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Abstract: Inflammatory nontraumatic atlantoaxial rotatory subluxation (AAS) in children is an
often-missed diagnosis, especially in the early stages of disease. Abscess formation and spinal cord
compression are serious risks that call for immediate surgical attention. Neither radiographs nor
non-enhanced computed tomography (CT) images sufficiently indicate inflammatory processes.
Magnetic resonance imaging (MRI) allows a thorough evaluation of paraspinal soft tissues, joints,
and ligaments. In addition, it can show evidence of vertebral distraction and spinal cord compression.
After conducting a scoping review of the literature, along with scientific and practical considerations,
we outlined a standardized pediatric MRI protocol for suspected inflammatory nontraumatic AAS.
We recommend contrast-enhanced MRI as the primary diagnostic imaging modality in children with
signs of torticollis in combination with nasopharyngeal inflammatory or ear nose and throat (ENT)
surgical history.

Keywords: grisel syndrome; nontraumatic atlantoaxial rotatory subluxation; torticollis; computed
tomography; magnetic resonance imaging; imaging protocol

1. Introduction

Non-traumatic rotatory atlantoaxial subluxation (AAS) was first described in 1830 by
Sir Charles Bell. He reported AAS in a patient suffering from a deep syphilitic ulcer of the
pharynx [1]. The condition was later named after the Frenchman Pierre Grisel (1869–1959)
who reported two patients with AAS coinciding with nasopharyngeal inflammation [2].
Since then, acquired Grisel syndrome has been described after otorhinolaryngological
surgical procedures such as tonsillectomy and adenoidectomy [2–5], after nasopharyngeal
soft tissue inflammation, Kawasaki syndrome (cervical lymphadenopathy, necrotizing mi-
crovasculitis with fibrinoid necrosis of mucosa of mouth and throat), and retropharyngeal
abscess secondary to pulmonary tuberculosis [6–8]. Grisel syndrome is primarily found in
the pediatric population with 68% of cases occurring in patients under the age of 12 years [9]
and a total of 90% under the age of 21 [10]. The disease’s apparent age-dependency led to
the introduction of a two-hit hypothesis [11]. A pre-existing cervical ligamentous laxity
and longer alar ligaments in the pediatric population resulting in an atlas-dens interval
that ranges up to 4.5 mm (adults 2.5 to 3 mm) could serve as a predisposition (“first
hit”) [12]. The “second hit” could be caused by immune cells and inflammatory mediators
that develop and maintain inflammatory response in pharyngeal tissue and spread through
pharyngovertebral veins. Pharyngovertebral veins link posterior nasopharyngeal veins to
the periodontoid vascular plexus. The plexus serves as drainage for the posterosuperior
pharyngeal region. The lack of lymph nodes in the plexus allows a spread of the inflam-
matory response from the upper pharyngeal region to the atlantoaxial area. Inflammatory
mediators can cause synovial and vascular engorgement, periligamentous inflammation,
and edema, all of which might increase laxity of the transverse and alar ligaments [13].
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Under normal circumstances, the posterior fibers of the alar ligaments retain the odontoid
process in contact with the atlas and prevent anterior dislocation of the atlas on the axis [14].
The hypothesis of a “second hit” has been morphologically supported by a case report by
Park et al. [15], who described enhancement of tissues surrounding the cervical spine on
Magnetic Resonance Imaging (MRI) at initial diagnosis and its resolution on follow-up MRI
three weeks later. MRI findings corresponded with the clinical presentation and resolution
of torticollis in the patient.

The underlying pathophysiological principles suggest that MRI with its high sensi-
tivity for soft tissue alterations is suitable as a primary diagnostic imaging modality for
evaluation in Grisel syndrome. Nevertheless, radiographs and three-dimensional com-
puted tomography (CT) are still methods of choice in many hospitals. We hypothesize
that a combination of patient history, clinical findings, and standardized MRI allows early
diagnostic success in this often-missed diagnosis and prevents exposure of children to
ionizing radiation.

