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Abstract

Assimilating synthetic land surface temperature in a fully coupled
land-atmosphere model

The weather of the atmospheric boundary layer significantly affects our life on
Earth. Thus, a realistic modelling of the atmospheric boundary layer is crucial.
Hereby, the processes of the atmospheric boundary layer depend on an accurate
representation of the land-atmosphere coupling in the model. In this context
the land surface temperature (LST) plays an important role. In this thesis, it
is examined if the assimilation of LST can lead to improved estimates of the
boundary layer and its processes.

To properly assimilate the LST retrievals, a suitable model equivalent in the
weather prediction model is necessary. In the weather forecast model of the
German Weather Service used here, the LST is modelled without a vegetation
temperature. To compensate for this deficit, two different vegetation param-
eterizations were investigated and the better one, a conductivity scheme, was
implemented. In order to make optimal use of the influence of the assimilation
of the LST observation on the model system, it is useful to pass on the infor-
mation of the observation to land and atmosphere already in the assimilation
step. For that reason, a fully coupled land-atmosphere prediction model was
used. Therefore, the existing control vector of the assimilation system, a local
ensemble transform Kalman filter, was extended by the soil temperature and
moisture. In two-day case studies in March and August 2017, different configu-
rations of the augmented assimilation system were evaluated based on observing
system simulation experiments (OSSE).

LST was assimilated hourly over two days in the weakly and strongly coupled
assimilation system. In addition, every six hours a free 24-hour forecast was
simulated. The experiments were validated with the simulated truth (a high-
resolution model run) and compared against an experiment without assimilation.
It was shown that the prediction of the boundary layer temperature, especially
during the day, and the prediction of the soil temperature, during the whole
day and night, could be improved. The best impact of LST assimilation
was achieved with the fully coupled system. The humidity variables of the
model benefited only partially from the LST assimilation. For this reason,
covariances in the model ensemble were investigated in more detail. To check
their compatibility with the high-resolution model run the ensemble consistency
score was introduced. It was found that the covariances between the LST and
the temperatures of the high-resolution model run were better represented in
the ensemble than those between the LST and the humidity variables.
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Kurzfassung

Assimilation synthetischer Landoberflächentemperaturen in ein
vollständig gekoppeltes Land-Atmosphären-Modell

Das Wetter innerhalb der atmosphärischen Grenzschicht bestimmt maßgeb-
lich unser Leben auf der Erde. Daher ist eine realistische Modellierung der
Grenzschicht von großer Bedeutung. Die Prozesse der Grenzschicht sind dabei
von einer genauen Darstellung der Kopplung zwischen Land und Atmosphäre
im Modell abhängig. In diesem Rahmen spielt die Landoberflächentemperatur
(engl. land surface temperature, LST) eine wesentliche Rolle. In dieser Disserta-
tion wird untersucht, ob die Assimilation der LST zu verbesserten Vorhersagen
der Grenzschicht und ihrer Prozesse führen kann.

Um die LST nutzbringend zu assimilieren, ist ein geeignetes Modelläqui-
valent im Wettervorhersagemodell erforderlich. Im hier verwendeten Wetter-
vorhersagemodell des Deutschen Wetterdienstes wird die LST ohne eine Vege-
tationstemperatur modelliert. Um dieses Defizit auszugleichen, wurden zwei
unterschiedliche Vegetationsparametrisierungen untersucht und die bessere, ein
Konduktivitätsschema, implementiert. Um den Einfluss der Assimilation der
LST-Beobachtung auf das Modellsystem optimal auszunutzen, ist es sinnvoll,
die Informationen der Beobachtung bereits im Assimilationsschritt an Land
und Atmosphäre weiterzugeben. Aus diesem Grund wurde ein vollständig
gekoppeltes Land-Atmosphären-Vorhersagemodell verwendet. Dazu wurde der
bestehende Kontrollvektor des Assimilationssystems, ein lokaler Ensemble-
Transform-Kalman-Filter, um Bodentemperatur und -feuchte erweitert. In
zweitägigen Fallstudien in März und August 2017 wurden auf Basis synthetisch
erzeugter Beobachtungen (engl. observing system simulation experiment, OSSE)
verschiedene Konfigurationen des erweiterten Assimilationssystems getestet.

Die LST wurde im schwach und stark gekoppelten Assimilationssystem
stündlich über zwei Tage assimiliert. Zusätzlich wurde alle sechs Stunden
eine freie Vorhersage mit einem Vorhersagehorizont von 24 Stunden simuliert.
Die Experimente wurden mit der simulierten Wahrheit (einem hochaufgelösten
Modelllauf) validiert und gegen ein Experiment ohne Assimilation verglichen.
Dabei zeigte sich, dass die Vorhersage der Grenzschichttemperatur, insbesondere
tagsüber, und die Vorhersage der Bodentemperatur, im gesamten Tagesverlauf,
verbessert wurde. Die besten Ergebnisse wurden mit dem vollständig
gekoppelten System erzielt. Die Feuchtevariablen des Modells profitierten nur
teilweise von der LST-Assimilation. Aus diesem Grund wurden die Kovarianzen
des Modellensembles eingehender untersucht. Um ihre Kompatibilität mit dem
hochaufgelösten Modelllauf zu überprüfen, wurde der Ensemble-Konsistenz-
Score entwickelt. Es zeigte sich, dass die Kovarianzen zwischen der LST und den
Temperaturen des hochaufgelösten Modelllaufs im Ensemble besser dargestellt
wurden als jene zwischen der LST und den Feuchtevariablen.
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Chapter 1

Introduction

The planetary or atmospheric boundary layer (ABL) is the lowest layer of
the terrestrial atmosphere. Almost the entire human activity takes place in
this narrow atmospheric layer of about one to three kilometre height. Hence,
weather events in this layer have a direct impact on life, society, agriculture, and
economy. Here, the solar radiation reaches the land surface and the resulting
turbulent energy fluxes make the ABL the most turbulent atmospheric layer
and drive the physical interactions between the soil and the atmosphere. The
processes of the ABL as well as the processes of the sub-surface soil are thus
directly connected to the energy input at the soil. Hence, the development of
the ABL strongly depends on the coupling between soil and atmosphere (Sandu
et al., 2013; Holtslag et al., 2007; Koster et al., 2006). A realistic simulation of
the ABL depends on whether the thermal coupling and the surface processes can
be represented accurately in the model simulation (Trigo et al., 2015; Bosveld
et al., 2014; Reichle et al., 2010).

Since the atmosphere is a chaotic system, it is not sufficient to only model
its atmospheric processes correctly. In order to do forecasting also the initial
state of the system must be determined as accurately as possible, because any
deviations of the initial state from the unknown truth can grow exponentially.
To put it clearly, even a perfect atmospheric forecast model cannot guarantee a
correct weather prediction if the initial state contains uncertainties. To reduce
errors of the initial model state, observations of the atmospheric state are used.
This is done by combining observations and the predicted model state using
data assimilation algorithms. There are several methods of data assimilation
algorithms such as the variational method - 4DVAR (Talagrand and Courtier,
1987) - and the sequential ensemble-based methods such as - ensemble Kalman
filter (Evensen, 1994) - to name the ones most regularly used. Within the con-
text of the ABL, the combination of information from observed and simulated
land surface fields can lead to a more representative estimate of land surface
conditions and boundary layer processes (Ghent et al., 2010; Reichle et al., 2010;
Han et al., 2013; Margulis and Entekhabi, 2003). In order to allow for a more
accurate coupling of the land-atmosphere, it seems to be useful to introduce the
information of observations into the atmosphere and the soil model. By now,
mainly two possibilities to implement this are subjects of active research: weakly
or strongly coupled land-atmosphere assimilation systems (Penny and Hamill,
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2017). In weakly coupled systems, the information of the observation is solely
introduced into either the soil or the atmosphere model during the assimilation
step. The observation information is then passed on to the respective other
model in the next prediction step through the coupling between the land and
atmosphere model. In strongly or fully coupled land-atmosphere assimilation
systems, the observation is already introduced into the control state of both
models simultaneously during the assimilation step. Therefore, the assimilation
of land surface observations into a fully coupled land-atmosphere model is ex-
pected to lead to improvements of the initial model state and the forecasts of
the coupling processes and the ABL.

The contributions to the energy budget at the land surface are well-known
and include long- and shortwave radiation, sensible and latent heat flux, and
soil heat flux. The land surface temperature (LST) is part of the surface energy
budget and is thus one of the parameters that define the lower boundary con-
dition of the atmosphere and the upper boundary condition of the soil. Hereby,
LST determines the partitioning of sensible and latent heat flux and determines
the upward thermal radiation. Therefore, improving the initial state of LST in
weather forecast models has the potential to further enhance the representation
of variables and fluxes that are correlated with the LST (Candy et al., 2017;
Trigo et al., 2015; Santanello et al., 2013; Bosilovich et al., 2007). To observe the
LST on large spatial scales, remote sensing observations derived by satellites are
best suited (Houser et al., 2010). Consequently, a comprehensive LST retrieval
can be derived from satellite measurements (Trigo et al., 2008a; Aires et al.,
2004; Jin, 2004). Based on brightness temperatures observed by surface or
near-surface sensitive channels of satellites. An enhancement of simulated LST
can improve the simulation of brightness temperatures as well. In consequence,
more brightness temperature measurements have the potential to be used within
assimilation cycles (Trigo et al., 2015).

To also resolve the full diurnal cycle of LST, measurements of geostation-
ary satellites are the best choice, because they measure with a high temporal
resolution. The LST retrievals (Trigo et al., 2008a; Freitas et al., 2010) of
the measurements of the Spinning enhanced visible and infrared imager (SE-
VIRI) on board Meteosat Second Generation (MSG) (Schmetz et al., 2002)
are a promising option for LST assimilation, offering a temporal resolution of
∆t = 15min and a spatial resolution of ∆x ≈ 5 km over central Europe.

1.1 Background of Land Surface Temperature

Assimilation

LST retrievals already have been assimilated in offline land surface models to
improve the energy budget at the land surface and the representation of land
surface properties (Pipunic et al., 2008; Reichle et al., 2010; Ghent et al., 2010;
Huang et al., 2008; Pinjosovsky et al., 2017; Han et al., 2013; Xu et al., 2018).

6
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For example, the LST observations from the International Satellite Cloud Clima-
tology Project (ISCCP) were assimilated into two different land surface models,
which led to enhancements in both models (Reichle et al., 2010). In a further
study, Ghent et al. (2010) assimilated LST derived from the SEVIRI instrument
into the Joint UK Land Environment Simulator (JULES). They were able to
improve the simulated LST, soil moisture, as well as sensible and latent heat
fluxes. Huang et al. (2008) combined the assimilation of LST retrievals derived
from measurements of the Moderate Resolution Imaging Spectroradiometer
(MODIS) into the Common Land Model (CoLM) with a simultaneous update
of the leaf area index (LAI) by a MODIS LAI product, which led to an advanced
profile of the modeled soil temperature. In a different approach Pinjosovsky
et al. (2017) carried out LST assimilation to estimate enhanced land surface
model parameters. They were able to improve the surface fluxes of the OR-
CHIDEE land surface model by estimating the most sensitive parameters to the
LST. Han et al. (2013) assimilated MODIS LST in combination with microwave
brightness temperature into the Community Land Model and found different
impacts on soil moisture and soil temperature profiles. A joint assimilation
was able to realize a more accurate soil moisture characterization under dry
conditions, but under wet conditions the assimilation of brightness temperature
outperforms the joint assimilation. Because the offline land surface models do
not interact with atmospheric models, in all these studies, the impact of LST
assimilation is restricted to soil and land surface variables.

Besides the assimilation of LST into offline land surface models, there are
also studies which investigate the impact of LST assimilation on ABL models
and weakly coupled land-atmosphere models (Boussetta et al., 2008; Zhang and
Zhang, 2010; Tajfar et al., 2020a; Candy et al., 2017; Margulis and Entekhabi,
2003; Zhang et al., 2013). For example, McNider et al. (1994) assimilated LST
tendencies derived from GOES satellite data into the surface energy budget of a
meso-scale atmosphere model in order to improve the evapotranspiration term
of the budget equation. They were able to get a better agreement with observa-
tions in a one- and three-dimensional test case. Margulis and Entekhabi (2003)
combined the assimilation of radiometric surface temperature measurements
with the assimilation of standard reference-level temperature and humidity.
With their variational approach they enhanced the estimates of the land surface
fluxes compared to a simple one-dimensional land surface-atmospheric bound-
ary layer model. Improved surface flux estimates were also retrieved by Tajfar
et al. (2020a). Here, the variational assimilation of LST into the soil heat dif-
fusion equation (Bateni et al., 2013a,b) was combined with the assimilation of
reference-level air temperature and specific humidity into an ABL model (Tajfar
et al., 2020b). Within a weakly coupled approach by Bosilovich et al. (2007)
a bias corrected LST was assimilated into the land surface energy budget of a
land surface model, which was used as a lower boundary condition for an atmo-
spheric model. A positive impact was found on LST, sensible and latent heat
flux, as well as on near-surface air temperature. As another example of a weakly
coupled land-atmosphere LST assimilation, Candy et al. (2017) assimilated LST
into a land surface model, whose updated soil temperature and moisture were
used as forcing at the lower boundary of an atmosphere model. They found

7
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improvements in near-surface air temperature as well, but the enhancement of
LST assimilation was dependent on the land cover type.

In conclusion, there is potential to benefit from assimilation of LST into soil
and atmosphere models. To further enhance this impact of LST assimilation a
possible step is to use a fully coupled land-atmosphere assimilation framework
(Sgoff et al., 2020), where soil moisture and soil temperature are as well updated
within the analysis step as the atmospheric variables. Another fully coupled
land-atmosphere assimilation system has already been successfully implemented
for soil moisture (Weather Research and Forecasting Model coupled with the
NOAH land surface model, Lin and Pu, 2018, 2019, 2020). However, the
success of a fully coupled assimilation system depends on the cross-domain
covariances between the coupled models (Smith et al., 2017, 2018; Sluka et al.,
2016; Bannister, 2008a,b; Ehrendorfer, 2007). Hence, it is crucial to also review
the covariances between the observations and the analysed model variables.

1.2 Goals of this Thesis

With regard to the previous sections, there are still some steps to be taken on
the way to a fully coupled land-atmosphere data assimilation system. The aim
of this thesis is to contribute to this development.

Therefore, an Observing System Simulation Experiment (OSSE, Section 1.3)
is performed to test the performance of LST assimilation into a fully coupled
land-atmosphere system. As the coupled land-atmosphere forecast model the
numerical weather prediction model of the Consortium for small-scale modelling
model (COSMO-model, Baldauf et al., 2011) is chosen. The long-standing
operational model of the German weather service (Deutscher Wetterdienst,
DWD) consists of the atmospheric COSMO-model coupled with its own
multilayered soil and vegetation model TERRA ML (Doms et al., 2011; Schulz
et al., 2016). Since the LST retrieval is employed as the assimilated observation
within the experiments, it is important to have a suitable counterpart in the
model. LST observed by satellites is a blended temperature from the soil surface
temperature and the temperature from the vegetation above. Unfortunately, the
COSMO-model provides only a soil surface temperature, which leads to a too
weak diurnal cycle and too warm land surface temperatures at night (Vogel
et al., 2015; Schulz et al., 2016; Shrestha et al., 2018). Thus, the first questions
to be answered are:

• How to implement a vegetation/canopy temperature parameterization into
the COSMO-model to predict a more accurate land surface temperature?

• Which implementation fits best with the LST retrieval derived from the
remote sensing measurements to get a sufficient model equivalent?

To answer these questions, I collaborated with Jan-Peter Schulz and Jürgen
Helmert (DWD) and evaluated two different promising parameterizations
(Chapter 5).

8
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The Kilometre-scale Ensemble Data Assimilation scheme (KENDA, Schraff
et al., 2016), which is based on the Local Ensemble Transform Kalman Filter
(LETKF, Hunt et al., 2007) is chosen as the assimilation framework of this thesis
to answer the questions:

• How does the assimilation of LST influence the atmospheric, the soil, and
the land-atmosphere coupling values?

• Does the strongly coupled land-atmosphere assimilation system outper-
form the weakly coupled land-atmosphere assimilation system?

• How do background error covariances influence the impact of LST
assimilation within the fully coupled land-atmosphere assimilation system?

The states of the forecast model, which are directly influenced by the
observations in the assimilation step, are summarized in the control vector. By
extending the KENDA control vector to soil variables, the strongly coupled land-
atmosphere assimilation system is realised. Thus, this thesis takes an important
step towards the fully coupled land-atmosphere assimilation system. The strong
coupling increases the potential to improve the lower atmospheric conditions in
the assimilation step. This will further improve the processes on land surface
and the prediction of the boundary layer.

1.3 Method - Observing System Simulation

Experiment

To get first insights on the impact of the assimilation of the LST retrieval
on the COSMO-model an observing system simulation experiment (OSSE) has
been conducted. Masutani et al. (2010) give a comprehensive overview on the
workings of OSSEs. Within this OSSE simulated LST observations are used as
input for the data assimilation system to evaluate their impact on the coupled
land-atmosphere system. Furthermore, the OSSE investigates the performance
and workings of the coupled land-atmosphere data assimilation. The synthetic
LST observations are derived from a simulation, which is assumed to be the
truthful state of the system, from here on called the truth or nature run. The
derived LST retrievals are assumed as perfect observations and are adjusted
by realistic observational errors to better mimic real observations. The nature
run of this study is a four-times higher resolved COSMO-model forecast and is
further used to evaluate the analysis and forecasts of the OSSE. The motivation
to conduct an OSSE is based on the following points:

• The truth is known and can be used for the evaluation of the experiments.

• Observations and their errors are well defined and bias-free.

• The evaluation of less observed variables, such as soil moisture, soil
temperature and surface fluxes, is possible.

9
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1.4 Outline

Firstly, within Chapter 2 the coupled land-atmosphere assimilation framework
is explained. The methodology of an OSSE motivates the order of the following
chapters:

• Generation of a nature run (Chapter 3)

• The synthetic observations are derived from the nature run:

◦ The real LST retrieval is described (Chapter 4).

◦ The model equivalent of the LST retrieval is implemented and
evaluated (Chapter 5).

◦ Based on that knowledge, the synthetic LST retrieval for the OSSE
is generated (Chapter 6).

• The synthetic LST is assimilated into the fully coupled land-atmosphere
system and the results of the LST assimilation on the land-atmosphere
system are evaluated (Chapter 7).

In Chapter 8 an index is derived to allow a qualitative statement about the
ensemble error covariances within the coupled land-atmosphere system. The
conclusions and the outlook are presented in Chapter 9.

This thesis, particularly the main parts of Chapter 7, were the foundation of
the publication by Sgoff et al. (2020). Thus, note that parts of the abstract, of
Chapter 2 to 7, as well as parts of the conclusion in Chapter 9 are published in
Sgoff et al. (2020).

10



Chapter 2

Assimilation Framework

The main goal of data assimilation is to retrieve the best possible estimate
of the atmospheric and soil state to initialize a forecast model properly. In
there, observations of the real atmospheric state are combined with short-range
model forecasts taking into account the error of both. Hereby, the forecast
model provides a continuous and high resolution estimate of the atmospheric and
soil state, but the forecast suffers from parameter and forcing errors, simplified
physics, and insufficient model resolution. In contrast, the observations provide
a picture of reality, but are less frequent in space and time. Furthermore,
measurement errors and representativeness errors have to be considered for the
observations. The combination of the information of both by data assimilation
algorithms enables an improved initial state for the forecast model. Hence, the
estimation of land surface processes can benefit from land surface observations,
such as LST, by data assimilation (Houser et al., 2010).
To keep the mathematics of the data assimilation consistent within this work
the following notation is used:

• lowercase bold symbols refer to vectors (xb, xa, ...)

• uppercase bold symbols refer to matrices (Xb, R, ...)

• uppercase italic letters refer to operators (H, M , ...).

The atmospheric state vector xb describes the relevant properties of the
atmosphere, like temperature, pressure, wind, and humidity at each model grid
point. The observation vector y summarizes observations of the real atmosphere,
like the synthetic LST. In combination with their errors, both, the model state
and the observations, contain information about the true state of the atmosphere
x(t). To find the best estimate for a trajectory of the true state {x(t)} over a
certain time period tj with j = 1, ..., n, a common approach is to minimize the
cost function J(x), which takes the model state and its uncertainty Pb, and the
observation and the observational uncertainty R into account:

J({x(t)}) = [x(t)− xb]T (Pb)−1[x(t)− xb]

+
n∑

j=1

[yj −Hj(x(tj))]
T (Rj)

−1[yj −Hj(x(tj))] . (2.1)

Here xb refers to the background estimate vector or so-called first guess, yj refers
to the observation vector at each time step j, and Hj(x(tj)) is the model state



CHAPTER 2. ASSIMILATION FRAMEWORK

projected to observation space using the forward observation operator Hj. If the
uncertainty of the model state is large in comparison to the uncertainty of the
observation, the solution of the minimization xa, the so-called analysis, resembles
the observation. If the uncertainty of the observation is large compared to the
uncertainty of the model, the background estimate is nearly unchanged and
hence the analysis is similar to the model.

2.1 Ensemble Kalman Filter

Within this study an ensemble Kalman filter (Kalman, 1960; Evensen, 1994;
Burgers et al., 1998) is used as assimilation algorithm. An ensemble Kalman
filter is a sequential technique to find a solution that minimizes a cost function
(Equation 2.1). Its core idea is to find a model state, which minimizes the
departures between the observations and the model estimate under consideration
of their respective errors. One property of the Kalman filter (Kalman, 1960) is
that within an assimilation cycle both the state and its covariance matrix are
updated. Any kind of Kalman filter consists of two steps. The first step is
the forecast step, wherein the model state, the former analysis xa

j−1, and its
associated covariance matrix are transported in time by the forecast operator
Mtj−1,tj to the next time step tj, where the an observation becomes available

xb
j = Mtj−1,tj(x

a
j−1) . (2.2)

As the model state itself, its covariance matrix also has to be transported in
time, but the forecast operator of an error covariance matrix is more difficult
to determine. To reduce computational requirements resulting from integrating
the error covariance matrix in time, it is useful to transport an ensemble of
model states in time. By integrating an ensemble of model states forward in
time, the covariance matrix and the model state are integrated simultaneously
because the error covariance matrix Pb can be calculated from the model state
ensemble (Evensen, 1994; Burgers et al., 1998; Evensen, 2003). In the ensemble
Kalman filter framework the model state is defined as the ensemble mean xb.
The second step of each kind of Kalman Filter is the analysis step, where the
model state xb

j, the observations y and their associated covariances, Pb
j and Rj,

are combined to the new and hopefully improved model state xa
j .

Figure 2.1 illustrates the forward and analysis step of the Kalman filter
schematically. Because all quantities of the analysis step are valid at time step
j, the time index is omitted for the following description of the analysis step.
The ensemble Kalman filter is based on the traditional Kalman filter analysis
equations

xa = xb +K(y−Hxb) (2.3)

Pa = (I−KH)Pb , (2.4)

but the weighting matrix K, also so-called Kalman gain matrix, is derived from
the error covariances provided by the ensemble of model states (Evensen, 1994;
Burgers et al., 1998)

K = PbHT (HPbHT +R)−1 . (2.5)

12
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time

obs. 1 obs. 2 obs. 3 obs. 4

forward step

analysis step

Figure 2.1: Schematic illustration of the Kalman filter work flow.
The model state is forwarded in time towards the next observation.
At each observation time (red cross) an analysis step is performed
and a new initial state is generated to start the next forecast step.

Here, the linear observation operator H is the matrix H relating the unknown
true model state xt to the observations y combined with the measurement error
ϵ:

y = Hxt + ϵ . (2.6)

The observation error covariances R are based on the knowledge about and the
estimation of measurement and representativeness errors. The background xb,
also known as first guess, is estimated by the sample mean of the background
ensemble {xb(i) : i = 1, 2, ..., k} (Evensen, 2003; Hunt et al., 2007)

xb = k−1

k∑
i=1

xb(i) . (2.7)

As well as the background, the analysis xa is estimated by its sample mean

xa = k−1

k∑
i=1

xa(i) . (2.8)

The calculation of the analysis ensemble is described in Section 2.2. The
sample error covariance matrices of the first guess Pb and of the analysis Pa

are estimated by

Pb = (k − 1)−1

k∑
i=1

(xb(i) − xb)(xb(i) − xb)T (2.9)

Pb = (k − 1)−1Xb(Xb)T (2.10)

and

Pa = (k − 1)−1

k∑
i=1

(xa(i) − xa)(xa(i) − xa)T (2.11)

Pa = (k − 1)−1Xa(Xa)T (2.12)

where k is the ensemble size and the k columns of the Xb matrix and the Xa

matrix represent the deviations of the background xb(i) and analysis ensemble

13
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members xa(i) from the background xb and analysis ensemble mean xa (Hunt
et al., 2007):

Xb(i) = xb(i) − xb (2.13)

Xa(i) = xa(i) − xa . (2.14)

2.2 Kilometre-scale Ensemble Data Assimila-

tion

The data assimilation system used within this work is the kilometre-scale en-
semble data assimilation system (KENDA, Schraff et al. (2016)), which is based
on the local ensemble transform Kalman filter (LETKF) as derived by Hunt
et al. (2007). The LETKF is an advanced version of the ensemble Kalman filter
described in Section 2.1. The forward step is performed by the COSMO-model
(Chapter 5) and simultaneously the model equivalents of the observations Hxb

are computed. Thus, the KENDA system is four-dimensional data assimilation
scheme: a 4D-LETKF (Schraff et al., 2016). The analysis step is performed by
the KENDA system hourly. For this purpose, the synthetic LST observations
(Chapter 6) and the simulated first guess LST are used by KENDA to get the
best estimate of the initial conditions for the next forecast step. The COSMO-
model is also used for 24 hour forecasts which are initialised every six hours
starting from the analysis. Because the COSMO-model is a limited-area model
boundary conditions are provided by the ICON-EU model (Zängl et al., 2015).
Figure 2.2 illustrates the setup of the assimilation framework schematically.

