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Specifying accurate informative prior distributions is a question of carefully selecting
studies that comprise the body of comparable background knowledge. Psychological
research, however, consists of studies that are being conducted under different
circumstances, with different samples and varying instruments. Thus, results of previous
studies are heterogeneous, and not all available results can and should contribute
equally to an informative prior distribution. This implies a necessary weighting of
background information based on the similarity of the previous studies to the focal study
at hand. Current approaches to account for heterogeneity by weighting informative prior
distributions, such as the power prior and the meta-analytic predictive prior are either
not easily accessible or incomplete. To complicate matters further, in the context of
Bayesian multiple regression models there are no methods available for quantifying
the similarity of a given body of background knowledge to the focal study at hand.
Consequently, the purpose of this study is threefold. We first present a novel method
to combine the aforementioned sources of heterogeneity in the similarity measure ω.
This method is based on a combination of a propensity-score approach to assess the
similarity of samples with random- and mixed-effects meta-analytic models to quantify
the heterogeneity in outcomes and study characteristics. Second, we show how to use
the similarity measure ω as a weight for informative prior distributions for the substantial
parameters (regression coefficients) in Bayesian multiple regression models. Third, we
investigate the performance and the behavior of the similarity-weighted informative
prior distribution in a comprehensive simulation study, where it is compared to the
normalized power prior and the meta-analytic predictive prior. The similarity measure
ω and the similarity-weighted informative prior distribution as the primary results of
this study provide applied researchers with means to specify accurate informative
prior distributions.

Keywords: informative prior distributions, prior information, heterogeneity, similarity, Bayesian multiple
regression, comparability

INTRODUCTION

Informative prior distributions are a crucial element of Bayesian statistics, and play a pivotal role
for scientific disciplines that aim at constructing a cumulative knowledge base. Informative prior
distributions are background knowledge quantified and introduced in a Bayesian analysis. Their use
allows studies to build upon each other, hence to update the knowledge base of a scientific discipline
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continuously. This is also a central tenet of the new statistics
(Cumming, 2014). Despite the increase of Bayesian statistics
in various scientific disciplines over the last years, the use of
informative prior distributions is still relatively rare (for instance
in Psychology, see van de Schoot et al., 2017; for Educational
Science see König and van de Schoot, 2018). Thus, the potential of
Bayesian statistics for cumulative science is not fully realized yet.

Goldstein (2006) states that the tentative use of informative
prior distributions is due to their frequently criticized subjective
nature. Vanpaemel (2011) adds the lack of methods to formalize
background knowledge as another reason. From an applied
viewpoint, this is more severe: if the background knowledge
is inaccurate, which is the case if the prior mean does not
equal the population mean, parameter estimates may be biased
(McNeish, 2016; Finch and Miller, 2019). Specifying accurate
informative prior distributions is a question of carefully selecting
studies that comprise the body of comparable background
knowledge. Psychological research, however, consists of studies
that are being conducted under different circumstances, with
different samples and varying instruments. Thus, results of
previous studies include different sources of heterogeneity, and
not all available results can and should contribute equally to
an informative prior distribution (Zhang et al., 2017). This
implies a necessary weighting of background information based
on the similarity of the previous studies to the focal study
at hand. Current approaches to account for heterogeneity
by weighting informative prior distributions are either not
easily accessible or incomplete. For example, the power prior
weighs the likelihood of the data and requires complicated
intermediate steps in order to use the quantified heterogeneity
properly (Ibrahim et al., 2015; Carvalho and Ibrahim, 2020).
The meta-analytic predictive prior (Neuenschwander et al.,
2010) is more intuitive by weighting the informative prior
distribution directly, but uses heterogeneity in outcomes only.
To complicate matters further, to date there are no methods
available for investigating and quantifying the similarity of
a given body of background knowledge to the focal study
at hand. Specifying accurate informative prior distributions,
however, requires an approach that quantifies all sources
of heterogeneity in a body of background knowledge into
a measure of similarity, and using this measure to weight
the associated informative prior distribution in a direct
and intuitive way.

Consequently, the purpose of this study is threefold. We
first present a novel method to combine the aforementioned
sources of heterogeneity in the similarity measure ω. This
method is based on a combination of a propensity-score
approach to assess the similarity of samples with random-
and mixed-effects meta-analytic models to quantify the
heterogeneity in outcomes and study characteristics (e.g.,
Tipton, 2014; Cheung, 2015). Second, we show how to use
the novel similarity measure ω as a weight for informative
prior distributions for the substantial parameters (regression
coefficients) in Bayesian multiple regression models. Third, we
investigate the performance and the behavior of the similarity–
weighted informative prior distribution in a comprehensive
simulation study, where it is compared to the normalized

power prior (Carvalho and Ibrahim, 2020) and the meta-
analytic predictive prior (Weber et al., 2019). The similarity
measure ω and the similarity-weighted informative prior
distribution as the primary results of this study provide
applied researchers with means to specify accurate informative
prior distributions.