2. Materials and Methods
2.1. MR Imaging

MRI with its high sensitivity for soft tissue alterations has become the preferred
modality for evaluation of the spinal cord, ligaments, and paraspinal soft tissues [16].
It allows assessment of paranasal sinuses, mastoid air cells, nasopharyngeal and upper
neck soft tissue, transverse and alar ligaments, joint capsules of the cervical spine, as
well as the cervical spinal cord. Inflammatory lesions of the upper neck or even abscess
formation, periligamentous inflammation and edema, synovial inflammation, and laxity
of the transverse and alar ligaments may support clinically suspected diagnosis of Grisel
syndrome and facilitate treatment decisions. In the case of abscess formation, size and
extent of fluid collection can be assessed as a preoperative measure.

J. William Fielding, a clinical professor of orthopedic surgery, classified the rotatory
subluxations of the atlantoaxial joint and described four lesion types that are shown in
Figure 1. In Fielding Types III and IV, spinal cord compression may be present on MRI.
Since clinical evaluation of damage to the dorsal column-medial lemniscus pathway and the
spinothalamic tract can be difficult in young children, imaging plays an important role in
diagnostics. According to Fielding et al., neurological complications occur in approximately
15% of cases. They can range from radiculopathy to myelopathy and may even be fatal [17].
Spinal cord lesions require surgical treatment with decompression and arthrodesis.
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Sequence Plane Slice 
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2D T2w 
TSE 
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sopharyngeal and 

Figure 1. Fielding Classification of Atlantoaxial Subluxation (AAS) [17].
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Initial diagnosis can be complimented by follow-up MRI of inflammatory lesions and
abscesses for evaluation of treatment effects. Interventional MRI can be performed in case
a therapeutic orthopedic procedure is indicated [18].

2.2. MRI Protocol

We performed a search in PubMed seeking all reports published until June 1st 2020
and examined all articles indexed with the medical subject or expert key words “Grisel syn-
drome” and “MRI” with text availability, “full text”. We included studies that mentioned or
displayed the MRI sequences used for clinical diagnosis. Articles published in non-English
languages were excluded. Eighteen studies met the inclusion criteria. 10/18 studies ac-
quired T2-weighted (T2w) images in the sagittal plane, 5/18 studies in the axial plane
and 4/18 studies in the coronal plane, making T2w images the most commonly used
sequences. Post-contrast T1-weighted (T1w) images were again most commonly acquired
in the sagittal plane with 7/18 studies. 4/7 studies used fat saturation in post contrast
imaging. Details on included reports are shown in Table S1 [5,7,15,16,19–32].

3. Results

Based on the synthesized findings of our topic-based scoping review, and along with
scientific and practical considerations, we outlined a standardized MRI protocol (Table 1)
for suspected inflammatory nontraumatic AAS. The protocol can be applied to children
of all ages. It can be used to support initial diagnosis and for routine follow-up. As a
trade-off between large tissue coverage and the small size of spinal structures, 2D sequences
were recommended with a maximum slice thickness of 3 mm [33]. For smaller children,
a slice thickness of 2 mm should be considered. Minimum recommended sequences
include sagittal and axial 2D T2-weighted (T2w) turbo spin echo (TSE), coronal 2D Turbo
inversion recovery magnitude (TIRM) with short inversion time for fat suppression of bone
marrow, sagittal pre contrast agent (CA), as well as sagittal, axial and coronal post CA 2D
T1-weighted (T1w) TSE sequences. Scan time at 1.5 T amounts to approximately 23 min.

In case of insufficient image quality of 2D T2w sequences, 3D sequences utilizing bal-
anced steady-state free precession (b-SSFP) such as constructive interference in steady-state
(CISS) and fast imaging employing steady-state acquisition with phase cycling (FIESTa–c)
are recommended. These sequences offer the ability to image with submillimeter spatial
resolution [34].

