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 6 Acronyms & Glossary 

ACRONYMS & GLOSSARY 

aDGVM2: “adaptive Dynamic Global Vegetation Model 2” (DGVM used for this thesis) 

AGBM (or AGB): “Above Ground Biomass” 

CRU: “Climatic Research Unit” 

DBH: “Diameter at Breast Height” 

DGVM: “Dynamic Global Vegetation Model”. A type of ecological model. 

DVM: “Dynamic Vegetation Model” (i.e., a non-“Global” DGVM) 

E.S.: “Ecosystem Service” 

ESM: “Earth System Model” 

IPCC: “Intergovernmental Panel on Climate Change” 

IPBES: “Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 

Services” 

LAI: “Leaf Area Index” 

LIDAR: “Light Radar” or “Laser Imaging, Detection & Ranging” 

LLL: “Limpopo Living Landscape” 

LSM: “Land Surface Model” 

MAP: “Mean Annual Precipitation” 

NDVI: “Normalized Difference Vegetation Index” 

NPP: “Net Primary Productivity” 

P50: “Matric potential at 50% loss of conductance” 

PFT: “Plant Functional Type” 

SLA: “Specific Leaf Area”  



 7 Summary 

SUMMARY 

 Shrubs are a characteristic component of savannas, where they coexist with trees 

and grasses. They are often part of woody encroachment phenomena, which have been 

observed globally, and the determinant of shrub encroachment cases, which are particularly 

of concern in African savannas. In response to climate change and land use change, African 

savannas are vulnerable to biome shifts and shrub encroachment is a process driving and 

explaining this risk.  

 We contribute to furthering the understanding of shrubs biogeography and ecology 

by considering the number of stems of woody plants to characterise shrubs phenotype and 

strategy. We postulate that shrubs are multi-stemmed, compared to single-stemmed trees 

and integrate this assumption in aDGVM2 (adaptive Dynamic Global Vegetation Model 

2). Modelling a trait representing the number of stems of a woody plant implies a trade-off 

between single-stemmed plants having higher height growth potential and multi-stemmed 

plants having higher hydraulic capacity but limited height growth. Multi-stemmed 

individuals, being shorter, are more likely to suffer severe damage from fires than tall 

single-stemmed trees managing to grow their crown out of the flame zone.  

 We simulate potential vegetation over sub-Saharan Africa at 1° spatial resolution, 

with aDGVM2 and compare it to simulations without our shrub model turned on. We also 

test the impact of fire by including or excluding it from our simulations. To assess the 

accuracy and relevance of our approach, we benchmark our overall model’s performance 

against multiple satellite derived products of above ground biomass (AGBM), and against 

specific field measurements of AGBM. We further benchmark our results against 

vegetation cover type derived from satellite data. 

 We demonstrate that shrubs can be modelled as multi-stemmed woody plants in 

African savannas based on whole-plant trait trade-off without being predefined as static 

functional types. Indeed, the addition of our shrub model to aDGVM2 allows for shrubs to 

emerge dynamically through community assembly processes without a priori 

categorisation. Our shrub model also improves the simulated vegetation patterns simulated 

by aDGVM2 in sub-Saharan Africa, particularly in savannas. The simulated pattern of stem 

number per woody individual broadly follows our assumptions about biogeographic 

patterns as it is lowest in equatorial African forests and increases in savannas and grasslands 
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as precipitation decreases. Shrubs are more abundant in more water-stressed regions where 

they have a competitive advantage over trees due to their increased relative water transport 

potential. However, in arid and hyper-arid regions, further investigations are required. 

Simulated shrub prevalence is higher in more open and fire prone landscapes, where woody 

cover and biomass are reduced. 

 Adding shrubs to aDGVM2, while increasing complexity allows for greater 

simulated diversity. As resilience and resistance of ecosystems have been shown to be 

influenced by diversity, such model development is necessary to improve our ability to 

forecast ecosystems responses to changes. However, there are challenges to fully tap this 

benefit. Assessing the accuracy and relevance of our approach is challenging. Data and 

simulations are conceptually different which limit the possibility to conclude based on 

comparison. Benchmarking challenge is exacerbated by the variability existing among 

satellite derived products and site studies observations. In areas of extremely low biomass 

and vegetation cover, such as deserts and semi-deserts, the accuracy of our model is more 

concerning as small differences in absolute values are relatively more important. 

 Categorisation of life-forms shapes our understanding of their ecology and 

biogeography, thus, consensus about their definition is direly needed. To contribute to this 

debate, we investigate how vegetation distribution patterns arising from our shrub model 

inform our understanding of shrub biogeography. First, shrub distribution in trait space 

(considering stem number), relatively to environmental drivers, concurs with our 

assumptions. Second, shrub spatial distribution is consistent with our characterisation 

assumptions. Third, the role of simulated shrubs in an ecosystem supports realistic 

ecological dynamics. Our model allows for, shrubs to exhibit a specific phenotype, but also 

a specific life-strategy, which we characterise in terms of persistence strategy (shrubs are 

mainly resprouters, in contrast to trees, which can be either resprouters or reseeders) and in 

terms of resource acquisition (rooting strategy) and allocation (carbon investment). Adding 

stem count as a trait to aDGVM2 increase the range of simulated functional diversity. 

 Our shrub model allows for aDGVM2 to simulate realistic ratio of grass to woody 

vegetation across sub-saharan Africa. Similarly, it simulates ratio of shrubs to trees 

consistent with our hypotheses. Shrubs mediate the competitive balance between grasses 

and trees and have a complex interplay with fire. Agreement with benchmarking data is 

shaped by model stochasticity and by the perspective taken on simulations results, as shrub 
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prevalence depends on the variable considered (plant number, canopy cover, AGBM 

share), and on the thresholds used to classify shrubs. Thus, our non-categorical approach, 

in contrast to PFT (Plant Functional Type) based approaches, is more challenging to 

benchmark; yet, it offers greater opportunities to study ecological dynamics. While 

investigating shrubs as a category provides meaningful information, questioning the traits 

and parameters underlying it provides further information about ecosystems states and 

dynamics. We argue that considering the continuum of life-forms can help circumvent the 

challenge of unclear categories. 

 Increasing realism typically implies to increase model complexity, which 

challenges model development and model operation. Initialisation can be solved by 

increasing data availability. However, at present, model complexity exceeds data 

availability for complete model initialisation. We argue that, the more variables are 

initialised based on real data and not randomly, the better the performance of a model. 

Therefore, when stochastically initialising a model and conducting replicate simulations, 

the iteration producing the best fit with benchmarking data should be the one having 

randomly selected the most realistic value for initialisation, and thus could be used to 

reverse engineer parameters values. 

 Ecosystems are dynamic systems, yet models are typically benchmarked to constant 

values or fixed states not fitting with ecological timescales. This gap can be bridged through 

reconstruction of past ecological states and dynamics. The lack of long-term data for 

benchmarking share similarities with the lack of holistic model benchmarking. In both 

cases it is possible to misinterpret a model relevance and accuracy by focusing on a limited 

subset of parameters. A cautious approach should consider that a model can be deemed 

satisfactory only regarding parameters for which it has been benchmarked against 

observation data. However, optimizing the fit for one parameter might decrease the fit for 

another; thus, highlighting points which require research effort. We argue that more holistic 

benchmarkings are more promising as they expand the relevance of models and can foster 

model development.  

 Ecosystem history, ecological timescale and overall context dependencies, question 

determinism in ecology. Determining to which extent rules can be derived from 

observations and to which extent observed ecological states and parameters are due to 

chaotic processes is a critical question for model development. We argue that the finer the 
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details of a model (e.g.: modelling photosynthetic rate at the cell level instead of NPP (Net 

Primary Productivity) at landscape scale) the more likely modelled processes are to be 

deterministic. However, it comes at the expense of model complexity. We propose to 

investigate evolutionary processes, and specifically co-evolution. This would allow to 

determine the level of complexity necessary to ensure sufficient model performance and to 

assess the importance of determinism in ecosystems history. Additionally, we argue that 

iteratively sampling the relative weight of stochasticity in a model is necessary to assess its 

simulations confidence. Concomitantly, averaging replicate simulations does not 

necessarily provide more accurate evaluation. In contrast, we argue that stochasticity can 

be used to represent ecosystem heterogeneity at the sub-grid cell scale. Such approach 

implies to question the consequences of scaling up models’ simulations from the basic unit 

at which they are performed to the grid-cell scale they represent. We demonstrate that the 

basic unit at which a model operates (for aDGVM2: the number of simulated individuals) 

modifies the relative importance of stochasticity. 

 Model assumptions are implicitly considered valid when simulations results can be 

satisfactorily benchmarked, however, we argue that they should be explicitly discussed as 

well, and not just their outcome. Similarly, we argue that data constraints should be more 

extensively integrated into the evaluation of models, be it for initialisation or benchmarking, 

in order to avoid overlooking unaccounted for limitations. We also argue that 

benchmarking methodologies should be adapted to new model developments to remain 

relevant. More holistic benchmarking should account for all dimensions of a model (space, 

time, traits, variables) and for the relative strength of a process depending on the mixture 

of other processes included in a model with which it can interact. Benchmarking could also 

go beyond assessment of models’ accuracy and be used to fit model post-process and 

inform initialisation.  

 Shrub encroachment has been increasingly reported to occur over vast expanses of 

multiple ecosystems globally. Despite the increasing number of studies about this topic 

over the last ten years, no consensus emerged so far to explain this phenomenon.  We argue 

that, while general trends can be highlighted, shrub encroachment is a polymorphic 

phenomenon and disentangling the relative importance of proposed drivers of shrub 

encroachment can only be achieved locally. Even if explanations of the phenomenon 

relevant for its management can only be achieved locally, the development of models able 

to represent them has to move away from context dependent studies and has to take into 
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account multiple drivers and their interactions. We investigate shrub encroachment 

understood as the increase in shrub prevalence. Precisely, we consider mean stem count as 

a proxy for shrub prevalence. An array of environmental and anthropogenic factors and 

ecological mechanisms have been proposed to explain shrub encroachment.  They range 

from shrub suppression mechanisms to alternative stable state theory to the direct effect of 

biotic and abiotic drivers. The aDGVM2 can represent a subset of those drivers. Namely 

we assess the relative importance and interactions of fire, grazing, MAP and atmospheric 

[CO2] for shrub prevalence. This provides insights to forecast future shrub encroachment 

scenario and thus to inform potential management strategies. 

 We focus on 35 sites across southern African savannas, where cases of woody cover 

expansion have been documented. We test 11 scenarios considering 3 levels for fire, 

grazing and atmospheric [CO2], while MAP is implicitly considered across the diversity of 

sites for which we run simulations. Additionally, we account for stochasticity by 

conducting 10 replicate simulations for each site and each scenario, for a total of 3850 

unique simulation runs. The aDGVM2 simulates higher shrub prevalence in the presence 

of natural fire and in the absence of grazing under pre-industrial atmospheric [CO2]. Shrub 

prevalence tends to increase with decreasing MAP depending on scenario and site 

considered, albeit non-linearly, with a distinct threshold around MAP of 700mm/year for 

multiple scenarios. In parallel, literature shows that MAP impact on shrub encroachment 

can range from positive to negative. Shrub prevalence decreases with increasing 

atmospheric [CO2]. As aDGVM2 has been demonstrated to simulate increased vegetation 

height with increasing atmospheric [CO2], this result indicates that CO2 fertilisation effect 

leads to woody cover expansion where trees dominate at the expense of shrubs. Fire can 

suppress shrubs both at high frequency and when absent. The interaction between fire and 

grazing is complex. More precise investigations, considering higher number of pressure 

level, are required to set the upper and lower limits of fire frequency driving shrubs 

prevalence and to design precise management plans, according to local specificities. This 

is particularly critical when threshold effect might have a major impact, as simulated for 

MAP, depending on scenario and site.  

 Our simulation experiment highlights that shrub encroachment is multi-factorial. 

While general trends can be identified, further investigations are required to consider 

potential explanatory drivers which were excluded from our analysis, such as elephants or 

wood fuel harvesting, and to consider additional factors level, as well as transitive scenarios. 
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However, complexity and computation time would increase beyond our available 

computation resource. Additionally, while mean stem count is a meaningful proxy for shrub 

prevalence, considering other variables, such as canopy cover or biomass, can alter our 

perception of shrub prevalence. Finally, focusing solely on shrubs does not inform about 

overall vegetation community response to tested drivers. This could be achieved by 

considering trait space response to stress factors. In conclusion, management plans should 

avoid relying on general trends of shrub encroachment and instead draw upon precise and 

site-specific investigations to disentangle the relative weight of each potential drivers 

according to their context dependencies.  
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ZUSAMMENFASSUNG 

 Sträucher sind ein charakteristischer Bestandteil von Savannen, in denen sie mit 

Bäumen und Gräsern koexistieren. Sie sind häufig Teil des weltweit zu beobachtenden 

Vordringens von Gehölzen und von Verbuschung, die in afrikanischen Savannen besonders 

besorgniserregend ist. Aufgrund des Klimawandels und der Landnutzungsänderungen sind 

afrikanische Savannen anfällig für Biomverschiebungen. Die Verbuschung ist ein Prozess, 

der dieses Risiko antreibt und erklärt. 

Die vorliegende Arbeit trägt zum weiteren Verständnis der Biogeographie und 

Ökologie von Sträuchern bei, indem die Anzahl der Stämme von Holzpflanzen 

berücksichtigt wird, um den Phänotyp und die Strategie von Sträuchern zu charakterisieren. 

Im Vergleich zu Bäumen mit nur einem Stamm sind Sträucher immer mehrstämmig. Diese 

Annahme wird in das aDGVM2 (adaptive Dynamic Global Vegetation Model 2) integriert. 

Die Modellierung eines Merkmals, das die Anzahl der Stämme einer Holzpflanze darstellt, 

impliziert einen Trade-off zwischen einstämmigen Pflanzen mit größerem 

Höhenwachstumspotential und mehrstämmigen Pflanzen mit größerer hydraulischer 

Kapazität, aber begrenztem Höhenwachstum. Mehrstämmige Individuen, die generell 

kleiner sind, erleiden mit größerer Wahrscheinlichkeit schwerere Schäden durch Brände 

als hohe einstämmige Bäume, die es schaffen, ihre Krone aus der Flammenzone 

herauszuwachsen.  

Mit dem aDGVM2 wurde eine potentielle Vegetation in Subsahara-Afrika mit einer 

räumlichen Auflösung von 1° simuliert und diese mit Simulationen verglichen, bei denen 

das Strauchmodell nicht berücksichtigt war. Getestet wurden auch die Auswirkungen von 

Feuer, indem dieses in den Simulationen entweder einbezogen oder ausgeschlossen wurde. 

Um die Genauigkeit und Aussagekräftigkeit des Ansatzes zu beurteilen, wurde die Leistung 

des Gesamtmodells mit mehreren satellitengestützten Daten der oberirdischen Biomasse 

(AGBM) und mit standortspezifischen Feldmessungen der AGBM verglichen. Des 

Weiteren wurden die Ergebnisse der Vegetationsbedeckung, die aus Satellitendaten 

abgeleitet wurde, gegenübergestellt. 

Die vorliegende Arbeit zeigt, dass es möglich ist, auf Basis des Trade-offs zwischen 

Merkmalen ganzer Pflanzen Sträucher als mehrstämmige Gehölze in afrikanischen 

Savannen zu modellieren, ohne dass die Sträucher als statische Funktionstypen vordefiniert 
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werden müssen. In der Tat können durch das Hinzufügen des Strauchmodells zum 

aDGVM2 Sträucher ohne vorherige Kategorisierung dynamisch durch Prozesse zur 

Bildung von Artengemeinschaften entstehen. Dieses Strauchmodell verbessert auch die 

Vegetationsmuster, die vom aDGVM2 in Subsahara-Afrika simuliert wurden, insbesondere 

in Savannen. Das simulierte Muster der Stammanzahl pro holzigem Individuum folgt 

weitgehend den Annahmen über biogeografische Muster, da es in äquatorialafrikanischen 

Wäldern am niedrigsten ist und in Savannen und Graslandschaften mit abnehmendem 

Niederschlag zunimmt. Sträucher sind in Regionen mit Wasserknappheit häufiger 

anzutreffen, wo sie aufgrund ihres erhöhten relativen Wassertransportpotenzials einen 

Wettbewerbsvorteil gegenüber Bäumen haben. Für aride und hyperaride Regionen sind 

jedoch weitere Untersuchungen erforderlich. Die simulierte Prävalenz von Sträuchern ist 

in offeneren und feueranfälligeren Landschaften höher, wo die Holzbedeckung und 

Biomasse reduziert sind. 

Das Hinzufügen von Sträuchern zum aDGVM2 und die zunehmende Komplexität 

des Modells ermöglichen eine größere simulierte Diversität. Da die Resilienz und Resistenz 

von Ökosystemen durch Diversität beeinflusst werden, ist eine solche Modellentwicklung 

notwendig, um besser vorherzusagen, wie Ökosysteme auf Veränderungen reagieren. 

Diesen Vorteil voll auszuschöpfen, stellt jedoch eine Herausforderung dar. Es ist schwierig, 

die Genauigkeit und Aussagekräftigkeit des Modellansatzes zu beurteilen. Daten und 

Simulationen sind konzeptionell unterschiedlich, was die Möglichkeit einschränkt, auf der 

Basis eines Vergleichs zwischen Daten und Simulationen zu schlussfolgern. Die 

Herausforderungen des Benchmarking werden zusätzlich durch die Schwankungen 

zwischen satellitengestützten Daten und Beobachtungen aus Feldstudien verschärft. In 

Gebieten mit extrem geringer Biomasse- und Vegetationsbedeckung, wie Wüsten und 

Halbwüsten, wird die Genauigkeit des Modells zunehmend bedeutsamer, da bereits kleine 

Unterschiede in den absoluten Werten verhältnismäßig wichtig sind. 