KENDA

Observations

Background/
First Guess

ICON-EU

COSMO
Initial  Conditions

Boundary  Conditions

1 hour forecast

24 hour forecast

Figure 2.2: Scheme of the employed 4D-LETKF assimilation
cycle. An analysis cycle is performed hourly. The observations,
i.e. the synthetic LST retrieval, are valid for the same time as the
background. The boundary conditions are provided by the European
forecast of ICON-EU. At 0000, 0600, 1200, and 1800 UTC 24 hour
forecasts are initialized from the analysis.
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The transformation of calculations to the k-dimensional ensemble space is
the main feature of the LETKF (Hunt et al., 2007). By this transformation
computational efficiency is gained compared to calculations performed in the
higher dimensional physical space of a weather forecast model. To find the
best-fitting state, the cost function

J(w) = (k − 1)(wTw) + [y0 −H(xb −Xbw)]TR−1[y0 −H(xb −Xbw)]
(2.15)

is minimized in ensemble space (Hunt et al., 2007; Szunyogh et al., 2008). Here,
w is the k-dimensional vector of ensemble weights, which corresponds to the
model state vector

x = xb +Xbw . (2.16)

R is the observation error covariance matrix and y0 is the observation vector.
By choice, the nonlinear observation operator H is linearly approximated by

H(xb +Xbw) ≈ yb +Ybw , (2.17)

with yb as the background mean in observation space and the k columns of Yb

represent the deviations between the ensemble member in observation space yb(i)

and the ensemble mean yb. With the linear approximation of the observation
operator the cost function Equation 2.15 gives

J(w) = (k − 1)(wTw) + [y0 − yb −Ybw]TR−1[y0 − yb −Ybw] . (2.18)

If the analysis wa, which minimizes Equation 2.18, is found, then the solution
of the cost function in model space is given by

xa = xb +Xbwa (2.19)

with
wa = Pa

w(Y
b)TR−1(y0 − yb) . (2.20)

The analysis update of the background error covariances in ensemble space Pa
w

leads to
Pa

w = [(k − 1)I+ (Yb)TR−1Y]−1 (2.21)

which is
Pa = XbPa

w(X
b)T (2.22)

in the model space. The analysis ensemble to initialize the next forecast step
is generated such that xa is the ensemble mean and Pa the covariance of the
ensemble. To ensure that the analysis ensemble {xa(i) : i = 1, 2, ..., k} in model
space satisfies these conditions the background mean is a linear combination of
the background ensemble deviations weighted by wa(i) (Hunt et al., 2007)

xa(i) = xb +Xbwa(i) (2.23)

with

wa(i) = wa +Wa(i) (2.24)

Wa = [(k − 1)Pa
w]

1/2 . (2.25)
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CHAPTER 2. ASSIMILATION FRAMEWORK

The KENDA system is a 4D-LETKF system. For each observation within the
first guess interval a model equivalent is simulated at the appropriate time.
Therefore, the weighting of ensemble members is based on observations measured
over the whole first guess time window. The KENDA-system is operational since
March 2017 at the DWD. Its forecast model is the COSMO-model and in the
operational setup an ensemble of k = 40 members is calculated. In this work, a
40-member ensemble is used as well. In addition to the 40 ensemble members,
the KENDA-system also includes a deterministic run which employs the Kalman
gain matrix from the LETKF (Zhang et al., 2004; Whitaker and Hamill, 2012;
Harnisch and Keil, 2015; Schraff et al., 2016). To prevent the analysis ensemble
from losing to much spread the analysis ensemble is perturbed after each
assimilation step. In contrast, the deterministic run is not perturbed, therefore,
it provides a more realistic representation of the atmospheric state than the
ensemble. Furthermore, the deterministic run provides a better representation
of moist processes, such as clouds and precipitation, than the ensemble mean,
because these fields are smoothed in the analysis ensemble mean due to the
averaging. The analysis xa

det of the deterministic assimilation cycle is calculated
by

xa
det = xb

det +K(y0 −H(xb
det)) (2.26)

with the Kalman gain matrix for the ensemble mean K = XbPa(Yb)TR−1.
To avoid spurious correlations due to sample noise given by the small ensemble
size a spatial localization is implemented. This means that for each analysis
grid point the weighting matrix takes only local observations into account. The
localization is implemented by a localization of the observation error covari-
ance matrix R. Hereby, the entries of the inverse of R are multiplied by a
factor which decreases with the increase of the distance between observation
and analysis grid point. This factor is determined by the Gaspari-Cohn cor-
relation function (Gaspari and Cohn, 1999). The localization length scale of
the implemented Gaspari-Cohn correlation function depends on the observa-
tion system and differs between the horizontal and the vertical direction. The
optimal localization depends on the density and the quality of the assimilated
observations. Within this OSSE study, only the LST retrieval is assimilated.
The LST retrieval depends in part on the land surface properties, which can
change within a few meters to kilometers. That is why in this work the hor-
izontal localization-scale is set to a constant value of 5.5 km, which translates
a localization cut-off at about 20 km. The operational system has an adaptive
localization scale depending on the effective number of observations, where the
localization radius varies between 50 km and 100 km (Schraff et al., 2016).

The assimilation is performed on the analysis grid which is horizontally three
times coarser than the model grid. This is possible because the weighting field
of the analysis state {wa(i) : i = 1, 2, ..., k} varies smoothly over short distances.
Therefore, the weighting field is computed on the coarse analysis grid and
spatially interpolated onto the fine model grid afterwards to save computational
time (Yang et al., 2009). The vertical coarse analysis grid of the atmosphere
has 35 pressure levels with a higher level density close to the surface to better
represent the covariances of variables within boundary layer, i.e. the experiments
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are more resolved than the operational setup with 30 vertical analysis levels.
Within the soil the vertical analysis grid is equivalent to the model grid.

2.3 Augmented Control Vector

One important part of this work is the evaluation of the strongly coupled
data assimilation in the land atmosphere system. To achieve the strong cou-
pling, the control vector of the KENDA system is augmented by the prognostic
soil moisture and soil temperature. Both soil variables are simulated by the
COSMO-model’s own vegetation and soil model TERRA ML and are not part
of the operationally implemented control vector. In addition to the operational
set of atmospheric variables (temperature, wind, pressure and specific humid-
ity), the soil temperature and the soil moisture can now be updated with each
assimilation cycle. The vertical localization in the soil differs from the vertical
localization of the atmosphere. As in the atmosphere the vertical localization
is also implemented by the Gaspari-Cohn correlation function (Gaspari and
Cohn, 1999), but here the localization-scale L has been set to 0.2m. Thus, the
impact of LST on the soil is visible in the upper five soil layers of TERRA ML.
This has been chosen because the upper five soil layers represent a soil depth
of approximately 1m. Soil layers below a depth of 1m are nearly unaffected by
temperatures of the land surface within time scales of days. It has been found
that a localization-scale of L =0.2m represents this behaviour satisfactory (Fig-
ure 2.3).
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Figure 2.3: Evaluation of vertical localisation within the soil
depending on different localization-scales L.

With the augmented control vector the assimilation of LST can now affect
the atmosphere and the soil simultaneously. Because the variables of the control
vector can be freely chosen, different control vector settings can be evaluated
(Section 7.3).
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Chapter 3

Nature Run

Within this study two so-called nature runs were carried out. They were as-
sumed to be the true state of the atmosphere and soil during the two different
study periods. From these nature runs the synthetic LST observations were
derived. Besides the generation of synthetic LST observations the nature runs
were also used for the evaluation of the assimilation experiments.

Because the intermittent states of the nature runs were assumed to be the
true states of the atmospheric and soil system they have to represent the at-
mospheric behaviour in a realistic way. Both nature runs were realized with
the COSMO-model Version 5.4c including the skin conductivity scheme (Sec-
tion 5.3), which was also used for the data assimilation system. To reduce the
potential of overly optimistic results, a common way is to produce the nature
run at a high spatial resolution and the data assimilation experiments at a
lower spatial resolution. On that account the performed nature runs were of
four times higher horizontal resolution than the forecasts of the data assimi-
lation system and thus had a horizontal resolution of 0.7 km. Consequently,
the setup of the turbulence and radiation parameter schemes were adapted to
the higher resolution. That means, that the radiation scheme was called every
three forecast minutes - that is five times more often than in the operational
COSMO-DE setup - and the TKE-based turbulence parameterisation took into
account TKE advection and horizontal diffusion of TKE (Table 3.1 based on
Blahak (2015)).

To enhance the impact of the assimilation of LST two periods with mainly
clear-sky conditions in 2017 were chosen. The absence of clouds increases the
available real and synthetic LST retrievals because their amount is limited by the
cloud cover (Figure 3.1). Furthermore, in March 2017 the assimilation system
KENDA (Schraff et al., 2016) became operational and provides a high-quality
initial ensemble for the assimilation cycle. The first nature run is a four-day
free-running simulation without any data assimilation in March 2017. These
four days from March 25 to March 29, were chosen because of a large high-
pressure system over Europe, which lead to several clear-sky days (Figure 3.1a).
The second nature run is a four-day period from August 26 to August 30, 2017
and also mainly cloudless (Figure 3.1b).



Table 3.1: Adapted namelist setting of nature run, changes for
turbulence parameterization are based on Blahak (2015).

Name Value Definition

dt 5 time step in seconds
dlat, dlon 0.00625 horizontal grid spacing

[degree]
nincrad 36 interval between two

calls of radiation
scheme (36 · dt = 180 s)

itype turb 3 Prognostic TKE scheme
lprog tke True TKE advection turned

on
l3dturb True 3D turbulence scheme

turned on

03-25 03-26 03-27 03-28 03-29

90%

70%

50%

30%

10%

Cloud Free Area

(a)

08-27 08-28 08-29 08-30

90%

Cloud Free Area

70%

50%

30%

10%

(b)

Figure 3.1: (a) Amount of cloud-free area of the nature run during
the early spring experiment period (March 25 0000UTC to March
29 0000UTC, 2017) and (b) during the summer period (August 26
1200UTC to August 30 1200UTC, 2017).

The model domain of the experiments is located around Lindenberg, a DWD
measurement site 70 km south-east from Berlin. The area covers the north-
eastern part of Germany and small parts of Poland and the Czech Republic
(Figure 3.2). This part of the model domain is interesting because of the
measurement site, whose data can be used for validation in a later study
assimilating real LST retrievals. Furthermore it is advantageous, that the
Earth surface height is mainly close to sea level, only in the south-eastern
part of the experiment area some small mountains rise up to 1200m. High
mountains increase the error of the LST retrieval. This is because, within one
satellite pixel mountainous regions have a more heterogeneous surface height and
characteristics and thus scatter the radiation more than flat terrain. Another
disturbing factor, which occurs more frequently in mountainous regions, is snow.
Snow and clouds reflect the solar radiation in a similar manner and because of
that cloud detection errors may show up more often in mountainous areas. The
main part of the model domain is covered by forests with some agricultural
landscape in the south-west. Several small and big lakes are distributed around
the area. Because of less memory requirements, the smaller model domain allows
more experiments than experiments on the full COSMO-DE domain. Also the
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CHAPTER 3. NATURE RUN

model domain of the experiment domain conveys more information than a single-
column model. The initialization and the boundary conditions for the nature
run are gained from the COSMO-DE analysis interpolated to the smaller model
domain and to the horizontal resolution of 700m.
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52◦N

53◦N

12◦E 14◦E 16◦E

0 50 100

km

Lindenberg

0 100 200 300 400 500

Model Orography [m]

Figure 3.2: Surface height of model domain around the Lindenberg
observatory (label and white triangle). White areas denote lakes.
The white area on the bottom right is a mountainous region above
500m height.
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Chapter 4

Observational Data

Because LST is a crucial variable of the energy budget at the land surface it was
chosen as first observation to test the fully coupled land-atmosphere assimilation
system. Surface sensitive satellite observations are used to derive LST retrievals.
One LST product is provided by the Land Surface Analysis Satellite Application
Facility (Land-SAF, Trigo et al., 2011). This LST retrieval (Trigo et al., 2008a;
Freitas et al., 2010) is based on measurements of the Spinning Enhanced Visible
and Infrared Imager (SEVIRI) on board of the geostationary Meteosat Second
Generation (MSG) satellites (Schmetz et al., 2002).

4.1 SEVIRI - Instrument

MSG are a generation of European geostationary meteorological satellites. MSG
satellites are spin stabilized and have a rapid imaging-repeat cycle of 15 minutes.
The line-by-line scanning radiometer provides image data in twelve spectral
channels over the whole MSG disk centered at 0◦ longitude. The observed
image data contains Africa, Europe and parts of Asia and South America with
a resolution of about 3 km at subsatellite point. Over Germany, the resolution is
about 5 km. SEVIRI has thirteen spectral channels including a high-resolution
visible channel. Eight of the channels are infrared (IR) channels in the range
of 3.9 µm to 13.4 µm and four channels are visible and near-infrared (VNIR)
channels in the range of 0.4 µm to 1.6 µm. Each 15 minutes SEVIRI produces
an image based on the last repeat cycle. Therefore, the LST product is also
available every 15 minutes in near real time and offline.

4.2 Land Surface Temperature Retrieval

The LST retrieval, provided by the Land-SAF, is obtained from two channels
within the thermal infrared atmospheric window: MSG/SEVIRI channel 9, cen-
tered at 10.8µm (IR10.8), and MSG/SEVIRI channel 10, centered at 12.0µm
(IR12.0). Both channels provide surface and near surface information because,
in the absence of clouds, they are most sensitive to the surface and the lower
part of the troposphere.
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Clouds and aerosol layers can contaminate the observations and are a natural
limitation of retrieval availability. They can block the signal from the surface
or modify it due to absorption or scattering of the IR radiance. The absence of
clouds is necessary to get an accurate LST retrieval. For that reason, the LST
retrieval is derived for clear-sky pixels only. The clear-sky regions of the MSG
disk are identified by the NoW Casting SAF, which provides a cloud mask for
SEVIRI over Europe (NWC-SAF, 2016).

The retrieval itself is derived by a generalized split-window algorithm similar
to the algorithm proposed by Wan and Dozier (1996) for the Advanced Very
High Resolution Radiometer (AVHRR) and MODerate resolution Imaging
Spectroradiometer (MODIS) data. The algorithm is adapted to SEVIRI
measurements and the LST retrieval is estimated by a linear function of two top-
of-the-atmosphere (TOA) brightness temperatures of the split-window channels
IR10.8 and IR12.0. The derivation has to take into account the spectral
emissivities of different surface types, the atmospheric state, especially the water
vapor content, and the orography. The surface orography can change with the
viewing angle of the satellite. The surface emissivities are also derived by the
Land-SAF. The estimation is based on the Vegetation Cover Method (VCM)
approach (Caselles et al., 1997; Trigo et al., 2008b). Under the assumption of
flat surfaces and the neglect of indirect radiation, which reaches the sensor, two
types of emissivities are taken into account, the vegetation ϵi,v and bare ground
ϵi,g band-emissivities on channel i. Both together are combined to one effective
surface emissivity of each satellite pixel:

ϵi,pixel = ϵi,vFCV + ϵi,g(1− FCV ) . (4.1)

The fraction of vegetation cover (FCV) is obtained from Land-SAF (Verger
et al., 2009; Trigo et al., 2011) and used here as the weighting function of
the two emissivities (Peres and DaCamara, 2005; Trigo et al., 2008b). The
emissivity ϵ = 0.5(ϵ10.8 + ϵ12.0) and the difference between the two emissivities
∆ϵ = ϵ10.8−ϵ12.0 are used together with brightness temperature of both channels
(Tb10.8 and Tb12.0) to determine LST:

LST =(A1 + A2
1− ϵ

ϵ
+ A3

∆ϵ

ϵ2
)
Tb10.8 + Tb12.0

2
(4.2)

+ (B1 +B2
1− ϵ

ϵ
+B3

∆ϵ

ϵ2
)
Tb10.8 − Tb12.0

2
+ C

The coefficients Ai, Bi and C, with i = 1, 2, 3, of the split-window algorithm
are determined on the basis of the LST calibration data by fitting Equation
4.2 to this database. The LST calibration data is based on global profiles
of temperature, moisture and ozone (Borbas et al., 2005), which represent
a wide range of atmospheric states under clear-sky conditions. This
atmospheric profiles are assigned to different satellite viewing angles, land
surface temperatures and emissivities to simulate a realistic range of measured
brightness temperatures at TOA of SEVIRI channel 9 and 10. The simulation
is done with MODerate spectral resolution atmospheric TRANSmittance
algorithm (MODTRAN4) (Berk et al., 2000).
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4.3 Error Estimation of Land Surface Temper-

ature Retrieval

The uncertainty of the LST retrieval is given by an observation error and
a quality flag at each satellite pixel. The uncertainty of LST consists of
several error sources: sensor noise, uncertainties from the surface emissivity
estimation, inaccurate atmospheric water vapor profiles and errors due to the
generalized split-window algorithm itself (Freitas et al., 2010). Another crucial
error source is incorrect cloud detection. The used NWC-SAF cloud mask
for SEVIRI has a validated accuracy on the order of 97% (NWC-SAF, 2016).
That leads to a LST uncertainty between 1 - 2K for most areas on the MSG
disk, including all mentioned sources of errors (Freitas et al., 2010). The LST
retrieval is validated against remotely sensed data of MODIS (Trigo et al., 2008a)
and in-situ measurements (Göttsche et al., 2013). The comparison of LST
derived from different remote sensing observations shows a better agreement
over homogeneous terrain and at night-time. The overall differences between
the observed data sets are lower or in the same range as the uncertainty of the
LST retrieval (Trigo et al., 2008a; Göttsche et al., 2013).
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Chapter 5

Model Equivalent of Land
Surface Temperature

The land surface temperature (LST) is a crucial component of the surface en-
ergy budget. LST influences the surface turbulent heat fluxes, the planetary
boundary layer evolution and convection. As a central component of the sur-
face radiative processes the accuracy of simulated LST depends on physical
processes of clouds, radiation, soil moisture and precipitation (Bosilovich et al.,
2007). In numerical weather models, LST can be seen as the radiative temper-
ature of the model surface. Within this study the non-hydrostatic limited area
COSMO-model (Baldauf et al., 2011) is used as forecast model. It has been
developed by the Consortium for Small Scale Modeling (COSMO; see online at
http://www.cosmo-model.org/), a group of meteorological services from Ger-
many, Greece, Israel, Italy, Poland, Romania, Russia, and Switzerland. The
following experiments are carried out with an extended COSMO 5.04c version.
The representation of LST is kept fairly simple within the formerly operational
COSMO-model. In there, the surface temperature refers to only two surface
conditions: bare soil and snow. That means, all vegetated areas are also treated
as bare soil and shading or insulating effects due to vegetation are not considered.

This simplification differs distinctly from the actual satellite observations.
The corresponding channels of the SEVIRI instrument detect infrared radiation
reflected and emitted by the top level of the land surface. Therefore, the ob-
served temperature is a merged value of canopy, bare soil and snow temperature.
The simple parameterization of LST in the COSMO-model is one potential rea-
son why the modeled and the measured LST differ from each other. Figure 5.1
shows the averaged diurnal cycle of LST over Germany for four days in July
2015. The simulated LST shows a smaller amplitude of the daily cycle compared
to the satellite retrieval. The underdeveloped amplitude of the diurnal LST cy-
cle is a known problem of the COSMO-model (Vogel et al., 2015). Within the
COSMO-model, LST set equal to the temperature of the topmost soil layer,
hence it has a certain thickness and a higher heat capacity/conductivity to lower
layers than the canopy top, where the satellite observations are located. The
higher heat capacity is one possible reason for the under-expressed diurnal cycle.

To overcome these deficiencies and to get an improved model equivalent



5.1. COSMO VERSION 5.04(C)

for the assimilation of LST two different vegetation schemes are reviewed in
the following chapter. The structure of the chapter is as follows: Section 5.1
summaries the current representation of LST in the COSMO-model. Section 5.2
describes the vegetation scheme based on a prognostic vegetation temperature
and Section 5.3 describes a vegetation scheme based on a skin layer above the
soil surface. The comparison of both schemes and the current implementation
is presented in Section 5.4.

01.07.2015 02.07.2015 03.07.2015 04.07.2015

15°C

20°C

25°C

30°C

35°C

LST COSMO-DE LST Satellite Retrieval

Figure 5.1: Domain-averaged skin temperature over Germany.
Compared are the diurnal cycle of the LST satellite retrieval (red
dots) and simulated LST (black line) over a four day period in July
2015. These four days (01.07.2015 - 04.07.2015) were chosen because
the majority of Germany was cloud-free during this period. The
domain average is calculated from all pixels, where both the model
and the observation are cloud-free.

5.1 Land Surface Temperature in COSMO

Version 5.04(c)

The starting point for the vegetation scheme experiments is COSMO version
5.04c. The model includes a three-dimensional wind vector, temperature, pres-
sure (deviation from a reference state), turbulent kinetic energy (TKE) and
specific contents of water vapor, cloud water, cloud ice, rain, snow and graupel
as prognostic variables. The prognostic equations are solved on an Arakawa
C-grid and the coordinate system has rotated geographical coordinates with a
generalized terrain-following height coordinate. The atmosphere is represented
by a hybrid grid with terrain-following layers close to the surface of the Earth
and horizontally flat model layers in the stratosphere above. The horizontal
resolution of the model grid in the applied simulations is 2.8 km with 50 vertical
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layers. With this resolution deep moist convection is assumed to be be explicitly
resolved.

The calculation of the LST itself is part of the multi-layer soil and vegetation
model TERRA ML (Doms et al., 2011; Schulz et al., 2016; Shrestha et al.,
2018). Within TERRA ML thermal and hydrological processes within and
between the soil and a optional snow layer are calculated, respectively. For
this purpose, a separate set of equations is provided and solved simultaneously.
LST depends mainly on the thermal processes (Figure 5.2) and results from the
upper boundary condition of the soil temperature. The evolution of temperature
in the soil is based on the heat conduction equation

∂Tso

∂t
=

1

ρc

∂

∂z

(
λ
∂Tso

∂z

)
, (5.1)

where Tso is soil temperature, ρc is heat capacity and λ is heat conductivity.
Both ρc and λ depend strongly on the eight different soil textures included in
the soil model: sand, sandy loam, loam, loamy clay, clay, ice, rock and peat.
Their properties are based on the Digital Soil Map of the World, which has a
resolution of 10 km (Sanchez et al., 2009).

The soil is represented by a vertical layer structure. Here, seven active
thermal layers at 0.01, 0.03, 0.09, 0.27, 0.81, 2.43, and 7.29m and one inactive
climate layer as constant lower boundary at 21.78m depth are chosen. The
temperature of the climate layer is the annual mean near-surface temperature.
In reality, the annual temperature amplitude at 7.29 m is quite small, therefore a
constant boundary layer below this depth may be safely used. The hydrological
part of the soil has only six active layers based on the same layer structure as
the thermal part (Figure 5.2). The lowest hydrological layer in a depth of 2.43m
accounts only for the downward gravitational transport, which contributes to
the runoff.

The upper boundary condition of the soil model TERRA ML is described
by the coupling between the soil and the atmosphere. Radiation and sensible
and latent heat fluxes contribute to the coupling between soil and atmosphere.
LST is computed based on the energy budget calculation of the upper boundary
condition. In its simplest form, the land surface temperature is determined by
the bare soil temperature, neglecting impact of vegetation:(

∂Tso

∂t

)
k=1

=
1

ρc(∆z)k=1

[
λ
(Tso)k=2 − (Tso)k=1

(zm)k=2 − (zm)k=1

+Gs

]
. (5.2)

Here k determines the level of a soil layer. The medium depth of a layer is zm
and the layer thickness is ∆z. The upper soil boundary heat flux Gs is given by

Gs = Hs + Ls +Rns +Gp +Gsnow,melt , (5.3)

with Hs as sensible heat flux, Ls as latent heat flux, and Rns as net radiation
at the surface. Effects of freezing rain and melting snowfall are represented by
the term Gp. The soil temperature changes due to snow melt processes are
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Figure 5.2: Layer structure of soil temperature and energetic
processes considered by TERRA ML. The size of the soil layers
increases exponentially with depth. The top soil layer has a depth of
0.01m, meanwhile the undermost layer is of 14.58m vertical width.
Between the soil layers a vertical exchange of energy takes place
via the soil heat flux. Further, heat can be released by freezing
and melting processes. The upper boundary of the soil model
is determined by the exchange fluxes with the atmosphere above.
The bare soil and the snow cover interact with the atmosphere by
radiation fluxes, sensible and latent heat fluxes. An energy exchange
between snow store and top soil layer is also considered. Adapted
from Doms et al. (2011).
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CHAPTER 5. MODEL EQUIVALENT OF LST

represented by Gsnow,melt. The sensible heat flux Hs is taken from the surface
layer parameterisation of the COSMO-model:

Hs = −ρcpC
d
h |vh|(θπs − Ts) (5.4)

and depends on the bulk-aerodynamic transfer coefficient for turbulent heat
exchange at the surface Cd

h , the atmospheric density ρ, the specific heat cp,
and the absolute horizontal wind speed at the lowest atmosphere level, given by
|vh| =

√
u2 + v2, where u is the zonal and v is the meridional wind speed.

