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Abstract

The distinct ways the COVID-19 pandemic has been unfolding in different countries and

regions suggest that local societal and governmental structures play an important role not

only for the baseline infection rate, but also for short and long-term reactions to the outbreak.

We propose to investigate the question of how societies as a whole, and governments in

particular, modulate the dynamics of a novel epidemic using a generalization of the SIR

model, the reactive SIR (short-term and long-term reaction) model. We posit that contain-

ment measures are equivalent to a feedback between the status of the outbreak and the

reproduction factor. Short-term reaction to an outbreak corresponds in this framework to the

reaction of governments and individuals to daily cases and fatalities. The reaction to the

cumulative number of cases or deaths, and not to daily numbers, is captured in contrast by

long-term reaction. We present the exact phase space solution of the controlled SIR model

and use it to quantify containment policies for a large number of countries in terms of short

and long-term control parameters. We find increased contributions of long-term control for

countries and regions in which the outbreak was suppressed substantially together with a

strong correlation between the strength of societal and governmental policies and the time

needed to contain COVID-19 outbreaks. Furthermore, for numerous countries and regions

we identified a predictive relation between the number of fatalities within a fixed period

before and after the peak of daily fatality counts, which allows to gauge the cumulative medi-

cal load of COVID-19 outbreaks that should be expected after the peak. These results sug-

gest that the proposed model is applicable not only for understanding the outbreak

dynamics, but also for predicting future cases and fatalities once the effectiveness of out-

break suppression policies is established with sufficient certainty. Finally, we provide a web

app (https://itp.uni-frankfurt.de/covid-19/) with tools for visualising the phase space repre-

sentation of real-world COVID-19 data and for exporting the preprocessed data for further

analysis.
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1 Introduction

Epidemic outbreaks differ widely with respect to the parameters defining their dynamics and

the societal impact, such as infection rate, fatality rate, and the rate of critical cases requiring

hospitalization. In order to gauge the effectiveness and suitability of containment policies, one

needs therefore to discern the parameters characterizing a given epidemic process. The precise

assessment of these quantities is however difficult for novel pathogens, with the consequence

that it is in practice a notoriously difficult task to predict disease spreading [1]. Outbreak case

data is in addition often both noisy and biased at early stages [2], which implies that core epi-

demiological parameters cannot be estimated with sufficient precision. This is a hard limita-

tion for epidemic forecasting, as small differences in dynamical parameters can lead to

drastically different outcomes [3]. This problem also affects machine learning approaches to

the COVID-19 pandemic [4, 5], albeit to a lesser extend.

However, in spite of the above limitations, it is safe to assume that both individuals and gov-

ernments will react to the spread of a new infectious disease. Given the severity of the COVID-

19 pandemic [6], it is not surprising that the rising case and fatality numbers not only forced

governments to impose lock-down measures [7, 8], but also motivated people to avoid travel-

ling and mass gatherings [9]. Hence, to understand the dynamics of COVID-19 outbreaks, we

propose to model the feedback of spontaneous societal and imposed governmental restrictions

using a standard epidemic model that is modified in one key point: the reproduction rate of

the virus is not constant, but evolves over time alongside with the disease in a way that leads to

a ‘flattening of the curve’ [10]. The basis of the proposed model is the SIR (Susceptible,

Infected, Recovered) model, which describes the evolution of a contagious disease for which

immunity persists substantially longer than the outbreak itself [11]. We extend the model by

introducing a negative feedback loop between the severity of the outbreak and the initial repro-

duction rate g0. Our model contains two parameters, αX and αI, which quantify respectively

the amount of long- and short-term epidemic control. The first, αX, represents the contribu-

tion of the cumulative case count X to the negative feedback loop. For the second parameter,

αI, short-term control, the growth rate is reduced when the current number of active cases, I, is

large. The resulting process is denoted the controlled SIR model.

The controlled SIR model draws its motivation from previous epidemiology modeling. One

of the first pieces of evidence showing that human behaviour affects spreading dynamics [12,

13], came from the study of measles epidemics [14]. Generalizations of the SIR model account

for various effects of societal response to an outbreak, such as self-isolation [15], contact-fre-

quency reduction and quarantine [16], changes in human mobility [17], together with the

effects of geographic and societal networks [18], and of the explicit influence of voluntary

social distancing on the epidemic [19]. For a detailed analysis, epidemiology models can be

extended to cover a range of additional aspects [20], with an example being the distinction

between symptomatic and asymptomatic cases [21]. These kind of complex models are in gen-

eral not accessible to an explicit analytic handling. It has also been questioned, whether

detailed modeling leads to improved predictions [1, 2], given that field data is inherently noisy.

To this regard we will discuss the under-counting problem, namely that not all infections are

detected, and its relation to the statistics of the deceased.

The controlled SIR model was recently introduced in [22], where the authors analysed

long- and short-term contributions to the negative feedback loop separately, but not as arbi-

trary mixtures. In contrast, we derive here an analytic solution for the controlled SIR model in

the presence of both long-term and short-term control. Additionally, we show that the descrip-

tion of COVID-19 field data is substantially improved when both short-term and long-term
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control are included. For data analysis and model validation, we use publicly available

COVID-19 case and fatality counts for a wide range of countries and regions.

