,
MAURICE ROLVIEN, JONATHAN SCARLETT, AND NELVIN TAN

Abstract

Recent advances in noiseless non-adaptive group testing have led to a precise asymptotic characterization of the
number of tests required for high-probability recovery in the sublinear regime k = nθ (with θ ∈ (0,1)), with n individ-
uals among which k are infected. However, the required number of tests may increase substantially under real-world
practical constraints, notably including bounds on the maximum number ∆ of tests an individual can be placed in, or
the maximum number Γ of individuals in a given test. While previous works have given recovery guarantees for these
settings, significant gaps remain between the achievability and converse bounds. In this paper, we substantially or
completely close several of the most prominent gaps. In the case of ∆-divisible items, we show that the definite de-
fectives (DD) algorithm coupled with a random regular design is asymptotically optimal in dense scaling regimes, and
optimal to within a factor of e more generally; we establish this by strengthening both the best known achievability and
converse bounds. In the case of Γ-sized tests, we provide a comprehensive analysis of the regime Γ = Θ(1), and again
establish a precise threshold proving the asymptotic optimality of DD equipped with a tailored pooling scheme. Finally,
for each of these two settings, we provide near-optimal adaptive algorithms based on sequential splitting, and provably
demonstrate gaps between the performance of optimal adaptive and non-adaptive algorithms.

1. INTRODUCTION

The group testing problem, originally introduced by Dorfman [14], is a prominent example of a classical
inference problem that has recently regained considerable attention [4, 12, 15]. Briefly, the problem is posed
as follows: Among a population of n individuals, a small subset of k individuals is infected with a rare disease.
We are able to test groups of individuals at once, and each test result returns positive if (and only if) there is at
least one infected individual in the test group. The challenge is to develop strategies for pooling individuals
into tests such that the status of every individual can be recovered reliably from the outcomes, and to do so
using as few tests as possible.

While the preceding terminology corresponds to medical applications, group testing also has many other
key applications [4, Sec. 1.7], ranging from DNA sequencing [27, 33] to protein interaction experiments [31,
39]. Particular attention has been paid to group testing as a tool for the containment of an epidemic crisis.
On the one hand, mass testing appears to be an essential tool to face pandemic spread [10], while on the
other hand, the capability of efficiently identifying infected individuals fast and at a low cost is indispensable
[29]. For the sake of pandemic control, risk surveillance plans aim at an early, fast and efficient identification
of infected individuals to prevent diseases from spreading [18, 34, 35].

The group testing problem includes many variants, depending on the presence/absence of noise, possible
adaptivity of the tests, recovery requirements, and so on. Our focus in this paper is on the following setup,
which has been the focus of numerous recent works (see [4] for a survey):

• The tests are non-adaptive, meaning they must all be designed in advance before observing any out-
comes. This is highly desirable in applications, as it permits the tests to be implemented in parallel.

• The tests are noiseless; this assumption is more realistic in some applications than others, but serves
as a crucial starting point for understanding the problem.

• The goal is high-probability identification of each individual’s defectivity status (i.e., probability ap-
proaching one as n →∞). While a deterministic (probability-one) recovery guarantee is also feasible
in the noiseless setting [15], it requires considerably more tests, incurring a k2 dependence on the
number of infected individuals instead of k.
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• The number of infected individuals k is taken to equal nθ for some θ ∈ (0,1),1 i.e., the sublinear regime.
Heaps’ law of epidemics [7, 40] indicates that this regime is of major interest. In addition, recent
hardness results preclude non-trivial recovery guarantees in the linear regime k = Θ(n) [1], at least
under the most widely-adopted recovery criterion.

Under this setup, Coja-Oghlan et al. [11, 12] recently established the exact information-theoretic threshold
on the number of tests, in an asymptotic sense including the implied constant. This threshold was originally
attained using a random regular testing design [11] (see also [26]), improving on earlier results for Bernoulli
testing [2, 37]. While the recovery algorithm used in [11] is not computationally efficient, the subsequent
work [12] attained the same threshold using a spatially coupled random regular design and a computationally
efficient recovery algorithm.

All of the preceding test designs have in common that every individual takes part in O(lnn) tests, and
each test contains O(n/k) individuals. As a result, these designs face limitations in real-world applications.
Firstly, one may face dilution effects: If an infected individual gets tested within a group of many uninfected
individuals, the signal of the infection (e.g., concentration of the relevant molecules) might be too low. For
instance, a testing scheme for HIV typically should not contain more than 80 individual samples per test
[41]. More recently, evidence was found that certain laboratory tests allow pooling of up to 5 individuals [16]
or 64 individuals [21] per test for reliably detecting COVID-19 infections. Secondly, it is often the case that
each individual can only be tested a certain number of times, due to the limited volume of the sample taken.
More generally, test designs with few tests-per-individual and/or individuals-per-test may be favorable due
to resource limitations, difficulties in manually placing samples into tests, and so on.

In light of these practical issues, there is substantial motivation to study the group testing problem under
the following constraints on the test design:

• Under the ∆-divisible items constraint (or bounded resource model), any given individual can only be
tested at most ∆ times;

• Under theΓ-sized tests constraint (or bounded test-size model), any given test can only contain at most
Γ individuals.

Previous studies of group testing under these constraints [20, 23, 28, 38] are surveyed in Section 1.1. We note
that some of the above practical motivations may warrant more sophisticated models (e.g., random noise
models for dilution effects), but nevertheless, noiseless group testing under the preceding constraints serves
as an important starting point towards a full understanding. In addition, as with previous works, we only
consider the above two constraints separately, though the case that both are present simultaneously may be
of interest for future studies.

1.1. Related Work. As outlined above, the asymptotically optimal performance limits are well-understood in
the case of unconstrained test designs, with optimal designs placing each item in ∆=Θ(lnn) tests, and each
test containing Γ=Θ(n

k

)
items. We refer the reader to [4] for a more detailed survey, and subsequently focus

our attention on the (much more limited) prior work considering the constrained variants with ∆ = o(lnn)
and Γ= o

(n
k

)
.

The most relevant prior work is that of Gandikota et al. [20], who gave information-theoretic lower bounds
on the number of tests under both kinds of constraint, as well as upper bounds via the simple COMP algo-
rithm [9].2 The main results therein are summarized as follows, assuming the sublinear regime k = nθ with
θ ∈ (0,1) throughout:

• ∆-divisible items setting:
– (Converse) For ∆ = o(lnn), any non-adaptive design with error probability at most ξ requires

m ≥∆k
(n

k

) 1−5ξ
∆ , for sufficiently small ξ and sufficiently large n.

– (Achievability) Under a suitably-chosen random test design and COMP recovery, the error prob-

ability is at most ξ provided that m ≥ de∆k
(n
ξ

) 1
∆ e.

• Γ-sized tests setting:

– (Converse) For Γ = Θ((n
k

)β)
with β ∈ [0,1), any non-adaptive design with error probability at

most ξ requires m ≥ 1−6ξ
1−β · n

Γ , for sufficiently large n.

1To simplify notation, we assume that k = nθ exactly, but all of our analysis and results extend easily to the more general case that
k = cnθ for any c =O(1).
2The COMP algorithm declares any individual in a negative test as uninfected, and all other individuals as infected. It is called
Column Matching Algorithm in [20].
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– (Achievability) Under a suitably-chosen random test design and COMP recovery, for∆=Θ((n
k

)β)

with β ∈ [0,1) and ξ= n−ζ with ζ> 0, the error probability is at most ξwhen m ≥ d 1+ζ
(1−α)(1−β)e·dn

Γ e.

A sizable gap remains between the achievability and converse bounds in the case of ∆-divisible items, since

typically
(1
ξ

) 1
∆ À ( 1

k

) 1
∆ . For Γ-sized tests, the bounds match to within a constant factor, but the optimal con-

stant remains unknown. In particular, the two differ by at least a multiplicative 1
1−α factor, and even for α

close to zero, the two can differ by a factor of 2 due to the rounding in the achievability part.
As we outline further below, we nearly completely close these gaps for∆-divisible items, and we close them

completely for Γ-sized tests in the special case β= 0 (i.e., Γ=Θ(1)) for all θ ∈ (0,1). While the regime β ∈ (0,1)
is also of interest, it appears to require different techniques, and is deferred to future work.

Gandikota et al. [20] additionally gave explicit designs (i.e., test matrices that can be deterministically con-
structed in polynomial time), but these give worse scaling laws, and are therefore of less relevance to our
results based on random designs. In a distinct but related line of works, Macula [28] and Inan et al. [23, 24]
developed designs for the much stronger guarantee of uniform recovery, i.e., a single test matrix that uniquely
recovers any infected set of size at most k, without allowing any error probability. This stronger guarantee
comes at the price of requiring considerably more tests, and we thus omit a direct comparison and refer the
interested reader to [23, 24, 28] for details.

1.2. Contributions. Our main contributions are informally outlined as follows (with k = nθ for θ ∈ (0,1), and
ε being an arbitrarily small constant throughout), with formal statements given in the theorems referenced:

• ∆-divisible items setting. Assuming that ∆ = (lnn)1−Ω(1) (and in some cases, any ∆ = o(lnn) is al-
lowed), we have the following:

– (General converse – Theorem 3.1) If m ≤ (1−ε)e−1∆k1+ 1−θ
∆θ ,3 then w.h.p. any (possibly adaptive)

group testing strategy fails.

– (Non-adaptive converse – Theorem 3.2) Under any non-adaptive test design, if m ≤ (1−ε)∆k1+ 1
∆ ,

then w.h.p. any inference algorithm fails. Combining with the general lower bound, the same

holds for m ≤ (1−ε)max
{

e−1∆k1+ 1−θ
∆θ ,∆k1+ 1

∆

}
.

– (Non-adaptive achievability via DD – Theorem 3.3) Under a random regular test design, DD

succeeds when m ≥ (1+ε)max
{
∆k1+ 1−θ

∆θ ,∆k1+ 1
∆

}
(w.h.p.when∆=ω(1), and with probability (1−

o(1))
(
1− (1+ε)−∆

)
when ∆=Θ(1)).

– (DD-specific converse – Theorem 3.4) Under random regular testing, DD fails when m is slightly
below the achievability bound (w.h.p. when ∆=ω(1), and withΩ(1) probability when ∆=Θ(1)).

– (Adaptive achievability – Theorem 5.1) There exists an efficient adaptive algorithm succeeding

with probability one when m ≥ (1+ε)∆k1+ 1−θ
∆θ .

• Γ-sized tests setting: Assuming thatΓ=Θ(1) in the non-adaptive setting (whereas the adaptive results

allow general Γ= o
(n

k

)
), we have the following:

– (Non-adaptive converse– Theorem 4.1) If m ≤ (1− ε)max
{(

1+
⌊

θ
1−θ

⌋)n
Γ ,2 n

Γ+1

}
, then any non-

adaptive group testing strategy fails (w.h.p. if θ
1−θ is non-integer, and withΩ(1) probability if θ

1−θ
is an integer).

– (Non-adaptive achievability via DD in the dense regime – Theorem 4.10) If θ ≥ 1
2 , then under a

suitably-chosen random test design, DD succeeds w.h.p. when m ≥ n
Γ

(
1+

⌊
θ

1−θ
⌋)

.

– (Non-adaptive achievability via DD in the sparse regime – Theorem 4.18) If θ < 1
2 , then under

a suitably-chosen random test design, DD succeeds w.h.p. with m ≥ 2n
Γ+1 .

– (Adaptive achievability – Theorem 6.1) There exists an efficient adaptive algorithm succeeding
with probability one when m ≥ (1+ε) n

Γ +klog2Γ. In particular, when Γ= o
( n

k lnn

)
, it suffices that

m ≥ (1+ε) n
Γ .

– (General converse – Theorem 6.2) If m ≤ (1− ε) n
Γ , then the error probability is bounded away

from zero for any (possibly adaptive) group testing strategy.

These results have several interesting implications, which we discuss as follows. In the ∆-divisible setting,
our first converse bound strengthens that of [20] (removing the −5ξ term in the exponent) and extends it
to the adaptive setting, and our second converse provides a further improvement for non-adaptive designs.

3These expressions are obtained after substituting k = nθ . In the more general case that k equals a positive constant times nθ , the

results remain unchanged upon replacing k1+ 1−θ
∆θ by k

( n
k

) 1
∆ everywhere.
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Our DD achievability result scales as O
(
∆k

(
max

{
k, n

k

}) 1
∆
)
, which is strictly better than the O

(
∆kn

1
∆

)
scaling

of COMP [20] for all θ ∈ (0,1). In fact, for θ > 1
2 and ∆ =ω(1), our results demonstrate that DD is asymptoti-

cally optimal among non-adaptive strategies, with a precise phase transition between success and failure at

m ≈ ∆k1+ 1
∆ . For θ < 1

2 , while establishing a precise phase transition remains an open problem, our results
establish DD’s optimality up to a multiplicative factor of e, and demonstrate that one cannot reduce the num-
ber of tests further under DD and the random regular design. Finally, our results prove a strict adaptivity gap
for θ > 1

2 , and demonstrate that our adaptive algorithm is optimal to within a factor of e for all θ ∈ (0,1).
In the Γ-sized tests setting, our results provide an exact asymptotic threshold on the number of tests in

the Γ = Θ(1) regime, and we again establish the asymptotic optimality of DD in all such cases. To achieve
this, we analyze via novel techniques specific to this scaling, including a novel test design in the case θ > 1

2 ,

as described in the next section. We note that the distinction between integer and non-integer valued θ
1−θ

arises due to rounding issues in the analysis, e.g., counting the number of individuals appearing in at most
b θ

1−θ c tests. Our results again demonstrate a strict adaptivity gap (this time for all θ ∈ (0,1)), and we provide a
precise phase transition at n

Γ for adaptive algorithms under most scalings of Γ.

2. FUNDAMENTALS OF NON-ADAPTIVE GROUP TESTING

2.1. General Notation. Given the number of individuals n, the number of infected individuals k ∼ nθ(θ ∈
(0,1)), and the number of tests m, we let G = (V ∪F,E) be a random bipartite (multi-)graph with |F | = m
factor nodes (a1, ..., am) and |V | = n variable nodes (x1, ..., xn). The variable nodes represent individuals, the
factor nodes represent tests, and an edge between individual xi and test a j indicates, that xi takes part in test
a j . Furthermore, let (∂G a1, ...,∂G am) and (∂G x1, ..., ,∂G xn) denote the neighborhoods in G . Whenever the
context clarifies what G is, we will drop the subscript. The test-node degrees are given by Γi (G ) = |∂G ai |, and
the individual-node degrees by ∆i (G ) = |∂G xi |. We can visualize any non-adaptive group testing instance by
a pooling scheme in the form of such a graph G .

We indicate the infection status of each individual of the population by σ ∈ {0,1}n , a uniformly chosen
vector of Hamming weight k. Formally, σx = 1 iff x is infected. Then, we let σ̂= σ̂(G ,σ) ∈ {0,1}m denote the
sequence of test results, such that σ̂a = 1 iff test a contains at least one infected individual, that is

σ̂a = max
x∈∂a

σx .

Throughout the paper, we use standard Landau notation, e.g., o(1) is a function converging to 0 while
ω(1) stands for an arbitrarily slowly diverging function. Moreover, we say that a property P holds with high
probability (w.h.p.), if P (P ) = 1−o(1) as n →∞.

2.2. Pooling Schemes. The random (almost-)regular bipartite pooling scheme is known to be information-
theoretically optimal in the unconstrained variant of group testing [11], and is conceptually simple and easy
to implement. In this work, depending on the setup, we sometimes require less standard schemes, as de-
scribed in the following. It is important to note that in each of these designs, we are constructing a multi-
graph rather than a graph, and every multi-edge is counted when referring to a node degree. In the following
we will define our choices of the restricted pooling scheme and denote them G∆ and G̃Γ

2.2.1. ∆-divisible. In this setup, we adopt the design of [11, 26], but with fewer tests per individual in accor-
dance with the problem constraint: Each individual chooses ∆ tests uniformly at random with replacement;
thus, an individual may be placed in the same test more than once. By construction of G∆, any individual
has degree exactly ∆, whereas the test degrees fluctuate. We denote by Γ (G∆) = {Γ1 (G∆) , . . . ,Γm (G∆)} the
(random) sequence of test-degrees.

2.2.2. Γ-sparse. In the Γ-sparse case, our choice of pooling scheme requires additional care; we define G̃Γ(θ)
separately for two cases:

G̃Γ(θ) =
{

GΓ if θ ≥ 1/2

G∗
Γ otherwise

(2.1)

with GΓ and G∗
Γ defined in the following. Throughout the paper, we will always clarify which of the cases we

assume, and we will therefore refer to G̃Γ(θ) as G̃Γ. Starting with GΓ, we employ the configuration model [25].
Given n,m,Γ, set ∆ = mΓ/n and create for each individual x ∈ [n] exactly ∆ clones {x}× {1} , . . . , {x}× {∆}. We
assume throughout, that ∆,Γ,n,m are integers, thus all divisibility requirements are fulfilled.4 Analogously,

4It will turn out in due course that mΓ/n is an integer under the choice of Γ used in the analysis.
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create Γ clones {a}× {1} . . . {a}× {Γ} for each test a ∈ [m]. Then, choose a perfect matching uniformly at ran-
dom between the individual-clones and the test-clones and construct a random multi-graph by merging the
clones to vertices and adding an edge (x, a) whenever there are i ∈ [∆], j ∈ [Γ] such that the edge ({x}×i , {a}× j )
is part of the perfect matching. We denote by GΓ the random regular multi-graph that comes from this pro-
cedure.

For G∗
Γ , we adopt a different approach. First, we select γ ≤ 2n

Γ+1 individuals randomly and put them apart
for the moment (denote by X = {

x1 . . . xγ
}

the set of those vertices). The precise γ value is chosen such that
we can create a random bipartite regular graph on the remaining vertices with each individual having degree
2 and each test having degree Γ−1 (thus, an instance of GΓ−1). By a simple comparison of degrees, this is only
possible if m ≥ 2 n

Γ+1 . Now, we draw a uniformly random matching between the tests (of degree Γ−1) and the
remaining individuals x1 . . . xγ. By definition, each of those individuals takes part in exactly one test.

In both cases above, G∗
Γ is an almost-regular bipartite graph with each test compromising at most Γ indi-

viduals.

2.3. Choice of recovery algorithm. We make use of the definite defectives (DD) algorithm [2], which is de-
scribed as follows.

1 Declare every individual x that appears in a negative test as non-infected; remove all such individuals.
2 Declare all individuals that are now the sole individual in a (positive) test as infected.
3 Declare all remaining individuals as uninfected.

Algorithm 1: The DD algorithm as defined by [2].

x1 ∈V0−

x1

x2 ∈V1−−

x2

x3 ∈V0+∪V1+

x3

FIGURE 1. Rectangles represent tests and circles individuals. Dark blue individuals are elements of V0− and
can be easily identified as uninfected. Light blue individuals are elements of V0+, and even if uninfected
themselves, they only appear in positive tests and might be hard to identify. Infected individuals (red) that
appear only in such tests are impossible to identify. Finally, infected individuals of V1−− appear in at least
one test with only elements of V0−. Thus, after identifying all elements of V0−, they can be identified.

2.4. The combinatorics behind group testing. In this section, we introduce four types of individuals (see
Figure 1) that might appear in any group testing instance and which the student can make use of. It turns out
that the sizes of the sets of these individuals are the key to understand group testing combinatorially. Given
a pooling scheme G , let

V0(G ) = {x ∈V (G ) :σx = 0} and V1(G ) = {x ∈V (G ) :σx = 1}

be the uninfected and infected individuals, respectively. Then we can define easy uninfected individuals to
be the uninfected individuals that appear in a negative test – clearly, they can easily be identified. We will call
the set of such individuals V0−; formally,

V0−(G ) = {x ∈V0(G ) : ∃a ∈ ∂G x : σ̂a = 0} .(2.2)

Then, there the easy infected individuals. These are those infected individuals that appear in at least one test
with only easy uninfected individuals. Thus, upon removing the easy uninfected individuals, there will be at
least one positive test with exactly one undeclared individual, and this individual has to be infected. We call
this set

V1−−(G ) = {x ∈V1(G ) : ∃a ∈ ∂G x : (∂G a \ {x}) ⊂V0−(G )} .(2.3)

Subsequently, there might be disguised uninfected individuals, that are uninfected themselves but only ap-
pear in positive tests. It is well known [3, 11, 12] that since the prior probability of being uninfected is very
large, a group testing instance can tolerate a certain number of individuals of this type. Formally,

V0+(G ) = {x ∈V0(G ) : ∀a ∈ ∂G x : σ̂a = 1} .(2.4)
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Finally, there might be disguised infected individuals, thus infected individuals appearing only in tests that
contain at least one more infected individual. Formally,

V1+(G ) = {x ∈V1(G ) : ∀a ∈ ∂G x : (∂G a \ {x})∩V1(G ) 6= ;} .(2.5)

2.4.1. Remarks on information-theoretic and combinatorial bounds. It turns out that in the sparse group test-
ing problem - as well as in the unrestricted version [2, 12] - the non-adaptive information-theoretic phase
transition comes into two installments. First, there are universal information-theoretic bounds, e.g., count-
ing bounds, that account for the fact that a given number of tests can carry only a certain amount of infor-
mation. Such bounds directly apply to the non-adaptive as well as the adaptive setting. Second, there are
combinatorial / graph theoretical restrictions: Given that there exist a large number of totally disguised in-
fected individuals (i.e., individuals such that in each of its tests there is a second infected individual), any
non-adaptive algorithm fails with high (conditional) probability [11, 12]. This non-adaptivity gap becomes
stronger if we increase the problem density θ, because for larger θ, the chance of finding multiple infected
individuals in a small neighborhood increases as well. In this section we deal with the combinatorial part.
In our setting, the transition where the combinatorial bound dominates the information-theoretic bound
happens at k ∼p

n, i.e., at the point where we find multiple infected individuals in a bounded neighborhood
w.h.p..

2.5. The Nishimori property. Given a pooling scheme G , a ground truth infection status vector σ (drawn
uniformly from the vectors of Hamming weight k) and a sequence of test results σ̂, we denote by Sk (G ,σ)
the set of all colorings (i.e., infection status assignments) of individuals τ ∈ {0,1}n that would have led to the
test outcomes σ̂ (clearly including σ itself). Furthermore, we define Zk (G ,σ) = |Sk (G ,σ)|. The following
proposition states that all sets in Sk (G ,σ) are equally likely given the test outcomes.

Proposition 2.1. [Corollary 2.1 of [11]] For all τ ∈ {0,1}x1,...,xn we have

P(σ= τ|G ,σ̂) = 1{τ ∈ Sk (G ,σ)}

Zk (G ,σ)
.

This immediately implies the following corollary.

Corollary 2.2. If Zk (G ,σ) ≥ ` w.h.p., then any inference algorithm has success probability at most `−1, when
inferring σ from (G ,σ̂).

The following claim and corollary will also be useful.

Claim 2.3. For any test design, we have Zk (G ,σ) ≥ |V1+(G )| |V0+(G )|. Hence, conditioned on the sets V1+(G )
and V0+(G ), any inference algorithm fails with probability at least 1− 1

|V1+(G )||V0+(G )| .

Proof. The first statement is straightforward and was already given in [11, Fact 3.3], and the second statement
follows directly from Corollary 2.2. �

Finally, we have the following well-known result on the DD algorithm.

Corollary 2.4. The DD algorithm succeeds if and only if V1(G ) =V1−−(G ).

Proof. By definition, DD first classifies all x ∈ V0−(G ) correctly. In the second step, DD classifies those in-
dividuals x as infected, which belong to a positive test a such that ∂a \ {x} ⊂ V0−(G ). Thus, DD finds all
x ∈ V1 ∩V1−−(G ). As DD classifies the remaining individuals as uninfected, it fails as soon as there exists
an individual x ∈V1 \V1−−(G ). �

2.6. The two-round exposure technique. A key tool to deal with an arbitrary test design is to introduce cer-
tain levels of independent randomness. For example, the only randomness in (G ,σ∗) is the infection status
of each individual, and instead of dealing with k infected individuals, we can assume that each individual

is infected independently from all others with probability p = k−
p

k lnn
n (see Corollary 3.6). While we want to

show that V1+(G ) 6= ;, we will establish this in two steps. We denote by V+(G ) the set of disguised individ-
uals, i.e., all tests containing this individual x contain at least one other individual (differing from x) that is
infected, and hence

V+(G ) =V1+(G )∪V0+(G ).

Once we find a large enough set |V+(G )| À n/k, there will be some infected individuals in V+(G ) w.h.p.. The
main challenge is that in order to find the set of disguised individuals, one uses infected individuals, therefore
the events |V+(G )| exceeding a specific size and infected individuals existing in V+(G ) are not independent
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in (G ,σ∗). This is where the two-round exposure technique, used very prominently in the study of random
graphs [25], comes into account.

More specifically, our analysis will take the following steps in which individuals are randomly infected:

(1) We first mark each individual as infected with probability αk/n for some fixed constant α ∈ (0,1)
and find a set K1 of infected individuals whose neighbourhood (the tests they belong to) has certain
properties.

(2) Next, we mark the remaining individuals in the second neighbourhood of K1 (hence, we look at the
individuals that are contained in the tests together with the vertices of K1) as infected with probabil-
ity (1−2α)k/n for establishing the property of being disguised.

(3) Since each individual is infected with probability at most αk/n + (1−αk/n)(1− 2α)k/n < p, in the
{0,1}-vector of infected individualsσ∗ that we obtain each individual is infected with probability less
than p. Adding further random infections we can ensure that each individual in σ∗ is infected with
probability exactly p. In addition, these extra infections can only enlarge (or keep unchanged) the set
of individuals that are disguised.

3. NON-ADAPTIVE GROUP TESTING WITH ∆-DIVISIBLE INDIVIDUALS

In this section, we formally state and prove our main results regarding non-adaptive group testing with
∆-divisible individuals.

3.1. Model. As we highlighted earlier, optimal unconstrained designs are known that place each individual
inΘ(lnn) tests. Accordingly, we only consider the regime∆= o(lnn), and specifically suppose that∆≤ ln1−δn
for some constant δ ∈ (0,1).

3.2. Results. Define

minf(∆) = min
{

max
{

e−1∆k1+ (1−θ)
∆θ ,∆k1+ 1

∆

}
,n

}
, mDD(∆) = max

{
∆k1+ (1−θ)

∆θ ,∆k1+ 1
∆

}
,(3.1)

which will represent the information theoretic converse bound for any non-adaptive group testing scheme
and the algorithmic barrier for DD, respectively.

In the following, we tacitly assume that θ+ θ∆−1 < 1, or equivalently ∆ > θ/(1− θ). If this inequality is
reversed, then we find that mDD(∆) =ω(n), in which case one is better off resorting to individual testing.

Our first main result provides a simple counting-based converse bound for any adaptive or non-adaptive
test design. This result, and all subsequent results, will be proved throughout the rest of the section.

Theorem 3.1. Fix ε ∈ (0,1), and suppose that k = nθ with θ = (0,1) and ∆ ∈ o(ln(n)). Then, if m ≤ (1 −
ε)e−1∆k1+ (1−θ)

∆θ for fixed ε > 0, we have w.h.p. that any (possibly adaptive) group testing procedure that tests
each individual at most ∆ times fails to recover σ.

This bound recovers the first term of max{·, ·} appearing in the definition of minf(∆) above, which is dom-
inant for θ ≤ 1/2. For the second term (which is dominant for θ ≥ 1/2), we require a more sophisticated
argument that only holds for non-adaptive designs; as we will see in Section 5, adaptive designs can in fact
go beyond this threshold.

Theorem 3.2. Given any non-adaptive pooling scheme G where any individual gets tested at most ∆ times
(with θ/(1−θ) <∆≤ (lnn)1−δ for some δ> 0), if m ≤ (1−ε)∆k1+1/∆ for some ε ∈ (0,1), any algorithm (efficient
or not) fails at inferring σ from (G∆,σ̂) with probability at least max

{
Ω(ε2),1−O

(
(1−ε/2)∆

)}
.

Combining these results, we find that any non-adaptive group testing strategy using at most (1−ε)minf(∆)
tests fails w.h.p. if ∆=ω(1), and fails with constant non-zero probability if ∆=O(1).

Next, we state our main upper bound, corresponding to the random regular design and the DD algorithm.

Theorem 3.3. Suppose that m = (1+ε)mDD(∆) for some ε > 0. Then, under the random regular design with
parameter ∆, DD recovers σ from (G∆,σ̂) with probability at least (1−o(k/n))

(
1− (1+ε)−∆

)
.

Note that the success probability tends to one as ∆→∞; if ∆ = O(1) then we need to take ε→∞ for the
probability to approach one (but it can be close to one for finite ε). Comparing this result with Theorem 3.1,
we find that DD is asymptotically optimal for θ ≥ 1/2. On the other hand, a gap between minf(∆) and mDD(∆)
remains for θ < 1

2 . In principle, this could be due to a weakness in the converse, a fundamental limitation of
DD, or a weakness in our analysis of DD. However, the following theorem rules out the latter of these.

Theorem 3.4. Let θ < 1/2. Given the random regular pooling scheme G∆ on m = (1−ε)mDD(∆) tests for fixed
ε ∈ (0,1), we have the following:
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(1) If ∆=Θ(1), then DD fails with positive probability bounded way from zero.
(2) If ∆= (lnn)1−δ for δ ∈ (0,1), then DD fails w.h.p..

Thus, Theorem 3.4 settles a coarse phase transition of DD in the random regular model when there are
finitely many tests-per-individual, and a sharp phase transition when the number of tests-per-individual is
diverging. We expect that DD is in fact provably suboptimal for θ < 1

2 , but leave this as an open problem.

3.3. Universal counting-based converse: Proof of Theorem 3.1. We first prove a counting-based upper
bound on the success probability for any test design and inference algorithm. Afterwards, we will use this
bound on the success probability to prove our main converse bound, providing a lower bound on m for at-
taining a given target error probability.

Let A (G ,σ̂,k) be the output of a group testing inference algorithm with input G (pooling scheme), σ̂
(test results), and k (number of infected individuals). The inference algorithm is successful if A (G ,σ̂,k) =σ,
andP (A (G ,σ̂,k) =σ) is the success probability. We first prove the following non-asymptotic counting-based
bound via a similar approach to [6] with suitable adjustments, and also using the Nishimori property similarly
to [11].

Lemma 3.5. Under the preceding setup, for any pooling scheme G and inference algorithm A (G ,σ̂,k), we have

P(A (G ,σ̂,k) =σ) ≤
∑∆k

i=0

(m
i

)
(n

k

) .(3.2)

Proof. Any given pooling scheme and inference algorithm can be viewed as a deterministic mapping from an
infection status vector σ ∈ {0,1}n to an outcome vector σ̂ ∈ {0,1}m . Recall that in Proposition 2.1, Sk (G ,σ) is
the set of all colorings of individuals that lead to the testing sequence σ̂, and Zk (G ,σ) is its cardinality. In the
following, we additionally let Ẑk (G ,σ̂) denote Zk (G ,σ) when the test outcomes produced by (G ,σ) are equal
to σ̂, and let Ŝk (G ,σ̂) be the set of all σ sequences that produce test outcomes σ̂.

Proposition 2.1 shows that the optimal inference algorithm outputs an arbitrary element of Sk (G ,σ), and
is correct with probability (conditioned onσ) equal to 1

Zk (G ,σ) . Thus, averaging over the
(n

k

)
possible k-sparse

vectors σ, we have the following:

P(A (G ,σ̂,k) =σ) = 1(n
k

)
∑
σ

1

Zk (G ,σ)

= 1(n
k

)
∑

σ̂ : Ẑk (G ,σ̂)≥1

∑
σ∈Ŝk (G ,σ̂)

1

Ẑk (G ,σ̂)

(a)≤ |{σ̂ ∈ {0,1}m : Ẑk (G ,σ̂) ≥ 1}|(n
k

)

(b)≤ |{σ̂with at most ∆k ones}|(n
k

)

=
∑∆k

i=0

(m
i

)
(n

k

) ,

where (a) follows since there are Ẑk (G ,σ̂) terms in the second summation, thus canceling the 1
Ẑk (G ,σ̂)

term,

and (b) uses the fact that at most ∆k test outcomes can be positive, even in the adaptive setting; this is
because adding another infected always introduces at most ∆ additional positive tests. �

We now use the result in (3.2) to prove Theorem 3.1.

Proof of Theorem 3.1. It suffices to prove the claim for m = (1−δ)mcount(∆), since the inference algorithm
could choose to ignore tests. We use the non-asymptotic bound in Lemma 3.5, and upper bound the sum of
binomial coefficients via [5, Section 4.7.1] to obtain the following for a fixed target success probability of 1−ξ
(for some ξ ∈ (0,1)):

P (A (G ,σ̂,k) =σ) ≤ emh( ∆k
m )

(n
k

) ≡ 1−ξ,(3.3)
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where h(·) is the binary entropy function in nats (logs to base e). From (3.3), we have emh( ∆k
m )/

(n
k

) = 1− ξ,
which implies that

ln
(
(1−ξ)

(
n

k

))
= mh

(∆k

m

)
=∆k ln

m

∆k
+ (m −∆k) ln

1

1− ∆k
m

(a)= ∆k ln
m

∆k
+∆k(1+o(1)),(3.4)

where (a) uses a Taylor expansion and the fact that ∆k
m ∈ o(1) (due to ∆ = o(lnn) and m = (1−δ)mcount(∆)).

Hence, we have (1− ∆k
m )−1 = exp(∆k

m )(1+o(1)) which is used to obtain the simplification. Rearranging (3.4),
we obtain

ln
m

∆k
= 1

∆k
ln

(
(1−ξ)

(
n

k

))
− (1+o(1)),

which gives

m = e−(1+o(1))∆k

(
(1−ξ)

(
n

k

)) 1
∆k (a)≥ e−(1+o(1))(1−ξ)

1
∆k∆k1+ 1−θ

θ∆ ,(3.5)

where (a) follows from the fact that
(n

k

)≥ (n
k

)k and k = nθ.

The proof is completed by noting that (1−ξ)1/(∆k) → 1 for any fixed ξ ∈ (0,1), since k →∞ by assumption.
�

3.4. Universal converse for non-adaptive designs: Proof of Theorem 3.2. Let ε,θ,δ ∈ (0,1), and θ/(1−θ) ≤
∆≤ ln1−δn. Furthermore, let G be an arbitrary non-adaptive pooling scheme with V (G ) the set of n individ-
uals and F (G ) the set of m ≤ (1−ε)∆k1+1/∆ test such that each individual is tested at most ∆ times. Let

(3.6) ¯̀= 1

1−εk− 1
∆ and Γ̄= 1

m

∑
a∈F (G )

Γa = n∆

m
≥ ¯̀n

k
.

Thus, Γ̄ represents the average degree of the tests in F (G ), where Γa is the size of test a. We pick a set of
k infected individuals uniformly at random and let σ be the {0,1}-vector representing them. We introduce

p = k−
p

k lnn
n and σ∗ as a binomial {0,1}-vector, such that each entry represents one individual and equals 1

with probability p independently of the others. The following result relates σ and σ∗.

Corollary 3.6. Under the preceding setup, for fixed ε ∈ (0,1) and n large enough, we find that whenever there
is a positive integer C such that

P
(∣∣V1+(G ,σ∗)

∣∣> 2C
)≥ 1−ε/4 and P

(∣∣V0+(G ,σ∗)
∣∣> 2C

)≥ 1−ε/4,

then it also holds that

P (|V1+(G ,σ)| >C ) ≥ 1−ε and P (|V0+(G ,σ)| >C ) ≥ 1−ε.

Proof. The proof follows the lines of the proof of [12, Lemma 3.6]. Let B be the event that |σ∗| ∈ [k −
2
p

k lnn,k]. Then a standard application of the Chernoff bound guarantees that P (B) = 1−o(1).
Given B, coupleσ∗ andσ by flipping at most 2

p
k lnn uninfected individuals inσ∗ to infected, uniformly

at random. Clearly, the size of totally disguised infected individuals can only increase, thus
∣∣V1+(G ,σ∗)

∣∣≤ |V1+(G ,σ)| .
However, it might happen that previously disguised uninfected individuals do now contribute to |V1+(G ,σ)|
instead of |V0+(G ,σ)|. Let

V :=
∣∣|V0+(G ,σ)|−

∣∣V0+(G ,σ∗)
∣∣∣∣ .

By the above coupling argument, we have

E[V |B] ≤ 2
p

k lnn

n −k

∣∣V0+(G ,σ∗)
∣∣< n−(1−θ)

∣∣V0+(G ,σ∗)
∣∣ .

Therefore Markov’s inequality implies

P
(|V0+(G ,σ)| <

∣∣V0+(G ,σ∗)
∣∣/2 |B)< ε/4.

�

Corollary 3.7. Under the preceding setup, we have

P
(∣∣V1+(G ,σ∗)

∣∣> 0
)≥P (|V1+(G ,σ)| > 0)−o(1).
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Furthermore, if |V1+(G ,σ∗)| > 0 with probabilityΩ(1), then we have w.h.p. that |V0+(G ,σ∗)| > 2lnn, and

P (|V0+(G ,σ)| > lnn) = 1−o(1).

Proof. The first part follows directly from the first part of the proof of Corollary 3.6. For the second part, we
use the fact that the property of being totally disguised is independent of the infection status. Since we have
assumed that |V1+(G ,σ∗)| > 0 with probability Ω(1), the expected number of totally disguised individuals is
at least n/k, so the actual number is at least 2lnn w.h.p. due to Markov’s inequality. The final claim then
follows from Corollary 3.6. �

By adopting the two-round exposure technique from Section 2.6, Theorem 3.2 will follow from the next
lemma, which utilizes Corollary 3.7.

Lemma 3.8. For any ε,θ,δ ∈ (0,1) the following holds. Let G be a test design such that any of the n = V (G )
individuals is tested at most ∆ times (with θ/(1−θ) < ∆ ≤ (lnn)1−δ) and m = |F (G )| ≤ (1−ε)∆k1+1/∆, where
k = nθ. Then, we have with probability at least

(3.7)
(
1−exp

(−ε(1−ε/2)−∆/64
)) ε(1−ε/2)−∆/16

1+ε(1−ε/2)−∆/16
≥ 1−O

(
(1−ε/2)∆

)

that |V1+ (G )| > 0.

Proof. We first show that G satisfies certain degree properties, namely, there cannot be any tests that are too
small.

Claim 3.9. For any fixed integer D, we can assume without loss of generality (for proving Lemma 3.8) that, for
n large enough, every test has size at least D.

Proof of Claim 3.9. We obtain an alternative design G ′ from G by iteratively deleting a test of size less than D
and all individuals contained in the test, until all tests have size at least D . In each step, we remove one test,
between one and D individuals, and at most ∆D edges. Without loss of generality, assume that in G there
are only o(n) individuals that are not contained in a test (otherwise, the error probability would trivially tend
to one). Therefore, the test-design G ′ contains at least (1−o(1))n −m∆D = (1−o(1))n edges, and since the
individual degree is still at most ∆, its number of individuals n′ = |V (G ′)| satisfies n′ ≥ (1− o(1))n/∆. This
lower bound on n′ along with the assumption ∆≤ (lnn)1−δ additionally imply that ∆≤ (lnn′)1−δ/2 when n is
sufficiently large.

As for the remaining number of tests m′ = |F (G ′)|, we claim that for all large enough n,

m′ ≤ (1−ε)∆k1+1/∆− (n −n′)/D ≤ (1−ε/2)∆(n′)θ+θ/∆.

Indeed, the first inequality follows since m ≤ (1−ε)∆k1+1/∆ and the fact that we delete at least one test per
D deleted individuals. For the second inequality we distinguish to cases. First, noting that for 0 < ζ < 1 and
x > 0 the mapping x 7→ xζ is concave, we have for ζ := θ+θ/∆< 1, (n −n′) ≥p

n, and n large enough that

(n −n′)/D ≥∆(n −n′)ζ ≥∆
(
nζ− (n′)ζ

)
≥ (1−ε)∆

(
nζ− (n′)ζ

)
,

yielding the second inequality in the above claim. If one the other hand (n−n′) <p
n, we get with Bernoulli’s

inequality and with n large enough that

(1−ε)∆nζ < (1−ε)∆(n′)ζ · (1+p
n/n′)ζ ≤ (1−ε)∆(n′)ζ · (1+ζpn/n′) ≤ (1−ε/2)∆(n′)ζ,

again yielding the second inequality in the above claim. Since V1+(G ′) ⊆ V1+(G ), we can continue working
with G ′ and the desired claim holds. �

Recall that in the multi-step argument in Section 2.6, for some α > 0, the first step is to infect each in-
dividual independently with probability αk/n, and denote the resulting set of infected individuals by K1.
We seek to characterize the number of disguised individuals in K1 following a second step of infections, in
which each previously-uninfected individual is infected with probability (1−2α)k/n. Given K1, let X ∗

v be the
probability that v ∈K1 is totally disguised after this second step, and let X ∗ =∑

v∈K1
X ∗

v . To prove that X ∗ is
large, we need the following two statements.

Fact 3.10. Let a be a test such that |∂a ∩K1| ≥ 2. Then any individual in K1 is totally disguised if and only if
it is totally disguised when removing the test a.

This fact is immediate as any infected individual is disguised in a by definition. Furthermore, to get a
handle on the subtle dependencies between overlapping tests, we prove that the probability for an individual
to be disguised in two tests is minimized when the tests are disjoint. For this, denote by ∂(x)a = ∂a \ {x} the
individuals in test a without x.
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Claim 3.11. Consider marking each individual in ∂(x)a ∪∂(x)a′ as infected with some probability q indepen-
dent of the others. Then, for any integer z > 0, any individual x ∈V (G ) and any two tests a, a′ ∈ ∂x, we have

P
(
∂(x)a ∩V1(G ) 6= ;,∂(x)a′∩V1(G ) 6= ; | ∂(x)a ∩∂(x)a′ =;)

≤P(
∂(x)a ∩V1(G ) 6= ;,∂(x)a′∩V1(G ) 6= ; |

∣∣∂(x)a ∩∂(x)a′∣∣= z
)

.

Proof. We first note that

P
(
∂(x)a ∩V1(G ) 6= ;,∂(x)a′∩V1(G ) 6= ; | ∂(x)a ∩∂(x)a′ =;)=

(
1− (1−q)|∂(x)a|)(

1− (1−q)|∂(x)a′|) ,(3.8)

as the infected individuals in the two tests are independent due to the conditioning event.
On the other hand, suppose that

∣∣∂(x)a ∩∂(x)a′∣∣ = z ≥ 0. In order to make both tests contain at least one
infected individual that is not x, we can either have at least one of the z common individuals which is infected
(happening with probability

(
1− (1−q)z

)
, or we need both tests to contain an infected individual outside of

the intersection. Hence,

P
(
∂(x)a ∩V1(G ) 6= ;,∂(x)a′∩V1(G ) 6= ; |

∣∣∂(x)a ∩∂(x)a′∣∣= z
)

= (
1− (

1−q
)z)+ (

1−q
)z

(
1− (1−q)|∂(x)a|−z

)(
1− (1−q)|∂(x)a′|−z

)
(3.9)

Using (3.8) and (3.9), we conclude the proof with a short calculation:

P
(
∂(x)a ∩V1(G ) 6= ;,∂(x)a′∩V1(G ) 6= ; |

∣∣∂(x)a ∩∂(x)a′∣∣= z
)

−P(
∂(x)a ∩V1(G ) 6= ;,∂(x)a′∩V1(G ) 6= ; | ∂(x)a ∩∂(x)a′ =;)

= (
1− (

1−q
)z)+ (

1−q
)z

(
1− (1−q)|∂(x)a|−z

)(
1− (1−q)|∂(x)a′|−z

)
−

(
1− (1−q)|∂(x)a|)(

1− (1−q)|∂(x)a′|)

= (
1− (

1−q
)z)(1−q

)|∂(x)a|+|∂(x)a′|−z ≥ 0.

�

With this in mind, we can consider a simplified model in which the test degrees are unchanged, but the
tests are all disjoint.5 More precisely, we define the following: Given an infection rate q ∈ (0,1), we let Y a =
Y a(q) :=

(
1− (

1−q
)Γa−1

)
be the probability that in a test a of size Γa with one fixed individual x, there is at

least one infected individual that is not x. For any individual v , we then denote by X v = X v (q) :=∏
a∈∂v Y a(q)

the probability that v is totally disguised in this model, where all tests are mutually disjoint. Observe that, by
Claim 3.11, X ∗

v ≥ X v , and therefore, X ∗ ≥ X . The advantage is that in this model, X v and X u are independent
for v 6= u. Recall that

¯̀= 1

1−εk−1/∆ = o(1),

because ∆=O(ln1−δn) and k = nθ, and let `a = Γak/n.
The following lemma provides a useful lower bound on n−1 ∑

v∈V (G ) X v .

Claim 3.12. Under the preceding setup with q = (1−2α)k/n, we have

n−1
∑

v∈V (G )
X v ≥ (1−exp(−(1−3α) ¯̀))∆.

Proof. By the inequality of arithmetic and geometric means, we have

n−1
∑

v∈V (G )
X v ≥

∏
v∈V (G )

( ∏
a∈∂v

Y a

)1/n

=
∏

a∈F (G )
Y Γa /n

a .(3.10)

Furthermore, by Claim 3.9, we may assume that Γa ≥ (3α)−1, and we deduce that

Y a ≥ 1−exp
(−q (Γa −1)

)≥ 1−exp(−(1−3α)`a) .

Hence, (3.10) yields

n−1
∑

v∈V (G )
X v ≥

∏
a∈F (G )

(
1−exp(−(1−3α)`a)

)`a /k .(3.11)

5This implies an increase in the number of individuals, but the number of individuals does not play a role in this argument.
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Using Jensen’s inequality applied to the convex function x 7→ x ln(1− exp(−(1− 3α)x)) on (0,1), and noting
that ¯̀= m−1k∆= m−1 ∑

a∈F (G )`a , we get

k−1
∑

a∈F (G )
`a ln

(
1−exp(−(1−3α)`a)

)= mk−1
∑

a∈F (G )
m−1 (

`a ln
(
1−exp(−(1−3α)`a)

))

≥ mk−1

( ∑
a∈F (G )

m−1`a

)
ln

(
1−exp

(
−(1−3α)m−1

∑
a∈F (G )

`a

))
=∆ ln

(
1−exp

(−(1−3α) ¯̀
))

.
(3.12)

Finally, the assertion of the claim follows from (3.11) and (3.12). �
We note from this claim that if we select an individual v uniformly at random, we have (also using ¯̀= o(1))

that

E [X v ] ≥
(
1−exp

(−(1−3α) ¯̀
))∆ ≥ (1−4α)∆ ¯̀∆ = (1−4α)∆

(1−ε)∆k
≥ (1−ε/2)−∆k−1,

provided that α≤ ε/8.
Now, recall that X =∑

v∈K1
X v , and that each individual v is in K1 with probabilityαk/n. Then we deduce

from above that
E[X ] =αk E[X v ] ≥αk(1−4α)∆ ¯̀∆.

As X v and X u are independent for v 6= u, we can apply Lemma 7.2 to obtain

(3.13) P
(

X <α(1−ε/2)−∆/2
)≤ exp(−α(1−ε/2)−∆/8).

Now, as described earlier, consider infecting any uninfected individual with probability q = (1− 2α)k/n
independent of all the others. Then, as

∑
v∈K1

P(v ∈ V1+(G )) = X ∗ ≥ X , we find that conditioned on K1 and
X , it holds with probability at least

1−
∏

v∈K1

(1−P(v ∈V1+(G ))) ≥ 1−
(
1− X

|K1|

)|K1|
≥ X

1+X

that at least one individual from K1 is totally disguised. Here we used the inequality of arithmetic and geo-
metric means to upper bound the product, and used Bernoulli’s inequality in the last step. With α = ε/8
and the upper bound (3.13) on the probability that X < ε(1−ε/2)−∆/16, it follows that there exists a totally
disguised individual in K1 with probability at least

(1−exp(−ε(1−ε/2)−∆/64))
X

1+X
,

which matches the statement of Lemma 3.8.
Recall that p = k−

p
k lnn
n , and note that any individual is infected with probability at most

p̃ =αk/n + (1−αk/n)(1−2α)k/n < p,

independent of all the others. As discussed in Section 2.6 we can in hindsight raise the infection probability
of each individual to p, which can only increase the size of the set V1+(G ). Therefore, we proved that in
a model where each individual gets infected independently with probability p the assertion of Lemma 3.8
holds. Applying Corollary 3.7, this argument completes the proof of Lemma 3.8. �
Proof of Theorem 3.2. The theorem now follows easily by combining Lemma 3.8 with the last part of Corollary
3.7: With at least one disguised infected individual and at least lnn disguised uninfected individuals, the
conditional error probability is 1−o(1) due to Claim 2.3.