The structure of this paper is as follows. First, the conceptual
background of similarity is illustrated. Next, it is shown how
these sources of heterogeneity can be quantified and combined
in the similarity measure ω. Based on this, the similarity-
weighted informative prior distribution is described. The design
and results of the simulation investigating the performance and
behavior of this distribution is presented next, followed by a
discussion of how the similarity measure ω and the similarity-
weighted informative prior distribution contribute to building
confidence in and to systemizing the use of informative prior
distributions in Psychological research. Please note that, in order
to keep the manuscript as accessible as possible, mathematical
details are kept at a minimum.

CONCEPTUAL BACKGROUND

The Concept of Similarity
When specifying informative prior distributions, researchers are
confronted with a body of background knowledge comprised of
conceptual replications of studies (Schmidt, 2009). Conceptual
replications focus on the general theoretical process, without
copying the methods of previously conducted studies (Makel
et al., 2012). Thus, the studies differ in samples, variables,
and other characteristics. Without assessing their similarity
to the focal study at hand, using studies for informative
prior distributions might imply an unwarranted generalization;
excluding studies might be too restrictive and imply that
no background knowledge is available, when in truth there
is. Hence, an adequate similarity measure should take into
account all relevant sources of heterogeneity in research results.
Consequently, the conceptual framework of the similarity
measure ω follows Shadish et al. (2002), who build upon
Cronbach (1982), and distinguishes between units and treatments
(UT), outcomes (O), and settings (S) of the studies as sources
for heterogeneity. More specifically, we conceptualize UT as
samples and predictor variables, O as outcome variables or
effect sizes, and S as study characteristics commonly investigated
as moderators in mixed-effects meta-analytic models. Thus,
we define similarity as the variability in research results due
to the three sources of heterogeneity. This differentiation
takes into account that heterogeneity in outcomes is not
sufficient for an adequate assessment of similarity (Lin et al.,
2017). The quantification of the three sources of heterogeneity
is addressed next.

Quantifying Sources of Heterogeneity
For a similarity measure to work adequately, it is pivotal
that the different sources of heterogeneity can be quantified
accurately with state-of-the-art methods. More specifically,
the similarity measure ω is based on three components:
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(a) the modified generalizability index B that is based on
Tipton (2014), (b) the between-study heterogeneity τ2 resulting
from (Bayesian) random-effects meta-analytic models, and
(c) δτ2 , the difference between the residual variance τ2

res of
(Bayesian) mixed-effects meta-analytic models and τ2 (for
an overview see, for instance, Jak, 2015). Each individual
measure quantifies important aspects of the comparability of
research results.

Quantifying Similarity in Predictors and Samples
With B
The first component of the similarity measure ω is the
modified generalizability index B. In its original form, the
generalizability index B is a propensity score-based measure
of distributional similarity between a sample and a population
(Tipton and Olsen, 2018). We modified it so that it describes
the similarity between the samples of the focal study and
a previously conducted study that is part of the body of
available background knowledge. The generalizability index and
its modified version takes values between zero and one, which
indicate no and perfect similarity of the two samples, respectively.
It is based on s(X), a theoretical sampling propensity score
defined as s (X) = Pr(Z = 1|X), and describes the probability
Z of an individual being in the sample of the focal study
(vs. being in the sample of the previously conducted study)
based on a set of covariates X (Tipton, 2014). The sampling
propensity score can be estimated by a logistic regression model
log[s(X)/1-s(X)] = α0+αm+Xm, where m = 1, ,m is the number
of covariates. Adapting Tipton (2014), for a set of covariates X
and sampling propensity score s(X), the modified generalizability
index is then defined as β =

∫ √
ff (s)fp(s)ds, where ff (s) and

fp(s) are the distributions of sampling propensity scores in the
sample of the focal and previously conducted study, respectively.
An estimator of β is provided by a discrete version of the
generalizability index B =

∑
h
√wfhwph, where h is the number

of bins and wfh and wph are the proportions of the focal and
previously conducted study samples, respectively (Tipton, 2014).
In case of multiple previously conducted studies, the modified
version of the generalizability index B is calculated for each
comparison of the samples of the focal and previously conducted
studies. It is the average of the individual indices B = 1

k
∑

k Bk,
with k being the number of previously conducted studies. We
implemented this procedure as a kernel density estimation with a
Gaussian kernel and a non-parametric bandwidth selector (Moss
and Tveten, 2019), so that the number of bins does not have to be
chosen a priori.