We find that the cumulative number of fatalities within a given period of a few weeks before

the peak number of daily fatalities increases by 30% for the same period after the peak. Strik-

ingly, this result is found to hold universally across all considered countries and regions. In

contrast to the universality with regard to the increase in fatalities, substantial differences in

the country-specific intrinsic reproduction factors and short- and long-term control parame-

ters are found. A comprehensive theoretical description based on an analytic solution of the

controlled SIR model is given, together with a detailed validation (based on simulated data) of

the statistical inference used for estimation of country specific parameters. We also evaluate

search-engine based measures quantifying the effectiveness of lock-down measures and the

impact of structural factors (e.g. population density) on the infection rate and doubling time.

Finally, we conclude that the controlled SIR model allows precise quantification of the out-

break dynamics, and provides a predictive framework for assessing the effectiveness of con-

tainment measures and future medical load.

2 Results

We let X denote cumulative case counts, both for field data and for theory results. For the

number of new cases, which are typically reported in official COVID-19 datasets on a daily

basis, the symbol ΔX is used. We will add a time tag subscript d to denote reported counts on a

specific day. In that case, the following sum rule holds: Xd ¼
P

~d�dDX~d . In analogy, we denote

with F and ΔF respectively cumulative and daily fatalities. Importantly, the model presented

here is explicitly defined for one isolated epidemic outbreak. Our analysis focuses thus exclu-

sively on the initial outbreak of the COVID-19 pandemic, the first wave, as defined in more

details in Sect. Data smoothing / peak definition.

2.1 Controlled SIR model

The logic of an infectious disease is described by the SIR model,

t _S ¼ � g
S
N
I; t_I ¼ g

S
N
� 1

� �

I; t _R ¼ I ð1Þ

which takes the number of susceptible S = S(t), infected I = I(t) and recovered (removed) indi-

viduals R = R(t), as dynamical variables [23]. The sum, S + I + R = N, is assumed to be constant

at all times t, as the population size N remains approximately unchanged over the course of the

outbreak. In its basic formulation, the SIR model is characterized by a timescale, τ, and a

dimensionless reproduction factor, g.

Note that the Eq (1) describes an uncontrolled isolated outbreak in an environment that

does not react to the disease. In reality, counter measures will be taken either spontaneously by

the general public, or will be imposed by governmental institutions. As a result, the reproduc-

tion factor will fall below its intrinsic value, which we denote with g0. We make the assumption

that reactions to the unfolding of the epidemic are based either on the current situation (the

current active cases, I) or on the overall history of the outbreak (the total cases X = N − S). For-

mally, we can express this dependence as

g ¼
g0

1þ aX
X
N þ aI

I
N

;

(
aI � 0 : short‐term control

aX � 0 : long‐term control
ð2Þ
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Note that the functional form in Eq (2) parallels the law of diminishing return [24], which

reflects the intuition that containment becomes progressively harder.

The controlled SIR model, Eq (1) together with Eq (2), can be solved analytically in phase

space (see Sect. Exact solution of the controlled SIR model for more details). One obtains the

following rigorous relation:

IðXÞ ¼
g0 þ aX
g0 � aI

X þ N
g0 þ aX
g0 � aI

þ
1þ aX
aI

� �

1 �
X
N

� �aI=g0

� 1

" #

; ð3Þ

which we will use throughout this paper to investigate the evolution of an epidemic outbreak,

as function of total case numbers X, with time parametrizing implicitly the functional depen-

dence of I = I(t) on X = X(t). For an illustration see Fig 1. Note that both long- and short-term

control reduce the severity of an outbreak with respect to the uncontrolled scenario, αX = αI =

0, however with distinct shapes for the resulting phase space trajectories. The phase space (XI)

representation tends to be stretched for short-term control and parabola-like for long-term

control [22].

The maximum of I, the peak rate Ipeak, is obtained for

Xpeak

N
¼ 1 �

g0 þ aX
g0 � aI

� ��
aI
g0

g0 þ aX
g0 � aI

þ
1þ aX
aI

� �� �� � g0
aI � g0

: ð4Þ

From Eq (4) one obtains Ipeak via Eq (3).

Fig 1. Short and long-term control. Outbreaks are contained when either short-term or long-term control is present, see Eqs (1) and (2). Long-term

control (αX> 0, αI = 0) produces more symmetrically confined outbreaks than short-term control (αX = 0, αI> 0).

https://doi.org/10.1371/journal.pone.0247272.g001
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2.2 Data validation

As an example of the COVID-19 data examined we present in Fig 2 the timeline of the out-

break for all US states. Also shown is a comparison of several publicly available data sources

(see Data sources section for details). For most daily values the Johns Hopkins and ECDC data

agree, as illustrated in Fig 2b for the case of Spain, Turkey and Germany, which have been

selected for illustrative purposes. For the latter, the case counts published by the German Rob-

ert Koch Institute have been added. Spain is a special case, as the official counting criteria did

see a major revision end of May 2020 [25].

A key focus of the present study concerns the evolution of fatality counts. For the analysis

we concentrated on countries, and states within the US, with cumulative death toll of at least

1000, a number which we found to allow for a robust analysis. The here proposed framework

can be applied also to smaller outbreaks, albeit with the caveat of increased statistical

fluctuations.

2.3 Fatalities rescaling

In practice, not all active cases (infected individuals) are detected and reported, with the conse-

quence that the official numbers of daily cases, and likewise the total number, is subject to

under-counting. Furthermore, even when an infected individual is identified, the report is nor-

mally delayed from the moment of the infection to the occurrence of symptoms, and subse-

quent positive testing, a process taking up to several weeks [26, 27]. Individuals identified as

infected are most of the time isolated (quarantined) and the possibility that they further spread

the disease is minimal. Hence, from the perspective of the outbreak dynamics, daily cases

counts are an indicator for the number of individuals changing from the group of infectious to

the removed individuals R, which are the ones unable to spread the disease.