Furthermore, the sensible heat flux depends on the temperature difference
between the bare soil surface temperature Ts and the temperature of the lowest
atmospheric level θπs, derived from the potential temperature at the lowest
atmospheric level θ and the Exner-pressure at the surface πs. Hereby, the
surface temperature Ts influences the land surface flux and the coupling between
atmosphere and soil. The latent heat flux is also determined by the surface layer
parameterisation of the COSMO-model:

Ls = −ρCd
q |vh|(qv − qvs ) , (5.5)

which depends on the bulk-aerodynamic coefficient for turbulent moisture trans-
fer at the surface Cd

q , the specific latent heat Lv, the atmospheric density, the
absolute horizontal wind speed, and the difference between the specific humid-
ity at the lowest atmospheric level qv and the specific humidity at the surface
qvs . In the current COSMO version Cd

h = Cd
q is assumed. The computation of

evapotranspiration is divided in bare soil evaporation (Schulz and Vogel, 2020)
and transpiration from plants (Noilhan and Planton, 1989).The net radiation
budget at the soil surface is determined by the δ-two-stream method of Ritter
and Geleyn (1992).

In general, the land surface temperature of TERRA ML is a weighted
temperature Tg of the bare soil temperature Ts and the snow surface temperature
Tsnow:

Tg = (1− Asnow)Ts + AsnowTsnow . (5.6)

5.2 Canopy Scheme

As Section 5.1 illustrated the COSMO-model lacks the impact of vegetation on
the radiation budget and the sensible heat flux in the current operational model
version. To take this effects into account a canopy temperature is one option
to extend the existing TERRA ML. One specific approach is the resistance ap-
proach from the AMBETI-model (Braden, 2012). The version examined within
this study is developed for needle leaf forests and the prognostic canopy tem-
perature equation is based on on the implementation of the land-surface scheme
of the regional climate model developed by the Rossby Centre (Samuelsson
et al., 2006). Jürgen Helmert (Deutscher Wetterdienst, DWD) implemented
this parameterisation as a potential canopy scheme in an experimental version
of the COSMO-model.
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5.2. CANOPY SCHEME

The scheme includes surface fluxes and temperatures at the top surface of
the canopy and at the canopy floor. While the soil of the COSMO-model
is separated in several layers, the vegetation is considered as a single layer
on top of the soil layers. Hence, the vegetation layer has an impact on the
upper boundary condition of the soil and the lower boundary condition of
the atmosphere. Like TERRA ML, the vegetation model is a one-dimensional
model and only vertical motions and transports are considered. The resistances
to derive the aerodynamic transports are based on the idea of Ohm’s Law in
electricity, which is a common approach in agrometeorological models. Simply
put, the flux density of a transport fluxes Φ equals the concentration difference
∆c divided by the aerodynamic resistance ra:

Φ = −∆c

ra
. (5.7)

Hereby, the aerodynamic resistance ra substitutes the diffusivity K of the free
atmosphere, the vegetation, or other substances of the vegetation system by the
integral of the reciprocal diffusivity:

ra =

∫
1

K
dz . (5.8)

The diffusivity term K represents the eddy diffusivity as well as the molecular
diffusivity.
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Figure 5.3: ’No-micro-climate’ resistance approach of canopy
scheme (Braden, 2012): architecture of the aerodynamic resistances
for the sensible heat fluxes. The resistances are split in a resistance
for the vertical turbulent transport above the canopy layer ra and
within the canopy rac, and resistances for laminar transport at the
canopy surface rap and the soil surface ras. Tlow is the temperature of
the lowest atmospheric level, Tcanp is the temperature of the canopy
top and Ts is the temperature of the soil surface.
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The main advantage of the resistance formulation is that fluxes in a network
can be calculated with Kirchhoff’s law. Here the ’no-micro-climate’ version
(Braden, 2012) of the vegetation model is implemented, which means that the
turbulent vertical fluxes from the soil surface and from the plants are calculated
separately.
The total flux at the top of the canopy Gcanp depends on the radiation budget
Rncanp, the sensible heat flux Hcanp and the latent heat flux Lcanp at the top of
the canopy

Gcanp = Rncanp −Hcanp − Lcanp . (5.9)

The time evolution of the temperature at the top surface of the canopy is
determined from the total flux and the heat capacity of the forest canopy Ccanp

(Samuelsson et al., 2006):

∂Tcanp

∂t
=

1

Ccanp

Gcanp . (5.10)

Here, Ccanp is calculated from the vegetative heat capacity Cveg = 2.7 · 103
J·kg−1·K−1 (Verseghy et al., 1993), the standing mass of needle leaf forest Wveg

(Verseghy et al., 1993), the volumetric heat capacity of the intercepted water
Cwρw and the intercepted water wcanp:

Ccanp = CvegWveg + Cwρwwcanp . (5.11)

That means, that apart from the vegetation itself also the water collected by the
plants wcanp has an impact on the heat capacity and the canopy temperature
evolution. The sensible heat flux Hcanp at the top of the canopy depends
on the temperature difference between the canopy temperature Tcanp and the
temperature of the lowest atmospheric level Tlow. With the density ρ and the
specific heat cp of air, that leads to

Hcanp = ρcp
Tlow − Tcanp

rap + ra
. (5.12)

The resistances of the sensible heat flux equation consist of the laminar resis-
tance at the top of the canopy rap and the resistance for the turbulent vertical
transport between the lowest atmospheric level and the canopy surface ra.

The solar and thermal radiation at the top of the canopy depend on the
vegetation coverage. There are several possibilities to describe the vegetation
cover. Here the sky view fraction

χ = exp(−0.5 · TAI) (5.13)

is used, which is defined as the fraction of the sky seen by the ground under the
canopy (Verseghy et al., 1993). The Transpiration Area Index TAI is derived
from the Leaf Area Index (LAI) by TAI = Aveg · LAI with Aveg as fractional
vegetation cover. The LAI is a dimensionless quantity and defined by the leaf
area per unit surface area. A high LAI can exceed the value one, if there are
several leaf layers over one unit surface. A high LAI or TAI leads to a strong
attenuation of the sky view fraction. High TAI and low χ are found, for example,
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5.3. SKIN CONDUCTIVITY SCHEME

for needle leaf forests. In contrast, bare soil areas, like deserts or glaciers, have
a high sky view fraction value of one. If the vegetation cover is described by
the sky view fraction χ, the radiation budget of solar and thermal radiation is
derived as follows

Rncanp =(1− χ)(1− αcanp)S ↓ +(1− χ)ϵcanp ·
(L ↓ +σ((1− Asnow)T

4
s + AsnowT

4
snow − 2T 4

canp)) , (5.14)

where S ↓ is downward short wave radiation, L ↓ is downward long wave ra-
diation, αcanp is the albedo of the canopy, ϵcanp is the canopy emissivity value,
and Asnow defines the fraction of the snow coverage. Thus the prognostic Tcanp

(Equation 5.10) depends on a wide range of vegetation parameters due to dif-
ferent kinds of vegetation cover. For reasons of simplicity, here all parameters
are adapted for needle leaf forests.

As already defined in Equation 5.6 the land surface temperature Tg is a
composite temperature of the Ts and Tsnow. But now also Tcanp is part of the
weighted surface temperature:

Tg = (1− Asnow)[χTs + (1− χ)Tcanp] + Asnow[χTsnow + (1− χ)Tcanp] . (5.15)

5.3 Skin Conductivity Scheme

Another possible approach to overcome the current deficiencies of the COSMO-
model is a skin layer, as implemented by Schulz and Vogel (2020). The skin
layer is a layer directly above the soil surface with no heat capacity (based on
land surface model H-TESSEL (Viterbo and Beljaars, 1995; Verhoef and Vidale,
2012) of the European Centre for Medium-range Weather Forecasts (ECMWF)),
which simulates the effects of different surface properties such as vegetation. For
example, the soil below vegetated areas receives less radiative heating compared
to bare soil areas. This insulating effect of vegetation can be represented by
the skin layer. In the COSMO-model the skin layer approach is used for
snow-free regions. Areas covered by snow are still represented by the snow
parameterisation. The additional skin layer is defined by a skin conductivity
Λskin. This conceptual value provides the thermal connection between the skin
level and soil surface based on Fourier’s Law

Gskin = Λskin(Tskin − Ts) . (5.16)

The heat flux Gskin is proportional to the magnitude of the temperature
difference between the diagnostic skin level temperature Tskin and the bare soil
temperature Ts. The forcing at the soil surface Gskin is given by the sum of the
radiation budget Rnskin, the sensible heat flux Hskin and the latent heat flux
Lskin:

Gskin = Rnskin −Hskin − Lskin . (5.17)

Various surface properties heat up or retain heat differently and should be
represented with an appropriate heat conductivity. As simplification one useful
mean value is used Λskin = 10Wm−2K−1 (Schulz and Vogel, 2020).
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Figure 5.4: Skin conductivity layer scheme: schematic representa-
tion of the skin layer including the forcing at the soil surface Gskin

(Equation 5.17), the skin conductivity Λskin and the connected tem-
peratures of the soil surface Ts and the skin layer Tskin. Tlow is the
temperature of the lowest atmospheric layer, the layer above the skin
layer.

The sensible heat flux H is defined by the surface layer parameterisation,
but uses Tskin instead of Ts

Hskin = ρcpC
d
h |vh|(θπs − Tskin) , (5.18)

where Cd
h is the bulk-aerodynamic transfer coefficient for turbulent heat

exchange at the surface, cp is the specific heat, and ρ is the density of air.
The latent heat flux Lskin and the net long- and shortwave radiation at the soil
surface Rnskin are implemented as in the soil model TERRA ML (Section 5.1),
but depend on the skin layer temperature Tskin. The same applies to Equation
5.6, now Tg is composite of Tskin and Tsnow:

Tg = (1− Asnow)Tskin + AsnowTsnow . (5.19)

To summarize, the skin layer can be seen as a new upper boundary condition
for the soil and as a new lower boundary condition for the atmosphere.

5.4 Comparison of Different Model Equivalent

Implementations

For an appropriate comparison of the different implementations, a large sample
of LST measurement data is necessary. Because the amount of observations
depends mainly on the cloud cover, a clear-sky period over Germany is a good
starting point. During summer of 2015 a period of three days with only little
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cloud cover was chosen. The period started on June 30th and ended three
days later on the 3th of July 2015. Especially, the first two days of the period
are about up to 80% cloudless within the observational data and about 65%
cloudless within the simulated data. The simulated data is declared as clear-sky,
if the total cloud cover is less than 10% at a grid point. A 80% clear-sky area
over the COSMO-DE domain (Germany and parts of neighboring countries)
equals ∼ 47000 usable observation points every 15 minutes. Figure 5.5 shows
the evolution of cloud cover during the three-day period. The observations have
even larger clear-sky areas than the COSMO-model. Both observations and
the simulated cloud cover show the same trend. Two days of mainly clear-sky
conditions followed by a cloudy third day.
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Figure 5.5: Evolution of clear-sky area over the COSMO-DE
domain of satellite observations (blue, solid) and COSMO-model
(light blue, dashed). The period is from the 30.06.2015 at 18:00
UTC to the 03.07.2015 18:00 UTC.

LST is strongly influenced by solar radiation. Clouds block incoming and
outgoing radiation by absorption and reflection. Hence, LST decreases fast,
if clouds cover the land surface. Due to different cloud fractions between the
model and the observations significant deviations in near-surface temperatures
can occur. Discrepancies due to different cloud fractions are possible, if the
model contains clouds at points the LST retrieval shows a clear sky. Because
the Land-SAF does not produce LST retrievals for cloudy pixels, observations
are assumed as cloudless, if they are available. To get a reliable result the
simulated temperature and the LST retrieval are only compared, if both are
declared as cloudless.

The period of summer 2015 shows a clear diurnal cycle for simulated and
measured LST (Figure 5.6). The LST observations have a stronger amplitude
during day and night than the the simulated LST of the reference. The refer-
ence is based on COSMO Version 5.04c and does not contain any vegetation
scheme for temperature. Hence, LST is derived from the temperature of the
uppermost soil layer with a thickness of 1mm. Through the stronger coupling
to the soil temperature the simulated LST of the reference has higher inertia
than the observed LST, which causes the less distinct diurnal cycle. During
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Figure 5.6: Domain averaged diurnal cycle of observed and
simulated LST. The period starts at 30.06.2015 18:00 UTC and ends
at 03.07.2015 18:00 UTC. The averaged LST retrieval is marked with
black stars, the blue line shows the averaged COSMO-model, the
green line shows the COSMO-model with the canopy scheme (section
5.2) and the purple line shows the COSMO-model with the skin layer
scheme (section 5.3).

daytime, both experiments with a vegetation scheme fit better to the observa-
tions than the reference (Figure 5.6). During nighttime the skin conductivity
scheme represents the observed LST considerably better than the reference and
the experiment with the vegetation scheme.

A closer look at the model minus observation distribution (Figure 5.7) shows
that the mean deviation from the observations of the reference and the experi-
ment including the skin layer scheme are close to zero (both less than 0.25K).
In contrast, the mean deviation of the experiment including the canopy scheme
from the observations is higher and about 1K, what indicates a positive bias
in LST. Figure 5.6 also shows, that the averaged diurnal cycle of LST with the
canopy scheme is too warm, especially during night. The standard deviation of
all LST experiments is similar and close to 2.3K. The skin layer scheme exper-
iment has, compared to the other two experiments, a slightly smaller standard
deviation.

Looking at the model minus observation distribution depending on the time
of the day (Figure 5.8) a clear connection between daytime and the mean devi-
ation is visible. The reference and the experiment including the canopy scheme
show a warm model bias during night. The experiment including the skin layer
scheme has a lower warm bias during night than the other simulations. All three
simulations have cold bias during day. But both simulations with a vegetation
scheme have a smaller daytime bias than the reference.

The three different options to simulate LST are described in Sections
5.1 to 5.3. Experiments with all three different implementations have been
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Figure 5.7: Distribution of the difference between COSMO-model
and observation (LST retrieval) over the three day summer period
2015. Shown are the reference COSMO-model Version 5.04c without
any vegetation scheme (blue), the canopy scheme, see section 5.2,
(green) and the skin layer scheme, see section 5.3, (purple).
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Figure 5.8: Simulated LST minus observed LST is shown against
day time for all three model implementations. The distribution of
reference minus observations throughout the day is shown by the
blue density distribution. The darker the color the more values
are present. Values from the whole three day period are shown
(30.06.2015 18:00 UTC to 03.07.2015 18:00 UTC, hourly bins). The
purple density distribution the skin layer experiment minus the
observed LST throughout the day and the green density distribution
the canopy scheme experiment minus the observed LST.
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performed for a representative period in summer 2015 with nearly clear-sky
conditions (Figure 5.5) to ensure many observations. Investigations of all three
implementations (see section 5.4) show that the skin layer scheme 5.3 comes
closest to the observed diurnal cycle. Especially during night, the skin layer
scheme outperforms the other two implementations. The skin layer scheme is
used, in the remainder of this work, as it gives the best model equivalent for the
LST.
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Chapter 6

Synthetic Land Surface
Temperature

Observations used in an OSSE framework are generated from a nature
run. Hence, a reasonable model equivalent is needed. Here, to mimic the
LST retrieval provided by the Land-SAF (Chapter 4) the weighted surface
temperature Tg of the COSMO-model including the skin conductivity scheme
(Equation 5.19) was chosen. As this work is based on two two-day case studies,
one in March 2017 and one in August 2017, two nature runs were performed
(Chapter 3). Thus, from both nature runs synthetic LST observations yt were
derived. The corresponding observation operator H is based on the derivation
of LST by the skin conductivity scheme (Section 5.3)

yt = H(xt) . (6.1)

The LST retrieval is available each 15 minutes. Within this 15 minutes
the SEVIRI instrument scans the Earth from South to North and produces
the observational data. In this thesis the synthetic LST is calculated every
hour, because it is assimilated hourly. To mimic the LST derived from SEVIRI
the model equivalent from the nature run Tg was interpolated to the satellite
resolution of the real observations to generate the synthetic observations on
the observation grid. The resolution of the satellite retrieval over Germany
is around 5 km. That means, that the spatial resolution of the nature run
is about seven times higher than of the real observations. To represent the
5 km resolution with the nature run the nearest neighbour model grid point
to the position of the observation was located. In the next step the field of
the 7x7 grid points around the nearest neighbour was averaged to this point
(Figure 6.1). The LST retrieval is only available over land and under clear-sky
conditions, for that reasons a synthetic LST retrieval was calculated only if the
simulated total cloud cover of the nearest neighbour is less than 10% and the
land cover is larger than 50%. The cloud cover can have a cooling/warming
effect on the temperature of the Earth’s surface, which lead to discrepancies
between covered and clear-sky grid points. Therefore, grid points within the
7x7 grid point domain with a cloud cover larger than 10% are not used to
calculate the synthetic LST retrieval. If more than 50% of the 7x7 grid box are
contaminated with clouds no synthetic LST retrieval was generated at this point.
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Figure 6.1: Example of synthetic LST retrieval. (a) Simulated LST
of the nature run on March 27, 2017 1200UTC. The white areas are
clouds or outside the experimental model domain. (b) Synthetic LST
derived from the nature run by interpolation. Missing observations
are due to cloud cover or lakes within the model domain.

The synthetic observations generated from the nature runs ytrue are by
concept perfect observations without any errors. To mimic a real-world
experiment appropriate errors ϵ had to be added. This errors should combine
the errors of the satellite instrument ϵm, the errors by the calculation of the LST
retrieval ϵo, and the representativeness errors ϵr of the LST:

y = yt + ϵm + ϵo + ϵr . (6.2)

The instrumental error is due to inaccuracies of the measuring procedure, here
for example sensor noise. The retrieval error is due to inaccuracies within the
calculation of the LST retrieval like wrong assumptions about the water content
of the atmosphere. The representativeness error includes all errors, which result
from the spatial mismatch between the observed and simulated variables and
the volume they depict.

An advantage of an OSSE is that the synthetic observations are by definition
bias-free, because the observations generated from the truth are by construction
perfect observations without any errors, i.e. no systematic errors (bias), no
instrument or retrieval errors, and no representativeness errors (Masutani et al.,
2010). But to obtain reliable observations for the OSSE, the characteristics of
the statistical background departures of the synthetic observations, here the
LST, have to be as close as possible to the characteristics of the statistical
background departures of the real observations. The background departures of
the real observations range between -5K to 5K within our experimental period
(Figure 6.2, top). This error range of the statistical error should be reflected by
the generated statistical synthetic observation error. To mimic the background
departures of the real observations, the generated observations are perturbed
by the real observation errors with values around 1K to 2K to (Section 5.1).
Hereby, the real observation errors are multiplied by Gaussian random noise.
The random noise is generated by a Gaussian random number generator (Knuth,
1998) implemented in the COSMO-model. The scaling factor of the noise is one
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and the random Gaussian shaped perturbation has a variance of one. Thus, the
perturbation value of the observation is composed of the real observation error
times the scaling factor times the Gaussian shaped perturbation.
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Figure 6.2: Distribution of the departure between nature run and
LST observations over experiment period during March 2017. Shown
are the departures from the real observations (blue) and the synthetic
observations (purple).

The real observations for the two-day period are about two Kelvin warmer
than the nature run, meanwhile the synthetic observations have no systematic
error (Figure 6.2). The standard deviation of the synthetic observations (1.29K)
is smaller than the standard deviation of the real observations (1.91K). Because
the generated synthetic observations are bias-free and have sufficiently large
statistical departures, they were used within this OSSE. Due to the smaller
variance of the synthetic observations the impact of LST assimilation might be
slightly overconfident.
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Chapter 7

Assimilation of Land Surface
Temperature

The coupled land-atmosphere system to be investigated is described (Chapter 2).
The truth is generated (Chapter 3) and the synthetic LST observations have
been derived from the nature runs (Chapter 6). Thus, the technical setup of
the OSSEs is now complete and the coupled land-atmosphere system can be
tested within this framework. First, the plausibility of the implemented coupled
land-atmosphere assimilation system is reviewed in Section 7.2. Therefore, single
observation experiments are carried out. Second, the direct and indirect impact
of hourly LST assimilation in the coupled land-atmosphere system is analysed
in Section 7.3 over two-day periods in March and August 2017.

7.1 Preparations

To receive ensemble perturbations on the small scale, a ‘spin-up’ period of two
days from March 25 to March 27, 2017, for the data assimilation ensemble
was carried out. During this period, real observations, i.e. measurements
of radiosonde ascents and observations of air planes, 10m winds, and surface
pressure were assimilated to gain a more realistic difference between the nature
run and the atmospheric and the soil state of the model ensemble. Thus, the
assimilation cycle was initialized at March 27 at 0100UTC. Because the soil
variables, especially the deep layers, vary slowly with time the ‘spin-up’ period is
to short to generate realistic discrepancies within the soil variables of the nature
run and the assimilation ensemble. To get more realistic discrepancies between
the truth and the simulated soil variables the assimilation ensemble is initialized
with the icosahedral non-hydro-static model (ICON, Zängl et al., 2015) ensemble
calculated over Europe. As a reminder, the nature run was initialized with the
COSMO-DE model (Chapter 3). The differences between the soil model states
of the COSMO-model and the ICON-model were probably still smaller than
between the reality and the forecast model, but provide more useful discrepancies
than between the different resolutions of the COSMO-model. The experimental
model domain is a small area around Lindenberg (Chapter 3) and to avoid
boundary effects, a boundary of ten grid boxes, corresponding to 28 km, was
omitted in the following evaluation. As previously mentioned, the assimilation



7.2. SINGLE OBSERVATION EXPERIMENTS

cycle was based on an hourly assimilation of the synthetic LST, thus each first
guess equaled a one hour forecast of the COSMO-model.

7.2 Single Observation Experiments

To get a first insight into the functionality of the assimilation of LST in com-
bination with the augmented control vector, single observation experiments
(SOEs) were carried out during the experimental period in March, 2017. Due
to the mostly clear sky conditions during the selected periods the diurnal cycle
of the synthetic LST observations as well as the diurnal cycle of the ABL are
pronounced. The height of the ABL evolves with daytime, i.e. during night the
ABL has stable stratification with height of several hundred meters and during
daytime the mixed boundary layer can grow to several kilometers height. To
evaluate the effect of LST assimilation during the diurnal cycle, the SOEs were
performed at day and at night.
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Figure 7.1: Distribution of single observations over the model
domain. The nearest-neighbor of each observation has a distance of
35 km to 55 km. Observation gabs in the grid of single observations
are due to the cloud cover. The experiments are conducted at (a)
March 27, 2017 0200LT and at (b) March 27, 2017 1400LT.

The single observations of synthetic LST are distributed over the experimen-
tal model domain along the longitudes and latitudes (Figure 7.1). Each 0.5◦ in
zonal and meridional direction a single synthetic LST observation is located. If
clouds cover the observation location no observation is generated. The spatial
distance of the observations is between 35 km and 55 km. Thus, the horizontal
localization scale of 5.5 km guarantees SOEs and the corresponding analysis grid
points are only influenced by one observation each. To enhance the assimilation
signal, the observation error of LST was reduced to 0.5K.

The impact of the assimilation of LST on the atmospheric and the soil state
is limited by the horizontal and the vertical localization radius (Chapter 2).
The limitation of horizontal impact on the atmospheric temperature by the
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Figure 7.2: Distribution of observation minus first guess of LST
combined with impact of one assimilation step on the atmospheric
temperature of the lowest model level. At some SOE locations
the observed synthetic LST is warmer than the simulated model
equivalent (red dots) and at some locations the observation is cooler
(blue dots). The impact of the assimilation step is shown by the
shaded area. The atmospheric temperature of the lowest atmospheric
model level is thereby raised (red) or lowered (blue). The experiments
are conducted at (a) March 27, 2017 0200LT and at (b) March 27,
2017 1400LT.

localization is illustrated by Figure 7.2. Close to the observations, the impact
of LST assimilation is clearly visible and it declines with increasing distance
from the LST observations. Furthermore, Figure 7.2 illustrates in which way the
observational increment of the LST influences the atmospheric temperature of
the lowest model level through the analysis step. During the night (Figure 7.2a)
the horizontal impact of LST assimilation is stronger than during the day (Fig-
ure 7.2b). In addition, you can see that during night a negative observational
increment mostly leads to a raise of the atmospheric temperature through the
analysis step while a positive observational increment causes a decrease of at-
mospheric temperature. The SOEs during day show a different impact. Here, a
positive observational increment causes an increase of atmospheric temperature
and a negative LST increment reduces the atmospheric temperature. These
differences are probably caused by different background error covariances Pb

during the diurnal cycle. The impact of Pb will be examined in more detail
later in this Section and in Chapter 8.