As for the overall success probability, the 1 −O
(
(1 − ε/2)∆

)
term is immediate from Lemma 3.8, and is

dominant when ∆ grows large for fixed ε. However, due to the hidden constant, this expression may be
negative when ∆ is small. For such cases, we simply observe that that the left hand side of (3.7) isΩ(ε2) even
when ∆= 1, due to the Taylor expansion 1−exp(−x) = x +Θ(x2) as x → 0. �
3.5. Algorithmic achievability on the random regular model: Proof of Theorem 3.3.

3.5.1. Further notation. Recall the random regular model G∆ from Section 2.2.1. We let (Γ1, . . . ,Γm) be the
(random) sequence of test-degrees, which satisfies the following by construction:

m∑
i=1

Γi = n∆.(3.14)

Furthermore, given the sequence (Γi )i∈[m], we define d

Γmin = min
i∈[m]

Γi , Γ̄= 1

m

m∑
i=1

Γi and Γmax = max
i∈[m]

Γi .
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We stress at this point that the construction of G∆ allows for multi-edges, and hence one individual might
take part in a test multiple times and contribute more than one to its degree.

Moreover, we parametrise the average degree as Γ̄= `n/k, such that ` denotes the expected number of in-
fected individuals a test would contain in a binomial random bipartite graph. Note that the assumed scaling
∆= o(lnn) readily implies that ω(k/n) ≤ `≤ o(1).

We first argue that each test degree is tightly concentrated with high probability, defining the concentration
event CΓ as follows:

CΓ =
{(

1−O
(
n−Ω(1)))`n/k ≤ Γmin ≤ Γ̄≤ Γmax ≤

(
1+O

(
n−Ω(1)))`n/k

}
.(3.15)

Lemma 3.13. If `=Ω(
min

{
n−(1−θ)/∆,n−θ/∆

})
, then we have P(CΓ(θ)) = 1−Õ(n−3).

Proof. Each individual chooses∆ tests with replacement. Hence, each individual has the chance of picking a
given test ∆ times independently, yielding

Γi =
n∑

j=1

∆∑
h=1

1
{

x j chooses ai in h-th selection
}

and Γi ∼ Bin(n∆,1/m) .

Thus, we find E [Γi ] = `n/k.
As ∆≥ θ

1−θ and therefore `=ω(n−(1−θ)), we find by the Chernoff bound (Lemma 7.1) that

P (Γi < (1− t )`n/k) ≤ exp
(
−t 2`n1−θ/2

)
≤ exp

(
−Ω

(
t 2n(1−1/∆)(1−θ)/2

))
.

Hence, with t = n−(1−θ)/4 lnn, we find

P (Γi < (1− t )`n/k) = Õ(n−4).(3.16)

An analogous calculation shows

P (Γi > (1+ t )`n/k) = Õ(n−4).(3.17)

Therefore, the lemma follows from (3.16), (3.17), and a union bound over all m ≤ n tests. �

3.5.2. Analysis of the different types of individuals. Let Y i denote the number of infected individuals (in-
cluding all multi-edges) in test ai (for i = 1. . .m). These variables are not mutually independent, as a single
individual takes part in multiple tests. Luckily, it turns out that the family of the Y i can be approximated by
a family of mutually independent random variables quite well. Given Γ1 . . .Γm , let (X i )i∈[m] be a sequence of
mutually independent Bin(Γi ,k/n) variables. Furthermore, let

E∆ =
{

m∑
i=1

X i = k∆

}
(3.18)

be the event that the sequence (X i ) renders the correct number of infected individuals. Stirling’s approxima-
tion (Lemma 7.6) guarantees that E∆ is not too unlikely; specifically, P (E∆) =Ω((n∆)−1/2). Furthermore, the
X i are indeed a good local approximation to the correct distribution, as stated in the following.

Lemma 3.14 (Lemma 3.6 of [11]). The sequences (Y i )i∈[m] and (X i )i∈[m] given E∆ are identically distributed.
�

Next, we establish that the number of negative tests m0 = m0(G∆,σ) and the number of positive tests
m1 = m −m0 are highly concentrated.

Lemma 3.15. With probability at least 1−o(n−2) we have

m0 =
(
1+O

(
n−Ω(1)))m exp(−`) and m1 =

(
1+O

(
n−Ω(1)))m

(
1−exp(−`)

)
.

Proof. Let m′
0 =

∣∣{(X i )i∈[m] : X i = 0
}∣∣. Combining the definition of X i with (7.6), we get

E
[
m′

0 | E∆, (Γi )i
]=

m∑
i=1

P (X i = 0 |Γi ) =
m∑

i=1
(1−k/n)Γi ,

which represents the expected number of negative tests approximated through (X i )i . By Lemma 3.13 and a
second order Taylor expansion (Lemma 7.5), we find

E
[
m′

0 | E∆,CΓ

]= (
1+O

(
n−Ω(1)))m exp(−`).(3.19)

Then, the Chernoff bound implies

P
(∣∣m′

0 −E
[
m′

0 | E∆,CΓ

]∣∣>p
m ln2(n) | E∆,CΓ

)= o(n−10).(3.20)
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The assertion of the lemma follows from (3.19) , (3.20), Lemma 3.13, Lemma 3.14, and P (E∆) =Ω((n∆)−1/2).
�

Next, we provide a characterization of the size of V0+(G∆), i.e., the number of disguised uninfected indi-
viduals.

Lemma 3.16. We have with probability at least 1−Õ
(
n−1

)
that

|V0+(G∆)| = (
1+O

(
n−Ω(1)))n

(
1−exp(−`)

)∆ .

Proof. Without loss of generality, given m1 and CΓ, we suppose that tests a1 . . . am1 are the positive tests. By
Lemma 3.13 and Lemma 3.15, the total number of edges connected to a positive test is w.h.p. given by

m1∑
i=1

Γi =
(
1+O

(
n−Ω(1)))mΓ̄

(
1−exp(−`)

)
.(3.21)

We need to calculate the probability that a given uninfected individual belongs to V0+ (G∆), i.e., each of its ∆
edges is connected to a positive test. By a counting argument, we have

PG∆ (x ∈V0+(G∆) | x ∈V0(G∆),m1,CΓ, (Γi )i ) =
(∑m1

i=1Γi

∆

)(∑m
i=1Γi

∆

)−1

= (
1+O

(
n−Ω(1)))(1−exp(−`)

)∆ ,

where the simplification follows via Claim 7.4 along with (3.21),
∑m

i=1Γi = mΓ̄ and ∆≤ ln1−δn.
Therefore,

EG∆ [|V0+(G∆)| |CΓ] =
(
1+O

(
n−Ω(1)))n

(
1−exp(−`)

)∆ .(3.22)

Analogously, again by Claim 7.4, the second moment turns out to be

EG∆

[|V0+(G∆)|2 |CΓ

]=
(

n −k

2

)((
1+O

(
n−Ω(1)

))
mΓ̄

(
1−exp(−`)

)

2∆

)((
1+O

(
n−Ω(1)

))
mΓ̄

2∆

)−1

= (
1+O

(
n−Ω(1)))n2 (

1−exp(−`)
)2∆ .(3.23)

Thus, (3.22), (3.23) and Chebychev’s inequality imply the lemma. �

Let A denote the number of infected individuals that do not belong to the easy uninfected set V1−−(G∆).
The following lemma allows us to bound its size.

Lemma 3.17. Let m = (1+ε)mDD(∆), then EG∆ [A] = (1+ε)−∆+o(n−(1−θ)).

Proof. Recall the definition
Γ̄= n∆/m = `n/k.

Hence, `= ∆k
m , and by the definition of mDD(∆) and k = nθ, we get

`= min
{

(1+ε)−1n−(1−θ)/∆, (1+ε)−1k−1/∆
}

.

We can then distinguish two cases, depending on the sparsity level θ:

`=
{

(1+ε)−1n−(1−θ)/∆, if θ ≤ 1/2

(1+ε)−1k−1/∆, if θ > 1/2.

Recall that m1 is the number of positive tests, and define

F∆ = {
m1 =

(
1+O

(
n−Ω(1)))m

(
1−exp(−`)

)}∩
{
|V0+(G∆)| = (

1+O
(
n−Ω(1) ln2 n

))
n

(
1−exp(−`)

)∆}
(3.24)

as the event that both the number of positive tests as well as the size of V0+(G∆) behave as expected. Lemmas
3.15 and 3.16 guarantee that F∆ is a high probability event, namely, P {F∆} ≥ 1 − Õ(n−1). Given m1, we
suppose without loss of generality that a1 . . . am1 are the tests rendering a positive result.

We describe the number of occurrences of different types of individuals by introducing two sequences of
random variables. Define R i = (R1

i ,R0+
i ,R0−

i )i∈[m1] as the number of infected individuals, disguised unin-
fected individuals of V0+(G∆) and non-disguised uninfected individuals (those of V0−(G∆)) appearing in test
i , respectively. By definition, we find R0−

i = Γi −R0+
i −R1

i .
Given |V0+(G∆)|, we approximate these variables by a sequence of mutually independent multinomials.

Specifically, let

H i = (H 1
i , H 0+

i , H 0−
i )i∈[m1] ∼ Mult≥(1,0,0) (Γi , (k/n, |V0+(G∆)|/n,1−k/n −|V0+(G∆)|/n))
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be multinomial conditioned on the first coordinate being at least one. We introduce the event

D∆ =
{

m1∑
i=1

H 1
i = k∆,

m1∑
i=1

H 0+
i = |V0+(G∆)|∆

}
.

Claim 3.18. Given m1 and |V0+(G∆)|, the distribution of R i equals the distribution of H i given D∆. Further-
more, P (D∆) ≥Ω(n−2).

Proof. Let (ri )i∈[m1] be a sequence with ri = (r 1
i ,r 0+

i ,r 0−
i ) satisfying

S1 :=
m1∑
i=1

r 1
i = k∆, S0+ :=

m1∑
i=1

r 0+
i = |V0+(G∆)|∆ and r 0−

i = Γi − r 1
i − r 0+

i .

In addition, let

S0− :=
m1∑
i=1

r 0−
i

denote the number of connections from individuals in V0−(G∆) to positive tests. Then, a counting argument
gives

PG∆(∀i ∈ [m1] : R i = ri | m1, |V0+(G∆)|) =

( S1

r 1
1 ...r 1

m1

)( S0+
v0+

1 ...rm0+
1

)( S0−
v0−

1 ...r 0−
m1

)

(S1+S0++S0−
Γ1,...,Γm1

)

=
(

S1 +S0++S0−
S1,S0+,S0−

)−1 m1∏
i=1

(
Γi

r 1
i ,r 0+

i ,r 0−
i

)

Let (r
′
i )i∈[m1] be a second sequence as above. Then,

PG∆(∀i ∈ [m1] : R i = ri | m1)

PG∆(∀i ∈ [m1] : R i = r
′
i | m1)

=
m1∏
i=1

( Γi

r 1
i r 0+

i r 0−
i

)

( Γi

r 1′
i r 0+′

i r 0−′
i

) .(3.25)

Let

R1 =
m1∑
i=1

r 1
i , R+ =

m1∑
i=1

r 0+
i , and R− =

m1∑
i=1

r 0−
i

and define R ′
1,R ′

+,R ′
− analogously. By definition, we get

R1 = R ′
1, R+ = R ′

+ and R− = R ′
−.

Then, by the definition of H , we have

PG∆(∀i ∈ [m1] : H i = ri | m1,D∆)

PG∆(∀i ∈ [m1] : H i = r
′
i | m1,D∆)

= (k/n)R1 (|V0+(G∆)|/n)R+(1−k/n −|V0+(G∆)|/n)R−

(k/n)R ′
1 (|V0+(G∆)|/n)R ′

+(1−k/n −|V0+(G∆)|/n)R ′−
·

m1∏
i=1

( Γi

r 1
i ,r 0+

i ,r 0−
i

)

( Γi

r
′1
i ,r

′0+
i ,r

′0−
i

) =
m1∏
i=1

( Γi

r 1
i ,r 0+

i ,r 0−
i

)

( Γi

r
′1
i ,r

′0+
i ,r

′0−
i

) .(3.26)

Thus, Claim 3.18 follows from (3.25) and (3.26). �

We now introduce a random variable that counts (positive) tests featuring only one infected individual and
no disguised uninfected individuals. Formally, let

B =
m1∑
i=1

1
{

R1
i +R0+

i = 1
}

and B ′ =
m1∑
i=1

1
{

H 1
i +H 0+

i = 1
}

.(3.27)

Therefore, by the definition of H i ,

EG∆

[
B ′ |D∆, (Γi )i ,m1

]=
m1∑
i=1

(
Γi

1,0,Γi −1

)
k/n(1−k/n −|V0+(G∆)|/n)Γi−1

1− (1−k/n)Γi
.(3.28)

Thus, as Γi is concentrated around Γ̄ and m1 is concentrated around m(1− exp(−`)), and also using the
second-order approximation of (1−k/n)Γ̄ ∼ exp(−`), we find by incorporating the error terms of E∆ that

EG∆

[
B ′ |D∆,E∆,m1

]= (
1+O

(
n−Ω(1)))m1Γ̄

n−(1−θ)(1−n−(1−θ) −|V0+(G∆)|/n)Γ̄

1−exp(−`)
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Hence, conditioning on the high probability event F∆ of (3.24) leads to

EG∆

[
B ′ |D∆,E∆,F∆

]= (
1+O

(
n−Ω(1)))k∆

(
1− k +|V0+(G∆)|

n

)Γ̄
.(3.29)

Now, let us distinguish between the cases θ ≤ 1/2 and θ > 1/2.
Case 1: θ > 1/2: In this case, we have n/k = o(k), and ` = (1+ε)−1k−1/∆. We recall the event F∆ from (3.24)
that gives a concentration condition for |V0+(G∆)| and m1. Plugging in ` into (3.24), we find given F∆, there
is some γ ∈ (0,1) such that

|V0+(G∆)| ∼ (1+ε)−∆n/k =O
(
k1−γ) .

Hence, by (3.29)

EG∆

[
B ′ |D∆,CΓ,F∆

]= (
1+O

(
n−Ω(1)))k∆

(
1−

(
1+O

(
n−Ω(1)

))
k

n

)Γ̄

= (
1+O

(
n−Ω(1)))k∆exp(−`) =

(
1+O

(
n−Ω(1)))k∆(1−`).(3.30)

Now, B ′ is (with respect to the graph G∆) a binomial random variable with a random number of trials and
a random probability parameter. Clearly, when conditioning on a specific number of trials and a specific
probability, the conditioned variable in a binomial random variable. For the sake of brevity, we write such
a conditioning as a conditioning on the concentration guaranteeing events D∆,CΓ,F∆, as the error terms
account for the range of possible fixed parameters in the range of the events. Therefore, the Chernoff bound
guarantees that given D∆CΓ,F∆ and with respect to G∆,

B ′ = (
1+O

(
n−Ω(1)))∆k · (1− (1+ε)−1k−1/∆)

with probability at least o(n−10). By Claim 3.18, it follows that

B = (
1+O

(
n−Ω(1)))∆k · (1− (1+ε)−1k−1/∆).(3.31)

with probability at least 1−o(n−8). Thus, we can calculate the probability of an infected individual not be-
longing to V1−−(G ) as follows. Such an individual has to choose all of its ∆ edges out of the k∆−B edges that
would lead to a test in which the individual could be identified by DD. Hence, we have

P (x 6∈V1−−(G∆) | x ∈V1(G )) = (1+o(k/n))

(
k∆−B

∆

)(
k∆

∆

)−1

= (1+o (k/n))
(
(1+ε)−1k−1/∆)∆

,(3.32)

where the simplification holds w.h.p. using (3.31) and Claim 7.4. Interpreting the average of A as a sum of k
probabilities, it follows that

EG∆ [A] ≤ (1+o(k/n))(1+ε)−∆.(3.33)

Case 2: θ ≤ 1/2: In this case, we have `= (1+ε)−1n−(1−θ)/∆. Hence, given F∆,

|V0+(G∆)| = (
1−O

(
n−Ω(1)))k(1+ε)−∆.(3.34)

In contrast to the first case, here we find that the influence of the size of disguised non-infected individuals
does not vanish asymptotically in relation to the number of infected individuals in (3.29).

By a similar argument as the first case, (3.34) and (3.29) imply

EG∆

[
B ′ |D∆,CΓ,m1

]= (
1+O

(
n−Ω(1)))k∆

(
1− k

n

(
1− (1+ε)−∆−O

(
n−Ω(1)

(1+ε)∆

)))Γ̄

= (
1+O

(
n−Ω(1)))k∆exp

(
−

(
1− (1+ε)−∆−O

(
n−Ω(1)

(1+ε)∆

))
`

)

= (
1+O

(
n−Ω(1)))∆k

(
1− (

1− (1+ε)−∆−O
(
n−Ω(1)(1+ε)−∆

))
`
)

,(3.35)

and combining this with the Chernoff bound and Claim 3.18 yields

B = (
1+O

(
n−Ω(1)))∆k · (1− (1+ε)−1n−(1−θ)/∆)(3.36)

with probability 1− o(n−8). Therefore, the probability of an infected individual not belonging to V1−−(G )
satisfies the following analog of (3.32):

P (x 6∈V1−−(G∆) | x ∈V1(G )) = (1+o(k/n))

(
k∆−B

∆

)(
k∆

∆

)−1

= (1+o(k/n))(1+ε)−∆n−(1−θ).
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Since 2θ−1 ≤ 0 by assumption, it follows that

E [A] = (1+o (k/n))(1+ε)−∆nθn−(1−θ) ≤ (1+ (k/n))(1+ε)−∆.(3.37)

Thus, Lemma 3.17 follows from (3.33), (3.37) and Markov’s inequality. �

3.6. A converse for DD in the sparse regime: Proof of Theorem 3.4. In accordance with Corollary 2.4, we first
provide a lemma bounding the size of V1−−(G∆), the set of infected individuals appearing in at least one test
with only easy uninfected individuals.

Lemma 3.19. For θ < 1/2 and m = (1−ε)mDD(∆), we have under the random regular design that

E [|V1−−(G∆)|] = (1+o(1))k
(
1− (

1−exp
(−(1−ε)−∆ (1−1/∆)

))∆)
.

Proof. We re-use the notations ¯̀ and Γ̄ in (3.6), but their expressions are modified as follows in accordance

with the choice m = (1−ε)∆k1+ (1−θ)
∆θ associated with θ < 1

2 :

¯̀= (1−ε)−1n−(1−θ)/∆ and Γ̄= (1−ε)−1n(1−θ)(1−1/∆).(3.38)

We additionally recall B from (3.27) as the number of tests featuring exactly one infected individual and no
elements of V0+. By the same calculation as in (3.35) and (3.36) with ` and Γ̄ replaced by the values in (3.38),
we obtain

B = (
1+O

(
n−Ω(1)))k∆

(
1− (1−ε)−∆kn−1)Γ̄ = (

1+O
(
n−Ω(1)))k∆exp

(−(1−ε)−∆ (1−1/∆)
)

(3.39)

with probability at least 1− o(n−8). Therefore, we can calculate the probability that an infected individual
does not belong to V1−−(G∆) via Claim 7.4 as follows:

P (x 6∈V1−−(G∆) | x ∈V1(G )) = (1+o(1))

(k∆−B
∆

)
(k∆
∆

) = (1+o(1)
(
1−exp

(−(1−ε)−∆ (1−1/∆)
))∆

.

Since there are k individuals in x ∈V1(G ) by assumption, we obtain

E [|V1(G ) \V1−−(G∆)|] = (1+o(1))k
(
1−exp

(−(1−ε)−∆ (1−1/∆)
))∆

(3.40)

and the lemma follows using |V1−−(G∆)| = k −|V1(G ) \V1−−(G∆)|. �

Knowing the expected size of |V1−−(G∆)|, Markov’s inequality leads to the following.

Corollary 3.20. Let θ < 1/2 and m = (1−ε)mDD(∆) and ∆=Θ(1). Then, with probability at least

(3.41) 1− 1− (
1−exp

(−(1−ε)−∆ (1−1/∆)
))∆

1−γ
there are at least γk infected individuals x ∈V1(G ) \V1−−(G∆).

Corollaries 2.4 and 3.20 immediately imply Theorem 3.4, since (3.41) is always positive for sufficiently
small γ, and approaches one as ∆→∞.

4. NON-ADAPTIVE GROUP TESTING WITH Γ-SIZED TESTS

In this section, we formally state and prove our main results concerning non-adaptive group testing Γ-
sized tests, namely, a universal lower bound and an algorithmic upper bound that matches the lower bound.
Recall that we focus on the regime Γ=Θ(1). Within this section G denotes an arbitrary non-adaptive pooling
scheme with respect to the Γ-sparsity constraint.

4.1. A universal information-theoretic bound. The first statement that we prove is an information-theoretic
converse that applies to any non-adaptive group testing scheme with maximum test size Γ. Denote by

minf,Γ = minf(G ) = max

{
1+

⌊
θ

1−θ

⌋
n

Γ
,2

n

Γ+1

}
,(4.1)

which we will show to be the sharp information-theoretic phase transition point. In [20] a lower bound of
(n/Γ)(1+o(1)) was proved, and we see that in the regime Γ =Θ(1), our lower bound improves on this for all
θ ∈ (0,1).

Theorem 4.1. Let δ> 0 and m = (1−δ)minf,Γ. Furthermore, let G be any non-adaptive pooling scheme (deter-
ministic or randomised) such that each test contains at most Γ = Θ(1) individuals. Then any inference algo-
rithm A fails in recovering σ from (σ̂,G )
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• with probability 1−o(1) if θ/(1−θ) 6∈Z,
• with probabilityΩ(1) if θ/(1−θ) ∈Z.

Thus, even with unlimited computational power, there cannot be any algorithm with a maximum test size
of Γ that is able to infer the infected individuals correctly w.h.p. once the number of tests drops below (4.1).
The distinction between integer vs. non-integer values of θ/(1−θ) arises for technical reasons (e.g., counting
the number of nodes with degree at most bθ/(1−θ)c), and we found it difficult to prove a high-probability
(rather than constant-probability) failure result in the integer case.

The proof of the universal information-theoretic converse resembles the proof of [12] for the existence of
a universal information-theoretic bound for unrestricted non-adaptive group testing, but several modifica-
tions are required to handle the test size constraint. Before conducting the proof in detail, we provide a short
sketch.

4.2. Proof of Theorem 4.1. We start by defining

d+ = 1+
⌊

θ

1−θ

⌋
and d− =

⌊
θ

1−θ

⌋
.

For the proof, we distinguish two different regimes for θ, as stated in Proposition 4.2 and Proposition 4.6. We
start with the following proposition.

Proposition 4.2. Let 1/2 ≤ θ < 1, and let G be an arbitrary pooling scheme with tests of size at most Γ. For all
δ> 0 and n sufficiently large, if m = (1−δ)d+ n

Γ , then

{
P (|V1+(G )| > lnn) ≥ 1−o(1) and P (|V0+(G )| > lnn) ≥ 1−o(1), if θ

1−θ 6∈Z
P (|V1+(G )| ≥ 1) =Ω(1) and P (|V0+(G )| > lnn) ≥ 1−o(1), if θ

1−θ ∈Z.

4.2.1. Proof of Proposition 4.2. Let G be an arbitrary pooling scheme such that each test contains at most Γ
individuals. We denote by V (G ) the set of individuals, and by F (G ) the set of tests in G (by the identification
of G with a bipartite graph). Instead of analysing (G ,σ̂), similarly to in the ∆-divisible case, we analyse a very
similar model that eliminates nuisance dependencies between the infection status of different individuals.

Specifically, let p = k−
p

k lnn
n , and let σ∗ be a {0,1}-valued vector, where every entry is one with probability

p. Corollary 3.6 guarantees that if the modified model satisfies

P
(∣∣V1+(G ,σ∗)

∣∣> 2C
)≥ 1−o(1) and P

(∣∣V0+(G ,σ∗)
∣∣> 2C

)≥ 1−o(1),

then the original model satisfies

P (|V1+(G ,σ)| >C ) ≥ 1−o(1) and P (|V0+(G ,σ)| >C ) ≥ 1−o(1).

Thus, working with the modified model is sufficient.
For the sake of brevity, we henceforth write GΓ in place of (G ,σ∗), leaving the dependencies onσ∗ implicit.
We proceed by finding a set of (many) individuals, that have a high probability of being disguised. We will

apply the probabilistic method iteratively to create the desired set. Creating this set turns out to be delicate
due to the dependencies in an arbitrary pooling scheme. Luckily, it will suffice for our purposes to note
that whenever individuals have distance at least 6 in the underlying graph, the events of being disguised are
independent [12].

In the following, we denote the set of all disguised individuals by

V +(G ) =V0+(G )∪V1+(G ).

We first present a claim establishing that we may safely assume that each individual gets testedΘ(1) times.

Claim 4.3. Given any pooling scheme G ′ with m = (1−2ε)d+ n
Γ (for some ε > 0) such that each test contains

at most Γ=Θ(1) individuals, there is another pooling scheme G such that each test contains at most Γ=Θ(1)
individuals with m = (1−ε)d+ n

Γ , while also satisfying the following:

• Each individual is contained in at most C =Θ(1) tests;
• Recovery of σ from (G ′,σ̂′) implies recovery from (G ,σ̂).

Proof. Given G ′ and a constant C ∈N, there is C ′ ∈N such that there are at most n/C individuals of degree at
least C ′ in G ′, which is an immediate consequence of m being linear in n (due to Γ = Θ(1)). Design G such
that each individual of G ′ with degree larger C ′ gets tested individually (causing n/C additional tests) and all
other individuals and tests stay the same as under G ′. Clearly, if recovery in G ′ was possible, then it is possible
in G as well. Setting C = Γ

εd+ , the claim follows. �
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In addition to the fact the we suppose that there are no individuals of (unbounded) large degree, we can
prove that there cannot be too many individuals of low degree.

Lemma 4.4. Let G be the given pooling scheme and m ≤ (1−δ)d+ n
Γ . If there is a constant α> 0 such that the

number of individuals of degree at most d− is αn, then we have the following:

• |V1+(G )| > 2lnn w.h.p. if θ/(1−θ) 6∈Z,
• |V1+(G )| > 0 with probabilityΩ(1) if θ/(1−θ) ∈Z.

Proof. Suppose that the number of individuals with degree at most d− is αn, and recall that p = k−
p

k ln(n)
n .

Without loss of generality, suppose that there are no tests of degree 1 (otherwise, remove them and each
connected individual from the testing scheme). Clearly, if the inference of σ does not succeed on this ma-
nipulated graph, then it cannot succeed in G . Before proceeding, we introduce the following auxiliary result.

Claim 4.5. If there are αn individuals of degree at most d−, then there exists 0 < β ≤ α such that there are at
least βn individuals of degree at most d− of distance at least 6.

Proof. This is a consequence of the test degrees and individual degrees both behaving as Θ(1), due to the
assumption Γ = Θ(1) and Claim 4.3. If we select an arbitrary individual with degree at most d−, remove all
individuals within distance 4, and then repeat, then we construct a set of individuals with degree at most d−

and pairwise distances at least 6 in the original graph. Since this procedure starts with αn individuals under
consideration and only removesΘ(1) individuals per step, the set formed has sizeΘ(n), as desired. �

Let B be the largest possible subset of individuals satisfying the requirements of Claim 4.5. Thus, B is a set
of βn individuals such that for all x 6= x ′ ∈ B we have

(B1) deg(x) ≤ d−

(B2) dist(x, x ′) ≥ 6.

We analyze a single individual x ∈ B using the FKG inequality (e.g., see [19, Proposition 1]); as noted in [1,
Lemma 4], the events of x being disguised in each of its tests are increasing with respect to σ, so the FKG
inequality yields

P
(
x ∈V +(G )

)≥
∏

a∈∂x

(
1− (

1−p
)deg(a)−1

)
.

Then, by the fact that deg(x) ≤ d− =O(1) within B , Claim 7.5 guarantees that
∏

a∈∂x

(
1− (

1−p
)deg(a)−1

)
≥C pd−

for some constant C depending on θ and Γ.
We now turn to the total number of totally disguised individuals in B . As noted above, for two individ-

uals x, x ′ ∈ B , the events of being totally disguised are independent due to the pairwise distances being at
least 6. Furthermore, each such individual is infected independently with probability p under our modified
infection model σ∗. Thus, the number of totally disguised infected individuals |V1+(G )| is dominated by a
binomial random variable Bin(βn, p ·C pd−

). Since np ∼ k = nθ, the mean of this binomial distribution scales

as Θ(nθ−(1−θ)d−
). In particular, when θ

1−θ is non-integer, the choice d− =
⌊

θ
1−θ

⌋
ensures that the exponent is

positive, and the Chernoff bound gives w.h.p. that

|V1+(G )| ≥ nΩ(1).(4.2)

On the other hand, if θ
1−θ is integer-valued, then the mean of the binomial isΘ(1), which is enough to ensure

that |V1+(G )| > 0 withΩ(1) probability. Combining these two cases completes the proof of Lemma 4.4. �
As an immediate consequence of Lemma 4.4, in any group testing instance that succeeds w.h.p., there are

at most o(n) individuals of degree up to d−. However, if m ≤ (1−δ)d+n/Γ we find at least αn individuals
of degree at most d− (for some α depending on δ) by the handshaking lemma [42, Corollary 1.3], which is
a contradiction. Therefore, Proposition 4.2 is a direct consequence of Lemma 4.4, with the claims regarding
|V0+(G )| following easily from those regarding |V1+(G )| in the same way as Corollary 3.7. �

We now turn to the sparse regime θ < 1
2 , establishing the following proposition as a stepping stone to

Theorem 4.1.

Proposition 4.6. Let 0 < θ < 1/2, and let G be an arbitrary pooling scheme with tests of size at most Γ. For all
δ> 0 and sufficiently large n, if m ≤ (2−δ) n

Γ+1 , then any algorithm (efficient or not) fails at recovering σ from
σ̂ and G w.h.p..
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4.2.2. Proof of Proposition 4.6. The proof hinges on a fairly straightforward observation. We can assume
without loss of generality that there are no tests containing only one individual (otherwise, we remove them
and their corresponding individuals from the testing scheme). By a simple counting argument, there can be
only o(n) such tests (since otherwise m > 2n/Γ, which is a contradiction). Then, another counting argument
leads to the fact that the number of individuals of degree 1 is large when m < 2n/Γ, as stated in the following.

Lemma 4.7. If m = (2−ε)n/Γ, then there are at least εn individuals of degree 1.

Proof. Denote by αn the number of individuals of degree 1, i.e., α > 0 is the proportion of individuals of
degree 1. Then the lemma follows by double counting edges (on the individual side and on the test-side):

(2−ε)n = mΓ≥
∑

a∈F (G )
deg(a) =

∑
x∈V (G )

deg(x) ≥αn +2(1−α)n.

Solving for α yields α≥ ε, and the lemma follows. �

The next lemma shows that there can only be a small number of tests containing more than one individual
of degree 1.

Lemma 4.8. If there is any algorithm recovering σ from G and σ̂ with Ω(1) probability, then the number of
tests containing more than one individual of degree 1 is below n/

p
k = o(n).

Proof. Suppose that at least n/
p

k tests contain at least 2 individuals of degree 1. By definition, each of these
individuals is infected with probability p ∼ k/n, so by the Chernoff bound, there are at least

p
k/lnn =ω(1)

tests containing two individuals of degree one, out of which exactly one is infected. For these tests, the in-
ference algorithm cannot do better than guess which one is the infected one, but then the probability of all
guesses being correct is (1/2)ω(1) = o(1). Therefore, the lemma follows. �

We are now in a position to prove Proposition 4.6. For m = (2−ε)n/Γ, we find by Lemma 4.7 that there are
at least εn individuals of degree 1. By Lemma 4.8 and the fact that Γ=Θ(1), only o(n) such individuals can be
placed together in any tests, and hence, the total number of tests is at least εn −o(n). Formally,

(2−ε)n/Γ= m ≥ εn −o(n).(4.3)

Solving (4.3) for ε, we find ε≤ 2
Γ+1 +o(1). Hence,

m ≥
(
2− 2

Γ+1
−o(1)

)
n

Γ
= 2

n

Γ+1
−o(n),

and the proposition follows. �
The universal lower bound in the considered regime is a direct consequence of Proposition 4.2, Proposi-

tion 4.6, and Claim 2.3. The proof of Theorem 4.1 is thus complete.

4.3. Algorithmic bound: Preliminaries and statement of result. We now turn to the problem of establishing
an upper bound, with a suitably-chosen test design and an efficient inference algorithm, that matches the
universal lower bound. We start by recalling the definition of G̃Γ in Section 2.2.2:

G̃Γ(θ) =
{

GΓ if θ ≥ 1/2

G∗
Γ otherwise

(4.4)

We equip this pooling scheme with the efficient DD algorithm (see Algorithm 1). In the following, we will
see that the combination of these tools will lead to information-theoretically optimal performance in the
Γ-sparse regime.

Proposition 4.9. Define

mDD(G̃Γ) = max

{
1+

⌊
θ

1−θ

⌋
n

Γ
,2

n

Γ+1

}
.

For Γ=Θ(1) and m = (1+ε)mDD = (1+ε)max
{

1+
⌊

θ
1−θ

⌋
n
Γ ,2 n

Γ+1

}
, we have

P(ADD(G̃Γ,σ̂,k) =σ) = 1−o(1).

The statement for the dense is derived in Theorem 4.10 below, and the sparse case in Theorem 4.18. Com-
bining these two statements with Theorem 4.1 implies that the DD algorithm succeeds with roughly minf,Γ

tests, and the achievability and converse results match for all θ ∈ (0,1).
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4.4. Algorithmic feasibility I: The configuration model. We show that the DD algorithm succeeds with roughly

max
{

2,1+
⌊

θ
1−θ

⌋}
tests employing the configuration model GΓ.

We define

∆DD(θ) = max

{
2,1+

⌊
θ

1−θ

⌋}
and mDD(GΓ) =∆DD(θ)

n

Γ
,(4.5)

representing the achievability bound for DD in GΓ.

Theorem 4.10. Let ε> 0 and m ≥ mDD(GΓ). Then DD infers σ from (GΓ,σ̂) correctly w.h.p..

We stress at this point that Theorem 4.10 gives a performance guarantee for the configuration model with
any sparsity level, but it will turn out in due course that for θ < 1

2 a different model performs slightly better.

Note also that for θ ≥ 1
2 , we can simplify max

{
2,1+

⌊
θ

1−θ
⌋}

= 1+
⌊

θ
1−θ

⌋
.

4.4.1. Proof of Theorem 4.10. The proof of Theorem 4.10 hinges on a slightly delicate combinatorial argu-
ment. Recall from Figure 1 that V1−− consists of those infected individuals that appear in at least one test
with only individuals that are removed in the first step of DD (i.e., the easy uninfected individuals V0+). By
Corollary 2.4, DD succeeds if and only if V1 =V1−−.

Lemma 4.11. Let A = |V1(G ) \V1−−(GΓ)| denote the number of infected individuals that are not identified in
the second step of DD. If m ≥ mDD, then E [A] = o(1).

The proof of Lemma 4.11, while conceptually not difficult and similar to [11], is technically challenging, as
we have to deal with subtle dependencies in the pooling scheme, caused by the mutli-edges given through the
configuration model. A heuristic argument with a (false) independence assumption can provide some intu-
ition as follows: In order for an individual x to be part of a test containing no infected individual (besides pos-
sibly x itself) is roughly (1−k/n)Γ−1. For x to be disguised, thus being element of V0+(GΓ) or V1+(GΓ), x may

not be part of such a test. Hence, the probability of x being disguised would be roughly
(
1− (1−k/n)Γ−1

)∆
if the associated ∆ events were independent (recall that ∆ = mΓ/n is the degree of each individual in the
random regular design).

To formally deal with the dependencies in the graph, we proceed as follows. Denote by (Y 1, . . . ,Y m) the
number of infected individuals in the tests. There are n∆ edges connected to individuals, out of which ex-
actly k∆ correspond to infected individuals. Each test chooses exactly Γ individuals without replacement,
and hence, the number of individuals in any test follows a hypergeometric distribution. In order to get a
handle on this distribution, we introduce a family (X 1, ..., X m) of independent binomial variables, such that
X i ∼ Bin(Γ,k/n). These variables can accurately describe the local behavior of how many infected individ-
uals belong to test ai . We define EΓ to be the event that the overall number of edges containing infected
individuals is correct, i.e.,

EΓ =
{

m∑
i=1

X i = k∆

}
.(4.6)

Claim 7.6 implies that P (EΓ) =Ω((n∆)−1/2). In addition, given EΓ, we find the following.

Lemma 4.12. Give the event EΓ, the sequences (Y 1, ...,Y n) and (X 1, ..., X n) are identically distributed with
respect to the pooling graph GΓ.

Proof. By the definition of Y i , we find for any (yi )i satisfying
∑

i yi = k∆ that

P(Y i = yi∀i ∈ [m]) =
(

k∆

y1, ..., ym

)(
(n −k)∆

Γ− y1, ...,Γ− ym

)(
n∆

Γ, ...,Γ

)−1

=
∏m

i=1

(Γ
yi

)
(n∆

k∆

) .

where the equality follows by rewriting in terms of factorials and simplifying. Furthermore, given
∑

i xi = k∆,
we have

P(X i = xi∀i ∈ [m]|EΓ) =
m∏

i=1

(
Γ

xi

)
(k/n)xi (1−k/n)Γ−xi (P (EΓ))−1 .

Now, for two sequences (yi )i∈[m] and (y ′
i )i∈[m] such that

∑m
i=1 yi =

∑m
i=1 y ′

i = k∆, we obtain

P(∀i ∈ [m] : Yi = yi )

P(∀i ∈ [m] : Yi = r ′
i )

=
m∏

i=1

(Γ
yi

)
(Γ

y ′
i

) = P(∀i ∈ [m] : Yi = yi |EΓ)

P(∀i ∈ [m] : Hi = y ′
i |EΓ)

.

This implies the lemma. �
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Thus, we are able to carry out all necessary calculations with respect to (X 1, ..., X n) and transfer the results
to the original pooling scheme. For the next step, we need to get a handle on the number of positive and
negative tests occurring in this setting. Let m0 = m0(GΓ,σ) be the number of tests that render a negative
result, and let m1 = m1(GΓ,σ) be the number of tests that render a positive result. Then m0 and m1 are
highly concentrated around their means as follows.

Lemma 4.13. With probability 1−o(n−2), we have

m0 = m (1−k/n)Γ+O
(p

m ln(n)
)

and m1 = m
(
1− (1−k/n)Γ

)+O
(p

m ln(n)
)

.

Proof. Recalling the definitions of (Y i )i and (X i )i from (4.6), we have

m0 =
m∑

i=1
1 {Y i = 0} ,

and we further denote by

m′
0 =

m∑
i=1

1{X i = 0}

the number of negative tests as modelled by the family of independent binomial variables (X i )i . Clearly, as
the X i are mutually independent,

E
[
m′

0|EΓ
]= m ·P(Bin(Γ,k/n) = 0) = m

(
1− k

n

)Γ
.

Hence, the Chernoff bound (Lemma 7.1) guarantees that

P
(∣∣m′

0 −E(m′
0|EΓ)

∣∣>p
m ln(n) | Γ)= o(n−10)

and by combining Lemma 4.12 with Claim 7.6, we conclude that

P
(|m0 −E(m0)| >p

m ln(n) | Γ)= o(n−9).

Thus, the first part of the lemma follows. The second part is immediate, as m0 +m1 = m. �
Hence, the above-mentioned naive calculation (assuming independence) can be rigorously justified, and

we have established the sizes of the disguised individuals w.h.p..
The following lemma characterizes the high-probability behavior of the number of disguised individuals.

Lemma 4.14. Given n and k = nθ as well as Γ=Θ(1), we have w.h.p. that

|V0+(GΓ)| = (1+o(1))n
(
1− (1−k/n)Γ−1)∆ and |V1+(GΓ)| = (1+o(1))k

(
1− (1−k/n)Γ−1)∆ .

Proof. By the definition of GΓ via the configuration model, Lemma 4.13 guarantees that the total number of
edges connected to a positive test is, with probability at least 1−o(n−2), given by

m1Γ= mΓ
(
1− (1−k/n)Γ+O

(
n−Ω(1))) .(4.7)

Let x be an uninfected individual. We can calculate the probability of x belonging to V0+(GΓ) as follows: Each
of the∆=Θ(1) edges that are mapped to x in the configuration model have to be connected to a positive test.
Thus, by (4.7), we find

P (x ∈V0+(GΓ) | x ∈V0(GΓ),m1) =
(

m1Γ

∆

)(
mΓ

∆

)−1

= (
1− (1−k/n)Γ

)∆+O

(
ln(n)

n1/2

)
,

where the equality follows from Claim 7.4. Therefore,

E [|V0+(GΓ)|] =
(
1+O

(
ln(n)

n3/2

))
(n −k)

(
1− (1−k/n)Γ

)∆ =
(
1+O

(
ln(n)

n3/2

))
n

(
1− (1−k/n)Γ

)∆
.(4.8)

By a similar argument, the second moment turns out to be

E
[|V0+(GΓ)|2]=

(
n −k

2

)(
mΓ(1− (1−k/n)Γ+O

(
n1/2 ln(n)

)

2∆

)(
mΓ

2∆

)−1

=
(
1+O

(
ln(n)

n3/2

))
n2 (

1− (1−k/n)Γ
)2∆

.(4.9)

Thus, (4.8), (4.9) and Chebychev’s inequality lead to the first part of Lemma 4.14.

To prove the second part, namely that |V1+(GΓ)| ∼ k
(
1− (1−k/n)Γ

)∆
, we need to be more careful: It can

happen that a given individual and a given test are paired more than once in the configuration model. In
particular, if an infected individual x is allocated to the same test twice, then an analysis of the type above
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would count it as disguised (i.e., x ∈ V1+(GΓ)) even when it is the only infected individual in the test (i.e.,
x ∈V1−(GΓ)).

To deal with this issue, we again introduce R i = (R1
i ,R0+

i ,R0−
i ) and H i = (H 1

i , H 0+
i , H 0−

i ), representing par-
titions of the individual types within a test. Specifically, R i = (R1

i ,R0+
i ,R0−

i ) denotes the triplet containing
the number of infected individuals, disguised uninfected individuals (i.e., in V0+(GΓ)), and non-disguised
uninfected individuals (i.e., in V0−(GΓ)) appearing in test i , respectively. By definition, R0−

i = Γ−R0+
i −R1

i .
Furthermore, given |V0+(GΓ)|, H i = (H 1

i , H 0+
i , H 0−

i ) denotes a sequence of random variables distributed as
follows:

H i = (H 1
i , H 0+

i , H 0−
i )i∈[m1] ∼ Mult≥(1,0,0)

(
Γ,

(
k/n, |V0+(GΓ)|/n,1−k/n −|V0+(GΓ)|/n

))
,

where Mult≥(1,0,0) denotes the multinomial distribution conditioned on the first coordinate being at least one.
We additionally introduce

W =
m∑

i=1
Γ1

{
R1

i = 1
}

W ′ =
m∑

i=1
Γ1

{
H 1

i = 1
}

,

representing the number of connections to tests that contain exactly one infected individual, first in the
original (multi-)graph and then with respect to the independent random variables (H i )i .

The expectation of W ′ given EΓ is straightforward to calculate as

E
[
W ′ | EΓ

]= mΓ(k/n) (1−k/n)Γ−1 = k∆ (1−k/n)Γ−1 .

Therefore, the Chernoff bound of Lemma 7.1 guarantees that the following holds given EΓ with probability at
least 1−o(n−10):

W ′ = k∆ (1−k/n)Γ−1 +O(n−Ω(1)).(4.10)

Combining (4.10) with Claim 7.6 and Lemma 4.12 yields with probability at least 1−o(n−9) that

W = k∆ (1−k/n)Γ−1 +O(n−Ω(1)).(4.11)

We are now able to calculate the number of infected individuals that appear only in tests that either contain
at least one other infected individual, or in which that individual is included more than once (and hence a
multi-edge exists). We denote this number by U . An infected individual that contributes to U has to chose
its ∆ connections from exactly k∆−W possibilities, i.e., those connected to an infected individual, but not
connected to a test that contains only one infected individual. Applying the result in Claim 7.4 based on
Stirling’s approximation, we find that

E [U |W ] = k

(
k∆−W

∆

)(
k∆

∆

)−1

= (1+o(1))k
(
1− (1−k/n)Γ−1)∆ .(4.12)

Furthermore, by an analogous argument, we have

E
[
U 2|W ]=

(
k

2

)(
k∆−W

2∆

)(
k∆

2∆

)
= (1+o(1))k2 (

1− (1−k/n)Γ−1)2∆
.(4.13)

Equations (4.12), (4.13) and Chebyshev’s inequality yield w.h.p. that

(4.14) U = (1+o(1))k
(
1− (1−k/n)Γ−1)∆ .

As described above, an infected individual appearing in the same test more than once contributes to U , so at
this stage we can only state that U ≥ |V1+(GΓ)|. To better understand |V1+(GΓ)|, we introduce a new random
variable, T , that counts the number of individuals occurring in some test at least twice. Clearly,

U ≥ |V1+(GΓ)| ≥U −T .(4.15)

It is well known [32, Chapter 13.2.1] that the number of multi-edges on a bounded degree multi-graph gen-
erated through the configuration model is finite w.h.p., we denote this magnitude with M =Θ(1). Hence, the
probability that a given individual x features a multi-edge is at most M/n. Noting that E [T | M] ≤ M w.h.p.,
we find that T is w.h.p. upper bounded by any arbitrarily-slowly growing ω(1) term. In particular, T = o(U )
(since (4.14) gives U =ω(1) w.h.p.), and hence the second part of Lemma 4.14 follows from (4.15). �

Next, we define the event

FΓ =
{

m1 = (1+o(1))m
(
1− (1−k/n)Γ

)}∩
{
|V0+(GΓ)| = (1+o(1))n

(
1− (1−k/n)Γ−1)∆}

,(4.16)
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in which the number of positive tests and disguised uninfected individuals behave as expected. By Lemmas
4.13 and 4.14, we have P (FΓ) ≥ 1−o(1). We assume without loss of generality that the first m1 tests render a
positive result.

Letting

DΓ =
{

m1∑
i=1

H 1
i = k∆,

m1∑
i=1

H 0+
i = |V0+(GΓ)|∆

}

be the event that H =∑m1
i=1 H i equals its expectation, we have the following analog of Corollary 3.18.

Claim 4.15. The distribution of R i equals the distribution of H i given DΓ and Γ, and furthermore, P(DΓ) =
Ω(n−1).

Proof of Claim 4.15. Let (ri )i∈[m1] be a sequence such that ri = (r 1
i ,r 0+

i ,r 0−
i ) and

∑
i r 1

i = k∆,
∑

i r 0+
i = |V0+(GΓ)|∆,

and r 0−
i = Γ− r 1

i − r 0+
i . Let

S1 = k∆, S0+ =∆ |V0+(GΓ)| and S0− = n∆−n∆(1− (1−k/n)Γ)−k∆.

By the definition of R i , we have

P(∀i ∈ [m1] : R i = ri | m1) =

( S1

r 1
1 ...r 1

m1

)( S0+
r 0+

1 ...rm0+
1

)( S0−
Γ−r 1

1−r 0+
1 ...Γ−r 1

m1
−r 0+

m1

)

( n∆
Γ,...,Γ

) =
(

n∆

S1,S0+,S0−

)−1 m1∏
i=1

(
Γ

r 1
i ,r 0+

i ,r 0−
i

)
.