Miscounting is present also for official fatality counts, but to a reduced extent [28]. It is pos-

sible to estimate the extent to which the history of fatalities and infections trace each other in

Fig 2. COVID-19 outbreak examples. Left: The timeline of the daily new infections for all US states, where the state with the biggest cumulative case

count is set at the bottom, and the one with the lowest at the top. The curves are in part strongly asymmetric with respect to the time it takes for the

outbreak to build up and to recede. A second, prominent peak is present. Right: Daily counts ΔX are plotted as a function of total counts X, which

defines the XI-representation. For Spain, Germany and Turkey a comparison of ECDC (European Center of Disease Control), the Johns Hopkins, and

the RKI (Robert Koch Institute, Germany) data. Seven-day moving averages have been used. Note the substantial scattering of the later-stage COVID-

19 data for Spain, which is due to changes of official counting protocols. For the data sources see Data sources section.

https://doi.org/10.1371/journal.pone.0247272.g002
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phase space, by comparing the functional dependence of (X, ΔX) and (F, ΔF):

ðX;DXÞ $ fF ðF;DFÞ : ð5Þ

A rationale for this procedure is presented within the Sect. Approximate integration.

In Fig 3 we show the relationship between daily cases and daily fatalities for the countries

and US states with the highest death tolls. For some countries, like Italy, the rescaling proce-

dure defined in Eq (5) works surprisingly well. The accuracy can be gauged by evaluating

SF ¼
1

Xtot

X

d

jDXd � fFDFdj ; ð6Þ

which corresponds to the percentage-wise miscounting of the daily cases ΔXd with respect to

rescaled daily fatalities fFΔFd. Note that SF! 1 when the rescaling factor fF is set to zero, since

Xtot = ∑d ΔXd and |ΔXd| = ΔXd.

In Table 1 the scaling accuracies in terms of SF are listed for all countries and US state exam-

ined. Values of the order 10%-20% are typical. The quality of the matching suggests that the

respective under-counting factors are stable, and not changing substantially over time. The

results presented in Fig 3 indicate also that other factors, like the success of medical treatments,

Fig 3. COVID-19 cases vs. fatalities. Daily new cases ΔX as a function of the total case count, X (blue), and the rescaled daily fatalities, ΔF! fFΔF, as a

function of the rescaled total death count, F! fF F (orange). The rescaling factors fF, given in brackets (first number), have been determined by aligning

the initial slopes ΔF/F and ΔX/X. The accuracy of the rescaling, SF, measured as the relative area difference (shaded area over total area, see Eq (6)), is

given in the brackets (second number). Shown are countries and regions with the highest cumulative fatality counts, out of the ones considered here, as

listed in Table 1. The data has been terminated once ΔX has fallen by 70%, which we use to define the first outbreak.

https://doi.org/10.1371/journal.pone.0247272.g003

PLOS ONE Predicting the cumulative medical load of COVID-19 outbreaks

PLOS ONE | https://doi.org/10.1371/journal.pone.0247272 April 1, 2021 6 / 20

https://doi.org/10.1371/journal.pone.0247272.g003
https://doi.org/10.1371/journal.pone.0247272


seem to have changed comparatively little over the observation period, here d< d0, where the

d0 is the cut-off date for the first peak defined in Data smoothing / peak definition.

The rescaling factors fF reported in Table 1 have been determined separately for each coun-

try and US state by aligning the initial slopes ΔX/X and ΔF/F. The rationale is that the initial

phase of an outbreak corresponds to the exponential-growth phase, for which the rescaling has

to hold when circumstances do not change. The reason is that both case and death counts

increase in the exponential phase with the same doubling time, with the delay of the fatalities

contributing multiplicative to the rescaling factor fF.

2.4 Modeling fatality dynamics with an effective SIR model

The data presented in Fig 3 indicates, as discussed above, that death and case counts of

reported COVID-19 data, approximately rescaled death counts. It is hence of interest to exam-

ine to which extent one can extract the characteristics of an outbreak directly from the fatality

counts, which tend to be more reliable. For this purpose one could add a variable F to the SIR

model and evaluate fatalities directly from first principles. Here we use the fact that I and F are

necessarily related (only infected can die), modulo a time lag, which becomes however irrele-

vant in the XI phase space representation, as illustrated in Fig 1. For this purpose, we use the

following mapping between reported daily and total fatalities and the variables X = 1 − S and I
of the SIR model, Eq (1):

ðX; IÞ $ ~f F ðF;DFÞ : ð7Þ

The rescaling factor defined here, ~f F , is in general different from the one used in Eq (5). In Fig

4a direct comparison of the exact phase space trajectories (X, I) obtained for the controlled SIR

model with reported death counts is presented. To this extent the development of ΔF vs. F in

phase space has been fitted using the exact solution Eq (3) and an appropriated rescaling factor

Table 1. Model and data analyses parameters. The effective reproduction factor g0 estimated from the (F, ΔF) representation, the relative fraction L/(L + S) of long-term

control, defined by Eq (8), together with the rescaling factor fF and the accuracy SF of fatalities to case-count scaling, defined by Eq (6). The equivalent accuracies of the fits

presented in Fig 4 are given by Sfit. Also listed is the timescale Tτ used for evaluating Fbefore/Fafter (the number of fatalities per time before/after the peak) in Fig 5, and the

cut-off date d0, given by the date at which the daily new cases ΔX of the first peak of the COVID-19 outbreak have dropped by 70% with respect to the maximum.