Figure 7.3 demonstrates the vertical expansion of the influence of LST assim-
ilation on the atmospheric and the soil temperature. The vertical localization
scale of the KENDA-system restricts the impact of the observations with height
and depth. The atmospheric temperature is affected by the assimilation of LST
up to a height of 2000m to 3000m and the soil temperature is affected down to
a depth of 0.8m. Here, differences in the expansion of impact between day and
night become apparent. The pronounced impact of LST assimilation during
the night is only close to the land surface (Figure 7.3a). In most cases, the sign
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Figure 7.3: Cross sections of temperature innovations of atmosphere
and soil along 52.5 latitude at 0200LT on the night of 27 March 2017
((a)) and along the 51.5 latitude during the day on 27 March 2017 at
1400LT ((b)). The shaded area shows a raise of temperature (red)
or a temperature reduction (blue).

of the lower atmospheric temperature innovation differs from the sign of the
observational increment. Above the height of the ABL the sign of the atmo-
spheric temperature innovation changes again. For example, at 52.5 latitude
and 13.5 longitude the lower atmospheric temperature increases meanwhile in
a height above 800m it decreases. The soil temperature innovation close to the
land surface is positive if the observational increment is positive and negative
if the observational increment is negative. The deeper soil layers change the
sign of the temperature observation partially. Again, at 52.5 latitude and 13.5
longitude the soil temperature close to the surface is reduced, but the deeper
soil level temperature is raised. During the day the pronounced impact of LST
assimilation reaches further in the atmosphere and deeper into the soil than
during nighttime (Figure 7.3b). This fits well with the diurnal development of
the atmospheric boundary layer height. The stable boundary layer during night
has only a height of about 300m whereas the mixed boundary layer during day
raises up to 2000m and higher.

To get further insight into the process of LST assimilation, atmospheric and
soil temperature profiles, and correlation profiles are evaluated in the following
Sections. The correlation profiles illustrate how the background error covariance
matrix Pb passes on the impact of LST assimilation on the atmospheric and the
soil temperature at day (Section 7.2.1) and at night (Section 7.2.2).

7.2.1 Day: 27 March, 2017 1400 LT

The SOE at 52.0◦, 014.0◦ was chosen as an example to illustrate how the
augmented COSMO-KENDA system works during daytime (Figure 7.4). At
1400LT the land surface is around 5K warmer than the atmospheric temper-
ature due to solar radiation. Hereby, the synthetic LST observation and the
lower atmospheric temperature of the nature run are cooler than the first guess
(Figure 7.4a, left panel). Within the mixed boundary layer the atmospheric
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Figure 7.4: (a) Impact of LST assimilation at March 27, 2017,
1400LT. Left panel: atmospheric temperature profiles of first guess
(blue), analysis (red) and, truth (green), localization function (grey),
and the correlation between LST and atmospheric temperature
(black). The big dots indicate LST first guess (blue), LST analysis
(red) and LST observation (green). Right panel: atmospheric
temperature spread profiles of first guess (blue, dashed) and analysis
(red, dashed) and, of the atmospheric temperature increment (black,
dashed). The small dots indicate the spreads of LST first guess (blue)
and LST analysis (red), the LST observation error (green) and, the
LST increment (black). (b) Impact of LST assimilation on the soil
temperature. Location of SOE: latitude: 52.0◦, longitude: 014.0◦.
Figure taken from Sgoff et al. (2020).

temperature of the first guess and of the nature run decrease the same way with
altitude. However, the mixed boundary layer of the first guess has a higher
expansion than the mixed layer of the truth. Within the ABL of the first guess
the correlation between the LST and the atmospheric temperature is positive.
More precisely, the correlation coefficient is about 0.6 and is constant over the
height of the ABL. Within the ABL the correlation coefficients of the SOEs
are similar, but above the mixed boundary layer the SOEs show different cor-
relations between the LST and the atmospheric temperature. The observation
error of 0.5K is slightly smaller than the spread of the model equivalent of the
first guess (Figure 7.4a, right panel). The analysis step pulls the land surface
temperature in direction of the observation. The resulting land surface tem-
perature of the analysis is lower than the first guess. Because of the positive
correlation between the LST and the atmospheric temperature, the atmospheric
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temperature is also lowered, which results in a constant, negative increment over
the whole mixed boundary layer. The vertical localization restricts the vertical
impact of the assimilation of LST, therefore the atmospheric temperature in-
crement decreases with height as well as the localization function. Due to the
temperature reduction of the analysis step the temperature of the ABL is closer
to the nature run than the first guess, i.e. the assimilation of LST is able to
improve the lower atmospheric temperature.

As the atmospheric temperature, the soil temperature is cooler than the land
surface around noon. Within the upper four soil levels the soil temperature of
first guess and nature run decreases with depth (Figure 7.4b, left panel). The
temperature profile of the nature run is similar to the temperature profile of the
first guess temperature, but it is lower over all soil layers. Only exception is the
climate layer, where the soil temperature of both, by definition, is equal. The
temperature of the upper soil levels, down to 1m depth, are positively correlated
with the land surface temperature. Meanwhile, the upper three levels have a
correlation coefficient over 0.75, the positive correlation decreases within the
next levels close to zero. As the example, all conducted SOEs show the positive
correlation between LST and soil temperature and a similar decrease of the
correlation coefficient with depth (not shown). But the correlation coefficients
of the soil layers below 1m are no longer uniform across the SOEs. Thus, as
in the atmosphere, the analysis step leads to a negative temperature increment
(Figure 7.4b, right panel). Due to the implemented soil localization the impact
of LST assimilation is restricted to the upper five layers and approaches zero
within the layers, which are not affected by the diurnal temperature cycle. The
reduction of soil temperature pulls the analysis closer to the nature run and
improves the soil temperature of the upper soil levels.

7.2.2 Night: 27 March, 2017 0200 LT

The SOE at 53.0◦, 012.5◦ was chosen to illustrate exemplary how the assim-
ilation of LST influences the ABL and the soil temperature during night. In
contrast to the mixed boundary layer during day the stable stratified boundary
layer during night has only a height of about 0.5 km. The temperature inversion
typical for the stable boundary layer appears in the first guess and the nature
run (Figure 7.5a, left panel). Within the stable boundary layer the atmospheric
temperature increases with height and above the top of the ground inversion
at about 0.5 km it starts to decrease. The temperature difference between land
surface and lower atmosphere is up to 10K, i.e. the LST is noticeable cooler
than the atmosphere above. This temperature difference is even more signifi-
cant in the first guess than in the nature run. Within the ABL the correlation
between the LST and the atmospheric temperature determined by the first
guess ensemble is negative and more pronounced close to the land surface. The
anti-correlation between LST and atmospheric temperature is the dominant
behavior of the conducted SOEs (not shown), but the correlations between the
land surface temperature and the atmospheric temperature of the SOEs differ.
The most SOEs are anti-correlated, some are correlated, some are not correlated
at all. In some cases the correlations of the first guess do not match with the
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truth and lead to wrong increments. Thus, the system is working as intended,
but its wrong ensemble correlations result in wrong increments. The observation
error of LST of 0.5K is clearly smaller than the spread of the LST model equiv-
alent with its maximum of about 3K near the surface (Figure 7.5a, right panel).
The analysis of the LST is warmer than the first guess of the LST and thus
closer to the observed truth. Due to the negative correlation between the LST
and the atmospheric temperature, the analysis step reduces the atmospheric
temperature and pulls it closer to the nature run. The vertical localization scale
during night equals the localization scale of the day (Figure 7.4, left panel). The
negative increment values are highest near the surface and decrease within the
stable boundary layer close to zero.
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Figure 7.5: As for Figure 7.4 , but at March 27, 2017, 0200 h.
The synthetic observation of LST (green dot) is located behind the
model equivalent LST of the analysis (red dot) and thus not visible.
Same applies to the LST observation error (small green dot), which is
located behind the spread of analysis LST (small red dot). Location
of SOE: latitude: 53.0◦, longitude: 012.5◦. Figure taken from Sgoff
et al. (2020).

In comparison with daytime, the soil temperature profile is different dur-
ing nighttime because during night the upper soil levels are cooler than the
deeper soil levels (Figure 7.5b, left panel). In the first three levels the first guess
soil temperature is warmer than the true soil temperature. In the soil layers
below it is the other way around. As at noon, the correlation between LST
and the upper soil levels is positive. This also applies to the remaining SOEs
(not shown). As during daytime the soil temperature increment is positive and
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declines with depth as given by the localization function (Figure 7.5b, right
panel). The assimilation of LST pulls the analysis to warmer temperatures, but
slightly to strong. Thus, the analysis is closer to the truth, but slightly warmer.

To sum up, at first glance the augmented COSMO-KENDA-system works
as expected. Because the simulated LST is a diagnostic model variable it is
not part of the control vector. Hence, the impact of the assimilation of LST is
dominated by covariances between the LST and the prognostic variables like the
atmospheric or the soil temperature. As presented above, the LST and the near
surface temperatures can be correlated, anti-correlated or not correlated at all
and depending on the background covariances Pb the temperature innovations
can be positive or negative. More precisely, if LST and the temperature are
correlated a positive observation increment yields to an increase in atmospheric
temperature. But if LST and the temperature are anti-correlated the positive
observation increment yields to a decrease of the temperature. This shows
impressively how important accurate model error covariances Pb are.

7.3 Augmented Control Vector Tests

After the discussion of the previous Section 7.2 about the functioning of the
coupled assimilation system, the impact of LST assimilation is evaluated in the
following. For this purpose, different configurations of the control vector were
investigated to clarify the question: How good is the augmented control vector
compared to a control vector which contains only one part of the coupled system,
atmosphere or soil. Two two-day experimental periods were defined: one early
spring period (March 27, 2017 0000UTC to March 29, 2017 0000UTC) and one
summer period (August 28, 2017 1200UTC to August 30, 2017 1200UTC).
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Figure 7.6: (a) Number of active LST observations during the two-
day period of March 27 to March 29, 2017 and (b) of August 28 to
August 30, 2017. The number of observations is limited by the cloud
cover of the nature run. Figure taken from Sgoff et al. (2020)

The early spring experiment started with clear sky conditions on the first
day but got cloudier on the second day (Figure 7.6a), thus on the first day much
more LST observations were possible and could be used within the assimilation
cycle. The summer experiment was mainly cloud free on both days. But clouds
came up during the morning hours, reducing the number of observations over

47



CHAPTER 7. ASSIMILATION OF LST

the morning hours and midday.

To evaluate the impact of LST assimilation within the fully coupled COSMO-
KENDA-system one reference experiment, named Control in the following, and
three experiments with different control vector configurations were set up. Con-
trol is a so-called open loop experiment, i.e. the experiment was run within the
hourly assimilation cycle, but omitting the analysis step. Thus, each first guess
of Control is a one hour forecast, started from its former first guess.

Table 7.1: Experiments with different control vector settings. Table
from Sgoff et al. (2020)

Experiment Name Control Vector Setup

Control no Assimilation
EXPatmos Atmosphere
EXPsoil Soil
EXPatso Atmosphere and Soil

The three experiments assimilating synthetic LST are distinguished by differ-
ent versions of the control vector (Table 7.1). The control vector of experiment
EXPatmos included only the atmospheric variables, this corresponds to the
current COSMO-KENDA setting. Thus the analysis step had a direct influence
on the atmospheric variables. However, the soil was only indirectly influenced
by the interaction with the changed atmosphere. In contrast, EXPsoil had a
control vector, which only included the soil variables. Here, the analysis step
had a direct influence on the soil, but only an indirect effect on the atmospheric
variables. The third experiment, EXPatso, was the fully coupled assimilation
system. The control vector of EXPatso included the atmospheric and the soil
variables and the analysis step had a direct impact on atmosphere and soil
simultaneously.

Even tough the LST was not part of the control vector, it was still possible
to calculate the analysis of LST. By the assimilation of LST the deviations be-
tween the observed LST and the simulated LST should decrease by definition.
Figure 7.7 illustrates that this was the case. The deviations between observed
and simulated LST of EXPatso were reduced during the March and during the
August period. In both experimental periods the mean of the analysis devia-
tions is closer to zero than the mean of the first guess deviations. Furthermore,
in both cases the standard deviation of the observation minus analysis is smaller
than of the observation minus first guess. However, the analysis of the LST was
discarded, as it is a diagnostic variable. Accordingly, the lasting impact of the
assimilation of LST on atmosphere and soil was caused by the background error
covariances Pb, which transfer the information of the LST observation to the
model.

The conducted experiments were evaluated against the nature run, which is
assumed to be the true state of the atmosphere and soil. This assumption is
an advantage of OSSEs because the whole atmospheric and soil system can be
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Figure 7.7: Distribution of the departure between LST observations
and COSMO-model over the experimental period during March 2017
(a) and during August 2017 (b). Shown are the departures from the
background/first guess (blue) and the analysis (red) of EXPatso.

evaluated. Under real conditions this would only be possible to a limited extent,
as verification can only be carried out against further observations, which were
limited in space and time. How well the results of the experiments can be
transferred to the real conditions depends on how well the nature run and the
synthetic LST observations reflects the real system in its properties. This OSSE
is a first step in the direction of a fully coupled land-atmosphere assimilation
system. Because the synthetic LST provides information for atmosphere and
soil as well it is a useful observation to evaluate the coupled system.

7.3.1 Mean Error Evaluation

Firstly, the spatial mean error (ME)

ME =
1

N

N∑
i=1

[x(i)− xtrue(i)] (7.1)

was calculated to determine systematic deficiencies of simulated near surface
temperature and humidity variables. Here N is the number of grid points of the
domain without the boundary regions, x the simulated value of the respective
experiment and xtrue the truth value. All model grid points were considered
regardless of the availability of observations.

The temporal evolution of the spatial ME of the atmospheric temperature
of the two-day early spring case is illustrated by Figure 7.8a. Compared to the
nature run, the control run and the experiments have a too warm atmospheric
temperature within the ABL (Figure 7.8a). Furthermore, the ME of the control
run and the experiments has a diurnal cycle within the ABL, i.e. during night
and the morning hours the ME is larger than after midday and in the evening.
Above the ABL, the ME is negative with values lower than 0.5K for each ex-
periment. The positive ME of the Control has values up to 1.5K. The three
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Figure 7.8: Mean error evolution (a) of the temperature (T ) of the
ABL and (b) of the temperature of the soil levels (Tso) from March
27 to March 29, 2017. First guess evaluated against truth averaged
over the whole experiment domain. Shown are the mean error of the
Control (first panel), of EXPatmos (second panel), of EXPsoil (third
panel) and of EXPatso (fourth panel). Red shaded areas indicate a
warmer model state and blue shaded areas indicate a cooler model
state. Figure taken from Sgoff et al. (2020)
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Figure 7.9: As Figure 7.8. Figure taken from Sgoff et al. (2020)

experiments behave similar to the Control, however with a reduced ME within
the ABL. Especially EXPatmos and EXPatso have a reduction of spatial ME up
to 0.6K in the morning hours. Above 0.7 km the influence of LST assimilation
decreases and the negative ME remains nearly unaffected.

The soil temperature has a consistent positive ME over the upper soil layers
and a diurnal cycle (Figure 7.8b). The diurnal cycle of soil temperature ME
has a six hours shift compared to the diurnal cycle of the ABL temperature
ME, namely the ME is highest around midday and lowest around midnight.
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The Control shows most clearly this behavior. Each of the three early spring
experiments has a reduced ME compared to Control. The ME reduction is
most pronounced in EXPatso with a reduction of the mean error of up to 0.7K
around midday.

The temporal evolution of the spatial ME of the atmospheric temperature of
the two-day summer case (Figure 7.9a) has a similar course as the early spring
experiments. The atmospheric temperature of the Control and the experiments
is too warm and the ME of the atmospheric temperature has also a diurnal
cycle with a maximum ME between 0000UTC and 0600UTC. The ME within
the ABL of the summer experiments is on average 0.4K smaller than the ME of
the spring experiments, i.e. within the ABL the temperature of the control run
and the experiments is closer to the atmospheric temperature of the nature run
than in March. From August 28 1300UTC to August 29 0100UTC a negative
ME is visible between 1.5 km and 2.8 km height in each experiment, but as in
the early spring case the atmospheric temperature above the ABL is nearly
unaffected by the assimilation of LST.

The temperature of the upper soil layers of the summer case (Figure 7.9b)
has a consistent positive ME which is on average 0.6K smaller than the ME
of the early spring case. The ME is highest between 0000UTC and 0600UTC.
A reduction of about 0.2K of ME is visible in all three experiments compared
to the ME of the control run. In comparison with the truth the atmospheric
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Figure 7.10: Like Figure 7.8 but here the evolution of (a) the
specific humidity (QV ) of the ABL and of (b) the soil moisture (Wso)
of the soil levels is shown. Red shaded areas indicate a drier model
state and blue shaded areas indicate a more humid model state.

specific humidity is reduced in the Control and the three control vector exper-
iments. It is important to note that the assimilation of LST causes a further
reduction of atmospheric moisture (Figure 7.10b), if the control vector includes
atmospheric variables. Especially during the night of the 27 to 28 of March
the specific humidity decreases. The nightly decrease of the specific humidity is
about 10%. Above the ABL the atmosphere of the experiments is more humid
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than the nature run. As already demonstrated for the temperature also the
specific humidity above 0.7 km is nearly unaffected.

All upper model soil levels of the assimilation experiments start with 10%
to 20% less humidity per cubic metre than the nature run. In the Control and
the EXPatmos this does not change during the two-day experiment period, the
closer to the land surface the more moisture is missing (Figure 7.10b). In EXP-
soil the assimilation of LST introduces humidity directly into the soil through
the soil variables included in the control vector. The ME of soil moisture re-
duces to less than 10 kg/m3 within the soil levels close to the land surface.
This improvement is mostly retained for the remaining experiment period. This
effect also occurs in a weakened form in EXPatso.
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Figure 7.11: As Figure 7.10 but for the summer case.

In contrast to the early spring case, the specific humidity of the summer case
is higher in comparison with the truth (Figure 7.11a). Especially around noon
the reference and the three experiments are more humid than the true state
of the atmosphere. The assimilation of LST causes as in the early spring case
a reduction of the specific humidity of the ABL, if the control vector includes
the atmospheric variables. In particular during the nights the specific humidity
decreases (EXPatmos and EXPatso). Above the ABL in the first 24 hours,
the atmosphere of the experiments is more humid than the nature run, while
in the following 24 hours the atmosphere above the ABL is drier. But due to
the vertical localisation the assimilation of LST hardly affects the atmosphere
above the ABL at all.

The upper soil levels are drier than the nature run but the difference between
nature run and experiments in August is smaller than in March (Figure 7.10b
and 7.11b). The levels below 0.5m depth, on the other hand, are much wetter
than the truth and not affected by the assimilation of LST. The impact of LST
assimilation on the soil moisture is only visible if the soil variables are part of
the control vector (EXPsoil and EXPatso). In EXPsoil the soil becomes drier
in the first six hours, afterwards moisture is introduced so that the difference to
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the truth decreases and the ME is less than 5 kg/m3 (Figure 7.11b, third panel).
In EXPatso the phase in which moisture is lost lasts over 24 hours. Hence,
the ME of soil moisture is greater than in the other experiments (Figure 7.11b,
fourth panel). From the evening of August 29, moisture is introduced into the
soil and lowers the ME to below 5 kg/m3.

7.3.2 Root-Mean-Square Error Evaluation
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Figure 7.12: RMSE evolution of (a) temperature of atmospheric
boundary layer (T ) and of (b) soil levels (Tso) from March 27 to
March 29, 2017. First guess evaluated against truth averaged over
the whole experiment domain. Shown are the RMSE of Control (first
panel), of EXPatmos (second panel), of EXPsoil (third panel) and of
EXPatso (fourth panel). Darker colors indicate larger RMSE. Figure
taken from Sgoff et al. (2020).
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Figure 7.13: As Figure 7.12 but from August 28 to August 30, 2017.
Figure taken from Sgoff et al. (2020).
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Next the root-mean-square error (RMSE)

RMSE =

√ 1

N

N∑
i=1

[x(i)− xtrue(i)]2 (7.2)

is examined for the LST related variables. During the March and the August
case study, the RMSE of the boundary layer temperature has a diurnal cycle,
similar as for the ME (Figure 7.12a and 7.13a). The maximum RMSE within
the ABL during the spring and the summer experiments is close to the surface
in the lowest 0.1 km between 0000UTC and 0600UTC. During the August
experiment another maximum of RMSE is located at the same height as the
negative ME in August (Figure 7.9a). The RMSE of atmospheric temperature
is reduced in each assimilation experiment of both experimental periods.

In the early spring and the summer period, the RMSE of the soil tempera-
ture is higher than the RMSE of the boundary layer temperature (Figure 7.12b
and 7.13b). The assimilation of LST reduces the RMSE of each influenced soil
level during the summer and spring period, especially if the soil variables are
included in the control vector (EXPsoil and EXPatso). In comparison with the
early spring case, the summer case soil and boundary layer temperature have a
smaller RMSE (Figure 7.12 and Figure 7.13).
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Figure 7.14: Like Figure 7.12 but with RMSE evolution of (a)
specific humidity (QV ) of atmospheric boundary layer and (b) of
soil moisture (Wso).

The RMSE of specific humidity during the March period has a diurnal cycle
with the maximum RMSE between 1800UTC and 0000UTC around 0.7 km
height (Figure 7.14a). The RMSE for the specific humidity is larger if the at-
mospheric humidity variables are included into the control vector (Figure 7.14a,
second and fourth panel).

The RMSE of the soil moisture of Control and EXPatmos is very similar.
Both start with a RMSE of about 55 kg/m3 which grows after twelve hours of
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assimilation cycle up to over 65 kg/m3 within the upper soil levels (Figure 7.14b,
first and second panel). If the soil variables are included in the control vec-
tor the assimilation of LST has more pronounced impact on the soil moisture
(Figure 7.14b, third and fourth panel). Within the first twelve hours of the
assimilation experiments the RMSE of the soil moisture grows up to 65 kg/m3,
but then the RMSE is reduced to values lower than 55 kg/m3.
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Figure 7.15: Like Figure 7.14 but from August 28 to August 30,
2017.

The RMSE of specific humidity during the August period shows a diur-
nal cycle as well (Figure 7.15). Its maximum close to the surface is between
1200UTC and 1800UTC and its minimum is between 0000UTC and 0600UTC
similar to the diurnal cycle of the ME of specific humidity during the summer
case study. The highest RMSE values of the August period are found around
the top of the ABL.

On average the RMSE of soil moisture of the upper soil levels during August
is smaller than during March. Only the deeper layers have a RMSE higher than
55 kg/m3 (Figure 7.15b). In the deeper layers the nature run is wetter than the
assimilation experiments. This clear difference is also reflected in the RMSE of
soil moisture. While the RMSE of soil moisture decreases in the upper layers as
long as the soil variables are not part of the control vector (Figure 7.15b, first
and second panel), it increases in the layers close to the soil if the soil variables
are part of the control vector (Figure 7.15b, third and fourth panel).

7.3.3 Reduction of RMSE

The benefit of the LST assimilation relative to the Control is estimated by the
relative change of RMSE (rRMSE)

rRMSE =
RMSE −RMSEControl

RMSEControl

· 100% , (7.3)
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Figure 7.16: Evolution of relative change of RMSE of temperature
of (a) the atmospheric boundary layer (T ) and of (b) the soil (Tso)
from March 27 to March 29, 2017. First guess evaluated against truth
averaged over the whole experiment domain. Shown are the rRMSE
of the three experiments against Control. rRMSE of EXPatmos
(top), rRMSE of EXPsoil (middle), rRMSE of EXPatso (bottom).
Blue shaded areas indicate an improved RMSE of the experiment, red
shaded areas indicate a deterioration. Figure taken from Sgoff et al.
(2020).
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Figure 7.17: Like Figure 7.16 but from August 28 to August 30,
2017. Figure taken from Sgoff et al. (2020).

where RMSE is the RMSE of the respective experiment and RMSEControl is
the RMSE of the open loop (Control).

During the two-day early spring period, the RMSE of boundary layer tem-
perature is reduced in all three experiments (Figure 7.16a), during daytime up
to 60% near the ground. The greatest improvement of RMSE of EXPatmos
is between 0600UTC and 1200UTC on March 27 (Figure 7.16a, top). The
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reduction of RMSE of EXPsoil is shifted compared to EXPatmos by approxi-
mately six hours through the indirect effect of the improved soil state and has
its maximum during the afternoon (Figure 7.16a, middle). EXPatso combines
successfully both improvements but also includes the increased RMSE of EX-
Patmos at the top of the ABL (Figure 7.16a, bottom). The RMSE of the soil
temperature is also reduced by the assimilation of LST, partly up to 50% (Fig-
ure 7.16b). The effect is best, if the coupled assimilation setting is performed
(EXPatso). The deeper soil layers keep the positive effect over a longer period
than the upper soil levels.

All in all, the effect of LST assimilation on near surface temperature dur-
ing the two days of March is stronger during the first day because more LST
observations were available and could be assimilated. On the second day, a
cloud pattern over north-eastern Germany reduced the number of observations,
and, consequently, the available LST information within the assimilation cycle
(Figure 7.6a).

During the two-day summer period, the RMSE of boundary layer tempera-
ture is reduced in all three experiments as well. As in the two-day case in March
the main reduction is during daytime, but with its maximum up to 40% in the
afternoon (Figure 7.17a). In the afternoon on August 29, the positive effect
of LST assimilation on the atmospheric temperature reaches up to a height of
1.5 km within the experiments including the atmosphere in their control vector
EXPatmos and EXPatso (Figure 7.17a, top and bottom). During the night
from August 29 to August 30, EXPatmos and EXPatso show an increase of
the RMSE of the atmospheric temperature located above the ABL. A different
vertical localization during night and day could be an option to avoid this effect.
The impact of LST assimilation on the RMSE of atmospheric temperature of
EXPsoil is seen during daytime up to a height of 0.7 km and does not lead to
an increase of RMSE (Figure 7.17a, middle).