Letting (r
′
i )i∈[m1] be a second sequence as above, it follows that

P(∀i ∈ [m1] : R i = yi | m1

P(∀i ∈ [m1] : R i = y
′
i | m1)

=
m1∏
i=1

( Γ
r 1

i r 0+
i r 0−

i

)
( Γ

(r ′)1
i (r ′)0+

i (r ′)0−
i

) .(4.17)

Furthermore, by the definition of X , we have

P(∀i ∈ [m1] : H i = ri | m1,DΓ)

P(∀i ∈ [m1] : H i = r
′
i | m1,DΓ)

= (k/n)
∑m1

i=1 r 1
i (|V0+(GΓ)|/n)

∑m1
i=1 r 0+

i (1−k/n −|V0+(GΓ)|/n)
∑m1

i=1 r 0−
i

(k/n)
∑m1

i=1(r ′)1
i (|V0+(GΓ)|/n)

∑m1
i=1(r ′)0+

i (1−k/n −|V0+(GΓ)|/n)
∑m1

i=1(r ′)0−
i

m1∏
i=1

( Γ
r 1

i ,r 0+
i ,r 0−

i

)
( Γ

(r ′)1
i ,(r ′)0+

i ,)(r ′)0−
i

)

=
m1∏
i=1

( Γ
r 1

i ,r 0+
i ,r 0−

i

)
( Γ

(r ′)1
i ,(r ′)0+

i ,(r ′)0−
i

) .(4.18)

The desired claim follows from Equations (4.17) and (4.18). �

We are interested in the number of positive tests that contain exactly one infected individual and no ele-
ments of V0+(GΓ). Therefore, we define

B =
m1∑
i=1

1
{

R1
i +R0+

i = 1
}

and B ′ =
m1∑
i=1

1
{

H 1
i +H 0+

i = 1
}

.

Claim 4.16. We have w.h.p. that

B ≤∆k(1−2Γn−(1−θ))

Proof of Claim 4.16. We use Claim 4.15 to simulate B through independent random variables as in B ′. Since
B ′ is a sum of independent multinomial variables, we obtain its expectation by applying (4.16), Lemma 7.3
and Bayes Theorem:

E
[
B ′ |DΓ, |V0+(GΓ)| ,m1

]=
m1∑
i=1

P (H i = (1,0,Γ−1) |DΓ, |V0+(GΓ)|)

= m1Γ
k/n · (1− (k +|V0+(GΓ)|)/n)Γ−1

1− (1−k/n)Γ

=
(
1+O

(
Γ

k

n

))
m1

(
1− k +|V0+(GΓ)|

n

)Γ−1

(4.19)
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where the last step follows from Lemma 7.5 and Γ = Θ(1). Conditioning on FΓ defined in (4.16) and using
(1−εn)Γ−1 = 1− (Γ−1)εn(1+o(1) for εn = o(1) and Γ−1 =Θ(1), we obtain

E
[
B ′ |DΓ,FΓ

]= (1+o (1))mΓk/n ·
(
1− k +n(Γ−1)∆(k/n)∆

n
−o(1)

)Γ−1

=
(
1+O

(
Γ

k

n

))
mΓk/n ·

(
1− (Γ−1)

k + (Γ−1)∆n(k/n)∆

n

)

=
(
1+O

(
Γ

k

n

))
mΓk/n ·

(
1− (Γ−1)

(
n−(1−θ) + (Γ−1)∆n−(1−θ)∆

))

=
(
1+O

(
Γ

k

n

))
∆k

(
1− (Γ−1)n−(1−θ)

)

=∆k
(
1+O

(
Γn−(1−θ)

))
,(4.20)

where we used k = nθ and ∆ = mΓ
n . Moreover, since B ′ is a binomial random variable, the Chernoff bound

(Lemma 7.1) yield with probability o(n−10) that

B ′ ≤∆k
(
1+O

(
Γn−(1−θ)

))
.

Thus, by Claim 4.15 we have w.h.p. that

B ≤∆k
(
1+O

(
Γn−(1−θ)

))
.(4.21)

�

We are now in a position to characterize A = |V1(G ) \V1−−(GΓ)|.
Claim 4.17. Given B ≤∆k

(
1−O

(
Γn−(1−θ)

))
, we have for some constant C > 0 that

E [A | B ,FΓ] = k

(
k∆−B

∆

)(
k∆

∆

)−1

≤ k(C ·Γ)∆n−(1−θ)∆(4.22)

Proof of Claim 4.17. The combinatorial expression follows by adding k probabilities, one per defective item.
Each probability is the probability that an infected individual does not belong to V1−−, which equals the
probability that all of its ∆ connections are disjoint from the k∆−B connections to tests in which it would
have been the only infected individual with no disguised uninfected individuals. The assertion then follows
by combining the assumption B ≤∆k

(
1−O

(
Γn−(1−θ)

))
with Claim 7.4. �

Proof of Lemma 4.11. We distinguish between θ/(1−θ) 6∈ Z and θ/(1−θ) = T ∈ Z, and recall mDD from (4.5)

with ∆ = max
{

2,1+
⌊

θ
1−θ

⌋}
. For simplicity, we assume that the inequality m ≥ mDD holds with equality, but

the general case is analogous.

Case A: θ/(1− θ) 6∈ Z. In this case, for m = mDD, we have ∆ = max
{

2,1+
⌊

θ
1−θ

⌋}
= max{2,dθ/(1−θ)e}. We

distinguish the two cases θ < 1/2 and θ > 1/2 as follows:

• Case A1: θ > 1/2. In this case, we have ∆ = dθ/(1−θ)e. Defining η = θ− (1−θ) · dθ/(1−θ)e < 0, using
(4.22) and Γ,∆=Θ(1), we find

E [A | B ,FΓ] ≤O(1)nθ−(1−θ)·dθ/(1−θ)e =O(nη).(4.23)

• Case A2: θ < 1/2. In this case, we have ∆= 2, and hence

E [A | B ,FΓ] ≤O(1)Γ∆n3θ−2 ≤ o(1).(4.24)

Case B: θ/(1−θ) = T ∈Z. Again, we distinguish the cases θ = 1/2 and θ > 1/2:

• Case B1: θ > 1/2. We have ∆= T +1, so by (4.22) and Γ,∆=Θ(1), we find

E [A | B ,FΓ] ≤O(1)nθ−(1−θ)·(T+1) =O(n−(1−θ)),(4.25)

where the last step uses 1−θ ≥ θ and T > 1.
• Case B2: θ = 1/2. We have ∆= 2, and hence

E[A | B ,FΓ] ≤O(n−1/2).(4.26)

Using (4.23)–(4.26) and combining Bayes’ rule with the fact that FΓ occurs w.h.p. completes the proof of
Lemma 4.11. �

Thus, we can use the previous findings to prove Theorem 4.10 .
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Proof of Theorem 4.10. We can finally estimate the expected size of A = |V1(G ) \V1−−(GΓ)|. By recalling Claim 4.17
and combining it with the fact that FΓ occurs w.h.p., and using Lemma 4.11, for ∆=∆DD(θ) and m = mDD we
get E[A] = o(1) w.h.p.. The assertion follows by applying Markov’s inequality. �

In this subsection, we addressed the case where the test design is formed using the configuration model,
and showed that the DD-algorithm is optimal in this regime if applied to the random regular pooling scheme
GΓ. However, the analysis of this section is not able to provide a tight bound for the matching design.

4.5. Algorithmic feasibility II: Matching-based model. Recall from from Section 2.2.2 that the matching-
based model with parameter γ is denoted by G∗

Γ . It turns out that the DD algorithm is also optimal for this
model.

Theorem 4.18. If m ≥ 2n/(Γ+1) and 0 < θ < 1/2, DD recovers σ from G∗
Γ and σ̂w.h.p..

4.5.1. Proof of Theorem 4.18. We prove the theorem for m = 2n/(Γ+ 1) (which implies γ = 2
Γ+1 n), but the

more general case follows analogously (intuitively, a higher number of tests can only help). We analyse the
DD algorithm on G∗

Γ in two steps, starting with the regular part of the graph. Denote by G∗,r
Γ the (Γ− 1,2)

regular part, in which we select n −γ individuals and pool them into two tests each. Denote by σ[G∗,r
Γ ] and

σ̂[G∗,r
Γ ] the infection status vector and outcome vector resulting from the regular part alone.

Lemma 4.19. If m ≥ 2n/(Γ+1), then DD recovers σ[G∗,r
Γ ] from (G∗,r

Γ ,σ̂[G∗,r
Γ ]) correctly w.h.p..

This makes direct use of Theorem 4.10, as G∗,r
Γ is equally distributed as G r

Γ−1. With γ = 2
Γ+1 n individuals

removed from the population, we find n′ = Γ−1
Γ+1 n individuals being tested in GΓ−1. Thus, we require at most

m′ = 2 n′
Γ−1 = 2 n

Γ+1 tests in order for DD to succeed w.h.p.on GΓ−1 . In the second step below, we will argue that
adding the 2 n

Γ+1 individuals (one to each test) does not harm the result.
We denote by k ′ the number of infected individuals under the remaining n′ individuals, and let θ′ be the

value such that k ′ =Θ((n′)θ
′
), which is well-defined due to the following.

Claim 4.20. Under the preceding setup, we have w.h.p.that θ′ = θ.

Proof. As we remove γ = 2
Γ+1 n individuals randomly, the number of infected individuals in the left-over is a

hypergeometrically distributed random variable K ′ ∼ H
(
n,k,n′). Thus, the Chernoff bound for the hyperge-

ometric distribution guarantees w.h.p. that

K ′ = (1+o(1))kn′/n = (1+o(1))
Γ−1

Γ+1
k.

Hence, the assertion follows. �

In the second step, we analyse the remaining part of the graph, in which the γ remaining items are placed
into one test each.

Lemma 4.21. If θ < 1/2, then the DD algorithm recoversσw.h.p. from (G∗
Γ ,σ̂) provided that it recoversσ[G∗,r

Γ ]
w.h.p. from (G∗,r

Γ ,σ̂[G∗,r
Γ ]).

Proof. The intuition behind our mildly delicate combinatorial proof is as follows. Essentially, the lemma
follows from the observation that in the third neighborhood of each positive test we find exactly one infected
individual w.h.p.. Indeed, if θ < 1/2, w.h.p. there are no two infected individuals in a finite neighborhood in

G∗
Γ , as the expected number of such individuals is bounded by ∼O

(
n k2

n2

)
= o(1).

We now proceed more formally. We need to prove that the DD algorithm succeeds w.h.p. on G∗
Γ if it suc-

ceeds w.h.p. on the (Γ−1,2)−regular part. (Note that for Γ= 3 this regular graph consists of disjoint cycles.)
By construction of G∗

Γ , there are at most γ = 2
Γ+1 n individuals left to be added to GΓ−1. Denote the set of

these individuals by X = {
x1 . . . xγ

}
. As γ ≤ m, there is a matching from X to the the m tests. Therefore, an

immediate consequence is that in G∗
Γ , every test contains at most Γ individuals and there are individuals of

degree 2 and individuals of degree 1.
Suppose the DD algorithm succeeds on the regular part G∗,r

Γ ∼G r
Γ−1. We distinguish four different cases.

Case A: Connecting to a negative test. Suppose that an individual x ∈ X connects to a (previously) negative
test a. Then, for all y ∈ ∂G∗,r

Γ
(a) we have y ∈V0−(G∗,r

Γ ).

• Case A-1: σx = 0. If the individual which was added in the second step is uninfected as well, we
find σ̂a(G∗

Γ ) = σ̂a(G∗,r
Γ ) = 0. Hence, x ∈ V0−(G∗

Γ ), and for all y ∈ ∂G∗,r
Γ

(a) we have y ∈ V0−(G∗
Γ ) as well.

Therefore, DD succeeds if (and only if) it succeeded on G∗,r
Γ .
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• Case A-2: σx = 1. If the individual that was added is infected, things are a bit more complicated.
Clearly, σ̂a(G∗,r

Γ ) = 0 but σ̂a(G∗
Γ ) = 1. Therefore, we need to prove that x ∈ V1−−(G∗

Γ ) which holds
by definition if and only if for all y ∈ ∂G∗

Γ
(a) we have y ∈ V0−(G∗

Γ ). Given y ∈ ∂G∗,r
Γ

(a), the condition
y ∈V0−(G∗

Γ ) holds if the second test that y belongs to is negative as well. As x is connected uniformly
at random to a test, this happens as long as there are no two infected individuals of distance at most
4 in G∗

Γ . Denote the individuals up to the fourth neighborhood as

V 4
x =

{
x ′ ∈V (G∗

Γ ) : 1 ≤ distG∗
Γ

(x, x ′) ≤ 4
}

.

Clearly,
∣∣V 4

x

∣∣≤ 2Γ2 and, therefore, E
[∣∣V 4

x ∩V1(G∗
Γ )

∣∣ |σx = 1
]≤O

(
Γ2k/n

)
.

As x was chosen randomly in the beginning, it is infected with probability O(k/n). Furthermore,
because x gets connected uniformly at random to a test, the infection status of x is independent
of the infection status of the vertices in its neighborhood given G∗,r

Γ (as the graph was constructed
independently). Thus, the probability that there is an infected individual x ∈ X that gets connected
to a test such that V 4

x contains an infected individual is bounded by a union bound by

O
(
n ·Γ2(k/n)2)= o(1) (as θ < 1/2).

Hence, for all y ∈ ∂G∗
Γ

(a) we find y ∈ V0−(G∗
Γ ), and DD succeeds at inferring x as well as all other ver-

tices, given that it succeeded on G .

Case B: Connecting to a positive test. Suppose that an individual x ∈ X connects to a (previously) positive
test a. Therefore, there exists at least one y ∈V1(G∗,r

Γ )∩∂G∗,r
Γ

(a). As DD succeeds on G by assumption, this y is

element of V1−−(G∗,r
Γ ).

• Case B-1: σx = 1. Similarly as in Case A-2, the probability that there is x ∈ X ∩V1(G∗
Γ ) connecting to

an already positive test is o(1). Indeed, as adding x to a is independent from the construction of G∗,r
Γ ,

the probability that there are two positive individuals in one test is at most O
(
k2/n2

)
, a union bound

shows that the probability that such an x exists is at most O
(
k2/n

) = o(1), as θ < 1/2. Hence, w.h.p.,
Case B-1 does not occur.

• Case B-2: σx = 0. We apply a similar argument as the previous case. We first claim that y is not only
part of V1−−(G∗,r

Γ ) because of a, but that the second test y belongs to (call this test a′) consists of y
and individuals from V0−(G∗

Γ ) (and, thus, of individuals from V0−(G∗,r
Γ )). Suppose that was not the

case; then there needs to be an infected individual within the fourth neighborhood of y . As proven in
Case A-2, w.h.p., this does not occur. Hence, DD is able to identify y in G∗

Γ given that this was possible
in G∗,r

Γ . It remains to argue that DD classifies x correctly. As x ∈V +
0 (G∗

Γ ) and DD does not produce false
positives by definition (see Corollary 2.4), the declared infection status of x is correct.

Thus, the lemma follows by combining the above cases. �

Now we have all ingredients to proof Theorem 4.18

Proof of Theorem 4.18. By construction, we find that G∗
Γ consists of n individuals and m = 2n/(Γ+1) tests. By

Lemma 4.19 this m suffices for DD to succeed on the regular part of G∗
Γ . Furthermore, Lemma 4.21 guarantees

that this is also enough for DD to infer σ from G∗
Γ and σ̂ correctly w.h.p., and the theorem follows. �

4.6. Putting the pieces together. Theorem 4.10 proves that DD succeeds on the bi-regular graph GΓ created

by the configuration model using max
{

2,1+
⌊

θ
1−θ

⌋}
tests. Furthermore, as Theorem 4.18 shows, for θ < 1/2,

2n
Γ+1 tests suffice employing G∗

Γ . By the definition of G̃Γ, we employ G∗
Γ if and only if θ < 1/2, in which case we

have
⌈

θ
1−θ

⌉
= 1 and hence 2

Γ+1 <
⌈

θ
1−θ

⌉
1
Γ in the lower bound.

As we established an information-theoretic lower bound on the number of tests minf,Γ for the Γ-sparse
group testing such that any attempt with fewer tests will fail (see (4.1)) before, Theorems 4.10 and Theo-
rem 4.18 imply that the DD- Algorithm is information-theoretically optimal when combined with the pooling
scheme G̃Γ.

5. ADAPTIVE GROUP TESTING WITH ∆-DIVISIBLE INDIVIDUALS

In this section, we turn to adaptive testing strategies in the case of∆-divisible individuals, and demonstrate
that in certain cases the number of tests can be reduced significantly.
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Require: Number of individuals n, number of infected individuals k, and divisibility of each individual ∆

1: Initialize ñ ← (n
k

) ∆−1
∆ and the estimate K̂ ←;

2: Arbitrarily group the n individuals into n/ñ groups of size ñ
3: Test each group and discard any that return negative
4: Label the remaining groups incrementally as G (0)

j , where j = 1,2, . . .

5: for i = 1 to ∆−1 do
6: for each group G (i−1)

j from the previous stage do

7: Arbitrarily group all individuals in G (i−1)
j into ñ1/(∆−1) sub-groups of size ñ1−i /(∆−1)

8: Test each sub-group and discard any that return a negative outcome
9: Label the remaining sub-groups incrementally as G (i )

j

10: Add the individuals from all of the remaining singleton groups G (∆−1)
j to K̂

11: return K̂

Algorithm 2: Adaptive algorithm for ∆-divisible individuals

FIGURE 2. Visualization of splitting in the adaptive algorithm.

5.1. Converse. Recall that the converse bound proved in Theorem 3.1 already considered adaptive test de-

signs. Thus, any adaptive strategy fails w.h.p.when m ≤ (1−ε)e−1∆k1+ (1−θ)
∆θ for fixed ε> 0.

5.2. Algorithm. We present an algorithm that can be viewed as an analog of Hwang’s binary splitting algo-
rithm [22], instead using non-binary splitting in order to ensure that each item is in at most ∆ tests. Like
with Hwang’s algorithm, we assume that the size k of the infected set is known. In the case case that only an
upper bound kmax ≥ k is known, the same analysis and results apply with kmax in place of k. However, such
bounds may somewhat loose, and care should be taken in using initial tests to estimate k as an initial step
(e.g., see [13, 17, 8]), as this may use a significant portion of the ∆ budget. For clarity, we only consider the
case of known k in this section, and leave the case of unknown k to future work (see also [38] for some initial
findings).

5.2.1. Recovering the infected Set. Our adaptive algorithm is described in Algorithm 2, where we assume for

simplicity that
(n

k

)1/∆ is an integer.6 Using Algorithm 2, we have the following theorem, which is proved
throughout the remainder of the subsection. We define

(5.1) mada(∆) =∆k1+ 1−θ
θ∆ .

Theorem 5.1. For ∆ = o(lnn) and k = nθ with θ ∈ (0,1), the adaptive algorithm in Algorithm 2 tests each
individual at most ∆ times and uses at most mada(∆)(1+o(1)) tests to recover the infected set exactly with zero
error probability.

Proof. Similar to Hwang’s generalized binary splitting algorithm [22], the idea behind the parameter ñ in
Algorithm 2 is that when k becomes large, having large groups during the initial splitting stage is wasteful, as
it results in each test having a high probability of being positive (not very informative). Hence, we want to
find the appropriate group sizes that result in more informative tests to minimize the number of tests. Each

6Note that we assume k = o(n) and∆= o
(

ln
( n

k

))
, meaning that

( n
k

)1/∆→∞. Hence, the effect of rounding is asymptotically negligi-
ble, and is accounted for by the 1+o(1) term in Theorem 5.1.
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Require: Number of individuals n, number of infected individuals k, and test size restriction Γ
1: Initialize infected set K ←;
2: Randomly group n individuals into n/Γ groups of size Γ
3: for each group Gi where i ∈Z : i ∈ [1,n/Γ] do
4: while testing Gi returns a positive outcome do
5: run Algorithm 4 on a copy of Gi , and add its one infected individual output k∗ into K

6: Gi ←Gi \ {k∗}
7: return K

Algorithm 3: Adaptive algorithm for Γ-sparse tests

Require: a group of individuals G̃
1: while G̃i consists of multiple individuals do
2: Pick half of the individuals in G̃ and call this set G̃ ′. Perform a single test on G̃ ′.
3: If the test is positive, set G̃ ← G̃ ′. Otherwise, set G̃ ← G̃ \G̃ ′.
4: return single individual in G̃

Algorithm 4: Binary splitting

stage (outermost for-loop in Algorithm 2) here refers to the process where all groups of the same sizes are split
into smaller groups (e.g., see Figure 2). We let ñ be the group size at the initial splitting stage of the algorithm.
The algorithm first tests n/ñ groups of size ñ each,7 then steadily decrease the sizes of each group down the
stages: ñ → ñ1−1/(∆−1) → ñ1−2/(∆−1) →···→ 1 (see Figure 2). Hence, we have n/ñ groups in the initial splitting

and ñ
1
∆−1 groups in all subsequent splits.

With the above observations, we can derive an upper bound on the total number of tests needed. We have
n/ñ tests in the first stage. Since we have k infected and split into ñ

1
∆−1 sub-groups in subsequent stages, the

number of smaller groups that each stage can produce is at most kñ
1
∆−1 . This implies that the number of tests

conducted at each stage is at most kñ
1
∆−1 , giving the following bound on m:

m ≤ n

ñ
+ (∆−1)kñ

1
∆−1 .(5.2)

We optimize with respect to ñ by differentiating the upper bound and setting it to zero. This gives ñ = (n
k

) ∆−1
∆ =

n
(1−θ)(∆−1)

∆ , and substituting ñ = (n
k

) ∆−1
∆ into the general upper bound in (5.2) gives the following upper bound:

m ≤ n

(n/k)
∆−1
∆

+ (∆−1)k
((n

k

) ∆−1
∆

) 1
∆−1 =∆k

(n

k

) 1
∆ =∆k1+ 1−θ

θ∆ .(5.3)

�
Comparisons: We observe that mada(∆) matches the universal lower bound in Theorem 3.1 to within a

factor of e for all θ ∈ (0,1). For θ < 1
2 , we have mada(∆) = mDD(∆) = ∆k1+ (1−θ)

∆θ , meaning that the best known
bounds for the adaptive and non-adaptive settings are identical (though the adaptive algorithm attains zero

error probability). In contrast, for θ > 1
2 , we have mDD(∆) = ∆k1+ 1

∆ and mada(∆) = ∆k1+ (1−θ)
∆θ . The former is

significantly higher, and Theorem 3.2 reveals that this limitation is inherent to any non-adaptive test design
and algorithm. Hence, for θ > 1

2 , there is a significant gap between the number of tests required by adaptive
and non-adaptive algorithms.

6. ADAPTIVE GROUP TESTING WITH Γ-SIZED TESTS

Our adaptive algorithm with Γ-sparse tests, shown in Algorithm 3, is again a modification of Hwang’s gen-
eralized binary splitting algorithm [22], where we initially divide the n individuals into n

Γ groups of size Γ,
instead of k groups of size n

k as in the original algorithm.
Our main result is stated as follows, in which we define

(6.1) mada(Γ) = n

Γ
+klog2Γ.

Theorem 6.1. For any Γ= o
(n

k

)
, Algorithm 3 outputs the correct configuration of infection statuses with prob-

ability one, while using at most mada(Γ)(1+o(1)) tests, each containing at most Γ items.

7Note that n/ñ is an integer for our chosen ñ below, which gives n
ñ = k

( n
k

)1/∆, and
( n

k

)1/∆ was already assumed to be an integer.
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Proof. Let ki be the number of infected individuals in each of the initial n
Γ groups. Note that since Γ = o

(n
k

)

implies k = o( n
Γ ), most groups will not have a infected individual. In the binary splitting stage of the algo-

rithm, we can round the halves in either direction if they are not an integer. Hence, for each of the initial n
Γ

groups, we take at most dlog2Γe adaptive tests to find a infected individual, or one test to confirm that there
are no infected individuals. Therefore, for each of the initial n

Γ groups, we need max{1,ki log2Γ+O(ki )} tests to
find ki infected individuals. Summing across all n

Γ groups, we need a total of m =∑n/Γ
i=1 max{1,ki log2Γ+O(ki )}

tests. This has the following upper bound:

m ≤ n

Γ
+klog2Γ+O(k)

(a)= n

Γ
(1+o(1))+klog2Γ= mada(Γ)(1+o(1)),(6.2)

where (a) uses k = o
(n
Γ

)
. �

If we slightly strengthen the requirement Γ = o
(n

k

)
to Γ = o

( n
k ln(n/k)

)
(which, in particular, includes the

regime Γ= (n
k

)1−Ω(1) studied in [20]), then we have n
Γ =ω(

k ln
(n

k

))
and hence n

Γ =ω(k lnΓ). Thus, we obtain

mada(Γ) = n

Γ
(1+o(1)).(6.3)

This simplified upper bound is tight, due the simple fact that n
Γ (1−o(1)) tests (of size at most Γ) are needed

just to test a fraction 1−o(1) of the items at least once each (which is a minimal requirement for recovering
σw.h.p.). Formally, this argument reveals the following.

Theorem 6.2. In the setup of Γ-sparse tests with k = nθ for some θ ∈ (0,1), any (possibly adaptive) group
testing procedure that recovers σw.h.p. must use at least n

Γ (1−o(1)) tests.

7. AUXILIARY RESULTS

Lemma 7.1 (Corollary 2.3 of [25]). Letting φ(t ) = (1+ t ) ln(1+ t )− t , if X is a binomial random variable, then
we have for all t > 0 that

P(|X −E[X ]| ≥ tE[X ]) ≤ exp(−φ(t )E[X ]).

The following variant of Hoeffding’s inequality is very convenient to work with. As the result is not known
so broadly, we include a short proof.

Lemma 7.2 (Hoeffding-type Inequality). Let X 1, . . . , X n be independent random variables such that 0 ≤ X i ≤ 1
a.s. and E [X i ] = pi . Furthermore, denote by p = n−1 ∑n

i=1 pi the average expectation, X = ∑n
i=1 X i and let

t ∈ (0, p). Then,
P

(
X ≤ (p − t )n

)≤ exp
(−nDKL

(
p − t‖p

))
.

Proof. Let λ> 0. Markov’s inequality guarantees

P
(
exp(λX ) ≤ exp

(
λ(p − t )n

))≤ E
[
exp(λX )

]

exp
(
λ(p − t )n

) =
E
[
exp

(∑n
i=1λX i

)]

exp
(
λ(p − t )n

) .(7.1)

As x 7→ exp(λz) is convex, we find

E
[
exp(λX i )

]≤ 1−pi +pi exp(λ) .

Therefore, by the inequality of arithmetic and geometric means,

E
[
exp(λX )

]≤ (
1−p +p exp(λ)

)n .(7.2)

By (7.1) and (7.2), we have

P
(
exp(λX ) ≤ exp

(
λ(p − t )n

))≤ exp
(
n

(
ln

(
1−p +p exp(λ)

)−λ(p − t )
))

(7.3)

Proceeding as in the standard proof of the Chernoff bound, we find that the r.h.s. of (7.3) is minimised with

respect to λ for exp(λ) = (1−p)(p−t )
p(1−(p−t )) . Therefore, (7.1) gives

P
(
exp(λX ) ≤ exp

(
λ(p − t )n

))≤ exp

(
n ln

((
p

p − t

)p−t (
1−p

1− (p − t )

)1−(p−t )
))

= exp
(−nDKL

(
p − t‖p

))
,

implying the assertion of the lemma. �

Lemma 7.3 (Stirling Approximation, [30]). We have for n →∞ that

n! = (1+O(1/n))
p

2πnnn exp(−n) .
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Claim 7.4. Let n > 0, ∆= lnO(1) n be integers, and let α ∈ (0,1). Then
(
αn

∆

)(
n

∆

)−1

= (
1+O

(
n−Ω(1)))α∆.

Proof. By definition, we have (αn
∆

)
(n
∆

) = (αn)!(n −∆)!

n!(αn −∆)!
.

Hence, applying Lemma 7.3 on each factor yields

(αn
∆

)
(n
∆

) = (1+O(n−1))exp(−αn + (n −∆)− (αn −∆)−n) (αn)αn(n −∆)n−∆(αn −∆)−(αn−∆)n−n

√
(αn)(n −∆)

n(αn −∆)
.

(7.4)

As ∆= lnO(1) n, we find that (7.4) equals(αn
∆

)
(n
∆

) = (
1+O

(
n−Ω(1))) (αn)αnnn(αn)−(αn−∆)n−n = (

1+O
(
n−Ω(1)))α∆,(7.5)

and the assertion follows. �

We also use the following direct consequence of the binomial expansion.

Claim 7.5. For any real number x ≥−1 and any integer t ≥ 0 the following holds:

(1+x)t = 1+ t x +O(t 2x2).

Finally, we state the following useful result relating to Stirling’s approximation and the local limit theorem.

Claim 7.6. [Appendix B1 of [11]] For any m,∆ ∈N,θ ∈ (0,1),k ∼ nθ, let (X i )i∈[m] denote a sequence of indepen-
dent Bin(Γi ,k/n) and define

E =
{ ∑

i∈[m]
X i = k∆

}
.

Then, we have P (E ) =Ω(1/
p

n∆).

8. SIMULATIONS

In Figures 3 and 4, we compare our theoretical findings to empirical results obtained as follows:

• In the non-adaptive case, we fix the number of individuals n, the infection parameter θ, and, depend-
ing on the setup considered, the individual degree ∆ or test degree Γ. We vary the number m of tests
(x-axis), and simulate 104 independent trials per parameter set. DD’s performance (y-axis) is reported
as the fraction of simulations per parameter point that inferred the infected set without errors.

• In the adaptive case, we cannot directly control the number of tests m a priori. Instead, we fix the
same parameter set as in the non-adaptive case, and carry out 106 simulations. We then report the
cumulative distribution of tests required, i.e., the y-value corresponding to some m is given as the
fraction of runs that required at most m tests.

We observe that the empirical results are consistent with our theoretical thresholds in all cases. The adap-
tive testing strategies show a particularly rapid transition at mada(∆) and mada(Γ) respectively. We find that
the non-adaptive DD algorithm requires more tests in comparison to the adaptive schemes, and has a much
broader range of transient behaviour. This suggests that convergence rates to the first-order asymptotic
threshold may reveal an even wider gap between adaptive and non-adaptive designs, in analogy with studies
of channel coding [36]. Note that the change of slope in Figure 4 (right) at m=2000 is due to rounding of ∆.

9. CONCLUSION

We have studied the information-theoretic and algorithmic thresholds of group testing with constraints on
the number of items-per-test or test-per-item. For ∆-divisible items, we proved that at least for ∆=ω(1), the
DD algorithm is asymptotically optimal for θ > 1

2 , and is optimal to within a factor of e for all θ ∈ (0,1), thus
significantly improving on existing bounds for the COMP algorithm having suboptimal scaling laws. For Γ-
sized tests with Γ=Θ(1), we improved on both the best known upper bounds and lower bounds, established
a precise threshold for almost all θ ∈ (0,1), and introduced a new randomised test design for θ > 1

2 . In both
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FIGURE 3. Performance of adaptive and non-adaptive ∆-divisible algorithms as function of number of tests.
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FIGURE 4. Performance of adaptive and non-adaptive Γ-sparse algorithms as function of number of tests.

settings, we additionally provided near-optimal adaptive algorithms, and demonstrated a strict gap between
the number of tests for adaptive and non-adaptive designs in broad scaling regimes.
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E. The number of satisfying assignments of
random 2-SAT formulas



THE RANDOM 2-SAT PARTITION FUNCTION

DIMITRIS ACHLIOPTAS, AMIN COJA-OGHLAN, MAX HAHN-KLIMROTH, JOON LEE, NOËLA MÜLLER, MANUEL PENSCHUCK,
GUANGYAN ZHOU

ABSTRACT. We show that throughout the satisfiable phase the normalised number of satisfying assignments of a random
2-SAT formula converges in probability to an expression predicted by the cavity method from statistical physics. The
proof is based on showing that the Belief Propagation algorithm renders the correct marginal probability that a variable
is set to ‘true’ under a uniformly random satisfying assignment. MSC: 05C80, 60C05, 68Q87

1. INTRODUCTION

1.1. Background and motivation. The random 2-SAT problem was the first random constraint satisfaction prob-
lem whose satisfiability threshold could be pinpointed precisely, an accomplishment attained independently by
Chvátal and Reed [14] and Goerdt [30] in 1992. The proofs evince the link between the 2-SAT threshold and the
percolation phase transition of a random digraph. This connection subsequently enabled Bollobás, Borgs, Chayes,
Kim and Wilson [11] to identify the size of the scaling window, which matches that of the giant component phase
transition of the Erdős-Rényi random graph [10, 33]. Ramifications and extensions of these results pertain to ran-
dom 2-SAT formulas with given literal degrees [19], the random MAX 2-SAT problem [20] and the performance of
algorithms [45]. But despite the great attention devoted to random 2-SAT over the years, a fundamental question,
mentioned prominently in the survey [28], remained conspicuously open: how many satisfying assignments does a
random 2-SAT formula typically possess? While percolation-type arguments have been stretched to derive (rough)
bounds [12], the exact answer remained beyond the reach of elementary techniques.

In addition to the mathematical literature, the 2-SAT problem attracted the interest of statistical physicists,
who brought to bear a canny but non-rigorous approach called the cavity method [36, 37]. Instead of relying on
percolation ideas, the physics ansatz seizes upon a heuristic message passing scheme called Belief Propagation. Its
purpose is to calculate the marginal probabilities that a random satisfying assignment sets specific variables of the
2-SAT formula to ‘true’. According to physics intuition Belief Propagation reveals a far more fine-grained picture
than a mere percolation argument possibly could. Indeed, in combination with a functional called the Bethe free
entropy, Belief Propagation renders a precise conjecture as to the number of satisfying assignments.

We prove this conjecture. Specifically, we show that for all clause-to-variable densities below the 2-SAT thresh-
old the number of satisfying assignments is determined by the Bethe functional applied to a particular solution of
a stochastic fixed point equation that mimics Belief Propagation. The formula that we obtain does not boil down
to a simple algebraic expression, which may explain why the problem has confounded classical methods for nearly
three decades. Nonetheless, thanks to rapid convergence of the stochastic fixed point iteration, the formula can be
evaluated numerically within arbitrary precision. A crucial step towards the main theorem is to verify that Belief
Propagation does indeed yield the correct marginals, a fact that may be of independent interest.

By comparison to prior work on Belief Propagation in combinatorics (e.g., [16, 22, 21, 39]), we face the sub-
stantial technical challenge of dealing with the ‘hard’ constraints of the 2-SAT problems, which demands that all
clauses be satisfied. A second novelty is that in order to prove convergence of Belief Propagation to the correct
marginals we need to investigate delicately constructed extremal boundary conditions. Since these depend on the
random 2-SAT formula itself, we need to develop means to confront the ensuing stochastic dependencies between
the construction of the boundary condition and the subsequent message passing iterations. We proceed to state
the main results precisely. An outline of the proofs and a detailed discussion of related work follow in Sections 2
and 3.

Amin Coja-Oghlan’s research received support under DFG CO 646/4. Max Hahn-Klimroth has been supported by Stiftung Polytechnische
Gesellschaft. Manuel Penschuck’s research received support under DFG ME 2088/3-2 and ME 2088/4-2. Guangyan Zhou is supported by
National Natural Science Foundation of China, No. 61702019.
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FIGURE 1. Left: the red line depicts a numerical approximation to the r.h.s. of (1.2) after 24 iter-
ations of BPd ( · ). The dotted blue line displays the first moment bound. Right: the cumulative
density functions of numerical approximations to BP24

d (δ1/2) for various d .

1.2. The main result. Let n > 1 be an integer, let d > 0 be a positive real and let m
d=Po(dn/2) be a Poisson random

variable. Further, let Φ =Φn be a random 2-SAT formula with Boolean variables x1, . . . , xn and m clauses, drawn
uniformly and independently from the set of all 4n(n −1) possible clauses with two distinct variables. Thus, each
variable appears in d clauses on the average and the satisfiability threshold occurs at d = 2. We aim to estimate
the number Z (Φ) of satisfying assignments, the partition function in physics jargon. More precisely, since Z (Φ)
remains exponentially large for all d < 2 w.h.p., in order to obtain a well-behaved limit we compute the normalised
logarithm n−1 log Z (Φ).

The result comes in terms of the solution to a stochastic fixed point equation on the unit interval. Hence, let
P (0,1) be the set of all Borel probability measures on (0,1), endowed with the weak topology. Further, define an
operator BPd : P (0,1) →P (0,1), π 7→ π̂ as follows. With d+,d− Poisson variables with mean d/2 and µπ,1,µπ,2, . . .
random variables with distribution π, all mutually independent, let π̂ be the distribution of the random variable

∏d−
i=1µπ,i

∏d−
i=1µπ,i +

∏d+
i=1µπ,i+d−

∈ (0,1). (1.1)

Let δ1/2 ∈P (0,1) signify the atom at 1/2 and write BP`d ( · ) for the `-fold application of the operator BPd .

Theorem 1.1. For any d < 2 the limit πd = lim`→∞ BP`d (δ1/2) exists and

lim
n→∞

1

n
log Z (Φ) = E

[
log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
in probability. (1.2)

Of course, the fact that the r.h.s. of (1.2) is well-defined is part of the statement of Theorem 1.1.
By construction, the distribution πd is a solution to the stochastic fixed point equation

πd = BPd (πd ). (1.3)

The equation (1.3) is known as the density evolution equation in physics lore, while the expression on the r.h.s. of
(1.2) is called the Bethe free entropy [34]. Hence, Theorem 1.1 matches the conjecture from [36]. By comparison,
Markov’s inequality yields the elementary first moment bound

1

n
log Z (Φ) ≤ 1

n
logE[Z (Φ)]+o(1) = (1−d) log2+ d

2
log3+o(1) w.h.p., (1.4)

which, however, fails to be tight for any 0 < d < 2 [42]. Furthermore, while (1.2) may appear difficult to evaluate,
the proof reveals that the fixed point iteration BP`d (δ1/2) converges geometrically (in an appropriate metric). In
effect, decent numerical approximations can be obtained; see Figure 1.

For d < 1 the random digraph on {x1,¬x1, . . . , xn ,¬xn} obtained by inserting for each clause l1 ∨ l2 ofΦ the two
directed edges ¬l1 → l2, ¬l2 → l1 is sub-critical and the distribution πd is supported on a countable set. In effect,
for d < 1 the formula (1.2) can be obtained via elementary counting arguments. By contrast, the emergence of a
weak giant component for 1 < d < 2 turns the computation of Z (Φ) into a challenge. Finally, for d > 2 the digraph
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contains a strongly connected giant component w.h.p. Its long directed cycles likely cause contradictions, which
is why satisfying assignments cease to exist.

An asymptotically tight upper bound on n−1 log Z (Φ) could be obtained via the interpolation method from
mathematical physics [29, 42]. We will revisit this point in Section 3. Thus, the principal contribution of Theo-
rem 1.1 is the lower bound on log Z (Φ). The best prior lower bound was obtained by Boufkhad and Dubois [12] in
1999 via percolation arguments. However, this bound drastically undershoots the actual value from Theorem 1.1.
For instance, for d = 1.2, [12] gives n−1 log Z (Φ) ≥ 0.072. . . , while actually n−1 log Z (Φ) = 0.515. . . w.h.p.

1.3. Belief Propagation. To elaborate on the combinatorial meaning of the distribution πd , we need to look into
the Belief Propagation heuristic. Instantiated to 2-SAT, Belief Propagation is a message passing algorithm designed
to approximate the marginal probability that a specific variable takes the value ‘true’ under a random satisfying as-
signment. While finding satisfying assignments of a given 2-SAT formula is an easy computational task, calculating
these marginals is not. In fact, the problem is #P-hard [49]. Nonetheless, we are going to prove that Belief Propa-
gation approximates the marginals well on random formulas w.h.p.

To introduce Belief Propagation, we associate a bipartite graph G(Φ) with the formula Φ. One vertex class
Vn = {x1, . . . , xn} represents the propositional variables, the other class Fm = {a1, . . . , am } represents the clauses.
Each clause ai is adjacent to the two variables that it contains. We write ∂v = ∂(Φ, v) for the set of neighbours of a
vertex v of G(Φ). Moreover, for `≥ 1 let ∂`v signify the set of all vertices at distance precisely ` from v .

Associated with the edges of G(Φ), the Belief Propagation messages are probability distributions on the Boolean
values ‘true’ and ‘false’. To be precise, any adjacent clause/variable pair a, x comes with two messages, one directed
from a to x and a reverse one from x to a. Encoding ‘true’ and ‘false’ by ±1, we initialise all messages by

ν(0)
Φ,a→x (±1) = ν(0)

Φ,x→a(±1) = 1/2. (1.5)

For `≥ 1 the messages ν(`)
Φ,a→x ,ν(`)

Φ,x→a are defined inductively. Specifically, suppose that clause a contains the two
variables x, y . Let r, s ∈ {±1} indicate whether x, y appear as positive or negative literals in a. Then for t =±1 let

ν(`)
Φ,a→x (t ) =

1−1 {r 6= t }ν(`−1)
Φ,y→a(−s)

1+ν(`−1)
Φ,y→a(s)

, ν(`)
Φ,x→a(t ) =

∏
b∈∂x\{a}ν

(`)
Φ,b→x (t )

∏
b∈∂x\{a}ν

(`)
Φ,b→x (1)+∏

b∈∂x\{a}ν
(`)
Φ,b→x (−1)

. (1.6)

The last expression is deemed to equal 1/2 if the denominator vanishes (which does not happen ifΦ is satisfiable).
Finally, the Belief Propagation estimate of the marginal of a variable x after ` iterations reads

ν(`)
Φ,x (t ) =

∏
a∈∂x ν

(`)
Φ,a→x (t )

∏
a∈∂x ν

(`)
Φ,a→x (1)+∏

a∈∂x ν
(`)
Φ,a→x (−1)

, (1.7)

again interpreted to yield 1/2 if the denominator vanishes. For an excellent exposition of Belief Propagation, in-
cluding the derivation of (1.6)–(1.7), we point to [34, Chapter 14].

The next theorem establishes that (1.7) approximates the true marginals well for large `. In fact, we prove a
significantly stronger result. To set the stage, let S(Φ) be the set of all satisfying assignments of Φ. Assuming
S(Φ) 6= ;, let

µΦ(σ) = 1 {σ ∈ S(Φ)}/Z (Φ) (σ ∈ {±1}{x1,...,xn }) (1.8)

be the uniform distribution on S(Φ). Further, write σ for a sample from µΦ. Then for a satisfying assignment
τ ∈ S(Φ) and ` ≥ 1 the conditional distribution µΦ( · | σ∂2`x1

= τ∂2`x1
) = µΦ( · | ∀y ∈ ∂2`x1 : σy = τy ) imposes the

‘boundary condition’ τ on all variables y at distance 2` from x1. The following theorem shows that Belief Propaga-
tion does not just approximate the plain, unconditional marginals well w.h.p., but even the conditional marginals
given any conceivable boundary condition. Recall that P [Z (Φ) > 0] = 1−o(1) for d < 2.

Theorem 1.2. If d < 2, then

lim
`→∞

limsup
n→∞

E

[
max
τ∈S(Φ)

∣∣∣µΦ(σx1 = 1 |σ∂2`x1
= τ∂2`x1

)−ν(`)
Φ,x1

(1)
∣∣∣
∣∣ Z (Φ) > 0

]
= 0. (1.9)

Since ν(`)
Φ,x1

does not depend on τ, averaging (1.9) on the boundary condition τ ∈ S(Φ) yields

lim
`→∞

limsup
n→∞

E
[∣∣∣µΦ(σx1 =±1)−ν(`)

Φ,x1
(±1)

∣∣∣ | Z (Φ) > 0
]
= 0. (1.10)
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Thus, Belief Propagation approximates the unconditional marginal of x1 well in the limit of large n and `. Indeed,
because the distribution of Φ is invariant under permutations of the variables x1, . . . , xn , (1.10) implies that the
marginals of all but o(n) variables xi are within ±o(1) of the Belief Propagation approximation w.h.p.

But thanks to the presence of the boundary condition τ, Theorem 1.2 leads to further discoveries. For a start,
applying the triangle inequality to (1.9) and (1.10), we obtain

lim
`→∞

limsup
n→∞

E

[
max
τ∈S(Φ)

∣∣∣µΦ(σx1 = 1 |σ∂2`x1
= τ∂2`x1

)−µΦ(σx1 = 1)
∣∣∣
∣∣ Z (Φ) > 0

]
= 0. (1.11)

Thus, no discernible shift of the marginal of x1 is likely to ensue upon imposition of any possible boundary con-
dition τ. The spatial mixing property (1.11) is colloquially known as Gibbs uniqueness [32]. Further, (1.11) rules
out extensive long-range correlations. Specifically, for any fixed ` the first two variables x1, x2 likely have distance
greater than 4` in G(Φ). Therefore, (1.11) implies that for all d < 2,

lim
n→∞

∑
s,t∈{±1}

E
[∣∣µΦ(σx1 = s,σx2 = t )−µΦ(σx1 = s) ·µΦ(σx2 = t )

∣∣ ∣∣ Z (Φ) > 0
]= 0. (1.12)

Thus, the truth values σx1 ,σx2 are asymptotically independent. Of course, once again by permutation invariance,
(1.12) implies that asymptotic independence extends to all but o(n2) pairs of variables xi , x j w.h.p. The decorrela-
tion property (1.12) is called replica symmetry in the physics literature [32].

Finally, we can clarify the combinatorial meaning of the distribution πd from Theorem 1.1. Namely, πd is the
limit of the empirical distribution of the marginal probabilities µΦ(σxi = 1).

Corollary 1.3. For any 0 < d < 2 the random probability measure

πΦ = 1

n

n∑
i=1

δµΦ(σxi =1) (1.13)

converges to πd weakly in probability.1

Thus, the stochastic fixed point equation (1.3) that characterises πd simply expresses that the marginal probabili-
ties µΦ(σxi = 1) result from the Belief Propagation recurrence (1.6).

1.4. Preliminaries and notation. Throughout we denote by Vn = {x1, . . . , xn} the variable set of Φn . Generally,
given a 2-SAT formula Φ we write V (Φ) for the set of variables and F (Φ) for the set of clauses. The bipartite
clause/variable-graph G(Φ) is defined as in Section 1.3. For a vertex v of G(Φ) we let ∂(Φ, v) be the set of neigh-
bours. Where Φ is apparent we just write ∂v . Moreover, ∂`(Φ, v) or briefly ∂`v stands for the set of vertices at
distance exactly ` from v . Additionally, ∇`(Φ, v) denotes the sub-formula obtained from Φ by deleting all clauses
and variables at distance greater than ` from v . This sub-formula may contain clauses of length less than two.
Further, for a clause a and a variable x ofΦwe let sign(x, a) = signΦ(x, a) ∈ {±1} be the sign with which x appears in
a. In addition, we let S(Φ) be the set of all satisfying assignments ofΦ, Z (Φ) = |S(Φ)| and, assuming Z (Φ) > 0, we let
µΦ be the probability distribution on {±1}V (Φ) that induces the uniform distribution on S(Φ) as in (1.8). Moreover,
σΦ = (σΦ,x )x∈V (Φ) signifies a uniformly random satisfying assignment; we dropΦwhere the reference is apparent.

For anyΦwe set up Belief Propagation as in (1.5)–(1.7). It is well known that Belief Propagation yields the correct
marginals if G(Φ) is a tree. To be precise, the depth of x ∈ V (Φ) is the maximum distance between x and a leaf of
G(Φ).

Proposition 1.4 ([34, Theorem 14.1]). If G(Φ) is a tree and x ∈V (Φ), then for any ` greater than or equal to the depth
of x we have µΦ(σx =±1) = ν(`)

Φ,x (±1).

We will encounter the following functions repeatedly. For ε> 0 letΛε(z) = log(z∨ε) be the log function truncated
at logε. Moreover, we need the continuous and mutually inverse functions

ψ :R→ (0,1), z 7→ (1+ tanh(z/2))/2, ϕ : (0,1) →R, p 7→ log(p/(1−p)). (1.14)

Let P (R) be the set of all Borel probability measures on R with the weak topology. Moreover, for a real q ≥ 1 let
Wq (R) be the set of all ρ ∈P (R) such that

∫
R |x|q dρ(x) <∞. We equip this space with the Wasserstein metric

Wq (ρ,ρ′) = inf

{(∫

R2
|x − y |q dγ(x, y)

)1/q

: γ is a coupling of ρ,ρ′
}

, (1.15)

1That is, for any continuous function f : [0,1] →R we have limn→∞ E
∣∣∣
∫ 1

0 f (z)dπd (z)−∫ 1
0 f (z)dπΦ(z)

∣∣∣= 0.
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thereby turning Wq (R) into a complete separable space [9].
For ρ ∈ P (R) we denote by ηρ ,ηρ,1,ηρ,2, . . . random variables with distribution ρ. Similarly, for π ∈ P (0,1) we

let µπ,µπ,1,µπ,2, . . . be a sequence of random variables with distribution π. We also continue to let d be a Poisson
variable with mean d and d+,d− Poisson variables with mean d/2. Moreover, s1, s ′1, s2, s ′2, . . . ∈ {±1} always de-
note uniformly distributed random variables. All of these random variables are mutually independent as well as
independent of any other sources of randomness.