Region g0
L

LþS fF SF Sfit Tτ d0

Canada 1.17 0.34 11 0.12 0.09 29 2020-06-08

France 1.30 0.51 5 0.10 0.07 19 2020-04-29

Germany 1.21 0.49 21 0.14 0.06 20 2020-05-15

Italy 1.28 0.31 7 0.04 0.04 21 2020-05-06

Netherlands 1.31 0.29 7 0.16 0.06 17 2020-05-11

Portugal 1.26 0.29 23 0.18 0.15 20 2020-06-05

Romania 1.15 0.41 14 0.12 0.15 28 2020-06-05

Spain 1.39 0.32 9 0.18 0.03 16 2020-05-01

Turkey 1.19 0.52 35 0.07 0.07 24 2020-05-18

UK 1.28 0.34 5 0.23 0.03 20 2020-05-28

US, GA 1.27 0.09 25 0.21 0.14 30 2020-06-29

US, IL 1.12 0.37 21 0.18 0.09 36 2020-06-24

US, MA 1.22 0.33 13 0.15 0.08 25 2020-06-04

US, MI 1.24 0.39 10 0.17 0.08 22 2020-05-22

US, NJ 1.27 0.29 11 0.09 0.06 20 2020-05-22

US, NY 1.28 0.47 12 0.14 0.06 17 2020-05-07

US, PA 1.16 0.48 12 0.16 0.15 29 2020-06-06

https://doi.org/10.1371/journal.pone.0247272.t001
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~f F in Eq (7). Note that we have estimated the free model parameters only from the data associ-

ated to the initial outbreak, for dates d< d0, as explained in Data smoothing / peak definition.

The data not considered for the loss function are indicated in Fig 4 by lighter hue markers.

Overall, the observed COVID-19 outbreaks can be described well using a mixture of long-

term and short-term control, parametrized respectively by αX and αI. An overview of the

extracted parameters is presented in Table 1. It is important to recall that the growth factor g0

of the effective SIR model used for the description of the fatality dynamics in terms of an (X, I)
representation does not correspond to the medical growth factor R0. Instead, the comparison

presented in Fig 4 shows that it is possible to model the evolution of official fatality statistics

directly in terms of an effective SIR model.

2.5 Tracing containment policies via fatality dynamics

The use of an effective SIR model to describe fatality statistics, as in Fig 4, allows to extract con-

tainment policies, the key rationale for this procedure. In absolute terms, the contributions αX
X and αI I, to the reduction of g, vary strongly as functions of time. We use therefore the

respective values at the peak of daily fatalities, which correspond via Eq (7) to the peak fraction

Xpeak of total cases, as given by Eq (4), and to the corresponding fraction of active cases, Ipeak.

Hence, we use the following relation

L
Lþ S

�
aXX

aXX þ aII

�
�
�
�
X¼Xpeak ;I¼Ipeak

; ð8Þ

for a relative gauge, L/(L + S), that quantifies the fraction of control due to long-term control.

Here L stands for ‘long’ and S for ‘short’. The extracted values of L/(L + S) are given in Table 1

together with the accuracy of the respective fits. For the countries shown in Fig 4 one observes,

characteristically, that the epidemic decreases fast for countries with large fractions of long-

term control, and slower when short-term control dominates. Long-term control is therefore

substantially more efficient in containing an epidemic outbreak. This is also evident from the

comparison given in S1 Fig between the two countries/regions with highest (Turkey) and low-

est (USA/Georgia) fraction L/(L + S) of long-term control.

Fig 4. COVID-19 containment policies. Daily fatalities ΔF as a function of total death counts F. Comparison of data (seven-day centred averages, filled

circles) and theory (lines). Points with lighter hue correspond to dates d> d0 not part of the parameter estimation. The theory corresponds to optimal

fits of the exact solution (16) of the controlled SIR model, Eqs (1) and (2). The relative importance of long-term control, L/(L + S), as defined by Eq (8),

is given, together with the model based estimate of the total death toll, Ftot (assuming a single COVID-19 peak/outbreak). Containment policy

parameters for all countries and the degree of agreement between theory and data are presented in Table 1.

https://doi.org/10.1371/journal.pone.0247272.g004
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2.6 Universal fatality increase after the peak

People dying of a COVID-19 infection have been typically on intensive care beforehand,

which implies that the medical load is roughly proportional to the number of fatalities incur-

ring on a daily basis. Of interest is, in this regard, whether the average medical load decreases

or increase after the peak of the outbreak has been reached, in particular when averaged over a

timescale Tτ of several weeks.

We denote with Fbefore, and respectively with Fafter, the number of deaths occurring in the

Tτ days before/after daily fatalities peaked, DFpeak ¼ IðXpeakÞ=
~f F , as determined by Eqs (3) and

(7). The reference period Tτ is determined in our analysis by measuring the number of days

that passed between fτΔFpeak and ΔFpeak, that is between a small initial daily fatality count,

fτΔFpeak, and the peak medical load ΔFpeak. See Fig 5 for an illustration. We took fτ = 0.1 when

possible, namely when the data for the same number of days after the peak was available and

within the observation period. Otherwise the time span from ΔFpeak to the end of the reported

timeline (or d0) was taken.

For all countries and US states examined, Fafter is plotted as a function of Fbefore in Fig 5.