Da die Kategorisierung von Lebensformen unser Verständnis ihrer Ökologie und 

Biogeographie beeinflusst, ist ein Konsens über ihre Definition dringend erforderlich. Um 

zu dieser Debatte beizutragen, wurde untersucht, wie Vegetationsverteilungsmuster, die 

sich aus dem Strauchmodell ergeben, das Verständnis der Biogeographie der Sträucher 

beeinflussen. Erstens entspricht die Strauchverteilung im Merkmalsraum unter 

Berücksichtigung der Stammanzahl und in Abhängigkeit von Umweltfaktoren den oben 

genannten Annahmen. Zweitens stimmt die räumliche Verteilung von Sträuchern mit den 
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Charakterisierungsannahmen überein. Drittens unterstützt die Rolle, welche die simulierten 

Sträucher in einem Ökosystem spielen, eine realistische ökologische Dynamik. Unser 

Modell erlaubt es, dass Sträucher einen bestimmten Phänotyp, aber auch eine bestimmte 

Überlebensstrategie aufweisen, die wir in Bezug auf die Persistenz (Sträucher treiben vor 

allem nach Waldbränden wieder aus (Resprouter), im Gegensatz zu Bäumen, die entweder 

Resprouters sind oder sich durch Keimung von Samen neu etablieren (Reseeder)) sowie in 

Bezug auf Ressourcenbeschaffung (Wurzelstrategie) und Allokation 

(Kohlenstoffinvestition) charakterisieren. Das Hinzufügen der Stammzahl als Merkmal im 

aDGVM2 erhöht die Bandbreite der simulierten funktionellen Vielfalt. 

Das Strauchmodell ermöglicht es dem aDGVM2, ein realistisches Verhältnis von 

Gras zu Gehölzvegetation in Subsahara-Afrika zu simulieren. In ähnlicher Weise simuliert 

es das Verhältnis von Sträuchern zu Bäumen gemäß der aufgestellten Hypothesen. 

Sträucher beeinflussen das Wettbewerbsgleichgewicht zwischen Gräsern und Bäumen und 

weisen ein komplexes Zusammenspiel mit Feuer auf. Die Übereinstimmung mit 

Benchmarking-Daten variiert je nach berücksichtigten Daten. Die Ergebnisse des 

Benchmarking sind zudem durch die Zufälligkeit des Modells und durch die Perspektive, 

die in Bezug auf die Simulationsergebnisse eingenommen wird, geprägt, da die 

Strauchprävalenz von den berücksichtigten Variablen (Pflanzenanzahl, Baumdeckung, 

AGBM-Anteil) und den zur Klassifizierung der Sträucher verwendeten Schwellenwerten 

abhängt. Daher ist der hier verfolgte nicht-kategorische Ansatz im Gegensatz zu PFT (Plant 

Functional Type)-basierten Ansätzen zwar beim Benchmarking anspruchsvoller, bietet 

allerdings größere Möglichkeiten zur Untersuchung der ökologischen Dynamik. Während 

die Untersuchung von Sträuchern als Kategorie aussagekräftige Informationen liefert, 

bietet die Infragestellung der zugrunde liegenden Merkmale und Parameter weitere 

Informationen über den Zustand und die Dynamik von Ökosystemen. In der vorliegenden 

Arbeit wird die Auffassung vertreten, dass die Berücksichtigung des Kontinuums der 

Lebensformen dazu beitragen kann, die Herausforderung unklarer Kategorien zu umgehen. 

 Zunehmender Realismus bedeutet typischerweise eine Erhöhung der 

Modellkomplexität, was sowohl für die Modellentwicklung als auch für den Modellbetrieb 

eine Herausforderung ist. Die Initialisierung kann durch das Erhöhen der 

Datenverfügbarkeit gelöst werden. Derzeit übersteigt die Modellkomplexität jedoch die 

Datenverfügbarkeit für eine vollständige Modellinitialisierung. Die These ist, dass die 

Leistung eines Modells umso besser ist, je mehr Variablen auf der Basis von realen Daten 
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und nicht zufällig initialisiert werden. Daher sollte bei der stochastischen Initialisierung 

eines Modells und der wiederholten Durchführung von Simulationen die Iteration, die am 

besten zu den Benchmarking-Daten passt, diejenige sein, die zufällig den realistischsten 

Wert für die Initialisierung ausgewählt hat und somit für das Reverse-Engineering der 

Parameterwerte verwendet werden kann.  

Ökosysteme sind dynamische Systeme, aber Modelle werden normalerweise mit 

konstanten Werten oder festen Zuständen verglichen, die nicht mit ökologischen Zeitskalen 

übereinstimmen. Diese Lücke kann durch die Rekonstruktion vergangener ökologischer 

Zustände und Dynamiken geschlossen werden. Das Fehlen von Langzeitdaten für das 

Benchmarking weist Ähnlichkeiten mit dem Fehlen eines ganzheitlichen Modell-

Benchmarking auf. In beiden Fällen ist es möglich, die Aussagekraft und Genauigkeit eines 

Modells falsch zu interpretieren, indem man sich auf eine begrenzte Teilmenge von 

Parametern konzentriert. Bei einem vorsichtigen Ansatz sollte berücksichtigt werden, dass 

ein Modell nur in Bezug auf Parameter als zufriedenstellend angesehen werden kann, für 

die es mit Beobachtungsdaten verglichen wurde. Durch Optimierung der Anpassung für 

einen Parameter kann jedoch die Anpassung für einen anderen Parameter verringert 

werden, wodurch indes jene Punkte hervorgehoben werden, die erforscht werden müssen. 

Es wird hier argumentiert, dass ganzheitlicheres Benchmarking vielversprechender ist, da 

es die Aussagekraft von Modellen erweitert und die Modellentwicklung fördern kann. 

Die Geschichte von Ökosystemen, die ökologische Zeitskala und die allgemeinen 

Kontextabhängigkeiten stellen den Determinismus in der Ökologie in Frage. Inwieweit 

Regeln aus Beobachtungen abgeleitet werden können und inwieweit beobachtete 

ökologische Zustände und Parameter auf chaotische Prozesse zurückzuführen sind, sind 

kritische Fragen für die Modellentwicklung. Es wird hier argumentiert, dass je feiner die 

Details eines Modells sind (z. B. die Modellierung der Photosyntheserate auf Zellebene 

anstelle von NPP (Net Primary Productivity) im Landschaftsmaßstab), desto 

wahrscheinlicher ist es, dass modellierte Prozesse deterministisch sind. Dies geht jedoch 

zu Lasten der Modellkomplexität. Daher wird vorgeschlagen, evolutionäre Prozesse und 

insbesondere die Koevolution zu untersuchen. Dies würde es ermöglichen, den 

Komplexitätsgrad zu bestimmen, der erforderlich ist, um eine ausreichende Modellleistung 

sicherzustellen, und die Bedeutung des Determinismus in der Geschichte der Ökosysteme 

zu bewerten. Darüber hinaus wird die Auffassung vertreten, dass eine iterative 

Stichprobenprüfung der relativen Bedeutung zufälliger Prozesse in einem Modell 
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erforderlich ist, um die Verlässlichkeit der Simulationen zu bewerten. Gleichzeitig liefert 

der Mittelwert von wiederholten Simulationen nicht unbedingt eine genauere Bewertung. 

Im Gegensatz dazu wird hier argumentiert, dass zufällige Prozesse verwendet werden 

können, um die Heterogenität von Ökosystemen in einem Maßstab feiner als Gitterzellen 

darzustellen. Ein solcher Ansatz impliziert, dass die Konsequenzen der Hochskalierung von 

Modellsimulationen aus der Grundeinheit, in der sie durchgeführt werden, auf die von 

ihnen dargestellte Gitterzellenskala in Frage gestellt wird. Es konnte gezeigt werden, dass 

die Grundeinheit, mit der ein Modell arbeitet (für aDGVM2: die Anzahl der simulierten 

Individuen), die relative Bedeutung der Zufallsprozesse verändert. 

Modellannahmen werden implizit als gültig angesehen, wenn 

Simulationsergebnisse zufriedenstellend bewertet werden können. Es wird hier jedoch 

argumentiert, dass die Annahmen ebenfalls explizit diskutiert werden sollten und nicht nur 

ihre Ergebnisse. In ähnlicher Weise sollten Datenbeschränkungen stärker in die Bewertung 

von Modellen einbezogen werden, sei es zur Initialisierung oder zum Benchmarking, um 

zu vermeiden, dass nicht berücksichtigte Einschränkungen übersehen werden. Es wird hier 

die Auffassung vertreten, dass Benchmarking-Methoden an neue Modellentwicklungen 

angepasst werden sollten, um relevant zu bleiben. Ein ganzheitlicheres Benchmarking 

sollte alle Dimensionen eines Modells (Raum, Zeit, Merkmale, Variablen) und die relative 

Stärke eines Prozesses berücksichtigen, die abhängig ist von den in im Modell integrierten, 

anderen Prozessen, mit denen der untersuchte Prozess interagieren kann. Das 

Benchmarking könnte auch über die Bewertung der Modellgenauigkeit hinausgehen und 

zur Anpassung des Modellnachbearbeitungsprozesses und zur Information für die 

Initialisierung verwendet werden. 

Es wird zunehmend berichtet, dass die Verbuschung global und in weiten Gebieten 

mehrerer Ökosysteme auftritt. Trotz der Fülle verfügbarer Forschungen zu diesem Thema 

in den letzten zehn Jahren gab es bisher keinen Konsens, wie dieses Phänomen erklärt 

werden kann. Es wird hier argumentiert, dass, obwohl allgemeine Trends hervorgehoben 

werden können, die Verbuschung ein polymorphes Phänomen ist und die Entflechtung der 

relativen Bedeutung der vorgeschlagenen Treiber für Verbuschungen nur lokal erreicht 

werden kann. Auch wenn für das Management des Phänomens relevante Erklärungen nur 

lokal erreicht werden können, muss sich die Entwicklung von Modellen, die in der Lage 

sind, diese darzustellen, von kontextabhängigen Studien entfernen und mehrere Treiber und 

ihre Interaktionen berücksichtigen. Untersucht wurde die Verbuschung, die als Zunahme 
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der Strauchprävalenz verstanden wird. Genau genommen wurde die mittlere Stammanzahl 

als Proxy für die Strauchprävalenz betrachtet. Bislang ist eine Reihe von umweltbedingten 

und anthropogenen Faktoren sowie ökologischen Mechanismen vorgeschlagen worden, um 

die Verbuschung zu erklären. Sie reichen von Mechanismen, die das Strauchwachstum 

unterdrücken, über Theorien alternativer Systemzustände bis hin zur direkten Wirkung 

biotischer und abiotischer Treiber. Das aDGVM2 kann eine Teilmenge dieser Treiber 

darstellen. Bewertet werden die relative Bedeutung und die Wechselwirkungen von Feuer, 

Beweidung, MAP und atmosphärischen [CO2] für die Strauchprävalenz. Dies bietet 

Einblicke in die Vorhersage zukünftiger Szenarien der Verbuschung und damit Information 

über mögliche Managementstrategien. 

Die vorliegende Arbeit konzentriert sich auf 35 Standorte in südlichen afrikanischen 

Savannen, an denen Fälle von Verbuschung dokumentiert wurden. Getestet wurden 11 

Szenarien unter Berücksichtigung von 3 Ebenen für Feuer, Beweidung und 

atmosphärischen [CO2], während MAP implizit für die Vielfalt der Standorte, für die 

Simulationen durchgeführt wurden, berücksichtigt wurde. Zusätzlich berücksichtigt 

wurden die Zufallsprozesse, indem 10 wiederholte Simulationen für jeden Standort und 

jedes Szenario durchgeführt wurden, was insgesamt 3850 Simulationsläufen entspricht. 

Das aDGVM2 simuliert eine höhere Strauchprävalenz bei natürlichem Feuer und ohne 

Beweidung unter vorindustriellem atmosphärischen [CO2]. Die Strauchprävalenz steigt 

tendenziell mit abnehmendem MAP in Abhängigkeit von Szenario und Standort, wenn 

auch nicht linear, mit einem eindeutigen Schwellenwert um den MAP von 700 mm/Jahr für 

mehrere Szenarien. Parallel dazu zeigt die Literatur, dass der MAP-Einfluss auf die 

Verbuschung von positiv bis negativ reichen kann. Die Strauchprävalenz nimmt mit 

zunehmenden atmosphärischem [CO2] ab. Da das aDGVM2 mit zunehmenden 

atmosphärischem [CO2] eine erhöhte Vegetationshöhe simuliert, deutet dieses Ergebnis 

darauf hin, dass der CO2-Düngungseffekt zu einer Ausdehnung der Gehölzbedeckung 

führt, bei der Bäume auf Kosten von Sträuchern dominieren. Feuer kann Sträucher sowohl 

bei hoher Frequenz als auch bei Abwesenheit unterdrücken. Die Wechselwirkung zwischen 

Feuer und Beweidung ist komplex. Unter Berücksichtigung einer höheren Anzahl von 

Druckniveaus sind genauere Untersuchungen erforderlich, um die oberen und unteren 

Grenzen der Häufigkeit von Feuer, das die Strauchprävalenz determiniert, festzulegen und 

präzise Bewirtschaftungspläne gemäß den lokalen Besonderheiten zu erstellen. Dies ist 
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besonders kritisch, wenn der Schwellenwerteffekt je nach Szenario und Standort erhebliche 

Auswirkungen haben kann, wie es für MAP simuliert wurde. 

Das Simulationsexperiment zeigt, dass die Verbuschung multifaktoriell ist. 

Während allgemeine Trends identifiziert werden können, sind weitere Untersuchungen 

erforderlich, um potenziell erklärende Treiber zu berücksichtigen, die von der 

durchgeführten Analyse ausgeschlossen wurden, wie z. B. Elefanten oder die Entnahme 

von Feuerholz, sowie um zusätzliche Faktoren und transitive Szenarien zu berücksichtigen. 

Komplexität und Rechenzeit würden jedoch über unsere verfügbaren Rechenressourcen 

hinausgehen. Während die mittlere Stammanzahl ein aussagekräftiger Indikator für die 

Strauchprävalenz ist, können andere Variablen wie die Baumbedeckung oder die Biomasse 

unsere Wahrnehmung der Strauchprävalenz verändern. Schließlich sagt die Konzentration 

auf Sträucher nichts über die allgemeine Reaktion der Vegetationsgemeinschaft auf 

getestete Treiber aus. Eine solche Aussage könnte erreicht werden, indem die Reaktion des 

Merkmalsraums auf Stressfaktoren berücksichtigt wird. Zusammenfassend sollten 

Managementpläne vermeiden, sich auf allgemeine Trends der Verbuschung zu stützen, und 

stattdessen auf präzise und standortspezifische Untersuchungen zurückgreifen, um die 

relative Bedeutung jedes potenziellen Treibers entsprechend seiner Kontextabhängigkeit 

zu entwirren. 
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CHAPTER 1 - INTRODUCTION 

This chapter is the work of the sole author of this thesis. 

1.1 - NATURAL WORLD - STUDY FOCUS 

1.1.1 - AFRICAN VEGETATION 

 
Figure 1.1: Africa seen from space (Image: Landsat/Copernicus, Data: SIO, NOAA, U.S. Navy, NGA, 

GEBCO, Image: IBCAo; obtained with Google Earth Pro, 2019). 

 

 Africa is the second largest continent (behind Asia), home to the second largest 

human population globally, forecasted to grow the fastest in the coming decades (United 

Nations, 2019) and with the longest history of human settlement (McDougall, Brown and 

Fleagle, 2005; Smith et al., 2007; Scerri et al., 2018). Despite its size and population, it 

hosts many of the world poorest countries, but also some of the fastest growing economies 

(World Bank, 2019). Along its economic diversity the continent hosts an even greater 

cultural diversity, with over 2000 languages (Lewis, Simons and Fennig, 2016), 1000 

ethnicities (Childs, 2003), 54 states, and a rich, yet under documented history (Davidson, 

1966; J. Desmond Clark, 2008). Africa’s chances, notably a wealth of resources (Jensen 

and Wantchekon, 2004), and challenges, among which violence and conflicts are prevalent 

(Elbadawi and Sambanis, 2000; Salehyan et al., 2012), will be further stressed as climate 

change is likely to affect Africa more severely than other continents (Hendrix and Salehyan, 

2012; Niang et al., 2015). 
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 Among Africa’s natural resources are nine biodiversity hotspots, such as the Cape 

floristic region, the succulent Karoo or the Guinean forests of West Africa (Myers et al., 

2000; M. Hoffman et al., 2016). These hotspots are spread among a wide range of climates 

(Kottek et al., 2006; Beck et al., 2018) and landscapes. Africa’s large biodiversity can be 

classified into eight biomes (Olson et al., 2001): Deserts and xeric shrublands; Tropical and 

subtropical grasslands, savannas and shrublands; Mediterranean forests, woodlands and 

scrubs; Montane grasslands and shrublands; Flooded grasslands and savannas; Mangroves; 

Tropical and subtropical dry broadleaf forests; Tropical and subtropical moist broadleaf 

forests. Other classifications exist (Monserud and Leemans, 1992; Prentice et al., 1992; 

Friedl et al., 2002), which subdivide vegetation into finer categories (Mayaux et al., 2004; 

Mucina and Rutherford, 2006), highlighting the African landscape diversity. Yet, one 

powerful and emblematic image comes to mind when thinking about Africa: a sunset over 

the savanna. 
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1.1.2 - SAVANNA 

 
Figure 1.2: Artistic depiction of a sunset over an African savanna (art by Gee). 
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 The iconic African savanna landscape, as depicted on figure 1.2 is part of the 

Tropical and subtropical grassland, savanna and shrubland biome as defined by Olson et 

al. (2001). Savannas are defined as regions where grasses and woody plants co-exist to 

create a landscape that is neither a grassland or a shrubland nor a forest or a woodland. 