Illustration of Three Pediatric Cases of MRI in Inflammatory Nontraumatic Atlantoaxial
Rotatory Subluxation

Case 1: Patient history: Eleven-year-old patient with prior pharyngitis and cervical
lymphadenopathy a month prior to acute torticollis. Three months had passed before the
patient was referred to our hospital for further diagnosis. MRI findings are presented in
Figure 2.

Case 2: Patient history: Three-year-old patient with otolaryngological surgical pro-
cedure (nasal polypectomy) and postsurgical development of torticollis. Six weeks had
passed before patient was referred to our hospital for further diagnosis. MRI findings are
presented in Figure 3.

Case 3: Patient history: Six-year-old patient with prior pharyngitis and cervical
lymphadenopathy prior to acute torticollis. Referral to our hospital after unsuccessful
treatment with oral antibiotics from primary care physician. MRI findings are presented in
Figure 4.
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Table 1. Standardized MRI (Diagnosis and Routine Follow-Up). Suggested standard protocol with a duration of approxi-
mately 23 min scan time at 1.5 Tesla (T). For smaller children, a slice thickness of 2 mm should be considered.

Sequence Plane Slice
Thickness Pixel Size TR; TE; Number

of Averages
Trans-mitting

Coil
Receiving

Coil Comment

2D T2w TSE sagittal 3 mm 1 mm 3800; 84; 2 body neck

Aim to include
nasopharyngeal and

upper neck soft
tissue, mastoid air

cells and if possible
paranasal sinus FOV

2D TIRM

coronal; planning on
sagittal plane, block

position angled
parallel to

cervical spine

3 mm 1 mm 3800; 33; 2 body neck

Short inversion time
(160 ms) for fat
suppression of
bone marrow

2D T1w TSE sagittal 3 mm 1 mm 550; 9.5; 3 body neck

2D T2w TSE

axial; planning on
sagittal plane, block

position angled
perpendicular to

cervical spine

3 mm 1 mm 4500; 84; 2 body neck

Include at least
craniocervical

transition to C3 and
any pathological

region on
sagittal plane

2D T1w TSE
post CA sagittal 3 mm 1 mm 550; 9.5; 3 body neck

2D T1w TSE
post CA

axial; planning on
sagittal plane, block

position angled
perpendicular to

cervical spine

3 mm 1 mm 550; 9.9; 2 body neck

include at least
craniocervical

transition to C3 and
any pathological

region on
sagittal plane

2D T1w TSE
post CA

coronal; planning on
sagittal plane, block

position angled
parallel to

cervical spine

3 mm 1 mm 524; 17; 2 body neck

T2w = T2-weighted; TSE = turbo spin echo; TIRM = turbo inversion recovery magnitude; FOV = field of view; STIR = short-TI inversion
recovery; T1w = T1-weighted; CA = contrast agent.
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Figure 2. MRI shows edematous swelling and contrast enhancement of the posterior naso-, oro- and hypopharyngeal soft 
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asterisks; 2D T1w TSE post CA. Increased anterior atlantodental interval (D); dotted arrows; 2D T2w TSE. Asymmetry of 