One finds a near to perfect linear relationship

Fafter � 1:3 Fbefore ; ð9Þ

which is quite remarkable. For the linear regression with fixed intercept we find R2 = 0.987. It

implies, that the average medical load is predictably 30% higher after the peak, than before.

Given that there is a time delay between the onset of an infection and the eventual fatality, a

certain increase was to be expected. The finding that this holds for a wide range of countries

and regions, is however highly non-trivial. This result facilitates in our view the planning for

COVID-19 specific hospital capacities. The stable relationship between medical load before

and after the peak fatalities is in particular surprising in the view that the functional develop-

ments of COVID-19 outbreaks vary considerably, as illustrated in Figs 3 and 4.

In Fig 6 we present the ratio Xafter/Xbefore of the cumulative numbers of cases occurring in

the controlled SIR model during the above defined period Tτ before and after the peak. The

Fig 5. Fatalities before and after the peak—data. The observed numbers of fatalities Fbefore and Fafter incurring over a time span Tτ before/after the

peak of an epidemic outbreak. Left: Procedure illustration. See the Methods Section for the determination of Tτ. Right: All observed ratios Fafter/Fbefore

are close to 1.3. The linear fit corresponds to a linear regression with fixed intercept (R2 = 0.987). Per time, on average 30% more death incur after the

peak.

https://doi.org/10.1371/journal.pone.0247272.g005
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theoretical estimates have been obtained keeping g0 = 1.25 fixed (see Eq (1)), scanning a wide

range of αX and αI. Note that the field data, which is also given, scatters somewhat around the

1.3 ratio, an effect which is not as evident when using alternative representations, as in Fig 5.

Given that case and fatality counts are related (re-scalable) for many countries, as illustrated

in Fig 3, the results presented in Fig 6 can be understood as a first step towards an understand-

ing why the ratio Fafter/Fbefore is of the order of 1.3 for the field data, as shown Fig 5. In fact one

observes in Fig 6 that two conditions are necessary for Xafter/Xbefore to be of the order of 1.3, or

slightly larger. Firstly, the per-population peak fraction of infected, Ipeak/N needs to be small,

of the order of 10−4 or smaller, which is typically the case for field data. Secondly, control is

dominated by short-term control, with long-term control contributing only in a minor way.

This condition also holds, albeit only to a certain extent, given that L/(L + S) is generically

smaller than 0.5; see Table 1 for details.

The data presented in Fig 6 indicates that the size of the relative infection count and the

type of containment policy enacted influence relative medical loads. Further research is how-

ever necessary to clarify why Fafter/Fbefore� 1.3 holds to the observed precision.

2.7 Influence of initial social distancing

Google compiled changes in search-engine queries that are indicative of increasing social dis-

tancing, with an example being a reduction of inquiries concerned with travelling to the work-

place. Using an average of several indicators, we compiled the Google social distancing index

(GSDI); see Google social distancing index (GSDI) for details. Numerically the index is gauged

with respect to its pre-Corona value.

In Fig 7 we show the correlation between the GSDI and the ratio ΔF/F between reported

daily fatalities ΔF and total fatalities F. As examples we selected countries and US states which

head at least 10, 000 cumulative fatalities at the peak of the outbreak, as estimated from Eqs (3)

and (4). This corresponds to France, Spain, Italy, New York and New Jersey. In orders of mag-

nitude the Google social distancing index dropped by about 80% for the European countries

shown, and by about 60% for six states within the US. In Fig 7f the GSDI is shown as a function

Fig 6. Fatalities before and after the peak—theory. For a fixed g0 = 1.25, this plot reveals simulation results (solid lines) and estimates from the data

(crosses) for the ratio of average fatalities after and before the infection peak, Xafter/Xbefore. Compare Fig 5. A large number of simulations of the

controlled SIR model have been performed over a range of αX and αI, which have been reordered subsequently in terms of the per population infection

peak, Ipeak/N, and of the percentagewise contribution L/(L + S) of long-term control. For most countries Ipeak/N is typically of the order of 10−4 or

smaller.

https://doi.org/10.1371/journal.pone.0247272.g006
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of per capita fatality rates. The general trend is that the GSDI acquires somewhat lower values

for European countries, with respect to US states, together with a comparative pronounced

recovery.

There is a certain spread in the total fatalities F needed for social distancing to be fully

developed, as shown in Fig 7. In per capita terms, the GSDI dropped however fast in all coun-

tries and US state examined.

Fig 7. Fatalities vs. social distancing. Comparison of the Google social distancing index (GSDI), as defined in Google social distancing index (GSDI),

with COVID-19 fatalities. a)-e) For France, Spain, Italy, New York and New Jersey. Shown is the ratio ΔF/F of the daily fatalities ΔF and the total death

count F (filled circles), a linear fit between 2%–20% of the fatality peak (marked circles), and the respective GSDI. The slope has been used to calculate

g0 in accordance to Eq (21). f) The GSDIs on an expanded scale, now as a function of fatalities per capita (per 100,000). The selected European countries

and US states show distinct behaviors.

https://doi.org/10.1371/journal.pone.0247272.g007
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3 Methods

An interactive web-tool for the study of COVID-19 case and death data, the “Goethe Interac-

tive COVID-19 Analyzer”, is available [29]. It allows in particular for country-specific phase

space representations, as used widely throughout the present study. Databases of government

responses to the COVID-19 outbreak, like the “Oxford COVID-19 Government Response

Tracker” [30, 31], can be used to correlate specific containment policies with the evolution of

the epidemic [32]. This is not done here, as we concentrate on overall attributes of contain-

ment policies, namely on short- vs. long-term control, and not on individual measures. We

will maintain the interactive web-tool until the end of November 2023 (minimal duration).