According to this definition, it is estimated that savannas cover  approximately  one  sixth  

of  the  global  land  surface (Scholes and Archer, 1997; Grace et al., 2006). However, 

characterisation of savannas is multifaceted. The Cambridge Advanced  Learner’s  

Dictionary describes savannas as “a large, flat area of land covered with grass, usually with 

few trees, that is found in hot countries, especially in Africa” (Cambridge University Press, 

2008). Alternatively, Sankaran et al. (2005), Lehmann et al. (2011, 2014), Staver, 

Archibald and Levin (2011), Staver, Botha and Hedin (2017), explained savannas 

distribution by its drivers, particularly rainfall, soil and fire. Rainfall drives savannas both 

in terms of Mean Annual Precipitation (MAP) and in terms of seasonality, as savannas 

typically have a dry season and a rainy season. Pennington, Lehmann and Rowland (2018) 

provided a precise definition of savanna which classifies a fifth of the global land surface 

as savanna, based on trees and grasses cover share and including fire and herbivory as 

drivers. Other key characterisation schemes of savanna focus on its distinction from other 

biomes; for example, Ratnam et al. (2011) focused on its differences from forests based on 

plant types. Discounting the variety of definitions, savannas are rich and diverse 

ecosystems (Figure 1.3). 

 Savannas have been pivotal in human evolution, being associated with the 

development of the upright posture of the Homo genus (Clark, 1987; Lieberman et al., 

2007; Stewart and Stringer, 2012). They support iconic species, such as rhinoceroses, 

elephants, giraffes and lions. They provide traditional resources such as wild food, 

construction wood, fuel wood, and medicines (Twine et al., 2003; Boafo, Saito and 

Takeuchi, 2014). They typically have strong and complex relations to large grazers and 

browsers herds (Archibald et al., 2005; Codron et al., 2007; Holdo, Holt and Fryxell, 2009; 

Kimuyu et al., 2014; Baumgartner et al., 2015). Fire strongly drives vegetation dynamics 

in savannas and is often used for ecosystem management (Freckleton, 2004; Bond, 

Woodward and Midgley, 2005). However despite their long term historical relevance for 

both Humanity and biodiversity, they are largely threatened (Cardoso Da Silva and Bates, 

2002; Eriksen and Watson, 2009; Boon et al., 2016). Indeed, the savanna biome contains 

the majority of the world’s remaining potential arable land (Pennington, Lehmann and 
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Rowland, 2018), and as land use changes rapidly, particularly in Africa, vast swathes of 

land are at risk of conversion (Aleman, Blarquez and Staver, 2016; Ordway, Asner and 

Lambin, 2017). This threat is aggravated by the impending consequences of climate change 

(Scholze et al., 2006), notably changing rainfall regimes. Therefore, there is an urgent need 

to improve our understanding of savannas as it harbors vital resources for both Humankind 

and biodiversity. 

 To assess the risks and dangers faced by African savannas, we need to understand 

savannas ecosystems. This implies to identify and characterise their key processes and their 

key life-forms. Savannas are characterised by the coexistence of grassy and woody 

vegetation. Grasses mainly exhibit a C4 photosynthetic pathway in savannas (Sage and 

Monson, 1999), but C3 species can also be abundant. A few examples of the extensive 

grass diversity in savannas are the common finger grass (Digitaria eriantha), tussock 

grasses such as Hyparrhenia diplandra and Heteropogon contortus or lovegrasses 

(Eragrostis). The woody component of savannas is equally diverse, with life-forms ranging 

from bushes to trees through shrubs. The most common type of trees are of the Acacia 

genus, but Baobabs, Jackal berry tree (Diospyros mespiliformus), and even succulent trees 

such as Euphorbia ingens are also a trademark of African savannas. Interestingly, each has 

a unique strategy to deal with prevailing environmental constraints (e.g.: Acacias shed their 

leaves in drought conditions, Baobabs and Euphorbias store water). 

 
Figure 1.3: Glimpses of savanna landscape diversity (photography by the author). From left to right and 
from top to bottom: Rocky hillside dominated by Euphorbia trees (Euphorbia ingens). Open savanna at 

sunset. Sunset over a white rhinoceros (Ceratotherium simum) herd on a sandy soil savanna. South African 
giraffes (Giraffa camelopardalis giraffe) in a semi-open savanna. African elephants (Loxodonta africana) 

herd in an opening in a closed savanna. Savanna recently opened by African elephants.  Thicket in a 
savanna, hosting Impalas (Aepyceros melampus). Recently burned savanna. Scrubland savanna. Pictures 

taken in 2016. 
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1.1.3 - SHRUBS  

 In addition to grasses and trees, shrubs are ubiquitous through African savannas 

(Figure 1.3) (Cole, 1982; Lloyd et al., 2008) and a distinct ecological strategy (Condit, 

Hubbell and Foster, 1995; Hoffmann and Solbrig, 2003). Shrubs play a key role in many 

biomes and ecological processes (Parmenter and MacMahon, 1983; Vieira, Uhl and 

Nepstad, 1994; Sirami et al., 2009). They are a keystone in the phenomenon of woody 

encroachment (Maestre et al., 2009; Stevens, Lehmann, et al., 2016), which can lead to 

either forest expansion (Wiegand, Ward and Saltz, 2005; Mitchard et al., 2009) or 

desertification (Grover and Musick, 1990; Archer, Boutton and Hibbard, 2001; Van Auken, 

2009). Despite their relevance we do not know enough about their physiology and their 

ecology to fully assess shrub encroachment phenomenon. This shortcoming is related to 

the lack of clear consensual definition of what shrubs are. In various studies shrubs are 

characterised as short woody plants, however, the threshold to discriminate them against 

trees typically ranges from 3m to 4m, going more rarely up to 6m. This characterisation 

does not allow to separate them from bushes (also short woody plants) and from small trees. 

Recent studies proposed new criteria to characterise shrubs. Zizka, Govender and Higgins, 

(2014) defined shrubs based on height and stem number as multi-stemmed short woody 

individuals. This definition allows to distinguish clearly between trees and shrubs, but 

creates an intermediate category of “scrubs” (tall shrubs or multi-stemmed trees, “tree 

sometime shrub” in Zizka, Govender and Higgins (2014)) and does not distinguish from 

bushes (Figure 1.5). Nonetheless, this definition is particularly relevant and holds new 

potential to study shrubs as a specific life-form. It is indeed a common sight through 

African savannas (Figure 1.3 & 1.4). 

 
Figure 1.4: Shrub thicket in a South African savanna during a drought (2016). 
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Figure 1.5: Schematic representation of life-forms of the grassland-savanna-forest ecosystems. From left to 

right: bush, shrub, “scrub” (tall shrub, multi-stemmed tree), tree (art by Gee). 

  

This definition of shrubs supports the classification into distinct vegetation cover types 

relevant for the present thesis (Figure 1.6). Forests (closed forest) are dominated by trees 

with a closed canopy where light competition is among the main drivers. Savannas are 

landscapes where woody vegetation, made up of a mixture of trees and shrubs, coexists 

with a grass layer and where fire is among the main drivers. Grasslands are dominated by 

grasses with sparse woody plants. Shrublands are dominated by shrubs, with sparse grasses 

and other woody plants. Xeric shrublands are mainly barren, with vegetation layer 

dominated by shrubs and bushes, where aridity is the main driver. Woodlands are 

dominated by woody vegetation but without a closed canopy, where grasses are suppressed 

but not completely outcompeted (can be seen as open forest or closed savanna). 
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Figure 1.6: Vegetation cover types relevant to the present thesis (art by Gee). 

 

1.2 - NUMERIC REPRESENTATION OF NATURE 

1.2.1 - MODELS & ECOLOGY 

 The modern “model” concept can be read on multiple levels. Directly related to the 

word Latin origin, a model is a “reference”/”example”. Its second interpretation is further 

derived from the Latin origin. It says that a model is a simplified representation of an object 

or a system. It is a schematic visualization or a conceptualization of an item, and it is this 
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second interpretation which is of interest to us here.  Additionally, “model” is used to 

describe either a look-alike or function-alike representation of an object. 

 Ecological models are rooted historically in mathematical models representing 

relations between variables. Their foundations are made of observations, from which 

equations representing ecosystems behaviour are obtained through interpolations & linear 

regressions, and through theoretical models, such as the Lotka-Volterra equations 

(Volterra, 1926; Lotka, 1927). Their development and increase in complexity were made 

possible thanks to their digitalization, as it allowed for computation intensive processes to 

be modelled. Increase in complexity allowed for model to represent more than the sum of 

their parts; i.e., ecosystem dynamics are represented by multiple sub-processes instead of 

being directly modelled by a unique equation. This allows for greater flexibility and reduces 

the approximation due to data regression, thanks to the possibility to test the interplay 

between parameters and mechanisms. Process based ecological models are made up of 

many equations derived from multiple observations datasets, each limited to a specific 

“frame” (i.e., context or study) and not universal. This can lead to different model 

performing better in some cases than others even if they include the same processes, due to 

stemming their equations from different contexts. These assumptions, being fundamental 

to the functioning of these models, should be explicitly discussed and investigated more 

extensively (Zaehle et al., 2005; Quillet, Peng and Garneau, 2010; Bachelet, Rogers and 

Conklin, 2015). We aim to contribute to this discussion and argue that reflecting on this 

shift from mathematical relation to a system representation can foster new progress in the 

field. 

 

1.2.2 - DGVM - ESM - LSM 

Ecological models can be divided into two broad categories based on their 

methodological and conceptual approach. First are statistical models, such as niche models 

(Monahan, 2009; Williams, Anandanadesan and Purves, 2010). Second are models 

simulating ecosystem states by simulating ecosystem dynamics, such as gap models 

(Shugart et al., 2018) or DGVMs (Dynamic Global vegetation Models) (Prentice et al., 

2007; Fisher et al., 2017), which are our specific focus. They aim to reproduce ecosystem 

state variables and processes. This makes them particularly relevant to perform 

experimental studies, which would be too costly or even impossible to perform in empirical 
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studies, and to study past or potential future ecosystem. However, to have confidence in 

models results, they need to be thoroughly assessed on two points. First, the extent of 

models’ relevance need to be accurately and explicitly framed (hereafter extent of validity). 

Second, the models performance and accuracy need to be benchmarked against observation 

data (Kelley et al., 2013). However, models evaluation and relevance is intrinsically 

relative (Oreskes, Shrader-Frechette and Belitz, 1994).  

 DGVMs have a long history, stemming from a mixture of different research fields, 

making them trans-disciplinary (Prentice et al., 2007). They first appeared in the 1990’s 

with models such as IBIS (Foley et al., 1996) or VECODE (Brovkin, Ganopolski and 

Svirezhev, 1997). Since then, DGVMs have been linked with ESMs (Earth System models) 

(Quillet, Peng and Garneau, 2010) and LSMs (Land Surface Models) (Li et al., 2011) 

enabling the simulation of closed biogeochemical cycles (e.g.: carbon, water, energy). 

 Numerous DGVMs have been developed during recent decades, such as: JSBACH, 

JEDI, LPJ, LPJ-GUESS, aDGVM2, SEIB-DGVM, LM3-PPA, CLM(ED), ED, ED2, 

aDGVM, aDGVM2, ORCHIDEE (Fisher et al., 2017). This leads to conflicting 

classification of these models. For example, van Oijen et al. (2018) identifies three types 

of models: ecological, process-based and integrated. Fisher et al. (2018) refers to ESM 

(Earth System Models) which include first and second generation DGVMs, further sub-

divided into forest gap models, and vegetation demographic models, again sub-divided in 

individual-based models and cohort-based models. However, they rely on a common 

architecture framework (Prentice et al., 2007). They all are process based model simulating 

terrestrial vegetation ecosystems relatively to environmental (such as climate variability or 

soil characteristics) and internal (such as competition for light, space, water or nutrients) 

parameters. Most of them use a set of PFTs (Plant Functional Types) representing 

vegetation archetypes based on unique sets of parameters controlling their behaviour and 

architecture (Smith, Prentice and Sykes, 2001; Prentice et al., 2007), for example 

“temperate broadleaf deciduous tree” or “tropical humid evergreen tree”. Typically, 

DGVMs simulate the relative share of each PFT they consider in grid-cell they are run for, 

based on the input data they rely on (such as climatic variables) and which define the 

resolution at which they can be used. Due to their similarities, they face common challenges 

and share common questions (Quillet, Peng and Garneau, 2010). Fisher et al. (2018) 

reviewed the most recent progress and priorities concerning ESMs with a focus on 

DGVMs. For example, among DGVMs various methodological and conceptual approaches 
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exist to model light competition, water competition, vegetation demographics (Fisher et al., 

2017). Additionally, limitations due to data availability have to be overcome, and 

addressing computation informatics challenges would improve model’s reliability and 

potentials.  

 The purpose of a DGVM is to be a mathematical representation of ecological 

processes and thus simulate ecosystem dynamics while recreating ecosystems states as 

realistic variables. This holistic approach is the strength and challenge of modern DGVMs. 

This methodological approach clearly distinguishes DGVMs from purely statistical 

models, such as ecological niche models.  

 

1.2.3 - ADGVM2 

 Defining life-forms based on traits and not based on categories is a modern idea. 

Lavorel and Garnier (2002) hypothesized that plant traits can be used to predict ecosystem 

behaviour. This hypothesis is the key concept for designing trait-based vegetation models. 

While DGVMs, embedding this assumption, developed and diversified rapidly over the last 

two decades, attempts for a fully trait-based model emerged only recently with the JEDI 

model (Pavlick et al., 2013) and with the aDGVM2 (Scheiter, Langan and Higgins, 2013). 

As first generation DGVMs and the PFT approach are not adapted to study the role of 

biodiversity in great details and as biodiversity has been identified as crucial for ecosystems 

stability, notably in the face of climate change (Tilman, 1995; Tilman et al., 1997; Loreau 

et al., 2001; Isbell et al., 2015), research intensifies to go beyond PFTs and first generation 

DGVMs. The number of studies advocating for such paradigm shift is increasing (Yang et 

al., 2015; Fisher et al., 2017; van Oijen et al., 2018).  

 The aDGVM2 is among the first DGVMs fully based on traits trade-off which 

allow, by stochastic iterative sampling of the potential trait space, to select the most adapted 

life-forms (each potentially with a unique set of traits values) to prevailing environmental 

conditions and biotic interactions, via trait selection through generations (considering 

crossovers and mutations). This makes it of the first models able to study biodiversity 

effects on vegetation communities and ecological processes by relying on individual 

functional traits and not on PFTs. This strength is also relevant to study socio-economic 

interplays with biodiversity. For example, it can be used to study the effect of preferential 
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harvesting of wild plants based on specific traits on the overall vegetation community 

assembly through time. It can also be used to study speciation processes and their 

consequences on functional diversity and trait space. For example it could be used to study 

coevolution or evolution directionality (Gould, 1988; Hawkins, Grover and Wendel, 2008; 

Svensson and Berger, 2019). The aDGVM2’s key strength relies on its ability to simulate 

potentially unique trait combination for each individual and to select adapted individuals 

through traits filtering (Figure 1.7). This feature allows to study the impact of traits on 

vegetation community assembly and to study traits based biodiversity (Langan, 2019). The 

aDGVM2 is described extensively in Scheiter, Langan and Higgins (2013) and Langan, 

Higgins and Scheiter (2017), and on specificities in Pfeiffer et al. (2019) (annual and 

perennial grasses and grazing), Gaillard et al. (2018) (shrubs), second chapter of this thesis, 

and Kumar et al. (2020) (C3 grasses, plant level leaf photosynthesis).  

 

 
Figure 1.7: In aDGVM2 each individual is represented by a potentially unique combination of traits which 
is dynamically selected through traits filtering processes depending on environmental conditions, mutation 

and cross-over (Scheiter, Langan and Higgins, 2013). 
 