Finally, from here on we tacitly assume that 0 < d < 2.

2. OVERVIEW

The proof of Theorem 1.1 proceeds in four steps. First we show that the limit πd from Theorem 1.1 exists. Subse-
quently we establish the fact (1.9) that Belief Propagation approximates the conditional marginals well. This will
easily imply the convergence of the empirical marginals (1.13) to πd . Third, building upon these preparations, we
will prove that the truncated mean n−1E[log(Z (Φ)∨1)] converges to the r.h.s. of (1.2). The truncation is necessary
to deal with the (unlikely) event that Z (Φ) = 0. Finally, we will show that log(Z (Φ)∨1) concentrates about its mean
to obtain convergence in probability, thus completing the proof of Theorem 1.1.

2.1. Step 1: density evolution. We begin by verifying that the distribution πd from Theorem 1.1 is well-defined
and that πd satisfies a tail bound.

Proposition 2.1. The weak limit πd = lim`→∞ BP`d (δ1/2) exists and

E

[
log2

µπd

1−µπd

]
<∞. (2.1)

Moreover, µπd
and 1−µπd

are identically distributed and

E

∣∣∣∣∣log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)∣∣∣∣∣<∞, E
∣∣∣log

(
1−µπd ,1µπd ,2

)∣∣∣<∞. (2.2)

The proof of Proposition 2.1, which we carry out in Section 4, is based on a contraction argument. This argu-
ment implies that the fixed point iteration converges rapidly to πd , a fact that can be exploited to obtain numerical
estimates. The bounds (2.2) ensure that the expectation on the r.h.s. of (1.2) is well-defined.

2.2. Step 2: Gibbs uniqueness. As a next step we verify the Gibbs uniqueness property (1.11). We proceed by way
of analysing a multi-type Galton-Watson tree T that mimics the local structure of the graph G(Φ) upon explo-
ration from variable x1. The Galton-Watson process has five types: variable nodes and four types of clause nodes
(+1,+1), (+1,−1), (−1,+1), (−1,−1). The root is a variable node o. Moreover, each variable node spawns indepen-
dent Po(d/4) numbers of clauses nodes of each of the four types. Additionally, each clause has a single offspring,
which is a variable. The semantics of the clause types is that the first component indicates whether the parent
variable appears in the clause positively or negatively. The second component indicates whether the child variable
appears as a positive or as a negative literal. Clearly, for d ≤ 1 the tree T is finite with probability one, while infinite
trees appear with positive probability for d > 1.

Let T (`) be the finite tree obtained from T by dropping all nodes at distance greater than ` from the root. For
even ` it will be convenient to view T (`) interchangeably as a tree or as a 2-SAT formula. In particular, we write
∂2`o = ∂2`(T ,o) for the set of all variables at distance exactly 2` from o. The following proposition, which is the
linchpin of the entire proof strategy, establishes the Gibbs uniqueness property for the tree formula T (2`).

Proposition 2.2. We have

lim
`→∞

E

[
max

τ∈S(T (2`))

∣∣µT (2`) (σo = 1 |σ∂2`o = τ∂2`o)−µT (2`) (σo = 1)
∣∣
]
= 0. (2.3)

Thus, w.h.p. no conceivable boundary condition is apt to significantly shift the marginal of the root.
We prove Proposition 2.2 by a subtle contraction argument in combination with a construction of extremal

boundary conditions of the tree formula T (2`). More specifically, we will construct boundary conditions σ± that
maximise or minimise the conditional probability

µT (2`) (σo = 1 |σ∂2`o =σ±
∂2`o

), (2.4)
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respectively. Then we will show that the difference of the conditional marginals induced by both these extremal
boundary conditions vanishes with probability tending to one as `→∞. The delicate point is that the extremal
boundary conditionsσ± depend on the tree T (2`). Thus, at first glance it seems that we need to pass the tree twice,
once top–down to construct σ± and then bottom–up to calculate the conditional marginals (2.4). But such an
analysis seems untenable because after the top–down pass the tree is exposed and ‘no randomness remains’ to
facilitate the bottom–up phase. Fortunately, we will see that a single stochastic fixed point equation captures both
the top–down and the bottom–up phase. This discovery reduces the proof of Proposition 2.2 to showing that the
fixed point iteration contracts. The details of this delicate argument can be found in Section 5.

Proposition 2.2 easily implies the Gibbs uniqueness condition (1.11) and thereby Theorem 1.2. A further conse-
quence is the asymptotic independence of the joint truth values of bounded numbers of variables.

Corollary 2.3. The statement (1.9) is true and for any integer k ≥ 2 we have

lim
n→∞

∑
σ∈{±1}k

E

[∣∣∣∣∣µΦ(σx1 =σ1, . . . ,σxk =σk )−
k∏

i=1
µΦ(σxi =σi )

∣∣∣∣∣ | Z (Φ) > 0

]
= 0.

2.3. Step 3: the Aizenman-Sims-Starr scheme. The aforementioned results pave the way for deriving an expres-
sion for the conditional expectation of log Z (Φ) given thatΦ is satisfiable. SinceΦ is satisfiable w.h.p. for all d < 2,
an equivalent task is to calculate E[log(Z (Φ)∨1)]. To this end we seize upon a simple but powerful strategy colloqui-
ally called the Aizenman-Sims-Starr scheme [5]. Originally proposed in the context of the Sherrington-Kirkpatrick
spin glass model, this proof strategy suggests to compute the asymptotic mean of a random variable on a ‘system’
of size n by carefully estimating the change of that mean upon going to a ‘system’ of size n +1. This difference is
calculated by coupling the systems of size n and n +1 such that the latter is obtained from the former by a small
expected number of local changes.

We apply this idea to the random 2-SAT problem by coupling the random formula Φn with n variables and
Po(dn/2) clauses and the random formulaΦn+1 with n+1 variables and Po(d(n+1)/2) clauses. Roughly speaking,
we obtain Φn+1 from Φn by adding a new variable xn+1 along with a few random adjacent clauses that connect
xn+1 with the variables x1, . . . , xn of Φn . Then the information about the joint distribution of the truth values
of bounded numbers of variables furnished by Corollaries 1.3 and 2.3 and the tail bound (2.1) will enable us to
accurately estimate E

[
log(Z (Φn+1)∨1)− log(Z (Φn)∨1)

]
.

Needless to say, upon closer inspection matters will emerge to be rather subtle. The main source of complica-
tions is that, in contrast to other models in mathematical physics such as the Sherrington-Kirkpatrick model or
the Ising model, the 2-SAT problem has hard constraints. Thus, the addition of a single clause could trigger a dra-
matic drop in the partition function. In fact, in the worst case a single awkward clause could wipe out all satisfying
assignments. In Section 6 we will iron out all these difficulties and prove the following.

Proposition 2.4. We have

lim
n→∞E[log(Z (Φn+1)∨1)]−E[log(Z (Φn)∨1)] = E

[
log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
. (2.5)

We notice that (2.2) guarantees that the r.h.s. of (2.5) is well-defined. As an immediate consequence of Proposi-
tion 2.4 we obtain a formula for E[log(Z (Φ)∨1)].

Corollary 2.5. For any d < 2 we have

lim
n→∞

1

n
E[log(Z (Φ)∨1)] = E

[
log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
.

Proof. Writing E[log(Z (Φ)∨1)] as a telescoping sum and applying Proposition 2.4, we obtain

lim
n→∞

1

n
E[log(Z (Φn)∨1)] = lim

n→∞
1

n

n−1∑
N=2

E[log(Z (ΦN+1)∨1)]−E[log(Z (ΦN )∨1)]

= E
[

log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
,

as desired. �
6
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2.4. Step 4: concentration. The final step towards Theorem 1.1 is to show that log(Z (Φ)∨1) concentrates about
its mean.

Proposition 2.6. We have limn→∞ n−1E
∣∣log(Z (Φ)∨1)−E[log(Z (Φ)∨1)]

∣∣= 0.

Proposition 2.6 does not easily follow from routine arguments such as the Azuma-Hoeffding inequality. Once
more the issue is that changing a single clause could alter log(Z (Φ)∨1) by as much as Θ(n). Instead we will resort
to another technique from mathematical physics called the interpolation method. The details can be found in
Section 7.

Proof of Theorem 1.1. The theorem follows from Proposition 2.1, Corollary 2.5 and Proposition 2.6. �

3. DISCUSSION

The random 2-SAT satisfiability threshold was established mathematically shortly after the experimental work
of Cheeseman, Kanefsky and Taylor [13] that triggered the quest for satisfiability thresholds appeared. The sec-
ond successful example, nearly a decade later, was the random 1-in-k-SAT threshold (to satisfy exactly one literal
in each clause), which Achlioptas, Chtcherba, Istrate and Moore pinpointed by analysing the Unit Clause algo-
rithm [2]. In a subsequent landmark contribution Dubois and Mandler determined the 3-XORSAT threshold via
the second moment method [27]. Subsequent work extended this result to random k-XORSAT [23, 43]. Finally, the
most notable success thus far has been the verification of the ‘1RSB cavity method’ prediction [35] of the random
k-SAT threshold for large k due to Ding, Sly and Sun [25], the culmination of a line of work that refined the use of
the second moment method [3, 4, 17].

Over the past two decades the general theme of estimating the partition functions of discrete structures has
received a great deal of attention; e.g., [8]. With respect to random 2-SAT (and, more generally, k-SAT), Monta-
nari and Shah [39], Panchenko [41] and Talagrand [48] investigated ‘soft’ versions of the partition function. To be
precise, introducing a parameter β> 0 called the ‘inverse temperature’, these articles study the random variable

Zβ(Φ) =
∑

σ∈{±1}n

m∏
i=1

exp
(−β1 {σ violates clause ai }

)
. (3.1)

Thus, instead of dismissing assignments that fail to satisfy all clauses outright, there is an exp(−β) penalty factor for
each violated clause. Talagrand [48] computes limn→∞ n−1E[log Zβ(Φ)] forβ not exceeding a small but unspecified
β0 > 0. Panchenko [41] calculates this limit under the assumption (4β∧ 1)d < 1. Thus, for β > 1/4 the result is
confined to d < 1, in which case the random graph G(Φ) is sub-critical and both Zβ(Φ) and the actual number Z (Φ)
of satisfying assignments could be calculated via elementary methods. Furthermore, Montanari and Shah [39]
obtain limn→∞ n−1E[log Zβ(Φ)] for all finite β under the assumption d < 1.16. . . . Although for any fixed formula
Φ the limit limβ→∞ Zβ(Φ) is equal to the number of satisfying assignments, it is not possible to interchange the
limits β→ ∞ and n → ∞. Thus, [39, 41] do not yield the the number of actual satisfying assignments even for
d < 1.16. . . or d < 1, respectively. Apart from estimating E log Zβ(Φ), Montanari and Shah [39] also show that the
Belief Propagation message passing scheme approximates the marginals of the Boltzmann distribution that goes
with Zβ(Φ) well, i.e., they obtain a ‘soft’ version of Theorem 1.2 for d < 1.16. . . .

In terms of proof techniques, all three contributions [39, 41, 48] are based on establishing the Gibbs uniqueness
property. So is the present paper. But while [39, 41, 48] rely on relatively straightforward contraction arguments, a
key distinction is that here we develop a more accurate (and delicate) method for verifying the Gibbs uniqueness
property based on the explicit construction of an extremal boundary condition. This is the key to pushing the
range of d all the way up to the satisfiability threshold d = 2.

Specifically, in order to construct a boundary condition of the random tree T (2`) for large ` that maximises the
conditional probability of observing the truth value +1 at the root we will work our way top–down from the root to
level 2`. Exposing the degrees and the signs with which the variables appear, the construction assigns a ‘desired’
truth value to each variable of the tree so as to nudge the parent variable towards its desired value as much as
possible. Subsequently, once this process reaches the bottom level of the tree, we go into reverse gear and study
the Belief Propagation messages bottom–up to calculate the conditional marginal of the root. Clearly, analysing
this upwards process seems like a tall order because the tree was already exposed during the top-down phase, a
challenge that is exacerbated by the presence of hard constraints. Fortunately, in Section 5 we will see how this
problem can be transformed into the study of another stochastic fixed point equation that captures the effect of
the children’s ‘nudging’ their parents. This fixed point problem is amenable to the contraction method. A spatial
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mixing analysis from an extremal boundary condition was previously conducted in by Dembo and Montanari [21]
for the Ising model on random graphs. But of course a crucial difference is that in the Ising model the extremal
boundary conditions are constant (all-+1 and all-−1, respectively).

A second novelty of the present work is that we directly deal with the ‘hard’ 2-SAT problem. Montanari and
Shah [39] interpolate on the ‘inverse temperature’ parameter β > 0, effectively working their way from smaller to
larger β. Because the limits β→∞ and n →∞ do not commute, this approach does not seem applicable to prob-
lems with hard constraints. Furthermore, while Panchenko [40, 41] applies the Aizenman-Sims-Starr scheme to
the soft constraint version, the hard problem of counting actual satisfying assignments requires a far more careful
analysis. Indeed, adding one clause can shift log Zβ(Φ) merely by ±β. By contrast, a single additional clause could
very well reduce the logarithm log Z (Φ) of the number of satisfying assignments by as much asΩ(n), or even ren-
der the formula unsatisfiable. A few prior applications of the Aizenman-Sims-Starr scheme to problems with hard
constraints exist [7, 15, 16], but these hinge on peculiar symmetry properties that enable an indirect approach via
a ‘planted’ version of the problem in question. The required symmetries for this approach are absent in several
important problems, with random satisfiability the most prominent example. Thus, a significant technical con-
tribution of the present work is that we show how to apply the Aizenman-Sims-Starr scheme directly to problems
with hard constraints. Among other things, this requires a careful quantification of the probabilities of rare, poten-
tially cataclysmic events in comparison to their impact on log Z (Φ). That said, we should point out that [39, 41, 48]
actually also deal with the (soft) k-SAT partition function for k > 2 for certain regimes of clause/variable densities,
while the technique that we develop here does not seem to extend beyond binary problems.

A mathematical physics technique called the interpolation method, first proposed by Guerra for the study of the
Sherrington-Kirkpatrick model [31], can be applied to the random k-SAT problem [29, 42] to bound the number of
satisfying assignments from above. For k = 2 the interpolation method yields the upper bound

1

n
log Z (Φ) ≤ inf

π∈P (0,1)
E

[
log

(
d−∏
i=1
µπ,i +

d+∏
i=1
µπ,i+d−

)
− d

2
log

(
1−µπ,1µπ,2

)
]
+o(1) w.h.p., (3.2)

for all 0 < d < 2; we will revisit this bound in Section 7. Since the expression on the r.h.s. coincides with (1.2) for
π = πd , the main contribution of Theorem 1.1 is the matching lower bound on log Z (Φ). Furthermore, Abbe and
Montanari [1] used the interpolation method to establish the existence of a function φ such that

lim
n→∞n−1 log(Z (Φ)∨1) =φ(d) in probability (3.3)

for all but a countable number of d ∈ (0,2). Theorem 1.1 actually determines φ(d) and shows that convergence
holds for all d ∈ (0,2). Clearly, (3.3) implies the concentration bound from Proposition 2.6 for all d outside the
countable set. But of course we need concentration for all d , and in Section 7 we will use the upper bound (3.2)
to prove this concentration result. As an aside, a conditional concentration inequality for log Z (Φ), quoted in [28],
was obtained by Sharell [46] (unpublished). But the necessary conditions appear to be difficult to check.

In addition, several prior contributions deal with the combinatorial problem of counting solutions to random
CSPs. For problems such as k-NAESAT, k-XORSAT or graph colouring where the first moment provides the correct
answer due to inherent symmetry properties, the second moment method and small subgraph conditioning yield
very precise information as to the number of solutions [15, 18, 44]. Verifying that the number of solutions is de-
termined by the physicists’ 1RSB formula [34], the contribution of Sly, Sun and Zhang [47] on the random regular
k-NAESAT problem near its satisfiability threshold [24] deals with an even more intricate scenario.

Finally, returning to random 2-SAT, as an intriguing question for future work determining the precise limiting
distribution of log Z (Φ) stands out. This random variable has standard deviation Ω(

p
n) for all 0 < d < 2 even

once we condition on m, as is easily seen by re-randomising the signs of the literals in small components. In
effect, log Z (Φ) is far less concentrated than the partition functions of symmetric random constraint satisfaction
problems [15]. May n−1/2(log Z (Φ)−E[log Z (Φ)]) be asymptotically normal?

4. PROOF OF PROPOSITION 2.1

We prove Proposition 2.1 by means of a contraction argument. The starting point is the following observation. For
`≥ 0 let π(`)

d = BP`d (δ1/2) be the probability measure obtained after ` iterations of the operator BPd ( · ).

Fact 4.1. For all `≥ 0 the random variables µ
π(`)

d
and 1−µ

π(`)
d

are identically distributed.
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Proof. This is because d−,d+ and hence the random variables
(

d−∏
i=1
µ
π(`−1)

d ,i ,
d−∏
i=1
µ
π(`−1)

d ,i +
d+∏
i=1
µ
π(`−1)

d ,i+d−

)
and

(
d+∏
i=1
µ
π(`−1)

d ,i+d− ,
d−∏
i=1
µ
π(`−1)

d ,i +
d+∏
i=1
µ
π(`−1)

d ,i+d−

)

from (1.1) are identically distributed. �

Due to Fact 4.1 we can rewrite the construction of the sequence π(`)
d in terms of another operator that is easier

to analyse. This operator describes the expression (1.1) in terms of log-likelihood ratios, a simple reformulation
that proved useful in the context of Belief Propagation for random satisfiability before [38]. Thus, we define an
operator LLd : P (R) →P (R), ρ 7→ ρ̂ by letting ρ̂ be the distribution of the random variable

d∑
i=1

si log
1+ s ′i tanh(ηρ,i /2)

2
. (4.1)

Further, let ρ(`)
d = LL`d (δ0) ∈P (R) be the result of ` iterations of LLd launched from the atom at zero. We recall the

functions ψ,ϕ from (1.14). For a measure ρ ∈ P (R) and a measurable f : R→ R let f (ρ) denote the pushforward
measure of ρ that assigns mass ρ( f −1(A)) to Borel sets A ⊆R.

Lemma 4.2. For all `≥ 0 we have π(`)
d =ψ(ρ(`)

d ).

Proof. Since ψ(δ0) = δ1/2, the assertion is true for `= 0. Proceeding by induction, we obtain

µ
π(`+1)

d

d=
∏d+

i=1µπ(`)
d ,i

∏d−
i=1µπ(`)

d ,i +
∏d+

i=1µπ(`)
d ,i+d−

=ψ

log

∏d−
i=1µπ(`)

d ,i
∏d+

i=1µπ(`)
d ,i+d−




=ψ
(

d−∑
i=1

log
(
µ
π(`)

d ,i

)
−

d+∑
i=1

log
(
µ
π(`)

d ,i+d−
))

d=ψ
(

d∑
i=1

si logµ
π(`)

d ,i

)
d=ψ

(
d∑

i=1
si log

(
ψ(η

ρ(`)
d ,i )

))
. (4.2)

Moreover, since si ∈ {±1} is random, it is immediate from (4.1) that η
ρ(`)

d ,i
d= −η

ρ(`)
d ,i . Consequently, (4.2) yields

µ
π(`+1)

d

d=ψ
(

d∑
i=1

si log
(
ψ(s ′iηρ(`)

d ,i )
))

d=ψ(η
ρ(`+1)

d
),

which completes the induction. �

Due to the continuous mapping theorem, to establish convergence of (π(`)
d )`≥0 it suffices to show that (ρ(`)

d )`≥0

converges weakly. To this end, we will prove that the operator LLd ( · ) is a contraction.

Lemma 4.3. If d < 2, then LLd is a contraction on the space W2(R).

Proof. The operator LLd maps the space W2(R) into itself because the derivative of x 7→ log((1+ tanh(x/2))/2) is
bounded by one in absolute value for all x ∈ R. To show contraction let ρ,ρ′ ∈ W2(R) and consider a sequence of
independent random pairs (ηi ,η′i )i≥1 such that the ηi have distribution ρ and the η′i have distribution ρ′. Because
the signs si are uniform and independent, we obtain

W2(LL(ρ),LL(ρ′))2 ≤ E
[(

d∑
i=1

si log
1+ s ′i tanh(ηi /2)

1+ s ′i tanh(η′i /2)

)2]
= E

[
d∑

h,i=1
sh si log

1+ s ′h tanh(ηh/2)

1+ s ′h tanh(η′h/2)
log

1+ s ′i tanh(ηi /2)

1+ s ′i tanh(η′i /2)

]

= E
[

d∑
i=1

log2 1+ s ′i tanh(ηi /2)

1+ s ′i tanh(η′i /2)

]
= dE

[
log2 1+ s1 tanh(η1/2)

1+ s1 tanh(η′1/2)

]
. (4.3)

Further,

log2 1+ tanh(η1/2)

1+ tanh(η′1/2)
=

[∫ η1

η′1

∂ log(1+ tanh(z/2))

∂z
dz

]2

=
[∫ η1∨η′1

η1∧η′1

1− tanh(z/2)

2
dz

]2

, (4.4)

log2 1− tanh(η1/2)

1− tanh(η′1/2)
=

[∫ η1

η′1

∂ log(1− tanh(z/2))

∂z
dz

]2

=
[∫ η1∨η′1

η1∧η′1

1+ tanh(z/2)

2
dz

]2

. (4.5)
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−1 −1

+ −

−1 +1 −1

+ + −

FIGURE 2. The graph G(Φ) together with extremal boundary condition σ+. Variables are indi-
cated by circles and clauses by squares. The labels on the edges illustrate the sign with which
variables appears in the clauses. To obtain the extremal boundary conditionσ+ we proceed top-
down. The truth values of the children are chosen so as to nudge the parent variables in the
direction provided by σ+.

Combining (4.4)–(4.5) and applying the Cauchy-Schwarz inequality, we obtain

E

[
log2 1+ s1 tanh(η1/2)

1+ s1 tanh(η′1/2)

]
= 1

2
E

[[∫ η1∨η′1

η1∧η′1

1− tanh(z/2)

2
dz

]2

+
[∫ η1∨η′1

η1∧η′1

1+ tanh(z/2)

2
dz

]2]

≤ 1

2
E

[
∣∣η1 −η′1

∣∣
∫ η1∨η′1

η1∧η′1

(
1− tanh(z/2)

2

)2

+
(

1+ tanh(z/2)

2

)2

dz

]
≤ 1

2
E
[(
η1 −η′1

)2
]

. (4.6)

Finally, (4.3) and (4.6) yield W2(LL(ρ),LL(ρ′))2 ≤ dE[(η1 −η′1)2]/2, which implies contraction because d < 2. �

Proof of Proposition 2.1. Together with the Banach fixed point theorem Lemma 4.3 ensures that the W2-limit ρd =
lim`→∞ LL`d (δ0) exists. Therefore, Lemma 4.2 implies that the sequence (π(`)

d )`≥0 converges weakly. In addition,
since ρd ∈W2(R), Lemma 4.2 also implies the bound (2.1). Finally, to prove (2.2) we apply (2.1) to obtain

E

∣∣∣∣∣log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)∣∣∣∣∣≤ log(2)−E log
d−∏
i=1
µπd ,i ≤ log(2)− d

2
E logµπd ,1 ≤ 2log(2)+dE

∣∣∣∣∣log
µπd

1−µπd

∣∣∣∣∣<∞,

E
∣∣∣log(1−µπd ,1µπd ,2)

∣∣∣≤ E
∣∣∣log(1−µπd

)
∣∣∣≤ E

∣∣∣∣∣log
µπd

1−µπd

∣∣∣∣∣+ log2 <∞,

thereby completing the proof. �

5. PROOF OF PROPOSITION 2.2

5.1. Outline. The goal is to prove that the marginal of the root variable o of T (2`) remains asymptotically invariant
even upon imposition of an arbitrary (feasible) boundary condition on the variables at distance 2` from the root o.
A priori, a proof of this statement seems challenging because of the very large number of possible boundary con-
ditions. Indeed, we expect about d` variables at distance 2`. But a crucial feature of the 2-SAT problem is that we
can construct a pair of extremal boundary conditions. One of these maximises the probability that the root is set
to one. The other one minimises that probability. As a consequence, instead of inspecting all possible boundary
conditions, it suffices to show that the marginals on the root o that these two extremal boundary induce asymp-
totically coincide with the unconditional marginals. Of course, due to symmetry it actually suffices to consider the
‘positive’ extremal boundary condition that maximally nudges the root towards +1.

To construct this extremal boundary condition we define a satisfying assignment σ+ by working our way down
the tree T (2`). We begin by definingσ+

o = 1. Further, suppose for `≥ 1 the values of the variables at distance 2(`−1)
from o have been defined already. Consider a variable v ∈ ∂2`o, its parent clause a and the parent variable u of a.
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Our aim is to chooseσ+
v so as to ‘nudge’ u towardsσ+

u as much as possible. To this end we setσ+
v so as to not satisfy

a if setting u to σ+
u satisfies a. Otherwise we pick the value that satisfies a; see Figure 2. In formulas,

σ+
v = sign(a, v)1{sign(a,u) 6=σ+

u }− sign(a, v)1{sign(a,u) =σ+
u }.

The following lemma verifies that σ+ is extremal, i.e., that imposing the values provided by σ+ on the boundary
variables ∂2`o maximises the probability of the truth value 1 at the root o. The proof can be found in Section 5.2.

Lemma 5.1. For any integer `≥ 0 we have maxτ∈S(T (2`))µT (2`) (σo = 1 |σ∂2`o = τ∂2`o) =µT (2`) (σo = 1 |σ∂2`o =σ+
∂2`o

).

Lemma 5.1 reduces the task of proving Proposition 2.2 to establishing the following statement.

Proposition 5.2. We have lim`→∞E
∣∣∣µT (2`) (σo = 1)−µT (2`) (σo = 1 |σ∂2`o =σ+

∂2`o
)
∣∣∣= 0.

In words, the root marginal given the extremal boundary condition σ+ asymptotically coincides with the uncon-
ditional marginal.

The proof of Proposition 5.2 is delicate because the boundary condition σ+ depends on the tree T (2`). Indeed,
it seems hopeless to confront these dependencies head on by first passing down the tree to construct σ+ and to
subsequently work up the tree to calculate marginals. To sidestep this problem we devise a quantity that recovers
the Markov property of the random tree. Specifically, with each variable node x ∈ ∂2k o, k > 0, of T (2`) we will asso-
ciate a carefully defined quantity η(`)

x ∈R∪ {±∞} that gauges how strongly x can nudge its (grand-)parent variable
y towards the truth value mandated by σ+

y . This random variable η(`)
x will turn out to be essentially independent

of the top 2k levels of the tree. In effect, we will discover that the distribution of η(`)
o can be approximated by the

k-fold application of a suitable operator that will turn out to be a W1-contraction. Taking limits k,`→∞ carefully
will then complete the proof.

To facilitate this construction we need to count satisfying assignments of sub-formulas of T (2`) subject to certain
boundary conditions. Specifically, for a variable x we let T (2`)

x be the sub-formula of T (2`) comprising x and its
progeny. Moreover, for a satisfying assignment τ ∈ S(T (2`)) we let

S(T (2`)
x ,τ) =

{
χ ∈ S(T (2`)

x ) : ∀y ∈V (T (2`)
x )∩∂2`(T ,o) :χy = τy

}
, Z (T (2`)

x ,τ) =
∣∣∣S(T (2`)

x ,τ)
∣∣∣ .

In words, S(T (2`)
x ,τ) contains all satisfying assignments of T (2`)

x that comply with the boundary condition induced
by τ. As a final twist, for t =±1 we also need the number

Z (T (2`)
x ,τ, t ) =

∣∣∣
{
χ ∈ S(T (2`)

x ,τ) :χx = t
}∣∣∣

of satisfying assignments of T (2`)
x that agree with τ on the boundary and assign value t to x.

The protagonist of the proof of Proposition 5.2 is the log-likelihood ratio

η(`)
x = log

Z (T (2`)
x ,σ+,σ+

x )

Z (T (2`)
x ,σ+,−σ+

x )
∈R∪ {±∞} (x ∈V (T (2`))), (5.1)

with the conventions log0 = −∞, log∞ = ∞. Thus, η(`)
x gauges how likely a random satisfying assignment σ of

T (2`)
x subject to the σ+-boundary condition is to set x to its designated value σ+

x .

To get a handle on the η(`)
x , we show that these quantities can be calculated by propagating the extremal bound-

ary condition σ+ bottom–up toward the root of the tree. Specifically, we consider the operator

LL+
T (2`) : (−∞,∞]V (T (2`)) → (−∞,∞]V (T (2`)), η 7→ η̂

defined as follows. For all x ∈ ∂2`o we set η̂x = ∞. Moreover, for a variable x ∈ ∂2k o with k < ` with children
a1, . . . , a j and grandchildren y1 ∈ ∂a1 \ {x}, . . . , y j ∈ ∂a j \ {x} we define

η̂x =−
j∑

i=1
σ+

x sign(x, ai ) log
1−σ+

x sign(x, ai ) tanh(ηyi /2)

2
. (5.2)

It may not be apparent that the above sum is well-defined as a −∞ summand might occur. However, the next
lemma rules this out and shows that `-fold iteration of LL+

T (2`) from all-+∞ yields η(`) = (η(`)
x )x∈V (T (2`)).

Lemma 5.3. The operator LL+
T (2`) is well-defined and LL+ (`)

T (2`) (∞, . . . ,∞) =η(`).
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We defer the proof of Lemma 5.3 to Section 5.3.
The next aim is to approximate the `-fold iteration of LL+

T (2`) , and specifically the distribution of the value η(`)
o

associated with the root, via a non-random operator P (R) → P (R). To this end we need to cope with the ±∞-
entries of the vector η(`), a task that we solve by bounding η(`)

x for variables x near the top of the tree.

Lemma 5.4. There exist c = c(d) > 0 and a sequence (εk )k≥1 with limk→∞ εk = 0 such that for any k > 0, `> ck we
have P[maxx∈∂2k o |η(`)

x | ≤ ck] > 1−εk .

The proof of Lemma 5.4, based on a percolation argument, can be found in Section 5.4. We continue to denote by
c and (εk )k the number and the sequence supplied by Lemma 5.4.

Guided by Lemma 5.4 we consider the vector η̄(`,k) of truncated log-likelihood ratios

η̄(`,k)
x =





−ck if x ∈ ∂2k o and η(`)
x <−ck,

ck if x ∈ ∂2k o and η(`)
x > ck,

η(`)
x otherwise.

Further, let
η(`,k) = LL+ (k)

T (2`) (η̄(`,k))

be the result of k iterations of LL+
T (2`) ( · ) starting from η̄(`,k).

Corollary 5.5. For any `> ck we have dTV(η(`,k)
o ,η(`)

o ) < εk .

Proof. This follows from Lemma 5.3 and Lemma 5.4, which shows that the truncation is inconsequential with
probability at least 1−εk . �

We are ready to introduce the operator P (R) →P (R) that mimics LL+
T (2`) . Specifically, LL+

d : P (R) →P (R) maps
ρ ∈P (R) to the distribution of

−
d∑

i=1
si log

1− si tanh(ηρ,i /2)

2
. (5.3)

We emphasise the subtle difference between (5.3) and (4.1), which involves two independent signs si , s ′i . The next

lemma establishes the connection between the random operator LL+
T (2`) and the operator LL+

d . Namely, let ρ(`,k)

be the distribution of η(`,k)
o . Moreover, let ρ̄(`−k) be the distribution of

η(`−k)
o 1{−ck <η(`−k)

o < ck}+ ck1{ck <η(`−k)
o }− ck1{η(`−k)

o <−ck},

i.e., the truncation of η(`−k)
o .

Lemma 5.6. For `> ck we have ρ(`,k) = LL+ (k)
d (ρ̄(`−k)).

We prove Lemma 5.6 in Section 5.5. Recalling ϕ from (1.14), as in the proof of Proposition 2.1 we let ρd =ϕ(πd )
be the distribution of the log-likelihood ratio log(µπd

/(1−µπd
)).

Lemma 5.7. The operator LL+
d is a W1-contraction with unique fixed point ρd .

The proof of Lemma 5.7 can be found in Section 5.6. Let (ρ(`))` be the sequence of distributions of (η(`)
o )`. As an

immediate consequence we obtain the limit of the sequence (ρ(`))`. We recall ψ from (1.14).

Corollary 5.8. The sequence (ψ(ρ(`)))`≥0 converges weakly to πd .

Proof. This follows from Corollary 5.5, Lemma 5.6, Lemma 5.7 and the continuous mapping theorem. �

Proof of Proposition 5.2. Set ϑ(`)
o = (LL+ (`)

T (2`) (0, . . . ,0))o = log(µT (2`) (σo = 1)/µT (2`) (σo =−1)). Then

µT (2`) (σo = 1) =ψ(ϑ(`)
o ) and µT (2`) (σo = 1 |σ∂2`o =σ+

∂2`o
) =ψ(η(`)

o ).

Moreover, Lemma 5.1 shows that 0 ≤ ψ(ϑ(`)
o ) ≤ ψ(η(`)

o ) ≤ 1. Further, Lemma 5.7 implies that ψ(ϑ(`)
o ) converges

weakly to πd . Finally, Corollary 5.8 implies that ψ(η(`)
o ) also converges weakly to πd , whence

lim
`→∞

E
∣∣∣ψ(η(`)

o )−ψ(ϑ(`)
o )

∣∣∣= lim
`→∞

∣∣∣E[ψ(ϑ(`)
o )]−E[ψ(η(`)

o )]
∣∣∣= 0,

which directly implies the assertion. �
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Proof of Proposition 2.2. The proposition follows immediately from Lemma 5.1 and Proposition 5.2. �
5.2. Proof of Lemma 5.1. The proof is by induction on the height of the tree. The following claim summarises the
main step of the induction.

Claim 5.9. For all `≥ 0, all variables x of T (2`) and all satisfying assignments τ ∈ S(T (2`)) we have

Z (T (2`)
x ,τ,σ+

x )

Z (T (2`)
x ,τ)

≤ Z (T (2`)
x ,σ+,σ+

x )

Z (T (2`)
x ,σ+)

. (5.4)

Proof. For boundary variables x ∈ ∂2`o there is nothing to show because the r.h.s. of (5.4) equals one. Hence,
consider a variable x ∈ ∂2k o for some k < `. If Z (T (2`)

x ,τ,σ+
x ) = 0, then (5.4) is trivially satisfied. Hence, assume

that Z (T (2`)
x ,τ,σ+

x ) > 0. Let a+
1 , . . . , a+

g be the children (clauses) of x with sign(x, a+
i ) = σ+

x . Also let y1, . . . , yg be
the children (variables) of a+

1 , . . . , a+
g . Similarly, let a−

1 , . . . , a−
h be the children of x with sign(x, a−

i ) = −σ+
x and let

z1, . . . , zh be their children. We claim that for all τ ∈ S(T (2`)),

Z (T (2`)
x ,τ,σ+

x ) =
g∏

i=1
Z (T (2`)

yi
,τ)

h∏
i=1

Z (T (2`)
zi

,τ,σ+
zi

), Z (T (2`)
x ,τ,−σ+

x ) =
g∏

i=1
Z (T (2`)

yi
,τ,−σ+

yi
)

h∏
i=1

Z (T (2`)
zi

,τ). (5.5)

For setting x to σ+
x satisfies a+

1 , . . . , a+
g ; hence, arbitrary satisfying assignments of the sub-trees T (2`)

yi
can be com-

bined, which explains the first product. By contrast, upon assigning x the valueσ+
x we need to assign the variables

zi the values σ+
zi

so that they satisfy the clauses a−
i . This leaves us with Z (T (2`)

zi
,τ,σ+

zi
) possible satisfying assign-

ments of the sub-trees T (2`)
zi

; hence the second product, and we obtain the left equation. A similar argument yields
the right one. Dividing the two expressions from (5.5) and invoking the induction hypothesis (for k +1), we obtain

Z (T (2`)
x ,τ,−σ+

x )

Z (T (2`)
x ,τ,σ+

x )
=

g∏
i=1

Z (T (2`)
yi

,τ,−σ+
yi

)

Z (T (2`)
yi

,τ)
·

h∏
i=1

Z (T (2`)
zi

,τ)

Z (T (2`)
zi

,τ,σ+
zi

)

≥
g∏

i=1

Z (T (2`)
yi

,σ+,−σ+
yi

)

Z (T (2`)
yi

,σ+)
·

h∏
i=1

Z (T (2`)
zi

,σ+)

Z (T (2`)
zi

,σ+,σ+
zi

)
= Z (T (2`)

x ,σ+,−σ+
x )

Z (T (2`)
x ,σ+,σ+

x )
,

completing the induction. �
Proof of Lemma 5.1. The assertion follows by applying Claim 5.9 to x = o. �
5.3. Proof of Lemma 5.3. To show that LL+

T (2`) is well defined we verify that, in the notation of (5.2), η̂x ∈ (−∞,∞]
for all x. Indeed, in the expression on the r.h.s. of (5.2) a ±∞ summand can arise only from variables yi with
ηyi =∞. But the definition ofσ+ ensures that such yi either render a zero summand ifσ+

x sign(x, ai ) =−1, or a +∞
summand if σ+

x sign(x, ai ) = 1. Thus, the sum is well-defined and η̂x ∈ (−∞,∞].

Further, to verify the identity η(`) = LL+ (`)
T (2`) (∞, . . . ,∞), consider a variable x of T (2`). Let a+

1 , . . . , a+
g be its children

with sign(a+
i , x) =σ+

x , let y1, . . . , yg be their children, let a−
1 , . . . , a−

h be the children of x with sign(a−
i , x) =−σ+

x and
let z1, . . . , zh be their children. Then (1.14) and (5.5) yield

η(`)
x =−

g∑
i=1

log
Z (T (2`)

yi
,σ+,−σ+

yi
)

Z (T (2`)
yi

,σ+)
+

h∑
i=1

log
Z (T (2`)

zi
,σ+,σ+

zi
)

Z (T (2`)
zi

,σ+)
=−

g∑
i=1

log
1− tanh(η(`)

yi
/2)

2
+

h∑
i=1

log
1+ tanh(η(`)

zi
/2)

2
.

The assertion follows because sign(x, a+
i )σ+

x = 1 and sign(x, a−
i )σ+

x =−1.

5.4. Proof of Lemma 5.4. The goal is to prove that for variables some distance away from level 2` of T (2`) the
counts Z (T (2`)

x ,σ+,±1) are roughly of the same order of magnitude. Approaching this task somewhat indirectly,
we begin by tracing the logical implications of imposing a specific value s = ±1 on a variable x of the (possibly
infinite) tree T . Clearly, upon setting x to the value s a child (clause) a of x will be satisfied iff x appears in a with
sign s. In effect, all clauses a with sign(a, x) 6= s need to be satisfied by their second variable y , a grandchild of x.
Thus, we impose the value sign(a, y) on y and recurse down the tree. Let T x,s denote the sub-tree of T comprising
x and all other variables on which this process imposes specific values as well as all clauses that contain two such
variables. Clearly, for every leaf y of T x,s the values imposed on y happens to satisfy all child clauses of y in T . Let
N x,s ∈ [1,∞] be the number of variables in T x,s . The next lemma shows that the impact of a boundary condition
on the marginal of x can be bounded in terms of N x,s .
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Claim 5.10. Let s ∈ {±1}. If x ∈ ∂2k o satisfies N x,s < `−k then Z (T (2`)
x ,τ) ≤ 2N x,s Z (T (2`)

x ,τ, s).

Proof. The construction of the implication tree T x,s imposes a truth value σy on each variable y of the tree that
y must inevitably take if x gets assigned s. Thus, T x,s comes with a satisfying assignment σ ∈ S(T x,s ) with σx = s.
For any leaf y of T x,s every child clause a of y in the super-tree T will be automatically satisfied by setting y to σy

(because otherwise a would have been included in T x,s ). Hence, all the clauses of T that are children of the leaves
of T x,s are satisfied by σ. Moreover, because N x,s < `−k, any leaf y of T x,s has distance less than 2` from o. Thus,

the assignmentσ does not clash with the boundary condition τ. As a consequence, for any χ ∈ S(T (2`)
x ,τ) we obtain

another satisfying assignment χ′ ∈ S(T (2`)
x ,τ) by letting

χ′z =
{
σz if z ∈V (T x,s ),

χz otherwise.

Moreover, under the map χ 7→χ′ the number of inverse images of any assignment χ′ is bounded by the total num-
ber 2N x,s of different truth assignments of the variables V (T x,s ). Therefore, Z (T (2`)

x ,τ) ≤ 2N x,s Z (T (2`)
x ,τ, s). �

As a next step we bound the random variable N x,s .

Claim 5.11. There exists a number α=α(d) > 0 such that P
[

N o,s ≥ u
]≤ exp(−uα)/α for all u ≥ 0, s ∈ {±1}.

Proof. In the construction of T o,s we only propagate along clauses in which the parent variable is forced to take a
value that fails to satisfy the clause. Since the signs are uniformly random, the number of such child clauses has
distribution Po(d/2). Therefore, N o,s is bounded by the total progeny of a Galton-Watson process with Po(d/2)
offspring. The assertion therefore follows from the tail bound for such processes (e.g., [6, eq. (11.7)]). �

As a final preparation toward the proof of Lemma 5.4 we need a bound on the size of the 2k-th level of T .

Claim 5.12. We have limk→∞P
[|∂2k o| > 2d k +k

]= 0.

Proof. Since every clause of T has precisely one child, the size of level 2k of T coincides with the size of the k-th
level of a Po(d) Galton-Watson tree. Therefore, the assertion follows from standard tail bounds for Galton-Watson
processes (e.g., [6, eq. (11.7)]). �

Proof of Lemma 5.4. Claim 5.11 ensures that for a large enough constant c = c(d) > 0 and all large enough k,

P
(
N o,±1 ≥ ck

)≤ (2d)−k . (5.6)

Combining (5.6) with Claim 5.12 and using the union bound, we obtain a sequence εk → 0 such that

P
(
∀x ∈ ∂2k o : N x,±1 < ck

)
≥ 1−εk . (5.7)

Further, if x ∈ ∂2k o satisfies N x,±1 < ck and `> (1+ c)k, Claim 5.10 ensures that for all x ∈ ∂2k o,

∣∣∣η(`)
x

∣∣∣≤ log
Z (T (2`)

x ,σ+)

Z (T (2`)
x ,σ+,1)

+ log
Z (T (2`)

x ,σ+)

Z (T (2`)
x ,σ+,−1)

≤ N x,1 +N x,−1 < 2ck. (5.8)

Combining (5.7) and (5.8) completes the proof. �

5.5. Proof of Lemma 5.6. A straightforward induction shows that for any p ∈ P (R) the result p(k) = LL+ (k)
d (p)

of the k-fold application of LL+
d coincides with the distribution of the root value of the random operator LL+ (k)

T (2k)

applied to a vector (ηx )x∈V (T (2k)) of independent samples from p. Indeed, for k = 1 the claim is immediate from the
definitions. Moreover, for the inductive step we notice that the k-fold application of LL+

d comes down to applying
LL+

d once to the outcome of the (k −1)-fold application. By the induction hypothesis,

p(k−1) =
(
LL+ (k−1)

T (2(k−1)) (ηx )x

)
o

.

Finally, applying LL+
d to p(k−1) implies the assertion because the first layer of T (2k) is independent of the subtrees

rooted at the grandchildren ∂2o of the root, which are distributed as independent random trees T (2(k−1)). The
lemma follows from applying this identity to p = ρ̄(`−k).
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5.6. Proof of Lemma 5.7. The operator LL+
d maps the space W1(R) into itself because the derivative of x 7→ log((1−

tanh(x/2))/2) is bounded by one in absolute value for all x ∈ R. We proceed to show that LL+
d : W1(R) → W1(R) is a

contraction. Thus, consider a sequence of independent random pairs (ηi ,η′i )i≥1 with ηi
d=ρ, η′i

d=ρ′. Then

W1(LL+
d (ρ),LL+

d (ρ′)) ≤ E
∣∣∣∣∣

d∑
i=1

si log
1− si tanh(ηi /2)

1− si tanh(η′i /2)

∣∣∣∣∣≤ dE

∣∣∣∣log
1− s1 tanh(η1/2)

1− s1 tanh(η′1/2)

∣∣∣∣ .

Since the function z 7→ log(1+ tanh(z/2)) is monotonically increasing, we obtain

∣∣∣∣log
1+ tanh(η1/2)

1+ tanh(η′1/2)

∣∣∣∣=
∣∣∣∣∣
∫ η1

η′1

∂ log(1+ tanh(z/2))

∂z
dz

∣∣∣∣∣=
∫ η1∨η′1

η1∧η′1

1− tanh(z/2)

2
dz,

∣∣∣∣log
1− tanh(η1/2)

1− tanh(η′1/2)

∣∣∣∣=
∣∣∣∣∣
∫ η1

η′1

∂ log(1− tanh(z/2))

∂z
dz

∣∣∣∣∣=
∫ η1∨η′1

η1∧η′1

1+ tanh(z/2)

2
dz.

Hence, W1(LL+
d (ρ),LL+

d (ρ′)) ≤ dE
∣∣η1 −η′1

∣∣/2 and therefore W1(LL+
d (ρ),LL+

d (ρ′)) ≤ dW1(ρ,ρ′)/2.
Finally, we observe that ρd is a fixed point of LL+

d . Indeed, Proposition 2.1 implies that ηρd and −ηρd are identi-
cally distributed. Therefore, if si , s ′i ∈ {±1} are uniform and independent, we obtain

si log
((

1− si tanh(ηρd ,i /2)
)

/2
)

d= si log
((

1+ s ′i tanh(ηρd ,i /2)
)

/2
)

.

Hence, recalling the definitions (4.1) and (5.3) of the operators, we see that LL+
d (ρd ) = LLd (ρd ) = ρd .

5.7. Proof of Theorem 1.2. Consider the sub-formula∇2`(Φ, x1) ofΦ obtained by deleting all clauses and variables
at distance greater than 2` from x1. By design, we can couple ∇2`(Φ, x1) and T (2`) such that both coincide w.h.p.
Therefore, since any satisfying assignment ofΦ induces a satisfying assignment of T (2`), Proposition 2.2 implies the
Gibbs uniqueness property (1.11). Furthermore, because Proposition 1.4 shows that Belief Propagation correctly
computes the root marginal µT (2`) (σo = 1), (1.9) follows from (1.11).

5.8. Proof of Corollary 1.3. Let π(`)
d = BP(`)(δ1/2). Thanks to Proposition 2.1 it suffices to prove that

lim
`→∞

limsup
n→∞

E[W1(πΦ,π(`)
d )] = 0. (5.9)

Hence, fix ε > 0, pick a large ` = `(ε) > 0 and a larger L = L(`) > 0. A routine second moment calculation shows
that for any possible outcome T of T (2`) the number XT of variables xi of Φ such that ∇2`(Φ, xi ) = T satisfies
XT = nP

[
T (2`) = T

]+o(n) w.h.p. Hence, w.h.p. Φ admits a coupling γΦ of T (2`) and a uniform variable i on [n]
such that γ({∇2`(Φ, xi ) = T (2`)}) = 1−o(1). Further, Theorem 1.2 implies that given ∇2`(Φ, xi ) = T (2`) we have

P
[∣∣µΦ(σxi = 1)−µT (2`) (τo = 1)

∣∣> ε]< ε, (5.10)

provided ` is large enough. Finally, Lemma 1.4 implies together with a straightforward induction on ` that π(`)
d is

the distribution of µT (2`) (τo = 1). Therefore, (5.9) follows from (5.10).

5.9. Proof of Corollary 2.3. Fix ε> 0 and pick a small ξ= ξ(ε) > 0 and large `= `(ξ) > 0. Since k is fixed indepen-
dently of n, Theorem 1.2 shows that w.h.p.

k∑
i=1

max
τ∈S(Φ)

∣∣∣µΦ(σxi = 1 |σ∂2`xi
= τ∂2`xi

)−µ(`)
Φ,xi

(1)
∣∣∣< ξ. (5.11)

Further, the smallest pairwise distance between x1, . . . , xn exceeds 4` w.h.p. Therefore, we can draw a sample σ
from µΦ in two steps. First, draw σ′ from µΦ. Then, independently re-sample assignments of all the variables
in ∇2`−2(Φ, xi ) from µΦ( · |σ′

∂2`xi
) for i = 1, . . . ,k. The resulting assignment σ′′ has distribution µΦ and the values

σ′′
xi

, i ∈ [k], are mutually independent given σ′. Finally, since (5.11) shows that conditioning on the boundary
conditions σ′

∂2`xi
is inconsequential w.h.p., we obtain the assertion by taking ε→ 0 sufficiently slowly.