Quantifying Heterogeneity in Outcomes With τ2

The second component of the similarity measure ω is the
between-study heterogeneity τ2, which is a measure for the
variance in effect sizes, such as standardized mean differences,
log-odds ratios, and more recently, partial and semi-partial
correlations as effect sizes for regression coefficients (Aloe and
Thompson, 2013). It is the variance component of random-
effects meta-analytic models, which assume that the population
effect sizes are not equal across the studies. Several studies show

that this assumption is usually correct: the typical between-study
heterogeneity in outcomes ranges from 0.13 to 0.24 (van Erp
et al., 2017; Stanley et al., 2018; Kenny and Judd, 2019). Random-
effects meta-analytic models allow individual studies to have their
own effect (e.g., Cheung, 2015). Let yk be the effect found in
study k. The study-specific model is then yk = β + uk + εk
where β is the average effect size, uk are deviations from
the average effect size, εk is the study-specific error term
and Var(εk) is the known sampling variance. The variance of
these deviations Var(uk) is the between-study heterogeneity τ2

indicating the variability of the effect sizes across the studies
included in the meta-analysis. The between-study heterogeneity
is strictly positive τ2 > 0. When τ2 increases, consensus in the
average effect decreases. This lack of consensus in the average
effect, the uncertainty quantified by τ2, should be represented
in a weight of an informative prior distribution. However, only
the meta-analytic predictive prior distribution uses τ2 as weight.
Both the average effect and the between-study heterogeneity τ2

can be estimated by Maximum Likelihood, Restricted Maximum
Likelihood and Bayesian estimation methods (for overviews, see
Veroniki et al., 2016; Williams et al., 2018). For situations with
a small number of studies, and the known problems of ML and
REML estimators regarding τ2 in these cases, we implemented
a hierarchical Bayesian random-effects meta-analytic model to
estimate τ 2 accurately.

Quantifying Heterogeneity in Study Characteristics
with δτ2

The third component of the similarity measure ω is δτ2 , the
difference between the residual variance τ2

res in the effect
sizes, estimated by a (Bayesian) mixed-effects meta-analytic
model, and their estimated between-study heterogeneity τ2.
Mixed-effects meta-analytic models extend random-effects
meta-analytic models by introducing study characteristics
as potential moderators of the effects. The study-specific
model is then yk = βxk + uk + εk, where xk is a vector of
predictors including a constant of one (Cheung, 2015). Under
the mixed-effects meta-analytic model, the variance of the
deviations Var(uk) is the residual variance τ2

res in the effect
sizes after controlling for study characteristics as moderators.
If τ2

res < τ2, the study characteristics explain variance in
the effect sizes. This implies that the effect sizes not only vary
across studies, but also across specific study characteristics.
For example, it is possible that effects found in the 1980s differ
systematically from effects found in the 2010s. Thus, there is
additional uncertainty in the average effect that is quantified
by δτ2 . If τ2

res ≥ τ2, the study characteristics do not explain
any variance in the effect sizes, and δτ2 is truncated to zero.
Hence, δτ2 > 0 if τ2

res < τ2, and 0 otherwise. Similar to
the random-effects meta-analytic models, for situations with
a small number of studies we implemented a hierarchical
Bayesian mixed-effects meta-analytic model to estimate τ2

res and,
subsequently, calculate δτ2 accurately.

The Similarity Measure ω
The similarity measure ω integrates the three components
into a single index. It is conceptually similar to the variance
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component of a Bayesian hierarchical model (comparable to
the a0-parameter of the power prior; Ibrahim et al., 2015;
Neuenschwander et al., 2009). Thus, its use as weight for
informative prior distributions places certain demands on the
measure, both mathematically and conceptually. First, similar
to the a0-parameter of the power prior (Ibrahim et al., 2015),
the similarity measure ω needs to take values between zero and
one, ω ∈ [0, 1]. This avoids any potential overweighting of the
quantified background knowledge, compared to the information
contained in the data of the focal study. Moreover, the similarity
measure ω→ 1 as the comparability of the previously conducted
studies in the body of background knowledge and the focal
study increases. On the one hand, when ω = 0 the previously
conducted studies and the focal study are not comparable, and
no information contained in the informative prior distribution
is used. On the other hand, when ω = 1, the focal study is
a direct replication of the previously conducted studies in the
body of background knowledge, and the information contained
in the prior distribution is used fully. Second, the similarity
measure ω needs to adequately reflect the inverse relation
between B, and τ2 and δτ2 . While an increasing B indicates
an increased comparability, increasing τ2 and δτ2 indicate a
decreasing comparability. Thus, the similarity measure needs
to align the conceptual meaning of the three indices to reflect
the comparability of the focal study with the study in the
body of background knowledge adequately. Third, the similarity
measure ω needs to be flexible in specification and discriminate
strongly across the range of plausible values especially for
τ2 and δτ2 , which we know to typically range between 0.13
and 0.24 (van Erp et al., 2017; Stanley et al., 2018; Kenny
and Judd, 2019). This aims at conservative estimates of ω,
again to avoid the informative prior distribution overwhelming
the likelihood of the data of the focal study. Considering all
these requirements, the similarity measure ω can be expressed
formally as,