3.1 Data sources

COVID-19 data sources used are the public GitHub repository of the Johns Hopkins Center

for Systems Science and Engineering (JHU-CSSE) [33], the European Center for Disease Con-

trol open COVID-19 data (ECDC) [34], and the German Robert Koch Institute [35] (RKI). If

not otherwise stated we used ECDC for country-specific data and JHU-CSSE for US states. A

comparison is presented in Fig 2. Both data sets were last updated on December 8th, 2020.

3.2 Data smoothing / peak definition

The real-world epidemics reports are intrinsically noisy, with common sources of noise being

report delays and under- or over-counting [36]. All data sources used show strong fluctuations

within a seven day period. Accordingly, we utilize a seven-day centred moving average for

data preprocessing.

Due to a multitude of errata in the data sets, it is also necessary to filter out impossible mea-

surements, such as negative daily new cases or fatalities. As a remedy we dropped dates with

negative daily fatalities ΔFd< 0. In these isolated cases the seven-day centered moving average

is evaluated over the remaining seven data points, spanning eight actual days.

In most countries the initial COVID-19 outbreak has been followed by endemic, low-level

phases and second waves. The underlying reason is the return to short-term control, reaction-

type policies, when the first wave has been contained to a certain extent. The here developed

framework, the controlled SIR model, is based in contrast on the assumption that containment

policies, in terms of αX and αI, are constant, with the consequence that the controlled SIR

model describes a single contained outbreak, and not a series of waves. However, only a well

defined peak is needed for a reliable analysis. The epidemic need not be fully eradicated for a

reliable analysis. Our framework is therefore well suited to analyze the first wave of a COVID-

19 epidemic, during which the containment feedback parameters αX and αI can be assumed to

not have changed substantially.

To be specific, we define a cut-off date d0 as the day on which the number of daily new fatal-

ities has fallen by 70% compared to the first peak: ΔFd0 = 0.3ΔFpeak. Here ΔFpeak denotes the

maximum number of daily new fatalities in the 7-day centered moving average. This criterion

is used to isolate the first outbreak, d< d0, from the subsequent course of the epidemic. The

dates d0 used are listed in Table 1.

3.3 Google Social Distancing Index (GSDI)

The Google COVID-19 mobility data describes changes in a range of mobility-related activi-

ties, each measured with respect to corresponding Google search queries [37]. We define a

“Google social distancing index” (GSDI) as the average of the three categories “workplaces”,

“retail and recreation” and “transit stations”, which are given respectively by the percentage-
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wise activity drop relative to their pre-COVID-19 baselines. The GSDI is presented in Fig 7. In

other studies, Google and smartphone mobility data has been used to correlate containment

policies with social distancing [38], to identify the importance of transport nodes [39], and to

quantify the impact of social status on social distancing [40].

3.4 Exact solution of the controlled SIR model

The phase space trajectory of the controlled SIR model, Eqs (1) and (2), can be derived expres-

sively. For the derivation we extend an approach used elsewhere for the case of pure long-term

control [22], starting with

dI
dS
¼

N þ aXX þ aII
g0 � S

� 1;
dI
dS
�
aII
g0S
¼ N

1þ aX
g0S

� 1 �
aX
g0

: ð10Þ

In order to obtain total differentials, one multiplies Eq (10) with the auxiliary function

FðSÞ ¼ S� aI=g0 ;
dF
dS
¼
� aI
g0

S� ðaI=g0Þ� 1 ; ð11Þ

with the result

F
dI
dS
þ I

dF
dS
¼ � N

1þ aX
aI

dF
dS
�
g0 þ aX

g0

F ; ð12Þ

where the left-hand side is now equivalent to d(FI)/dS. Integration yields

FI ¼ � N
1þ aX
aI

F �
g0 þ aX

g0

1

1 � aI=g0

S1� aI=g0 þ C ; ð13Þ

or

I ¼ � N
1þ aX
aI

�
g0 þ aX
g0 � aI

S þ CSaI=g0 : ð14Þ

The starting condition I(S = N) = 0 determines the integration constant as

C ¼ N1� aI=g0
1þ ax
aI
þ
g0 þ aX
g0 � aI

� �

; ð15Þ

which leads to the final expression

I ¼
g0 þ aX
g0 � aI

X þ N
g0 þ aX
g0 � aI

þ
1þ aX
aI

� �

1 �
X
N

� �aI=g0

� 1

" #

� f ðX; yÞ ; ð16Þ

where θ = (αX, αI, g0). The two formal divergences on the right-hand side, αI! 0 and αI! g0,

are well behaved. The first limit, αI! 0, is obtained using

1 �
X
N

� �aI=g0

¼ eaI log 1� X
Nð Þ=g0 � 1þ aI ln 1 �

X
N

� �

=g0 ; ð17Þ

which reduces Eq (16) to the XI representation with long-term control [22]

IjaI!0 ¼
aX þ g0

g0

X þ N
1þ aX
g0

ln 1 �
X
N

� �

: ð18Þ

The formal divergence in the XI representation of mixed control Eq (16) occurring when
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αI� g0 cancels equivalently. To see this consider the expansion of