The RMSE of the soil temperature is consistently reduced in each summer
experiment. The RMSE decreases as the number of assimilated synthetic LST
observations increases (Figure 7.6b and 7.17b). As in the early spring period
the deeper soil layers keep the positive effect longer than the upper soil layers.

Besides temperature, moisture variables in the ABL and the soil are also
influenced by the LST assimilation through cross-correlations. The direct effect
of LST assimilation in EXPatmos and EXPatso during the March period re-
duces the atmospheric specific humidity clearly too much (Figure 7.18a, top and
bottom). The RMSE of specific humidity within this two experiments reaches
up to 70%. This remarkable increase takes mainly place in the morning tran-
sition. The negative influence of LST assimilation can be due to inappropriate
covariances. In contrast, the specific humidity of EXPsoil benefits from the
assimilation of LST. On the afternoon of the second day of the experimental
period, the RMSE of relative humidity is reduced by more than 10% (Fig-
ure 7.18a, middle). Because fewer LST observations are assimilated during this
period an improvement due to the accumulated effects of an improved state of
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Figure 7.18: Like Figure 7.16 but the evolution of relative change
of RMSE of (a) atmospheric specific humidity (QV ) and of (b) soil
moisture (Wso) is shown. Figure taken from Sgoff et al. (2020).

the soil is assumed. This positive effect can also been seen in EXPatso in an
attenuated form.
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Figure 7.19: Like Figure 7.18 but from August 28 to August 30,
2017. Figure taken from Sgoff et al. (2020).

In contrast to the atmospheric humidity, the soil moisture can benefit from
the direct effect of LST assimilation within the soil in March by introducing
moisture (Figure 7.18b). Within the first six hours the assimilation of LST dries
the soil, but after twelve hours of LST assimilation moisture is introduced into
the soil by LST assimilation, which reduces the RMSE mainly during daytime
by more than 12%. This positive impact only occurs if the soil temperature
and moisture are part of the control vector (Figure 7.18b, middle and bottom).
In the case, where only the atmospheric variables are part of the control vector,
the assimilation of LST has hardly an impact on the soil moisture. The RMSE
of EXPatmos is slightly increased (less than 2.5%), but mostly it is close to the
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Control (Figure 7.18b, top).

As in the early spring case, the RMSE of specific humidity of EXPatmos
and EXPatso in the summer case increases during the morning transition, but
only on the first day (Figure 7.19a, top and bottom). On the second day an the
RMSE of specific humidity increases during the night and morning transition
(Figure 7.19a, middle and bottom).

The difference between the soil moisture down to 0.5m in the nature run
and the assimilation experiments is smaller for the summer cases. The soil of
the assimilation experiments is only about 5% drier than the nature run (not
shown). The deeper layers of the assimilation experiments are more moist than
the nature run, they were however unaffected by the LST assimilation. As in
the spring case, the assimilation of LST introduces moisture into the upper
soil levels after twelve hours of assimilation (Figure 7.19b, middle and bottom).
The upper soil levels become too moist and only the deeper layers benefit from
the additional moisture. As in early spring the RMSE of EXPatmos is nearly
unaffected (Figure 7.19b, top).

7.3.4 Impact on Surface and Near Surface Variables
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Figure 7.20: (a) Evolution of relative change of RMSE of LST (Tg)
during the March and (b) during the August, 2017 experimental
period. First guess evaluated against nature run averaged over
the whole experiment domain. Shown are the rRMSE of the three
control vector experiments (Table 7.1) against Control. (top) rRMSE
of EXPatmos, (middle) rRMSE of EXPsoil, (bottom) rRMSE of
EXPatso. Blue bars indicate a reduced RMSE of the experiment and
red bars an increased RMSE.

In comparison with the Control the assimilation of LST has a positive im-
pact on the first guess of LST of all three control vector experiments during
the two-day case studies in early spring and summer (Figure 7.20). The reduc-
tion of RMSE of LST depends on daytime and on observation ability. During
night the RMSE reduction is with around 5% to 10% smaller than the RMSE
reduction during day with more than 10%. During the early spring period
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Figure 7.21: As Figure 7.20 but for 2m-temperature (T2M).

peaks of RMSE reduction of LST up to more than 25% are reached. Around
1800UTC the RMSE reduction in the two-day case studies is lowest. The
reduced availability of LST observations on the second day of the March case
study (Figure 7.6a) leads to a lower RMSE reduction of EXPatmos. In the other
March experiments, EXPsoil and EXPatso, the lower number of observations
is less noticeable because the soil still contains information derived from former
LST assimilation (Figure 7.20a, 7.16b and 7.18b). During the August period
more LST observations are available on the second day (Figure 7.6b) and the
RMSE reduction of LST is as well stronger on the second day.

The impact on the temperature at 2metre height by LST assimilation is
positive as well (Figure 7.21). The RMSE of the experiments is reduced over
the whole experiment periods of March and August partly by up to 40%. In
EXPatmos of early spring and summer the reduction of RMSE depends mainly
on the availability of LST observations. The more LST observations there
are, the more the RMSE of 2m-temperature is reduced (Figure 7.6 and 7.21,
top panels). In EXPsoil the reduction of 2m-temperature RMSE depends on
the daytime as well. A greater improvement in the 2m-temperature can be
observed in March and August, 2017 during the day (Figure 7.21, middle pan-
els). Both positive effects of EXPatmos and EXPsoil are combined in EXPatso
(Figure 7.21, bottom panels).

The sensible heat flux depends mainly on the temperatures near and at
the land surface (Equation 5.4). These temperatures were improved by the
assimilation of LST, especially during daytime (Figure 7.16a, 7.16b, 7.17a and
7.17b). This improvement during the day is passed on to the sensible heat flux
in EXPsoil and EXPatso of both case studies. The RMSE of sensible heat
flux of both experiments during the March period is reduced by up to 25%
(Figure 7.22a, middle and bottom). During August the effect is smaller and the
reduction of RMSE in EXPsoil and EXPatso is up to 10% (Figure 7.22b, middle
and bottom). In contrast, the RMSE of the sensible heat flux in EXPatmos
improves and deteriorates between 0% to 10% (Figure 7.22, top panel). This
shows that the lack of direct information on the soil is clearly reflected in the
surface energy budget.
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Figure 7.22: As Figure 7.20 but for sensible heat flux (SHFL).
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Figure 7.23: Like Figure 7.20 but for latent heat flux (LHFL).

The influence of assimilation of LST on the latent heat flux depends as well
on the control vector setup. In EXPatmos of both case studies the impact of
LST assimilation is more pronounced at night and worsens the RMSE of the
latent heat flux by up to 25% in March and up to 10% in August (Figure 7.23,
top panels). In EXPsoil, however, the influence on the latent heat flux is more
pronounced during the day and reduces its RMSE by up to 25% in March and
up to 10% in August (Figure 7.23, middle panels). EXPatso, which contains soil
and atmospheric variables in the control vector, combines both, the positive and
the negative effects. During the day the RMSE is reduced by the assimilation
of LST and at night the RMSE grows through the assimilation of LST (Fig-
ure 7.23, bottom panels). The latent heat flux at the surface depends mainly on
the atmospheric humidity and the soil surface moisture (Equation 5.5). During
March the atmospheric humidity mainly suffers from the assimilation of LST
(Figure 7.18a). At the same time the soil moisture was improved by the LST
assimilation (Figure 7.18b). This negative and positive influence was passed on
to the latent heat flux (Figure 7.23a). During daytime the positive influence
predominates and at night the negative influence predominates. During the
two-day August period the impact is smaller than during March (Figure 7.23a).
Including the soil into the control vector improves the first guess of latent heat
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CHAPTER 7. ASSIMILATION OF LST

flux during day as well, although the RMSE of soil moisture increases due to
the assimilation of LST (Figure 7.19b).

−25

0

25

E
X

P
at

m
os

−25

0

25

E
X

P
so

il

0600 1200 1800 0000 0600 1200 1800
time of day

−25

0

25

E
X

P
at

so

change of RMSE of RH2M [%]

(a)

−25

0

25

E
X

P
at

m
os

−25

0

25

E
X

P
so

il

1800 0000 0600 1200 1800 0000 0600
time of day

−25

0

25

E
X

P
at

so

change of RMSE of RH2M [%]

(b)

Figure 7.24: As Figure 7.20 but for 2m-relative humidity (RH2M).

The change of RMSE of relative humidity in 2m height coincides with the
change of RMSE of specific humidity of the lower atmospheric model levels
(Figure 7.18a, 7.19a and 7.24). The deterioration in March and August comes
mainly from the direct influence of LST assimilation on the atmosphere (EX-
Patmos and EXPatso). While the main improvement in both case studies
comes mainly from the direct influence of LST assimilation on the soil (EXP-
soil and EXPatso) although the soil moisture in August has an increased RMSE.

To summarize, the impact of LST assimilation on the variables of the
near surface and the energy budget at the surface was stronger if more LST
observations were available and could be assimilated. Especially during daytime,
the impact of assimilation of LST improved the first guess, but during nighttime
the positive impact is smaller or with regard to atmospheric humidity and
corresponding surface fluxes even negative (Figure 7.18a and 7.23).

7.3.5 Evaluation of 24-hour Forecasts

All in all, the assimilation of LST led to improved initial conditions for the
ABL and the upper soil of the forecast model. To investigate the effect of LST
assimilation on the COSMO-model forecast, a 24-hour forecast was simulated
every six hours. The assimilation free forecasts were initialised from Control
and EXPatso of the two-day experiments in March and August, 2017.

As illustrated in Figure 7.25a, the LST assimilation during the two-day study
in March 2017 based on EXPatso has a positive impact on the temperature of
the ABL. In the EXPatso forecast started at 0600UTC the RMSE is reduced by
over 20% in the first ten forecast hours within the lower levels of the atmosphere
up to 0.7 km (Figure 7.25a, top). In contrast, at the top of the ABL, the first
three forecast hours have an increased RMSE about 10% to 20%. After 12
forecast hours the reduction of RMSE is negligible.
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Figure 7.25: (a) Change of rRMSE of the early spring case for
three free 24-hour forecasts of temperature of atmospheric boundary
layer (b) and of soil levels. (Top) One started after six hours of LST
assimilation, (middle) one after 12 hours of LST assimilation and
(bottom) one after 18 hours of LST assimilation (lower panels). The
forecast started from EXPatso and the Control are evaluated against
the truth averaged over the whole experiment domain. Shown is
the rRMSE of EXPatso against Control. Blue shaded areas indicate
an improved RMSE of EXPatso and red shaded areas indicate a
deterioration. Figure taken from Sgoff et al. (2020).

The forecast started on March 27 at 1200UTC has also an improved ABL
temperature because of LST assimilation (Figure 7.25a, middle). The positive
effect on ABL temperature lasts for four hours near to the surface and for
six hours between 0.2 to 0.7 km. After six hours of forecast to nine hours of
forecast, around the evening transition, the ABL temperature RMSE is 10%
larger than of Control. This negative effect is reduced to around 3% after
nine hours of forecast. The forecast started on March 27 at 1800UTC shows
only short-lasting improvements of LST assimilation (Figure 7.25a, bottom).
Because of the growing cloud cover less LST observations were available that
results in a smaller impact of LST assimilation. Around 18 hours of forecast a
RMSE reduction of 15% occurs, possibly due to the indirect effect of improved
soil variables.

In general, the soil temperature forecast is improved by the LST assimilation
over each soil level down to 1m (Figure 7.25b). The soil temperature RMSE of
the forecast started at 0600 h is mainly reduced during the first three forecast
hours within the upper 0.1m of the soil. The forecast started at 1200 h includes
an even bigger reduction of soil temperature RMSE up to six hours down to
0.5m. A reduction of soil temperature RMSE around 20% lasts for the whole
24-hour forecast, i.e. the soil temperature keeps the effect of LST assimilation
longer than the ABL temperature. The reduction of soil temperature RMSE
over 20% remains over the whole 24 hours of the forecast started at 1800 h.
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Figure 7.26: As Figure 7.25 but forecasts of the August case. Figure
taken from Sgoff et al. (2020).

The 24-hour forecasts of atmospheric temperature and soil temperature
based on EXPatso of the two-day study in August 2017 also benefit from the
LST assimilation (Figure 7.26a), but the benefit is less pronounced than during
the two-day study in March 2017. The first four forecast hours of the tempera-
ture of the ABL started at 0000UTC have a 10% reduced RMSE and a further
reduction of more than 10% around 12 hours of forecast (Figure 7.26a, top).

In the EXPatso forecast started 0600UTC, the RMSE of the atmospheric
temperature is reduced over the first 12 hours (Figure 7.26a, middle). The re-
duction of the RMSE up to the height of 0.2 km ranges between 10% and 30%
(only first forecast hour). The forecast started on August 29 at 1200UTC profits
from the LST assimilation during the first six forecast hours. The forecast of
the atmospheric temperature is improved up to a height of 1.5 km (Figure 7.26a,
bottom). After 22 hours a RMSE reduction of 15% arises. This reduction
coincides with an improvement of soil temperature of the same forecast which
indicates that the soil may have a positive effect on the atmosphere over the
whole 24-hour forecast.

As in March, the soil temperature forecast is also improved in August. The
assimilation of LST reduces the RMSE of the forecast of the soil tempera-
ture down to 1m with the main reduction occurring in the first three forecast
hours (Figure 7.26b). The forecasts started at 0600UTC and 1200UTC keep
the reduction of the RMSE of soil temperature longer than the forecast started
0000UTC, especially in the deeper layers between 0.1m and 0.3m (Figure 7.26b,
middle and bottom). After 20 forecast hours from forecast started at 1200UTC
the reduction of RMSE of soil temperature increases again (Figure 7.26b, bot-
tom).

To summarize, the soil temperature, especially the levels between 0.1 to
0.3m, keep the positive impact of LST assimilation longer in the forecast than
the ABL temperature. The soil moisture also keeps the positive or negative
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impact longer than the specific humidity of the ABL (not shown).

7.3.6 Summary

The experiments show that the assimilation of LST reduces the RMSE of
atmospheric and soil temperature. During daytime this positive impact is
even stronger than during nighttime. In the experiments with the weakly
coupled data assimilation system the positive impact is mainly restricted on
the part of the model, atmosphere or soil, whose prognostic variables are part
of the control vector. The fully coupled COSMO-KENDA-system combines this
impacts and thus outperforms the weakly coupled assimilation systems restricted
to soil or atmosphere only. The effect of LST assimilation on the atmospheric
humidity and the soil moisture is both, positive and negative. This indicates
that the background cross-correlations of the LETKF between the synthetic LST
observations and the moisture variables are not appropriately represented.
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Chapter 8

Ensemble Consistency Score

The assimilation of LST proves to be differently successful (Chapter 7). The
impact of LST assimilation depends on time of day and whether the temperature
or humidity variables are evaluated. A possible reason for these differences could
be spurious correlations between the synthetic LST observation and the related
temperature and moisture variables. Therefore, it is of high interest to determine
if the ensemble covariances are able to represent the model correlations of
the nature run. The evaluation of background error covariances is a separate
area of research and a detailed review was presented by Bannister (2008a,b).
The aim of this chapter is to introduce a numerical indicator, which provides
information about the quality of the ensemble covariances between two variables
in a simple way. Thus, a dimensionless value q - from now on named ensemble
consistency score - is derived in Section 8.1. Its suitability to indicate whether
the covariances of the ensemble at a certain grid point match the true covariances
of the nature run at the same point or not is evaluated with a Lorenz 1963
system (Section 8.2.2) and with the known truth of the OSSEs of this thesis
(Section 8.3.2).

8.1 Derivation

The analysis step of the assimilation cycle depends on appropriate observation
and background error covariances. This thesis is based on an OSSE setup,
therefore the observation errors are known by definition. Consequently, the
focus is now on the background error covariances Pb. The aim is to introduce
an ensemble consistency score q, which indicates accurate background error
covariances within the fully coupled land-atmosphere assimilation system if q
is positive and incorrect background error covariances if q is negative. The most
popular study about the diagnosis of data assimilation error statistics is by
Desroziers et al. (2005). Within their study they defined consistency diagnostics
of errors in observational space based on the information of innovations in
the observational space. Their consistency diagnostic on background errors
is based on the condition that if the background error covariances Pb and
observation error covariances R in observational space correspond to the true
error covariances then

E[H(xa)−H(xb)(y−Hxb)T ] = HPbHT . (8.1)



8.1. DERIVATION

Here, E equals a statistical expectation operator, H is the nonlinear observation
operator and H the observation operator matrix derived from the linearized H.
The background state is given by the vector xb, the analysed state by xa and
the observations by the vector y.

Within this thesis, the consistency check of background error covariances is
based on the information of the true state itself, because the truth provided
by the OSSE can be used to verify the background error covariances of the
model ensemble. Therefore, the score q, gives insight in the quality of the model
ensemble and further can give information about the expected analysis: if the
background error covariances are consistent with the nature run the impact on
the analysis is positive and vice versa. In the following, the analysis step is
considered as correct if the assimilation leads to an analysis ensemble mean xa,
which is closer to the truth xtrue than the mean of the background ensemble xb

(Figure 8.1).

Xtrue Xb

Xa

Figure 8.1: If the mean of the analysis ensemble xa is within the
blue area, then Equation 8.2 is fulfilled and the analysis step at the
certain grid point is successful. xtrue is the true value and xb the
mean of the background ensemble.

This condition can be checked at each grid point for each variable i of the
control vector

|xa
i − xtrue

i | < |xb
i − xtrue

i | , (8.2)

where xa
i is the ensemble mean of the analysis of the variable, xb

i is the ensemble
mean of the background of the variable and xtrue

i is the true value of the variable.
As in the work of Desroziers et al. (2005), statistical linear estimation theory is
used as the initial equation to derive the score q. The analysis xa is given by

xa = xb +PbHT (R+HPbHT )−1(y−Hxb) , (8.3)

where Pb equals the background error covariance matrix, y is the observation,
H equals the linearisation of the observation operator, and R equals the
observation error covariance matrix. Background error covariances between
different variables can be correlated. This effect can be seen by focusing on
the covariances between one observed variable (i = 1) and any model variable
that relates to the observed variable (i = 2), hence the observation operator H
is simplified as H0 = (1, 0). The background error covariance matrix Pb is a
2x2 matrix derived from the background ensemble and R is the observation
error variance and thus assumed as a constant value R0. Including these
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simplifications, Equation 8.3 reads as(
xa
1

xa
2

)
=

(
xb
1

xb
2

)
+

(
b11 b21
b21 b22

)(
1
0

)[
R0+(1, 0)

(
b11 b21
b21 b22

)(
1
0

)]−1[
y−(1, 0)

(
xb
1

xb
2

)]
,

which can be simplified to(
xa
1

xa
2

)
=

(
xb
1

xb
2

)
+

(
b11
b21

)
(R0 + b11)

−1(y − xb
1) . (8.4)

This equation can be divided into its independent components. As a reminder,
i = 1 indicates the observation or alternatively the appropriate model equivalent
of the observed value and i = 2 indicates the related model variable.

xa
1 = xb

1 +
b11

R0 + b11
(y − xb

1) , (8.5)

xa
2 = xb

2 +
b21

R0 + b11
(y − xb

1) . (8.6)

The further focus is on Equation 8.6, because it includes the ensemble
covariances between the observation and the corresponding model value. For
example, xb

1 is the ensemble mean of the simulated LST, y is the synthetic
LST observation and xb

2 is the ensemble mean of the specific humidity of the
lowest atmospheric model level. The difference between the analysis xa

2 and the
background xb

2 in model space can be written as:

xa
2 − xb

2 =
b21

R0 + b11
(y − xb

1) . (8.7)

Bannister (2008a) derived this equation in a more general form

xa
l − xb

l = blk
y − xb

k

bkk +R0

(8.8)

(Bannister, 2008a, Equation 12) to describe how the Pb of the observed compo-
nent (k-th component) and the l-th component of the control vector affects the
analysis. Equation 8.7 and 8.8 show that although only one observation y of the
model state is included, the state of the component is also changed. Hence, the
observation information is distributed in the model space via the background
error covariance matrix Pb. Accordingly, a mismatching Pb can cause spurious
correlations between the variables and consequently these errors are passed on
to the not observed components. In contrast, a consistent Pb improves the
analysis. To examine the consistency of Pb within this thesis the nature run is
used.

The product between the difference of the analysis and the background mean
(xa

2 − xb
2) and the difference between the true state and the background mean

(xtrue
2 − xb

2) is

(xtrue
2 − xb

2)(x
a
2 − xb

2) = (xtrue
2 − xb

2)
b21

R0 + b11
(y − xb

1) . (8.9)
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If the model state is pulled by the analysis step into the direction of the true
state, the left hand side of Equation 8.9 is positive, i.e. the right hand side of
Equation 8.9 necessarily is positive and guarantees a successful analysis step:

(xtrue
2 − xb

2)
b21

R0 + b11
(y − xb

1) > 0 . (8.10)

The background error covariances are defined by

b21 =
1

L− 1

L∑
l=1

(xl
1 − xb

1)(x
l
2 − xb

2) (8.11)

and

b11 =
1

L− 1

L∑
l=1

(xl
1 − xb

1)
2 . (8.12)

The model ensemble consists of L ensemble members, here L = 40 was chosen
to remain consistent with the OSSE. Based on Equation 8.10 the first version of
the score q can be deduced:

ql =
1

L−1

∑L
l=1(x

true
2 − xb

2)(x
l
1 − xb

1)(x
l
2 − xb

2)(y − xb
1)

R0 +
1

L−1

∑L
l=1(x

l
1 − xb

1)
2

. (8.13)

If q1 is positive the ensemble is moved by the analysis step in the correct
direction, but q1 also includes the possibility that the analysis step pushes the
ensemble to far in the correct direction. Hence, this behaviour induces wrong
ensemble covariances as well. To take care of this problem ql and thus the left
hand side of Equation 8.9 as well is normalized:

xa
2 − xb

2

xtrue
2 − xb

2

=
ql

(xtrue
2 − xb

2)
2
= qnorm . (8.14)

Considering Equation 8.2 (illustrated by Figure 8.1) the difference between xa
2

and xtrue
2 must not be more than twice as large as the difference between xb

2 and
xtrue
2 :

0 ≤ xa
2 − xb

2

xtrue
2 − xb

2

≤ 2 . (8.15)

Only then the assimilation step is considered as successful at this point, i.e. a
consistent covariance between the ensemble and the truth is represented by all
values of qnorm which fulfill 0 ≤ qnorm ≤ 2. Using an adjusted parabola

q = 1− (qnorm − 1)2 (8.16)

a positive q represents exactly 0 ≤ qnorm ≤ 2.

The ensemble consistency score q can be seen as a score which forecasts
if the assimilation step works well based on the knowledge gained from the
ensemble covariances. If q is positive the correlations are correctly represented
and the assimilation of the observations improves the related model state. If q
is negative, the assimilation step leads to a deterioration of the related model
state. The score q does not indicate whether the variables are positively or
negatively correlated. The score q indicates if the correlation of the ensemble
matches the truth.
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8.2 Lorenz 1963 System Experiments

8.2.1 Experimental Setup

To examine the ensemble consistency score q derived in Section 8.1, test cases
were conducted with a Lorenz 1963 system based on an octave code example of
Nakamura and Potthast (2015) described in AppendixA. The nature runs of the
test cases were generated by the three coupled ordinary differential equations
of the Lorenz 1963 system equation. The state of the nature run is given by
x = (x1, x2, x3)

T ∈ R3. Every nature run was started from xinit = (0,−10, 21)
and calculated Ncycle time steps into the future. The nature run was assumed
as the truth and each time step tj with j = 1, ..., Ncycle with time interval
dt = 0.1 the first component of the state was observed. For that purpose an
observation y was calculated by y = Hx + ϵ with the observation operator
HNR = H0 = (1, 0, 0) and a random noise perturbation ϵ. Furthermore, at each
time step tj the assimilation step was performed and the score q was derived for
the evaluation of the covariance between the observed state component x1 = x(1)
and the second state component x2 = x(2) as q2 and between x1 = x(1) and the
second state component x3 = x(3) as q3. The assimilation step was performed

Table 8.1: Setup of Lorenz 1963 experiments on the ensemble
consistency score q. Dependencies of H and R are evaluated. The
observation operator H of the analysis step either corresponds to
the observation operator H0 from the calculation of q or it deviates
slightly from H0: H = (h, 0, 0) with h = {0.80, 0.81, ..., 1.19, 1.20}.
For the observation error R also applies: either it corresponds to the
observation error R0 from the computation of q or it differs slightly:
R ≡ r = {0.01, 0.02, ..., 0.29, 0.30}.

Exp
Assimilation Cycle Calculation of q

obs. operator H obs. error R obs. operator H0 obs. error R0

1 H0 R0 H0 R0

2 H = (h, 0, 0) R0 H0 R0

3 H0 R ≡ r H0 R0

by an ensemble Kalman filter (see Section 2.1) with a 40-member ensemble.
To reproduce the difference between the model and the truth, the Lorenz 1963
system used for the model forecast step of the data assimilation cycle differed
from the Lorenz 1963 model of the nature run by the Prandtl number σ (nature
run: σ0 = 9, model: σA = 15). To evaluate q and its sensitivities three Lorenz
1963 model experiments were carried out (Table 8.1).