 
 
 
 
 
 

 



 41 Chapter 1 - Introduction 

1.3 - ECOSYSTEMS & LIFE-FORMS - STATES & DYNAMICS 

1.3.1 - SHRUB ENCROACHMENT 

 Shrub encroachment is a globally observed phenomenon (Grover and Musick, 

1990; Rivest et al., 2011; Stevens, Lehmann, et al., 2016). It can be associated with 

desertification processes (Grover and Musick, 1990; Van Auken, 2009) or with forest 

expansion processes (Mitchard et al., 2009). It is one aspect of woody encroachment, which 

covers forest expansion and bush encroachment. The common feature is the observation of 

an increase in woody cover, over recent years (or decades) in a given region. These regions 

are typically grasslands (Van Auken, 2000; D’Odorico, Okin and Bestelmeyer, 2011) or 

savannas (Roques, O’Connor and Watkinson, 2001), but can also be more arid biomes 

(Jeltsch et al., 1997). Shrub encroachment has been increasingly identified as a concern, as 

shown by the increasing number of relevant publications (Figure 1.8). Shrub encroachment 

impacts many stakeholders. Park managers are concerned as it alters habitat suitability for 

wildlife (Sirami et al., 2009; Stanton et al., 2018). Rangeland farmers are concerned as it 

alters forage availability and quality (Rivest et al., 2011) as well as predation risk (Blaum 

et al., 2007). Shrub encroachment can also have a wider impact on ecosystem functioning, 

local climatic conditions and hydrological regimes by modifying water cycling, albedo and 

surface roughness (Eldridge et al., 2011, 2012; He et al., 2011). It could impact the global 

Earth system by modifying carbon sequestration potential (Goodale and Davidson, 2002).  

 Despite being extensively studied, no consensus emerges at present regarding shrub 

encroachment, its drivers and its outcomes (Cao et al., 2018). The lack of consensus could 

be explained partly due to the differences between case studies (from desertification to 

forest expansion) and partly due to the ambiguity of the definition of shrub. These 

differences are underlined by the fact that multiple factors can cause such phenomenon. 

Shrub encroachment is a multifaceted phenomenon covering widely different cases. As 

such, it is challenging to find a consensus about its causes. Finally, shrub encroachment is 

intrinsically a phenomenon for which historic legacy plays a role as it happens over decades 

and is directional, and thus hysteresis effects need to be considered. This also implies that 

analysing shrub encroachment accurately is a data intensive process, and thus, data 

availability is a limiting factor (Cao et al., 2018). 
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Figure 1.8: Number of peer review publications returned by a Google scholar search for the terms “shrub 

encroachment” (yellow) and “bush encroachment” (orange) over the last 20 years. 
 

1.3.2 - ECOSYSTEMS VULNERABILITY 

Disclaimer: This section is based on Scheiter et al. (2018), which the author of this thesis 
co-authored.  

 Ecosystems and biodiversity around the world are facing multiple threats (Cole and 

Landres, 1996; N Joppa et al., 2016), and the level of these threats is increasing rapidly in 

many ecosystems (McKee et al., 2004; Lenzen et al., 2012). It is of paramount importance 

to assess threats effects on ecosystems and to forecast their trajectories, as it is likely to 

impact E.S. (Ecosystem Service) provision and livelihood of societies around the world in 

the near to mid-term future (Egoh et al., 2012; Maron et al., 2017). Factors such as climate 

change, atmospheric [CO2] increase and land use change have been identified as large scale 

drivers of ecosystem change (Biggs et al., 2008; Chown et al., 2010; IPCC, 2013, 2014). 

Interactions between these factors can be complex. For example, extreme events such as 

droughts can reduce biomass (Ogutu and Owen-Smith, 2003; Mooney et al., 2009), while 

atmospheric [CO2] increase might foster vegetation growth (Wigley, Bond and Hoffman, 

2010; Buitenwerf et al., 2012). In Scheiter et al. (2018), we showed that grasslands are 

particularly at risk of conversion to savanna while savannas might convert to woodlands, 

and we showed that woody encroachment phenomenon is likely to lead to large scale 

change in vegetation cover. This risk is higher in more extreme climate change scenarios, 

i.e., when [CO2] rises unimpaired at current rate until the end of the century. Kumar and 

Scheiter (2019) showed similar trends for South and South-East Asia. Globally, vast 
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expenses of diverse ecosystems are at risk of conversion due to climate change and 

atmospheric [CO2] increase (Cramer et al., 2001; Gonzalez et al., 2010) 

 This shift in vegetation cover will have cascading consequences as it will modify 

habitat suitability. Thus, by changing vegetation cover, climate change (and particularly 

CO2 increase), will impact biodiversity; components of which might exhibit different 

responses to similar changes. This might lead to unprecedented ecosystem states.  

 In Scheiter et al. (2018) we showed that grassland is the biome most likely to shift 

to a different state. However, changes inside biomes might be larger than shifts between 

biomes, given that a change of 2 or 3 percent can be enough to cross the threshold between 

biome categories, and given that a biome might encompass a wide range of values for a 

given parameter. The savanna biome encompasses a wide range of woody cover, thus, a 

larger increase in woody cover can happen without being recognized by looking at biome 

shifts only. Thus, we need to further our analysis by taking a non-categorical perspective 

on vegetation. Additionally, simulations in Scheiter et al. (2018) were conducted with 

aDGVM, which could not distinguish between shrubs and trees according to a trait-based 

trade-off. We turned to aDGVM2 to develop such capability as it allows for community 

assembly processes to dynamically select the most adapted traits combinations. This allows 

us to investigate woody encroachment in greater details and enables us to distinguish 

between shrub encroachment and forest expansion, adding multiple layers of knowledge to 

our analysis. For example, woody cover expansion means higher potential for carbon 

sequestration. Carbon sequestration potential is different between shrubs and trees. If we 

know to which extent woody cover expansion is due to shrubs or trees we can more 

accurately estimate change in carbon sequestration potential. Similarly, habitat suitability 

is different between shrub thicket and forests, thus impacting biodiversity. Finally, drivers 

of shrub encroachment might be found to be different from drivers of bush encroachment 

or forest expansion (Ward, 2005; Wiegand, Ward and Saltz, 2005; Mitchard et al., 2013; 

O’Connor, Puttick and Hoffman, 2014; Stevens, Lehmann, et al., 2016). 
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1.3.3 - MODELLING SHRUBS  

 At present, there are few DGVMs explicitly simulating shrubs, and they typically 

rely on a PFT approach (Hickler et al., 2006; Zeng, Zeng and Barlage, 2008; Clark et al., 

2011; Lawrence et al., 2011), which differs from a mechanistic representation of shrubs. 

Shrubs are understudied (relatively to trees), poorly categorised in terms of life-form and 

in terms of life strategy, and, consequently, their ecological role is unclear (Gaillard et al., 

2018). The PFT based representation of shrubs in DGVMs does not allow to define a trait-

based trade-off specific to shrubs. Shrub encroachment studies, despite their growing 

number, do not usually provide better information about the general physiological or 

ecological specificities of shrubs, partly because of a lack of common definition in the 

literature (Wilson, 1995; Zizka, Govender and Higgins, 2014; Götmark, Götmark and 

Jensen, 2016) and partly because they focus on shrub encroachment phenomenon more 

than on shrub life-forms (Jeltsch et al., 1997; Roques, O’Connor and Watkinson, 2001; 

Knapp et al., 2008; Eldridge et al., 2011; Eldridge and Soliveres, 2014). However, we can 

use field observations to establish defining criteria for shrubs. In this regard, Zizka, 

Govender and Higgins (2014) characterised shrubs, in African savannas, as multi-stemmed 

individuals. This definition is particularly relevant as it is drawn from our focus region. It 

informs our view on shrubs as a life-form but does not directly show a mechanistic trait-

based trade-off related to a specific life strategy. However, the consequences of this 

phenotypical difference (Figure 1.9) motivate a translation into the aDGVM2 framework. 

Due to allometric relations, for a given biomass, an increasing number of stems implies a 

decreasing height, simultaneously, an increasing number of stems means an increasing 

sapwood area (assuming a constant ratio). We question to which extent this allows to 

simulate shrub distribution and which consequences it has on plants processes and on how 

they react to environmental constraints. This is explained in great details in chapter 2. 

 
Figure 1.9: Relation of stem number to sapwood area relative to total diameter, the sapwood area of two 
stems is greater than the sapwood area of one stem for the same total stem radius. SI: Heartwood (dark); 

SA: Sapwood Area (light); R: Radius; SR: Sapwood “Radius”; IR: Internal (heartwood) Radius. 
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1.3.4 - ASSESSING MODELS  

 Models are benchmarked by comparing their output to observation data to ensure 

that models represent what they aim to and to assess their accuracy. An increasing number 

of parameters and variables are available to benchmark models; which can improve models 

reliability. In parallel, new model development require new benchmarking (Prentice et al., 

2007; Fisher et al., 2010; Kelley et al., 2013). We identify two complementary approaches 

to model benchmarking. First, model benchmarking can be done to support model 

development; i.e., benchmarking for testing model accuracy and relevance, and to improve 

a model (Fisher et al., 2010). Second, model benchmarking can be done to assess the 

accuracy of the representation of given specific variables or processes; i.e., benchmarking 

for testing an ecological hypothesis (typically among multiple different models). The 

second approach can imply model intercomparison projects to test different approaches to 

model a given ecological question (Cadule et al., 2010; Loew et al., 2013; Peng et al., 2015; 

Zhang et al., 2018) or focused on the benchmarking process itself (Kelley et al., 2013; Best 

et al., 2015). Intercomparison projects foster the homogenization of benchmarking 

approaches, which is widely advocated for (Warszawski et al., 2014; Eyring et al., 2016; 

Rosenzweig et al., 2017). The call for benchmarking standardization goes beyond the 

DGVM community and encompasses the whole Earth system modelling community 

(Abramowitz, 2012). Benchmarking trait-based DGVMs has many similarities with 

benchmarking PFTs based DGVMs, but it also has unique specificities. In trait-based 

models, vegetation is not categorised a priori and it needs to be characterised a posteriori 

into life-forms and life strategies. This is a unique challenge, but it also implies unique 

opportunities which are discussed through this thesis, such as: more detailed representation 

of ecosystem functions, higher flexibility in vegetation communities, or evolutionary 

trajectories of plant communities.  

 

1.4 - STUDY’S RELEVANCE 

1.4.1 - MODELS 

 The target of this thesis is to unravel ecological processes and dynamics explaining 

biogeographic patterns. It implies the intertwining of two items: model and ecology. A 

model is both a tool and a research question in itself, as investigating our ecological 
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questions raises questions about modelling methodology and requires questioning them 

explicitly. At present, second generation DGVMs are the most common state of the art 

process based ecological models (Fisher et al., 2017). They can be individual-based, which 

ensures a level of realism in the representation of plant level processes (Sato, Itoh and 

Kohyama, 2007; Scheiter, Langan and Higgins, 2013). Others are cohort based, typically 

using PFTs, which limits their ability to represent the diversity of life-forms and life 

strategies diversity as well as community assembly processes (i.e., natural selection), 

compared to individual based models. This impairs the development of a shrub model that 

relates forms and function (plant strategy) in a mechanistic way and not a priori 

determined. Thus, despite several attempts to model shrubs in DGVMs (Hickler et al., 

2006; Zeng, Zeng and Barlage, 2008; Clark et al., 2011; Lawrence et al., 2011), none fitted 

our needs so far. Therefore, we needed to rely on the first third generation DGVM, 

aDGVM2 and develop a new compatible shrub model. 

 Investigating ecological questions leads to questioning modelling concepts and 

benchmarking methodologies which can prove relevant for the development of DGVMs 

and supports and informs the research effort towards fully trait-based models. We argue 

that more process-based and non-categorical models, such as aDGVM2, offer 

unprecedented opportunities to investigate ecological questions. We argue for more holistic 

benchmarking approaches to explore the challenges and opportunities opened by such 

innovative model architecture. Our approach also highlights conceptual challenges to be 

solved to improve models reliability and capabilities. Most importantly, we demonstrate 

that it is possible to model a specific life-form and its associated life strategy without 

directly defining it a priori. 

 

1.4.2 - ECOLOGY 

 Woody encroachment has been identified as a major threat to many African biomes 

(Midgley and Bond, 2015; Stevens, Lehmann, et al., 2016; Scheiter et al., 2018). Going 

beyond the PFT approach, our shrub representation based on mechanistic trait trade-off 

allows to model dynamically ecosystem processes and thus enable a deeper investigation 

of shrub encroachment processes. Many studies contributed to disentangle the mesh of 

causes and consequences of this global phenomenon (Roques, O’Connor and Watkinson, 
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2001; A Carla Staver, Archibald and Levin, 2011; Stevens, Lehmann, et al., 2016) and to 

test potential management scenarios (Tocco et al., 2013; Boon et al., 2016; Smit et al., 

2016; Case and Staver, 2017b; Daryanto, Fu and Zhao, 2019). With our present model, we 

further these investigations. Besides shrub encroachment as an ecologically relevant 

phenomenon, shrubs themselves have direct effects on ecosystems functions. For example, 

shrubs define habitat suitability for different wildlife species (Popp et al., 2007; Sirami et 

al., 2009; Smit and Prins, 2015; Soto-Shoender et al., 2018) and can modify animals 

behaviours, for example by impacting hunting behaviour (Blaum et al., 2007). 

We conceptualised and tested representation of shrubs as a specific life-form with 

a unique strategy, specifically for African savannas. We identified their key characteristics 

based on their architecture and dynamics and provide a comprehensive characterisation of 

shrubs, more adapted for DGVMs, namely, a trait-based process-based definition of life-

strategies without a priori constraints. 

 As systems closer to critical thresholds respond more sensitively to external 

perturbations (Scheffer et al., 2009), it is necessary to increase models accuracy and 

precision. This implies to improve models ability to grasp finer details. The development 

of our shrub model allows for greater details based on a dynamic, flexible and innovative 

modelling approach; as such, it represents a major contribution towards a better 

understanding and forecasting of scenarios with more detailed ecosystem responses to large 

scale climatic and anthropogenic changes. 

 

1.4.3 - SOCIETIES 

 The ecological questions investigated and ecosystem dynamics modelled for this 

thesis are embedded in the social, political and economic context of our modern society 

with manifold actual or potential impacts. Particularly of concern is the fact that ecosystems 

resistance, robustness and resilience are challenged by environmental drivers which can 

lead ecosystems to cross thresholds, or tipping points, implying a point of no return between 

distinct alternative dynamic equilibriums (Gillson, 2004, 2015; Lenton et al., 2008; Lenton, 

2011; Veraart et al., 2012; M. Scheffer et al., 2015). These ecological switches can be 

driven by shifts in prevailing environmental conditions. For example, a one year drought is 

an extreme event, however, a long term increase in drought frequency and/or drought length 
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is a shift in bioclimatic conditions, which can induce longer lasting effect of greater 

magnitude on societies. An example is the impact of drought on the Syrian society, which 

contributed to its destabilization leading to the current war (De Châtel, 2014; Gleick and 

Gleick, 2014; Kelley et al., 2015), even if it is not the only cause. Many historical cases 

when environmental changes impacted social structures have been documented, notably in 

“Collapse: How Societies Choose to Fail or Succeed” (Diamond, 2005). This question is 

prone to debate due to the specificities of studying historical events (Page, 2005; Peiser, 

2005; Hunt, 2006; Schwartz and Nichols, 2010; Butzer, 2012). Studying potential future 

scenarios has the additional difficulty that we are at present facing unprecedented 

environmental challenges (IPCC, 2014; Díaz et al., 2019). This study is a step towards 

addressing the concerns stemming from current and future environmental and climatic 

changes. To do so, we provide higher level of detail to represent shrubs, specifically in 

African savannas, and thus enable higher capability to study shrub encroachment 

phenomenon, while supporting the development of new advancements in ecological 

modelling. 

 Shrub encroachment is a relatively slow process, at human life time scale; yet it is 

relatively fast at ecological time scale. It is a typically gradual process, which makes it 

difficult to distinguish between a pre-encroachment and a post-encroachment vegetation 

state. Therefore, defining a tipping point between these two states requires more detailed 

insights, which our approach contributes to. Our shrub model also enables the study of 

ecosystems resilience and resistance against shrub encroachment phenomenon, and the 

directionality of the phenomenon. This is particularly relevant to societies as shrub 

encroachment has direct impact on what a land can provide. For example by decreasing 

fodder availability for grazers, it reduces rangeland farming (MacLeod, Brown and Noble, 

1993; Mugasi, Sabiiti and Tayebwa, 2000) and/or hunting potential. This would 

consequently affect economical assets of commercial farmers or, more dramatically, reduce 

the robustness of the natural safety net for local population, thus increasing the danger of 

following extreme climatic events or economic crisis (Sallu, Twyman and Thomas, 2009; 

Richardson, 2010). Besides potentially devastating or game changing thresholds effects, 

having the ability to finely manage ecosystems is a key to sustainable development. 
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1.5 - QUESTIONS & OBJECTIVES 

1.5.1 - AIMS & GOALS 

 (1) The cornerstone of this thesis was the investigation of plants communities’ 

structures and dynamics in African savannas. (2) To investigate this topic the representation 

of African savannas in the aDGVM2 was improved. (3) Specifically a mechanistic shrub 

model based on whole plant trait trade-offs was developed. This technical goal had a 

combined conceptual goal, which was to (4) demonstrate that unique life-forms with a 

specific strategy can emerge dynamically from modelled ecological processes without a 

priori explicit characterisation. This development allowed to expand the reach of this thesis 

in two directions. (5) Models structure and development are supported by the 

comprehensive investigation of their underlying hypotheses and concepts. (6) Drivers of 

shrub encroachment are investigated, to inform society about management of African 

savannas vegetation, and to further ecological understanding of this phenomenon.  