1 �
X
N

� �aI=g0

¼ 1 �
X
N

� �aI=g0 � 1þ1

¼ 1 �
X
N

� �

e
aI � g0
g0

ln 1� X
Nð Þ

� 1 �
X
N

� �

1þ
aI � g0

g0

ln 1 �
X
N

� �� �

;

ð19Þ

which leads to

Ij
aI!g0

� �
1þ aX
aI

X � N �
g0 þ aX

g0

1 �
X
N

� �

ln 1 �
X
N

� �

þ OðjaI � g0j
1
Þ : ð20Þ

An important point is that the starting slope of Eq (16),

dI
dX

�
�
�
�
X!0

¼
g0 � 1

g0

; ð21Þ

is independent of both αI and αX. For the derivation of Eq (21) one uses

1 � X
N

� �aI=g0
� 1 �

aI
g0N

X. This relation has been used to calculate g0 in Fig 7.

3.5 Approximate integration

Most COVID-19 datasets, contain, among other measures, the total known number of infected

people Xd and the total number of fatalities Fd up to day d. For a period Δt of one day, daily

cases correspond to the change in total cases ΔXd = Xd+Δt − Xd. Equivalently, daily fatalities are

equal to the change in the total number of fatalities ΔFd = Fd+Δt − Fd. We will consider the

reports of daily fatalities more accurate in general than daily cases (or daily recovered) as

under or over counting is less severe. In what follows we will demonstrate how one can relate

daily cases and daily fatalities to the infection rate g(t), and to the XI representation.

Eq (1) can be expressed as

t _X ¼ g
N � X
N

I; t
d
dt

ln I ¼ g
N � X
N
� 1

� �

; t _R ¼ I : ð22Þ

Integrating Eq (22) between d and d + Δt we obtain

DXd ¼
1

t

Z dþDt

d
gðt0Þ

N � Xðt0Þ
N

� �

Iðt0Þdt0

IdþDt ¼ Idexp
1

t

Z dþDt

d
gðt0Þ

N � Xðt0Þ
N

� 1

� �

dt0
� �

DRd ¼
1

t

Z dþDt

d
Iðt0Þdt0

ð23Þ

Following the approximate integration steps presented in [41], we assume that the quantities

of interest, X(t), I(t), and g(t) are piecewise constant within [d, d + Δt). Hence, after setting the
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integration interval to one day, Δt = 1, we get the following set of difference equations

Idþ1 � Idexp
1

t
gd
N � Xd

N
� 1

� �� �

DXd �
1

t
gdðN � XdÞId

DRd �
1

t
Id

ð24Þ

Individuals are removed, ΔRd, after recovery or death, which implies ΔFd = cFΔRd, or when

quarantined, ΔQd = cQΔRd. We denote here with Qd the number individuals that are infected,

but unable to infect others, either because they are quarantined at home, or because they are

hospitalized. In general cF + cQ< 1 and cQ> cF. Using Eq (24) we obtain two approximate

relations for the evolution of daily quarantined and deaths,

DQd � ðcQ=tÞId

DFd � ðcF=tÞId
: ð25Þ

In practice, people tested positive will be advised to quarantine, or hospitalized. In view that

the officially reported new cases, ΔXd, correspond to the number of positive COVID-19 tests

outcomes, one has, with Eq (25), that ΔXd* ΔQd* Id* ΔFd, and hence that ΔXd scales

approximately with ΔFd. We believe that this reasoning explains the observed approximate

scaling between case- and death counts, as shown in Fig 3.

As a further test of the procedure outlined above we compare in Fig 8 the solution of the

controlled SIR model with simulated data. Here we obtained g = g(t) by numerical integrating

Eq (1), with the phase space representation matching the analytic expression, Eq (3). Using Eq

(25) the timeline of infected, I(t), was used to generate simulated data for daily fatalities, ΔFd,
which in turn yields the cumulative death count Fd = ∑d@�d ΔFd@. As a last step we rescaled via

Eq (7), ðX; IÞ≙ ~f FðF;DFÞ, comparing the simulated data, (X, I), with the direct solution of the

controlled SIR model. The agreement between the direct solution and simulated data is

remarkably good.

3.6 Parameter estimation

To fit the parameters of the controlled SIR model to the publicly available outbreak datasets,

we have used the theoretical phase relation Eq (3). The best fitting parameter values are

obtained by direct minimization of the following loss function

U ¼
X

d

wd½fFDFd � IðfFFdÞ�
2
; ð26Þ

where the weights wd = Fd − Fd−1 = ΔFd ensure that long stretches of days with low fatality

numbers, which are common at the beginning and the end of an epidemic, do not dominate.

An optimization that weighs every data point equally, i.e. least squares, overestimates the early

and in the case of one isolated outbreak the late stages of the epidemic outbreak. The rescaling

factors fF used are the ones presented in Table 1.

The minimization of Eq (26) with respect to the parameter set {αX, αI, g0} has been per-

formed using Newton‘s method for optimization implemented in Julia by [42]. To prevent

division by zero the denominators of Eq (3) have been shifted by εi = 0.01i in the complex

plane before taking the real part.
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3.7 Simulation

The theoretical values of the ratio of average cases after and before the infection peak presented

in Fig 6 were calculated simulating the controlled SIR model Eq (1). The numerical integration

was performed using the SciMl implementation of Jim Verner’s “most efficient” 7/6 Runge-

Kutta method [43]. Unless stated otherwise, the simulations were run for τ = 1.1 and g0 = 1.25.