8.2.2 Results

Within the first experiment the observation operator H used within the as-
similation cycle was set as it is assumed within the derivation of q, i.e.
H = H0 = (1, 0, 0). The observation error R of the assimilation cycle was
set as constant R ≡ R0 = 0.15 and equal to the observation error of the
computation of the score q (Table 8.1). The ”butterfly”-trajectories generated
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Figure 8.2: Nature run (green), background (blue) and analysis
(red) are simulated by the Lorenz 1963 system for Ncycle = 500
time steps. Shown are the first 60 time steps. At each time step
an observation (dots) is taken, an assimilation step based on the
ensemble Kalman filter is carried out and q is calculated.

by the Lorenz 1963 system of the nature run and the assimilation cycle are
shown in Figure 8.2. The state of the system consists of three components,
whereby x1 is observed. Thus, the ensemble covariances between the observed
component x1 and the other components x2 and x3 are of interest. In a NWP
model, for example, the observed quantity could be a temperature, while the
further components are humidity, pressure or wind. The score q is determined
at each time step for x2 and x3. In the following q2 describes the score of
the ensemble consistency between x1 and x2 and q3 describes the score based
on the covariances between x1 and x3. Due to the choice of H and R within
the assimilation cycle, it is expected that a positive q would coincide with a
successful analysis step (Equation 8.2 is fulfilled) and a negative q would be
associated with an unsuccessful analysis step (Equation 8.2 is not fulfilled). If
this is the case, the score q matches the result of the assimilation step, which
is illustrated by Figure 8.3. Hence, the performance of the analysis steps de-
pends on the use of appropriate background errors and q gives an insight in
the appropriate representation of the ensemble covariances between x1 and x2

and, x1 and x3. In this test case of Ncycle = 500 time steps, q2 was positive
in about 43% of the cases, i.e. in 44% of the analysis steps the ensemble
covariances between the observed state x1 and the second state component
x2 matched the nature run. In contrast, in about 52% cases q3 was positive,
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(a) (b)

Figure 8.3: (a) Bar plot of the fraction of time steps in the
experiment, that fulfill the conditions: sign of ensemble consistency
score q2 matches the impact of the assimilation step on x2, q2 > 0
and q2 <= 0. (b) Like (a) but for the third component.

hence on average the assimilation of the observed x1 has a positive impact on x3.

Table 8.2: Contingency table of q of the Lorenz 1963 system.

q >0 q <= 0

Eq. 8.2 fulfilled Hits:
q > 0 matches success-
ful analysis step

Misses:
q <=0, but successful
analysis step

Eq. 8.2 not fulfilled False Alarm:
q > 0, but unsuccessful
analysis step

Correct Negative:
q <=0 matches unsuc-
cessful analysis step

The first experiment was based on an analysis step which took the simplifi-
cations and the assumptions of the computation of the score q (Section 8.1) into
account. In the most cases the simplified observation operator H0 = (1, 0, 0) is
not applicable because the observation value is not covered directly by the model
values or not directly located on the analysis grid. In general, the observation
operator H of the analysis step does not reproduce an exact image of the real
observation. Here, due to the OSSE framework, the generation of the observa-
tion y is clearly defined: y is observed by the observation operator H0 = (1, 0, 0)
from the first model state x1 of the nature run. As a first sensitivity test of
the dependency of q on the accuracy of the observation operator H in the anal-
ysis step, several Lorenz 1963 experiments were performed with successively
shifted observation operators, H = (h, 0, 0) with h = {0.80, 0.81, ..., 1.19, 1.20}
(Table 8.1). To limit the statistical noise of the results 500 time steps of each
nature run and assimilation cycle were simulated.

The observation operator H of the analysis step has mainly impact on the
result of the assimilation step itself. Thereby, H influences how often the sign
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of q predicts the impact of the analysis step correctly (Figure 8.4). The sign
of q and the result of the analysis step match if the observation operator of
the analysis step H and the observation operator of the computation of the
score H0 are equal. Then every positive q-value is associated with a successful
assimilation step and every negative q-value is associated with an unsuccessful
assimilation step. With increasing difference between H and H0 the agreement
between q-value and impact of the assimilation step decreases from 100% to
80% (Figure 8.4). This decrease occurs for q2 and q3. The decrease in the agree-
ment is due to positive q-values associated with an unsuccessful analysis steps
and vice versa. Therefore, the score q is the more reliable, the more accurately
the model equivalent represents the observations. The differences between the
rat of hits, correct negatives, misses and false alarms of q2 and q3 are based on
the model system an will likely differ in other systems.
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Figure 8.4: Observation operator H sensitivity test of ensemble
consistency score q2 (a) and q3 (b). The observation operator
H0 of the calculation of the q-values differs from the observation
operator of the assimilation cycle H = (h, 0, 0). Several choices of
h = {0.80, 0.81, ..., 1.19, 1.20} are evaluated. Shown is the fraction
of q matches the impact of the analysis step (blue). Based on
Table 8.2 hits (red), correct negatives (yellow), false alarms (purple),
and misses (green) are shown.

In addition to the inaccuracy of the observation operator, an uncertainty
of the observation error covariance matrix R could also reduce the informative
value of q. Within the third Lorenz 1963 experiment the observation error vari-
ance R = {0.01, 0.02, ..., 0.29, 0.30} of the analysis step differs from R0 = 0.15
which was assumed within the calculation of q (Figure 8.5). If different R values
are used in the analysis step and the computation of q, the consistency of the
ensemble covariance between observed value x1 and the other variable x2 and
x3 can be over- or underestimated. If R < R0 more false alarms occur. On
the other hand, if R > R0 more misses occur. To avoid these inaccuracies a
consistent value of R is important. Overall, the observation error or noise of
the observed value R has less influence on the determination of the reliability
of the score q than the choice of the observation operator H. Especially, in the
case R > R0 the agreement between the score q and the impact of the analysis
step (Equation 8.2 is fulfilled) is only slightly reduced.
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Figure 8.5: As in Figure 8.4, but as sensitivity test of
the observation error covariance matrix R with R ≡ r =
{0.01, 0.02, ..., 0.29, 0.30} and R0 = 0.15.

8.2.3 Summary

The score q introduced in Section 8.1 is an estimator of the consistency of the
ensemble covariances. The quality of its predictions will depend on the assimi-
lation system it is deployed for. In this section, the score q was tested using an
assimilation system with a fully controllable forecast model: the Lorenz 1963
system. The focus was on the impact of observation operator H and observation
covariance matrix R on the reliability of the score q.

With the simplification of H0 = (1, 0, 0), model space and observation space
are defined as identical. Through differences between H0 and H, the ensemble
covariances have to be translated from the model space into the observational
space. Thus, the ensemble covariances in model and observational space differ
from each other. This differences become visible once the sign of the score q no
longer matches exactly with the impact of the analysis step. The observation
covariance errors R also influence the reliability of q. The sign of q is usable as
an indicator for Equation 8.2 for being fulfilled or not, even if R deviates from
R0. For this experiment, the noise of the observation has lower impact on the
reliablity of q than the choice of the observation operator. An even more precise
evaluation of the sensitivity of the score q to the observation error covariance
R would be possible by calculating δq

δR
. Likewise, calculating δq

δH
would allow to

estimate the local sensitivity of the score q to the observation operator H.

8.3 Experiments with Synthetic Land Surface

Temperature

Based on the results of Chapter 7, the covariances between the LST and near
surface temperatures (soil and atmosphere), and the LST and near surface
humidity (soil and atmosphere) are investigated. Similar to the soil moisture
covariance study by Lin and Pu (2018), the correlations between LST and the
top layer soil temperature (Tso(1)), LST and soil moisture (Wso(1)), LST and
the bottom-layer (model level 50) atmospheric temperature (T (50)), and LST
and specific humidity (QV (50)) are evaluated. Hereby, each analysis grid point
is evaluated independently without consideration of the neighboring pixels. In
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addition, the score q is used to verify whether these correlations match the
nature run. Thus, the following questions are answered within this section:

• What are the correlations between the near-surface variables and the land
surface temperature?

• Do the model ensemble correlations of the assimilation cycle fit those in
the nature run?

8.3.1 Experimental Setup

The synthetic setup of the LST OSSE experiment provides a known truth. That
is why it is a good environment to test the score q and the proper operation of
the COSMO-KENDA system. The synthetic observations and their errors can
be defined exactly (Chapter 6). Hence, it is possible to work with the simplified
observation operator H0 within the assimilation. To allow the usage of H0 as
observation operator in the analysis step, the observation operator H of the
LST was adjusted in this section. In the following experiments the synthetic
observations are observed directly at the location of the COSMO-model grid
points and the model equivalent H(xb) is directly defined by the ensemble mean
of the diagnostic variable Tg. To examine the score q (Equation 8.16) properly,
both the daytime (1000LT to 1400LT) and the nighttime (2200LT to 0200LT)
of the case studies in March and August 2017 are investigated.

In the current operational use, the COSMO-KENDA ensemble consists of
40 ensemble members and one deterministic run. To overcome restrictions
due to the ensemble size KENDA offers several tools. The tools include the
possibility to localize the observational impact and adjust covariances and model
and observation errors:

• Adaptive observation error covariance matrix: Usually the
observation error covariance matrix R is assumed as a diagonal matrix
with the variances on its diagonal. Additionally, R can be adaptively
updated due to observation type and height. With help of the Desroziers
method (Desroziers et al., 2005) it is possible to create an error table,
which than can be used for updates of R.

• Adaptive background error covariance matrix inflation: The
background error covariance matrix Pb is usually underestimated. The
number of ensemble members is to small to sufficiently represent a correct
model error. After each analysis stepPb can be increased by multiplication
with ρ. The default value is ρ = 1.1.

• Relaxation of Prior Perturbations: To increase the ensemble spread
again after each assimilation step, the analysis perturbation matrix W a is
updated in ensemble space. That means that αpI with αp = 0.75 is added
to the analysis perturbation matrix (W a

update = (1− αp)W
a + αpI).

These adaptive modifications of the B- and R-matrix are not reflected in the
score q, therefore they are not used for the following experiments. Since no
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error table is generated for the LST retrieval, R is not additionally updated
and the tool of the adaptive observation error covariance matrix has no im-
pact on the calculation of q. For simplicity, however the standard deviation
of each synthetic LST retrieval is set to the fixed value 0.5K. The relaxation
of prior perturbations has also no direct impact on the ensemble covariances
and the calculation of score q because only the ensemble spread of the analysis
is modified, in contrast to the analysis mean, which is used to determine a
successful analysis step (Equation 8.2). Hence, the adaptive background error
covariance matrix inflation had to be adjusted so that the same ensemble covari-
ances are used in the analysis step and in the calculation of q. For this purpose,
ρ = 1 is set in the following to omit the matrix inflation in the assimilation cycle.

Furthermore, it is crucial to also consider the vertical and horizontal lo-
calization of the observation error matrix R because the localization of the
observational impact is regulated via R (Section 2.2). To ensure that only one
observation at an analysis step influences the atmosphere and the soil around
the observation a strong horizontal localization is needed. Hence, the horizon-
tal localization length scale hloc was set to a constant value of 700m in the
conducted experiments, i.e. the localization cut-off is at about 2.5 km and the
horizontal impact of one observation is restricted to the model column of the
grid point where the observation is located. At the same time the vertical
impact by the assimilation of the LST retrieval on the correlated atmospheric
and soil variables should not be attenuated. Thus, the vertical localization scale
vloc is set to 10 ln(p), which is synonymous with no vertical localization at all.
Table 8.3 illustrates how the KENDA system has to be adjusted to fulfill the
mentioned conditions.

Table 8.3: Namelist settings of KENDA changed due to ensemble
consistency score test case.

Name OSSE Experiment Explanation

rho 1.1 1.0 no extra adjustment of B
hloc 5.5 km 0.7 km strong horiz. localization
vloc 0.3 10 no vertical localization
q bound True False no humidity adjustment
rf 3 1 no coarse analysis grid
sat ad True False no humidity adjustment
hyd bal True False no pressure adjustment
adap loc True False no adaptive localization

To save computational costs, the operational KENDA-system calculates the
transformation matrices on a three times coarser grid. To avoid discrepancies
between the H used within the KENDA assimilation cycle and H0 which is used
to calculate q within this section, the transformation matrices are calculated
on the full COSMO-model grid of the experimental domain. Thus, the LST
observation y is derived by the interpolation described in Chapter 6 from the
nature run on the COSMO-DE model grid of the experimental domain. The
first guess xb

1 associated with the observed LST is the land surface temperature
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of the model forecast (Tg) at the respective grid point. Under consideration of
these conditions q can be derived in agreement with the assimilation cycle:

ql =
(xtrue

2 − xb
2)b21((y − xb

1)

0.25 + b11
(8.17)

qnorm =
ql

(xtrue
2 − xb

2)
2

(8.18)

q = 1− (qnorm − 1)2 . (8.19)

Here, xtrue
2 is assumed as the true state of one of the examined atmospheric or

soil variables (xtrue
2 = {T (50), QV (50), Tso(1),Wso(1)}). Due to the adaptions

mentioned above, the success of the assimilation cycle depends significantly on
the quality of the Pb matrix. Thus, the score q provides information about the
quality of the ensemble covariances and about the positive or negative impact
of an analysis step. In this context q > 0 coincides with a successful analysis
step and q <= 0 coincides with an unsuccessful analysis step (Figure 8.6).

(a) (b)

Figure 8.6: (a) Example of ensemble consistency score q of LST
and T (50) on March 27, 2017 at 1200UTC split into positive q-values
(blue dots) and negative q-values (orange dots). The q-values are in
agreement with (b) the impact of LST assimilation on T (50) at the
same time, a positive impact by the assimilation of LST is illustrated
by blue dots and no or a negative impact by orange dots.

8.3.2 Results

To evaluate the ensemble covariances of the case studies from March and August
2017, adapted observations were generated, based on the conditions described
in Section 8.3.1. The adapted LST observations were assimilated each hour
initialized from EXPatso during the day (1000LT to 1400LT) and night hours
(2200LT to 0200LT). In the following, the ensemble correlations between the
LST and the near-surface variables (T (50), QV (50), Tso(1) and Wso(1)) are as-
sessed during night and day. Hereby, the score q is used to determine how well
these correlations reflect the nature run. Like in the assimilation experiments
(Chapter 7), a boundary of ten grid boxes is omitted in the following evaluation
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Figure 8.7: The temporally averaged ensemble correlations between
LST and the top-layer soil temperature Tso(1) (first row), top-
layer soil moisture Wso(1) (second row), bottom-layer atmospheric
temperature T (5) (third row) and bottom-layer atmospheric specific
humidity QV (50) (fourth row) from March 27 to March 29, 2017.
Under the category ‘DAY’ all samples valid from 1000LT to 1400LT
are summarized. Category ‘NIGHT’ covers the times valid from
2200LT to 0200LT and category ‘ALL’ covers all samples. The areal
mean of each sample is shown above the respective plot. White areas
indicate regions without observations due to clouds or lakes during
the investigated period.

78



8.3. EXPERIMENTS WITH SYNTHETIC LST

DAY NIGHT ALL

L
S
T

v
s
T

so
(1
)

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: 0.87

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: 0.84

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: 0.85

L
S
T

v
s
W

so
(1
)

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: -0.46

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: -0.04

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: -0.17

L
S
T

v
s
T
(5
0)

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: 0.76

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: 0.5

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: 0.58

L
S
T

v
s
Q
V
(5
0)

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: 0.49

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: 0.39

51◦N

51.5◦N

52◦N

52.5◦N

53◦N

12◦E 13◦E 14◦E 15◦E

Mean: 0.42

−0.8 −0.4 0.0 0.4 0.8

Figure 8.8: As Figure 8.7 but from August 28 to August 30, 2017.

to avoid boundary effects.

The correlation between LST and Tso(1) is particularly strong compared to
the other assessed near-surface variables (Figure 8.7 and 8.8, first rows). During
the March and the August case study, the two temperatures are positively
correlated with negligible differences between day and night and with around
8% higher correlation coefficient in August. The most noticeable difference
between day and night are shown by the correlation between LST and Wso(1)
(Figure 8.7 and 8.8, second rows). In both cases, March and August, the cor-
relation is negative during the day, while at night the correlation coefficient
is close to zero. During summertime the radiative solar heating is larger than
during wintertime. Hence, the exchange between the soil and the atmosphere
due to turbulent fluxes is stronger during summertime. The stronger correlation
between LST and the bottom-layer atmospheric variables, T (50) and QV (50),
in summer is also evident in the conducted case studies of this thesis (Figure 8.7
and 8.8, third and fourth rows). Both considered atmospheric variables are pos-
itively correlated with the LST whereby the temperature T (50) is more strongly
correlated than the specific humidity QV (50). While in March the correlation of
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LST with the atmospheric variables is stronger at night, in August it is stronger
during the day.
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Figure 8.9: Evaluation of appropriate correlations of the case
studies in (a) March and (b) August, 2017. Shown is the
percentage of q > 0 computed for the ensemble covariances between
LST and surface-near variables such as bottom-layer atmospheric
temperature (T (50)) and specific humidity (QV (50)), and top-layer
soil temperature (Tso(1)) and moisture (Wso(1)) shown during night
(blue bars) and during day (orange bars). The black error-bars
indicate the standard deviation.

Improvements due to the assimilation of LST were mainly achieved for soil
and atmosphere temperatures. Here, also the correlation with the observation
is strongest. The next step is to check how well the score q classifies the found
correlations and whether they fit the nature run. With regard to the temper-
atures, not only the correlation with LST is more pronounced, but they also
match better with the nature run than the bottom-layer atmospheric specific
humidity and the top-layer soil moisture (Figure 8.9). In March during night
and in August during day, when the temperatures are strongly correlated to the
LST, the score q is mainly positive as well. The weaker correlation between the
LST and the humidity variables is accompanied by a score q that is frequently
below zero. In most of the investigated cases, the probability for the humidity
variables of a positive q is about 50%. Only during daytime in August the
atmospheric specific humidity is noticeable. Here, the correlations determined
by the ensemble only match the nature run in 30% of the cases.

At certain points in the case studies the assimilation of LST had a partic-
ularly positive or negative impact on the atmosphere and soil - so we ask the
question whether the score q also fits or fits not, respectively. However, some
examples follow in detail. The first example deals with the impact of LST on
the atmospheric temperature in different height levels. In the experiment during
August, the RMSE of atmospheric temperature was improved during day, but
during the second night, the RMSE of the atmospheric temperature increased
above the ABL (Figure 7.17a). To compare the different height levels, the atmo-
spheric temperature of the bottom-layer (T (50)) and of one layer near the top
of the ABL during day (T (42)) are examined for their q-values (Figure 8.10).
During daytime, the q-values of T (50) and T (42) are similar and positive in
around 65% of the cases. In contrast, during nighttime both temperature layers
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Figure 8.10: Maps of positive q- (blue dots) and negative q-scores
(orange dots). Shown are the q-values computed on the base of
the ensemble covariances between LST and T (50) (first column),
and LST and T (42) (second column). The sign of the q-score is
displayed at August 29, 2017 1200UTC (first row) and at August 30,
2017 0000UTC (second row). White areas indicate regions without
observations due to clouds or lakes.

differ distinctly. While 67% of the q-values of the temperature in the bottom-
layer are positive, only 30% of the q-values of T (42) are positive, i.e. within the
model layer above the nocturnal ABL, the ensemble of the assimilation cycle
and the nature run do not match. This mismatch results in an analysis, which
is pulled in the wrong direction. Hence, the assimilation of LST has a negative
impact on T (42).

Another interesting case in August concerns the impact of LST assimilation
on specific humidity, the impact is negative on the first night of the case study
and positive on the second night (Figure 7.19a). However, the fractions of posi-
tive and negative q-values at these times shows only a small difference. On the
first night, only about 5% less q-values are positive. Thus, the impact of LST
assimilation seems to be due to noise within the background error covariance
matrix.

The influence of the assimilation of LST on soil moisture has a mainly
positive impact during March (Figure 7.18b) and a mainly negative impact
during August (Figure 7.15b). However, there is always a shorter time range
when the influence of LST assimilation is exactly the opposite. If these points
in time are compared, it can be seen that the positive impact coincides with
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Figure 8.11: As Figure 8.10 but shown is the sign of the q-score
computed on the base of the ensemble covariances between LST and
bottom-layer atmospheric specific humidity QV (50). The sign of the
q-score is shown at August 28, 2017 2300UTC (first column) and at
August 29, 2017 2300UTC (second column).
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Figure 8.12: As Figure 8.10 but shown is the sign of q-scores
computed on the base of the ensemble covariances between LST and
top-layer soil moisture Wso(1). The q-score signs are shown at (a)
March 27, 2017 0600UTC, (b) at March 27, 2017 1700UTC, (c) at
August 28, 2017 1700UTC and (d) at August 29, 2017 at 1500UTC.
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less observations and a larger fraction of positive q-values in percentage terms
(Figure 8.12). Thereby, in March 62% q-values are positive and in August about
54%.

8.3.3 Summary

The case studies in March and August 2017 were examined for their correlations
and their q-values. It is found that the correlations between temperatures,
especially between LST and soil temperature, are stronger than those between
LST and the humidity and moisture variables. Particularly, in August at
day and in March at night the background error covariances concerning the
temperatures (T (50) and Tso(1)) fit well to the nature run. The humidity
variables (QV (50) and Wso(1)) are less distinct. The impact on them by
LST assimilation seems to be based more on noise than on correct correlations
(Section 8.3.2). Since the nature run of this thesis corresponds to the higher-
resolution COSMO-model, one would expect more positive q-values due to the
use of the same model during the assimilation cycle. If q is below or equal to
zero, the nature run does not match with the ensemble covariances of the lower-
resolved COSMO-model. This supports the assumption that either in these
case studies the ensemble spread is biased low or that the ensemble is not large
enough to adequately represent the covariances.
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Conclusions

LST retrievals have been assimilated in an OSSE framework in a coupled land-
atmosphere NWP-model. To obtain a suitable LST model equivalent, the
representation of LST in the COSMO-model was evaluated and two vegetation
temperature schemes were analyzed. For improvement of the model equivalent
the skin conductivity scheme (Schulz and Vogel, 2020) was implemented and
applied in the experiments. With the conducted OSSE experiments the poten-
tial impact of the assimilation of LST was determined and differently coupled
land-atmosphere assimilation systems were tested. The experiments based on
the weakly coupled data assimilation system were based on control vectors
which either includes only atmospheric or soil variables. In the strongly coupled
system, however, the control vector contained atmospheric and soil variables.

The experiments included single observation experiments to verify the
functionality of the strongly coupled land-atmosphere assimilation system and
two-day clear sky case studies in March and August 2017. Within the case
studies LST was assimilated hourly and every six hours a 24 hour forecast was
initialized from the assimilation cycle. The comparison of the weakly coupled
and the strongly coupled assimilation system showed that the strongly coupled
assimilation system reduced the RMSE of soil and atmospheric temperature
stronger than the weakly coupled systems. These experiments were the first,
that assimilated LST simultaneously for the land and the atmosphere within
the COSMO-KENDA system. Thus, this assimilation approach is one step
further than Candy et al. (2017) and Bosilovich et al. (2007), who assimilated
LST into a land model, which was coupled with an atmospheric model. Lin
and Pu (2019) compared a weakly and a strongly coupled assimilation system
for the assimilation of soil moisture. They, as well, found that the fully
coupled land-atmosphere assimilation system outperforms the weakly coupled
one. The positive impact of LST assimilation on the first guess was larger during
daytime, where a stronger coupling between LST and ABL temperature was
found. The temperature forecasts of the ABL initialized from the assimilation
cycle improved for up to nine hours and even more, if the soil temperature
and moisture were part of the control vector. Further investigations of the
covariances using a newly introduced ensemble consistency score q showed that
the covariances of the nature run were well reproduced for the temperatures
within the soil and within the ABL. In contrast, the covariances between LST
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and the moisture variables of the nature run were often not well represented
in the model ensemble. As a result, the influence of LST assimilation on
temperature was beneficial, while it could also be detrimental to moisture.

9.1 Discussion of Results

To create a good starting point for the assimilation of LST, it was necessary to
first answer the following questions:

• How to implement a vegetation/canopy temperature parameterization into
the COSMO-model to predict a more accurate land surface temperature?

• Which implementation fits best with the LST retrieval derived from the
remote sensing measurements to get a sufficient model equivalent?

The comparison between the LST retrieval derived by the Land-SAF and the
LST of the COSMO-model showed that the amplitude of the modelled LST
during the diurnal cycle was to small (Figure 5.5). Especially at night, the
simulated temperatures at the land surface were too warm. The evaluation
of the canopy scheme (Braden, 2012; Samuelsson et al., 2006) and the skin
conductivity scheme (Viterbo and Beljaars, 1995; Verhoef and Vidale, 2012;
Schulz and Vogel, 2020) showed that both schemes were able to reproduce the
temperature amplitude during the day, but only the skin conductivity scheme
was able to reproduce the colder LST retrievals at night (Figure 5.6). Hence,
the skin conductivity scheme was employed into the nature run, to perform the
experiments and, to derive the model equivalent and synthetic observations.