Figure 2. MRI shows edematous swelling and contrast enhancement of the posterior naso-, oro- and hypopharyngeal soft
tissue (A,B); arrows; 2D T1w TSE pre and post CA. No abscess formation present. Enlarged cervical lymphnodes (C);
asterisks; 2D T1w TSE post CA. Increased anterior atlantodental interval (D); dotted arrows; 2D T2w TSE. Asymmetry of
odontoid lateral mass interval at midlateral mass level (C); line. Laxity of the transverse ligament of atlas (D); arrowheads.
No spinal cord compression. T2w = T2-weighted; TSE = turbo spin echo; T1w = T1-weighted; CA = contrast agent.
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Figure 3. MRI shows edematous swelling and contrast enhancement of the posterior nasopharyngeal soft tissue with
extension to anterior atlanto-occipital membrane and the cruciate ligament (A,B); arrows; 2D T1w TSE pre and post CA.
Contrast enhancement of the left longus capitis (C); asterisk; 2D T1w TSE post CA signaling inflammation. No abscess
formation present. Fixed rotation of C1 and C2 (C); dotted arrows; 2D T1w TSE post CA and synovial inflammation.
Laxity of the transverse ligament of atlas (D); arrowhead; 2D T2w TSE. No spinal cord compression. T2w = T2-weighted;
TSE = turbo spin echo; T1w = T1-weighted; CA = contrast agent.
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Figure 4. MRI shows edematous swelling of the posterior naso-, oro- and hypopharyngeal soft tissue with extension to the
cruciate ligament (A); 2D T2w TSE. Joint effusion in the anterior synovial compartment of the dens seen as high T2 signal
(B); arrow; 2D T2w TSE. No abscess formation present. Forward movement of C1 with increased anterior atlantodental
interval (A); dotted arrows. No spinal cord compression; 2-week follow-up with appropriate empiric antibiotic regimen
shows full regression of joint effusion (C); 2D T2w TSE. T2w = T2-weighted; TSE = turbo spin echo; T1w = T1-weighted;
CA = contrast agent.

4. Discussion

The selection of an imaging modality in possible nontraumatic atlantoaxial rotatory
subluxation is always preceded by clinical considerations [3,16–18]. Highly suggestive
are a recent history of otorhinolaryngological surgical procedures (i.e., tonsillectomy and
adenoidectomy) or an infection in the upper aerodigestive tract (i.e., tonsillitis). In addition,
there should be typical clinical findings: a characteristic head position of 20◦ of tilt to one
side, 20◦ of rotation to the opposite side, and slight flexion (torticollis). Laboratory findings
are usually non-specific. Patients may show elevated C-reactive protein (CRP) levels and
leucocyte counts in the first days of torticollis, followed by subsequent normalization of
these parameters. Fever is rarely present.

Common imaging modalities include radiographs, CT, and MRI. The fixed posture
in torticollis often causes technical difficulties obtaining correct radiographic projections
in awake children. These technical limitations reduce their clinical importance compared
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to other modalities. In addition, radiographs are of minimal value in the first 4 weeks
of disease, although flexion-extension views may be suggestive [35]. CT and MRI scans
usually confirm the presence of rotational dislocation or anterior subluxation. Using CT,
especially the dynamic solution with three scans in different head positions, exposes the
often young patients to considerable levels of ionizing radiation [36,37]. It is therefore of
high interest to reduce CT exposure settings in pediatric patients. Neither radiographs
nor non-enhanced CT images sufficiently indicate inflammatory processes with possible
abscess formation or myelopathy. MRI is well suited for the evaluation of nasopharyngeal
regions of interest in Grisel syndrome. At the same time, MRI is adequate for visualizing
atlantoaxial subluxation and spinal cord compression. Once diagnosis is established and in
case a therapeutic orthopedic procedure is indicated, a reduction maneuver (maximal head
rotation to the right first and then to the left during traction) can be performed immediately
under general anesthesia with the patient lying in the scanner in a supine position. In this
case, a single T2w sequence after the maneuver ensures a fast-operating time with reliable
diagnostic accuracy [18].

Considering MRI as primary modality, it must be taken into account that especially
smaller children can have a difficult time tolerating the unusual environment, loud noises,
and the need to lie still [38]. In an emergency setting such as Grisel syndrome with
acute inflammation, distraction and mock MR training techniques may not be applicable.
It is therefore important to weigh pediatric sedation risks against radiation risks. In a
meta-analysis conducted with data from the Pediatric Sedation Research Consortium of
pediatric sedation/anesthesia encounters outside of the operating theater (>60% radiolog-
ical procedures), serious adverse events were rare and no deaths occurred. Events that
have the potential to harm and may require timely rescue interventions occurred once per
89 sedation encounters but could be well managed by a team of specialized care takers.