15

The number of satisfying assignments of random 2-SAT formulas A-107



6. PROOF OF PROPOSITION 2.4

6.1. Outline. The proof is based on a natural coupling of the random formulas Φn and Φn+1 with n and n + 1
variables, respectively. Specifically, let

m′ d=Po(dn/2−d/2), ∆′′ d=Po(d/2), ∆′′′ d=Po(d) (6.1)

be independent random variables. Moreover, letΦ′ be a random formula with n variables and m′ clauses, chosen
independently and uniformly from the set of all 4n(n − 1) possible clauses. Then obtain Φ′′ from Φ′ by adding
another∆′′ uniformly random and independent clauses. Moreover, obtainΦ′′′ fromΦ′ by adding one variable xn+1

along with ∆′′′ clauses, chosen uniformly and independently from the set of all 8n possible clauses that contain
xn+1 and another variable from the set {x1, . . . , xn}.

Fact 6.1. We haveΦ′′ d=Φn andΦ′′′ d=Φn+1; therefore,

E[log(Z (Φn+1)∨1)]−E[log(Z (Φn)∨1)] = E
[

log
Z (Φ′′′)∨1

Z (Φ′)∨1

]
−E

[
log

Z (Φ′′)∨1

Z (Φ′)∨1

]
. (6.2)

Hence, the proof of Proposition 2.4 boils down to establishing the following two statements.

Proposition 6.2. We have lim
n→∞E log

Z (Φ′′)∨1

Z (Φ′)∨1
= d

2
E
[

log
(
1−µπd ,1µπd ,2

)]
.

Proposition 6.3. We have lim
n→∞E log

Z (Φ′′′)∨1

Z (Φ′)∨1
= E

[
log

( ∑
σ∈{±1}

d∏
i=1

(
1−1 {σ 6= si }µπd ,i

))]
.

Further, to prove Propositions 6.2 and 6.3 we ‘just’ need to understand the impact of a bounded expected number
of ‘local’ changes (such as adding a random clause) on the partition function.

The proof strategy sketched in the previous paragraph is known as the Aizenman-Sims-Starr scheme. The tech-
nique was originally deployed to study the Sherrington-Kirkpatrick spin glass model [5], but has since found var-
ious applications to models on sparse random graphs (e.g., [16, 40]). By comparison to prior applications, the
difficulty here is that we apply this technique to a model with hard constraints. In effect, while typically the ad-
dition of a single clause will only reduce the number of satisfying assignments by a bounded factor, occasion-
ally a much larger change might ensue. For instance, for any 0 < d < 2 there is a small but non-zero probability
that a single additional clause might close a ‘bicycle’, i.e., a sequence of clauses that induce an implication chain
xi →···→¬xi →···→ xi . Thus, a single unlucky clause might wipe out all satisfying assignments.

Suppose we wish to roughly estimate the change in the number of satisfying assignments upon going from
Φ′ to Φ′′′. Clearly Z (Φ′′′) ≤ 2Z (Φ′) because we only add one new variable. But of course Z (Φ′′′) might be much
smaller than Z (Φ′). To obtain a bound, consider the new clauses b1, . . . ,b∆′′′ that were added along with xn+1 and
let y1, . . . , y∆′′′ be the variables ofΦ′ where the new clauses attach. Define an assignmentχ : Y = {y1, . . . , y∆′′′ } → {±1}
by letting χyi = sign(yi ,bi ); thus, χ satisfies the bi . Further, let

S(Φ′,χ) = {
σ ∈ S(Φ′) : ∀y ∈ Y :σy =χy

}
, Z (Φ′,χ) = |S(Φ′,χ)|

be the set and the number of satisfying assignments of Φ′ that coincide with χ on Y . Because each σ ∈ S(Φ′,χ)
already satisfies all the new clauses regardless of the value assigned to xn+1, we obtain Z (Φ′′′) ≥ 2Z (Φ′,χ). Hence,
it seems that we just need to lower bound Z (Φ′,χ).

To this end we could employ a process similar to the one that we applied in Section 5.4 to the tree T . Generally,
let Y ⊆ {x1, . . . , xn} be a set of variables and let χ ∈ {±1}Y be an assignment. The following process, known as the
Unit Clause Propagation algorithm [26], chases the implications of imposing the assignment χ on Y :

whileΦ′ possesses a clause a that has exactly one neighbouring variable z ∈ ∂a on which the value
−sign(z, a) has been imposed, impose the value sign(a, z ′) on the second variable z ′ ∈ ∂a \{z} of a.

Let Iχ be the set of variables on which the process has imposed a value upon termination (including the initial
set Y ). Unfortunately, it is possible that Φ′ contains a clause a on whose both variables z, z ′ the ‘wrong’ values
−sign(a, z),−sign(a, z ′) got imposed. In other words, Unit Clause might be left with contradictions. If such a
clause exists we let Iχ = n. Otherwise we set Iχ = |Iχ|. We obtain the following lower bound on Z (Φ′,χ).

Fact 6.4. We have Z (Φ′) ≤ 2Iχ (Z (Φ′,χ)∨1).
16
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Proof. The inequality is trivially satisfied if Z (Φ′) = 0 or Iχ = n. Hence, we may assume that Z (Φ′) > 0 and that Unit
Clause did not run into a contradiction. Consequently, Unit Clause produced an assignment χ∗ of the variables Iχ

that satisfies all clauses a ofΦ′ with ∂a∩Iχ 6= ;. Hence, for any satisfying assignment σ ∈ S(Φ′) we obtain another
satisfying assignment σ̂ ∈ S(Φ′,χ) by letting σ̂ = χ∗x 1{x ∈ Iχ}+σx 1{x 6∈ Iχ}, i.e., we overwrite the variables in Iχ

according to χ∗. Clearly, under the map σ 7→ σ̂ an assignment σ̂ ∈ S(Φ′,χ) has at most 2Iχ inverse images. �
Hence, we need an upper bound on Iχ, which will be proven at the end of Section 6.2.

Lemma 6.5. There exists C = C (d) > 0 such that for every set Y ⊆ {x1, . . . , xn} of size |Y | ≤ log2 n and any χ ∈ {±1}Y

we have E[Iχ] ≤C |Y |2.

Unfortunately, this first moment bound does not quite suffice for our purposes. Indeed, Lemma 6.5 allows for
the possibility that Iχ = n with probability Ω(1/n). In combination with Fact 6.4 this rough bound would lead to
error terms that eclipse the ‘main’ terms displayed in Propositions 6.2 and 6.3. But we cannot hope for a much
better bound on Iχ. Indeed, P

[
Iχ = n

] =Ω(1/n) because the graph G(Φ′) likely contains a few short cycles and if
Y contains a variable on a short cycle, then there is aΩ(1) probability that Unit Clause will cause a contradiction.

Hence, we need to be more circumspect. Previously we aimed for an assignment χ that satisfied all the new
clauses b1, . . . ,b∆′′′ added upon going to Φ′′′. But we still have the new variable xn+1 at our disposal to at least
satisfy a single clause bi . Hence, we can afford to start Unit Clause from an assignment χ′ that differs from χ on a
single variable. Thus, for a set Y of variables and χ ∈ {±1}Y we define

Aχ = min

{
Iχ′ :χ′ ∈ {±1}Y ,

∑
y∈Y

1{χy 6=χ′y } ≤ 1

}
. (6.3)

Lemma 6.6. There exists C ′ =C ′(d) > 0 such that for every set Y ⊆ {x1, . . . , xn} of size |Y | ≤ log2 n and any χ ∈ {±1}Y

we have E[A2
χ] ≤C ′|Y |4.

This second moment bound significantly improves over Lemma 6.5. For instance, Lemma 6.6 implies that the
probability of an enormous drop Z (Φ′′′) ≤ exp(−Ω(n))Z (Φ′) is bounded by O(n−2). Once more this estimate is
about tight because there is anΩ(n−2) probability that a single new clause closes a bicycle. As we shall see, with a
bit of care the bound from Lemma 6.6 suffices to prove Propositions 6.2 and 6.3. Yet Lemma 6.5 has its uses, too,
as it implies the following vital tail bound.

Corollary 6.7. We have limsupn→∞E

[
n ∧

∣∣∣∣log
µΦ′ (σx1 = 1)

µΦ′ (σx1 =−1)

∣∣∣∣ | Z (Φ′) > 0

]
<∞.

We proceed to study Unit Clause Propagation in order to prove Lemmas 6.5, 6.6 and Corollary 6.7. Then we will
prove Propositions 6.2 and 6.3, which imply Proposition 2.4.

6.2. Unit Clause Propagation. To avoid dependencies we consider a binomial model Φ† of a random 2-SAT for-
mula with variables x1, . . . , xn , where each of the 4

(n
2

)
possible (unordered) 2-clauses is present with probability

p = d/(4n)+n−4/3 (6.4)

independently. We define a random variable A†
χ onΦ† in perfect analogy to Aχ. Since the choice (6.4) of p ensures

that Φ† and Φ′ can be coupled so that the former has more clauses than the latter with probability 1−o(n−2), it
suffices to analyse A†

χ. Moreover, thanks to symmetry it suffices to prove Lemmas 6.5 and 6.6 under the assumption

that the initial set of variables is Y = {x1, . . . , x`}, `≤ log2 n.
At first glance investigating A†

χ appears to be complicated by the fact that (6.3) takes the minimum over all
possible χ′. To sidestep this issue we will investigate a ‘comprehensive’ propagation process whose progeny en-
compasses all the unit clauses that may result from any χ′. In its first round this process pursues for each variable
xi , i ≤ `, the Unit Clauses created by imposing either of the two possible truth values on xi . The effect will be the
imposition of truth values on all variables at distance two from Y . Subsequently we trace Unit Clause Propagation
from the values imposed on the variables in ∂2Y . Hence, the difficulty of considering all χ′ as in (6.3) disappears
because the first step disregards χ.

To deal with possible contradictions the process will actually operate on literals rather than variables. Through-
out each literal will belong to one of three possible categories: unexplored, explored, or finished. Initially the 2` lit-
erals x1,¬x1, . . . , x`,¬x` qualify as explored and all others as unexplored. Formally, we let E0 = {x1,¬x1, . . . , x`,¬x`},
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U0 = {x`+1,¬x`+1, . . . , xn ,¬xn} and F0 =;. Further, for t ≥ 0 we construct Et+1,Ut+1,Ft+1 as follows. If Et =;, the
process has terminated and we set Et+1 = Et ,Ut+1 =Ut ,Ft+1 =Ft . Otherwise, pick a literal lt+1 ∈ Et and let E ′

t+1
be the set of all literals l ′ ∈Ut such thatΦ† features the clause ¬lt+1 ∨ l ′. Further, let

Ut+1 =Ut \E ′
t+1, Et+1 = (Et ∪E ′

t+1) \ {lt+1}, Ft+1 =Ft ∪ {lt+1} .

Finally, the set F∞ = ⋃
t≥1 Ft contains all literals upon which Unit Clause could impose the value ‘true’ from any

initial assignment χ. A contradiction might result only if xi ,¬xi ∈F∞ for some i > `.

Claim 6.8. For all T > 8`/(2−d) we have P [|F∞| > T ] ≤ exp(−dT /36).

Proof. Let t ≥ 0. Given |Ut | and |Et | we have

X t+1 = |Et+1|− |Et |+1 {Et 6= ;}
d= Bin

(|Ut |1 {|Et | ≥ 0} , p
)

.

Moreover, given |Ut | and |Et | let Y t+1
d= Bin

(
2n −|Ut |1 {|Et | ≥ 0} , p

)
be independent of X t+1 and everything else,

and set X ≥
t+1 = X t+1 +Y t+1. Then (X ≥

t )t≥1 is an i.i.d. sequence of Bin(2n, p) random variables such that X ≥
t ≥ X t

for all t . Hence, for any T ≥ 1,

P [|F∞| > T ] =P [|ET | > 0] ≤P
[

T∑
t=1

X t > T −2`

]
≤P

[
T∑

t=1
X ≥

t > T −2`

]
=P[

Bin(2nT, p) > T −2`
]

. (6.5)

Further, the Chernoff bound shows that for T > 8`/(2−d) (and n large enough),

P
[
Bin(2T dn, p) > T −2`

]≤ exp

(
−min

{
(d −n−4/3), (d −n−4/3)2} 2nT p

3

)
≤ exp

(
−dT

36

)
, (6.6)

Combining (6.5) and (6.6) completes the proof. �

LetΦ∗ be the sub-formula ofΦ† comprising all variables x such that x ∈F∞ or ¬x ∈F∞ along with all clauses
a that contain two such variables. Let n∗ be the number of variables ofΦ∗ and let m∗ be the number of clauses.

Claim 6.9. We have P [m∗ ≥ n∗−`+1] ≤O(`2/n) and P [m∗ > n∗−`+1] ≤O(`4/n2).

Proof. We set up a graph representing the literals involved in the exploration process and the clauses that contain
such literals. Specifically, let ¬F∞ = {¬l : l ∈ F∞} contain all negations of literals in F∞. Moreover, let G be
the graph whose vertices are the literals F∞∪¬F∞ as well as all clauses a of Φ† that consist of two literals from
F∞∪¬F∞. Let C∞ be the set of such clauses a. For each clause a ∈C∞ the graph G contains two edges joining a
and its two constituent literals. The graph G(Φ∗) that we are ultimately interested in results from G by contracting
pairs of inverse literals l ,¬l ∈F∞∪¬F∞.

A large excess m∗−n∗ can either caused by the presence of atypically many clauses in G or by excess pairs of
inverse litetals that get contracted. We first address the gain in clauses due to inclusion of ¬F∞ and all induced
clauses. The exploration process discovers each literal λ ∈ F∞ \ {x1,¬x1, . . . , x`,¬x`} via a clause ¬lt ∨λ, where
¬lt ∈ Et−1. Thus, |C∞| ≥ |F∞|−2`. Hence, the random variable X = |C∞|− |F∞|+2` accounts for the number of
excess clauses that are present among the literals F∞∪¬F∞ but that were not probed by the process. We highlight
that X also counts clauses that contain two literals from the seed set {x1,¬x1, . . . , x`,¬x`}. Because clauses appear
inΦ† independently with probability p =O(d/n), we obtain the bounds

P[X ≥ 1 | |F∞|] ≤O(|F∞|2/n), P[X ≥ 2 | |F∞|] ≤O(|F∞|4/n2). (6.7)

Secondly, we investigate the loss in nodes due to contraction. Hence, n∗ = |F∞∪¬F∞|/2. By construction, the
seeds x1,¬x1, . . . , x`,¬x` come in pairs. Let X ′ = 1

2 |F∞∩¬F∞|−` count the number of excess inverse literal pairs
that we need to contract. Since the process is oblivious to the identities of the variables underlying the literals,
given its size the set F∞ \ {x1,¬x1, . . . , x`,¬x`} is a uniformly random subset of the set {xi ,¬xi : ` < i ≤ n} of non-
seed literals. Therefore, a routine balls-into-bins argument shows that

P[X ′ ≥ 1 | |F∞|] ≤O(|F∞|2/n), P[X ′ ≥ 2 | |F∞|] ≤O(|F∞|4/n2). (6.8)

Finally, in order to estimate m∗−n∗ we consider four separate cases.
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Case 1: X = X ′ = 0: Since X = 0 the graph G is a forest with 2` components rooted at x1,¬x1, . . . , x`,¬x`.
Moreover, since X ′ = 0 we have F∞ ∩¬F∞ = {x1,¬x1, . . . , x`,¬x`}. Therefore, G(Φ∗) is obtained from
G by identifying the pairs xi ,¬xi for i = 1, . . . ,`. Hence, G(Φ∗) is a forest with ` components, and thus

m∗ = n∗−`. (6.9)

Case 2: X = 1, X ′ = 0: Obtain Ĝ from G by adding one new vertex r whose neighbours are x1,¬x1, . . . , x`,¬x`.
Then Ĝ is unicyclic because X = 1. Let G̃ be the graph obtained from Ĝ by deleting the vertex r along with
one (arbitrary) clause a from the cycle of Ĝ . Then G̃ is a forest with 2` components. Therefore, by the same
token as in Case 1, G(Φ∗−a) is a forest with ` components. Hence, G(Φ∗), obtained by inserting clause a
into G(Φ∗−a), either contains a single cycle or consists of exactly `−1 components. Thus, by (6.7)

m∗ ≤ n∗−`+1, P
[

X = 1, X ′ = 0 | |F∞|]=O(|F∞|2/n). (6.10)

Case 3: X = 0, X ′ = 1: The graph Ĝ , defined as in Case 2, is a tree because X = 0. Suppose (F∞ ∩¬F∞) \
{x1,¬x1, . . . , x`,¬x`} = {y,¬y}. Let a be a clause on the unique path from y to ¬y in Ĝ . Then the same
argument as in Case 1 shows that G(Φ∗−a) is a forest with ` components. Therefore, G(Φ∗) either contains
a unique cycle or has precisely `−1 components. Consequently, (6.8) yields

m∗ ≤ n∗−`+1, P
[

X = 0, X ′ = 1 | |F∞|]=O(|F∞|2/n). (6.11)

Case 4: X +X ′ ≥ 2: In this case we do not have a bound on m∗−n∗, but we claim that

P
[

X +X ′ ≥ 2 | |F∞|]=O(|F∞|4/n2). (6.12)

Indeed, (6.7) and (6.8) readily imply that P
[

X ∨X ′ ≥ 2 | |F∞|]=O(|F∞|4/n2). Further, since X is indepen-
dent of X ′ given F∞, (6.7) and (6.8) also yield the bound P

[
X = X ′ = 1 | |F∞|]=O(|F∞|4/n2).

The assertion follows by combining (6.9)–(6.12) with Claim 6.8. �

Claim 6.10. For all χ ∈ {±1}{x1,...,x`} we have A†
χ ≤ |F∞|1{

m∗ ≤ n∗−`+1
}+n1

{
m∗ > n∗−`+1

}
.

Proof. The graph G(Φ∗) consists of at most ` components (one for each of the initial variables x1, . . . , x`). Hence,
m∗ ≥ n∗−` and G(Φ∗) is acyclic if m∗ = n∗−`. Moreover, if G(Φ∗) is acyclic then A†

χ ≤ |F∞| by construction.
Thus, we are left to consider the case m∗ = n∗−`+1. ThenΦ∗ contains a clause a such that G(Φ∗−a) is a forest

with ` components rooted at x1, . . . , x`. Assume without loss that a = xn−1 ∨ xn . Then by construction we have
{xn−1,¬xn−1}∩F∞ 6= ; and {xn ,¬xn}∩F∞ 6= ;. Further, unless ¬xn−1,¬xn ∈F∞ we have Aχ ≤ Iχ ≤ |F∞| as in the
first case. Hence, assume that ¬xn−1,¬xn ∈F∞. Let i ∈ [`] be such that xn belongs to the connected component of
xi in G(Φ∗−a) and obtain χ′ from χ by flipping the value assigned to xi . Because G(Φ∗−a) is a forest, we conclude
that A†

χ ≤ Iχ∧ Iχ′ ≤ |F∞|. �

Proof of Lemma 6.6. The choice of the clause probability p ensures that A†
χ stochastically dominates Aχ. There-

fore, the assertion follows from Claims 6.8–6.10. �

Proof of Lemma 6.5. The choice of the clause probability p and the construction of the set F∞ guarantee that Iχ is
stochastically dominated by the random variable |F∞|1{

m∗ ≤ n∗−`}+n1
{

m∗ > n∗−`}. Hence, Claims 6.8–6.10
imply the desired bound. �

Proof of Corollary 6.7. Let Y = {x1} and χ+x1
= 1, χ−x1

=−1. Assume thatΦ′ is satisfiable. Then Fact 6.4 implies that

n ∧
∣∣∣∣log

µΦ′ (σx1 = 1)

µΦ′ (σx1 =−1)

∣∣∣∣≤ Iχ− + Iχ+ .

Therefore, the assertion follows from Lemma 6.5. �

6.3. Proof of Proposition 6.2. Let c1, . . . ,c∆′′ be the new clauses added to Φ′′ and let Y = {y 1, z1, . . . , y∆′′ , z∆′′ } be
the set of variables that occur in these clauses. We begin by deriving the following rough bound.

Lemma 6.11. We have E

[
log2 Z (Φ′′)∨1

Z (Φ′)∨1

]
=O(1).
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Proof. IfΦ′ is unsatisfiable then so isΦ′′ and thus (Z (Φ′′)∨1)/(Z (Φ′)∨1) = 1. Hence, we may assume that Z (Φ′) ≥ 1.
If |Y | = 2∆′′, the new clauses attach to disjoint sets of variables. Consider the truth value assignmentχ ∈ {±1}Y that
satisfies both literals in each of the clauses c1, . . . ,c∆′′ . Fact 6.4 shows that

Z (Φ′′)∨1 ≥ Z (Φ′,χ)∨1 ≥ 2−AχZ (Φ′). (6.13)

Combining (6.13) with Lemma 6.6 and recalling that∆′′ d=Po(d/2), we obtain

E

[
1
{

Z (Φ′) ≥ 1, |Y | = 2∆′′} log2 Z (Φ′′)∨1

Z (Φ′)∨1

]
≤ E

[
1

{
Z (Φ′) ≥ 1, |Y | = 2∆′′} A2

χ

]
=O(1). (6.14)

Next, consider the event |Y | = 2∆′′−1. Because c1, . . . ,c∆′′ are drawn independently, we have

P
[|Y | = 2∆′′−1 |∆′′]≤O((∆′′)2/n). (6.15)

Moreover, because the signs of the clauses c1, . . . ,c∆′′ are independent of Φ′, given |Y | = 2∆−1 there exists an as-
signmentχ ∈ {±1}Y , stochastically independent ofΦ′, that satisfies c1, . . . ,c∆′′ . Fact 6.4 yields Z (Φ′′)∨1 ≥ Z (Φ′,χ) ≥
2−IχZ (Φ′). Therefore, since log((Z (Φ′′)∨1)/(Z (Φ′)∨1)) ≤ n, Lemma 6.5 and (6.15) imply

E

[
1

{
Z (Φ′) ≥ 1, |Y | = 2∆′′−1

}
log2 Z (Φ′′)∨1

Z (Φ′)∨1

]
≤ nE

[
1

{|Y | = 2∆′′−1
}

Iχ
]=O(1). (6.16)

Finally, consider the event |Y | < 2∆′′−1. Due to the independence of c1, . . . ,c∆′′ , this event occurs with proba-
bility O(n−2). Hence, the deterministic bound (Z (Φ′′)∨1)/(Z (Φ′)∨1) ≥ 2−n implies

E

[
1

{
Z (Φ′) ≥ 1, |Y | < 2∆′′−1

}
log2 Z (Φ′′)∨1

Z (Φ′)∨1

]
=O(1). (6.17)

The assertion follows from (6.14), (6.16) and (6.17). �
Lemma 6.12. There exists a number K > 0 such that for every ε> 0 we have

limsup
n→∞

E

[(
∆′′∑
i=1
Λε(1−µΦ′ (σy i

=−sign(ci , y i ))µΦ′ (σz i =−sign(ci , z i ))

)2

| Z (Φ′) > 0

]
≤ K .

Proof. Since ∆"
d=Po(d/2) and the pair (y 1, z1) is uniformly random, due to Cauchy-Schwarz it suffices to prove

limsupn→∞E
[
Λε(1−µΦ′ (σx1 = 1)µΦ′ (σx2 = 1))2 | Z (Φ′) > 0

]≤ K for every ε> 0. We observe that

limsup
n→∞

E
[
Λε(1−µΦ′ (σx1 = 1)µΦ′ (σx2 = 1))2 | Z (Φ′) > 0

]≤ limsup
n→∞

E
[
Λε(1−µΦ′ (σx1 = 1))2 | Z (Φ′) > 0

]

= limsup
n→∞

E

[
1

n

n∑
i=1
Λε(1−µΦ′ (σxi = 1))2 | Z (Φ′) > 0

]
. (6.18)

Moreover, Φ′ has m′ d=Po(dn/2−d/2) clauses, while Φ = Φn has m
d=Po(dn/2) clauses. Since dTV(m′,m) = o(1),

the formulasΦ′,Φ can be coupled such that both coincide w.h.p. Hence, for any fixed ε> 0 we have

E

[
1

n

n∑
i=1
Λε(1−µΦ′ (σxi = 1))2 | Z (Φ′)

]
= E

[
1

n

n∑
i=1
Λε(1−µΦ(σxi = 1))2 | Z (Φ′)

]
+o(1). (6.19)

Further, since for every ε> 0 the function u ∈ [0,1] 7→Λε(1−u)2 is continuous, Corollary 1.3 implies that

1

n

n∑
i=1
Λε(1−µΦ(σxi = 1))2 n →∞−→ E

[
Λε(1−µπd

)2
]

in probability. (6.20)

Since (2.1) shows that E
[
Λε(1−µπd

)2
]
≤ E

[
log2(1−µπd

)
]
<∞, the assertion follows from (6.18)–(6.20). �

Lemma 6.13. For any δ> 0 there exists ε> 0 such that

limsup
n→∞

∣∣∣∣E
[

log
Z (Φ′′)∨1

Z (Φ′)∨1

]
− d

2
E
[
Λε

(
1−µΦ′,x1

(s1)µΦ′,x2
(s2)

) | Z (Φ′)
]∣∣∣∣< δ.

Proof. Choose small enough ξ = ξ(δ) > η = η(ξ) > ε = ε(η) > 0, assume that n > n0(ε) is sufficiently large and let
(γn)n be a sequence of positive reals, depending on ξ and η, that tends to zero sufficiently slowly. Let E = En be the
event that the following five statements hold.

E1: Z (Φ′) > 0.
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E2: |Y | = 2∆′′.
E3: ∆′′ < ξ−1/4.
E4: for all y ∈ Y and all s ∈ {±1} we have µΦ′ (σy = s) < 1−2η.
E5:

∑
σ∈{±1}Y

∣∣µΦ(∀y ∈ Y :σy =σy )−∏
y∈Y µΦ(σy =σy )

∣∣< γn .

The first two events E1, E2 occur with probability 1−o(1) as n →∞. Moreover, P[E3] > 1−ξ if ξ is small enough.
Further, since Corollary 1.3 shows that πΦ converges to πd weakly in probability, the tail bound (2.1) implies that
P

[
E4 |∆′′ < ξ−1/4

] > 1 − ξ, provided that η is small enough. Additionally, Corollary 2.3 implies P [E5 | E1–E4] =
1−o(1) if γn → 0 slowly enough. Consequently,

P [E ] > 1−4ξ. (6.21)

Combining Lemma 6.11, (6.21) and the Cauchy-Schwarz inequality, we obtain
∣∣∣∣E

[
(1−1E ) log

Z (Φ′′)
Z (Φ′)

]∣∣∣∣≤ δ/3+o(1). (6.22)

Similarly, by Lemma 6.12, (6.21) and Cauchy-Schwarz,
∣∣∣∣∣E

[
(1−1E )

∆′′∑
i=1
Λε

(
1−µΦ′ (σy i

=−sign(y i ,ci ))µΦ′ (σz i =−sign(z i ,ci ))
)
]∣∣∣∣∣≤ δ/3+o(1). (6.23)

Further, because the distribution ofΦ′ is invariant under permutations of the variables x1, . . . , xn and E[∆′′] = d/2,

E

[
∆′′∑
i=1
Λε

(
1−µΦ′ (σy i

=−sign(y i ,ci ))µΦ′ (σz i =−sign(z i ,ci ))
) | Z (Φ′) > 0

]

= d

2
E
[
Λε

(
1−µΦ′ (σx1 = s1)µΦ′ (σx2 = s2)

) | Z (Φ′) > 0
]

. (6.24)

Moreover, on the event E we have

Z (Φ′′)
Z (Φ′)

=
∑

σ∈{±1}Y

1
{
σ satisfies c1, . . . ,c∆′′

}
µΦ′

(∀y ∈ Y :σy =σy
)

=
∑

σ∈{±1}Y

1
{
σ satisfies c1, . . . ,c∆′′

} ∏
y∈Y

µΦ′
(
σy =σy

)+o(1) [due to E3,E5]

=
∆′′∏
i=1

(
1−µΦ′

(
σy i

=−sign(y i ,ci )
)
µΦ′

(
σz i =−sign(z i ,ci )

))+o(1).

Therefore, by E4

E

[
1E log

Z (Φ′′)
Z (Φ′)

]
= E

[
1E

∆′′∑
i=1

log
(
1−µΦ′

(
σy i

=−sign(y i ,ci )
)
µΦ′

(
σz i =−sign(z i ,ci )

))
]
+o(1)

= E
[

1E
∆′′∑
i=1
Λε

(
1−µΦ′

(
σy i

=−sign(y i ,ci )
)
µΦ′

(
σz i =−sign(z i ,ci )

))
]
+o(1). (6.25)

Finally, the assertion follows from (6.22)–(6.25). �

Proof of Proposition 6.2. Proposition 2.1 shows thatµπd ,1 and 1−µπd ,1 are identically distributed. SinceΛε is con-
tinuous and bounded, Corollary 1.3 therefore implies that

lim
n→∞E

[
Λε

(
1−µΦ′,x1

(s1)µΦ′,x2
(s2)

)]= E
[
Λε

(
1−

(
1− s1

2
+ s1µπd ,1

)(
1− s2

2
+ s2µπd ,2

))]

= E
[
Λε

(
1−µπd ,1µπd ,2

)]
. (6.26)

for every ε> 0. Further, sinceΛε(1−µπd ,1µπd ,2) decreases monotonically to log(1−µπd ,1µπd ,2) as ε→ 0, the mono-
tone convergence theorem and (2.2) yield

lim
ε→0

E
[
Λε

(
1−µπd ,1µπd ,2

)]
= E log

(
1−µπd ,1µπd ,2

)
. (6.27)

Combining (6.26) and (6.27) and Lemma 6.13 completes the proof. �
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6.4. Proof of Proposition 6.3. The steps that we follow are analogous to the ones from the proof of Proposition 6.2.
Recall that Φ′′′ is obtained from Φ′ by adding one variable xn+1 along with random adjacent clauses b1, . . . ,b∆′′′ ,
where ∆′′′ is a Poisson variable with mean d . Let y 1, . . . , y∆′′′ ∈ {x1, . . . , xn} be the variables of Φ′ where the new
clauses attach and let Y = {y 1, . . . , y∆′′′ }. We begin with the following L2-bound.

Lemma 6.14. We have limsup
n→∞

E

[
log2 Z (Φ′′′)∨1

Z (Φ′)∨1

]
<∞.

Proof. If Φ′ is unsatisfiable, then so is Φ′′′ and thus (Z (Φ′′′) ∨ 1)/(Z (Φ′) ∨ 1) = 1. Hence, we may assume that
Z (Φ′) ≥ 1. We now consider three scenarios. First, suppose that |Y | =∆′′′, i.e., the new clauses attach to distinct
variables of Φ′. Then define an assignment χ ∈ {±1}Y by setting each y ∈ Y to the value that satisfies the unique
clause among b1, . . . ,b∆′′′ in which y occurs. We claim that

Z (Φ′′′)∨1 ≥ 2−AχZ (Φ′). (6.28)

Indeed, ifχ′ ∈ {±1}Y differs fromχ on only one variable, then we can always satisfy all clauses b1, . . . ,b∆′′′ by setting
xn+1 appropriately. Therefore, (6.28) follows from Fact 6.4 and the definition (6.3) of Aχ. Combining (6.28) with
Lemma 6.6, we obtain

E

[
1

{
Z (Φ′) ≥ 1, |Y | =∆′′′} log2 Z (Φ′′′)∨1

Z (Φ′)∨1

]
≤ E

[
1

{|Y | =∆′′′} A2
χ

]
=O(1). (6.29)

Second, consider the case |Y | =∆′′′−1. Because b1, . . . ,b∆′′′ are drawn independently, we have

P
[|Y | =∆′′′−1 |∆′′′]=O((∆′′′)2/n). (6.30)

Further, there exists an assignment χ ∈ {±1}Y under which all but one of the clauses b1, . . . ,b∆′′′ are satisfied. This
assignment is independent of Φ′ because the signs of b1, . . . ,b∆′′′ are. Since we can use the new variable xn+1 to
satisfy the last clause as well, Fact 6.4 implies the bound (Z (Φ′′′)∨ 1)/Z (Φ′) ≥ 2−Iχ . Therefore, Lemma 6.5 and
(6.30) yield

E

[
1

{
Z (Φ′) ≥ 1, |Y | =∆′′′−1

}
log2 Z (Φ′′)∨1

Z (Φ′)∨1

]
≤ E

[
1

{
Z (Φ′) ≥ 1, |Y | =∆′′′−1

}
I 2
χ

]

≤ nE
[
1

{|Y | =∆′′′−1
}

Iχ
]=O(1). (6.31)

Finally, because b1, . . . ,b∆′′′ are drawn independently, the event {|Y | <∆′′′−1} has probability O(n−2). Therefore,
the deterministic bound (Z (Φ′′′)∨1)/(Z (Φ′)∨1) ≥ 2−n ensures that

E

[
1
{

Z (Φ′) ≥ 1, |Y | <∆′′′−1
}

log2 Z (Φ′′′)∨1

Z (Φ′)∨1

]
=O(1). (6.32)

The assertion follows from (6.29), (6.31) and (6.32). �
Lemma 6.15. There exists K > 0 such that for every ε> 0 we have

limsup
n→∞

E

[
Λε

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
s 6= sign(xn+1,bi )

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)2

| Z (Φ′) > 0

]
≤ K .

Proof. Since∆′′′ d=Po(d/2), y 1, . . . , y∆′′′ and the signs sign(bi , y i ) are uniformly random, we obtain

E

[
Λε

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
s 6= sign(xn+1,bi )

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)2

| Z (Φ′) > 0

]

≤ 1+E
[
Λε

(
∆′′′∏
i=1

µΦ′ (σy i
= 1)

)2

| Z (Φ′) > 0

]
≤ 1+dE

[
Λε

(
µΦ′ (σy 1

= 1)
)2 | Z (Φ′) > 0

]
. (6.33)

Further, the formulasΦ′,Φ can be coupled such that both coincide w.h.p. (cf. the proof of Lemma 6.12). Therefore,
Corollary 1.3 implies that for every ε> 0,

E
[
Λε

(
µΦ′ (σy 1

= 1)
)2 | Z (Φ′) > 0

]
= E

[
Λε

(
µπΦ

)2 | Z (Φ) > 0
]
+o(1) = E

[
Λε

(
µ2
πd

)]
+o(1) ≤ E

[
log2µπd

]
+o(1).

(6.34)

Since (2.1) implies that E
[

log2µπd

]
<∞, the assertion follows from (6.33)–(6.34). �
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Lemma 6.16. For any δ> 0 there exists ε0 > 0 such that for every 0 < ε< ε0,∣∣∣∣∣E
[

log
Z (Φ′′′)∨1

Z (Φ′)∨1

]
−E

[
Λε

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µΦ′ (σxi = s ′i )

)
)
| Z (Φ′) > 0

]∣∣∣∣∣< δ+o(1).

Proof. Choose small enough ξ = ξ(δ) > η = η(ξ) > ε = ε(η) > 0, assume that n > n0(ε) is sufficiently large and let
(γn)n be a sequence of numbers γn > 0 that tends to zero slowly. Let E = En be the event that the following five
statements are satisfied.

E1: Z (Φ′) > 0.
E2: |Y | =∆′′′.
E3: ∆′′′ < ξ−1/4.
E4: for all y ∈ Y we have µΦ′ (σy = 1)∨µΦ′ (σy =−1) < 1−2η.
E5:

∑
σ∈{±1}Y

∣∣µΦ(∀y ∈ Y :σy =σy )−∏
y∈Y µΦ(σy =σy )

∣∣< γn .

As in the proof of Lemma 6.13 we obtain P [E ] > 1− 4ξ. Hence, Lemmas 6.14 and 6.15 and the Cauchy-Schwarz
inequality yield

∣∣∣∣E
[

(1−1E ) log
Z (Φ′′′)
Z (Φ′)

]∣∣∣∣≤ δ/3+o(1), (6.35)
∣∣∣∣∣E

[
(1−1E )Λε

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
s 6= sign(xn+1,bi )

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)
| Z (Φ′) > 0

]∣∣∣∣∣≤ δ/3+o(1). (6.36)

Moreover, because the distribution ofΦ′ is invariant under variable permutations,

E

[
Λε

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
s 6= sign(xn+1,bi )

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)
| Z (Φ′) > 0

]

= E
[
Λε

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µΦ′ (σxi = s ′i )

)
)
| Z (Φ′) > 0

]
+o(1). (6.37)

Further, on E we obtain

Z (Φ′′′)
Z (Φ′)

=
∑

σ∈{±1}Y ∪{xn+1}

1
{
σ satisfies b1, . . . ,b∆′′′

}
µΦ′

(∀y ∈ Y :σy =σy
)

=
∑

σ∈{±1}Y ∪{xn+1}

1
{
σ satisfies b1, . . . ,b∆′′′

} ∏
y∈Y

µΦ′
(
σy =σy

)+o(1) [due to E3,E5]

=
∑

s∈{±1}

∏
i∈[∆′′′]

sign(xn+1,bi )=−s

µΦ′ (σy i
= sign(y i ,bi )) ; (6.38)

to elaborate, in the last step s represents the value assigned to xn+1 and the product ensures that the clauses bi in
which xn+1 occurs with sign −s are satisfied by assigning their second variable y i the value sign(y i ,bi ). Further,
(6.38), E3 and E4 yield

E

[
1E log

Z (Φ′′′)
Z (Φ′)

]
= E

[
1E log

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
sign(xn+1,bi ) =−s

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)]

+o(1)

= E
[

1EΛε

( ∑
s∈{±1}

∆′′′∏
i=1

(
1−1

{
sign(xn+1,bi ) =−s

}
µΦ′ (σy i

=−sign(y i ,bi ))
)
)]

+o(1) (6.39)

Finally, the assertion follows from (6.35), (6.36), (6.37) and (6.39). �

Proof of Proposition 6.2. Because µπd ,1
d=1−µπd ,1 by Proposition 2.1, Corollary 1.3 shows that for every ε> 0,

lim
n→∞E

[
Λε

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µΦ′ (σxi = s ′i )

) | Z (Φ′) > 0

)]
= E

[
Λε

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µπd ,i

))]
. (6.40)

Further, the dominated convergence theorem and (2.2) yield

lim
ε→0

E

[
Λε

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µπd ,i

))]
= E log

( ∑
s∈{±1}

d∏
i=1

(
1−1 {s 6= si }µπd ,i

))
. (6.41)
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To complete the proof we combine (6.40), (6.41) and Lemma 6.13. �

7. PROOF OF PROPOSITION 2.6

Tools such as Azuma’s inequality do not apply to the number Z (Φ) of satisfying assignments because adding or
removing even a single clause could change Z (Φ) by an exponential factor. Therefore, we prove Proposition 2.6 by
way of a ‘soft’ version of the random 2-SAT problem. Specifically, for a real β > 0 we define Zβ(Φ) via (3.1). Thus,
instead of dismissing assignments σ 6∈ S(Φ) outright, we charge an exp(−β) penalty factor for each violated clause.
Because the constraints are soft, showing that log Zβ(Φ) concentrates is a cinch.

Lemma 7.1. For all t ,β> 0 we have P
[∣∣log Zβ(Φ)−E[log Zβ(Φ)]

∣∣> t | m
]≤ 2exp

(
− t 2

2mβ2

)
.

Proof. Since adding or removing a single clause can alter Zβ(Φ) by at most a factor exp(±β), the assertion follows
from Azuma’s inequality. �

The following statement, whose proof relies on the interpolation method from mathematical physics, will en-
able us to link the random variables log Zβ(Φ) and log Z (Φ). For a probability measure p ∈P (0,1) and β> 0 let

Bβ(p) = E
[

log
∑

s=±1

d∏
i=1

(
1−1{si 6= s}

1−exp(−β)

2

(
1− s ′i +2s ′iµp,i

))]

− d

2
E

[
log

(
1− 1−exp(−β)

4

(
1− s1 +2s1µp,1

)(
1− s2 +2s2µp,2

))]
. (7.1)

These two expectations exist and are finite because 0 ≤ β<∞. (More precisely, their absolute values are bounded
by log2+βd and β, respectively.)

Lemma 7.2 ([42, Theorem 1]). For any p ∈P (0,1) and any 0 ≤β<∞ we have limn→∞ 1
n E log Zβ(Φ) ≤Bβ(p).

Combining Lemmas 7.1 and 7.2, we obtain the following bound for ‘hard’ 2-SAT.

Corollary 7.3. For any β> 0 we have limn→∞P
[
log Z (Φ) > nBβ(πd )+n2/3

]= 0.

Proof. We have Zβ(Φ) ≥ Z (Φ) and Lemmas 7.1 and 7.2 imply limn→∞P
[
log Zβ(Φ) > nBβ(πd )+n2/3

]= 0. �

Proof of Proposition 2.6. We begin by observing that the limit limβ→∞Bβ(πd ) exists and is finite. First, there is the
pointwise and monotone convergence of the integrands:

log
∑

s=±1

d∏
i=1

(
1−1{si 6= s}

1−exp(−β)

2

(
1− s ′i +2s ′iµπd ,i

))
β→∞−→ log

∑
s=±1

d∏
i=1

(
1− 1{si 6= s}

2

(
1− s ′i +2s ′iµπd ,i

))
, (7.2)

log

(
1− 1−exp(−β)

4

(
1− s1 +2s1µπd ,1

)(
1− s2 +2s2µπd ,2

))
β→∞−→ log

(
1− 1

4

(
1− s1 +2s1µπd ,1

)(
1− s2 +2s2µπd ,2

))
.

(7.3)

Further, sinceµπd

d=1−µπd
by Proposition 2.1 and because 1−s+2sµπd

equals either 2µπd
or 2(1−µπd

), we obtain

log
∑

s=±1

d∏
i=1

(
1− 1{si 6= s}

2

(
1− s ′i +2s ′iµπd ,i

))
d= log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
, (7.4)

d

2
log

(
1− 1

4

(
1− s1 +2s1µπd ,1

)(
1− s2 +2s2µπd ,2

))
d= d

2
log

(
1−µπd ,1µπd ,2

)
. (7.5)

Moreover, Proposition 2.1 shows that the monotone limits are integrable and therefore an application of the mono-
tone convergence theorem to (7.2) and (7.3), followed by the simplifications (7.4), (7.4), yields the identity

lim
β→∞

Bβ(πd ) = E
[

log

(
d−∏
i=1
µπd ,i +

d+∏
i=1
µπd ,i+d−

)
− d

2
log

(
1−µπd ,1µπd ,2

)]
=B∞(πd ) <∞.

Further, Corollary 2.5 shows that B∞(πd ) = limn→∞ n−1E[log(Z (Φ)∨1)]. Therefore, Corollary 7.3 implies that

P
[
n−1 log(Z (Φ)∨1) >B∞(πd )+ε]= o(1) for any ε> 0. (7.6)
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To complete the proof, we upper bound

n−1E
∣∣log(Z (Φ)∨1)−E[log(Z (Φ)∨1)]

∣∣≤ E
∣∣n−1 log(Z (Φ)∨1)−B∞(πd )

∣∣+
∣∣B∞(πd )−E[log(Z (Φ)∨1)]

∣∣ . (7.7)

Due to Corollary 2.5, the second term on the r.h.s. of (7.7) tends to zero. On the other hand, (7.6) and Corollary 2.5
yield that for any ε> 0,

E
∣∣n−1 log(Z (Φ)∨1)−B∞(πd )

∣∣≤ E[
B∞(πd )−n−1 log(Z (Φ)∨1)

]+2ε+o(1) = 2ε+o(1),

as desired. �
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THE CUT METRIC FOR PROBABILITY DISTRIBUTIONS

AMIN COJA-OGHLAN, MAX HAHN-KLIMROTH∗

ABSTRACT. Guided by the theory of graph limits, we investigate a variant of the cut metric for limit objects of sequences
of discrete probability distributions. Apart from establishing basic results, we introduce a natural operation called pin-
ning on the space of limit objects and show how this operation yields a canonical cut metric approximation to a given
probability distribution akin to the weak regularity lemma for graphons. We also establish the cut metric continuity of
basic operations such as taking product measures. MSc: 60C05, 60B10

1. INTRODUCTION AND RESULTS

1.1. Background and motivation. The theory of graph limits clearly qualifies as one of the great recent success
of modern combinatorics [6, 7, 32, 34]. Exhibiting a complete metric space of limit objects of sequences of finite
graphs, the theory strikes a link between combinatorics and analysis. In fact, the notion of graphon convergence
unifies several combinatorially meaningful concepts, such as convergence of subgraph counts or with respect to
the cut metric. In effect, combinatorial ideas admit neat analytic interpretations. For instance, the Szemerédi
regularity lemma yields the compactness of the graphon space [35].

While sequences of graphs occur frequently in combinatorics (e.g., in the theory of random graphs), sequences
of probability distributions on increasingly large discrete domains play no less prominent a role in the mathemat-
ical sciences. For instance, such sequences are the bread and butter of mathematical physics. A classical example
is the Ising model on a d-dimensional integer lattice of side length n, a model of ferromagnetism. The Ising model

renders a probability measure, the so-called Boltzmann distribution, on the space {−1,+1}[n]d
that captures the

distribution of the magnetic spins of the nd vertices. The objective is to extract properties of this probability dis-
tribution in the limit of large n such as the nature of correlations. While mathematical physics has a purpose-built
theory of limits of probability measures on lattices [23], this theory fails to cover other classes of important statisti-
cal mechanics models, such as mean-field models that ‘live’ on random graphs [38]. Additionally, in statistics and
data science sequences of discrete probability distributions arise naturally, e.g., as the empirical distributions of
samples as more data are acquired.

The purpose of this paper is to show how the theory of graph limits can be adapted and extended to obtain
a coherent theory of limits of probability distributions on discrete cubes. First cursory steps were already taken
in an earlier contribution [14]. For instance, a probabilistic version of the cut metric was defined in that paper.
Moreover, Austin [4], Diaconis and Janson [19] and (later) Panchenko [43] pointed out the connection between
the theory of graph limits and the Aldous-Hoover representation [1, 25, 29]. But thus far a complete and concise
disquisition has been lacking. We therefore develop the basics of a cut-norm based limiting theory for probability
measures, including the completeness and compactness of the space of limiting objects, a kernel representation,
a sampling theorem and a discussion of the connection with exchangeable arrays. Some of the proofs rely on
arguments similar to the ones used in the theory of graph limits, and none of them will come as a gross surprise
to experts. In fact, a few statements (such as the compactness of the space of limiting objects) already appeared
in [14], albeit without detailed proofs, and a few others (such as the characterisation of exchangeable arrays) are
generalisations of results from [19]. But here we present unified proofs of these basic results in full generality to
provide a coherent and mostly self-contained treatment that, we hope, will facilitate applications.

Additionally, and this constitutes the main technical novelty of the paper, we present a new construction of reg-
ular partitions for limit objects of discrete probability distributions that constitutes a continuous generalisation of
the pinning operation for discrete probability distributions from [11, 40, 45]. The result provides an approximation
akin to the graphon version of the Frieze-Kannan regularity lemma [21]. The pinning operation merely involves
a purely mechanical reweighting of the probability distribution. The ‘obliviousness’ of the operation was critical
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to work on spin glass models on random graphs and on inference problems [11, 12, 13, 14]. We show that a simi-
larly oblivious procedure carries over naturally to the space of limit objects. The proof, which hinges on a delicate
analysis of cut norm approximations, constitutes the main technical achievement of the paper.

1.2. Results. We proceed to set out the main concepts and to state the main results of the paper. A detailed account
of related work follows in Section 1.3. The cut metric is a mainstay of the theory of graph limits. An adaptation for
probability measures was suggested in [13, 14]. Let us thus begin by recalling this construction.