One main motivation of this thesis was to improve the prediction of the
weather within the ABL by assimilating LST. Thus, to answer the question

• How does the assimilation of LST influence the atmospheric, the soil, and
the land-atmosphere coupling values?

is an important part of this thesis. The conducted case studies showed that
the first guess of the temperature of the soil and the ABL can benefit from the
assimilation of LST. Hereby, the effect of LST assimilation on the atmosphere
(Figure 7.16a and Figure 7.17a) depended on the diurnal cycle and the amount of
available synthetic LST observations. The improvement due to the assimilation
of LST increased with the growth of the mixed boundary layer and decreased
with the transition to the nocturnal stable boundary layer. Above the ABL
and during the evening transition, LST assimilation had also a negative impact.
The combination of the smaller number of LST retrievals and the lower effect of
LST assimilation on the second day of the March 2017 experiment indicate that
the impact of LST assimilation is not observable for long in the atmosphere. In
contrast, the near-surface soil layers could benefit over the whole experimental
period. Here, the information of LST assimilation had a longer lasting positive
impact on the soil that slowly permeates to deeper levels (Figure 7.16b and
Figure 7.17b). Whether the positive impact extends into the layers below 1m
depth can be answered by experimental periods longer than the ones employed
here. Since the soil is more inert than the atmosphere, the propagation of
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information of LST assimilation into the depths is slower than the propagation
through the atmosphere, thus the improvements in the soil layers also remained
longer. This lead to the fact that the ABL still benefited from LST assimilation
through the information in the soil even if the direct influence of LST assimi-
lation on the atmosphere had already disappeared due to less observations, for
example (Figure 7.16a). In both, the soil and the ABL, mainly the temperature
predictions of the model benefited from the LST assimilation. The effects on
moisture variables were mixed: the assimilation of LST could have a positive
impact on atmospheric humidity in the afternoon, but a negative impact dur-
ing the morning transition and night (Figure 7.18a and Figure 7.19a). The soil
moisture could improve if additional moisture was introduced at an appropriate
time (Figure 7.18b and Figure 7.19b). The turbulent fluxes of the land surface
energy budget were not part of the control vector, so they were not directly
updated in the analysis step. But due to changes in the temperature and the
humidity of the atmosphere and the soil, the turbulent fluxes were adjusted
as well. During daytime the impact of LST assimilation on the fluxes was
clearly positive. The RMSE of the sensitive and the latent heat flux in March
and August was reduced by up to 25%. At night, however, the effect of the
deterioration of atmospheric humidity on the latent heat flux was clearly visible.

The positive impact of LST assimilation on the temperature prediction re-
mained visible in the atmosphere between the first three to nine forecast hours
and in the soil over the entire forecast period of 24 hours. The improvement
through LST assimilation in the prediction of the ABL temperature depended
strongly on the available observations at the initial time of the 24 hour forecast,
because the atmosphere does not keep the information over a long time period.
If the LST retrieval was exhaustively available, the forecast of the atmospheric
temperature could be improved by up to nine hours (Figure 7.25a and Fig-
ure 7.26a). Because the soil temperature varies on longer timescales than the
atmospheric temperature, the soil kept the information of LST assimilation
throughout the entire forecast. Due to the improved prediction of the soil
temperature and moisture, the RMSE of the boundary layer temperature was
partially reduced even after the first 9 hours of prediction. The better prediction
of ABL temperature may potentially improve forecasts of ABL processes like
convection, clouds, moist convection, and fog formation.

In order to assimilate LST to the best effect, different variants of the weakly
and strongly coupled assimilation system were tested. In this process an answer
for the research question

• Does the strongly coupled land-atmosphere assimilation system outper-
form the weakly coupled land-atmosphere assimilation system?

was found in the framework for COSMO-KENDA. The two-day experiments of
March and August 2017 provided insight in the direct and indirect impact of
LST assimilation within the weakly and fully coupled assimilation system. Two
weakly coupled and one strongly coupled land-atmosphere assimilation systems
were compared. In the first experiment, the control vector contained only atmo-
spheric variables. Thus, the influence of LST assimilation on the soil was only
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indirect through the update of its upper boundary condition: the atmosphere.
Therefore, the new information spread slowly in the soil and was correspond-
ingly small. Hereby, the soil moisture gained almost no information from the
assimilation of LST. In the second experiment, the control vector contained only
the soil temperature and moisture. In this way just the soil was updated in the
analysis step so that the influence on the atmosphere was indirectly given via the
updated soil as its lower boundary condition. While the indirect influence of the
atmosphere on the soil did not exhibit a clearly recognizable diurnal cycle, the
soil influenced the atmospheric temperature mainly during the day (Figure 7.16a
and Figure 7.17a). Thereby, the information transferred to the atmospheric hu-
midity was rather low and the reduction of RMSE due to LST assimilation was
below 10%. In both experiments variables of the weakly coupled assimilation
system that were directly coupled to the LST assimilation benefited more than
the variables that were only indirectly coupled. In the third experiment, the
control vector contained the atmospheric and the soil variables, so that both
parts of the model system, land and atmosphere, were directly influenced by
the assimilation of LST. The results show, that the impact of LST assimilation
of the first and the second experiment were combined successfully. To conclude,
the combination of a strong direct impact on the atmosphere and longer lasting
indirect impact by the soil is promising. It was able to reduce near surface at-
mospheric temperature RMSE by up to 60% and the temperature of the upper
soil levels by up to 40% within the OSSE framework. Near-surface observations,
such as LST or soil moisture, can increase their influence on the overall system
through the fully coupled land-atmosphere assimilation system, which can have
a positive impact on the weather forecasts (Sgoff et al., 2020; Lin and Pu, 2020).

The results of the three experiments in March and August 2017 lead to the
presumption that the temperature-humidity correlations of the ensemble did
not always correctly reflect the correlations of the nature runs. Hence, it was
important to take a closer look at the background error covariances Pb:

• How do background error covariances influence the impact of LST
assimilation within the fully coupled land-atmosphere assimilation system?

Through the construction of the LETKF the impact of synthetic LST assimila-
tion on the atmosphere and the soil was due to its background cross-correlations.
In the conducted experiments, the correlation between the observations and the
simulated atmospheric temperature depended on the time of day (Figure 7.4a
and 7.5a and Figure 8.7 and 8.8). During the day, the LST and the temperature
of the ABL were positively correlated because of the well mixed boundary layer.
The correlation between LST and ABL temperature represented realistically
the interaction between the land and the atmosphere due to turbulent fluxes.
During the night, the correlation between LST and the temperature of the ABL
was less clear. The correlation was partly negative, partly positive and also
uncorrelated. This could be the result of the poorer representation of the stable
boundary layer (Holtslag et al., 2013). Furthermore, the correlation between
LST and soil moisture was significantly more pronounced during daytime (Fig-
ure 8.7 and Figure 8.8). The correlation between LST and soil temperature of
the upper levels was always positively correlated, hence the soil temperature
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follows LST over the whole diurnal cycle. In contrast, the deeper soil layers did
not change considerably within a day and were more or less uncorrelated with
LST.

There are several possibilities to evaluate and adjust the background error
covariances, which are, for example, reviewed by Bannister (2008a,b) and
Ehrendorfer (2007). Since the true state of the atmosphere is unknown,
either the ensemble mean or time-shifted predictions are usually used to
examine the background error covariances. This work was based on an
OSSE, hence a true state was available to validate the consistency of the
background error covariances with the correlations of the nature run. Thus
the ensemble consistency score q was introduced. The score q indicates whether
the background error covariances between the observation and a related model
variable are consistent with the nature run (q > 0) or not (q ≤ 0). In the
evaluation of q, it was noticeable that strongly correlated variables were more
frequently associated with a positive score q, while weakly or uncorrelated ones
were more frequently associated with a negative score q. Hence, the background
error covariances of certain variables can be dominated by sample noise, which
limits the positive impact of LST assimilation on moisture variables within this
assimilation framework. The score q proves to be a useful initial indicator of the
ensemble consistency.

9.2 Limitations and Outlook

The period of the conducted experiments was limited to two-day periods. To
further support the achieved results, besides the diurnal cycle also the seasonal
cycle has to be explored and longer experiment have to be conducted. Further-
more the experiment domain should be extended. For example, Candy et al.
(2017) found a benefit to forecasts of near-surface temperature due to LST
assimilation, particularly over Africa.

Due to the assimilation of LST, particularly the temperature of the predicted
ABL was improved. By the additional assimilation of near-surface moisture ob-
servations, the positive impact could be extended to further variables of the
atmosphere, like the specific humidity. This is because the background error
covariance matrix allows the information from the observations to influence each
other and thus jointly influence the analysis (Baldauf et al., 2011). Synthetic
studies by Han et al. (2013, joint assimilation of LST and microwave brightness
temperature) and Abdolghafoorian and Farhadi (2019, joint assimilation of
soil moisture and LST) and the study with real data by Tajfar et al. (2020a,
joint assimilation of LST and reference-level temperature and relative humidity)
showed promising steps in this direction.

A joint assimilation could also improve the background error covariances
between the observed variables and the variables of the control vector. The
effect on the humidity variables by the assimilation of LST, which in this thesis
was probably mainly dominated by noise, could change positively if the joint
assimilation provides a clearer signal within the background error covariances.
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One possibility to prevent spurious correlations between the near-surface obser-
vations and the atmosphere above the ABL is a stricter vertical localization. In
particular during night, this could reduce the negative impact of LST assimila-
tion.

Overall the work of this thesis is restricted to the setup of an OSSE and
an equal benefit of LST assimilation for operational systems with real data is
not guaranteed. Hence, the experiments should be seen as a test of concept,
as results from OSSEs are generally biased to better results than studies based
on real observations. However, the results encourage the evaluation of LST as-
similation within the coupled land-atmosphere system with real LST retrievals.
The positive impact achieved by the assimilation of real LST retrievals into land
models (Ghent et al., 2010) and weakly coupled land-atmosphere models (Candy
et al., 2017) supports this future step. Our results show that assimilation of
LST has a stronger impact on the lower atmosphere during the day than during
the night. For example, Candy et al. (2017) has assimilated LST retrieval only
at night, since the observation errors of the LST retrieval are higher during
daytime. The results of this work suggest, that the observations should also be
assimilated during daytime, to increase the impact of assimilation. Hence, a
useful diurnal bias correction is necessary.

As also mentioned by Trigo et al. (2015), improved LST also has advantages
for the use of further brightness temperature observations by satellites for
assimilation. By improving LST, the simulation of brightness temperature can
benefit as well and thus reduce the deviations between simulated and observed
brightness temperatures. This would provide the opportunity to assimilate the
information received by further surface and near-surface satellite observations
into the numerical weather prediction models. These additional observations
can improve the forecast of the processes in the ABL further.
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Appendix A

Programming Lorenz 1963
System

The programming of the Lorenz 1963 system is adopted from Chapter 6 of
Nakamura and Potthast (2015) and adjusted to the ensemble consistency score
q. Hence, main parts of the coding and structure follow the scripts of Nakamura
and Potthast (2015) and are as well implemented in octave (Eaton et al., 2020).

The Lorenz 1963 system is a dynamical system of three coupled ordinary
differential equations

dx1

dt
= σ(x2 − x1) (A.1)

dx2

dt
= x1(ρ− x3)− x2 (A.2)

dx3

dt
= x1x2 − βx3 (A.3)

with σ the Prandtl number, ρ the Rayleigh number and, β a non-dimensional
wave number. The typical values of these three constants are: σ = 10, ρ = 28
and, β = 8/3. In the performed experiments the constants ρ and β are fixed to
the typical values, meanwhile for σ in the nature run and the model different
values are chosen. With the state vector of the system x = (x1, x2, x3)

T ∈ R3

the system can also be written as follows

dx

dt
(t) = F (t,x) with x(0) = xinit (A.4)

F (t,x) :=

⎛⎝ σ(x2 − x1)
x1(ρ− x3)− x2

x1x2 − βx3

⎞⎠ . (A.5)

The code of the forcing terms of the Lorenz 1963 dynamics is given as follows:

Code A.1 Function sim Lorenz63 F to force the Lorenz 1963 dynamical
system.

1 function xout = sim_Lorenz63_F(xin, sigma, rho, beta)

2 xout(1,1) = sigma*(xin(2) - xin(1));

3 xout(2,1) = xin(1)*(rho - xin(3)) - xin(2);

4 xout(3,1) = xin(1)*xin(2) - beta*xin(3);



To numerically solve the coupled differential equations (A.1 to A.3) a 4th-order
Runge-Kutta scheme is used. It starts from an initial state xinit and iteratively
calculates the future states

k1 = F (tk,xk) (A.6)

k2 = F (tk +
1

2
h,xk +

1

2
hk1) (A.7)

k3 = F (tk +
1

2
h,xk +

1

2
hk2) (A.8)

k4 = F (tk + h,xk + hk3) (A.9)

xk+1 = xk +
1

6
h(k1 + 2k2 + 2k3 + k4) (A.10)

with h as time spacing of the iterations. The implementation in octave is given
by

Code A.2 Function sim Lorenz63 RungeKutta to numerically solve the
ordinary differential equations of the Lorenz 1963 system by a 4th-order Runge-
Kutta scheme.

1 function [x1, x2, x3] = sim_Lorenz63_RungeKutta(N_Time, h, x1_init, ...

2 x2_init, x3_init, sigma, rho, beta)

3 x1 = zeros(N_Time,1); % initialization

4 x2 = zeros(N_Time,1); % ~

5 x3 = zeros(N_Time,1); % ~

6 x1(1) = x1_init; % initial value x1

7 x2(1) = x2_init; % initial value x2

8 x3(1) = x3_init; % initial value x3

9 % Solving dx/dt = F(x,t), x(0)=x_init for x=[x1;x2;x3] via

10 % the 4-th order Runge-Kutta scheme.

11 for i = 1:N_Time

12 k1 = sim_Lorenz63_F([x1(i);x2(i);x3(i)], sigma, rho, beta);

13 k2 = sim_Lorenz63_F([x1(i);x2(i);x3(i)] + h*k1/2, sigma, rho, beta);

14 k3 = sim_Lorenz63_F([x1(i);x2(i);x3(i)] + h*k2/2, sigma, rho, beta);

15 k4 = sim_Lorenz63_F([x1(i);x2(i);x3(i)] + h*k3, sigma, rho, beta);

16 xtmp = [x1(i);x2(i);x3(i)] + (h/6)*(k1 + (2*k2) + (2*k3) + k4);

17 x1(i+1) = xtmp(1);

18 x2(i+1) = xtmp(2);

19 x3(i+1) = xtmp(3);

20 end

and includes the call of the function sim Lorenz63 F.

The function sim Lorenz63 Run gives the framework to generate the Lorenz
1963 dynamics. By calling this function an initial state or an ensemble of states
with L ∈ N members is moved one time step into the future.

Code A.3 By function sim Lorenz63 Run the Lorenz 1963 dynamics are
generated. As input an initial state or an ensemble of states, a time step and a
constant σ are needed.
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1 function xout = sim_Lorenz63_Run(xin, T, sigma)

2 % xin is the initial state or an ensemble of such states, size 3xL

3 % T the time to run the system for

4 % sigma is a variable Parameter for Lorenz 1963 Dynamics

5 rho = 28; % fixed Parameter for Lorenz 1963 Dynamics

6 beta = 8/3; % fixed Parameter for Lorenz 1963 Dynamics

7 L = size(xin,2); % Size of current input ensemble

8 % Loop over all ensemble members

9 for ll=1:L

10 x1_init = xin(1,ll); % initial value

11 x2_init = xin(2,ll); % initial value

12 x3_init = xin(3,ll); % initial value

13 h = 0.005; % time grid spacing and the

14 N_Time = T/h; % corresponding number of time steps

15 % Model Dynamics

16 [x1,x2,x3] = sim_Lorenz63_RungeKutta(N_Time, h, x1_init, ...

17 x2_init, x3_init, sigma, rho, beta);

18 % output state(s)

19 xout(:,ll) = [x1(N_Time,1), x2(N_Time,1), x3(N_Time,1)];

20 end

Based on the presented functions the octave script CodeA.4 produces the
nature run and the measurement data of the first component of the state. By
repeatedly executing the octave Function sim Lorenz63 Run (CodeA.3) the
nature run is transported through time. The time step is set to dt = 0.1. At each
time step the first component of the model state is measured. The measurements
are generated with the observation operator HNR = (1, 0, 0). Additionally some
noise is added to mimic the observational error.

Code A.4 octave script Generate Nature Run and Observations generates
the nature run and its observational data y.

1 x_init = [0;-10;21]; % Initial state

2 randn(’seed’,0); % Use the same random numbers

3 % to achieve repeatability

4 % 1) Setup Observation operator of "nature run"

5 % observing the first component of the state only

6 H_NR = [1 0 0];

7 % 2) Generate a "nature run" and the "observations"

8 N_cycle = 500; % steps for "nature run"

9 x = x_init; % initial state for iteration

10 dtime = 0.1; % time interval between measurements

11 sigmaO = 9; % Parameter for the Lorenz 1963 Dynamics

12 for j = 1:N_cycle

13 x = sim_Lorenz63_Run(x,dtime,sigmaO); % Calculate next true state

14 xv(:,j) = x; % and save it in xv

15 noise(j) = 0.5*(rand(size(H_NR,1),1) - 0.5); % generate random noise error

16 y(:,j) = H_NR*x + noise(j); % observation with noise

17 end
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The Lorenz 1963 system of the nature run and the model are computed
with different σ constants. The nature run uses σ0 = 9 and the model uses
σA = 15. By the assimilation of the measured first component of the nature
run, the first guess ensemble should be pulled into the direction of the true
state. The model ensemble consists of L = 40 members and is transported in
time with the octave Function sim Lorenz63 Run (CodeA.3). Each time step
dt = 0.1 corresponds to the forecast step of the assimilation cycle. Hereby,
each forecast step is followed by an analysis step, which is implemented by the
ensemble Kalman filter (Section 2.1). Furthermore, each time step the ensemble
consistency score q is determined for x2 and x3.

Code A.5 octave script EnKF and Score computation uses the Ensemble
Kalman filter to create the analysis ensemble and calculates the score q2 and
q3.

1 L = 40; % number of ensemble members

2 m = size(H, 1); % number of observations

3 R0 = 0.15*eye(m, m); % data error covariance matrix

4 H = [H1 0 0]; % observation operator EnKF

5 xa = repmat(x_init,1,L) + 0.9*(rand(3,L)-0.5); % initialize ensemble

6 sigmaA = 15; % Lorenz 1963 Parameter

7 for j=1:N_cycle

8 xb = sim_Lorenz63_Run(xa, dtime, sigmaA); % background ensemble

9 xbm = (sum(xb’))’/L; % and its mean

10 xbv(:,j) = xbm; % save mean in xbv

11 Q = (xb-repmat(xbm,1,L))/sqrt(L-1); % setup matrix of differences

12 B = Q*Q’; % ensemble covariance matrix

13 K = B*H’*inv(R + H*B*H’); % Kalman Gain Matrix

14 inc(j) = inv(R + H*B*H’)*(y(:,j) - H*xbm); % calculate increment

15 xam = xbm + K*(y(:,j) - H*xbm); % analysis mean

16 % Square Root Filter for Analysis Ensemble

17 TT = eye(L,L) - Q’*H’*inv(R + H*B*H’)*H*Q;

18 [U,S,V] = svd(TT); % take SVD, i.e. TT = U*S*V’

19 T = U*sqrt(S)*V’; % square root of TT

20 Qad = Q*T*1.2; % analysis differences

21 xa = repmat(xam,1,L)+Qad*sqrt(L-1); % full analysis ensemble

22 xav(:,j) = xam; % save analysis mean

23 % calculation of ensemble covariance score (q2)

24 % Equation 8.13

25 q2_l(j) = ((xv(2,j) - xbm(2))*B(2,1)*(y(1,j) - xbm(1)))/(R0 + B(1,1));

26 q2_norm(j) = q2_l(j)/((xv(2,j) - xbm(2))^2); % Equation 8.14

27 q2(j) = 1 - (q2_norm(j) - 1)^2; % Equation 8.16

28 % calculation of ensemble covariance score (q3)

29 q3_l(j) = ((xv(3,j) - xbm(3))*B(3,1)*(y(1,j) - xbm(1)))/(R0 + B(1,1));

30 q3_norm(j) = q3_l(j)/((xv(3,j) - xbm(3))^2);

31 q3(j) = 1 - (q3_norm(j) - 1)^2;

32 end
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To avoid that the model error is underestimated the spread of the analysis
ensemble is enlarged by a multiplication with the inflation factor 1.2 (CodeA.5,
line 21).
Sensitivity tests were carried out to determine how strongly the informative
value of the score q depends on deviations between H and R in the analysis step
and the q calculation (Table 8.1). For the sensitivity test depending on H this
octave script was used:

Code A.6 Script to control sensitivity test of the dependency of q on the
accuracy of the observation operator H. Nature run, data assimilation cycle,
computation, and evaluation of q are executed by this script. The data is saved
for subsequent analysis.

1 clear all; close all;

2 H_data = 0.8:0.01:1.2;

3 H_steps = size(H_data,2);

4 R = 0.15;

5 var = ’H’;

6 for k = 1:H_steps

7 H1 = H_data(k)

8 Generate_Nature_Run_and_Observations;

9 EnKF_and_Score_computation;

10 Evaluation_Score_q;

11 endfor

12 save_data;

The sensitivity test depending on R was performed by this octave script:

Code A.7 Script to control sensitivity test of the dependency of q on the
accuracy of the observation error R. Nature run, data assimilation cycle,
computation, and evaluation of q are executed by this script. The data is saved
for subsequent analysis.

1 clear all; close all;

2 R_data = 0.01:0.01:0.3;

3 R_steps = size(R_data,2);

4 H1 = 1;

5 var = ’R’;

6 for k = 1:R_steps

7 R = R_data(k)

8 Generate_Nature_Run_and_Observations;

9 EnKF_and_Score_computation;

10 Evaluation_Score_q;

11 endfor

12 save_data;

The quality of q as an estimator of the assimilation success does not depend
on q being positive or negative, but on it correctly classifying one of either
two cases: An successful assimilation step with Equation 8.2 fulfilled and an
unsuccessful step vice versa. The evaluation is based on a contingency table,
which groups the possible combined outcomes of score and assimilation step into
four categories: hits, where q > 0 coincides with a successful assimilation step,
correct negatives, where q ≤ 0 coincides with an unsuccessful assimilation step,
misses, where q ≤ 0 but the assimilation step is successful, and false alarms,
where q > 0 but the assimilation step is unsuccessful (Table 8.2). The octave
script Evaluation Score q.m determines the fraction of these four categories:
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Code A.8 Analysis of score q based on the contingency table (Table 8.2).

1 % Evaluation of Score q

2 % q > 0 : positive q || q <= 0 : negative q

3 q_positive = zeros(2,size(q2,2));

4 q_positive(1,:) = q2 > 0;

5 q_positive(2,:) = q3 > 0;

6 % impact of LST assimilation

7 eq_8_2 = zeros(2,size(q2,2));

8 eq_8_2(1,:) = abs(xv(2,:)-xbv(2,:)) - abs(xv(2,:)-xav(2,:));

9 eq_8_2(2,:) = abs(xv(3,:)-xbv(3,:)) - abs(xv(3,:)-xav(3,:));

10 % eq_8_2 > 0 : positive impact || eq_8_2 <= 0 : negative impact

11 enkf_success = zeros(2,size(q2,2));

12 enkf_success(1,:) = eq_8_2(1,:) > 0;

13 enkf_success(2,:) = eq_8_2(2,:) > 0;

14 for i = 1:2

15 q_diff(i,k) = sum(abs(q_positive(i)-enkf_success(i)));

16 q_fits_rel(i,k) = ((N_cycle - q_diff(i,k))/N_cycle);

17 q_diff_rel(i,k) = (q_diff(i,k)/N_cycle);

18 % hits; misses; false_alarm; correct_negative;

19 q_hits(i,k) = sum(((enkf_success(i)+q_positive(i))==2))/N_cycle;

20 q_true_negative(i,k) = sum(((enkf_success(i)+q_positive(i))==0))/N_cycle;

21 q_misses(i,k) = sum((enkf_success(i)-q_positive(i))==1)/N_cycle;

22 q_false_alarm(i,k) = sum((enkf_success(i)-q_positive(i))==-1)/N_cycle;

23 endfor

To save the data for subsequent analysis and visualization this octave script
was used:

Code A.9 This script saves the data as .csv-file for subsequent analysis.

1 % Save Data as *.csv for Visualization

2 save_Data = [q2_diff’ q2_fits_rel’ q2_diff_rel’ q2_false_alarm’ ...

3 q2_misses’ q2_hits’ q2_correct_negative’];

4 csvwrite([’Sensitivity_test_q2_’ var ’.csv’], save_Data)

5 % Save Data as *.csv for Visualization

6 save_Data = [q3_diff’ q3_fits_rel’ q3_diff_rel’ q3_false_alarm’ ...

7 q3_misses’ q3_hits’ q3_correct_negative’];

8 csvwrite([’Sensitivity_test_q3_’ var ’.csv’], save_Data)
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Entwicklung: Offenbach, Germany.

Bannister, R. N. (2008a). A review of forecast error covariance statistics in at-
mospheric variational data assimilation. I: Characteristics and measurements
of forecast error covariances. Quarterly Journal of the Royal Meteorological
Society, 134(637):1951–1970.

Bannister, R. N. (2008b). A review of forecast error covariance statistics in
atmospheric variational data assimilation. II: Modelling the forecast error
covariance statistics. Quarterly Journal of the Royal Meteorological Society,
134(637):1971–1996.

Bateni, S., Entekhabi, D., and Jeng, D.-S. (2013a). Variational assimilation
of land surface temperature and the estimation of surface energy balance
components. Journal of Hydrology, 481:143 – 156.