ω =

 1

1+ exp
[

10∗
(√

τ2 + δτ2 − 0.24
)]
 ∗B (1)

Thus, the similarity measure ω essentially is a logistic function
of τ2 and δτ2 with maximum value L = 1, midpoint ω0 = 0.24
and slope s = 10, weighted by B = 1

K
∑

k Bk, where k = 1...K
is the number of previously conducted studies. The parameters
of this weighted logistic function are chosen so that the resulting
values of the similarity measure ω adequately reflects the
characteristics of Psychological research: the midpoint is carefully
chosen following van Erp et al. (2017), and the slope is chosen
to discriminate adequately across the typical range of between-
study heterogeneity (Stanley et al., 2018; Kenny and Judd, 2019).
We assume an additive relationship between τ2 and δτ2 . Taken
together, the behavior of the similarity measure is as required:
ω→ 1 as τ2 and δτ2 decrease and B increases. Applying equation
(1) to a situation of a Bayesian multiple regression model with
three predictors and ten previously conducted studies yields three
parameter-specific similarity measures, which can be used to
weigh an informative prior distribution.

Applying ω – The Similarity-Weighted
Informative Prior Distribution
The similarity measure ω can now be used to weight an
informative prior distribution and integrate it, without any
necessary intermediary calculations, in a usual Bayesian analysis.
Contrary to the power prior of Ibrahim et al. (2015), who
weight the likelihood of the previously conducted studies, in
this case it involves raising the informative prior distribution to
the power ω, p (θ | D) ∝ p (D | θ) π (θ)ω where p (θ | D) is the
posterior distribution of a parameter θ, p (D | θ) is the likelihood
of the data, and π (βθ)ω is the similarity-weighted informative
prior distribution. Because this prior distribution utilizes data
from previously conducted studies, it belongs to the class of
evidence-based informative prior distributions (Kaplan, 2014).
We illustrate the use of the similarity measure ω as weight for
an informative prior distribution with an example of a simple
Bayesian multiple regression with three predictors. Let y be a
n× 1-vector of outcomes, and X a n× p predictor matrix, where
n is the sample size of the focal study and p = 3 the number of
predictors. Then,

y ~N(β0 + Xβ, σ2) (2)

is the likelihood of the Bayesian multiple regression model, with
β0 being the intercept, β a p× 1-vector of regression coefficients,
and σ2 being the error variance. The prior specification is as
follows:

β0~N(0, 10) (3)

β~N(µp, SE2
p)

ωp (4)

σ2~half − Cauchy(0, 2.5) (5)

Both β0 and σ2 receive weakly informative prior distributions,
and the hyperparameters of the informative prior distributions
(means and standard deviations) for the regression coefficients
βp are the average effects µp and their standard errors SE2

p
estimated by multiple univariate or a single multivariate random-
effects meta-analysis (Cheung, 2015; Smid et al., 2020). They
are weighted by the parameter-specific similarity measures ωp.
Generally speaking, as ω→ 0 the peak around the mean of
the informative prior distribution flattens, and the distribution
becomes broader. A broader prior distribution carries less
information about the parameter of interest; hence, the broader
the distribution the lesser its informativeness.

SIMULATION

We conducted a comprehensive simulation to assess the behavior
of the similarity measure ω and to investigate the performance
of the similarity-weighted informative prior distribution. R-code,
functions, and data of the simulation are available at https://doi.
org/10.17605/OSF.IO/8AEF4.
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Design
The design consisted of the following, systematically varied
factors. First, the number of previously conducted studies
that are part of the available body of background knowledge
(K = 3, 5, 10). Second, the sample sizes of the previously
conducted studies, indicated by the difference between the
average sample sizes of these studies and the sample size of the
focal study (smaller and larger 4N = − 100, 100). Third,
the similarity of the predictors, indicated by the differences
in means of the respective distributions (i.e., their overlap)
between the previously conducted studies and the focal study
(from large overlap to no overlap 4µ = 0.25, 0.5, 1, 2, 3).
Fourth, the between-study heterogeneity in the effect sizes, thus
the (lack of) consensus in the background knowledge (small
to large τ2

= 0.025, 0.05, 0.10, 0.15, 0.20, 0.35, 0.5).
Moreover, we simulated one moderator variable that
explained 10% of the between-study heterogeneity
in the effect sizes. Thus, the simulated amount
of variance in outcomes and study characteristics
is τ2
+ δτ2 = 0.0275, 0.055, 0.110, 0.165, 0.275, 0.385, 0.550.