The population has been initialized with I(t = 0) = 10−10 N. For every αX and αI we calculated

the peak medical load Ipeak using Eqs (3) and (4) exact. The percentage-wise contribution

L/(L + S) of long-term control Eq (8) are evaluated at the point of peak infection rates.

Note that it is not possible to simulate different trajectories for which both L/(L + S) and

Ipeak/N are fixed. For the comparison presented in Fig 6 simulations with varying αX and αI
were used to bin the resulting L/(L + S) and Ipeak/N within about 0.5% accuracy.

4 Discussion

By mid 2020, the world-wide COVID-19 pandemic has entered a phase, where the initial expo-

nential growth phase has been contained in most countries and regions to the extent, that offi-

cial case counts dropped substantially with respect to the first peak. For the majority of

countries and regions it is therefore possible to define an endpoint d0 of the first wave. Here we

used a simple criterion, namely a 70% drop in case numbers. Subsequent to the first wave, the

development of the SARS-CoV-2 pandemic is showing a large variety of functional

dependencies.

For a large number of COVID-19 outbreaks we analyzed the first wave in terms of an effec-

tive SIR model, the controlled SIR model. The basic assumption is that containment policies

can be parametrized by two parameters, αX and αI, which describe how much emphasis is

placed respectively on long- and short-term control. This does not imply that containment in

terms of a reduction of the basic reproduction factor is constant, but that the dependence of

the reproduction factor on total and daily case counts is given by a functionally constant feed-

back loop. For a wide range of countries and US states we find that the official case and death

counts are described well by the controlled SIR model. This observation allows us to extract

Fig 8. Solutions of the controlled SIR model vs. simulated data. Comparison of g(t) and I(X) obtained numerically (solid lines) and from simulated

daily fatalities (diamonds). See Eq (2) for the effective reproduction factor g = g(t) and Eq (16) for the XI representation. Simulated daily and total

fatalities were obtained from active cases as ΔFd/ I(t = d), and Fd ¼
Pd

d0¼1
DFd . Hence diamonds correspond to a points for which Xd ¼

Pd
d0¼1

Id0 .

Similarly, the recovered gd are obtained from the following relation gd ¼ t ln Idþ1

Id
þ 1

� �
�

N� Xd
N

� �
. Identical initial conditions have been used for all cases,

X(0) = 10, I(0) = 10, R(0) = 0, g(0) = 1.5, and N = 106. See Approximate integration for details.

https://doi.org/10.1371/journal.pone.0247272.g008
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country-specific containment parameters, αX and αI. Containment success is found to go hand

in hand with an emphasis on long-term control, with short-term control being more likely to

be followed by an endemic state.

Two types of time lines can be used to analyse COVID-19 outbreaks, one based on daily

cases and the other based on daily fatalities. In this study we examined in particular the death

toll, showing that daily and cumulative fatalities provide reliable data sources. This framework

is based on the assumption that the success of medical therapies does not change substantially

over the course of the observation period, here the first wave. Given the accuracy of the model-

ing, this assumption sees a posteriori justification, which is further strengthened by the obser-

vation that case and fatality counts scale in phase space representation, as shown in Fig 3.

A particularly interesting result of our analysis concerns the predictability of the medical

load. As a measure we compare the cumulative number of fatalities over two periods of identi-

cal length, typically several weeks, just before and just after the peak of the first wave. In this

regard, we find that the medical load increases on average by 30% after the peak. This is quite a

remarkable observation, in our view, given that the COVID-19 outbreaks vary substantially in

between countries.

Detailed epidemiological modeling is necessary in particular when examining specific sce-

narios, like the effect of school opening strategies [44]. Given that it is often difficult to estimate

the respective parameters reliably [1, 2], we opted here for an approach based on effective

modeling theory. This framework allows to examine the statistics of COVID-19 deaths directly

in a phase space representation, as done in Fig 4. The alternative, full epidemiological model-

ing, would need to go through the statistics of a larger number of compartments describing

exposed individuals, symptomatic and asymptomatic infections, quarantined, etc. In some

cases, e.g. for the daily number of asymptomatic infections, there are no publicly available reli-

able databases. This is not a problem for purely theoretical studies that examine the conse-

quences of certain parameter constellations [45]. Although it is possible to determine

additional quantities indirectly, like the percentage of asymptomatic cases, by fitting to official

case counts [46, 47], this would introduce in general increased uncertainties to the estimates of

relevant model parameters, making the entire procedure strongly susceptible to the quality of

the underlying data.

Here we argue that certain database problems, like reporting delays and under-counting,

can be circumvented by focusing on daily fatalities and using the phase space (XI) representa-

tion of a the controlled SIR model. Still, the presented analysis is not without limitations. For

example, we did not take into account the possibility of regime changes, that is, parameter

changes over time. The long-term and short-term reaction parameters could in practice evolve,

as society adapts to the new information about the outbreak. Similarly, reporting delays for

daily cases and fatalities might get reduced with time as the governmental administration

improves the reporting process. Importantly, incorporation of assumptions about the data

generating process to the data analysis method, will definitely bring more precision and

robustness to model fitting process and the parameter recovery. We leave such extended analy-

sis for future work, as the availability of more data about the pandemic in the future would

also allow considering more complex models.

Supporting information

S1 Fig. Comparison of long-term control components. As in Fig 4, the two countries/regions

with highest (Turkey) and lowest (USA/Georgia) fraction L/(L + S) of long-term control.

Compare Table 1.
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S1 File. Processed data for daily fatalities, daily cases, and Google Social Distancing Index

(GSDI).
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