The standard diagnostic protocol we suggest can be acquired in approximately 20 min
and weighs image quality/resulting diagnostic accuracy against scan time. Ligaments and
symmetry of the odontoid lateral mass and anterior atlantodental interval are usually best
evaluated on T2w sequences. Both fast spinecho inversion-recovery and T2w sequences are
sensitive for bone marrow edema [39]. These advantages are reflected in the common use
of both sequences in literature. T1w sequences without and with CA delineate the anatomy
and pathologic conditions of the retropharyngeal and prevertebral spaces [40]. The protocol
allows for image subtraction on the sagittal plane to identify contrast enhancing tissue and
rim enhancement of abscess formation. Subtraction imaging is a technique whereby an
unenhanced T1w sequence is digitally subtracted from the identical sequence performed
after CA administration [41]. Post CA fat saturated T1w sequences were not included
in the protocol, because the time required for application of the saturation pulse would
substantially increase the imaging time [42]. However, as revealed by our literature review,
some radiologists prefer the usage of fat saturated images for diagnostic work up. An
alternative to 2D T1w sequences without and with contrast on sagittal plane are contrast-
enhanced chemical shift techniques (Dixon) combining three echoes acquired at different
echo times to create water-only and fat-only images [43].

5. Conclusions

We weighed pediatric sedation risks against radiation risks and MRI advantages
over CT evaluating paraspinal soft tissues, joints, ligaments, and signs of spinal cord
compression. In conclusion, we recommend contrast-enhanced MRI as the primary diag-
nostic modality in children with signs of torticollis in combination with nasopharyngeal
inflammatory or ENT surgical history.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/children8050329/s1, Supplementary Table S1: Details on included studies in scoping review of
MRI in Grisel syndrome.
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19. Ugur, H.C.; Cağlar, S.; Unlu, A.; Erdem, A.; Kanpolat, Y. Infection-Related Atlantoaxial Subluxation in Two Adults: Grisel
Syndrome or Not? Acta Neurochir. 2003, 145, 69–72. [CrossRef] [PubMed]

20. Wurm, G.; Aichholzer, M.; Nussbaumer, K. Acquired Torticollis Due to Grisel’s Syndrome: Case Report and Follow-up of
Non-Traumatic Atlantoaxial Rotatory Subluxation. Neuropediatrics 2004, 35, 134–138. [CrossRef]

21. Panopalis, P.; Christopoulos, S.; Churchill-Smith, M.; Chankowsky, J.; Ménard, H.A. Grisel’s Syndrome: Non-Traumatic
Subluxation of the Atlantoaxial Joint. J. Rheumatol. 2005, 32, 1619.

22. Yamazaki, M.; Someya, Y.; Aramomi, M.; Masaki, Y.; Okawa, A.; Koda, M. Infection-Related Atlantoaxial Subluxation (Grisel
Syndrome) in an Adult with Down Syndrome. Spine 2008, 33, E156–E160. [CrossRef]

http://doi.org/10.1055/s-0033-1363936
http://doi.org/10.1016/j.wneu.2015.04.060
http://doi.org/10.1055/s-0034-1393709
http://doi.org/10.5694/mja12.11794
http://www.ncbi.nlm.nih.gov/pubmed/24099212
http://doi.org/10.14245/kjs.2015.12.2.84
http://doi.org/10.1016/j.ijporl.2015.05.030
http://doi.org/10.1053/ajot.2002.28781
http://doi.org/10.1177/000348948709600620
http://www.ncbi.nlm.nih.gov/pubmed/3688763
http://doi.org/10.1177/014556130408300814
http://doi.org/10.1258/0022215011908586
http://doi.org/10.1097/00005537-200306000-00024
http://doi.org/10.5535/arm.2013.37.5.713
http://www.ncbi.nlm.nih.gov/pubmed/24236260
http://doi.org/10.1007/s00330-003-2213-0
http://www.ncbi.nlm.nih.gov/pubmed/14968258
http://doi.org/10.2106/00004623-197759010-00005
http://doi.org/10.3892/etm.2019.7565
http://www.ncbi.nlm.nih.gov/pubmed/31258633
http://doi.org/10.1007/s00701-002-0979-5
http://www.ncbi.nlm.nih.gov/pubmed/12545265
http://doi.org/10.1055/s-2004-815836
http://doi.org/10.1097/BRS.0b013e3181657eca