1.2.1. The cut metric. Let Ω 6= ; be a finite set and let n ≥ 1 be an integer. Further, for probability distributions
µ,ν on the discrete cube Ωn let Γ(µ,ν) be the set of all couplings of µ,ν, i.e., all probability distributions γ on the
product spaceΩn×Ωn with marginal distributionsµ,ν. Additionally, letSn be the set of all permutations [n] → [n].
Following [13], we define the (weak) cut distance of µ,ν as

∆⊠(µ,ν) = inf
γ∈Γ(µ,ν)
ϕ∈Sn

sup
S⊂Ωn×Ωn

X⊂[n]
ω∈Ω

1

n

∣∣∣∣∣∣∣

∑
(σ,τ)∈S

x∈X

γ(σ,τ)
(
1{σx =ω}−1{τϕ(x) =ω}

)
∣∣∣∣∣∣∣
. (1.1)

The idea is that we first get to align µ,ν as best as possible by choosing a suitable coupling γ along with a permu-
tation ϕ of the n coordinates. Then an adversary comes along and points out the largest remaining discrepancy.
Specifically, the adversary picks an event S ⊂Ωn ×Ωn under the coupling, a set X ⊂ [n] of coordinates and an el-
ement ω ∈ Ω and reads off the discrepancy of the frequency of ω on S, X . It is easily verified that (1.1) defines a
pre-metric on the space Ln = Ln(Ω) of probability distribution on Ωn . Thus, ∆⊠( · , · ) is symmetric and satisfies
the triangle inequality. But distinct µ,ν need not satisfy ∆⊠(µ,ν) > 0. Hence, to obtain a metric space Ln =Ln(Ω)
we identify any µ,ν ∈Ln with ∆⊠(µ,ν) = 0.

Following [14], we embed the spaces Ln into a joint space L . Specifically, let P (Ω) be the space of all probabil-
ity distributions onΩ. We identify P (Ω) with the standard simplex in Rn and thus endow P (Ω) with the Euclidean
topology and the corresponding Borel algebra. Further, let S be the space of all measurable mapsσ : [0,1] →P (Ω),
σ 7→σx , up to equality (Lebesgue-)almost everywhere. We equip S with the L1-metric

D1(σ,τ) =
∑
ω∈Ω

∫1

0
|σx (ω)−τx (ω)|dx (σ,τ ∈S )

and the corresponding Borel algebra, thus obtaining a complete, separable metric space. The space L is defined
as the space of all probability measures on S .

Much as in the discrete case, for probability distributions µ,ν on S we let Γ(µ,ν) be the space of all couplings of
µ,ν, i.e., probability distributions γ on S ×S with marginals µ,ν. Moreover, let S be the space of all measurable
bijections ϕ : [0,1] → [0,1] such that both ϕ and its inverse ϕ−1 map the Lebesgue measure to itself.1 Then the cut
distance of µ,ν is defined by the expression

D⊠
(
µ,ν

)= inf
γ∈Γ(µ,ν)
ϕ∈S

sup
S⊂S ×S
X⊂[0,1]
ω∈Ω

∣∣∣∣
∫

S

∫

X

(
σx (ω)−τϕ(x)(ω)

)
dxdγ(σ,τ)

∣∣∣∣ , (1.2)

where, of course, S, X range over measurable sets. Thus, as in the discrete case we first align µ,ν as best as pos-
sible by choosing a coupling and a suitable ‘permutation’ ϕ. Then the adversary puts their finger on the largest
remaining discrepancy. One easily verifies that (1.2) defines a pre-metric on L . Thus, identifying any µ,ν with
D⊠

(
µ,ν

)= 0, we obtain a metric space L. The points of this space we callΩ-laws.

Theorem 1.1. The metric space L is compact.

Theorem 1.1 was already stated in [14], but no detailed proof was included. We will give a full proof based on a
novel analytic argument in Section 3.

What is the connection between the spaces Ln and the ‘limiting space’ L? As pointed out in [14], a probability
distribution µ on Ωn naturally induces an Ω-law. Indeed, we represent each σ ∈Ωn by a step function σ̇ : [0,1] →
P (Ω) whose value on the interval [(i −1)/n, i /n) is just the atom δσi ∈ P (Ω) for each i ∈ [n]. (This construction

1We recall that on a standard Borel space the inverse map ϕ−1 is measurable as well, see Lemma 2.2.
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is somewhat similar to the one proposed for ‘decorated graphs’ in [33].) Then we let µ̇ ∈ L be the distribution of
σ̇ ∈S for σ chosen from µ; in symbols,

µ̇=
∑

σ∈Ωn
µ(σ)δσ̇ ∈L .

Thus, we obtain a map Ln →L , µ 7→ µ̇. The definition of the cut metric guarantees that D⊠(µ̇, ν̇) = 0 if ∆⊠(µ,ν) =
0. Consequently, the map µ 7→ µ̇ induces a map Ln →L. The following statement shows that this map is in fact an
embedding, and that therefore the space L unifies all the spaces Ln , n ≥ 1.

Theorem 1.2. There exists a function d : [0,1] → [0,1] with d−1(0) = {0} such that for all n ≥ 1 and all µ,ν ∈ Ln we
have d(∆⊠(µ,ν)) ≤ D⊠(µ̇, ν̇) ≤∆⊠(µ,ν).

We will see a few examples of convergence in the cut metric momentarily. But let us first explore a convenient
representation of the space L.

Remark 1.3. The definition of the space L is based on measurable functions σ : [0,1] →P (Ω). Of course, one could
replace the unit interval by another atomless probability space, and this may be natural/convenient in some situa-
tions. (The definition of the product and direct sum in Section 1.2.6 below could be quoted as a case a point.) But the
use of the unit interval is without loss of generality (see Lemma 2.3 below).

1.2.2. The kernel representation. As in the case of graph limits, Ω-laws can naturally be represented by functions
on the unit square that we call kernels. To be precise, let K be the set of all measurable maps κ : [0,1]2 → P (Ω),
(s, x) 7→ κs,x , up to equality almost everywhere. For κ,κ′ ∈K we define, with S, X ranging over measurable sets,

D⊠(κ,κ′) = inf
ϕ,ϕ′∈S

sup
S,X⊂[0,1]
ω∈Ω

∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κ′ϕ(s),ϕ′(x)(ω)

)
dxds

∣∣∣∣ . (1.3)

As before (1.3) defines a pre-metric on K . We obtain a metric space K by identifying κ,κ′ ∈K with D⊠(κ,κ′) = 0.
There is a natural map K → L . Namely, for a kernel κ and s ∈ [0,1] let κs : [0,1] → P (Ω) be the measurable

map x 7→ κs,x . This map belongs to the space S . Thus, κ induces a probability distribution µκ on S , namely the
distribution of κs for a uniformly random s ∈ [0,1]. The definition of the cut distance guarantees that D⊠(µκ,µκ

′
) =

0 if D⊠(κ,κ′) = 0. Therefore, as pointed out in [14], the map κ 7→µκ induces a map K→L.

Theorem 1.4. The map K→L induced by κ 7→µκ is an isometric bijection.

Thus, anyΩ-law µ can be represented by anΩ-kernel, which we denote by κµ.

Example 1.5. WithΩ= {0,1} let µ(n) ∈Ln be uniformly distributed over all σ ∈ {0,1}n with even parity. In symbols,

µ(n)(σ) = 21−n 1

{
n∑

i=1
σi ≡ 0 mod 2

}
.

Similarly, let ν(n) be uniformly distributed on the set ofσ ∈ {0,1}n with odd parity. Thenµ(n),ν(n) have total variation
distance one for all n because they are supported on disjoint subsets of {0,1}n . Nevertheless, in the cut distance both
sequences (µ(n))n , (ν(n))n converge to the common limit µ= δu ∈L supported on u : [0,1] →P ({0,1}), x 7→ (1/2,1/2).
Specifically, we claim that

∆⊠(µ(n),ν(n)) =O(n−1), D⊠(µ̇(n),µ) =O(n−1/2). (1.4)

To verify the first bound, consider the following coupling γ(n): choose the first n−1 bitsσ1, . . . ,σn−1 ∈ {0,1} uniformly
and independently and choose σn ∈ {0,1} so that

∑n
i=1σi ≡ 0 mod 2. Then γ(n) ∈ P (Ωn ×Ωn) is the distribution of

((σ1, . . . ,σn), (σ1, . . . ,1−σn)). In effect, under γ(n) the two n-bit vectors differ in exactly one position, whence the first
part of (1.4) follows from (1.1). The second bound in (1.4) follows from the central limit theorem.

Example 1.6. Let µ(n) be the probability distribution on {0,1}n induced by the following experiment. First, pick
s ∈ [0,1] uniformly at random. Then, given s, obtainσ ∈ {0,1}n by lettingσi = 1 with probability i s/n independently
for each i ∈ [n]. In formulas,

µ(n)(σ) =
∫1

0

n∏
i=1

(
i s

n

)σi
(
1− i s

n

)1−σi

ds.
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FIGURE 1. The maps (s, x) ∈ [0,1]2 7→ κ(n)
s,x (1) for n = 4,8,12 and the limiting kernel (s, x) 7→ κs,x (1)

from Example 1.6.

Kernel representations κ(n) of µ(n) are displayed in Figure 1 for some values of n. The sequence κ(n) converges to the
kernel κ : [0,1]2 →P ({0,1}) defined by κs,x (1) = sx, κs,x (0) = 1− sx.

Example 1.7. The Curie-Weiss model is an (extremely) simple model of ferromagnetism. The vertices of a complete
graph of order n correspond to iron atoms that can take one of two possible magnetic spins ±1. Energetically it is
beneficial for atoms to be aligned and the impact of the energetic term is governed by a temperature parameter T > 0.
To be precise, the Boltzmann distribution µ(n) on {±1}n defined by

µ(n)
T (σ) ∝ exp

(
T

n

∑
1≤i< j≤n

σiσ j

)

captures the distribution of spin configurations at a given temperature. The Curie-Weiss model is completely un-
derstood mathematically and it is well known that a phase transition occurs at T = 1. In the framework of the cut
distance, this phase transition manifests itself in the different limits that the sequence (µ(n)

T )n converges to. Specifi-
cally, the kernel κT representing the limit reads

κT : (s, x) ∈ [0,1]2 7→ (1/2,1/2) for T ≤ 1,

κT : (s, x) ∈ [0,1]2 7→
{

((1+mT )/2,(1−mT )/2) if s ≤ 1/2,

((1−mT )/2,(1+mT )/2) if s > 1/2
for T > 1,

where 0 < mT < 1 is the unique zero of mT /T − ln(1+mT )/2+ ln(1−mT )/2 for T > 1.

1.2.3. Counting and sampling. In the theory of graph limits convergence with respect to the cut metric is equiv-
alent to convergence of subgraph counts. We are going to derive a similar equivalence for Ω-laws. In fact, we are
going to derive an extension of this result that links the cut metric to the theory of exchangeable arrays. We recall
that a probability distribution Ξ on the space ΩN×N of infinite Ω-valued arrays is exchangeable if the following is
true. If X Ξ = (X Ξ(i , j ))i , j≥1 ∈ ΩN×N is drawn randomly from Ξ, then for any integer n and for any permutations
ϕ,ψ : [n] → [n] the random n ×n-arrays

(X Ξ(i , j ))i , j∈[n] and (X Ξ(ϕ(i ),ψ( j )))i , j∈[n]

are identically distributed. Let X=X(Ω) denote the set of all exchangeable distributions. Since the product space
ΩN×N is compact by Tychonoff’s theorem, endowed with the weak topology X is a compact, separable space.

A kernel κ ∈ K naturally induces an exchangeable distribution. Specifically, let s1, x1, s2, x2, . . . ∈ [0,1] be mu-
tually independent uniformly distributed random variables. We obtain a random array X κ ∈ ΩN×N by drawing
independently for any i , j ∈N an element X κ(i , j ) ∈Ω from the distribution κsi ,x j ∈P (Ω). Clearly, the distribution
Ξκ of X κ is exchangeable. By extension, a probability distribution π on K induces an exchangeable distribution as
well. Indeed, with κπ ∈K drawn from π, we letΞπ ∈X be the distribution of the random array X π ∈ΩN×N obtained
by first drawing κπ independently of the (sk , xℓ)k,l≥1 and then drawing each entry X π(i , j ) from κπsi ,x j

. We equip
the space P (K) of probability measures on K with the weak topology.

Theorem 1.8. The map P (K) →X, π 7→Ξπ is a homeomorphism.

For the special caseΩ= {0,1} Theorem 1.8 is the directed graph version of [19, Theorem 5.3].
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For µ ∈L let us write X µ for the exchangeable array X κµ induced by a kernel representation of µ. Suppose that
(µN )N≥1 is a sequence of Ω-laws that converges to µ ∈ L. Then Theorem 1.8 shows that for any n ≥ 1 and for any
τ= (τi , j )i , j∈[n] ∈Ωn×n ,

lim
N→∞

P
[∀i , j ∈ [n] : X µN (i , j ) = τi , j

]=P[∀i , j ∈ [n] : X µ(i , j ) = τi , j
]

. (1.5)

Conversely, if µN ,µ ∈L are such that (1.5) holds for all n,τ, then Theorem 1.8 implies that limN→∞ D⊠(µN ,µ) = 0.
Thus, with Ωn×n-matrices replacing subgraphs, Theorem 1.8, provides the probabilistic counterpart of the equiv-
alence of subgraph counting and graphon convergence [32, Theorem 11.5].

Additionally, the theory of graph limits shows that a large enough random graph obtained from a graphon by
sampling is close to the original graphon in the cut metric. There is a corresponding statement in the realm of
probability distributions as well. Specifically, for an integer n ≥ 1 let µn ∈P (Ωn) be the discrete probability distri-
bution defined by

µn(σ) = 1

n

n∑
i=1

1
{∀ j ∈ [n] : X µ(i , j ) =σ j

}
(σ ∈Ωn).

In words, µn is the empirical distribution of the rows of (X µ(i , j ))i , j∈[n]. Strictly speaking, being dependent on the
random coordinates (si , x j )i , j≥1, µn is a random probability distribution onΩn . The following theorem supplies a
probabilistic version of the sampling theorem for graphons [6, Lemma 4.4].

Theorem 1.9. There exists c = c(Ω) > 0 such that for all n > 1 and all µ ∈L we have E
[
D⊠(µ,µn)

]≤ c/
√

logn.

The following theorem implies that the dependence on n in Theorem 1.9 is best possible, apart from the value
of the constant c.

Theorem 1.10. There is a constant c > 0 such that for any ε> 0 there exists µ ∈L such that D⊠(µ,ν) ≥ ε for all ν ∈L

whose support contains at most exp(c/ε2) configurations.

1.2.4. Extremality. Among all the probability measures on the discrete domain Ωn , the product measures are
clearly the simplest. We will therefore be particularly interested in distributions that are close to product mea-
sures in the cut metric. To this end, for a probability measure µ onΩn we let

µ̄i (σ) =
∑
τ∈Ωn

1 {τi =σ}µ(τ) for σ ∈Ω, and µ̄=
n⊗

i=1
µ̄i .

Thus, µ̄i ∈ P (Ω) is the marginal distribution of the i th coordinate under the measure µ, and µ̄ is the product
measure with the same marginals as µ. Then ∆⊠(µ, µ̄) gauges how ‘similar’ µ is to a product measure. To be
precise, since the cut metric is quite weak, a ‘small’ value of ∆⊠(µ, µ̄) need not imply that µ behaves like a product
measure in every respect. For instance, the entropy of µ might be much smaller than that of µ̄. But if ∆⊠(µ, µ̄) is
small, then (1.5) implies that the joint distribution of a bounded number of randomly chosen coordinates of µ is
typically close to a product measure in total variation distance.

A similar measure of proximity to a product distribution is meaningful on the space ofΩ-laws as well. Formally,
for µ ∈L define µ̄ ∈L as the atom concentrated on the single function

[0,1] →P (Ω), x 7→
∫

S
σx dµ(σ). (1.6)

Since D⊠(µ̄, ν̄) = 0 whenever D⊠(µ,ν) = 0, (1.6) induces a map µ ∈L 7→ µ̄ ∈L. The laws µ̄ with µ ∈L represent the
generalisation of discrete product measures. Since each µ ∈ L is represented by a distribution on S that places
all the probability mass on a single point, we call the laws µ̄ extremal. Moreover, µ ∈ L is called ε-extremal if
D⊠(µ, µ̄) < ε. The following result summarises basic properties of extremal laws and of the map µ 7→ µ̄.

Theorem 1.11. For all µ,ν ∈L we have

D⊠(µ̄, ν̄) ≤ D⊠(µ,ν) and (1.7)

D⊠(µ̄, ν̄) ≤ max
ω∈Ω

∫1

0

∣∣∣∣
∫

S
σx dµ(σ)−

∫

S
σx dν(σ)

∣∣∣∣dx ≤ 2D⊠(µ̄, ν̄). (1.8)

Furthermore, the set of extremal laws is a closed subset of L.
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1.2.5. Pinning. The regularity lemma constitutes one of the most powerful tools of modern combinatorics. In a
nutshell, the lemma shows that any graph can be approximated by a mixture of a bounded number of ‘simple’
graphs, namely quasi-random bipartite graphs. We will present a corresponding result for probability measures,
respectively laws. Specifically, we will show that any law can be approximated by a mixture of a small number of
extremal laws. Indeed, we will show that actually this approximation can be obtained by a simple, mechanical
procedure called ‘pinning’. This is in contrast to the proof of the graphon regularity lemma, where the regular
partition results from a delicate construction that involves tracking a potential function.

To describe the pinning procedure, consider µ ∈L , θ ≥ 1, x1, . . . , xθ ∈ [0,1] and τ ∈Ωθ. Then we define

zµ(τ, x1, . . . , xθ) =
∫

S

θ∏
i=1

σxi (τi )dµ(σ).

Further, assuming that zµ(τ, x1, . . . , xθ) > 0, we define a reweighted probability distribution µτ↓x1,...,xθ by

dµτ↓x1,...,xθ (σ) = 1

zµ(τ, x1, . . . , xθ)

θ∏
i=1

σxi (τi )dµ(σ); (1.9)

Thus, µτ↓x1,...,xθ is obtained by reweighting µ according to the ‘reference configuration’ τ, evaluated at the coordi-
nates x1, . . . , xθ . For completeness we also let µτ↓x1,...,xθ =µ if zµ(τ, x1, . . . , xθ) = 0.

The effect of this reweighting procedure becomes particularly interesting if the reference configuration and the
coordinates are chosen randomly. Specifically, let x̂1, x̂2, . . . ∈ [0,1] be uniform and mutually independent. Further,
for an integer θ ≥ 1 draw τ̂= τ̂µ ∈Ωθ from the distribution

P
[
τ̂µ = τ | x̂1, . . . , x̂θ

]= zµ(τ)

zµ
, where zµ(τ) =

∫1

0

θ∏
i=1

σx̂ i (τi )dµ(σ), zµ =
∑
τ∈Ωθ

zµ(τ). (1.10)

Equivalently, and perhaps more intuitively, we can describe the choice of τ̂ as follows. First, draw τ ∈S from the
distribution µ; then pick τ̂ from the product measure τx1 ⊗ ·· ·⊗τxθ ∈ P (Ωθ). Now, having drawn the ‘reference
vector’ τ̂, we obtain the reweighted distribution µτ̂↓θ =µτ̂↓x̂1,...,x̂θ as defined in (1.9). Clearly, (1.10) guarantees that
zµ(τ̂) > 0 almost surely. Finally, we define

µ↓θ = E
[
µτ̂↓θ | x1, . . . , xθ

] ∈L .

Hence, µ↓θ weights each possible outcome according to the probability of its reference configuration τ̂. The dis-
crete version of the operation µ 7→ µ↓θ for µ ∈ Ln was introduced in [13]. Following the terminology from that
paper, we refer to the map µ 7→µτ̂↓θ as the pinning operation. The term is explained by the fact that in the discrete
case, each of the products on the r.h.s. of (1.9) is either one or zero.

The next theorem shows that pinning furnishes a probabilistic equivalent of weak regular graphon partitions.
To state this result, we observe that the pinning construction is well-defined on the space L as well. To be precise,
if µ,ν ∈L have cut distance zero, then µσ̂↓θ ,νσ̂↓θ are identically distributed, and so are µ↓θ and ν↓θ. Consequently,
we can apply the pinning operation directly to elements of the space L.

Theorem 1.12. Let 0 < ε< 1, let µ ∈L and draw 0 ≤ θ = θ(ε) ≤ 64ε−8 log |Ω| uniformly and independently of every-
thing else. Then P

[
µτ̂↓θ is ε-extremal

]≥ 1−ε and E[D⊠(µ,µ↓θ)] < ε.

Hence, the law µ↓θ , a mixture of no more than |Ω|θ extremal laws, likely provides an ε-approximation to µ.

1.2.6. Continuity and overlaps. There are certain natural operations on probability measures and, by extension,
laws that turn out to be continuous with respect to the cut metric. First, we consider the construction of the
product measure. For discrete measures µ,ν ∈Ln(Ω) we can view their product µ⊗ν as a probability distribution
on (Ω×Ω)n such that for any σ1,τ1, . . . ,σn ,τn ∈Ω,

µ⊗ν
((
σ1

τ1

)
, . . . ,

(
σn

τn

))
=µ(σ1, . . . ,σn)ν(τ1, . . . ,τn).

We extend this construction to laws by way of the kernel representation. To this end, let Λ : [0,1] → [0,1]× [0,1],
x 7→ (Λ1(x),Λ2(x)) be a measurable bijection that maps the Lebesgue measure on [0,1] to the Lebesgue measure
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on [0,1]2 such that, conversely, Λ−1 maps the Lebesgue measure on [0,1]2 to the Lebesgue measure on [0,1].2

Following [14], for measurable maps κ,κ′ : [0,1]2 →P (Ω) we introduce

κ⊗κ′ : [0,1]2 →P (Ω2), (s, x) ∈ [0,1]× [0,1] 7→ κΛ1(s),x ⊗κ′Λ2(s),x ∈P (Ω2).

For any kernels κ,κ′,κ′′,κ′′′ such that D⊠(κ,κ′′) = D⊠(κ′,κ′′′) = 0 we clearly have D⊠(κ⊗κ′,κ′′⊗κ′′′) = 0. Thus, the
⊗-operation is well defined on the kernel space K. Hence, due to Theorem 1.4 the construction extends to laws,
i.e., givenΩ-laws µ,ν we obtain anΩ2-law µ⊗ν. Furthermore, it is easy to see that for any µ,ν ∈Ln(Ω) theΩ2-law
representing the product measure µ⊗ν is precisely the ⊗-product of the laws µ̇, ν̇ representing µ,ν.

Theorem 1.13. The map (µ,ν) ∈L(Ω) 7→µ⊗ν ∈L(Ω2) is continuous.

There is a second fundamental operation on distributions/laws that resembles the operation of obtaining a
n ×n-rank one matrix from two vectors of length n. Specifically, for vectors σ,τ ∈Ω[n] let σ⊕τ ∈ (Ω2)[n]×[n] be the
vector with entries (σ⊕τ)i j = (σi ,τ j ) for all i , j ∈ [n]. Additionally, for distributions µ,ν ∈ Ln(Ω) let µ⊕ν be the
distribution of the pair σµ⊕τν with σµ,τν ∈Ωn chosen from µ,ν, respectively.

We extend the ⊕-operation to kernels as follows. For κ,κ′ : [0,1]2 →P (Ω) let

κ⊕κ′ : [0,1]2 →P (Ω2), (s, x) 7→ κs,Λ1(x) ⊗κs,Λ2(x).

It is easy to see that for κ,κ′,κ′′,κ′′′ with D⊠(κ,κ′′) = D⊠(κ′,κ′′′) = 0 we have D⊠(κ⊕κ′,κ′′⊕κ′′′) = 0. Hence, the
⊕-operation is well-defined on the space K and thus, due to Theorem 1.4, on the space L as well. Moreover, for
discrete measures µ,ν ∈P (Ωn) one verifies immediately that the law representing µ⊕ν coincides with µ̇⊕ ν̇.

Theorem 1.14. The map L(Ω) →L(Ω2), (µ,ν) 7→µ⊕ν is continuous.

Theorems 1.13 and 1.14 immediately imply the continuity of further functionals that play a fundamental role in
mathematical physics. Specifically, let σ1, . . . ,σn ∈S . For σ1, . . . ,σn ∈S and ω1, . . . ,ωn ∈Ωwe define

Rω1,...,ωn (σ1, . . . ,σn) =
∫1

0

n∏
i=1

σi ,x (ωi )dx.

Furthermore, for µ ∈L and ℓ≥ 1 we define

Rℓ,ω1,...,ωn (µ) =
∫

S
· · ·

∫

S
Rω1,...,ωn (σ1, . . . ,σn)ℓdµ(σ1) · · ·dµ(σn).

Additionally, let Rℓ,n(µ) = (Rℓ,ω1,...,ωn (µ))ω1,...,ωn∈Ω. In physics jargon, the arrays Rℓ,n(µ) are known as multi-overlaps
of µ. Since Rℓ,n(µ) = Rℓ,n(ν) if D⊠(µ,ν) = 0, the multi-overlaps are well-defined on the space L of laws.

Corollary 1.15. The functions µ ∈L 7→ Rℓ,n(µ) with ℓ,n ≥ 1 are continuous.

1.3. Discussion and related work. Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi launched the theory of
(dense) graph limits in a series of important and influential articles [6, 7, 33, 34, 35]. Lovász [32] provides a unified
account of the state of the art up to about 2012. Moreover, Janson [28] gives an excellent account of the measure-
theoretic foundations of the theory of graph limits and some of its generalisation.

Given the many areas of application where sequences of probability measures on increasingly large discrete
cubes appear, the most prominent example being perhaps the study of Boltzmann distributions in mathematical
physics, it is unsurprising that attempts have been made to construct limiting objects for such sequences. The
theory of Gibbs measures embodies the classical, physics-inspired approach to this task [23]. Here the aim is to
construct and classify all possible ‘infinite-volume’ limits of Boltzmann distributions defined on spatial structures
such as trees or lattices. The limiting objects are called Gibbs measures. A fundamental question, whose ramifi-
cations extend from the study of phase transitions in physics to the computational complexity of counting and
sampling, is whether there is a unique Gibbs measure that satisfies all the finite-volume conditional equations
(e.g, [22, 46, 47]). However, since the theory of Gibbs measures is confined to systems with an underlying lattice-
like geometry, numerous applications are beyond its reach. For instance, Marinari et al. [38] argued that the clas-
sical theory of Gibbs measures does not provide an appropriate framework for the study of (diluted) mean-field
models such as the Sherrington-Kirkpatrick model, the Viana-Bray model or the hardcore model on a sparse ran-
dom graph. Further examples of ‘non-spatial’ sequences of distributions abound in computer science, statistics
and data science.

2The existence of such aΛ follows from Lemma 2.3 below.

7

The cut metric for probability distributions A-126



Panchenko [43, 44] employed the more abstract Aldous-Hoover representation of exhangeable arrays in his work
on mean-field models [1, 25]. Kallenberg’s monograph [29] provides the definite treatment of this abstract theory.
Furthermore, Austin [4] extends and generalises the concept of exchangeable arrays and discusses applications
to the Viana-Bray spin glass model. The close relationship between the theory of graph limits and exchangeable
arrays was first noticed by Diaconis and Janson [19]. Their [19, Theorem 9.1] is essentially a directed graph version
of Theorem 1.8 in the special caseΩ= {0,1}. Moreover, the appendix of Panchenko’s monograph [43] also contains
a proof of the Aldous-Hoover representation theorem via graph limits.

Although the connection between genuinely probabilistic constructions such as the Aldous-Hoover represen-
tation and graph limits was noticed in prior work [4, 19, 43], those contributions stopped short of working out a
fully-fledged adaptation of the theory of graph limits to a limit theory for probability measures on discrete cubes.
A prior article by Coja-Oghlan, Perkins and Skubch [14] made a first cursory attempt at filling this gap and al-
ready contained the definition (1.2) of the cut metric and of the space L of laws. Additionally, the compactness of
the space L (Theorem 1.1) and a weaker version of the kernel representation (Theorem 1.4) were stated in [14], al-
though no detailed proofs were given. Furthermore, a definition similar to the discrete cut metric (1.1) was devised
in [13] and a statement similar to Theorem 1.14 was previously proved by Coja-Oghlan and Perkins [12, Proposi-
tion A.2]. Finally, versions of the pinning operation for discrete probability measures appeared in [11, 40, 45] and
recently Eldad [20] devised an extension to subspaces of Rn , i.e., to the case of spins that need not take discrete
values.

The contribution of the present paper is that we expressly and explicitly adapt and extend the concepts of the
theory of graph limits to the context of probability distributions on increasing sequences of discrete cubes. We
present in a unified way the proofs of the most important basic facts such as the relationship between the dis-
crete and the continuous cut metric (Theorem 1.2), the kernel representation (Theorem 1.4), the sampling theo-
rem (Theorem 1.9) and the continuity of product measures (Theorems 1.13 and 1.14). The proofs of these results
are based on extensions and adaptations of techniques from the theory of graph limits. Moreover, we present
a self-contained derivation of the representation theorem for exchangeable arrays (Theorem 1.8). The added
value by comparison to prior work [14, 19] is that here we present detailed, unified proofs that operate directly
in the probabilistic setting, rather than by extensive allusion to the graphon space. Additionally, we present a self-
contained proof of the compactness result (Theorem 1.1). While the argument set out in, e.g., [32, Chapter 9] could
be adapted to the probabilistic setting, we present a different argument based on analytic techniques that might
be of independent interest. But the main technical novelty is certainly the pinning theorem (Theorem 1.12) that
generalises the discrete version from [11]. The proof is delicate and uses many of the other, more basic results.

The pinning operation from Theorem 1.12 is somewhat reminiscent of Tao’s construction of regular parti-
tions [49] and of the construction of Lovász and Szegedy [35]. For example, Tao’s construciton of a regular par-
tition is based on sampling a number θ of vertices of a graph G and then partitioning the remaining vertices
into 2θ classes according to their adjacencies with the reference vertices. The discrete version pinning operation
from [11, 45] proceeds similarly; see Theorem 4.1 below, except that the number of pinned coordinates θ is chosen
randomly, rather than deligently given G . The same is true of the number of pinned coordinates in Theorem 1.12,
which additionally yields a continuous version applicable to generalΩ-laws.

Finally, there have been several further related contributions that extend the classical (dense) theory of graph
limits as set out in [32]. Just as the classical theory, these extensions partly have a probabilistic component as
they incorporate random graphs. For example, the important Lp -theory of sparse graph convergence covers limit
objects of exchangeable sparse graphs [9]. A further contribution pertinent to sparse random graphs is the work of
Crane and Dempsey [17] and Cai, Campbell and Broderick [15] on edge-exchangeability. Moreover, the articles [8,
50] deal with graphexes, which are limit objects of random geometric graphs. Further important extensions of the
theory of graph limits include the work of Nešetřil and Ossona de Mendez [41] on convergence of sparse graphs that
satisfy first order formulas, the paper of Hoppen, Kohayakawa, Moreira, Rath and Sampaio [26] on sequences of
permutations (permutons), the article by Coregliano and Razborov [16] on limits on dense combinatorial objects,
and Janson’s work [27] on limits of posets. Some of these contributions, as well as Austin’s work [3, 4] involve
stronger versions of exchangeability than the classical de Finetti or Aldous-Hoover notions of exchangeability.

1.4. Outline. After presenting the necessary background and notation in Section 2, in Section 3 we will prove the
basic facts about laws and the cut metric stated above. Specifically, Section 3 contains the proofs of Theorems 1.1,
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1.4, 1.8, 1.9, 1.11, 1.13 and 1.14. Subsequently, in Section 4 we prove Theorem 1.12, which constitutes the main
technical contribution of the paper. Finally, in Section 4.4 we establish Theorem 1.2.

2. PRELIMINARIES

2.1. Measure theory. Throughout the paper we continue to denote by λ the Lebesgue measure on the Euclidean
space Rk ; the reference to k will always be clear from the context. For the convenience of the reader we collect a
few basic facts from measure theory that we will need. The first lemma follows from the Isomorphism Theorem,
see e.g. [30, Sec. 15.B].

Lemma 2.1. Suppose that E = (X ,A ,µ) is a standard Borel space equipped with a probability measureµ. Then there
exists a measurable map f : [0,1] → X that maps the Lebesgue measure to µ.

Lemma 2.2 (Theorem 3.2 of [37]). Suppose that E = (X ,A ), E ′ = (X ′,A ′) are standard Borel spaces and that f :
X → X ′ is a measurable bijection. Then its inverse f −1 is measurable.

Lemma 2.3 (Theorem A.7 of [28]). If (X ,µ) is an atomless Borel probability space and λ is the Lebesgue measure,
then there is a measure preserving bijection of (X ,µ) to ([0,1],λ).

The following is the Riesz-Markov-Kakutani representation theorem [24].

Lemma 2.4. Suppose that E0 is a compact metric space and that ϕ : C (E0) →R is a positive linear functional on the
space of continuous functions C (E0) on E0. Moreover, assume that ϕ(1) = 1. Then there exists a unique probability
measure µ on E0 such that ϕ( f ) =∫

E0
f dµ for all f ∈C (E0).

We will need Lemma 2.4 in Section 3.4 to prove the completeness of the space of laws with respect to the cut metric.
Additionally, in several places throughout the paper we will need the following metric on probability measures.

Suppose that (E ,D) is a complete separable metric space and that D is bounded. Then the space P (E ) of proba-
bility measures on E equipped with the Wasserstein metric

D(µ,ν) = inf

{∫

E×E
D(x, y)dγ(x, y) : γ ∈ Γ(µ,ν)

}
, (2.1)

where we recall that Γ(µ,ν) is the set of all couplings ofµ,ν, also is complete and separable. The Wasserstein metric
induces the weak topology on P (E ) [51, Theorem 6.9]. The definition (2.1) extends to E -valued random variables
X ,Y , for which we define

D(X ,Y ) = inf

{∫

E×E
D(x, y)dγ(x, y) : γ ∈ Γ(X ,Y )

}
,

with Γ(X ,Y ) denoting the set of all couplings of X ,Y . We will frequently be working with the Wasserstein metric
D⊠( · , · ) induced by the cut metric on L or K.

2.2. Variations on the cut metric. When we defined the cut metric D⊠(µ,ν) in (1.2) we allowed for a coupling of
µ,ν as well as a ‘coordinate permutation’ ϕ ∈ S. Sometimes the latter is not desirable. Therefore, for µ,ν ∈ L we
define the strong cut distance as

D�(µ,ν) = inf
γ∈Γ(µ,ν)

sup
S⊂S ×S
X⊂[0,1]
ω∈Ω

∣∣∣∣
∫

S

∫

X
(σx (ω)−τx (ω))dxdγ(σ,τ)

∣∣∣∣ (2.2)

with S, X ranging over measurable sets. It is easily verified that D�( · , · ) is a pre-metric on L . Analogously, for
µ,ν ∈P (Ωn) let

∆�(µ,ν) = inf
γ∈Γ(µ,ν)

sup
S⊂Ωn×Ωn

X⊂[n]
ω∈Ω

1

n

∣∣∣∣∣∣∣

∑
(σ,τ)∈S

x∈X

γ(σ,τ) (1{σx =ω}−1{τx =ω})

∣∣∣∣∣∣∣
. (2.3)
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Similarly, we will be led to consider several variants of the kernel cut metric from (1.3). Specifically, let KR =KR(Ω)
be the set of all maps κ,κ′ : [0,1]2 →RΩ such that the functions (s, x) ∈ [0,1]2 7→ κs,x (ω) belong to L1([0,1]2,R) for all
ω ∈Ω, up to equality almost everywhere. Then for κ,κ′ ∈KR we define

D⊠(κ,κ′) = inf
ϕ,ψ∈S

sup
S,X⊂[0,1]
ω∈Ω

∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κ′ϕ(s),ψ(x)(ω)

)
dxds

∣∣∣∣ ,

D�(κ,κ′) = inf
ϕ∈S

sup
S,X⊂[0,1]
ω∈Ω

∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κ′ϕ(s),x (ω)

)
dxds

∣∣∣∣ ,

D@(κ,κ′) = sup
S,X⊂[0,1]
ω∈Ω

∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κ′s,x (ω)

)
dxds

∣∣∣∣ ,

D■(κ,κ′) = inf
ϕ∈S

sup
S,X⊂[0,1]
ω∈Ω

∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κ′ϕ(s),ϕ(x)(ω)

)
dxds

∣∣∣∣ .

Thus, D⊠( · , · ) is the natural extension of (1.3) to KR, D�( · , · ) is the kernel version of (2.2), D@( · , · ) represents the
strongest variant of the cut metric that does not allow for any measure-preserving transformations, and D■( · , · )
is the graphon cut metric as studied in [33]. We also recall the graphon cut (pre-)metric for L1-functions κ,κ′ :
[0,1]2 →R from [32], which is defined as

D■(κ,κ′) = inf
ϕ∈S

sup
S,X⊂[0,1]

∣∣∣∣
∫

S

∫

X

(
κs,x −κ′ϕ(s),ϕ(x)

)
dxds

∣∣∣∣ .

The different variants of the cut metric are related as follows. For a measurable mapϕ : [0,1] → [0,1] and κ ∈KR

define κϕ,κϕ ∈KR by letting κϕ s,x = κs,ϕ(x) and κ
ϕ
s,x = κϕ(s),x , respectively. Then

D⊠(κ,κ′) = inf
ψ∈S

D�(κ,κ′ψ), D�(κ,κ′) = inf
ϕ∈S

D@(κ,κ′ϕ). (2.4)

As a consequence, for all κ,κ′ ∈KR we have

D⊠(κ,κ′) ≤ D�(κ,κ′) ≤ D@(κ,κ′) and D■(κ,κ′) ≥ D⊠(κ,κ′). (2.5)

For a function W : (s, x) 7→Ws,x defined on [0,1]2 we define the transpose W † : (s, x) 7→Wx,s . We call W symmetric
if W =W †. For κ ∈KR we define a family (κ(ω))ω∈Ω of symmetric functions defined by

κ(ω)
s/2,(1+x)/2 = κs,x (ω), κ(ω)

(1+s)/2,x/2 = κx,s (ω), κ(ω)
s/2,x/2 = κ(ω)

(1+s)/2,(1+x)/2 = 0. (2.6)

We can interpretκ(ω)
s,x as the edge weight in a bipartite graph with vertex set [0,1]. We stress, that in (2.6) the ordering

of s and x is quite delicate.

Lemma 2.5. For all κ ∈KR we have D@(κ,κ′) = 2maxω∈ΩD@(κ(ω),κ′(ω)).

Proof. Givenω ∈Ω and S, X ⊂ [0,1] let T = {(1+ s)/2 : s ∈ S}∪{x/2 : x ∈ X } , Y = {(1+x)/2 : x ∈ X }∪{s/2 : s ∈ S} . Then
by construction

2

∣∣∣∣
∫

T

∫

Y

(
κ(ω)

s,x −κ′(ω)
s,x

)
dsdx

∣∣∣∣=
∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κ′s,x (ω)

)
dsdx

∣∣∣∣ . (2.7)

Hence, D@(κ,κ′) ≤ 2maxω∈ΩD@(κ(ω),κ′(ω)). Regarding the converse bound, we may assume by symmetry that
T,Y ⊂ [0,1] satisfy T = 1−Y . Indeed, the choice T = 1−Y incorporates that the upper right part of the kernel is the
transposed lower left part. Therefore, letting S = {2t −1 : t ∈ T ∩ [1/2,1]} , X = {2t : t ∈ T ∩ [0,1/2]} we again obtain
(2.7), and thus D@(κ,κ′) ≥ 2maxω∈ΩD@(κ(ω),κ′(ω)). �

Remark 2.6. Clearly, the cut metric from the theory of graph limits D■(·, ·) can be bounded from below by the present
definition D⊠(·, ·), as one must apply the same measure-preserving transformation on both axes. On the other hand,
forΩ= {0,1}, once we turn kernels κ,κ′ ∈K into ‘bipartite graphons’ via (2.6), we find directly

D■(κ(1),κ′(1)) ≤ 1

2
D⊠(κ,κ′).
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The converse bound does not hold for any constant as can be seen as follows. Let κs,x = 1 {s < 1/2} and κ′s,x = κx,s . By
choosing the measure preserving map ϕ(x) = 1−x, we get

D■(κ,κ′) ≤ sup
S,X⊂[0,1]

∣∣∣∣
∫

S

∫

X

(
κs,x −κ′ϕ(s),ϕ(x)

)
dxds

∣∣∣∣= 0.

But as κ′ represents the law ν supported only on δσ with σx = 1 {x ≤ 1/2}, whilst κ′ is the uniform distribution over
the two configurations σ1 = 1 and σ0 = 0, we can bound D⊠(κ,κ′) ≥ 1/4.

For κ,κ′ ∈ L1([0,1]2,R) we define

‖κ‖✷ = sup
S,X⊂[0,1]

∣∣∣∣
∫

S

∫

X
κs,x dsdx

∣∣∣∣ , D@(κ,κ′) =
∥∥κ−κ′

∥∥
✷ = sup

S,X⊂[0,1]

∣∣∣∣
∫

S

∫

X

(
κs,x −κ′ϕ(s),x

)
dxds

∣∣∣∣ . (2.8)

Then ‖·‖✷ is a norm on L1([0,1]2,R). Analogously, for a matrix A ∈Rn×n we define

‖A‖✷ = 1

n2 max
S,X⊂[n]

∣∣∣∣∣
∑
s∈S

∑
x∈X

As x

∣∣∣∣∣ . (2.9)

We need the following ‘sampling lemma’ for the cut norm.

Lemma 2.7 ([32, Lemma 10.6]). Suppose that κ : [0,1]2 → [−1,1] is symmetric. Let x1, . . . , xk be independently and
uniformly chosen from [0,1]. Denote by κ[k] ∈ [−1,1]k×k the matrix with entries κi , j [k] = κx i ,x j . Then

P
[‖κ[k]‖✷ ≤ ‖κ‖✷+8/k1/4]≥ 1−4exp(−

p
k/10).

2.3. The L1-metric. We define a subspance of KR by letting

K1 =
{
κ ∈KR : 0 ≤ κs,x (ω) ≤ 1

}
.

Similarly, we let S1 be the space of all measurable functions σ : [0,1] → [0,1]Ω. Further, we denote the L1-metric
on K1 and S1 by D1( · , · ). Thus,

D1(κ,κ′) =
∑
ω∈Ω

∫1

0

∫1

0

∣∣κs,x (ω)−κ′s,x (ω)
∣∣dxds (κ,κ′ ∈K1),

and similarly for S1.

2.4. Regularity. For a kernelκ ∈KR and partitions S = (S1, . . . ,Sk ), X = (X1, . . . , Xℓ) of the unit interval into pairwise
disjoint measurable subsets define κS,X ∈K by

κS,X
s,x (ω) =

∑
i∈[k]:λ(Si )>0

∑
j∈[ℓ]:λ(X j )>0

1
{
(s, x) ∈ Si ×X j

}

λ(Si )λ(X j )

∫

Si

∫

Xi

κt ,y (ω)dydt .

In words, κS,X
s,x is the conditional expectation of κs,x given the σ-algebra generated by the rectangles Si ×X j . If the

two partitions S, X are identical, we write κS instead of κS,X . We use similar notation for maps κ : [0,1]2 → R. The
following fact is a kernel variant of the well-known Frieze-Kannan regularity lemma.

Lemma 2.8 ([32, Corollary 9.13]). For every symmetric κ : [0,1]2 → [0,1] and every k ≥ 1 there exists a partition
S = (S1, . . . ,Sk ) of [0,1] into pairwise disjoint measurable sets such that D@(κ,κS ) ≤ 2/

√
logk.

This notion of regularity is robust with respect to refining the partition.

Lemma 2.9 ([32, Lemma 9.12]). Let κ : [0,1]2 → [0,1] be symmetric and κ′ : [0,1]2 → [0,1] be a symmetric step
function and denote by S a partition of [0,1] into a finite number of meausrable sets on which κ′ is constant. Then
D@(κ,κS ) ≤ 2D@(κ,κ′).

Applying Lemma 2.9 to the step function κR for a partition R that refines a partition S of [0,1], we obtain the
following corollary.

Corollary 2.10. Let R,S be partitions of [0,1] such that R refines S. Then D@(κ,κR ) ≤ 2D@(κ,κS ).

Proof. This follows from Lemma 2.9 because κS is constant on the partition classes of R. �
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3. FUNDAMENTALS

This section contains the proofs of the basic facts, namely the compactness of the space ofΩ-laws (Theorem 1.1),
the isometric property of the kernel representation (Theorem 1.4), the sampling theorem (Theorem 1.9), the
comparison of the discrete and the continuous cut metric (Theorem 1.2), the continuity statements from The-
orems 1.13 and 1.14 and the connection to exchangeable arrays (Theorem 1.8). We begin with the proof of Theo-
rem 1.4.

3.1. Proof of Theorem 1.4. Any measurable map f : [0,1] →S , s 7→ fs induces a kernel κ f : [0,1]2 →P (Ω), (s, x) 7→
fs,x ∈P (Ω). Moreover, f maps the Lebesgue measure on [0,1] to a probability distribution µ f ∈L .

Lemma 3.1. Suppose that f , g : [0,1] →S are measurable. Then D�(µ f ,µg ) ≤ D�(κ f ,κg ).

Proof. Fix ω ∈Ω and ϕ ∈S. The construction of κ f ,κg guarantees that with s ∈ [0,1] chosen uniformly at random,

the distribution γ of the pair (κ f
s ,κg

ϕ(s)) ∈S ×S is a coupling of µ f ,µg . We now claim that

sup
T⊂S 2,X⊂[0,1]

∣∣∣∣
∫

T

∫

X
(σx (ω)−τx (ω))dxdγ(σ,τ)

∣∣∣∣≤ sup
S,X⊂[0,1]

∣∣∣∣
∫

S

∫

X

(
κ

f
s,x (ω)−κg

s,ϕ(x)(ω)
)

dxds

∣∣∣∣ . (3.1)

Indeed, fix measurable T ⊂S 2 and X ⊂ [0,1] and let S =
{

s ∈ [0,1] : (κ f
s ,κg

ϕ(s)) ∈ T
}

. Then by the construction of γ,
∫

T

∫

X
(σx (ω)−τx (ω))dxdγ(σ,τ) =

∫

S

∫

X

(
κ

f
s,x (ω)−κg

s,ϕ(x)(ω)
)

dxds,

whence (3.1) follows. Finally, since (3.1) holds for all ϕ,ω, we conclude that D�(µ f ,µg ) ≤ D�(κ f ,κg ). �

The following lemma establishes the converse of Lemma 3.1 for functions that take only finitely many values.

Lemma 3.2. Suppose that f , g : [0,1] →S are measurable maps whose images f ([0,1]), g ([0,1]) ⊂S are finite sets.
Then D�(κ f ,κg ) ≤ D�(µ f ,µg ).

Proof. Suppose that f ([0,1]) = {σ1, . . . ,σk } and g ([0,1]) = {τ1, . . . ,τℓ}. Moreover, let Vi be the set of all s ∈ [0,1] such
that f (s) =σi and let W j be the set of all s ∈ [0,1] such that g (s) = τ j . In addition, let vi =λ(Vi ), w j =λ(W j ). Then

µ f =
k∑

i=1
viδσi , µg =

ℓ∑
j=1

w jδτ j .

Consequently, any couplingγofµ f ,µg induces a couplingΓ ∈P ([k]×[ℓ]) of the probability distributions (v1, . . . , vk )
and (w1, . . . , wℓ). To turn Γ into a measure-preserving map [0,1] → [0,1] we partition any sets Vi ,W j into pairwise
disjoint measurable subsets (Vi ,h)h∈[ℓ] and (Wh, j )h∈[k], respectively, such that for all i , j ,h,

λ(Vi ,h) = g (i ,h), λ(Wh, j ) = g (h, j ).

Then by Lemma 2.3 for any i , j there exists a bijectionϕi , j : Vi , j →Wi , j such that bothϕi , j andϕ−1
i , j are measurable

and preserve the Lebesgue measure. Piecing these maps together, we obtain the bijection

ϕ : [0,1] → [0,1], s 7→
∑

(i , j )∈[k]×[ℓ]
1
{

s ∈Vi , j
}
ϕi , j (s).

Both ϕ and ϕ−1 are measurable and preserve the Lebesgue measure, i.e., ϕ ∈S. Moreover, for any sets S, X ⊂ [0,1]
and any ω ∈Ωwe have

∫

S

∫

X

(
κ

f
s,x (ω)−κg

ϕ(s),x (ω)
)

dxds =
k∑

i=1

ℓ∑
j=1

λ(S ∩Vi j )
∫

X

(
σi ,x (ω)−τi ,x (ω)

)
dx. (3.2)

Hence, (3.2) is extremised by sets S such that for all i , j either Vi j ⊂ S or S ∩Vi j = ;. For such a set S let T = T (S)
contain all pairs (i , j ) such that Vi j ⊂ S. Then (3.2) yields
∣∣∣∣
∫

S

∫

X

(
κ

f
s,x (ω)−κg

ϕ(s),x (ω)
)

dxds

∣∣∣∣=
∣∣∣∣∣

∑
(i , j )∈T

Γ(i , j )
∫

X

(
σi ,x (ω)−τi ,x (ω)

)
dx

∣∣∣∣∣≤ sup
U⊂S 2

∣∣∣∣
∫

U

∫

X
(σx (ω)−τx (ω))dxdγ(σ,τ)

∣∣∣∣ .