 

1.5.2 - CHAPTERS & QUESTIONS 

  “How vulnerable are ecosystems in the Limpopo to climate change?” (Scheiter et 

al., 2018), introduced the questions investigated in this thesis. It showed that vegetation in 

the Limpopo province, South Africa, is likely to face an increase in woody cover, leading 

to biome shifts. The biomes most at risk are grasslands converting to savannas, and 

aDGVM also modelled extensive woody increase in savannas. Part of the uncertainty about 

these results can be explained by the dynamics of this vegetation cover change, as aDGVM 

could not distinguish between trees and shrubs. According to these findings, we turned to 

aDGVM2 to develop a shrub model. In chapter 2, “African shrub distribution emerges via 

a trade-off between height and sapwood conductivity” (Gaillard et al., 2018) we introduced 

a novel shrub model. We demonstrate that shrubs can be modelled as a distinct life-form 

with a specific strategy dynamically emerging from a trait-based trade-off based on stem 

number. The development of this model underlies our subsequent chapters. Using the novel 

implementation of shrubs we answered the following questions: 

1. Does the extended model allow us to reproduce observed contemporary shrub 

distribution patterns in Africa? 
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2. In which precipitation and fire regimes are shrubs dominant, co-dominant or 

outcompeted? 

3. Do shrub and tree life-forms emerge from community assembly based on the 

implemented multi-stemmed architecture? 

 The answers to these questions show that key traits and whole-plant trade-off 

between traits are necessary to simulate the biogeographical distribution of shrubs and 

trees. Therefore, in chapter 3, “Shrub form & function in ecosystems structure & dynamics, 

simulated with aDGVM2 in African savannas”, we refined the analysis of the model 

behaviour and representation of key ecosystem dynamics. Specifically, we explored how 

the shrub strategy emerging from the implemented trade-off behaves relatively to the 

categorisation scheme considered. We found that modelled shrub behaviour supports our 

key assumptions and allows identifying shrubs as a distinct strategy. We reached this goal 

by answering the following questions: 

1. How do we ensure the relevance and accuracy of our shrub model and in which cases 

and under which assumptions can we use it? 

2. How do shrubs, as we model them, shape ecosystems simulated by aDGVM2? 

3. How do distribution pattern of shrubs across Africa responds to environmental variables? 

4. How do categorisation schemes of life-form shape our understanding of these life-forms 

and how can we ensure the relevance of a classification scheme? 

5. Can we characterise shrubs as a specific life-strategy similarly to how we characterise 

them as a specific life-form? Specifically, we ask: how do shrubs behave in terms of 

resprouters vs. reseeders, in terms of rooting patterns and in terms of carbon allocation?  

 We explored DGVMs current challenges and opportunities in chapter 4, 

“Challenges and opportunities of models integrating traits and processes to simulate 

ecosystems states and dynamics”, based on our findings and general modelling concepts. 

We discuss approaches to improve DGVMs while highlighting the need for a better 

consideration of model foundations. We also focused on the complexity of validating 

models and on how to better connect models and observations. To this end, we answered 

the following questions: 
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1. How are assumptions underlying model structure and operation limiting models 

relevance? 

2. How are the limits to data and models interacting and impairing model benchmarking? 

3. Are there limits to modelling which cannot be overcome and why? 

4. Which limits to modelling can be overcome and how? 

 We used aDGVM2 new ability to model shrubs as a life-form with a specific 

strategy to perform an assessment of shrub encroachment drivers in chapter 5, “Modelling 

impacts of atmospheric [CO2], fire, grazing and MAP on shrub encroachment with 

aDGVM2”. We tested a matrix of scenarios to find out how shrubs prevalence responds to 

different levels of drivers pressure. In these scenarios we considered atmospheric [CO2], 

fire, grazing and MAP. This allowed us to contribute to the assessment of shrub 

encroachment future trajectories by asking: 

1. How do atmospheric [CO2], grazing, fire and rainfall shape shrubs prevalence across 

southern African savannas? 

2. Are the interactions between these factors synergistic or antagonistic? 

3. How understanding shrub encroachment drivers shapes our understanding of the future 

of shrub encroachment cases? 

4. Can fire management and grazing contribute to suppress undesired shrub encroachment? 

 Finally, we discuss the outcomes and reach of our thesis. We review and highlight 

the major results of our research and their relevance for the advancement of science. We 

present branching studies for which we conducted preliminary investigations highlighting 

their potential. The most promising project: “Modelling vegetation structure for Ecosystem 

Services - Benchmarking aDGVM2 with LIDAR data” aims to use modelled vegetation 

structure to estimate Ecosystem Services provision potential. It targets southern African 

ecosystems, specifically in parks where data is available about the interaction between 

wildlife tourism and vegetation structure. Benchmarking and calibrating vegetation 

structure simulated by aDGVM2 can be achieved with LIDAR (Light Radar) data locally 

available. This study questions: 1. Can we use LIDAR data to assess and constrain 

aDGVM2’s simulation of vegetation structure? 2. How can we translate aDGVM2 
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representation of vegetation structure into E.S. (Ecosystem Service) supply potential for 

wildlife tourism? 3. How our methodology can inform decision making for natural parks 

management? We identify three additional topics holding great potential which can be 

investigated with aDGVM2 based on the developments presented in this thesis. First, the 

relation between crown base height, light competition and fire avoidance can be 

investigated to improve our understanding of the relation between phenotypes as well as 

fire and shade adaptation strategies. Second, modelling the effect of grass self-shading can 

improve our representation of their life cycle and their competitive interaction with woody 

plants across savannas. Third, focusing on resprouting as a fire-adaptation mechanism 

would improve our representation of shrubs per se and in contrast to reseeders. We propose 

further openings, drawing on the specific strengths of aDGVM2 as well as going beyond 

its scope, to study key ecological questions from a modelling perspective. First, questioning 

the relation between shrubs and fire, relatively to crown fires would be particularly relevant 

to model shrublands such as the Fynbos and bring new capabilities to aDGVM2. Second, 

to investigate historic dynamics and biodiversity trajectories we propose to focus on 

coevolution constraint on trait space and ecosystems dynamics. We propose to study such 

dynamics by focusing on competitive interactions in mixed forest through vertical foliage 

distribution strategies. We conclude on questions underlying our thesis.  
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ABSTRACT 

Aim: Shrubs are multi-stemmed woody plants and are a successful growth form in many 

ecosystems globally. Ecosystems such as the Fynbos in South Africa or mediterranean 

shrublands are dominated by a dense shrub cover. In savannas, shrubs are a major 

vegetation component. Despite the importance of shrubs at the global scale, they are, in 

contrast to trees, often understudied both in empirical and modelling studies. We define 

shrub and tree strategies by a trade‐off between water uptake capacity and height growth, 

and aim to explore if this trade‐off allows us to explain shrub distribution. 

Location: Sub‐Saharan Africa 

Methods: We improve a dynamic vegetation model, the adaptive Dynamic Global 

Vegetation Model version 2 (aDGVM2), to simulate shrubs as multi-stemmed woody 

plants, based on a trade‐off between rapid height growth in single‐stemmed trees and 

efficient water uptake in multi-stemmed shrubs. 

Results: We show that, in aDGVM2, (a) the implemented trade‐off allows a multi-stemmed 

shrub strategy to emerge and is sufficient to simulate the broad distribution of shrubs in 

African savannas; (b) fire and aridity promote shrubs at the expense of trees and grasses; 

and (c) the presence of shrubs influences competitive interactions between grasses and 

woody vegetation. 
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Main conclusion: We provide a novel approach to simulate shrubs in a dynamic vegetation 

model. This approach enhances our understanding of the distribution of shrubs, but further 

work is required for arid and mediterranean shrublands. We conclude that introducing 

fundamental trade‐offs between growth forms into vegetation models can improve 

vegetation representation. 

Keywords: aDGVM, multi-stem architecture, plant life-form, savanna, shrub 

encroachment, shrubs, shrub-tree dynamics, trait trade-off 

 

2.1 - INTRODUCTION 

 Shrubs are the dominant or codominant plant growth form in many ecosystems 

around the world (Olson et al., 2001). Ecosystems with a substantial shrub component 

cover c. 45% of the land surface (Götmark, Götmark and Jensen, 2016). Some shrublands 

are biodiversity hotspots, such as the Mediterranean Maquis, dominated by aromatic shrubs 

(e.g., Lavendula (L.) and Rosmarinus (L.) species), or the South African Fynbos, dominated 

by Proteaceae (Juss.) species. Shrubs can be major component in other biomes such as 

tropical savannas (Eldridge et al., 2011). In these biomes, shrubs are important for the 

functional diversity and ecosystem functioning (Olson et al., 2001). Alterations in shrub 

abundance may signal transitions between alternative vegetation states, either towards 

woody vegetation expansion (Maestre et al., 2009), or towards less woody biomass, forest 

degradation, and desertification (Archer, Boutton and Hibbard, 2001). 

 In Africa, vegetation cover has recently changed rapidly (Skowno et al., 2017). 

These changes are expected to continue in the future (IPCC, 2014) and savannas are 

especially vulnerable to biome shifts (Higgins and Scheiter, 2012; Scheiter et al., 2018). 

Shrubs are naturally occurring in savannas and grasslands, where vast regions are subject 

to shrub encroachment (Mograbi et al., 2015). Studies have identified changes in grazing 

and fire regimes, climate change, elevated atmospheric CO2, and historical legacies as the 

main drivers of shrub encroachment (Stevens, Erasmus, et al., 2016). How these factors 

interact and drive shrub encroachment remains elusive. An improved understanding of the 

functional differences between shrubs and trees is necessary to gain insights into the 

mechanisms driving the distribution of these growth forms.  
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 The interest for understanding the ecology and biogeography of shrubs is growing 

(Marten Scheffer et al., 2015), yet the distinction between shrub and tree growth forms is 

not trivial. One difference between shrubs and trees is that trees are typically single-

stemmed while shrubs are typically multi-stemmed (Zizka, Govender and Higgins, 2014). 

This difference implies a fundamental trade-off (Midgley, 1996; Götmark, Götmark and 

Jensen, 2016). The multi-stemmed architecture means, for a given biomass, shorter 

individuals. Thus, shrubs are typically smaller than trees and seldom taller than 3-6m 

(Zizka, Govender and Higgins, 2014; Götmark, Götmark and Jensen, 2016). However, for 

a given biomass, shrubs have relatively larger total stem cross-section area and therefore 

higher sapwood area and higher hydraulic conductivity (Götmark, Götmark and Jensen, 

2016). Hence, shrubs have a competitive advantage under more water-stressed conditions. 

Many shrub species can cope with fire due to their ability to resprout efficiently after being 

damaged by fire (Hoffmann and Solbrig, 2003) or by regrowth from a persistent seed bank 

in systems where crown fires are frequent (Pausas et al., 2004). In contrast, trees grow taller 

than shrubs and typically cope with fire by escaping the flame zone and thereby becoming 

fire resistant (Hoffmann et al., 2012; Zizka, Govender and Higgins, 2014). Tree height 

growth also implies both a competitive advantage for trees in dense ecosystems where light 

is limiting and defence against herbivores by keeping leaves away from browsers. 

 Empirical studies provide valuable insights into the biogeography of shrubs and 

trees and the impacts of climate and land use. Yet, models are required to predict future 

vegetation dynamics in response to climate change and anthropogenic impacts. Dynamic 

Global Vegetation Models (DGVMs)(Prentice et al., 2007) are useful tools to investigate 

vegetation patterns at large spatio-temporal scales. However, DGVMs often focus on tree 

Plant Functional Types (PFTs) while shrubs are often not explicitly considered. Several 

DGVMs, such as LPJ-GUESS, CLM-DGVM, or SDGVM, do include shrubs (Hickler et 

al., 2006; Zeng, Zeng and Barlage, 2008; Clark et al., 2011; Lawrence et al., 2011), but 

their representation is often simplified and lacks explicit mechanisms and trade-offs related 

to the multi-stemmed architecture of shrubs (Götmark, Götmark and Jensen, 2016).  

 Two reasons may explain why shrubs have received little attention in DGVMs. 

First, shrubs seem to be a relatively understudied ecosystem component. A Google Scholar 

search resulted in roughly seven times fewer results for “shrub” than for “tree”. Second, 

defining shrubs on a conceptual level and discriminating them from trees is challenging 

(Zizka, Govender and Higgins, 2014; Götmark, Götmark and Jensen, 2016). We argue that 
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the ability to model shrubs and trees as distinct growth forms could improve our 

understanding of the current biogeography of many ecosystems and enhance future 

projections of impacts of climate change and land use. 

 Here, we present the first DGVM (the adaptive Dynamic Global Vegetation Model 

version 2, aDGVM2), that explicitly simulates shrubs and trees as multi-stemmed and 

single-stemmed woody plants, respectively. This difference in stem numbers creates a 

trade-off between faster height growth of single-stemmed trees versus increased relative 

water uptake capacity of multi-stemmed shrubs (Zizka, Govender and Higgins, 2014; 

Götmark, Götmark and Jensen, 2016). Selection and trait-filtering processes in aDGVM2 

dynamically assemble plant communities that are adapted to site-specific environmental 

conditions (Scheiter, Langan and Higgins, 2013; Langan, Higgins and Scheiter, 2017), such 

that the model allows us to project the distribution of shrub- and tree- dominated 

communities. We use the updated aDGVM2 to study grass-shrub-tree interactions in Sub-

Saharan Africa. In particular, we address the following questions: 

1. Does the extended model allow us to reproduce observed contemporary shrub 

distribution patterns in Africa? 

2. In which precipitation and fire regimes are shrubs dominant, codominant or out-

competed? 

3. Do shrub and tree life-forms emerge from community assembly based on the 

implemented multi-stemmed architecture? 

 By addressing these questions, we show that fundamental traits and whole-plant 

trade-off between traits are necessary to understand the biogeographical patterns of shrubs 

and trees. 

 

2.2 - MATERIALS AND METHODS 

 We used the aDGVM2 described in Scheiter et al. (2013) and updated by Langan 

et al. (2017). We provide details about the general features of aDGVM2 and updates related 

to ecophysiology in the Supporting Information Appendix S1. Here, we only describe our 

novel implementation of multi-stemmed woody plants. 
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2.2.1 - MULTI-STEMMED WOODY PLANTS 

 The number of stems of a woody individual (Ns) is modelled as a trait. It is fixed 

for each simulated individual and does not change during its lifetime. However, it can be 

modified via mutation and exchange of traits while being passed on to the next generation. 

By these processes, aDGVM2 simulates communities with a variety of plants with different 

stem numbers. We constrained Ns between 1 and 10. In aDGVM2, each woody individual 

has carbon pools for roots, storage, reproduction, stem, leaf, and bark. To simulate multi-

stemmed individuals, we split stem, leaf, and bark pools into Ns equal parts. Each of these 

parts is considered an individual stem of the plant. We use the existing aDGVM2 equations 

(Langan, Higgins and Scheiter, 2017) to calculate architecture (height, stem diameter, 

crown area) and sapwood area of each stem from its biomass. Total sapwood area of a plant 

is calculated as a sum of the sapwood areas of all stems. Following Kumagai et al. (2005), 

we assume a linear relation between stem number and plant sapwood area, although other 

studies suggest that this relation can be nonlinear and saturate as stem number increases(De 

Micco, Aronne and Baas, 2008). 

 A plant's crown area is calculated as the sum of the crown areas of all stems. To 

constrain the crown area of multi-stemmed plants, we assume that it is always less or equal 

to the crown area of a single-stemmed plant with the same stem biomass. This 

simplification considers that crowns of individual stems may overlap, which reduces the 

total crown area and increases self shading within the crown. Leaf area index of a plant is 

derived from its leaf biomass and total crown area. In contrast to stem, bark, and leaf 

biomass, we do not split root, storage, and reproduction biomass, and all stems are 

connected to a single root biomass pool (unit pipe model) (Tyree and Ewers, 1991). The 

structure of our model implies that multiple stems of an individual start underground, at the 

ground, or close to the ground. 

 Introducing stem number as a trait implies a trade-off between single-stemmed and 

multi-stemmed woody plants (Figure 2.1). For a given woody biomass and similar carbon 

allocation traits, single-stemmed plants are taller than multi-stemmed plants. Being tall is 

an advantage in dense vegetation stands with intense light competition. In fire-prone 

environments, rapid height growth may help tree crowns to escape the flame zone and 

thereby increase fire resistance (Hoffmann, Orthen and Do Nascimento, 2003). 

Additionally, single-stemmed trees have a higher bark thickness than multi-stemmed plants 
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for a given amount of carbon allocated to bark. Bark thickness tends to correlate with stem 

diameter, and thick stems overall have thicker bark than thin stems (Williams, Witkowski 

and Balkwill, 2007). Higher bark thickness, in aDGVM2, reduces topkill probability 

(Langan, Higgins and Scheiter, 2017). In our model, shrubs need to invest more carbon in 

their bark than trees to achieve the same bark thickness. 

 In aDGVM2, fire damage of multi-stemmed plants is more pronounced because 

they can typically not escape the flame zone due to their lower height. However, for any 

given height, a shrub has higher biomass than a tree (Figure 2.1), and therefore potentially 

higher photosynthetic capacity. Thus, in aDGVM2, when fire frequency prevents plants 

from escaping the flame zone, multi-stemmed individuals are better competitors due to 

their ability to accumulate more carbon at low height, which entails a higher potential for 

regrowth due to larger root systems. Additionally, multi-stemmed individuals have a 

relatively enhanced photosynthetic capacity resulting from their higher sapwood area per 

unit stem biomass (Figure 2.1). Relatively higher sapwood area entails, in aDGVM2, an 

increased ability to extract soil water, such that, for a given height, multi-stemmed 

individuals gain a competitive advantage over single-stemmed plants in water-limited 

environments. 