Children 2021, 8, 329 8 of 8

23. Salpietro, V.; Polizzi, A.; Granata, F.; Briuglia, S.; Mankad, K.; Ruggieri, M. Upper Respiratory Tract Infection and Torticollis in
Children: Differential Diagnosis of Grisel’s Syndrome. Clin. Neuroradiol. 2012, 22, 351–353. [CrossRef]

24. Di Cola, F.; Cutilli, T.; Paulis, D.D.; Galzio, R.J. Image-Guided Transoral Biopsy in a Boy with Grisel’s Syndrome. J. Clin. Neurosci.
2013, 20, 901–903. [CrossRef]

25. Reichman, E.F.; Shah, J. Grisel Syndrome: An Unusual and Often Unrecognized Cause of Torticollis. Pediatr. Emerg. Care 2015, 31,
577–580. [CrossRef]

26. Kourelis, K.; Haronis, V.; Konandreas, I.; Kontrafouri, A.; Asimakopoulos, A. Atypical Post-Adenoidectomy Grisel’s Syndrome in
Crouzon Child with Kyphotic Skull Base. Auris Nasus Larynx 2015, 42, 416–418. [CrossRef]

27. Allegrini, D.; Autelitano, A.; Nocerino, E.; Fogagnolo, P.; De Cillà, S.; Rossetti, L. Grisel’s Syndrome, a Rare Cause of Anomalous
Head Posture in Children: A Case Report. BMC Ophthalmol. 2016, 16, 21. [CrossRef]

28. Ozalp, H.; Hamzaoglu, V.; Avci, E.; Karatas, D.; Ismi, O.; Talas, D.U.; Bagdatoglu, C.; Dagtekin, A. Early Diagnosis of Grisel’s
Syndrome in Children with Favorable Outcome. Childs Nerv. Syst. 2019, 35, 113–118. [CrossRef] [PubMed]

29. Fath, L.; Cebula, H.; Santin, M.N.; Coca, A.; Debry, C.; Proust, F. The Grisel’s Syndrome: A Non-Traumatic Subluxation of the
Atlantoaxial Joint. Neurochirurgie 2018, 64, 327–330. [CrossRef]

30. Chua, A.J.K.; Tan, B.W.S.; Tan, T.Y.; Heah, H.H.W. Grisel’s Syndrome in an Adult after Endoscopic Nasopharyngectomy.
Laryngoscope Investig. Otolaryngol. 2019, 4, 504–507. [CrossRef] [PubMed]

31. Spinnato, P.; Aparisi Gomez, M.P.; Molinari, M.; Mercatelli, D.; Bazzocchi, A. Torticollis After a Somersault: A Case of Grisel’s
Syndrome. Indian J. Pediatr. 2019, 86, 198–199. [CrossRef] [PubMed]

32. Chryssikos, T.; Pratt, N.; Howie, B.; Mushlin, H.; Sansur, C. Open Reduction and Decompression of Atlantoaxial Subluxation
with Basilar Impression Due to Grisel Syndrome Using the Cervical Management Base Unit. World Neurosurg. 2020, 138, 129–136.
[CrossRef]

33. Saunders, D.E.; Thompson, C.; Gunny, R.; Jones, R.; Cox, T.; Chong, W.K. Magnetic Resonance Imaging Protocols for Paediatric
Neuroradiology. Pediatr. Radiol. 2007, 37, 789–797. [CrossRef] [PubMed]

34. Li, Z.; Chen, Y.A.; Chow, D.; Talbott, J.; Glastonbury, C.; Shah, V. Practical Applications of CISS MRI in Spine Imaging. Eur. J.
Radiol. Open 2019, 6, 231–242. [CrossRef]

35. Bissonnette, B. (Ed.) Syndromes: Rapid Recognition and Perioperative Implications, 2nd ed.; McGraw-Hill Education: New York, NY,
USA, 2019; ISBN 978-1-259-86178-9.