In total, the design of the simulation consisted of 210 conditions.

Data Generation and Analysis
We applied the following procedure to generate the datasets
in each condition. First, we simulated the dataset of the
focal study, according to the multiple regression model in
equation (2), with fixed sample size NF = 200, true regression
coefficients βF = (0.5, 0.25, −0.5) and a normally distributed
error σ2

F~N(0, 1). Predictors in XF were drawn from standard
normal distributions. Next, we constructed the database of
previously conducted studies, also according to the multiple
regression model in equation (2) with normally distributed
error σ2

D N(0, 1). As a first step, the sample size for the k-th
(k = 1...K) study of the database was drawn from a normal
distribution N(NPi , 25), where NPi = NF + 4N . In the second
step, for the k-th study of the database a vector of regression
coefficients βk was drawn from a multivariate normal distribution
with mean vector µβk = (0.4, 0.0, 0.3), i.e., their meta-analytic
means, and variance τ2. Compared to βF , the mean coefficients
in µβk represent certainty, disagreement, and contradiction in
the size of the effect. Predictors in Xk were drawn from normal
distributions N(µNP , 1), where µNP = 4µP . This procedure was
repeated one hundred times in each condition, resulting in 21,000
datasets (i.e., the simulated dataset of the focal study and the
databases of the previously conducted studies).

Each dataset was analyzed with a Bayesian multiple regression
model with (a) non-informative priors for the regression
coefficients (pooled analysis), (b) the normalized power prior
(NPP), (c) the meta-analytic predictive prior (MAP), and (d)
the similarity-weighted informative prior distribution (SWIP).
For the non-informative model, the datasets of the focal and
previously conducted studies were pooled into a single dataset.
The NPP was implemented as a standard normal-inverse gamma
model as described in Carvalho and Ibrahim (2020). For
both the MAP and SWIP a Bayesian random-effects meta-
analysis was run with the generated database of previously

conducted studies to calculate the meta-analytic mean effect,
its standard error, and the between-study heterogeneity τ2. The
meta-analytic mean effect and its standard error were used
as hyperparameters of the MAP and SWIP. The meta-analysis
was based on Fisher’s r-to-z transformed partial correlation
coefficients using the metafor-package (Viechtbauer, 2010). This
follows Aloe and Thompson (2013) who introduced partial or
semi-partial correlations as adequate effect sizes for regression
coefficients. The specification of the MAP model and its
robustification procedure followed the standard implementation
of the RBesT-package outlined in Weber et al. (2019). Prior to
the SWIP analysis, the modified generalizability index B for the
previously conducted studies and the similarity measure ω was
calculated as in equation (1). The similarity measure ω was then
introduced as parameter-specific weight for the informative prior
distributions for the regression coefficients as in equation (4). All
models were specified with Stan and its R interface RStan (Stan
Development Team, 2020). Four chains each of length 2,000 with
1,000 burn-in cycles were set up. Different random starting values
were supplied to each chain. Convergence was assessed using
the Gelman-Rubin R-statistic (Gelman and Rubin, 1992), where
R < 1.02 indicated convergence. All solutions converged.

Evaluation Criteria
To assess the behavior of the similarity measure ω we
focused on its relation to τ2

+ δτ2 and 4µ , and its relation
to the shrinkage in the parameter estimates. Therefore, we
estimated linear models. Shrinkage was defined as the difference
between the focal-study estimates (the true values βF) and
the estimates obtained by the similarity-weighted informative
prior distribution. Moreover, comparing the performance of
the different prior distributions involved, for each condition,
averaging the parameter estimates and their standard errors
over replications, β = 1

R
∑

R β and SEβ =

√
1
R
∑

R SE
2
β,

respectively. The similarity measure behaves as expected if it
decreases as τ2

+ δτ2 and 4µ increase. Moreover, shrinkage
should increase as the similarity increases. Good performance
of the different informative prior distributions is indicated by
increasing shrinkage of the parameter estimates toward their
meta-analytic means, as well as decreasing standard errors of the
parameter estimates, depending on the degree of similarity.