 59 
Chapter 2 - African shrub distribution emerges via a trade-off between height and 

sapwood conductivity 

 
Figure 2.1: Trade-off between single- and multi-stemmed woody plants. Height (a) and sapwood area (b) of 

each stem of a plant are calculated from each stem's biomass using equations provided by Langan et al. 
(2017). Total sapwood area of a plant (c) is the sum of individual stem sapwood areas. For a given stem 

biomass, single-stemmed plants are taller than multi-stemmed plants, whereas plant sapwood area is 
higher for multi-stemmed plants. 

 

2.2.2 - SIMULATION EXPERIMENTS 

 Using the extended version of aDGVM2, we simulated potential natural vegetation 

in Africa at 1° spatial resolution. To ensure that simulated vegetation has sufficient time to 

adapt to prevailing environmental conditions, we conducted simulations for 400 years using 

iterated monthly data from the Climatic Research Unit reference climatology for the period 

between 1961 and 1990 (New et al., 2002). We generated daily rainfall sequences from the 

climatology by using the algorithm provided by New et al. (2002). Trial simulations 

showed that a 400 year period is sufficient to ensure that dynamic equilibrium conditions 

are reached.  
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 We conducted four different simulation scenarios. First, we simulated vegetation in 

the presence of fire and multi-stemmed woodyplants. This baseline scenario is closest to 

natural vegetation dynamics. Second, we repeated the simulations but with fire suppressed 

in order to test how fire influences the distribution of multi-stemmed woody plants. Third, 

fire was allowed but shrubs were excluded from simulated vegetation by constraining the 

stem number to one for all woody plants. This scenario allows to analyse how the 

introduction of multi-stemmed woody plants modifies vegetation patterns and comparisons 

with the original version of aDGVM2 that only simulated single-stemmed trees. Fourth, we 

simulated vegetation in the absence of shrubs and fire.  

 We conducted site-specific simulations to compare model simulations, 

observations, and remote sensing products at site scale. For these sites, we ran 10 replicates 

to account for effects of stochasticity in the model. Stochasticity influences for instance the 

subroutines for fire, demography, cross over, and mutation of traits. We ran the simulations 

for eight savanna sites for which ground observation data were available (Table 2.1) 

(Rushworth, 1975; Rutherford, 1975, 1979; Kelly and Walker, 1976; Higgins et al., 2007). 

For these sites, we used the 10min resolution climatology by New et al. (2002) as climate 

forcing. 

 

2.2.3 - VEGETATION CLASSIFICATION 

 To analyse structure, diversity, and function in the woody layer, we classified 

individual simulated woody plants into different growth forms. We distinguished between 

four architectural types: small and tall trees, shrubs, and mixed types. Small trees are less 

than 4 m tall with a maximum of three stems. Tall trees exceed a height of 4 m with a 

maximum of three stems. Shrubs are less than 4 m tall with four or more stems. Woody 

plants taller than 4 m with four or more stems are classified as mixed types (shrubs, 

sometimes small trees). This classification allows us to be consistent with Zizka et al. 

(2014), who found that trees have on average 2.2 ± 1.4 stems, and it allows us to compare 

our results to vegetation maps from remote sensing (Tuanmu and Jetz, 2014). Note that 

patterns simulated by aDGVM2 are sensitive to the selection of the thresholds for 

classifying plants; however, slight modifications of these thresholds do not change our main 

findings and conclusions. 
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2.2.4 - MODEL BENCHMARKING 

 We compared simulated woody aboveground biomass to different remote sensing 

products reporting aboveground biomass (Saatchi et al., 2011; Baccini et al., 2012; 

Avitabile et al., 2016). All biomass datasets were aggregated to the 1° resolution of our 

simulations by calculating the mean of all values within the 1° grid cell. We used the 

simulated mean woody biomass of the last 10 years for each grid cell. We used the 

“DGVMTools” R package (M. Forrest & J. Steinkamp, unpublished) to calculate statistical 

measures for agreement between datasets and model results (Normalized Mean Squared 

Error, NMSE, and coefficient of determination, R²).  

 The simulated distribution of shrubs was compared to shrub prevalence from 

Tuanmu and Jetz (2014). The Tuanmu and Jetz (2014) dataset was aggregated to the 1° 

resolution of the simulations by calculating the mean of all values within the 1° grid cell. 

To quantify simulated shrub prevalence in each grid cell, we determined the fraction of 

woody individuals within the grid cell's woody plant population that are shrubs (as defined 

in Section 2.2.3). Furthermore, we used the average number of stems of all woody plants 

in a grid cell as proxy for the relative abundance of shrubs. Intermediate to high mean stem 

number indicates a high abundance of shrubs or mixture of shrubs and trees, whereas low 

mean stem number indicates a plant community dominated by trees. 

 The biomass and shrub cover data we use for benchmarking are similar to our model 

output, yet, they are structurally different from aDGVM2 output on two points. First, 

remote sensing data are reconstruction of data from satellite sensors based on complex 

models, expert knowledge, and ground truthing. Remote sensing products can deviate from 

reality (Friedl et al., 2010) and from other products for the same variable. A perfect 

matching between observed variables is often not possible. Second, DGVMs simulate 

potential natural vegetation while remote sensing products include impacts of land use. 

This implies that precisely benchmarking DGVMs with remote sensing requires additional 

information on anthropogenic impacts. 
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2.3 - RESULTS 

 The inclusion of shrubs in aDGVM2, based on the trade-off between rapid height 

growth in trees and efficient water uptake in multi-stemmed shrubs, improves the simulated 

vegetation patterns in Africa. For the most realistic baseline scenario with shrubs, trees, 

and fire, simulated woody biomass patterns show better agreement with biomass estimates 

from remote sensing (Saatchi et al., 2011; Baccini et al., 2012; Avitabile et al., 2016), than 

in scenario without shrubs (Figure 2.2, Table 2.2). Agreement between satellite products, 

ground studies, and aDGVM2 results varies strongly (Table 2.1). aDGVM2 is capable of 

broadly reproducing the distribution pattern of shrubs in African savannas and woodlands 

(Figure 2.2). Yet, the model appears to systematically underestimate shrub prevalence in 

the deserts and drylands of southern Africa (Kalahari, Karoo, Namib) and at the Horn of 

Africa. We can answer our first question: our approach allows us to reproduce shrub 

prevalence over large expanses of Africa with good agreement, in savannas and woodlands. 

However, model representation of shrubs in Mediterranean regions and in more arid regions 

is limited. 

 The average stem number of all woody plants simulated in a grid cell is lowest in 

equatorial African rain forests and increases in savannas and grasslands as precipitation 

decreases (Figure 2.3). The average woody plant height follows the inverse trend (Figure 

2.4). The simulated distribution of shrubs reflects average water availability and the 

enhanced relative water uptake capacity of multi-stemmed plants in more arid areas. 

However, in water-stressed regions, such as the Karoo, aDGVM2 still simulates a shrub-

tree mixture, while data indicate shrub prevalence only (Figure 2.2). The modelled shrub-

tree communities in hyperarid regions consist of smaller individuals with a higher mean 

stem count (Figures 2.3 and 2.4).  

 Comparison of simulations with fire and without fire shows that fire generally 

reduces woody biomass (Figure 2.5) and woody cover (not shown) and modifies the 

distribution of shrubs and trees in Africa. Fire augments shrub dominance in more arid 

regions and increases mean stem number of woody plants (Figure 2.3) and shrub abundance 

(Figure 2.5). Increases in shrub abundance due to fire are most pronounced in the Sahel and 

the Miombo region. In contrast, compared to the scenario without fire, the model simulates 

a slight decrease in shrub prevalence in response to fire at the Horn of Africa and in the 

southern African arid regions. In summary, the results allow us to answer our second 
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question: shrubs are favoured over trees under arid conditions, and fire promotes shrubs in 

savanna regions, while fire impacts are weak in high precipitation areas.  

 Tropical forest areas and savanna areas differ in the relative abundances of different 

phenotypes (Figure 2.6). In tropical forest areas, vegetation is dominated by a homogeneous 

layer of tall trees with a low number of stems and an understorey layer of smaller trees. In 

savanna areas, shrubs and trees of various sizes co-dominate, resulting in a functionally 

diverse woody layer. Fire plays a significant role in savannas by shifting the balance in 

favour of shrubs (Figure 2.6). In aDGVM2, fire does not occur, in forests, due to low grass 

biomass and dense canopy which prevent ignitions. Thus, fire does not influence vegetation 

structure in forests. Simulated patterns of architecture and community composition allow 

us to answer the third question: shrubs and trees do emerge as phenotypical strategies based 

on the fundamental trade-off between height growth and water uptake. 

Table 2.1: Aboveground biomass for different savanna sites, from field observations, remote sensing 
products (Avitabile et al., 2016; Baccini et al., 2012; Saatchi et al., 2011), and aDGVM2 simulations. Sites 

1-4: Higgins et al. (2007), site 5: Rutherford (1979), site 6: Rutherford (1975), site 7: Kelly and Walker 
(1976), site 8: Rushworth (1975). 
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Figure 2.2: Comparison between aDGVM2 results and satellite products for biomass and shrub 

prevalence. Aboveground biomass data were derived from Saatchi et al. (2011) (b) shrub prevalence data 
were derived from Tuanmu and Jetz (2014) (e). Aboveground biomass is in tons per hectare. Shrub 

prevalence is in percentage of total woody plant number for aDGVM2 and in percentage of land cover for 
Tuanmu and Jetz (2014). Simulations were conducted in the presence of fire and shrubs, which represents 

the most realistic scenario. Biomass comparisons with additional satellite products are available in 
Supporting Information Appendix S1 and Supporting Information Figure 2.S1. 

 

Table 2.2: Comparison of aboveground biomass between aDGVM2 results for different simulation 
scenarios and three remote sensing products. 
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Figure 2.3: Response of mean stem number to mean annual precipitation. Mean stem number indicates the 
relative abundance of shrubs and trees. High stem numbers indicate dominance of shrubs while low stem 

numbers indicate dominance of trees. Intermediate stem numbers indicate dominance of shrubs with 
intermediate stem numbers or a mixture of trees and shrubs. Maximum mean stem number displayed has 

been constrained to six but simulations were performed with a maximum of 10 stems per plant. Each point 
in the graph represents the mean value of one grid cell simulated by the aDGVM2. The lines represent 

fitted splines. 
 

 
Figure 2.4: Response of mean height of woody individuals to mean annual precipitation. Higher mean 

height indicates dominance of trees while lower mean height indicates dominance of shrubs. Each point in 
the graph represents the mean value of one grid cell simulated by the aDGVM2. The lines represent fitted 

splines. 
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Figure 2.5: Impacts of fire suppression on aboveground tree biomass (a and b) and shrub prevalence (c 

and d). (a) and (c) Biomass and shrub prevalence in the absence of fire. (b) and (d) The difference between 
simulations with fire (Figure 2.2) and simulations without fire. 

 



 67 
Chapter 2 - African shrub distribution emerges via a trade-off between height and 

sapwood conductivity 

 
Figure 2.6: Average architecture of woody plants, at a savanna site in the presence of fire (a) and in the 

absence of fire (b), and at a forest site in the absence of fire (c). At the forest site, aDGVM2 does not 
simulate fire due to fuel and ignition limitations. For each scenario, we classified woody plants into small 
and tall trees, shrubs, and mixed types and we calculated mean height, mean canopy radius, mean stem 

number, and mean stem radius for each class. Small trees have up to three stems and are less than 4 m tall, 
tall trees have up to three stems and are more than 4 m tall (grey line), shrubs have four or more stems and 

are less than 4 m tall, remaining plants are classified as mixed types. 

 

2.4 - DISCUSSION 

 Shrubs are an important vegetation growth form in many terrestrial ecosystems. 

Shrubs can either be the major vegetation type of an ecosystem or coexist with other 

vegetation types and contribute to the functional diversity of an ecosystem (Olson et al., 

2001). In the ecological literature, shrubs recently received more attention (Eldridge et al., 

2011; Zizka, Govender and Higgins, 2014; Götmark, Götmark and Jensen, 2016; Stevens, 

Lehmann, et al., 2016). Yet, in contrast to trees, shrubs have received little attention in 

DGVMs. In many DGVMs, shrubs are not explicitly considered, or are included as PFTs, 
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without explicitly accounting for their multi-stemmed architecture and the implications for 

growth and water uptake (Zeng, Zeng and Barlage, 2008; Clark et al., 2011). 

 In this study, we present a mechanistic representation of shrubs and trees in the 

aDGVM2 by introducing stem number as a plant trait. Variable stem number allows us to 

simulate single- or multi-stemmed architecture of these growth forms and the associated 

trade-off between height growth in trees versus enhanced water availability in multi-

stemmed shrubs. We show that this trade-off allows us to simulate large expanses of the 

current distribution of shrubs in Africa, particularly in savannas. The finding emphasizes 

the need to consider shrubs to understand biogeographical patterns in Africa. 

 

2.4.1 - ADAPTATION OF SHRUBS TO WATER AND LIGHT 

COMPETITION 

 Plant growth is strongly constrained by the availability of water and light. Individual 

plants compete for those resources using different strategies (Craine and Dybzinski, 2013). 

As competition is usually driven by the most limiting resource, successful strategies vary 

depending on the nature of the limiting resource. Adaptation to efficient acquisition of a 

specific resource requires specialization. Simultaneous optimization of acquisition of all 

resources while developing avoidance or resistance strategies to stress factors is 

impossible(Stearns, 1989). 

 Our findings indicate that shrubs are more abundant in more water-stressed regions 

and that under such conditions they have a competitive advantage over trees. For a given 

stem biomass, a multi-stemmed plant has a higher sapwood area than a single-stemmed 

plant in aDGVM2 and a higher capacity to extract and transport water. In our results, this 

relation is reflected by the increase in average stem number and the shrub-tree ratio along 

gradients of decreasing mean annual precipitation, both in the presence and absence of fire. 

However, in aDGVM2, in regions of high water stress, multi-stemmed architecture alone 

is not sufficient to explain observed shrub prevalence. A multilayered soil water model and 

rooting depth plasticity are included in aDGVM2 (Langan, Higgins and Scheiter, 2017), 

allowing plants to adjust their rooting depth in response to soil water availability. Deeper 

rooting systems, allowing plants to reach aquifers can be an important factor in these 

regions (Schenk and Jackson, 2005) and are missing in aDGVM2. A stem hydraulic 
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conductivity versus hydraulic safety trade-off is mediated by wood density in aDGVM2; 

however, the model does not account for the full complexity of this trade-off (Jacobsen et 

al., 2008). Another mechanism missing in aDGVM2 to account for competition between 

shrubs and trees is the resistance of shrubs to aridity via redundancy of their architecture 

against mechanical failure (Schenk et al., 2008).  

 Where water supply is not limiting, aDGVM2 simulates tree dominance at the 

expense of shrubs. Vegetation biomass and tree cover are particularly high in equatorial 

African forests, and are mainly driven by light competition and selection for tall individuals 

(Scheffer et al., 2015). 

 

2.4.2 - ADAPTATION OF SHRUBS TO FIRE 

 Fire is an important component in most ecosystems with substantial shrub 

prevalence, such as Fynbos or savanna. In savannas, fire generally reduces woody biomass 

and alters vegetation structure (Smit et al., 2010). However, woody savanna plants are 

rarely killed by fire because they are adapted, by either resistance or a high ability to 

resprout after fire damage (Higgins, Bond and Trollope, 2000). We observed a similar 

behaviour in our results.  

 In our simulations, turning fire on reduces total woody cover and biomass in 

semiarid regions while increasing shrub dominance both with respect to abundance and 

mean stem number, compared to simulations without fire. We identified two potential 

mechanisms to explain how fire shifts the competitive balance between shrubs and trees. 

First, fire reduces recruitment success of trees and then tree prevalence. Thus, fire indirectly 

increases shrub growth rates by reducing tree cover and light competition by trees. Second, 

fire reduces mean vegetation height. This implies a competitive advantage of shrubs, which 

are smaller than trees and benefit more from open vegetation. It could also indicate an 

increased competitiveness of resprouters against reseeders, assuming that resprouters tend 

to be smaller than reseeders (Midgley, 1996). However, we did not assess trade-offs 

between resprouters and reseeders in aDGVM2. Thus, the positive response of shrub 

prevalence to fire at the expense of tree prevalence can be explained by mechanisms 

inherent to both functional types to cope with fire.  
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 Woody plants can deal with fire either by regeneration (resprouting or reseeding) 

or by resisting fire (by growing tall to escape the flame zone or building enough bark for 

protection). Due to the built-in constraints of their respective architecture, in aDGVM2, 

mature trees and shrubs behave differently. Trees can survive fire by growing tall to escape 

the flame zone, by investing into a thick bark, or by investing in belowground reserves to 

increase their resprouting ability (Higgins, Bond and Trollope, 2000; Hoffmann and 

Solbrig, 2003; Hoffmann et al., 2012). Shrubs, being shorter due to their multi-stemmed 

architecture, usually do not escape the flame zone. However, shrubs have higher growth 

rates at low size in aDGVM2, thus, they excel in post-fire resprouting (Zizka, Govender 

and Higgins, 2014), irrespective of their storage capacity (Shibata et al., 2016). 

 

2.4.3 - SHRUB AND TREE PHENOTYPES AND IMPLICATIONS FOR 

DIVERSITY 

 A key feature of aDGVM2 is that, by the processes of trait inheritance, mutation, 

and cross over, it systematically samples the trait space spanned by the simulated traits. 