(3.3)

Since (3.3) holds for all S, X ,ω,γ, the assertion follows. �
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Corollary 3.3. Let f , g : [0,1] →S be measurable. Then D�(κ f ,κg ) ≤ D�(µ f ,µg ).

Proof. Because S is a convex subset of the separable Banach space L1([0,1],RΩ), the measurable maps f , g are
pointwise limits of sequences ( fn)n≥1, (gn)n≥1 of measurable functions fn , gn : [0,1] → S whose images are finite
sets. Moreover, Lemma 3.2 implies that

D�(µ fn ,ν fn ) ≥ D�(κ fn ,κgn ) for all n ≥ 1. (3.4)

Further, for all ω ∈Ω and S, X ⊂ [0,1] we have
∣∣∣∣
∫

S

∫

X

(
κ

fn
s,x (ω)−κ f

s,x (ω)
)

dsdx

∣∣∣∣≤
∫1

0

∫1

0

∣∣∣κ fn
s,x (ω)−κ f

s,x (ω)
∣∣∣dsdx. (3.5)

Because fn → f pointwise, the r.h.s. of (3.5) vanishes as n →∞. Consequently,

lim
n→∞D�(κ fn ,κ f ) = 0, and similarly lim

n→∞D�(κgn ,κg ) = 0. (3.6)

Combining (3.6) with Lemma 3.1, we conclude that

lim
n→∞D�(µ fn ,µ f ) = 0, lim

n→∞D�(ν fn ,ν f ) = 0. (3.7)

Finally, the assertion follows from (3.4), (3.6), (3.7) and the triangle inequality. �

Corollary 3.4. For all κ,κ′ ∈K we have D�(µκ,µκ
′
) = D�(κ,κ′).

Proof. This is an immediate consequence of Lemma 3.1 and Corollary 3.3. �

Proof of Theorem 1.4. Corollary 3.4 and (2.4) show that the mapK→L,κ 7→µκ is an isometry. Moreover, Lemma 2.1
implies that this map is surjective. Thus, because K,L are metric spaces, κ 7→µκ is an isometric bijection. �

3.2. Proof of Theorem 1.9. We begin by extending Lemma 2.8 to (not necessarily symmetric) kernels κ ∈K .

Lemma 3.5. There is c = c(Ω) > 0 such that for any ε ∈ (0,1), κ ∈ K there exist partitions S = (S1, . . . ,Sk ), X =
(X1, . . . , Xℓ) of the unit interval into measurable subsets such that k +ℓ≤ exp(c/ε2) and D@(κ,κS,X ) < ε.

Proof. Let ℓ = ⌈exp(c ′/ε2)⌉ for a large enough c ′ = c ′(Ω). Applying Lemma 2.8 to the kernels κ(ω) from (2.6), we
obtain partitions T (ω) = (T (ω)

1 , . . . ,T (ω)
ℓ

) of [0,1] such that

D@
(
κ(ω),κ(ω)T (ω)

)
< ε/4. (3.8)

Let T = (T1, . . . ,Tk ) be the coarsest common refinement of all the partitions T (ω) and of the partition {[0,1/2), [1/2,1]}.
Then

|T | ≤ 2ℓ|Ω|. (3.9)

Moreover, (3.8) and Corollary 2.10 imply that

D@(κ(ω),κ(ω)T ) < ε/2 for all ω ∈Ω. (3.10)

Further, let S′ = (S′
1, . . . ,S′

K ) comprise all partition classes Ti ⊂ [0,1/2] and let X ′ = (X ′
1, . . . , X ′

L) be the partition of
[1/2,1] consisting of all the classes Ti ⊂ [1/2,1]. Finally, let Si = {2s : s ∈ S′

i } and Xi = {2x − 1 : x ∈ X ′
i }. Then the

partitions S = (S1, . . . ,SK ) and X = (X1, . . . , XL) satisfy D@(κ,κS,X ) < ε by Lemma 2.5. The desired bound on the total
number K +L of classes of S, X follows from (3.9). �

For a kernel κ and an integer n obtain κn as follows. Draw x1, s1, . . . , xn , sn ∈ [0,1] uniformly and independently
and let κn be the kernel representing the matrix (κsi ,x j )i , j . Additionally, obtain κ̂n ∈Ωn×n by letting κ̂n,i , j =ω with
probability κsi ,x j (ω) independently for all i , j . We identify κ̂n with its kernel representation. Moreover, we notice
that κ̂n coincides with the n ×n upper left sub-matrix of X κ from Section 1.2.3.

Lemma 3.6. Let κ,κ′ ∈K . With probability 1−exp(−Ω(
p

n)) we have D@
(
κn ,κ′n

)=O(D@(κ,κ′)+n−1/4).
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Proof. Let κ̄, κ̄′ be the symmetric kernel representations of κ and κ′ respectively given via (2.6). Sample y 1, . . . , y 2n
points in [0,1] uniformly and independently at random. Denote by B the event that

∣∣i : y i ≤ 1
2

∣∣ = n and assume,
given B, that without loss y 1, . . . , y n ≤ 1/2 and y n+1, . . . , y 2n ≥ 1/2. Denote by x1, . . . , xn = 2y 1, . . . ,2y n and by
s1, . . . , sn = 2y n+1 −1, . . . ,2y 2n −1. Clearly, (x1, s1), . . . , (xn , sn) are independent uniform samples from [0,1]2.

Now, let κ̃ : [0,1]2 → [−1,1] be the kernel representing the matrix (κ̄y i ,y j
− κ̄′y i ,y j

)i , j∈[2n]. Applying Lemma 2.7 to

κ̃(ω), we obtain

P
[∥∥κ̃(ω)

∥∥
✷ ≤

∥∥κ̄− κ̄′
∥∥
✷+8n−1/4]≥ 1−4exp(−pn/10) (ω ∈Ω). (3.11)

Given B, we translate κ̃, κ̄, κ̄′ back into kernels via (2.6) and apply Lemma 2.5, thus

D@
(
κn ,κ′n

)≤ 4max
ω∈Ω

∥∥κ̃(ω)
∥∥
✷ .

Hence, the assertion follows from (3.11) and the fact that P (B) =Ω
(
n−1/2

)
. �

Lemma 3.7. We have E[D@(κn , κ̂n)] =O(n−1/2).

Proof. We adapt the simple argument from the proof of [32, Lemma 10.11] for our purposes. Letting Xi , j ,ω =
1

{
κ̂n,i , j =ω

}
, we have E[Xi , j ,ω] = κn,i , j (ω). Furthermore, because both κn , κ̂n are kernel representations of n ×n

matrices, the supremum

sup
ω∈Ω,S,X⊂[0,1]

∣∣∣∣
∫

S

∫

X

(
κn,s,x (ω)− κ̂n,s,x (ω)

)
dxds

∣∣∣∣

is attained at sets S, X that are unions of intervals [(i −1)/n, i /n) with i ∈ [n]. Hence,

D@ (κn , κ̂n) = sup
ω∈Ω,S,X⊂[0,1]

∣∣∣∣
∫

S

∫

X

(
κn,s,x (ω)− κ̂n,s,x (ω)

)
dxds

∣∣∣∣= n−2 max
ω∈Ω,I ,J⊂[n]

∣∣∣∣∣
∑
i∈I

∑
j∈J

Xi , j ,ω−E[Xi , j ,ω]

∣∣∣∣∣ . (3.12)

Now, for any ω, I , J the random variable
∑

i∈I
∑

j∈J Xi , j ,ω is a sum of |I × J | independent Bernoulli variables. There-
fore, Azuma’s inequality yields

P

[∣∣∣∣∣
∑
i∈I

∑
j∈J

Xi , j ,ω−E[Xi , j ,ω]

∣∣∣∣∣> 10n3/2

]
≤ exp(−10n). (3.13)

Since (3.13) holds for any specific I , J ,ω, the assertion follows from the union bound and (3.12). �

Proof of Theorem 1.9. Lemma 3.5 yields partitions X = (X1, . . . , Xℓ), S = (S1, . . . ,Sℓ) of [0,1] with ℓ≤ n1/4 such that

D@(κ,κS,X ) =O(log−1/2 n). (3.14)

Applying Lemma 3.6 to κ and κS,X , we obtain

E
[
D@(κn ,κS,X

n )
]=O

(
D@(κ,κS,X )+n−1/4) . (3.15)

In addition, we claim that

E
[
D⊠(κS,X ,κS,X

n )
]=O(n−1/4 logn). (3.16)

To see this, let

Nh = {i ∈ [n] : x i ∈ Xh} , Mh = {
j ∈ [n] : s j ∈ Sh

}
(h ∈ [ℓ]).

Since Nh , Mh are binomial variables, the Chernoff bound shows that with probability 1−o(1/n),

max
h∈ℓ

||Nh |−nλ(Xh)| ≤p
n logn, max

h∈ℓ
||Mh |−nλ(Sh)| ≤p

n logn. (3.17)

Let

Nh =
⋃

i∈Nh

[(i −1)/n, i /n), Mh =
⋃

i∈Mh

[(i −1)/n, i /n).

Providing that the bounds (3.17) hold, we can construct ϕ,ψ ∈S such that for all h ∈ [n],

λ
(
ϕ(Nh)△Xh

)≤ n−1/2 logn, λ
(
ψ(Mh)△Sh

)≤ n−1/2 logn. (3.18)
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Furthermore, by construction we have κS,X
ϕ(s),ψ(x) = κS,X

s,x,n if there exist h,h′ ∈ [ℓ] such that x ∈ Nh , ϕ(x) ∈ Xh and

s ∈Mh , ψ(x) ∈ Sh . Therefore, (3.18) implies that for all T,Y ⊂ [0,1], ω ∈Ω,
∣∣∣∣
∫

T

∫

Y

(
κS,X

n,y,t (ω)−κS,X
ψ(y),ϕ(t )(ω)

)
dydt

∣∣∣∣≤
ℓ∑

h,h′=1

∣∣∣∣
∫

T∩Mh

∫

Y ∩Nh′

(
κS,X

n,y,t (ω)−κS,X
ψ(y),ϕ(t )(ω)

)
dydt

∣∣∣∣

≤
ℓ∑

h,h′=1

λ(T ∩Mh△ψ−1(Sh))λ(Y ∩Nh′ )+λ(T ∩Mh)λ(Y ∩Nh′△ψ−1(Xh′ ))

=O(ℓn−1/2 logn) =O(n−1/4 logn),

whence (3.16) follows. Combining (3.14), (3.15) and (3.16), we see that

E
[
D⊠(κ,κn)

]=O(log−1/2 n). (3.19)

Finally, (3.19), Lemma 3.7 and Theorem 1.4 imply the assertion. �

3.3. Proof of Theorems 1.13 and 1.14. For measurable k,k ′ : [0,1]3 → [0,1]Ω we let

D@(k,k ′) = sup
S⊂[0,1],X⊂[0,1]2,ω∈Ω

∣∣∣∣
∫

S

∫

X

(
ks,x,y (ω)−k ′

s,x,y (ω)
)

dxdyds

∣∣∣∣ .

Then D@( · , · ) defines a pre-metric. Further, for measurable κ,κ′ : [0,1]2 → [0,1]Ω we define

κ⊕′ κ′ : [0,1]3 → [0,1]Ω, (s, x, y) 7→ κs,x ⊗κ′s,y .

We will derive Theorem 1.14 from the following statement.

Proposition 3.8. The map (κ,κ′) 7→ κ⊕′ κ′ is D@-continuous.

Proof. Given ε > 0 choose a small δ = δ(ε) > 0. Suppose that D@(κ,κ′) < δ. Due to the triangle inequality, to
establish continuity it suffices to show that for every κ′′ : [0,1]2 → [0,1]Ω,

D@(κ⊕′ κ′′,κ′⊕′ κ′′) = sup
S⊂[0,1]

X⊂[0,1]2

ω,ω′∈Ω

∣∣∣∣
∫

S

∫

X

(
κs,x (ω)κ′′s,y (ω′)−κ′s,x (ω)κ′′s,y (ω′)

)
dxdyds

∣∣∣∣< ε. (3.20)

Thus, consider measurable X ,S and fix ω,ω′ ∈ Ω. To estimate the last integral consider y ∈ [0,1] and let X y ={
x ∈ [0,1] : (x, y) ∈ X

} ⊂ [0,1]. Moreover, let T1, . . . ,Tℓ be a decomposition of S into pairwise disjoint measurable
sets such that for all j ∈ [ℓ] we have

t j ,∗ ≤ t∗j +ε/4, where t j ,∗ = inf
s∈T j

κ′′s,y (ω′), t∗j = sup
s∈T j

κ′′s,y (ω′).

Since κ′′s,y (ω′) ∈ [0,1], we may assume that ℓ≤ 4/ε. Furthermore,
∣∣∣∣∣
∫

X y

∫

S

(
κs,x (ω)−κ′s,x (ω)

)
κ′′s,y (ω′)dxds

∣∣∣∣∣≤
ℓ∑

j=1

∣∣∣∣∣
∫

X y

∫

S∩T j

(
κs,x (ω)−κ′s,x (ω)

)
κ′′s,y (ω′)dxds

∣∣∣∣∣

≤ ε

4
+

ℓ∑
j=1

t∗j

∣∣∣∣∣
∫

X y

∫

S∩T j

(
κs,x (ω)−κ′s,x (ω)

)
dxds

∣∣∣∣∣

≤ ε

4
+2ℓD@(κ,κ′) ≤ ε

4
+2ℓδ< ε/2.

Since this estimate holds for all y ∈ [0,1], we obtain
∣∣∣∣
∫

S

∫

X

(
κs,x (ω)κ′′s,y (ω′)−κ′s,x (ω)κ′′s,y (ω′)

)
dxdyds

∣∣∣∣≤
∫1

0

∣∣∣∣∣
∫

X y

∫

S

(
κs,x (ω)κ′′s,y (ω′)−κ′s,x (ω)κ′′s,y (ω′)

)
dsdx

∣∣∣∣∣dy < ε

2

for all S, X ,ω,ω′. Thus, we obtain (3.20). �

Proof of Theorem 1.14. Theorem 1.14 follows from Proposition 3.8 and (2.4). �

We use a similar argument to prove Theorem 1.13. Specifically, for κ,κ′ : [0,1]2 → [0,1]Ω define

κ⊗′ κ′ : [0,1]3 → [0,1]Ω, (s, t , x) 7→ κs,x ⊗κ′t ,x .
15
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Proposition 3.9. The map (κ,κ′) 7→ κ⊗′ κ′ is D@-continuous.

Proof. The definition of D@( · , · ) ensures that the map κ 7→ κ†, where κ†
s,x = κx,s , is continuous. Therefore, the

assertion follows from Proposition 3.8. �

Proof of Theorem 1.13. Theorem 1.13 follows immediately from Proposition 3.9 and (2.4). �

3.4. Proof of Theorem1.1. We begin by proving that the space K is complete with respect to D@( · , · ), the strongest
version of the cut metric.

Lemma 3.10. The space K equipped with the D@( · , · ) metric is complete.

Proof. Suppose that (κn)n≥1 is a Cauchy sequence. Then for any measurable S, X ⊂ [0,1] and any ω ∈ Ω the se-
quence

∫
S

∫
X κn,s,x (ω)dxds is Cauchy as well. Therefore, because any continuous function f : [0,1]2 → R, (s, x) 7→

fs,x is uniformly continous, the limit

lim
n→∞

∫1

0

∫1

0
fs,xκn,s,x (ω)dxds

exists for every ω ∈Ω. Indeed, the map

f 7→ lim
n→∞

∫1

0

∫1

0
fs,xκn,s,x (ω)dxds

defines a positive linear functional on the space of all continuous functions [0,1]2 →R. Hence, by the Riesz repre-
sentation theorem (Lemma 2.4) there exists a unique measure µω on [0,1]2 such that

µω(S ×X ) = lim
n→∞

∫

S

∫

X
κn,s,x (ω)dxds. (3.21)

Indeed, the condition (3.21) ensures thatµω is absolutely continuous with respect to the Lebesgue measure. There-
fore, the Radon-Nikodym theorem yields an L1-function (s, x) ∈ [0,1]2 7→ κs,x (ω) ∈R≥0 such that

µω(Y ) =
∫

Y
κs,x (ω)dsdx for all measurable Y ⊂ [0,1]2. (3.22)

We claim that κ is a kernel, i.e., that
∑
ω∈Ωκs,x (ω) = 1 for almost all s, x. Indeed, combining (3.21) and (3.22) yields

∫

S

∫

X
1dxds =

∑
ω∈Ω

µω(S ×X ) =
∑
ω∈Ω

∫

S

∫

X
κs,x (ω)dxds =

∫

S

∫

X

∑
ω∈Ω

κs,x (ω)dxds. (3.23)

Since the rectangles S × X generate the Borel algebra on [0,1]2, (3.23) implies that
∑
ω∈Ωκs,x (ω) = 1 almost every-

where.
Finally, (3.21) and (3.22) show that limn→∞ D@(κn ,κ) = 0. Indeed, given ε> 0 consider a large enough n and let

S, X ,ω be such that

D@(κn ,κ) < ε+
∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κn,s,x (ω)

)
dxds

∣∣∣∣ . (3.24)

Equations (3.21) and (3.22) show that for large enough N > n,
∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κN ,s,x (ω)

)
dxds

∣∣∣∣< ε (3.25)

Combining (3.24) and (3.25) and recalling that (κn)n is D@-Cauchy, for large enough n we obtain

D@(κn ,κ) < ε+
∣∣∣∣
∫

S

∫

X

(
κs,x (ω)−κN ,s,x (ω)

)
dxds

∣∣∣∣+D@(κn ,κN ) < 3ε.

Hence, κn converges to κ. �

Corollary 3.11. The space K equipped with the D�( · , · ) metric is complete.

Proof. We adapt a well know proof that a quotient of a Banach space with respect to a linear subspace is complete
[10, Theorem 1.12.14]. Thus, suppose that (κn)n is a D�( · , · )-Cauchy sequence. There exists a subsequence (κnℓ )ℓ
such that D�(κnℓ ,κnℓ+1 ) < 2−ℓ for all ℓ. Hence, passing to this subsequence, we may assume that (κn)n satisfies

D�(κn ,κn+1) < 2−n for all n. (3.26)
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We are now going to construct a sequence (kn)n of maps [0,1]2 →P (Ω) such that D�(κn ,kn) = 0 for all n and

D@(kn ,kn+1) < 2−n for all n. (3.27)

We let k1 be any kernel such that D�(k1,κ1) = 0 and proceed by induction. Having constructed k1, . . . ,kn already,
we observe that the definition of D�( · , · ) ensures that

D�(κn ,κn+1) = D�(kn ,κn+1) = inf
{
D@(kn ,k) : k : [0,1]2 →P (Ω),D�(κn ,k) = 0

}
.

Therefore, (3.26) implies that there is kn+1 : [0,1]2 → P (Ω) with D�(κn+1,k) = 0 such that D@(kn ,kn+1) < 2−n .
Thus, we obtain a sequence (kn)n satisfying (3.27). Finally, any sequence (kn)n that satisfies (3.27) is D@( · , · )-
Cauchy. Therefore, Lemma 3.10 shows that (kn)n has a limit k. Since D�(kn ,κn) = 0, we conclude that

lim
n→∞D�(κn ,k) = 0,

i.e., (κn)n converges to k. �
Corollary 3.12. The spaces K and L equipped with the D⊠( · , · ) metric are complete and separable.

Proof. To establish the completeness of K we repeat the same argument as in the proof of Corollary 3.11. The
completeness of L then follows from Theorem 1.4. Moreover, Theorem 3.5 shows that the set of laws with finite
support is dense in L. Hence, to prove the separability of L it suffices to observe that the space S is separable,
which it is because the set of all finite linear combinations of indicator functions x 7→ 1{a < x < b} with a,b ∈Q is
dense in L1([0,1],R). Finally, Theorem 1.4 implies that K is separable as well. �

We denote by P (L) the space of probability distributions on the Polish space L, endowed with the topology of
weak convergence. As we saw in Section 2.1, this topology is metrised by the Wasserstein metric

D⊠(ρ,ρ′) = inf

{∫

L×L
D⊠(µ,ν)dg (µ,ν) : g ∈ Γ(ρ,ρ′)

}
(ρ,ρ′ ∈P (L)).

We begin by proving that P (L) is compact. To this end we will construct a continuous map from another compact
space onto P (L). Specifically, recall thatΩN×N is a compact Polish space with respect to the product topology. The
space P (ΩN×N) equipped with the weak topology is therefore compact as well. Further, the space X⊂P (ΩN×N) of
exchangeable distributions is closed with respect to the weak topology, and therefore compact.

To construct a continuous map X→ P (L), ξ 7→ ρξ we are going to take a pointwise limit of maps X→ P (L),

ξ 7→ ρξ,n . Given ξ ∈ X and n ≥ 1 we define ρξ,n as follows. Draw X ξ = (X ξ
i , j )i , j≥1 ∈ ΩN×N from ξ. Then define a

probability distribution onΩn by letting

µ
ξ,n
∗ (σ) = 1

n

n∑
i=1

n∏
j=1

1
{
σ j = X ξ

i , j

}
(σ ∈Ωn). (3.28)

Thus, µξ,n
∗ is the empirical distribution of the rows of the top-left n ×n minor of X ξ. Finally, let µξ,n = µ̇

ξ,n
∗ ∈ L

be the law induced by this discrete distribution and let ρξ,n ∈P (L) be the distribution of µξ,n (with respect to the
choice of X ξ).

Lemma 3.13. For every ξ ∈X the limit ρξ = limn→∞ρξ,n exists and the map ξ 7→ ρξ is continuous.

Proof. Let ξ ∈ X. Since P (L) is complete, to establish the existence of the limit we just need to prove that the
sequence (ρξ,n)n is Cauchy. To this end it suffices to verify the following condition:

∃ f :N→N ∀ε> 0 ∃n0 = n0(ε) > 0 ∀n > n0, N > f (n) : D⊠(ρξ,n ,ρξ,N ) < ε. (3.29)

Indeed, if (3.29) is satisfied, then there exists a subsequence (ρξ,nM )M such that D⊠(ρξ,nM ,ρξ,nM+1 ) < 2−M for all M .
In particular, the subsequence is Cauchy. Because P (L) is complete, this subsequence thus has a limit ρ⋆, and
(3.29) ensures that the entire sequence (ρξ,n)n converges to ρ⋆ as well.

To verify (3.29) let ε> 0, pick a large n = n(ε) > 0 and choose N = N (n) large enough. We aim to prove that

D⊠(ρξ,n ,ρξ,N ) < ε. (3.30)

To this end, we coupleρξ,n ,ρξ,N by drawing X ξ ∈ΩN×N from ξ and letting g be the distribution of the pair (µξ,n ,µξ,N ).
By definition of the Wasserstein metric, to establish (3.30) it suffices to show that

E
[

D⊠(µξ,n ,µξ,N )
]
< ε (3.31)
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But (3.31) follows from Theorem 1.9. Indeed, the construction (3.28) ensures thatµξ,n is the empirical distribution
of rows of the upper left n×n-block of X ξ, whileµξ,N is the empirical distribution of the rows of the N×N -upper left
block. Due to the exchangeability of ξ, the distribution of the upper left n ×n-block is identical to the distribution
of a random n×n-minor of the matrix X ξ. Therefore, assuming that N ≫ n2 so that upon sub-sampling n out of N

indices no index is chosen twice, in the notation of Theorem 1.9 we have dTV(µξ,n ,µξ,N
n,n ) < ε/2, whence we obtain

(3.31) and thus (3.30). Hence, the limit ρξ = limn→∞ρξ,n exists for all ξ.
To show continuity fix ε> 0 and let ξ,η ∈X. Due to (3.31) there exists n = n(ε) > 0 independent of ξ,η such that

D⊠(ρξ,ρξ,n) < ε/4, D⊠(ρη,ρη,n) < ε/4. (3.32)

Since X is equipped with the weak topology, any ξ> 0 admits a neighbourhood U such that for all η ∈U ,
∑

X∈Ωn×n

∣∣∣P
[
∀i , j ∈ [n] : X ξ

i , j = Xi , j

]
−P

[
∀i , j ∈ [n] : X η

i , j = Xi , j

]∣∣∣< ε/8.

Hence, the upper left n×n-corners of X ξ, X η have total variation distance at most ε/4. In effect, there is a coupling

of (X ξ
i , j )i , j∈[n], (X η

i , j )i , j∈[n] under which both these random n ×n-matrices coincide with probability at least 1−
ε/4. Clearly, this coupling extends to a coupling of the measures µξ,n , µη,n such that E[D⊠(µξ,n ,µη,n)] ≤ ε/4.
Consequently, D⊠(ρξ,n ,ρη,n) ≤ ε/4. Combining this bound with (3.32), we conclude that D⊠(ρξ,ρη) < ε for all
η ∈U , whence ξ 7→ ρξ is continuous. �

As a next step we are going to embed the space L into X. For a given law µ ∈L let ξµ be the distribution of X µ.

Lemma 3.14. The map µ 7→ ξµ is continuous and ρξ
µ = δµ.

Proof. Due to Theorem 1.4 it suffices to show that the map κ ∈K 7→ ξκ, where ξκ is the distribution of X κ, is con-
tinuous. Combining Theorems 1.14 and 1.13, we conclude that the map KΩ→KΩ[n]×[n] , κ 7→ (κ⊕n)⊗n is continuous,
where we iterate the ⊕ and the ⊗ operations n times. For the sake of clarity, let us spell out the precise meaning
of iterating these operations. The definition of the ⊕-operation extends to kernels κ,κ′ that take values in P (Ω),
P (Ω′) for different sets Ω,Ω′ by simply viewing κ,κ′ as Ω∪Ω′-kernels. With this extension it makes sense to iter-
ate the ⊕-operation; notice that κ⊕h takes values in Ωh . We define κ⊗h analogously. Finally, combining these two
operations we obtain κ⊕n⊗n = (κ⊕n)⊗n , which is anΩn×n-kernel. Furthermore, for any σ ∈Ω[n]×[n] the map

KΩ[n]×[n] → [0,1], k 7→
∫1

0

∫1

0
k(σ)dsdx

is continuous by the definition of the cut metric. Therefore, being a concatenations of continuous maps, the func-
tions

Tσ :K→ [0,1], κ 7→
∫1

0

∫1

0
κ⊕n⊗n

s,x (σ)dsdx

are continuous as well. Since X carries the weak toplogy, the continuity of the maps Tσ implies the continuity of
the map κ 7→ ξκ. �

Corollary 3.15. The map X→P (L), ξ 7→ ρξ is surjective.

Proof. Suppose that p ∈ P (L). With ν 7→ ξν the measurable map from Lemma 3.14, we define ξp = ∫
Lδξµdp(µ).

Then ρξ
p = p. �

Corollary 3.16. The space L is compact.

Proof. The space X is compact as it is the space of probability measures on the compact Polish spaceΩN×N. Since
Lemma 3.13 and Corollary 3.15 render a continuous surjective map X→P (L) and a continuous image of a com-
pact space is compact, the space P (L) is compact. To finally conclude that L is compact as well, consider a
sequence (µn)n≥1 in L. Because P (L) is compact, the sequence (δµn )n≥1 possesses a convergent subsequence
(nℓ)ℓ≥1. Let π be the limit of that subsequence. Consider a point ν in the support of π and let (Uk )k≥0 be a se-
quence of open neighbourhoods of ν such that Uk+1 ⊂Uk for all k and

⋂
k≥1 Uk = {ν}. By Urysohn’s lemma there
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are continuous functions fk : L→ [0,1] such that fk takes the value one on Uk and the value 0 outside Uk−1. Now,
for all k ≥ 1 we have

0 <
∫

fk dπ= lim
ℓ→∞

∫
fk dµnℓ ≤ lim

ℓ→∞
1{µnℓ ∈Uk−1}.

Hence, µnℓ ∈Uk−1 for almost all ℓ. Consequently, ν = limℓ→∞µnℓ . Thus, the metric space L is sequentially com-
pact and therefore compact. �

Of course the second part of the proof above merely establishes the well known fact that the mapping L→ P (L),
µ 7→ δµ is a homeomorphic embedding onto a closed subspace. We included the brief argument for the sake of
completeness.

Proof of Theorem1.1. The theorem follows from Corollaries 3.12 and 3.16. �

3.5. Proof of Theorem 1.11. Let µ,ν ∈L . Toward the proof of (1.7) let

X +(ω) =
{

x ∈ [0,1] :
∫

S
σx (ω)dµ(σ)−

∫

S
σx (ω)dν(σ) ≥ 0

}
, X −(ω) = [0,1] \ X +.

Since µ,ν are atoms concentrated on the pure state (1.6), respectively, we obtain

D�(µ̄, ν̄) = max
ω∈Ω

∣∣∣∣
∫

X +(ω)

∫

S
σx (ω)dµ(σ)−

∫

S
σx (ω)dν(σ)

∣∣∣∣∨
∣∣∣∣
∫

X −(ω)

∫

S
σx (ω)dµ(σ)−

∫

S
σx (ω)dν(σ)

∣∣∣∣ (3.33)

= max
ω∈Ω

∣∣∣∣
∫

X +(ω)

∫

S ×S
(σx (ω)−τx (ω))d(µ⊗ν)(σ,τ)

∣∣∣∣∨
∣∣∣∣
∫

X −(ω)

∫

S ×S
(σx (ω)−τx (ω))d(µ⊗ν)(σ,τ)

∣∣∣∣≤ D�(µ,ν),

whence (1.7) is immediate. Moreover, the first part of (1.8) follows from (3.33), while the second part is immediate
from the triangle inequality.

3.6. Proof of Theorem 1.8. The product topology onΩN×N is the weakest topology under which all the functions

Tσ :ΩN×N→ {0,1} , (Xi , j )i , j≥1 7→
n∏

i , j=1
1

{
Xi , j =σi , j

} (
n ≥ 1,σ ∈Ω[n]×[n]) .

are continuous. Equivalently, the product topology is induced by the metric

Dmax :ΩN×N×ΩN×N→ [0,1], (X ,Y ) 7→ 2−max
{
n≥0:∀i , j≤n:Xi , j =Yi , j

}
. (3.34)

Hence, the weak topology on X⊂P (ΩN×N) is induced by the corresponding Wasserstein metric Dmax( · , · ).
As a first step we are going to show that the map π 7→Ξπ is (D⊠,Dmax)-continuous. Indeed, assume that π,π′ ∈

P (K) satisfy D⊠(π,π′) < δ for a small enough δ= δ(ε) > 0. Then the corresponding coupling shows together with
Lemma 3.14 and Theorem 1.4 that Dmax( · , · ) < ε. Furthermore, π 7→Ξπ is one-to-one because it can be inverted via
Corollary 3.15. Moreover, Lemma 3.13 implies that the mapπ 7→Ξπ is surjective, as the inverse image of ξ ∈X is just
ρξ ∈P (L) ∼=P (K). Thus, we know that P (K) →X, π 7→Ξπ is a continuous bijection. Finally, since P (K) is compact
and the continuous image of a compact set is compact, the map π 7→Ξπ is open and thus a homeomorphism. �

3.7. Proof of Theorem 1.10. For a bipartite graph G = (U ,V ,E) with |U | = |V | = n, and a partition P = (S1...Sl ,V1...Vk ),
denote by GP the weighted bipartite graph on vertex set ([l ], [k]) s.t. the weight of edge i j is given by d(Si ,V j ).

Theorem 3.17 ([18], Theorem 7.1). There exists ε > 0,n ∈ N and a bipartite graph G = (U ,V ,E) with |U | = |V | = n
s.t. every partition P = (S1...Sl ,V1...Vk ) of (U ,V ) satisfying D■(G ,GP ) ≤ ε requires at least l = exp

(
Θ(ε−2)

)
parts,

independently of k.

Proof of Theorem 1.10. Let G be a graph given by the previous theorem and let κG be the corresponding graphon.
Denote by κ a kernel consisting of κG and its transposed graphon given by (2.6) in the special case Ω = {0,1}.
Denote by µ = µ(G) ∈ L the corresponding law given by Theorem 1.4. Assume there is ν ∈ L with support of
size less then l = exp

(
Θ(ε−2)

)
and D⊠(µ,ν) < ε

2 . Then ν induces a partition K of [0,1] into at most l parts s.t.
D⊠(κ,κν) = D⊠(κ,κK ) ≤ ε

2 which implies that there is a partition S and a graphon κS s.t. D■(κG ,κS ) ≤ ε. As
κG and κS are by definition embeddings of (finite) graphs into the space of graphons, this is a contradiction to
Theorem 3.17. �
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4. THE PINNING OPERATION

In this section we prove Theorem 1.12. We begin by investigating a discrete version of the pinning operation,
which played a key role in recent work on random factor graphs [11]. The discrete version of the pinning theorem,
Theorem 4.1 below, was already established as [11, Lemma 3.5]. In Section 4.1 we give a shorter proof, based on an
argument form [45]. Moreover, in Section 4.2 we show by a somewhat delicate argument that the pinning operation
is continuous with respect to the cut metric. Finally, in Section 4.3 we complete the proof of Theorem 1.12.

4.1. Discrete pinning. For a probability measure µ ∈Ln and a set I ⊂ [n] we denote by µI the joint distribution of
the coordinates i ∈ I . Thus, µI is the probability distribution onΩI defined by

µI (σ) =
∑
τ∈Ωn

1 {∀i ∈ I : τi =σi }µ(τ).

Where I = {i1, . . . , it } is given explicitly, we use the shorthand µI =µi1,...,it .

Theorem 4.1. For every ε> 0 for all large enough n and all µ ∈ Ln the following is true. Draw and integer 0 ≤ θ ≤
⌈log |Ω|/ε2⌉ uniformly random and let I ⊂ [n] be a random set of size θ. Additionally, draw σ̂ from µ independently
of θ, I . Let

µ̂=µ[ · | {σ ∈Ωn : ∀i ∈ I :σi = σ̂i }]. (4.1)

Then
∑

1≤i< j≤n
E
∥∥µ̂i , j − µ̂i ⊗ µ̂ j

∥∥
TV ≤ εn2. (4.2)

Apart from [11, Lemma 3.5], statements related to Theorem 4.1 were previously obtained by Montanari [40] and
Raghavendra and Tan [45]. To be precise, [40, Theorem 2.2] deals with the special case of the discrete pinning
operation for graphical channels and the number θ of pinned coordinates scales linearly with the dimension n.
The original proof of Theorem 4.1 in [11] was based on a generalisation of Montanari’s argument. Moreover, [45,
Lemma 4.5] asserted the existence of T = T (µ,ε) > 0 such that

∑
1≤i< j≤n

E
[∥∥µ̂i , j − µ̂i ⊗ µ̂ j

∥∥
TV | θ = T

]≤ εn2,

rather than showing that a random θ does the trick. But at second glance the proof given in [45], which is signifi-
cantly simpler than the one from [11], actually implies Theorem 4.1.

For completeness we include the short proof of Theorem 4.1 via the argument from [45]. We need a few concepts
from information theory. Let X ,Y , Z be random variables that take values in finite domains. We recall that the
conditional mutual information of X ,Y given Z is defined as

I (X ,Y | Z ) =
∑

x,y,z
P

[
X = x, Y = y, Z = z

]
log

P
[

X = x, Y = y | Z = z
]

P [X = x | Z = z]P
[
Y = y | Z = z

] ,

with the conventions 0log0 = 0, 0log 0
0 = 0 and with the sum ranging over all possible values x, y, z of X ,Y , Z ,

respectively. Moreover, the conditional entropy of X given Y reads

H (X | Y ) =
∑
x,y
P

[
X = x, Y = y

]
logP

[
X = x | Y = y

]
.

We also recall the basic identity

I (X ,Y | Z ) =H (X | Z )−H (X | Y , Z ). (4.3)

Finally, Pinsker’s inequality provides that for any two probability distribution µ,ν on a finite set X ,

dTV(µ,ν) ≤
√

DKL
(
µ‖ν)

/2, where DKL
(
µ‖ν)=

∑
x∈X

µ(x) log
µ(x)

ν(x)
(4.4)

signifies the Kullback-Leibler divergence. The proof of the following lemma is essentially identical to the proof of
[45, Lemma 4.5].
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Lemma 4.2. Let µ ∈P (Ωn) and let σ ∈Ωn be a sample drawn from µ. Let i , i ′, i 1, . . . ∈ [n] be uniformly distributed
and mutually independent as well as independent of σ. Then for any integer T we have

T∑
θ=0

I (σi ,σi ′ | i , i ′, i 1, . . . , i θ,σi 1 , . . . ,σiθ ) ≤ log |Ω| .

Proof. Due to (4.3), for every θ ≥ 0,

I (σi ,σi ′ | i , i ′, i 1, . . . , i θ,σi 1 , . . . ,σiθ ) =H (σi | i , i ′, i 1, . . . , i θ,σi 1 , . . . ,σiθ )−H (σi | i , i ′, i 1, . . . , i θ ,σi 1 , . . . ,σiθ ,σi ′ )

=H (σi | i , i 1, . . . , i θ,σi 1 , . . . ,σiθ )−H (σi | i , i 1, . . . , i θ , i θ+1,σi 1 , . . . ,σiθ+1 ).

Summing on θ = 1, . . . ,T , we obtain

T∑
θ=0

I (σi ,σi ′ | i , i ′, i 1, . . . , i θ,σi 1 , . . . ,σiθ ) =H (σi | i )−H (σi | i , i 1, . . . , i T+1,σi 1 , . . . ,σi T+1 ).

The desired bound follows because H (σi ) ≤ log |Ω| and H (σi |σi 1 , . . . ,σi T+1 ) ≥ 0. �
Now let T > 0 be an integer and draw 0 ≤ θ ≤ T uniformly at random and construct µ̂ as in Theorem 4.1. Then as

an immediate consequence of Lemma 4.2 we obtain the following bound, where, of course, the expectation refers
to the choice of µ̂ and the independently chosen and uniform i , i ′.

Corollary 4.3. We have E
[
DKL

(
µ̂i ,i ′‖µ̂i ⊗ µ̂i ′

)]≤ (log |Ω|)/T.

Proof. Keeping the notation from Lemma 4.2, we let I = (i , i ′, i 1, . . . , i θ) and Σ= (σi 1 , . . . ,σiθ ). Recalling the defini-
tion (4.1) of µ̂, we find

I (σi ,σi ′ | I ,S) = E
[ ∑
ω,ω′∈Ω

P
[
σi =ω,σi ′ =ω′ | I ,Σ

]
log

P
[
σi =ω,σi ′ =ω′ | I ,Σ

]

P [σi =ω | I ,S]P
[
σi ′ =ω′ | I ,Σ

]
]

= E
[ ∑
σ∈Ωn

µ(σ)
∑

ω,ω′∈Ω
µ

(
σi =ω,σi ′ =ω′ |Σ= (σi 1 , . . . ,σiθ )

)

log
µ

(
σi =ω,σi ′ =ω′ |Σ= (σi 1 , . . . ,σiθ )

)

µ
(
σi =ω |Σ= (σi 1 , . . . ,σiθ )

)
µ

(
σi ′ =ω′ |Σ= (σi 1 , . . . ,σiθ )

)
]

= E[
DKL

(
µ̂i ,i ′‖µ̂i ⊗ µ̂i ′

)]

Hence, the assertion follows from Lemma 4.2. �
Proof of Theorem 4.1. Applying Pinsker’s inequality (4.4), Jensen’s inequality and Corollary 4.3, we find

E
∥∥µ̂i ,i ′ − µ̂i ⊗ µ̂i ′

∥∥
TV ≤ E

√
DKL

(
µ̂i ,i ′‖µ̂i ⊗ µ̂i ′

)
/2 ≤

√
E
[
DKL

(
µ̂i ,i ′‖µ̂i ⊗ µ̂i ′

)]
/2 ≤

√
log |Ω|

2T
,

whence the desired bound follows if T ≥ (log |Ω|)/(2ε2). �
Finally, the following lemma clarifies the bearing that the bound (4.2) has on the cut metric. The lemma is an

improved version of [13, Lemma 2.9]. Following [5] we say that µ ∈Ln is ε-symmetric if
∑

1≤i<i ′≤n

∥∥µi ,i ′ −µi ⊗µi ′
∥∥

TV < εn2.

Lemma 4.4. For any ε> 0 and every finite setΩ there exists n0 > 0 s.t. for every n ≥ n0 every ε2/4-symmetric µ ∈Ln

satisfies ∆�(µ,
⊗n

i=1µi ) < ε.

Proof. Let δ= ε2/4. Since µ⊗ µ̄ is a coupling of µ and µ̄ it suffices to show that for any set I ⊂ [n] and every ω ∈Ω,

sup
S⊂Ω2n

∣∣∣∣∣
∑

(σ,τ)∈S

∑
i∈I

µ(σ)µ̄(τ) (1 {σi =ω}−1 {τi =ω})

∣∣∣∣∣≤ εn. (4.5)

Let X (σ) = X (σ, I ,ω) = ∑
i∈I 1 {σi =ω} and denote by X̄ its expectation with respect to µ, that is X̄ = 〈X (σ),µ〉.

Because µ is δ-symmetric we can bound the second moment of X as follows:

〈
X (σ)2,µ

〉=
〈 ∑

i , j∈I
1
{
σi =σ j =ω

}
,µ

〉
=

∑
i , j∈I

µi j (ω,ω) ≤
( ∑

i , j∈I :i 6= j
µi (ω)µ j (ω)+

∑
i∈I

µi (ω)

)
+δn2 ≤ X̄ (1+ X̄ )+δn2,
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Hence,
〈

X (σ)2,µ
〉− X̄ 2 ≤ X̄ +δn2 ≤ |I |+δn2. (4.6)

Let α ∈ (0,1) and P (α) =µ
{∣∣X (σ)− X̄

∣∣≥αn
}
. Then Chebyshev’s inequality and (4.6) yield P (α) ≤ (|I |+δn2)/(αn)2.

Hence, for events Sh = {∣∣X (σ)− X̄
∣∣≥ 2hεn

}
we obtain µ(Sh) ≤ P (2hε) ≤ 4−hδ/ε2 +O(1/n). Therefore,

sup
S⊂Ω2n

∣∣∣∣∣
∑
i∈I

∑
(σ,τ)∈S

µ(σ)1 {σi =ω}− µ̄(τ)1 {τi =ω}

∣∣∣∣∣≤
〈∣∣X − X̄

∣∣,µ〉≤
∑

h≥0
µ(Sh) ·ε2h ≤ o(1)+

∑
h≥0

2−hδ/ε= 2δ/ε+o(1).

(4.7)

Thus, (4.5) follows from (4.7) and the choice of δ. �

4.2. Continuity. Recall that for a given µ ∈ L the pinned µσ̂µ↓n ∈ L is random. Thus, for the pinned laws we
consider the D⊠-Wasserstein metric. The aim in this paragraph is to establish the following key statement.

Proposition 4.5. The operator µ 7→µσ̂µ↓n is (D⊠( · , · ),D⊠( · , · ))-continuous for any n ≥ 1.

Toward the proof of Proposition 4.5 we need to consider a slightly generalised version of the pinning operation.
Specifically, for a measurable map κ : [0,1]2 → [0,1]Ω and τ ∈Ωn let

zτ (κ) =
∫1

0

n∏
i=1

κs,x̂ i (τi )ds.

Thus, zτ is a random variable, dependent on the uniformly and independently chosen x̂1, . . . , x̂n ∈ [0,1]. Also let
z(κ) =∑

τ∈Ωn zτ (κ). Further, define κτ↓n ∈K1 as follows. If zτ(κ) = 0, then we let κτ↓n = κ. But if zτ(κ) > 0, then we
let κτ↓n be a kernel representation of the probability distribution

∫1

0

∏n
i=1κs,x̂ i (τi )

zτ(κ)
δκs ds ∈P (S1)

Additionally, let σ̂κ ∈Ωn denote a vector drawn from the distribution (zτ(κ)/z(κ))τ∈Ωn if z(κ) > 0, and let σ̂κ ∈Ωn

be uniformly distributed otherwise.

Lemma 4.6. For any n ≥ 1, ε> 0 there is δ> 0 such that for all κ ∈K and all κ′ ∈K1 with D1(κ,κ′) < δ we have

D⊠
(
κσ̂κ↓n ,κ′

σ̂κ
′↓n

)
< ε.

Toward the proof of Lemma 4.6 we require the following statement.

Lemma 4.7. For any n ≥ 1, ε> 0 and κ ∈K we have P
[

z σ̂κ (κ) < ε | x̂1, . . . , x̂n
]< ε |Ω|n .

Proof. We have P [z σ̂(κ) < ε | x̂1, . . . , x̂n] =∑
τ∈Ωn 1 {zτ(κ) < ε} zτ(κ) < ε|Ω|n . �

Proof of Lemma 4.6. Given ε> 0 pick small enough η= η(ε,n) > 0, δ= δ(η) > 0. Consider κ ∈K ,κ′ ∈K1 such that
D1(κ,κ′) < δ and let µ=µκ, µ′ =µκ

′
. Then we see that

P
[
1−η< z(κ′) < 1+η]> 1−η. (4.8)

Hence, in the following we may condition on the event that 1− η < z(κ′) < 1+ η. Given that this is so, choose
σ̂,σ̂′ ∈Ωn from the distributions

P [σ̂=σ | x̂1, . . . , x̂n] = zσ(κ)/z(κ) = zσ(κ), P
[
σ̂′ =σ | x̂1, . . . , x̂n

]= zσ(κ′)/z(κ′) (σ ∈Ωn).

Further, define the probability density functions

pκ(s) = 1

z σ̂(κ)

n∏
i=1

κs,x̂ i (σ̂i ), pκ′ (s) = 1

z σ̂′ (κ′)

n∏
i=1

κ′s,x̂ i
(σ̂′

i ) and set

p̂(s) = p(s)∧p ′(s), p̂κ(s) = pκ(s)− p̂(s), p̂κ′ (s) = pκ′ (s)− p̂(s)

so that

µσ̂↓n =
∫1

0
pκ(s)δκs ds, µ′

σ̂′↓n =
∫1

0
pκ′ (s)δκ′s ds.

22

The cut metric for probability distributions A-141



To couple µσ̂↓n ,µ′
σ̂′↓n

draw a pair (t , t ′) ∈ [0,1]2 from the following distribution: with probability
∫1

0 p̂(s)ds, we draw

t = t ′ from the distribution (
∫1

0 p̂(s)ds)−1p̂(s)ds, and with probability 1−∫1
0 p̂(s)ds we draw t , t ′ independently from

the distributions
(
1−

∫1

0
p̂(s)ds

)−1

p̂κ(s)ds,

(
1−

∫1

0
p̂(s)ds

)−1

p̂ ′
κ(s)ds,

respectively. Then (κt ,κ′t ′ ) provides a coupling of µσ̂↓n ,µ′
σ̂′↓n

. Consequently,

D⊠(µσ̂↓n ,µ′
σ̂′↓n) ≤ D1(κ,κ′)+P[

t 6= t ′
]+P[

z(κ′) 6∈ (1−η,1+η)
]< δ+P[

t 6= t ′
]+P[

z(κ′) 6∈ (1−η,1+η)
]

. (4.9)

To estimate P
[

t 6= t ′
]

let

E =
{ ∑
τ∈Ωn

∫1

0

∣∣∣∣∣
n∏

i=1
κs,x̂ i (τi )−

n∏
i=1

κ′s,x̂ i
(τi )

∣∣∣∣∣ds < η2

}
.

Picking δ sufficiently small ensures that

P [E ] > 1−η (4.10)

and on the event E we have

dTV
(
σ̂,σ̂′)= 1

2

∑
σ∈Ωn

∣∣P [σ̂=σ]−P
[
σ̂′ =σ

]∣∣=
∑

σ∈Ωn

∣∣zσ(κ)− zσ(κ′)/z(κ)
∣∣< η.