RESULTS

Behavior of the Similarity Measure ω
Figure 1 illustrates the behavior of the similarity measure ω

conditional on τ2
+ δτ2 for different levels of 4µ combined for

all three regression coefficients (left panel), and the behavior
of the shrinkage of the estimates of the three regression
coefficients, conditional on the similarity measure ω (right
panel), across all simulation conditions. The similarity measure ω

behaves as expected; as both τ2
+ δτ2 and 4µ increase, i.e.,

the similarity between the focal and the previously conducted
studies decreases, the similarity measure ω decreases as well.
Moreover, we have a non-compensatory relation between the
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FIGURE 1 | Regression curves of the relation between the similarity measure ω and τ2
+ δτ2 for different levels of 4µ (left panel), and the relation between the

shrinkage and the similarity measure ω, for each β-parameter (right panel), based on estimates from 21,000 simulated datasets.

components of the similarity measure. High similarity in samples
and predictors does not compensate for a lack of similarity
regarding outcomes and study characteristics, and vice versa.
The shrinkage of the parameter estimates behaves accordingly:
as the focal and the previously conducted studies become more
similar, indicated by an increasing similarity measure ω, the
estimates of the regression coefficients shrink toward their meta-
analytic means. If the focal and previously conducted studies are
highly dissimilar, shrinkage is close to zero, and the estimates
of the regression coefficients remain at estimates resulting from
the focal study. Lastly, shrinkage is stronger when the meta-
analytic means and the focal-study estimates of the regression
coefficients are considerably apart (see β3, compared to the
other two parameters). This is, however, just an effect of the
distance between the values of β3 = − 0.5 and its meta-
analytic mean µβ3 = 0.3. With an increasing distance between
a parameter estimate and it meta-analytic mean, the potential
amount of shrinkage increases as well. Moreover, the different
direction of the shrinkage in case of β3 is due to the meta-
analytic mean being larger than the focal-study estimate. In case
of the other regression coefficients, their meta-analytic means
are smaller than their focal-study estimates, thus the shrinkage
is negative.

Performance of the Similarity-Weighted
Informative Prior Distribution
Figures 2, 3 illustrate the behavior of the estimates of the three
regression coefficients and their standard errors, respectively,
obtained from the pooled Bayesian analysis, the NPP, the
MAP, and the SWIP, conditional on the simulated factors. The
estimated regression coefficients obtained with the SWIP lie

consistently between their true values βF and their true meta-
analytic means µβk . Shrinkage toward the true meta-analytic
means is sensitive to changes in both τ2

+ δτ2 and 4µ. In
contrast, the MAP consistently yields parameter estimates close
to the true values βF , except for β3 when τ2

+ δτ2 < .10.
Thus, the MAP is largely insensitive to changes in both τ2

+

δτ2 and 4µ. Compared to the NPP, shrinkage of the parameter
estimates of the SWIP is comparably sensitive to changes in
both τ2

+ δτ2 and 4µ, but more conservative. For example,
when 4µ is large, the NPP sometimes yields overestimated
parameters. Moreover, while the SWIP shrinks the parameters
never beyond their estimates obtained with the pooled analysis,
the NPP shrinks the parameter estimates in some cases beyond
their meta-analytic means.

This general pattern is similar in case of the standard error
of the parameter estimates. In case of the SWIP, the standard
errors decrease as the similarity of the focal and previously
conducted studies increases. More specifically, they converge
to the standard errors of the pooled Bayesian analysis. This
implies a similarity-dependent borrowing of information from
the previously conducted studies that increases the precision
of the parameter estimates of the focal study. This is true
for all simulation conditions, although it is most distinct
when the number of available studies is large (K = 10).
In contrast, the standard errors of the estimates of the MAP
do not converge; they largely remain at around 0.7. Thus,
the MAP does not borrow information from the previously
conducted studies. The standard errors of the estimates of the
NPP tend to be smaller than the standard errors of the SWIP,
especially when the number of previously conducted studies is
large (K = 10). Thus, the NPP borrows more information.
When the focal-study estimates and their meta-analytic means
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FIGURE 2 | The behavior of the parameter estimates across simulation conditions. The similarity of the focal and the previously conducted studies decreases from
left to right. Pooled = pooled Bayesian analysis; NPP = normalized power prior; MAP = meta-analytic predictive prior; SWIP = similarity-weighted informative prior
distribution. The dashed horizontal line represents the true value of the respective regression coefficient of the focal study. The dotted horizontal line represents the
true (generating) meta-analytic mean of the respective regression coefficient.

contradict (in case of β3), however, the standard errors of
the estimates of the NPP tend to be larger, especially when
the number of previously conducted studies is small and 4µ

is large.