Thereby, the model assembles communities composed of growth strategies that are suitable 

for the given biotic and abiotic conditions (Scheiter, Langan and Higgins, 2013). The model 

allows different strategies to emerge and coexist without an explicit and a priori 

parameterisation. By adding stem number as an additional plant trait into the model, we 

can simulate communities consisting of a mixture of distinct shrub and tree phenotypes. 

The relative abundance of these growth forms emerges as a function of light and water 

competition and in response to fire. Coexistence of shrub and tree phenotypes is possible 

in the model and it increases functional diversity both in terms of a more diverse vegetation 

structure and in terms of emergent phonological strategies. 

 Reduction in complexity is necessary in all models. Yet, resilience and resistance 

of ecosystems have been shown to be influenced by diversity (Isbell et al., 2015). 

Oversimplification in vegetation models, for instance by a coarse and static representation 

of functional types, may cause misleading conclusions when assessing ecosystem resilience 

and future trajectories. Being able to simulate the coexistence of different growth forms, 

diversity, and adaptation of plant communities to the environment is therefore prerequisite 

when simulating climate change impacts on vegetation (Langan, 2019). Introducing a 
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mechanistic representation of shrubs in aDGVM2 is therefore an important step towards a 

representation of functional diversity of ecosystems. 

 

2.4.4 - FRAMING OUR RESULT'S ACCURACY 

 To interpret the results of our model, we need to understand its limitations and 

explain the discrepancies with benchmarking data. First, as explained in the methods, our 

model results are conceptually different from the benchmarking data. Due to this 

difference, discrepancies do not necessarily represent a shortcoming of our modelling 

approach but of the benchmarking process. Despite a disagreement in shrub prevalence 

between aDGVM2 results and benchmarking data in the south-west and north-east of 

Africa, we still observe an increase in the mean stem count per individual when aridity 

increases (Figure 2.3), along with a decrease in woody vegetation height (Figure 2.4). These 

responses indicate shrub dominance in these areas. 

 Second, remote sensing data potentially underestimate shrub prevalence since 

shrubs are typically smaller than trees and can be hidden under the canopy of taller 

individuals (Linderman et al., 2004) or be too small to be detected by satellites. In our 

analysis, we consider every shrub individual, resulting in an overestimation of shrub 

prevalence across African savannas and woodlands by aDGVM2. Yet, this difference does 

not invalidate our results. Quantification of the magnitude of this effect requires in-depth 

studies at site level. 

 A third aspect is the large variability between the satellite products, and the data 

from site studies, used to benchmark biomass. Disagreement varies strongly between sites 

and can be larger than disagreement between data and our model results (Table 2.1). 

Variability can be explained by different spatial resolutions of data and models, different 

methodologies to measure, identify and classify vegetation cover, and by land use, which 

was not considered in this study. 

 The fourth aspect is the limited accuracy of our model in areas of extremely low 

biomass and vegetation cover, such as deserts and semideserts. In those areas, the absolute 

value of the discrepancies between model and data is similar as in areas with higher 

vegetation cover. Yet, the relative value of the deviation is much higher given the relatively 

low vegetation cover. This also means that the lower the vegetation cover, the more 
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stochasticity of the model appears to be important. Stochasticity may imply larger 

differences between multiple simulation runs than between model simulations and data. 

The discrepancies between our model results and observations in south-western Africa or 

in the Horn of Africa suggest high uncertainty in extremely arid regions and in 

mediterranean biomes. 

 

2.4.5 - FUTURE DEVELOPMENTS 

 Modelling plant strategies and ecosystem behaviour in a mechanistic way based on 

traits is an open research field (Fisher et al., 2017). We propose a pathway towards a better 

representation of shrubs in DGVMs, which, however, leaves several question unresolved. 

First, there are shortcomings in our ability to discriminate trees from shrubs in our model. 

Single-stemmed and multi-stemmed woody individuals are more similar at very low height, 

due to inbuilt mathematical relations (Figure 2.1). This reduces our model's ability to 

simulate shrubs and trees as clearly distinct life-forms in areas where plant biomass is very 

low, such as in deserts or semi-deserts. 

 Second, our approach assumes that being multi-stemmed is a drought tolerance 

strategy rather than a drought avoidance strategy. Following Carvajal et al. (2017), in 

extremely arid conditions, drought tolerance (the ability to function in water-stressed 

condition) is more important than drought avoidance (the ability to avoid being water 

stressed). It appears that our representation of shrubs in extremely arid conditions is limited, 

hinting towards the need to consider additional mechanisms, absent from our representation 

of drought tolerance. Being multi-stemmed can be a drought tolerance strategy through 

redundancy when cavitation damages or kills single stems instead of the entire plant 

(Schenk et al., 2008). This mechanism is related to our multi-stem model but not 

implemented. To explain plant communities in extremely arid areas, there are specific 

drought and aridity tolerance mechanisms to implement in aDGVM2, such as CAM 

photosynthesis, succulence, reduced stomata number, leaf wax, and leaf hairs as well as 

overall cavitation and embolism resistance or avoidance (Mucina and Rutherford, 2006). It 

seems that no single mechanism can explain plant biogeography in all arid regions (Esler 

and Rundel, 1999). Other region-specific mechanisms can be added into aDGVM2, such 

as taking into account areas of rocky surface, for example, the Karoo-Namib quartz fields 
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and the associated adaptation mechanisms (Schmiedel and Jürgens, 1999), or including 

crown fire and representation of landscape heterogeneity in the Fynbos. 

 

2.5 - CONCLUSIONS 

 We demonstrate that, in aDGVM2, shrub and tree growth forms dynamically 

emerge based on functional differences in the architectural design, without a need to 

predefine static functional types. To our knowledge, this is the first time that a multi-

stemmed growth strategy has been simulated as an emergent property in a DGVM. The 

distribution of shrubs in African savannas can be modelled by relying on mechanistic 

principles generating trade-offs between single-stemmed and multi-stemmed plants. 

However, further developments are required to fully grasp the complex interactions 

between trees, shrubs, and grasses, specifically outside of African savannas. Shrub 

encroachment is assumed to be linked to increasing atmospheric CO2 concentrations, 

climate change, fire, or land use changes (Midgley and Bond, 2015). How these factors 

interact with natural fire regimes, light, and water competition remains open. Our results 

highlight that further developments in DGVMs should not only focus on well-known trade-

offs, such as the leaf economic spectrum (Wright et al., 2004), but that they should also 

consider whole-plant trade-offs integrating resource availability, life history, carbon 

allocation, or plant architecture. Our approach is an important step towards understanding 

the biogeography of ecosystems where shrubs play a major role, specifically savannas and 

grasslands and thus towards our ability to investigate their origin and future. 

 

ACKNOWLEDGEMENTS 

C.G., M.P., and C.M. thank the BMBF SPACES initiative for funding (“Limpopo Living 

Landscapes” (LLL) project, grant 01LL1304B and “ARS AfricaE” project, grant 

01LL1303C). S.S., L.L., D.K., and M.P. thank the DFG Emmy Noether programme for 

funding (grant SCHE 1719/2-1). The authors thank the SBiK-F modelling centre research 

group and the LLL research consortium for valuable insights. 

 



 74 Chapter 2 - African shrub distribution emerges via a trade-off between height and 
sapwood conductivity 

DATA ACCESSIBILITY  

Selected data are available at 

http://data.sasscal.org/metadata/view.php?view=li_rbis_process_step&id=6385&ident=90

3937203343957632. To obtain the model code please contact any of the authors. 

 

APPENDIX S1 

METHODS 

THE ADGVM2 

General features of aDGVM2. 

 aDGVM2 is an individual-based dynamic vegetation model. It simulates growth, 

reproduction and mortality of individual plants while keeping track of state variables, such 

as biomass, height and leaf area. Each plant in aDGVM2 is characterised by a potentially 

unique set of trait values. These traits describe plant type, leaf characteristics, leaf 

phenology, hydraulic characteristics, plant architecture, response to fire, reproduction and 

mortality. Most of these plant traits are linked by direct or indirect trade-offs. For example, 

specific leaf area and leaf longevity are linked to the risk of cavitation (see Scheiter, Langan 

and Higgins, 2013; Langan, Higgins and Scheiter, 2017; Kumar et al., 2020, for full model 

description).  

 Selection and trait inheritance, in the model, assemble plant communities that are 

well adapted to given biotic and abiotic conditions. Plants with trait combinations that allow 

sufficient growth and reproduction rates can produce seeds and contribute their trait values 

to the community trait pool. Seeds can randomly mutate trait values or recombine within 

the community trait pool. Seeds are randomly drawn from the community trait pool and 

added to the plant population as seedlings. Plants with insufficient performance fail to 

contribute seeds to the seed bank and disappear from the population. Successful life history 

strategies emerge dynamically from this community assembly process. Plant growth is 

constrained by competition. Light competition is simulated by considering the impacts of 

neighboring plants on the light available to a target plant. Water competition is simulated 

via water uptake of plants from a layered common soil water pool. 
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Improved ecophysiology.  

 The model version used in this study incorporates improvements to the 

ecophysiology sub-models (Kumar et al., unpublished). Following Sakschewski et al. 

(2015), aDGVM2 now includes an empirical relation between specific leaf area (ASL), leaf 

nitrogen content per unit area (Na ) and the maximum carboxylation rate per leaf area at 

25°(Vcmax25 ), derived from the TRY data base (Kattge et al., 2011): 

Na = 6.89 · ASL
−0.571        (1) 

and 

Vcmax25 = 31.62 · Na
0.501           (2) 

 In aDGVM2, ASL is calculated from P50, the matric potential at 50% loss of 

hydraulic conductivity (see Langan, Higgins and Scheiter, 2017). In previous model 

versions (Scheiter, Langan and Higgins, 2013; Langan, Higgins and Scheiter, 2017), Vcmax 

and associated leaf level photosynthetic rates were equal for all plants, now, these quantities 

are calculated separately for each plant. We simulate the effect of temperature on Vcmax 

by using leaf temperature Tleaf while previous model versions used air temperature: 

Vcmax = 
௏೎೘ೌೣమఱ · ଶ

బ.భ (೅೗೐ೌ೑ షమ )

ൣଵ ା ௘଴.ଷ ൫்೗೚ೢି்೗೐ೌ೑ ൯൧ .  ቂଵ ା ௘
బ.య (೅೗೐ೌ೑ ష೅ೠ೛೛)

ቃ
     (3) 

 Here, Tupp and Tlow describe the optimum temperature range of photosynthetic 

activity as provided in the photosynthetic model of Collatz et al. (1991) and Collatz, Ribas-

Carbo and Berry (1992) for C3 and C4 plants, respectively. Leaf temperature is calculated 

from air temperature, wind speed, stomatal conductance, boundary layer conductance and 

evapotranspiration following Gates (1968). 
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Figure 2.S1: Comparison between simulated and observed biomass. Aboveground biomass data were 

derived from Saatchi et al. (2011), from Baccini et al. (2012) and from Avitabile et al. (2016). Aboveground 
biomass is in tons per hectare. Simulations were conducted in the presence of fire and shrubs, which 

represents the most realistic scenario. 
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CHAPTER 3 - SHRUB FORM & FUNCTION IN ECOSYSTEMS 

STRUCTURE & DYNAMICS, SIMULATED WITH ADGVM2 IN 

AFRICAN SAVANNAS 

This chapter is the work of the sole author of this thesis. 

ABSTRACT 

Background 

In chapter 2 we described a new shrub model we developed and implemented in 

aDGVM2. We build upon it to test its impact on vegetation community assembly processes 

simulated by aDGVM2 and we test to which extent it can be used to analyse shrub life-

form and life-strategy. 

Objectives 

We address questions arising from the shrub model we presented in chapter2. On 

one hand we delve into more details about the operation and understanding of the model 

behaviour. On the other hand we address more contextual questions, giving a broader 

perspective to our shrub model. 

More specifically, we propose to answer the following questions: (1) Can we 

expand or limit the validity of our shrub model? How are these limits informative? How 

does it impact the representation of ecosystems by aDGVM2? (2) How introducing shrubs 

in aDGVM2 modifies its representation of natural vegetation? (3) Is there a broad meta-

distribution pattern of vegetation across Africa?  (4) How our definitions of life-form 

categories shape our understanding of these life-forms? How can we ensure that our 

categorisation actually allows to produce meaningful analyses? (5) How is shrub life-form 

expressed into a strategy? How do shrubs behave in terms of resprouters vs. reseeders, in 

terms of rooting patterns and in terms of carbon allocation?  

These questions allow us to answer the following: How can we ensure that our 

analyses and model are informative and to which extent?  What does our representation of 

shrubs implies by itself?  
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Methods 

We perform further analyses on the simulations obtained in chapter 2. We add 

comparison to a new satellite data product previously unavailable. We performed 10 

replicate simulations with and without fire for the greater Namibian regions. 

Results 

We show that shrubs distribution pattern arising from our shrub model follows the 

overall precipitation patterns, and that vegetation community assemblages are accordingly 

simulated along MAP gradient. We show that how we quantify and how we categorise our 

study subject impacts our ability to understand them and the conclusion we can make. 

Therefore we emphasize the need for more comprehensive and holistic studies and that 

narrow studies should be considered more carefully. We show that our shrub model allows 

for complex plant life-form strategies to emerge, without being pre-defined, and interact 

with other life-forms in a unique way, giving us the ability to simulate plants and 

ecosystems behaviours in unprecedented manners. For example, shrubs emerging from our 

model are more associated to reseeders than resprouters and exhibit rooting patterns 

matching in situ observations. 

Conclusions 

Categorisation of our results shapes our ability to assess them. Vegetation life-forms 

diversity is a continuum and categories artificially constructed and traditionally utilized are 

only partially relevant for assessing trait-based processed models such as aDGVM2. By 

going beyond the classical botanical categories and by looking at raw strategies, processes 

and traits, we can model shrub distribution through African savanna with aDGVM2 and 

gain direct insights into plant community assembly and ecosystem structure and processes. 

 

3.1 - INTRODUCTION 

3.1.1 - CHALLENGING THE MULTI-STEM SHRUB MODEL 

Shrubs, as characterised in chapter 2 are a major feature of African savannas, 

shaping ecosystems states and dynamics (Vetaas, 1992; Le Roux, Bariac and Mariotti, 

1995; Zou et al., 2005). A precise understanding of their behaviour is necessary to 
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understand how they react to biotic and abiotic drivers and thus how they can shape the 

future of ecosystems (Gaze et al., 1998; Hagenah et al., 2009; Kambatuku, Cramer and 

Ward, 2011; Schleicher, Wiegand and Ward, 2011). Why, when and how are they 

successful and how their specific life-form and strategy explain their success or failure are 

key questions discussed in our previous work which we propose to test. We demonstrated 

that shrubs emerge in aDGVM2 based on a trait-based trade-off. Here, we ask how this 

individual based trade-off cascades at the ecosystem level to shape vegetation community 

and how it impacts aDGVM2 results. We question the role of shrubs in ecosystems and 

how shrub life-form and strategy are embedded in vegetation communities. 

In chapter 2 we presented the implementation of our shrub model in aDGVM2 and 

showed that it allows for shrubs to emerge dynamically from the implemented trade-off 

between height growth and sapwood conductivity. We benchmarked AGBM and 

vegetation type cover with satellite derived data and with site specific data. We found that 

our approach reproduces the predicted pattern of increased mean stem number along a 

decreasing precipitation gradient. However, our results accuracy was limited outside of 

savannas; e.g.: shrub cover in the Fynbos and Karoo is likely driven by mechanisms non-

explicitly represented in aDGVM2 at present (such as succulence or crown fire). High 

levels of aridity are also challenging our vegetation simulations. This limitation drives the 

need to expand our analysis about our approach’s validity. To do so, we consider our shrub 

model from three different perspectives: 1) We investigate how shrubs influence vegetation 

distribution and the role they play in vegetation community assembly; 2) We reconsider, 

refine and expand our benchmarking methodology; 3) We focus on the regions were 

discrepancies between our results and satellite-based products are the largest. This allows 

us to answer our first question: 

1. How do we ensure the relevance and accuracy of our shrub model and in which cases 

and under which assumptions can we use it? 

After determining how shrubs can be characterised specifically in the vegetation 

community pattern according to our modelling approach, we can investigate the role they 

play in an ecosystem. We test the impact of introducing shrubs in our model. In chapter 2 

we tested how introducing shrubs modifies the overall performances of aDGVM2 at 

representing large scale ecological parameters. We now analyse how it impacts vegetation 

community assembly at a more detailed level. Accordingly, our second question is:  
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2. How do shrubs, as we model them, shape ecosystems simulated by aDGVM2? 

 

3.1.2 - SHRUB DISTRIBUTION DEPENDS ON SHRUB CLASSIFICATION 

Our understanding and perception of plant life-form impacts our ability to model 

them and to produce meaningful analysis. This conundrum is particularly concerning for 

shrubs as they are a plant type category whose definition varies and can lack precision. This 

fuzziness makes studies complicated due to the lack of consensus on the terminology. Our 

ability to draw theories and hypothesis from facts is particularly challenged when these 

facts are divided between various characterisation schemes. We question: Can we devise 

generalized rules from equivocal items? 

As a botanical category, shrub plant species are classified as such according to their 

archetypal individual. Considered at the ecosystem, landscape or biome scale, vegetation 

can be classified following two different perspectives, with potentially diverging meanings. 