Hence, on E we can couple σ̂,σ̂′ such that

P[σ̂ 6= σ̂′] < η. (4.11)

Additionally, let E ′ = {
σ̂= σ̂′, z σ̂(κ) ≥ η1/3

}
. Then Lemma 4.7, (4.10) and (4.11) imply that

P
[
E ′ | E ]≥ 1−2η1/3 |Ω|n . (4.12)

Moreover, on E ∩E ′ we have
∣∣z σ̂(κ′)− z σ̂(κ)

∣∣≤ η

and consequently

P
[

t 6= t ′ | E ∩E ′]= 1−
∫1

0
p̂(s)ds = 1− 1

2

∫1

0

(
p(s)+p ′(s)−

∣∣p(s)−p ′(s)
∣∣)ds = 1

2

∫1

0

∣∣p(s)−p ′(s)
∣∣ds

≤ 1

2z σ̂(κ)

∫1

0

∣∣∣∣∣
n∏

i=1
κs,x̂ i (σ̂i )−

n∏
i=1

κ′s,x̂ i
(σ̂i )

∣∣∣∣∣ds + z σ̂(κ)− z σ̂(κ′)
2z σ̂(κ)z σ̂(κ′)

≤p
η. (4.13)

Finally, the assertion follows from (4.9), (4.10), (4.12) and (4.13). �

Lemma 4.8. For any ε> 0, ℓ≥ 1 there is δ> 0 such that for all κ ∈K such that µκ ∈L is supported on a set of size
at most ℓ and all ι ∈K1 with D@(κ, ι) < δ we have D⊠(κσ̂κ↓n , ισ̂ι↓n) < ε.

Proof. Pick α=α(ε,ℓ,n), β=β(α), ξ= ξ(β), ζ= ζ(ξ), η= η(ζ) > 0 and δ= δ(η) > 0 sufficiently small. To summarise,

0 < δ≪ η≪ ζ≪ ξ≪β≪α≪ ε/(n +ℓ). (4.14)

We may assume that there is a partition S1, . . . ,Sℓ of [0,1] such that κ is constant on Si × {x} for all x ∈ [0,1]. More-
over, we may assume without loss that there is k ∈ [ℓ] such that λ(Si ) > η for all i ≤ k, while λ(Si ) < η for all i > k.
Let ti : [0,1] → Si be a measurable bijection that maps the Lebesgue measure on [0,1] to the probability measure
λ(Si )−1ds on Si for i ≤ k (see Lemma 2.3). Assuming that δ is small enough, we see that the kernels

κ(i )
s,x = κti (s),x , ι(i )

s,x = ιti (s),x

have cut distance

D@(κ(i ), ι(i )) < ζ for all i ≤ k. (4.15)
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Combining Proposition 3.8 and (4.15), we conclude that after an n-fold application of the ⊕′-operation we have

D@(κ(i )⊕′n , ι(i )⊕′n) < ξ. Since for every x ∈ [0,1] the map s 7→ κ(i )⊕′n
s,x is constant, we therefore find that

∑
τ∈Ωn

E

∣∣∣∣∣E
[

n∏
j=1

κ(i )
s,x̂1,...,x̂n

(τ j )−
n∏

j=1
ι(i )
s,x̂1,...,x̂n

(τ j )
∣∣ x̂1, . . . , x̂n

]∣∣∣∣∣<β for all i ≤ k. (4.16)

Because λ(Si ) < η for all i > k and ℓη<β for small enough η, (4.16) implies that

∑
τ∈Ωn

E

∣∣∣∣∣E
[

n∏
j=1

κs,x̂1,...,x̂n (τ j )−
n∏

j=1
ιs,x̂1,...,x̂n (τ j )

∣∣ x̂1, . . . , x̂n

]∣∣∣∣∣< 2β. (4.17)

Combining (4.17) with Markov’s inequality, we conclude that

P [E ] > 1−β1/3, where E =
{ ∑
τ∈Ωn

∣∣∣∣∣
∫1

0

n∏
j=1

κs,x̂1,...,x̂n (τ j )−
n∏

j=1
ιs,x̂1,...,x̂n (τ j )ds

∣∣∣∣∣<β1/3

}
. (4.18)

Consequently, on E we have
∑
τ∈Ωn

|zκ(τ)− z ι(τ)| <β1/3. (4.19)

In particular, there exists a coupling of the reference configurations σ̂κ,σ̂ι ∈ Ωn such that P
[
σ̂κ = σ̂ι] ≥ 1−β1/4.

Hence, Lemma 4.7 implies that the event E ′ = {
σ̂κ = σ̂ι, zκ(σ̂κ) ≥α

}
satisfies

P
[
E ′ | E ]≥ 1−|Ω|nα. (4.20)

To complete the proof let

pκ(s) =
n∏

i=1
κs,x̂ i (σ̂κi ), pι(s) =

n∏
i=1

ιs,x̂ i (σ̂ιi ) and

p̂κ,i =
∫

Si

pκ(s)ds, p̂ι,i =
∫

Si

pι(s)ds.

Further, let E ′′ = {∑ℓ
i=1

∣∣p̂κ,i − p̂ι,i
∣∣<α3

}
. Then (4.16), (4.18) and (4.20) imply that

P
[
E ′′ | E ∩E ′]> 1−α. (4.21)

Moreover, since zκ(σ̂κ) ≥α and σ̂κ = σ̂ι, on E∩E ′∩E ′′ we have z ι(σ̂ι) ≥α/2. Therefore, on E∩E ′∩E ′′ the probability
distributions (pκ,i )i∈[ℓ], (pι,i )i∈[ℓ] with

pκ,i = p̂κ,i /zκ(σ̂κ), pι,i = p̂ι,i /z ι(σ̂
ι)

have total variation distance dTV((pκ,i )i∈[ℓ], (pι,i )i∈[ℓ]) < 2α. Consequently, there exists a coupling of random vari-
ables iκ, i ι with these distributions such that

P
[
iκ 6= i ι | E ∩E ′∩E ′′]< 2α. (4.22)

We extend this coupling to a coupling γ of µσ̂µ↓n ,νσ̂ν↓n : given iκ, i ι, pick any sκ ∈ Siκ and choose s ι ∈ Si ι from
the distribution pι(s)/p̂ι,i ιds. Then κsκ , ιs ι have distribution µσ̂µ↓n ,νσ̂ν↓n , respectively. Further, we claim that on
E ∩E ′∩E ′′, ∣∣∣∣

∫

B

∫

X
σx (ω)−τx (ω)dxdγ(σ,τ)

∣∣∣∣< ε for all B ⊂S ×S , X ⊂ [0,1],ω ∈Ω. (4.23)

Indeed, thanks to (4.22), we may condition on the event i ι = iκ ≤ k. Hence, to prove (4.23) it suffices to show that
for any S ⊂ Si ι , X ⊂ [0,1], ω ∈Ω,

∫

X

∫

S

pι(s)

p̂ι,i ι

(
ιs,x (ω)−κsκ,x (ω)

)
dsdx < ε/|Ω|. (4.24)

Because z ι(σ̂κ) ≥α/2 we may also assume that p̂ι,i ι ≥α2/ℓ, and we observe that pι(s) ≤ 1. Now, assume for contra-
diction that there exist S, X ,ω for which (4.24) is violated. Letting

S+ =
{

s ∈ S :
∫

X

(
ιs,x (ω)−κsκ,x (ω)

)
dx >α

}
,
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we conclude that

ε

2|Ω| ≤
∫

X

∫

S+

pι(s)

p̂ι,i ι

(
ιs,x (ω)−κsκ,x (ω)

)
dsdx =

∫

S+

pι(s)

p̂ι,i ι

∫

X

(
ιs,x (ω)−κsκ,x (ω)

)
dxds

≤ ℓ

α2

∫

S+

∫

X

(
ιs,x (ω)−κsκ,x (ω)

)
dxds ≤ ℓα−2D@(ιi ι ,κi ι ) ≤ ℓα−2ζ due to (4.15). (4.25)

But (4.25) contradicts the choice of the parameters from (4.14). Hence, we obtain (4.24) and thus (4.23). Finally,
the assertion follows from (4.18), (4.20), (4.21) and (4.23). �

Lemma 4.9. For every sequence (ki )i in K1 that converges to a kernel k ∈ K1 with respect to D@(·, ·) and for every
kernel k ′ ∈K1 there is a sequence of kernels (k ′

i )i , k ′
i ∈K1, s.t. D@(k ′

i ,k ′) → 0 and D1(ki ,k ′
i ) → D1(k,k ′).

Proof. Let (κω)ω, (κ′ω)ω, (κωi )ω, (κ′ωi )ω be the families of bipartite graphons representing k,k ′, (ki )i , (k ′
i )i given by

(2.6). From the definition of D1(·, ·) and Lemma 2.5 we get

D@(ki ,k) = 1

2
max
ω

D@(κωi ,κω) and D1(k,k ′) = 1

2

∑
ω

D1(κω,κ′ω). (4.26)

The lemma follows from (4.26) and [32, Proposition 8.25]. �

The following lemma and the proof of Proposition 4.5 are adaptations of [32, Proof of Lemma 9.16].

Lemma 4.10. Let ε,δ > 0 and let k ∈ K . Let Uk (δ,ε) be the set of all κ ∈ K such that there exists κ′ ∈ K1 with
D@(k,κ′) < δ and D1(κ′,κ) < ε. Then Uk (δ,ε) is D@-open.

Proof. Suppose that κ ∈ Uk (δ,ε) and that the sequence (κi )i≥1 satisfies limi→∞ D@(κ,κi ) = 0. It suffices to show
that κi ∈Uk (δ,ε) for all large enough i . To this end consider κ′ ∈ K1 such that D@(k,κ′) < δ and D1(κ′,κ) < ε. By
Lemma 4.9 there exists a sequence κ′i ∈ K1 such that limi→∞ D@(κ′,κ′i ) = 0 and limi→∞ D1(κ′i ,κi ) = D1(κ,κ′). For
this sequence we have

D@(κ′i ,κ′) → 0, D1(κi ,κ′i ) → D1(κ,κ′) < ε.

Therefore, for large enough i we have D1(κi ,κ′i ) < ε and D@(k,κ′i ) ≤ D@(k,κ′)+D@(κ′i ,κ′) < δ, whence κ′i ∈Uk (δ,ε).
�

Proof of Proposition 4.5. Fix ε> 0. Lemma 4.6 shows that there exists δ0 > 0 such that for all κ ∈K ,κ′ ∈K1,

D1(κ,κ′) < δ0 ⇒ D⊠(µκ
σ̂κ↓n ,µκ

′

σ̂κ
′↓n

) < ε/2. (4.27)

Similarly, by Lemma 4.8 there exists a sequence (δℓ)ℓ such that for all µ,ν ∈ L with µ supported on at most ℓ≥ 1
configurations we have

D⊠(µ,ν) < δℓ ⇒ D⊠(µσ̂µ↓n ,νσ̂µ↓n) < ε/2. (4.28)

Suppose that k : [0,1]2 →P (Ω) is a step function that takes ℓ≥ 1 different values and let Uk =Uk (δℓ,δ0) be as
in Lemma 4.10. Then Uk is D@-open and

⋃
k Uk = K because Uk contains the δ0-ball around k with respect to

the D1-metric. Further, let Uk ⊂ K be the projection of Uk onto K. Then Uk is open because the canonical map
K →K is open. Moreover,

⋃
k Uk =K. Hence, a finite number of sets Uk cover K. Thus, the assertion follows from

(4.27) and (4.28). �

4.3. Proof of Theorem 1.12. Let ε > 0 and pick a small enough δ > 0 and then a large enough N > 0. Also let
T = T (ε) = 64ε−8 log |Ω|. Given µ ∈ L we apply Theorem 1.9 to obtain a probability distribution ν ∈ LN such that
D⊠(µ, ν̇) < δ. Invoking Theorem 1.1 and Proposition 4.5, we find

D⊠(µσ̂µ↓n , ν̇σ̂ν̇↓n) < ε/4 for all n ≤ T (ε). (4.29)

By construction, for any n the law ν̇σ̂ν̇↓n obtained by first embedding ν ∈LN into L and then applying the pinning
operation coincides with the law obtained by first applying (4.1) to ν and then embedding the resulting ν̂ into L.
Hence, Theorem 4.1 and Lemma 4.4 show that for a uniform θ ≤ T (ε),

E[D⊠(ν̇σ̂ν̇↓θ , ν̇σ̂ν̇↓θ)] < ε2/2. (4.30)
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Further, Theorem 1.2, Theorem 1.11 and (4.29) show that

D⊠
(
µσ̂µ↓θ,µσ̂µ↓θ

)≤ D⊠
(
µσ̂µ↓θ , ν̇σ̂ν̇↓θ

)
+D⊠

(
ν̇σ̂ν̇↓θ, ν̇σ̂ν̇↓θ

)
+D⊠

(
ν̇σ̂ν̇↓θ ,µσ̂↓θ

)

≤ 2D⊠
(
µσ̂↓θ, ν̇σ̂ν̇↓θ

)
+D⊠

(
ν̇σ̂ν̇↓θ , ν̇σ̂ν̇↓θ

)
< ε+D⊠

(
ν̇σ̂ν̇↓θ, ν̇σ̂ν̇↓θ

)
. (4.31)

Combining (4.30) and (4.31) and applying Markov’s inequality, we obtain the first part of Theorem 1.12. The second
assertion follows from a similar argument.

4.4. Proof of Theorem 1.2. We postponed the proof Theorem 1.2, because it relies on some of the prior results
from this section. To finally carry the proof out we adapt the proof strategy from [32], where a statement similar
to Theorem 1.2 was established for graphons, to the present setting of probability distributions. We begin with the
following simple bound.

Lemma 4.11. For any µ,ν ∈Ln we have ∆⊠(µ,ν) ≤ n3D⊠(µ̇, ν̇).

Proof. Let ψ ∈S and let γ ∈ Γ(µ̇, ν̇). We are going to show that there exist a coupling g ∈ Γ(µ,ν) and a permutation
φ ∈Sn such that

max
S⊂Ωn×Ωn

X⊂[n]
ω∈Ω

∣∣∣∣∣
∑

(σ,σ′)∈S,x∈X

g (σ,σ′)
(
1 {σx =ω}−1

{
σ′
φ(x) =ω

})∣∣∣∣∣≤ n4 sup
S⊂S ×S
X⊂[0,1]
ω∈Ω

∣∣∣∣
∫

S

∫

X

(
σx (ω)−σ′

ψ(x)(ω)
)

dxds

∣∣∣∣ . (4.32)

The assertion is immediate from (4.32) and the definitions (1.1), (1.2).
With respect to the coupling g , matters are easy: the construction of µ̇, µ̇′ ∈L ensures that the couplingγ readily

induces a coupling g of the original probability distributions µ,ν such that g (σ,τ) = γ(σ̇, τ̇) for all σ,τ ∈Ωn .
We are left to exhibit the permutation φ. To this end let I j = [( j −1)/n, j /n). We construct a bipartite auxiliary

graph G with vertex set {v1, . . . , vn}∪{w1, . . . , wn} in which vi , w j are adjacent iff λ(I j ∩ψ(Ii )) ≥ n−3. Then the Hall’s
theorem implies that G possesses a perfect matching. Indeed, assume that ; 6=V ⊂ {v1, . . . , vn} satisfies |∂V | < |V |.
Then because ψ preserves the Lebesgue measure we obtain

1

n
≤ |V |− |∂V |

n
= |V |

n
−

∑
vi∈V , w j ∈∂V

λ(I j ∩ψ(Ii )) =
∑

vi∈V , w j 6∈∂V
λ(I j ∩ψ(Ii )) ≤ |V |(n −|V |)

n3 < 1

n
,

a contradiction. Thus, let φ be the permutation of [n] induced by any perfect matching of G .
To complete the proof we claim that g ,φ satisfy (4.32). Indeed, given a set S ⊂Ωn ×Ωn let Ṡ = {(σ̇, τ̇) : (σ,τ) ∈ S}.

Further, for X ⊂ [n] let Ẋ ⊂ [0,1] be any measurable set such that λ(Ẋ ∩ Ii ) = n−3 for all i ∈ [n] and Ẋ ∩ I j ⊂ψ(Ii ) if
φ(i ) = j . Then we obtain (4.32). �

As a second step we will complement the coarse multiplicative bound from Lemma 4.11 with a somewhat more
subtle additive bound. To this end, we need an enhanced version of a ’Frieze-Kannan type’ regularity lemma for
probability distributions. Specifically, let µ ∈Ln and let S = {S1, . . . ,Sk } and X = {X1, . . . , Xℓ} be partitions ofΩn and
[n], respectively. We call the partition S canonical if there exists a set I ⊂ [n] such that

S =
{{
σ ∈Ωn : ∀i ∈I :σi = τi

}
: τ ∈ΩI

}
.

In words, S partitions the discrete cube Ωn into the Ω|I | sub-cubes defined by the entries on the set I of coordi-
nates. In this case we define

µS,X (σ) =
k∑

h=1
µ(Sh)

ℓ∏
i=1

∏
j∈Xi

∑
x∈Xi

µx (σ j |Sh)

|Xi |
∈Ln .

Thus, µS,X is a mixture of product measures, one for each class of the partition S.

Lemma 4.12. For anyΩ there exists c = c(Ω) > 0 such that for every 0 < ε< 1/2, n > 0 and all µ,ν ∈Ln there exist a
canonical partition S1, . . . ,Sk ofΩn and a partition X1, . . . , Xℓ of [n] such that the following statements are satisfied.

• k +ℓ≤ exp(ε−c ).
26
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• with γ ∈ Γ(µ,µS,X ) and γ′ ∈ Γ(ν,νS,X ) defined by

γ(σ,τ) =
k∑

h=1
1 {σ,τ ∈ Sh}µ(σ)µS,X (τ)/µ(Sh),

γ′(σ,τ) =
k∑

h=1
1 {σ,τ ∈ Sh}ν(σ)νS,X (τ)/ν(Sh)

we have

max
S⊂Ωn×Ωn , X⊂[n],ω∈Ω

∣∣∣∣∣
∑

(σ,τ)∈S

∑
x∈X

γ(σ,τ) (1 {σx =ω}−1 {τx =ω})

∣∣∣∣∣< εn, (4.33)

max
S⊂Ωn×Ωn , X⊂[n],ω∈Ω

∣∣∣∣∣
∑

(σ,τ)∈S

∑
x∈X

γ′(σ,τ) (1 {σx =ω}−1 {τx =ω})

∣∣∣∣∣< εn. (4.34)

Hence, ∆⊠(µ,µS,X ) < ε, ∆⊠(ν,νS,X ) < ε.

Proof. Combining Theorem 4.1 and Lemma 4.4, we find a set I ⊂ [n] such that the induced canonical partition
S1, . . . ,Sk satisfies

k∑
i=1

µ(Si )∆�
(
µ[ · |Si ],

n⊗
x=1

µx [ · |Si ]

)
< ε/8,

k∑
i=1

ν(Si )∆�
(
ν[ · |Si ],

n⊗
x=1

νx [ · |Si ]

)
< ε/8. (4.35)

Moreover, the size k of the partition is bounded by exp(ε−c ′ ) for some c ′ = c ′(Ω). Now, for each i ∈ [k] we can par-
tition the set [n] into at most 32/ε classes Xi ,1, . . . , Xi ,ℓi such that for all x, y ∈ Xi , j we have dTV(µx [ · |Si ],µy [ · |Si ]) <
ε/16. A similar partition X ′

i ,1, . . . , X ′
i ,ℓ′i

exists for ν[ · |Si ]. Hence, the smallest common refinement X1, . . . , Xℓ of all

these partitions (Xi , j ), (X ′
i , j ) has at most exp(ε−c )/2 classes, for some suitable c = c(Ω) > 0. Further, by construc-

tion, letting

µ(i )(σ) =
ℓ∏

j=1

∏
x∈X j

1

|X j |
∑

x∈X j

µx (σx |Si ), ν(i )(σ) =
ℓ∏

j=1

∏
x∈X j

1

|X j |
∑

x∈X j

νx (σx |Si ),

we obtain from (4.35) that

k∑
i=1

µ(Si )∆�
(
µ[ · |Si ],µ(i )

)
< ε/4,

k∑
i=1

ν(Si )∆�
(
ν[ · |Si ],ν(i )

)
< ε/4. (4.36)

In addition, sinceµ(i ),ν(i ) are product measures, the couplings γ(i ),γ(i )′ for which the cut distance in (4.36) attained
are trivial, i.e., γ(i ) =µ[ · |Si ]⊗µ(i ) and γ(i )′ = ν[ · |Si ]⊗ν(i ). Therefore, (4.36) implies (4.33)–(4.34). �

Lemma 4.13. For any µ,ν ∈Ln we have ∆⊠(µ,ν) ≤ D⊠(µ̇, ν̇)+o(1) as n →∞.

Proof. Let 0 < ε = ε(n) = o(1) be a sequence that tends to zero sufficiently slowly. By Corollary 4.12 there exist
partitions S1, . . . ,Sk of Ωn and X1, . . . , Xℓ of [n] such that ∆⊠(µ,µS,X )+∆⊠(ν,νS,X ) < ε and k +ℓ≤ exp(ε−c ). By the
triangle inequality,

D⊠(µ̇S,X , ν̇S,X ) ≤ D⊠(µ̇, ν̇)+D⊠(µ̇, µ̇S,X )+D⊠(ν̇, ν̇S,X )

≤ D⊠(µ̇, ν̇)+∆⊠(µ,µS,X )+∆⊠(ν,νS,X ) ≤ D⊠(µ̇, ν̇)+2ε.

Hence, there exist φ ∈S and a coupling g of µS,X ,νS,X such that the induced coupling ġ of µ̇S,X , ν̇S,X satisfies

sup
T⊂S ×S ,Y ⊂[0,1],ω∈Ω

∣∣∣∣
∫

T

∫

Y

(
σy (ω)−τφ(y)(ω)

)
dydg (σ,τ)

∣∣∣∣< D⊠(µ,ν)+3ε. (4.37)

Because φ preserves the Lebesgue measure, there exists a bijection ϕ : [n] → [n] such that the following is true. For
a class Xi ⊂ [n] let Ẋi =

⋃
x∈Xi [(x −1)/n, x/n). Then uniformly for all h, i ∈ [ℓ] we have

∣∣Xh ∩ϕ(Xi )
∣∣= nλ(Ẋh ∩φ(Ẋi ))+O(1). (4.38)
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Further, we construct a coupling G ∈ Γ(µ,ν) by letting

G(σ,τ) =
∑

σ′∈Ωn :µS,X (σ′)>0
τ′∈Ωn :νS,X (τ′)>0

γ(σ,σ′)g (σ′,τ′)γ′(τ,τ′)
µS,X (σ′)νS,X (τ′)

and we claim that

1

n
max

T⊂Ωn×Ωn

Y ⊂[n]
ω∈Ω

∣∣∣∣∣
∑

(σ,τ)∈T
G(σ,τ)(σY (ω)−τϕ(Y )(ω))

∣∣∣∣∣< D⊠(µ,ν)+6ε, where σY (ω) =
∑

y∈Y
1
{
σy =ω

}
. (4.39)

Clearly, (4.39) readily implies the assertion.
To verify (4.39) we observe that, due to symmetry and the triangle inequality, it suffices to show that

∣∣∣∣∣
∑

(σ,τ)∈T

∑
σ′,τ′

γ(σ,σ′)g (σ′,τ′)γ′(τ,τ′)
µS,X (σ′)νS,X (τ′)

(
σY (ω)−σ′

Y (ω)
)
∣∣∣∣∣< εn, (4.40)

∣∣∣∣∣
∑

(σ,τ)∈T

∑
σ′,τ′

γ(σ,σ′)g (σ′,τ′)γ′(τ,τ′)
µS,X (σ′)νS,X (τ′)

(
σ′

Y (ω)−τ′ϕ(Y )(ω)
)∣∣∣∣∣< D⊠(µ,ν)n +4εn. (4.41)

for all T,Y ,ω. Now, invoking Lemma 4.12, we obtain

∑
(σ,τ)∈T

∑
σ′,τ′

γ(σ,σ′)g (σ′,τ′)γ′(τ,τ′)
µS,X (σ′)νS,X (τ′)

(
σY (ω)−σ′

Y (ω)
)
+ ≤

∑
σ,σ′

γ(σ,σ′)
(
σY (ω)−σ′

Y (ω)
)
+ < εn.

As the same bound holds for the negative part
(
σY (ω)−σ′

Y (ω)
)
−, we obtain (4.40). Similarly, due to Corollary 4.12,

(4.37) and (4.38),

∑
(σ,τ)∈T

∑
σ′,τ′

γ(σ,σ′)g (σ′,τ′)γ′(τ,τ′)
µS,X (σ′)νS,X (τ′)

(
σ′

Y (ω)−τ′ϕ(Y )(ω)
)
+
≤

∑
σ′,τ′

g (σ′,τ′)
(
σ′

Y (ω)−τ′ϕ(Y )(ω)
)
+

< nD⊠(µ,ν)+3εn +O(kℓ) ≤ nD⊠(µ,ν)+4εn,

whence (4.41) follows. �

Proof of Theorem 1.2. The theorem follows by combining Lemmas 4.11 and 4.13. �
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RANDOM PERTURBATION OF SPARSE GRAPHS

MAX HAHN-KLIMROTH, GIULIA S. MAESAKA, YANNICK MOGGE, SAMUEL MOHR, AND OLAF PARCZYK

ABSTRACT. In the model of randomly perturbed graphs we consider the union of a deterministic graph Gα with
minimum degree αn and the binomial random graph G(n, p). This model was introduced by Bohman, Frieze,
and Martin and for Hamilton cycles their result bridges the gap between Dirac’s theorem and the results by Posá
and Koršunov on the threshold in G(n, p). In this note we extend this result in Gα ∪G(n, p) to sparser graphs
with α= o(1). More precisely, for any ε> 0 and α : N 7→ (0,1) we show that a.a.s. Gα∪G(n,β/n) is Hamiltonian,
whereβ=−(6+ε) log(α). Ifα> 0 is a fixed constant this gives the aforementioned result by Bohman, Frieze, and
Martin and ifα= O(1/n) the random partG(n, p) is sufficient for a Hamilton cycle. We also discuss embeddings
of bounded degree trees and other spanning structures in this model, which lead to interesting questions on
almost spanning embeddings into G(n, p).

1. INTRODUCTION AND RESULTS

For α ∈ (0,1) we let Gα be an n-vertex graph with minimum degree δ(Gα) ≥ αn. A famous result by
Dirac [15] says that if α≥ 1/2 and n ≥ 3, then Gα contains a Hamilton cycle, i.e. a spanning cycle through all
vertices of Gα. This motivated the more general questions of determining the smallest α such that Gα con-
tains a given spanning structure. For example, there are results for trees [29], factors [22], powers of Hamil-
ton cycles [26, 28], and general bounded degree graphs [12]. This is a problem for deterministic graphs that
belongs to the area of extremal graph theory.

We can consider similar questions for random graphs, in particular, for the binomial random graph
model G(n, p), which is the probability space over n-vertex graphs with each edge being present with prob-
ability p independent of all the others. Analogous to the smallest α we are looking for a function p̂ =
p̂(n) : N 7→ (0,1) such that if p = ω(p̂) the probability that G(n, p) contains some spanning subgraph tends
to 1 as n tends to infinity and for p = o(p̂) it tends to 0. We call this p̂ the threshold function for the re-
spective property (an easy sufficient criteria for its existence can be found in [8]) and if the first/second
statement holds we say that G(n, p) has/does not have this property asymptotically almost surely (a.a.s.).
One often says that G(n, p) undergoes a phase transition at p̂ . For the Hamilton cycle problem Posá [39]
and Koršunov [31] proved independently that p̂ = log n/n gives the threshold. Similar as above there was
a tremendous amount of research on determining the thresholds for various spanning structures, e.g. for
matchings [17], trees [32, 36], factors [24], powers of Hamilton cycles [35, 37], and general bounded degree
graphs [1, 18, 19, 40]. An extensive survey by Böttcher can be found in [9].

Motivated by the smoothed analysis of algorithms [41], both these worlds were combined by Bohman,
Frieze, and Martin [7]. For any fixed α > 0, they defined the model of randomly perturbed graphs as the
union Gα∪G(n, p). They showed that 1/n is the threshold for a Hamilton cycle, meaning that there is a
graph Gα such that with p = o(1/n) there a.a.s. is no Hamilton cycle in Gα ∪G(n, p) and for any Gα and
p =ω(1/n) there a.a.s. is a Hamilton cycle in Gα∪G(n, p). It is important to note that in G(n, p), p = 1/n is
also the threshold for an almost spanning cycle, this is for any ε > 0 a cycle on at least (1−ε)n vertices. It
should be further remarked that if p = o(logn/n) there are a.a.s. isolated vertices in G(n, p) and the purpose
of Gα is to compensate for this and to help in turning the almost spanning cycle into a Hamilton cycle.

This first result on randomly perturbed graphs [7] sparked a lot of subsequent research on the thresholds
of spanning structures in this randomly perturbed graphs model, e.g. trees [10, 25, 34], factors [4], powers

The research on this project was initiated during a workshop in Cuxhaven. We would like to thank the Hamburg University of
Technology for their support. OP was supported by Technische Universität Ilmenau, the Carls Zeiss Foundation, and DFG Grant
PA 3513/1-1. MHK was supported by Stiftung Polytechnische Gesellschaft. SM was supported by DFG Grant 327533333. GSM is
supported by the European Research Council (Consolidator Grant PEPCo 724903).
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of Hamilton cycles [5, 11], and general bounded degree graphs [11]. As for a Hamilton cycle there is often
a log-factor difference to the thresholds in G(n, p) alone, which is there for local reasons similar to isolated
vertices. In most of these cases a Gα, that is responsible for the lower bound, is the complete imbalanced
bipartite graph Kαn,(1−α)n . In this model there are also results with lower bounds on α [6, 16, 23, 38] and for
Ramsey-type problems [13, 14].

1.1. Hamiltonicity in randomly perturbed sparse graphs. The aim of this note is to investigate a new di-
rection. Instead of fixing an α ∈ (0,1) in advance we allow α to tend to zero with n. This extends the range
of Gα to sparse graphs and we want to determine the threshold probability in Gα∪G(n, p). For example,
with α= 1/log n we have a sparse deterministic graph Gα with minimum degree n/logn. Then p =ω(1/n)
does not suffice in general, but it is sufficient to take Gα∪G(n,Θ(log log n)/n) to a.a.s. guarantee a Hamilton
cycle. More generally, we can prove the following.

Theorem 1.1. Let α=α(n) :N 7→ (0,1) and β=β(α) =−(6+o(1)) log(α). Then a.a.s. Gα∪G(n,β/n) is Hamil-
tonian.

This extends the result of Bohman, Frieze, and Martin [7] for constant α > 0. For even n a direct con-
sequence of this theorem is the existence of a perfect matching in the same graph. To prove Theorem 1.1
we use a result by Frieze [20] to find a very long path in G(n, p) alone and then use the switching technique
developed in [11] to turn this into a Hamilton cycle. As it turns out, our method allows to prove the existence
of a perfect matching with a slightly lower edge probability.

Theorem 1.2. Let α=α(n) :N 7→ (0,1) and β= β(α) =−(4+o(1)) log(α). Then a.a.s. Gα∪G(n,β/n) contains
a perfect matching.

To see that in both theorems β is optimal up to the constant factor, consider Gα = Kαn,(1−α)n and note
that there cannot be a perfect matching, if we have more than αn isolated vertices on the (1−α)n side.
The number of isolated vertices in G(n,β/n) roughly is n(1−β/n)n−1 ∼= n exp(−β), which is larger thanαn if
β= o(− log(α)).

For proving results in the randomly perturbed graphs model good almost spanning results are essential.
Typically, by almost spanning one means that for any ε > 0 we can embed the respective structure on at
least (1− ε)n vertices. For paths and cycles in G(n,C /n) this can, for example, be done using expansion
properties and the DFS-algorithm [33]. These almost spanning results are much easier than the spanning
counterpart, because there is always a linear size set of available vertices. But for the proof of Theorem 1.1
this is not sufficient, because if α= o(1) we will not be able to take care of a linear sized leftover. Instead we
exploit that we have G(n,β/n) and use the following result showing that we can find a long cycle consisting
of all but sublinearly many vertices.

Lemma 1.3 (Frieze [20]). Let 0 <β=β(n) ≤ log n. Then G(n,β/n) a.a.s. contains a cycle of length at least
(
1− (1−o(1))βexp

(−β))
n.

This is optimal, because this is asymptotically the size of the 2-core (maximal subgraph with minimum
degree 2) of G(n, p) [21, Lemma 2.16]. A similar result holds for large matchings.

Lemma 1.4 (Frieze [20]). Let 0 <β= β(n) ≤ log n. Then G(n,β/n) a.a.s. contains a matching consisting of at
least

(
1− (1−o(1))exp

(
−β

))
n vertices.

Again this is optimal, because the number of isolated vertices is a.a.s. (1+o(1))e−βn [21, Theorem 3.1].
Observe, that also a bipartite variant of this lemma holds, which can be proved by removing small degree
vertices and employing Halls theorem.

Lemma 1.5. Let 0 <β=β(n) ≤ log n. Then the bipartite binomial random graph G(n,n,β/n) a.a.s. contains
a matching consisting of at least

(
1− (1−o(1))exp

(
−β

))
n edges.
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1.2. Bounded degree trees in randomly perturbed sparse graphs. After Hamilton cycles and perfect match-
ings, the next natural candidates are n-vertex trees with maximum degree bounded by a constant ∆. In
G(n, p) the threshold log n/n was determined in a breakthrough result by Montgomery [36], in Gα it is
enough to have a fixed α > 1/2 [27], and in Gα∪G(n, p) with constant α > 0 the threshold is 1/n [34]. To
obtain a result similar to Theorem 1.1 for bounded degree trees using our approach we need an almost
spanning result similar to Lemma 1.3. With a similar approach as for Theorem 1.1 and 1.2 we obtain the
following modular statement.

Theorem 1.6. Let ∆ ≥ 2 be an integer and suppose that α,β,ε : N 7→ [0,1] are such that 4(∆+ 1)ε < α∆+1

and a.a.s. G(n,β/n) contains a given tree with maximum degree ∆ on (1−ε)n vertices. Then any tree with
maximum degree ∆ on n vertices is a.a.s. contained in the union Gα∪G(n,β/n).

Next we discuss the almost spanning results that we can obtain in the relevant regime. Improving on a
result of Alon, Krivelevich, and Sudakov [2], Balogh, Csaba, Pei, and Samotij [3] proved that for ∆≥ 2 there
exists a C > 0 such that for ε> 0 a.a.s.G(n,β/n) contains any tree with maximum degree∆ on at most (1−ε)n
vertices provided that β ≥ C

ε
log 1

ε
. For the proof they only require that the graph satisfies certain expander

properties. This can be extended to the range where ε→ 0 andω(1) =β≤ log n and following along the lines
of their argument we get the following.

Lemma 1.7. For ∆ ≥ 2 there exists a C > 0 such that for any 0 < β = β(n) ≤ log n and ε = ε(n) > 0 with
β≥ C

ε log 1
ε the following holds. G(n,β/n) a.a.s. contains any bounded degree tree on at most (1−ε)n vertices.

Then together with Theorem 1.6 we obtain the following.

Corollary 1.8. For ∆≥ 2 there exists a C > 0 such that for α=α(n) :N 7→ (0,1) and β= β(α) =Cα−(∆+1) log 1
α

the following holds. Any n-vertex tree T with maximum degree ∆ is a.a.s. contained in Gα∪G(n,β/n).

The proof for the dense case in [34] uses regularity and it is unlikely to give anything better in the sparse
regime. As remarked in [2] the condition on the almost spanning embedding in G(n,β/n) could possibly
be improved to β > log C

ε , then covering almost all non-isolated vertices. More precisely this asks for the
following.

Question 1.9. For every integer∆ there exists C > 0 such that with 0 <β=β(n)≤ log n the following holds. Is
any given tree with maximum degree∆ on

(1−C exp(−β))n

vertices a.a.s. contained in G(n,β/n)?

With Theorem 1.6 this would then give that already β=−(∆+1)log(Cα) suffices, which would be optimal
up to the constant factors. We want to briefly argue why it is possible to answer this question for large
families of trees and what the difficulties are. For simplicity we only discuss the case β= log log n and note
that by Lemma 1.7 above we can embed trees on roughly (1− 1/log logn)n vertices. A very helpful result
for handling trees by Krivelevich [32] states that for any integer n,k > 2, a tree on n vertices either has at
least n/4k leaves or a collection of at least n/4k bare paths (internal vertices of the path have degree 2 in the
tree) of length k . If there are at least n/(4log log n) leaves, we can embed the tree obtained after removing
the leaves. Then we can use a fresh random graph and Lemma 1.5 to find a matching for all the leaves,
completing the embedding of the tree.

On the other hand, if there are at least n loglog n/(4log n) bare paths of length log n/log log n, it is possible
to embed all but n/log n of these paths, which are all but n/loglog n vertices. Then one has to connect
the remaining paths, again using ideas from [36]. In between both cases it is not clear what should be
done, because we might have n/log n leaves and n/(4log log n) bare paths of length log log n. The length
of the paths are too short to connect them and the leaves are too few for the above argument. Answering
this questions and thereby improving the result of Alon, Krivelevich, and Sudakov [2] is a challenging open
problem.
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1.3. Other spanning structures. As mentioned above, embeddings of spanning structures in Gα, G(n, p),
and Gα∪G(n, p) for fixed α> 0 have also been studied for other graphs such as powers of Hamilton cycles,
factors, and general bounded degree graphs. In most of these cases almost spanning embeddings (e.g. Fer-
ber, Luh, and Nguyen [18]) can be generalised such that previous proofs can be extended to the regime
α = o(1) with β = α−1/C , similar to what we do in Corollary 1.8. Further improvements seem to be hard,
because better almost spanning results are similar in difficulty to spanning results inG(n, p) alone. We want
to discuss this on one basic example, the triangle factor, which is the disjoint union of n/3 triangles.

In Gα we need α ≥ 2/3, in G(n, p) the threshold is n−2/3 log1/3 n, and in Gα∪G(n, p) with a fixed α > 0 it
is n−2/3. Note that the log-term in G(n, p) is needed to ensure that every vertex is contained in a triangle,
which is essential for a triangle factor. Using Janson’s inequality [21, Theorem 21.12] it is not hard to prove
the almost spanning result for a triangle factor on at least (1−ε)n vertices with p = ω(n−2/3). This can be
generalised to G(n,βn−2/3) giving a.a.s. a triangle factor on at least (1−C /β)n vertices. Again, this can only
give something with β=α−1/C in Gα∪G(n,βn−2/3) and to improve this we ask the following.

Question 1.10. Let 0 <β=β(n)≤ log1/3 n. Does G(n,βn−2/3) a.a.s. contain a triangle factor on at least
(
1− (1−o(1))exp(−β3)

)
n

vertices?

Observe, that this is a.a.s. the number of vertices of G(n,βn−2/3) that are not contained in a triangle.
Similar questions for other factors or more general structures would be of interest. It took a long time until
Johannson, Kahn, and Vu [24] determined the threshold for the triangle factor. This conjecture seems to be
of similar difficulty, whereas for our purposes it would already be great to obtain a triangle factor on at least
(1−C exp(−β3))n vertices for some C > 1.

For the remainder of this note we prove Theorem 1.1 and 1.6 in Section 2 and 3 respectively.

2. HAMILTONICITY

We will prove the following proposition that will be sufficient to prove the theorem together with known
results on Hamilton cycles in G(n, p).

Proposition 2.1. Let α=α(n) :N 7→ (0,1) such that α=ω(n−1/6), and let β=β(α) =−(6+o(1)) log(α). Then
a.a.s. Gα∪G(n,β/n) is Hamiltonian.

Proof of Theorem 1.1. Letα,β> 0 such thatβ=−(6+o(1)) log(α). Ifα=O(n−1/6), we haveβ≥ (1+o(1)) log n
and we can infer that a.a.s. there is a Hamilton cycle in G(n,β/n) (this follows from an improvement on the
result concerning the threshold for Hamiltonicity [30]). On the other hand, if α = ω(n−1/6), then we apply
Proposition 2.1 to a.a.s. get the Hamilton cycle. �

Proof of Proposition 2.1. To prove the proposition we apply the following strategy. We first find a long path
in G(n, p) alone. Then, by considering the union with Gα, we obtain a reservoir structure for each vertex
that allows us to extend the length of the path iteratively. Finally, we will also be able to close this path to a
cycle on all vertices. W.l.o.g. we can assume that α< 1/10.

Finding a long path. Let P = p1, . . . , pℓ be the longest path that we can find in G1 = G(n, (β−1)/n) and let
V ′ = {v1, . . . , vk } =V (G1) \

{
p1, ..., pℓ

}
be the left-over. Then, by Lemma 1.3, we get a.a.s. that

k =
∣∣V ′∣∣= n −ℓ≤ (1−o(1))βexp

(
1−β)

n. (2.1)

Next, let P ′ be a collection of vertices of P , where we take every other vertex, excluding the last, that is

P ′ = {
pi : i ≡ 0 (mod 2)

}
\
{

pℓ
}

(2.2)

In the following, we will work on P ′ instead of all of P , ensuring that certain absorbing structures do not
overlap.
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p1 p2 p3 . . . p j−1 p j p j+1 . . . pℓ

v

p1 p2 p3 . . . p j−1 p jp j+1 . . . pℓv

FIGURE 1. The top shows a path P = p1, . . . , pℓ and the left-over vertex v . Black edges belong to the
random graph, orange edges can be found in Gα. The bottom shows the situation after absorbing v
using that p j ∈ B (pℓ, v).

Absorbing the left-over. We now consider the union Gα∪G1. The following absorbing structure is the key
to the argument.

Definition 2.2. For any vertices u, v ∈V (Gα∪G1) let

B (u, v)= {
x ∈ NGα

(u)∩P ′ | NP (x) ⊆ NGα
(v)

}
. (2.3)

If for some v ∈ V ′ there is an p j ∈ B(pℓ, v) we can proceed as follows (see Figure 1). By definition we
have p j−1, p j+1 ∈ NGα(v) and p j ∈ NGα

(pℓ)∩P . Then p j can be replaced by v in the path P and can now be
appended to the path P at pℓ. So we get the path P̃ = p1, . . . , p j−1, v, p j+1, . . . , pℓ, p j , where P̃ ⊂ P ∪Gα.

To iterate this argument we show that a.a.s. for any pair of vertices u and v , the set B (u, v) is large enough.

Claim 2.3. We have a.a.s. |B (u, v)| ≥α3n/4 for any u, v ∈V (Gα∪G1).

Proof. Let u, v be arbitrary vertices in V = V (Gα ∪G1). The set B(u, v) is uniformly distributed over P ′,
because G(n, (β−1)/n) is sampled independently of the deterministic graph Gα. Then by definition

E [|B (u, v)|] ≥ 9

10
α3 ∣∣P ′∣∣≥ 2

5
α3 (

1− (1−o(1))βexp
(
1−β

))
n ≥α3n/3. (2.4)

An immediate consequence of B (u, v) being uniformly settled overG(n, (β−1)/n) is that |B (u, v)| ∼ Bin(
∣∣P ′∣∣ ,α3).

It follows from (2.4) and the Chernoff bound that there is a sufficiently small, but constant, δ> 0 s.t.

P
(|B(u, v)| <α3n/4

)≤P(|B (u, v)| < (1−δ)E [|B (u, v)|]) ≤ exp
(−δ2/8α3n

)< exp
(−pn

)
. (2.5)

The lemma follows from a union bound over all
(n

2

)
choices for u, v and (2.5). �

We now have everything at hand to absorb all but two of the left-over vertices v ∈V ′ onto a path of length
n −2. We do this inductively using Algorithm 1.

Let P̃ ,Bi (·, ·) be defined as in Algorithm 1. In order to see that the algorithm terminates with P̃ = Pk it
suffices to prove, that Bi (u, v) is not empty for any u, v ∈V and i = 1. . . k . By definition of P ′ in (2.2) we have
|B (u, v) \ Bi (u, v)| ≤ i and using Claim 2.3 and (2.1) we get

|Bi (u, v)| ≥α3n/8, (2.6)

whenever βexp
(
1−β

)
<α3/8. As this holds by definition of β=−(6+o(1)) log(α) and with α< 1/10, we get

that (2.6) holds for all u, v ∈V and any i = 1, . . . ,k .

Closing the cycle. We have found a path P̃ = p1, . . . , pn−2 and we are left with two vertices vk−1, vk that
are not on the path. It is possible to close the Hamilton cycle by absorbing vk−1 and vk if there is an edge
between A :=Bk (p1, vk−1) and B := Bk (pn−2, vk ). Indeed, we then have w.l.o.g. i < j such that pi ∈ A, p j ∈ B ,
and there is an edge pi p j . By definition of A and B we can then obtain the Hamilton cycle

pi , p1, . . . , pi−1, vk−1, pi+1, . . . , p j−1, vk , p j+1, . . . , pn−2, p j .
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Algorithm 1: Absorbs all but two vertices of the left-over set V ′ onto a path.

Input : Path P = p1 . . . pℓ, set of left-over vertices V ′ = {v1, . . . , vk }.
Output: Path P̃ in P ∪Gα on n −2 vertices.

Define ℓ1 = ℓ, P1 =P with P1 =u1
1 . . . u1

ℓ1
;

Define for any u, v the set B1(u, v)= B(u, v);
Define V ′

1 =V ′;
for i = 1 to k −2 do

Choose ui
j ∈ Bi (ui

ℓi
, vi ) and absorb vi onto Pi ;

Denote by Pi+1 = ui
1 . . .ui

j−1vi ui
j+1 · · ·ui

ℓi
ui

j = ui+1
1 . . .ui+1

ℓi+1 the resulting path;

Update ℓi+1 = ℓi +1,V ′
i+1 =V ′

i \ {vi };

Set Bi+1(u, v)= Bi (u, v) \
{

ui
j

}
for any u, v ;

end
P̃ = Pk ;

It remains to prove that we have an edge between A and B . For this we reveal G2 =G(n,1/n). As |A|, |B | ≥
α3n/8 by (2.6) we get

E
[
eG2 (A,B )

]≥ 1

n
·
(
α3n

16

)2

=ω(1), (2.7)

as α = ω(n−1/6). Together with Chernoff’s inequality this implies that a.a.s eG2 (A,B ) > 0. As the union of
G1 and G2 can be coupled as a subgraph of G(n,β/n) this implies that a.a.s. there is a Hamilton cycle in
Gα∪G(n, p) and finishes the proof of Proposition 2.1. �

Observe, that when running the same proof for Theorem 1.2 we can obtain the better constant by adapt-
ing the definition of the B (u, v) to the setup of perfect matchings and then proving that a.a.s. |B (u, v)| ≥
α2n/4. We spare the details here.

3. BOUNDED DEGREE TREES

Theorem 1.6 is modular, which turns almost spanning embeddings in the random graph into spanning
embeddings in the union Gα∪G(n,β/n). The proof is very similar to the proof for Hamilton cycles and we
will spare some details.

Proof of Theorem 1.6. Let Gα be given and G = G(n,β/n). Let T be an arbitrary tree on n vertices with
maximum degree ∆. Denote by Tε the tree obtained from T by the following construction.

(1) Set T0 =T .
(2) In every step i , check whether Ti has at most (1−ε)n vertices.

• If this is the case, set Tε =Ti and finish the process.
• Otherwise, create Ti+1 by deleting one leaf of Ti .

We denote by L the left-over, that are the vertices removed during construction of Tε. Then

|V (Tε)| ≤ (1−ε)n, |L| ≤ εn +1, and V (T ) =V (Tε)∪L.

Next we let T be an independent subset of the vertices of Tε such that the vertices in T do not have neigh-
bours outside of Tε with respect to T . Observe, that there exists such a T such that |T | ≥ (1−∆ε)n

∆+1 .
By assumption we a.a.s. have an embedding T ′

ε of Tε into G and we denote by T ′ the image of T under
this embedding. We adapt Definition 2.2 and define for any two vertices u, v

B (u, v)= {
x ∈ NGα

(u)∩T ′ | NT ′
ε

(x) ⊂ NGα(v)
}

.

As before, if we want to embed a vertex w that is a neighbour of an already embedded vertex u in Tε and v
is an available vertex we can do it if B (u, v) is non-empty. More precisely, with x ∈ B (u, v), we can embed
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the vertex embedded onto x to v , embed w to x, and obtain a valid embedding of Tε with an additional
neighbour of u. Analogous to Claim 2.3 we get the following.

Claim 3.1. We have a.a.s. |B (u, v)| ≥ α∆+1n
4(∆+1) for any u, v ∈V (Gα∪G ).

Therefore, similar to Algorithm 1, we can iteratively append leaves to Tε to obtain an embedding of T

into Gα∪G . As in every step we lose at most one vertex from each B (u, v) this works as long as

|L| ≤ εn +1 < |B (u, v)| ,
which holds by Claim 3.1 and the assumption on ε and α. �
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