Bateni, S. M., Entekhabi, D., and Castelli, F. (2013b). Mapping evaporation and
estimation of surface control of evaporation using remotely sensed land surface
temperature from a constellation of satellites. Water Resources Research,
49(2):950–968.

Berk, A., Acharya, P. K., Bernstein, L. S., Anderson, G. P., Chetwynd, J. H.,
and Hoke, M. L. (2000). Reformulation of the MODTRAN band model
for higher spectral resolution. In Shen, S. S. and Descour, M. R., editors,
Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI,
volume 4049, pages 190 – 198. International Society for Optics and Photonics,
SPIE.

Blahak, U. (2015). Implementation and Significance of TKE-Advection
in COSMO 5.0 for itype turb=3 and Other Turbulence-Related LES-like



BIBLIOGRAPHY

Sensitivity Studies Including 3D Turbulence. COSMO Newsletter, 15(1.2):11–
20.

Borbas, E., Wetzel Seemann, S., Huang, H.-L., Li, J., and Menzel, W. P.
(2005). Global profile training database for satellite regression retrievals with
estimates of skin temperature and emissivity. Proceedings of the International
ATOVS Study conference-XIV, Bejing China, pages 763–770.

Bosilovich, M. G., Radakovich, J. D., da Silva, A., Todling, R., and Verter, F.
(2007). Skin Temperature Analysis and Bias Correction in a Coupled Land-
Atmosphere Data Assimilation System. Journal of the Meteorological Society
of Japan. Ser. II, 85A:205–228.

Bosveld, F. C., Baas, P., Steeneveld, G.-J., Holtslag, A. A. M., Angevine, W. M.,
Bazile, E., de Bruijn, E. I. F., Deacu, Daniel an d Edwards, J. M., Ek, M.,
Larson, V. E., Pleim, J. E., Raschendorfer, M., and Svensson, G. (2014).
The Third GABLS Intercomparison Case for Evaluation Studies of Boundary-
Layer Models. Part B: Results and Process Understanding. Boundary-Layer
Meteorology, 152(2):157–187.

Boussetta, S., Koike, T., Yang, K., Graf, T., and Pathmathevan, M. (2008).
Development of a coupled land–atmosphere satellite data assimilation system
for improved local atmospheric simulations. Remote Sensing of Environment,
112(3):720 – 734.

Braden, H. ((reviesd version) 2012). The model AMBETI, A detailed description
of a soil-plant-atmosphere model. Technical report, Deutscher Wetterdienst,
Offenbach.

Burgers, G., Jan van Leeuwen, P., and Evensen, G. (1998). Analysis Scheme in
the Ensemble Kalman Filter. Monthly Weather Review, 126(6):1719–1724.

Candy, B., Saunders, R. W., Ghent, D., and Bulgin, C. E. (2017). The
Impact of Satellite-Derived Land Surface Temperatures on Numerical Weather
Prediction Analyses and Forecasts. Journal of Geophysical Research:
Atmospheres, 122(18):9783–9802.

Caselles, V., Valor, E., Coll, C., and Rubio, E. (1997). Thermal band selection
for the PRISM instrument: 1. Analysis of emissivity-temperature separation
algorithms. Journal of Geophysical Research, 102:11.

Desroziers, G., Berre, L., Chapnik, B., and Poli, P. (2005). Diagnosis of
observation, background and analysis-error statistics in observation space.
Quarterly Journal of the Royal Meteorological Society, 131(613):3385–3396.

Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D., Raschendorfer,
M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P., and Vogel, G.
(2011). A description of the nonhydrostatic regional COSMO model. Part
II: Physical parameterization. Technical report, Deutscher Wetterdienst:
Offenbach, Germany.

101



BIBLIOGRAPHY

Eaton, J. W., Bateman, D., Hauberg, S., and Wehbring, R. (2020). GNU
Octave version 5.2.0 manual: a high-level interactive language for numerical
computations.

Ehrendorfer, M. (2007). A review of issues in ensemble-based Kalman filtering.
Meteorologische Zeitschrift, 16(6):795–818.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error statistics.
Journal of Geophysical Research: Oceans, 99(C5):10143–10162.

Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and
practical implementation. Ocean Dynamics, 53(4):343–367.

Freitas, S. C., Trigo, I. F., Bioucas-Dias, J. M., and Goettsche, F.-M. (2010).
Quantifying the Uncertainty of Land Surface Temperature Retrievals From
SEVIRI/Meteosat. IEEE Transactions on Geoscience and Remote Sensing,
48(1, 2):523–534.

Gaspari, G. and Cohn, S. E. (1999). Construction of correlation functions in two
and three dimensions. Quarterly Journal of the Royal Meteorological Society,
125(554):723–757.

Ghent, D., Kaduk, J., Remedios, J., Ardö, J., and Balzter, H. (2010).
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Assimilation synthetischer Landoberflächentemperaturen
in ein vollständig gekoppeltes Land-Atmosphären-Modell

Motivation und Hinführung

Die planetare beziehungsweise atmosphärische Grenzschicht ist die unterste
Schicht unserer Atmosphäre. In diesen unteren ein bis drei Kilometern spielt
sich der Großteil des irdischen Lebens ab. Das Wettergeschehen hier hat eine
direkte Wirkung auf unser Leben, unsere Gesellschaft, unsere Ökonomie und
unsere Energie- und Landwirtschaft. Aus diesem Grund ist die Vorhersage
des Wetters in diesem Bereich der Atmosphäre von großer Bedeutung. Der
solare Energieeintrag in den Boden beeinflusst die Prozesses innerhalb der
Grenzschicht stark, denn die Energie wird durch die Kopplung zwischen Bo-
den und Atmosphäre an beide weitergegeben. Dadurch hängt der Aufbau und
die Entwicklung der atmosphärischen Grenzschicht wesentlich von der Land-
Atmosphären-Kopplung ab. Dementsprechend ist diese Kopplung ein wichtiger
Prozess um die Grenzschicht in Modellen realistisch simulieren zu können.

Die Prozesse innerhalb der Atmosphäre sind nichtlinear und chaotisch.
Dadurch können Abweichungen vom realen Zustand des Systems in den An-
fangsbedingungen eines numerischen Wettervorhersagemodells exponentiell
anwachsen. Somit limitiert unter anderem die Genauigkeit der Anfangsbedin-
gungen des Modells den zeitlichen Vorhersagehorizont des Wettergeschehens.
Um die Vorhersagbarkeit des Wetters zu verbessern, müssen zum Einen die
physikalischen Prozesse der Atmosphäre im Vorhersagemodell realistisch abge-
bildet werden und zum Anderen der Anfangszustand des Modells möglichst
genau den realen Zustand abbilden. Um die Abweichungen des Anfangszu-
stands vom wahren Zustand zu verringern, ist es sinnvoll die Information von
empirischen Beobachtungen des wahren Zustands, zum Beispiel Beobachtungen
von Radiosondenaufstiegen, mit dem Zustand des Wettervorhersagemodells zu
verknüpfen. Unter dem Überbegriff Datenassimilation gibt es unterschiedliche
Methoden der inversen Modellierung, wie den Ensemble Kalman Filter oder
die 4DVAR, um die Beobachtungen und deren Fehler mit dem Modell und
dessen Fehlern zu einem verbesserten Anfangszustand zu kombinieren. Um die
Simulation der Grenzschicht zu verbessern, hat demnach die Assimilation von
bodennahen Beobachtungen wie der Landoberflächentemperatur (engl. land
surface temperature, LST), großes Potential. Die LST ist eine Beobachtung
direkt an der Grenze zwischen Atmosphäre und Land und enthält somit indi-
rekt auch Informationen über den Zustand der unteren Atmosphäre und über



den Zustand der oberen Bodenschichten. Um diese Information der LST in
Land und Atmosphäre einzubringen, werden in dieser Arbeit zwei Ansätze un-
tersucht: die schwache und die stark gekoppelte Datenassimilation. In einem
schwach gekoppelten Assimilationssystem wird die Beobachtung im Assimila-
tionsschritt nur in eines der beiden Systeme des Modells, Atmosphäre oder
Boden direkt eingebracht. Erst durch die darauf folgende Vorhersage im gekop-
pelten Modell wird die Information im gesamten Modellsystem verteilt. In einem
stark gekoppelten Assimilationssystem dagegen wird die Information bereits im
Assimilationsschritt in beide Systeme, Land und Atmosphäre direkt eingebracht.

Um den Einfluss der Assimilation von LST auf die atmosphärische
Grenzschicht abschätzen zu können, wurden im Rahmen dieser Doktorarbeit
mehrere zweitägige Experimente in März und August 2017 auf der Basis
von simulierten LST-Beobachtungen durchgeführt (engl. Observing System
Simulation Experiment, OSSE). Um die synthetischen Beobachtungen der LST
zu generieren, wurde zunächst ein sogenannter Nature Run aufgesetzt. Dieser
hochaufgelöste Modelllauf wird im OSSE als wahrer Zustand der Atmosphäre
und des Bodens angenommen. Er wird dazu verwendet die Beobachtungen
der LST zu generieren und auch zur Evaluierung der Ergebnisse verwendet.
Das Assimilationssystem dieser Arbeit basiert auf einem lokalen transformierten
Ensemble-Kalman-Filter. Dadurch hängt der Einfluss der Assimilation von
LST auf die Modellvariablen der Atmosphäre und des Bodens stark von den
Kovarianzen innerhalb des Modellensembles ab. Um diese Kovarianzen genauer
zu untersuchen und zu überprüfen, ob sie mit dem Verhalten der Wahrheit
zusammen passen, wurde ein Ensemble-Konsistenz-Score q entwickelt.

Datenssimilation: KENDA

Als Assimilationssystem wurde das Ensemble basierte Datenassimilationssys-
tem für regionale Wettervorhersagemodelle des Deutschen Wetterdienstes
(Kilometre-scale ensemble based data assimilation, KENDA) verwendet. Es
basiert auf dem lokalen transformierten Ensemble-Kalman-Filter (engl. Local
ensemble transform Kalman filter, LETKF). Der Zyklus des Assimilationssys-
tems besteht aus einem Vorhersageschritt und einem Analyseschritt. Im Vorher-
sageschritt wird eine einstündige Kurzvorhersage simuliert, der sogenannte first
guess. Dieser first guess ist die Modellinformation, welche im Analyseschritt
mit den Beobachtungen kombiniert wird. Im Analyseschritt werden allerdings
nicht alle Modellvariablen durch den Assimilationsalgorithmus aktualisiert, son-
dern nur ein Teil der prognostischen Modellvariablen. Diese werden im Kon-
trollvektor zusammengefasst und aus ihnen werden auch die Modellfehlerko-
varianzen bestimmt. Um das vollständig gekoppelte Datenassimilationssystem
möglich zu machen, wurde der Kontrollvektor um die prognostischen Modell-
variablen des Bodens, Bodentemperatur und -feuchte, erweitert. Dadurch wer-
den im Analyseschritt die Modellvariablen des Kontrollvektors über die Land-
Atmosphären-Grenze hinweg angepasst. Das Modellensemble besteht aus 40
Membern. Durch die begrenzte Anzahl der Member können Schätzfehler in den
Ensemblekovarianzen auftreten. Damit Beobachtungen die Analyse dadurch
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nicht verschlechtern, wird ihr räumliches Einflussgebiet in Atmosphäre und Bo-
den über Gaspari-Cohn Korrelationsfunktionen festgelegt. Diese Lokalisierung
wurde an die LST-Beobachtungen angepasst und für den Boden neu implemen-
tiert.

Nature Run

Der Nature Run ist ein wichtiger Bestandteil des OSSE. Er wird als
Wahrheit angenommen und sollte deshalb das Verhalten der realen Atmosphäre
wiedergeben können. In dieser Arbeit wurde für den Nature Run und den Assi-
milationszyklus das langjährig operationelle numerische Wettervorhersagemod-
ell des Deutschen Wetterdienstes verwendet: das COSMO-Modell (engl. Con-
sortium for small-scale modelling, COSMO). Der Nature Run wurde dabei mit
einer horizontalen Auflösung von 0,7 km simuliert, während für den Assimi-
lationszyklus ein Ensemble mit 2,8 km horizontaler Auflösung simuliert wurde.
Um der höheren Auflösung Sorge zu tragen, wurde im Nature Run die Strahlung
alle drei statt alle 15 Minuten simuliert und auch das Turbulenzschema an die
hohe Auflösung angepasst. Da zwei Fallstudien in März und August evaluiert
wurden, wurden auch zwei Nature Runs durchgeführt. Der Nature Run im
Frühjahr ist eine freie Vorhersage vom 25. bis 29. März 2017 und der Nature
Run im Sommer ist eine freie Vorhersage vom 26. bis 30. August 2017. Diese
Zeiträume wurden wegen ihrer vergleichsweisen geringen Bewölkung gewählt,
da die LST Beobachtungen aus bodennahen Satellitenbeobachtungen abgeleitet
werden, welche nur in wolkenfreien Gebieten gemessen werden können. Ein Ge-
biet um Lindenberg, eine Messstation des Deutsche Wetterdienstes südöstlich
von Berlin, wurde als Modellgebiet gewählt. Somit ist das Gebiet weitestge-
hend flach und deckt Norddeutschland und kleine Abschnitte von Polen und der
Tschechischen Republik ab.

Landoberflächentemperatur als Beobachtung

und im Modell

Eines der existierenden LST Retrievals wird von der Einrichtung zur Anwen-
dung von Satellitendaten mit der Ausrichtung zur Analyse der Landoberfläche
(engl.: Land Surface Analysis Satellite Application Facility, Land-SAF) be-
reitgestellt. Die dafür benötigten bodennahen Messungen stammen von einem
Imager für Strahlung im sichtbaren und infraroten Spektralbereich (engl.: Spin-
ning enhanced visible and infrared imager, SEVIRI), welcher sich an Bord des
geostationären Satelliten

”
Meteosat Second Generation“ befindet.

Die Auswertung dieses LST Retrievals im Vergleich mit dem COSMO-
Modell Version 5.04c zeigt, dass der Tagesgang der LST im Modell zu schwach
ausgeprägt ist. Ein Grund dafür ist die fehlende Vegetationstemperatur
im COSMO-Modell. Um den Tagesgang besser abzubilden, wurden
zwei Parametrisierungen der Vegetationstemperatur getestet. Die eine
Parametrisierung basiert auf einem Vegetationsmodell mit prognostischer
Vegetationstemperatur und die andere Parametrisierung auf der Einführung
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einer dünnen Schicht zwischen Boden und Atmosphäre, deren Leitfähigkeit
die Effekte der Vegetation auf die Temperatur abbildet. Im Vergleich
der beiden Parametrisierungen mit den realen Beobachtungen schnitt das
Leitfähigkeitsschema besser ab, da nur es in der Lage war auch nachts den
stärkeren Tagesgang der Beobachtungen abzubilden. Für die Dissertation wurde
deshalb diese Parametrisierung gewählt. Seit 2020 ist sie auch Teil des Modells
im operationellen Betrieb des DWD.

Assimilation der Landoberflächentemperatur

Anhand der Assimilation einzelner LST-Beobachtungen am Tag und in der
Nacht wurde die technische Umsetzung des stark gekoppelten Assimilationssys-
tems überprüft. Dabei zeigte sich, dass sowohl die Kopplung von Land und At-
mosphäre im Analyseschritt als auch die zusätzlich implementierte Lokalisierung
im Boden funktionieren.

Um das gekoppelte Assimilationssystem zu testen, wurden mehrere
zweitägige Experimente in März und August 2017 durchgeführt. In den Ex-
perimenten wurden stündlich alle synthetisch erzeugten LST-Beobachtungen
assimiliert. Die Experimente unterschieden sich in der Umsetzung der Kop-
plung des Assimilationssystems zwischen Land und Atmosphäre. Sowohl im
März als auch im August wurden zwei Experimente mit schwacher Kopplung
durchgeführt. In dem ersten Experiment enthielt der Kontrollvektor nur at-
mosphärische Variablen und in dem zweiten Experiment nur Bodenvariablen.
Das dritte Experiment verwendete das stark gekoppelte Assimilationssystem, in
welchem der Kontrollvektor beides, Atmosphären- und Bodenvariablen enthielt.

Die Assimilation der LST beeinflusste in allen drei Experimenten
hauptsächlich die Temperatur der Grenzschicht und des Bodens, aber auch
deren Feuchte und die turbulenten Flüsse. Die Wirkung der LST-Assimilation
war in den schwach gekoppelten Systemen immer in dem Teil des Modells,
Atmosphäre oder Boden, stärker, welcher direkt durch die Assimilation beein-
flusst wurde. Durch die starke Kopplung des Assimilationssystems konnten
die Effekte der schwach gekoppelten Systeme kombiniert werden und somit der
Einfluss der Assimilation von LST optimal genutzt werden.

Da die thermischen Prozesse der Atmosphäre schnelllebiger sind als die des
Bodens, bleibt der Effekt der LST-Assimilation im Boden auch länger sichtbar
als in der Atmosphäre. Sobald weniger Beobachtungen assimiliert werden, zum
Beispiel auf Grund von zunehmender Bewölkung, nimmt der Einfluss der LST-
Assimilation auf die Modellvariablen der Atmosphäre ab. Die Bodenvariablen
dagegen können die Informationen länger im Modell halten und profitieren
somit auch länger von der LST-Assimilation. Die Assimilation der LST konnte
die mittleren quadratischen Fehler (engl. Root mean square error, RMSE) der
vorhergesagten Temperaturen in Grenzschicht und Boden reduzieren. Vor allem
tagsüber profitierte die Grenzschichttemperatur von der Assimilation der LST.
Mit dem vollständig gekoppelten System wurde dabei die größte Reduktion des
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RMSE erreicht.

Ausgehend von den Analysen des gekoppelten Assimilationssystems wurde
alle sechs Stunden eine freie Vorhersage mit 24 Stunden Vorhersagehorizont
simuliert. Ein Vergleich dieser Vorhersagen mit Vorhersagen ohne LST-
Assimilation zeigt, dass der RMSE der Grenzschichttemperatur durch die
Assimilation von LST-Beobachtungen in den ersten drei bis neun Vorhersa-
gestunden reduziert werden kann. Der RMSE der Bodentemperatur reduziert
sich sogar über den kompletten Vorhersagezeitraum. Von der länger anhaltenden
Verbesserung im Boden, kann auch die Grenzschichttemperatur noch nach 15
Vorhersagestunden profitieren, obwohl der direkte Effekt der LST-Assimilation
auf die Atmosphäre bereits geendet hat.

Während die Temperaturen des Land-Atmosphären Modells von der LST-
Assimilation weitgehend profitierten, erhöhte sich teilweise der RMSE in der
spezifischen Feuchte der Grenzschicht. Auch auf die Bodenfeuchte hatte die
Assimilation von LST, zum Beispiel am zweiten Tag des Augustexperiments,
einen negativen Einfluss. Ein möglicher Grund dafür sind inkonsistente
Kovarianzen der Modellfehler. Durch diese Kovarianzen verteilt der Algorithmus
des LETKF die Information der Beobachtung im Modellraum. Sie werden aus
dem Modellensemble bestimmt. Passen sie nicht zu den wahren Kovarianzen,
hier die des Nature Runs, kann die Assimilation die Anfangsbedingungen auch
verschlechtern.

Ensemble-Konsistenz-Score

Um einen besseren Einblick in die Kovarianzen der Modellfehler der OSSE zu
bekommen, wurde im Rahmen dieser Arbeit der Ensemble-Konsistenz-Score
q entwickelt. Der Score ist ein Schätzer für die Konsistenz der Enemble-
Kovarianzen. Sein Vorzeichen gibt an, ob die Ensemblekovarianzen zwischen
der beobachteten Variable und jeweils einer weiteren Modellvariable zum Nature
Run passen oder nicht. Ist q > 0, dann passt das Ensemble zum Nature Run
und sorgt dafür, dass der LETKF das Modell näher an die Wahrheit zieht. Ist
q ≤ 0, dann passt das Ensemble nicht zum Nature Run und der LETKF kann im
Analyseschritt das Modellensemble von dem wahren Zustand der Atmosphäre
beziehungsweise des Bodens weg ziehen. Berechnet wird der Score q für jeden
Gitterpunkt des Analysegitters auf dem eine Beobachtung liegt.

Getestet wurde der Score q zunächst für ein Lorenz 1963 Modellsystem.
Dabei wurde der Einfluss des Beobachtungsoperators H und der Beobachtungs-
fehlerkovarianzmatrix R auf die Zuverlässigkeit der Schätzung von q untersucht.
Sowohl die Berechnung des Scores q als auch der Analyseschritt der Assimilation
hängen vonH und R ab. Abweichungen der beiden Größen zwischen der Berech-
nung von q und dem Assimilationsverfahren können sich also auf die Überein-
stimmung von Vorzeichen des Scores q und dem Ergebnis des Analyseschritts
auswirken. Sensitivitätstests von H und R ergaben, dass Abweichungen von
R zwischen Analyseschritt und Berechnung des Scores q deutlich weniger ins
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Gewicht fallen, als ein nicht übereinstimmender Beobachtungsoperator.

Um den Score q auf die Assimilation von LST im gekoppelten Land-
Atmosphäre-Modell anwenden zu können, wurden deshalb die Beobachtungen
und das Analysegitter auf das Modellgitter verschoben. Darüber hinaus wurden
die horizontale und vertikale Lokalisierung so gewählt, dass immer nur eine
Beobachtung die angrenzenden Modellvariablen im Analyseschritt beeinflussen
konnte.

Ein erster Blick auf die Ensemblekovarianzen der Fallstudien in März
und August 2017 zeigte starke Korrelationen zwischen der LST und
den Temperaturen der untersten Atmosphärenschicht und der obersten
Bodenschicht. Die Korrelationen zwischen der LST und der Bodenfeuchte
der obersten Bodenschicht und der LST und der spezifischen Feuchte der
untersten Atmosphärenschicht waren weniger stark ausgeprägt. Während
die Bodenfeuchte nachts eine geringe Antikorrelation zur der LST aufwies,
waren die LST und die spezifische Feuchte den ganzen Tagesverlauf über
schwach positiv korreliert. Die Auswertung des Scores q zeigte darüber hinaus,
dass die Korrelationen zwischen den Temperaturen, im März vor allem bei
Nacht und im August vor allem bei Tag gut zum Verhalten des Nature Run
passen. Die Korrelationen der Feuchtevariablen dagegen werden vom Ensemble
weniger deutlich reproduziert und entsprechen eher einem Rauschen. Dieses
Rauschen kann zu einem unpassenden Einfluss der LST Assimilation auf diese
Variablen führen, was auch die OSSE Experimenten zeigten. Das führte zu
der Schlussfolgerung, dass die teils negative Wirkung der LST Assimilation
auf die Feuchtevariablen tatsächlich auf unpassende Ensemblekorrelationen
zurückzuführen ist.

Schlussfolgerungen

Die durchgeführten Fallstudien in März und August 2017 zeigen, dass sowohl der
first guess als auch die 24 Stunden Vorhersagen der Grenzschichttemperatur und
Bodentemperatur von der Assimilation von LST profitieren können und Expe-
rimente mit realen LST-Beobachtungen ein nächster Schritt sind. Die Wirkung
der LST-Assimilation auf die atmosphärische Grenzschicht hängt dabei vom
Tagesgang, der Anzahl der verfügbaren synthetischen Beobachtungen und der
Art der Kopplung des Assimilationssystems ab. Je mehr LST-Beobachtungen
zur Verfügung stehen, desto ausgeprägter ist der Einfluss der Assimilation.
Besonders deutlich sieht man das an der Wirkung auf die Atmosphäre. Der
Boden kann die gewonnene Information der LST-Assimilation länger halten, da
seine Prozesse deutlich träger sind als die der Atmosphäre. Im stark gekoppel-
ten System ist der positive Einfluss auf Grenzschichttemperatur und Boden-
temperatur am größten. Die Vorhersage der Feuchtevariablen des Bodens und
der Atmosphäre hingegen können sich durch die Assimilation von LST auch
verschlechtern. Gleiches gilt für die Temperaturen oberhalb der nächtlichen
Grenzschicht. Durch zusätzliche Assimilation von Feuchtebeobachtungen und
eine angepasste vertikale Lokalisierung in der Nacht könnte in Zukunft diesen
Problemen entgegen gewirkt werden. Die durchgeführten Experimente sind
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sowohl räumlich als auch zeitlich limitiert, sodass zukünftige Experimente auf
einem größeren Gebiet und auch über längere Zeiträume ausgewertet werden
sollten.

Zum besseren Verständnis des teils negativen Einflusses der LST-
Assimilation auf Feuchte und Temperatur wurde die Konsistenz der
Ensemblekorrelationen mit dem Nature Run untersucht. Dabei zeigte sich,
dass die Temperaturen stärker linear mit der LST-Beobachtung korreliert
sind und das diese Korrelation sowohl im Ensemble als auch im Nature
Run zu finden sind. Die lineare Korrelation zwischen LST und den
Feuchtevariablen ist schwächer. Darüber hinaus zeigt der Ensemble-Konsistenz-
Score q, dass die Korrelationen des Ensembles weniger gut zu denen des
Nature Run passen. Eine weitere Untersuchung der Korrelationen und
ihrer Abbildung in der Modellfehlerkovarianzmatrix ist ein wichtiger nächster
Schritt. Können die Korrelationen zwischen Temperatur und Feuchte besser in
den Analyseschritt eingehen, könnte das die Vorhersage der atmosphärischen
Grenzschicht verbessern.
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