Overall, the performance of the SWIP is more consistent
and sensitive to changes in similarity between the focal and
previously conducted studies, compared to both the NPP and
MAP, while yielding conservative estimates. As the similarity
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FIGURE 3 | The behavior of the standard errors of the parameter estimates across simulation conditions. The similarity of the focal and the previously conducted
studies decreases from left to right. Pooled = pooled Bayesian analysis; NPP = normalized power prior; MAP = meta-analytic predictive prior;
SWIP = similarity-weighted informative prior distribution.

increases, the parameter estimates of the SWIP shrink toward the
estimates of the pooled Bayesian analysis, and more information
is borrowed from the body of available background knowledge.

Thus, the standard errors of the parameter estimates decrease,
and the estimates are more precise. In this context, the number of
previously conducted studies plays a vital role. When the number
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is small, i.e., when there is less information to borrow, both
shrinkage and precision are less distinct.

DISCUSSION

The purpose of this study was to illustrate a novel method
to assess the similarity of studies in the context of specifying
informative prior distributions for Bayesian multiple regression
models. We illustrated the quantification, based on a propensity-
score approach and random- and mixed-effects meta-analytic
models (e.g., Tipton, 2014; Cheung, 2015), and combination of
heterogeneity in samples and predictors, outcomes, and study
characteristics in the novel similarity measure ω. We showed how
to use the similarity measure ω as a weight for informative prior
distributions for the regression coefficients, and investigated the
behavior of the similarity measure ω and the similarity–weighted
informative prior distribution, comparing its performance to the
normalized power prior and meta-analytic predictive prior.

The Performance of the
Similarity-Weighted Informative Prior
Distribution
The results of our simulation show that the parameter estimates
of the similarity-weighted informative prior distribution behave
similar to those of hierarchical Bayesian models: as the
similarity of the focal and previously conducted studies
increases, they shrink toward their pooled, meta-analytic
means. Simultaneously, the precision of the parameter estimates
increases because more information is borrowed from the
previously conducted studies. From the perspective of cumulative
knowledge creation, this behavior is desired. As evidence from
comparable studies accumulates, our knowledge of the size
of an effect becomes incrementally more certain until, over
time, it represents the best knowledge we have (unless the
evidence contradicts; Kruschke et al., 2012; König and van de
Schoot, 2018). The meta-analytic predictive prior, on the one
hand, does not provide this increasing certainty in the size
of an effect. Compared to the similarity–weighted informative
prior distribution, the similarity-dependent shrinkage is much
less distinctive. Since the meta-analytic predictive prior only
considers the heterogeneity in outcomes, it may be an indication
that, echoing Lin et al. (2017), this is not sufficient for an adequate
assessment of similarity of the focal and previously conducted
studies. Parameter estimates of the normalized power prior, on
the other hand, exhibit a stronger, but inconsistent shrinkage
toward the pooled, meta-analytic means. From the perspective
of cumulative knowledge creation, this is problematic, because
the normalized power prior provides parameter estimates that
are biased, and the precision of the estimates does not increase
consistently as evidence accumulates.

Since the performance of the similarity-weighted informative
prior distribution stands or falls with the accuracy of the
components of the similarity measure ω, it is essential to
estimate the random and mixed-effects meta-analytic models as
unbiased as possible. This is usually based on either maximum
likelihood (ML) or restricted maximum likelihood (REML)

estimation (e.g., Cheung, 2015). These likelihood-based methods,
however, exhibit poor performance especially when the number
of previously conducted studies is small (Bender et al., 2018),
additionally to the general underestimation of the between-study
heterogeneity of ML-based random-effects meta-analytic models
(Cheung, 2015). Several studies show a superior performance of
Bayesian approaches, especially hierarchically specified random
and mixed-effects meta-analytic models, in terms of the accuracy
of the (residual) variance components (Williams et al., 2018;
Seide et al., 2019). Thus, when using the similarity measure ω

to specify the similarity-weighted informative prior distributions,
we recommend using these Bayesian approaches to estimate
both the mean effect size and its variance components, as
illustrated in this study.