36. Banerjee, P.; Thomas, M. CT Scans to Exclude Spine Fractures in Children after Negative Radiographs May Lead to Increase in
Future Cancer Risk. Eur. J. Orthop. Surg. Traumatol. 2019, 29, 983–988. [CrossRef] [PubMed]

37. Brenner, D.; Elliston, C.; Hall, E.; Berdon, W. Estimated Risks of Radiation-Induced Fatal Cancer from Pediatric CT. AJR Am. J.
Roentgenol. 2001, 176, 289–296. [CrossRef] [PubMed]

38. Dong, S.-Z.; Zhu, M.; Bulas, D. Techniques for Minimizing Sedation in Pediatric MRI. J. Magn. Reson. Imaging 2019, 50, 1047–1054.
[CrossRef] [PubMed]

39. Benedetti, P.F.; Fahr, L.M.; Kuhns, L.R.; Hayman, L.A. MR Imaging Findings in Spinal Ligamentous Injury. Am. J. Roentgenol.
2000, 175, 661–665. [CrossRef]

40. Debnam, J.M.; Guha-Thakurta, N. Retropharyngeal and Prevertebral Spaces: Anatomic Imaging and Diagnosis. Otolaryngol. Clin.
N. Am. 2012, 45, 1293–1310. [CrossRef]

41. Eid, M.; Abougabal, A. Subtraction Images: A Really Helpful Tool in Non-Vascular MRI. Egypt. J. Radiol. Nucl. Med. 2014, 45,
909–919. [CrossRef]

42. Delfaut, E.M.; Beltran, J.; Johnson, G.; Rousseau, J.; Marchandise, X.; Cotten, A. Fat Suppression in MR Imaging: Techniques and
Pitfalls. RadioGraphics 1999, 19, 373–382. [CrossRef] [PubMed]

43. Ma, J. Dixon Techniques for Water and Fat Imaging. J. Magn. Reson. Imaging 2008, 28, 543–558. [CrossRef]

http://doi.org/10.1007/s00062-012-0145-2
http://doi.org/10.1016/j.jocn.2012.03.048
http://doi.org/10.1097/PEC.0000000000000278
http://doi.org/10.1016/j.anl.2015.02.017
http://doi.org/10.1186/s12886-016-0197-1
http://doi.org/10.1007/s00381-018-3996-2
http://www.ncbi.nlm.nih.gov/pubmed/30361761
http://doi.org/10.1016/j.neuchi.2018.02.001
http://doi.org/10.1002/lio2.298
http://www.ncbi.nlm.nih.gov/pubmed/31637293
http://doi.org/10.1007/s12098-018-2756-3
http://www.ncbi.nlm.nih.gov/pubmed/30105566
http://doi.org/10.1016/j.wneu.2020.02.165
http://doi.org/10.1007/s00247-007-0462-9
http://www.ncbi.nlm.nih.gov/pubmed/17487479
http://doi.org/10.1016/j.ejro.2019.06.001
http://doi.org/10.1007/s00590-019-02396-5
http://www.ncbi.nlm.nih.gov/pubmed/30941632
http://doi.org/10.2214/ajr.176.2.1760289
http://www.ncbi.nlm.nih.gov/pubmed/11159059
http://doi.org/10.1002/jmri.26703
http://www.ncbi.nlm.nih.gov/pubmed/30869831
http://doi.org/10.2214/ajr.175.3.1750661
http://doi.org/10.1016/j.otc.2012.08.004
http://doi.org/10.1016/j.ejrnm.2014.04.013
http://doi.org/10.1148/radiographics.19.2.g99mr03373
http://www.ncbi.nlm.nih.gov/pubmed/10194785
http://doi.org/10.1002/jmri.21492

	Introduction 
	Materials and Methods 
	MR Imaging 
	MRI Protocol 

	Results 
	Discussion 
	Conclusions 
	References