On the one hand, the similarity-weighted informative prior
distribution simplifies the concept of the normalized power prior.
The similarity measure is used to weight the informative prior
distribution directly, which is more intuitive and less challenging
than weighting the likelihood of the data from the previously
conducted studies (Ibrahim et al., 2015). The complex calculation
of multiple marginal likelihoods by means of bridge sampling
approaches (see Carvalho and Ibrahim, 2020) is not necessary.
Calculating marginal likelihoods can be complicated and time-
consuming especially when the underlying models are complex
(for instance, structural equation models), and their likelihood is
analytically intractable (Ibrahim et al., 2015). On the other hand,
the similarity-weighted informative prior distribution extends
both the normalized power prior and meta-analytic predictive
prior by taking into account multiple sources of heterogeneity
in previously conducted studies, and quantifying these sources in
the similarity measure ω. The benefits of this holistic approach
are illustrated by the performance of the similarity-weighted
informative prior distribution.

Future Directions
The similarity measure ω and the similarity-weighted
informative prior distribution offer various opportunities
for further research. First, the inconsistent behavior of the
normalized power prior may be due to the limited number of
available small-sample studies (Neuenschwander et al., 2009).
Thus, a limitation of this study is that we only considered
sample sizes of the focal and previously conducted studies
that are of a comparable order of magnitude. Investigating
the performance of the similarity-weighted informative prior
distribution in situations where these sample sizes differ
by orders of magnitude, and where the sample sizes of the
previously conducted studies vary considerably, is an important
topic for further research. If the sample sizes of the focal and
previously conducted studies vary considerably in size (especially
when NP � NF), it is possible to multiply the scale parameter
of the informative prior distribution SE2

p by the ratio NP/NF .
This can be understood as a mechanism to avoid that the prior
information overwhelms the likelihood, because it flattens the
distribution and makes it less informative. Second, the similarity
measure can be used as the a0-parameter of the normalized
power prior. Investigating the behavior of the normalized
power prior in the context of a fixed–a0 approach, where the
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study-specific a0-parameters are fixed to the values of the study-
specific similarity measures may be an interesting topic for future
research. Especially because the fixed–a0 approach is considered
superior to the random–a0 approach, where the comparability
of the focal and previously conducted studies is inferred from
the data, and the prior distribution for the a0-parameter has
to be chosen carefully (Neuenschwander et al., 2009; Ibrahim
et al., 2015). Third, comparing ML-based and Bayesian meta-
analytic or other approaches in the context of assessing the
similarity of studies, i.e., regarding their impact on the behavior
of the similarity-weighted informative prior distribution, is
another important topic for future studies. As mentioned above,
the precision of the average effect sizes that are used as the
hyperparameters of the informative prior distributions, are
pivotal for the accuracy of these distributions. Identifying the
correct approach, especially when the number of previously
conducted studies is small (Bender et al., 2018), is crucial
for the performance of the similarity-weighted informative
prior distribution. Fourth, the calculation of the modified
generalizability index B still requires the availability of the
raw data of the previously conducted studies. This remains
a limitation for the applicability of the similarity measure.
Extending its applicability is a question of being able to calculate
the modified generalizability index B in situations when only
summary data are available. It is possible, however, to simulate a
number of datasets based on correlation matrices, or means and
standard deviations, and to calculate B for each of the simulated
datasets. The pooled B can then be used to calculate the similarity
measure. Such an approach, similar to multiple imputation
or the estimation of plausible values, will be addressed and
investigated in a future study. Fifth, both the similarity measure
and the similarity-weighted informative prior distribution are
currently only available for multiple regression models, i.e.,
univariate methods. It may be fruitful to extend and adapt both
to multivariate methods, for example structural equation models.

Concluding Remarks
As mentioned in the introduction to this study, specifying
accurate informative prior distributions is a question
of carefully selecting studies that comprise the body of
comparable background knowledge. Given the considerable

heterogeneity of studies that are being conducted in Psychological
research (different circumstances, with different samples and
instruments), the results of these studies are heterogeneous, and
not all available results can and should contribute equally to an
informative prior distribution. The similarity measure ω and the
similarity-weighted informative prior distribution developed in
this study provide researchers with tools to (a) justify the selection
of studies that contribute to the informative prior distribution,
and (b) to accomplish the necessary similarity-based weighting
of the available background knowledge. On the one hand, the
quantification of the similarity of studies, and the similarity-
based weighting of prior information, are important elements
of a systematization of the specification and use of informative
prior distribution. Being able to justify empirically the use of
previously conducted studies for the specification of informative
prior distributions, on the other hand, helps building confidence
in the use of informative prior distributions. The theoretical
rationale of the similarity measure ω and the evidence-based
nature of the similarity-weighted informative prior distribution
may help to supersede the subjective notion of informative prior
distributions. We hope that the similarity measure ω and the
similarity-weighted informative prior distribution stimulates
further research, eventually helping researchers in Psychology to
move beyond non-informative prior distributions, and to finally
exploit the full potential of Bayesian statistics for cumulative
knowledge creation.
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