On one hand individuals can be characterised depending on their species, without 

considering their actual phenotype (Estabrook, Johnson and Mc Morris, 1975; Bachmann, 

1995). On the other hand, individuals can be classified depending on their actual phenotype, 

notwithstanding of their species (Lavorel and Garnier, 2002; Kattge et al., 2011). The 

separation between these two approaches entails a potential disconnection between actual 

phenotype and individual species (as a plant does not necessarily display a phenotype 

representative of its specie due to environmental drivers). This issue can easily be solved 

at site level in studies combining both approaches. However at larger scale, considering 

individual phenotype and species can be more challenging. Satellite derived products 

usually do not provide direct information about plant species. The aDGVM2 simulates life-

forms adapted to ambient conditions. However, as it does not include phenotypic plasticity, 

the distinction between a species adapted to ambient conditions from a phenotype adapted 

to ambient conditions is limited. Thus, as in the aDGVM2 framework it is not possible to 

compare individual plant traits to plant species genotype, we need to compare actual plant 

phenotypes. Therefore, the way we categorise and aggregate these phenotypes is a 

cornerstone of our benchmarking process. 

To resolve this classification conundrum, we propose to investigate how we can use 

vegetation distribution patterns to assess the validity of our methodology. Then we estimate 
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the extent to which categorisation decision impacts our benchmarking results and our 

potential conclusions and thus, in a sense, the validity of our approach to model shrubs. 

Finally, we explore potential options to circumvent our present classification issue by 

taking an indirect approach, analysing how focusing on non-shrubs life-forms (grasses and 

trees) can inform us about shrubs. 

 

Shrub distribution in non-geographic space 

We demonstrate in chapter 2 that our shrub model allows aDGVM2 to simulate the 

spatial distribution of shrubs in African savannas. However, we observed disagreement 

with satellite derived products outside the savanna, woodland and forest regions. 

Consequently, we need to determine if this disagreement is linked to our shrub model itself 

or to other factors not represented in aDGVM2, such as regional specific environmental 

conditions and associated plant mechanisms. Is our shrub model overridden locally by other 

key factors or are our assumptions made to simulate shrubs lacking? To answer this 

question, we look at vegetation distribution in virtual space, which means non-

geographically, for example in trait space or in climate-space. Doing so, we answer our 

third question: 

3. How do distribution pattern of shrubs across Africa responds to environmental variables? 

 

Classification 

Shrub distribution has been studied regionally (Cole, 1982; Archer et al., 1988; 

Cipriotti et al., 2012) and globally (Scepan, 1999; Friedl et al., 2002; Mayaux et al., 2006; 

Bicheron P. et al., 2008; Tuanmu and Jetz, 2014). However, divergences can be found 

among these studies. We argue that it might be related to divergences in shrub 

characterisation. We investigate how alternative classification schemes can impact 

aDGVM2 simulations and our conclusions, which might challenge our ability to produce 

meaningful analysis. We provide elements to answer our fourth question:  

4. How do categorisation schemes of life-form shape our understanding of these life-forms 

and how can we ensure the relevance of a classification scheme? 
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Footprint of shrubs 

Life-form classification schemes can differ among authors and this might directly 

shape the understanding of these life-forms. This raises two questions. First, it is 

challenging to transform uncertain categories into precise operational concepts which can 

be implemented in a model. Second, when it is possible to create a model of a life-form or 

life-strategy, our ability to assess it is impaired by the fact that data, which would be 

necessary to benchmark model results, can be based on different classification schemes or 

even non-existent. We argue that to be able to assess a model relevance and accuracy, when 

benchmarking data is not available or based on assumptions diverging from the model, it 

might be necessary to take an indirect benchmarking approach by looking, not at the studied 

feature, but at the impact of the feature on its environment. This approach is similar to 

common particle science methodology (Blum, Walter; Riefler, Werner; Rolandi, 2008). 

We make a first step in this direction by assessing how introducing shrubs impacts 

aDGVM2 simulation of vegetation communities. We make a second step by studying the 

abiotic environment of shrubs. Precisely, we investigate how the share of bare-ground 

cover reacts to the presence or absence of shrubs in aDGVM2.  

 

3.1.3 - SHRUB LIFE-FORM MODUS VIVENDI  

We classify shrubs as a specific life-form by characterising their phenotype. We 

further classify shrubs as a specific life-strategy by characterising their response to 

environmental parameters. We analyse shrubs interaction with other life-forms and the 

mechanisms on which this strategy relies. This allows us to answer our last question:  

5. Can we characterise shrubs as a specific life-strategy similarly to how we characterise 

them as a specific life-form? Specifically, we ask: how do shrubs behave in terms of 

resprouters vs. reseeders, in terms of rooting patterns and in terms of carbon allocation?  

 

Resprouting vs. reseeding 

We hypothesize that, according to our assumptions on which our model relies, 

shrubs, as simulated by aDGVM2, should be resprouters more often than reseeders. As, in 

aDGVM2, shrubs are less likely than trees to escape the flame zone (due to their typically 
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limited height growth), they are less likely to have a chance to seed. Thus, we should 

observe a division between trees and shrubs on this point. This relation between life-

strategy and life-form has been proposed in the literature. For example, Midgley (1996) 

states that resprouters tend to be multi-stemmed whereas tall trees are single-stemmed 

reseeders and also that resprouters occur mainly in savannas and grassland (with some 

exceptions) and are usually smaller than reseeders. The possibility for individuals to be 

resprouter or reseeder is a dynamic trade-off that is natively included in aDGVM2 via 

different combinations of carbon allocation traits. However, it has not been evaluated yet. 

Therefore, this is the question we investigate in this section in order to gain insights on the 

behaviour of our shrub model and test if it represents only their distribution or also their 

strategy. 

 

Rooting depth strategies 

The reseeding or resprouting strategies are partially explained by their root systems. 

However, types of root systems can also be seen as strategies per se (e.g.: deep or shallow 

rooting) and concern both woody and non-woody plants. Therefore, we need to investigate 

if different types of root systems emerge from aDGVM2 as stand-alone or only in 

correlation to reseeding or resprouting strategies. Schenk and Jackson (2002) observed that 

herbaceaous plants have larger root systems in dry climate. This is supported and extended 

to many species by Phillips (1963), Pallardy (1981), Wilson (1988), Chapin, Autumn and 

Pugnaire (1993). The increase of root to shoot ratios with increasing aridity is documented 

for an array of species and regions. We analyse reseeders and reprouters strategies in terms 

of shoot to root ratios and rooting depths. 

 

Carbon strategies: shrubs vs. trees 

Resprouting and reseeding strategies diverge on how they allocate carbon and how 

they relate to plant phenotype. Similarly, rooting depth strategies are related to shoot to 

root ratio and thus to carbon allocation strategies. Before being allocated, carbon need to 

be accumulated, thus, carbon allocation strategies are intertwined with carbon 

accumulation strategies, as carbon allocation determines how carbon can be accumulated. 

The feedback between these two mechanisms forms the complete strategy of an individual. 
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 Therefore, we need to investigate plant carbon accumulation strategies to achieve a 

comprehensive understanding of carbon strategies and shrubs and trees performances. 

Indeed, according to the trait-based trade-off we used as a foundation to our shrub model, 

when comparing two individuals, a shrub should accumulate carbon faster at an early stage 

whereas a tree should outcompete the shrub when reaching a later stage (Wilson, 1995). In 

this section, we conclude on our fifth question by answering the following: How do shrubs 

accumulate biomass compared to trees?  Are there traits specific to old plants and traits 

specific to young plant?  

 

3.2 - METHODS 

3.2.1 - CHALLENGING THE MULTI-STEM SHRUB MODEL 

Model dynamics 

We further assessed our shrub model presented in chapter 2. We tested how the 

tree/grass ratio responds to MAP gradient across sub-Saharan Africa. We analysed three 

additional factors: the impact of the presence or absence of shrubs in our simulations; the 

response to different variables considered: canopy cover, number of individuals and leaf 

biomass; the ratio shrub/grass responds to MAP. Similarly, along MAP, we tested the 

relative prevalence of shrubs against trees, against all woody individuals, against all plant 

individuals and against the total number of potentially simulated individuals (i.e., 

accounting for dead cells). 

We provide additional benchmarking of our model results. We use a newly 

available 1km resolution satellite derived AGBM map from Bouvet et al. (2018). We 

compare simulated AGBM at the site studies listed in chapter 2 to the satellite derived 

AGBM. We further analysed the response of satellite derived AGBM (Saatchi et al., 2011; 

Baccini et al., 2012; Avitabile et al., 2016; Bouvet et al., 2018) and tree height (Simard et 

al., 2011) against MAP across sub-Saharan Africa and how our results compare to them. 

For tree height, we considered the mean, 50th, 80th, 90th and 95th percentiles of simulated 

tree height. 

Data-model discrepancies were identified in chapter 2 in dry lands of Africa. The 

aDGVM2 simulations underestimate shrub prevalence in two regions: the Horn of Africa 
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and the South-West of Africa (Namib to Kalahari). We conducted 10 replicate simulations 

focused on the South-West of Africa, parts of the Karoo and the Kalahari as well as small 

fractions of woodlands and savannas north of the Namib, following the same simulation 

protocol as in chapter 2. We investigated the following points for this region: 

1 - We tested the impact of stochasticity on our ability to simulate vegetation in the study 

region. To this end we compared the mean, maximum, minimum, standard deviation and 

variance of the simulated shrub cover distribution across the region. 

2 - We analysed the relative share of different plant life-forms according to the 

classification used in chapter 2. We then tested how different classification schemes impact 

our results (Table 3.1).  

 

Table 3.1: Shrub and woody vegetation classification schemes tested for replicate simulations in south west 
Africa. Woody individuals are classified according to given thresholds. 

 Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

Shrubs >=4stems & <=4m   >=4stems & <=4m <=4m >=4stems 

Tall shrubs   >=4stems & >4m       

Tree   <3stems & >4m       

Small tree   <3stems & <=4m       

 

The role of shrubs  

We tested how introducing shrubs into aDGVM2 modifies simulated vegetation 

across sub-Saharan Africa by comparing simulations with & without shrubs. First, we 

compared canopy cover, mean height, AGBM and grass proportion (inverse indicator of 

woody cover) in the presence or absence of shrubs to identify the regions where the 

introduction of shrubs has the largest impact on indicators of ecosystem structure. We 

performed additional simulations for the combination of presence or absence of shrubs 

and/or fire which were not conducted previously. We then analysed how plant types 

(grasses, tall and short woody plants) respond to MAP across sub-Saharan Africa. Thus, 

we considered geographical patterns as well as ecological dynamics. We then analysed 

separately the responses of grasses and trees to the introduction of shrubs in aDGVM2 as 

well as the response of simulated fire frequency. Separating grasses and trees shows how 
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the competitive balance is modified by the introduction of shrubs while considering fire 

frequency allows to test if there is a feedback between fire frequency and shrub cover. 

 

3.2.2 - SHRUB DISTRIBUTION DEPENDS ON SHRUB CLASSIFICATION 

Shrub distribution in non-geographic space 

In order to identify a non-geographical distribution (i.e: in trait or climate space) 

pattern of shrubs we conduct further analyses using the simulations performed and 

presented in chapter 2. First we considered the relation between mean height and mean 

stem count, per se, and their relation relatively to MAP. This allows us to analyse their 

relation in trait space and their relation relatively to environmental driver. Then we focused 

on the relation between height and stem count traits & how it shapes our understanding of 

shrub distribution relatively to MAP by testing different classification schemes. We 

considered shrub distribution in terms of individual numbers and in terms of stem biomass, 

leaf biomass and crown area. 

 

Classification 

We tested how shrub classification cascades at biome level. To this end, we defined 

biome categories based on parameters relative to our shrub model (stem count and 

vegetation height), alongside more usual parameters (grass AGBM and woody cover). We 

tested different parameters combination and different thresholds combinations (Table 3.2). 

We investigated how life-stages (age) and life-strategies (traits) are connected in 

our simulations. To do so, we tested how two traits relative to our shrub model (mean stem 

count and mean height) behave along MAP across sub-Saharan Africa depending on plants 

age. We focused on seedlings younger than 2 years old or excluded them and focused on 

old growth above 100 years old. We then questioned the relation between plant life-forms 

(woody, trees, shrubs, grasses) and life-strategies in terms of life-expectancy and turn-over 

dynamics. First, we analysed woody plants life duration strategy in contrast to all plants 

along MAP across sub-Saharan Africa. Second, we compared shrubs, trees (separated 

based on stem count threshold) and grasses life-expectancy strategies. 
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Finally, we tested how our simulated shrub distribution compares to satellite 

derived product (Tuanmu et al., 2014) according to different shrub categorisation schemes 

(combinations of an array of height and stem count thresholds). 

 

Table 3.2: Criteria used to classify simulated vegetation cover into biomes according to an array of 
schemes. When no values are assigned to a criterion, it means that this criterion was not used for this 
scheme. When no values are assigned to a biome, it means that it was not considered for this scheme. 

Scheme 1 
  Biomes 

Desert Grassland 
Savanna 

Woodland 
Forest         

Criteria   
Grass AGBM <0.5t/ha >=0.5t/ha >=0.5t/ha >=0.5t/ha         

Woody canopy <=15% <=15% 
>15% & 

<70% 
>=70%         

Scheme 2 
  Biomes 

Desert Grassland 
Savanna 

Woodland 
Forest         

Criteria   
Grass AGBM <1.5t/ha >=1.5t/ha >=1.5t/ha >=1.5t/ha         

Woody canopy <=20% <=20% >20% & 
<80% 

>=80%         

Scheme 3 
  Biomes 

Desert Grassland 
Savanna 

Woodland 
Forest 

Mixed 
Shrubland 

      
Criteria   

Grass AGBM <0.5t/ha >=0.5t/ha >=0.5t/ha >=0.5t/ha <0.5t/ha       

Woody canopy <=5% <=15% 
>15% & 

<70% 
>=70% 

>5% & 
<=15% 

      

Scheme 4 
  Biomes 

Desert Grassland 
Savanna 

Woodland 
Forest 

Mixed 
Shrubland 

      
Criteria   

Grass AGBM <0.5t/ha >=0.5t/ha             
Woody canopy <5% <15%             
Mean height     >1m & <4m >=4m <=1m       

Other     Non desert & non grassland       
Scheme 5 

  Biomes 
Desert Grassland 

Savanna 
Woodland 

Forest 
Mixed 

Shrubland 
Shrub 

savanna 
Tree 

savanna 
Arid 

Criteria   
Grass AGBM <0.5t/ha >=0.5t/ha             

Woody canopy <5%     >=15%   >=15% >=15% <=15% 

Mean height   <=1m >1m & <4m >=4m   <=1m >1m & 
<4m 

  

Other               

Non-
desert & 

non 
grassland 

Scheme 6 
  Biomes 

Desert Grassland 
Savanna 

Woodland Forest 
Mixed 

Shrubland 
Shrub 

savanna 
Tree 

savanna Arid 
Criteria   

Grass AGBM <1.5t/ha >=1.5t/ha             
Woody canopy <20% <20%             
Mean height     >1m & <4m >=4m <=1m       

Other     Non desert & non grassland       
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Scheme 7 
  Biomes 

Desert Grassland 
Savanna 

Woodland 
Forest 

Mixed 
Shrubland 

Shrub 
savanna 

Tree 
savanna 

Arid 
Criteria   

Grass AGBM <0.5t/ha >=0.5t/ha             
Woody canopy <15% <15%             

Other     Non desert & non grassland       
Mean stem      >2 & <4 <=2 >=4       

Scheme 8 
  Biomes 

Desert Grassland 
Savanna 

Woodland 
Forest 

Mixed 
Shrubland 

Shrub 
savanna 

Tree 
savanna 

Arid 
Criteria   

Grass AGBM <1.5t/ha >=1.5t/ha             
Woody canopy <20% >20%             

Other     Non desert & non grassland       
Mean stem      >2 & <4 <=2 >=4       

Scheme 9 
  Biomes 

Desert Grassland 
Savanna 

Woodland 
Forest 

Mixed 
Shrubland 

Shrub 
savanna 

Tree 
savanna 

Arid 
Criteria   

Grass AGBM <0.5t/ha >0.5t/ha             
Woody canopy <5% <15%   >=15%   >=15% >=15% <=15% 

Other               

Non 
desert & 

non 
grassland 

Mean stem        <3   >=5 >3 & <5   
Scheme 10 

  Biomes 
Desert Grassland 

Savanna 
Woodland 

Forest 
Mixed 

Shrubland 
Shrub 

savanna 
Tree 

savanna 
Arid 

Criteria   
Grass AGBM <0.5t/ha >=0.5t/ha             

Woody canopy <5% <15%   >=15%   >=15% >=15% <15% 

Other               

Non 
desert & 

non 
grassland 

Mean stem        <=2   >=3 >2 & <3   

 

Footprint of shrubs 

We analyse how bare ground proportion (number of dead individual cells simulated 

by aDGVM2) responds to the presence or absence of fire, and to the presence or absence 

of shrubs, relatively to MAP. Testing the effect of shrubs on bare ground allows us to assess 

the footprint of shrubs. Testing the effect of fire on bare ground allows us to analyse further 

how fire shapes vegetation (or bare ground) cover. We tested bare ground prevalence across 

sub-Saharan Africa as a share of simulated living plant individuals, as a share of all 

simulated individual cells and as a share of the simulated canopy cover (each simulated 

dead cell accounting for an area equal to the 1ha simulated plot divided by the number of 

simulated individual cells, here 3600). In aDGVM2, simulations are divided in grid cells. 
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These grid cells are simulated based on a representative hectare stand. We simulate a 

potential of 3600 individuals per hectare stand. However, not all of them might be alive, 

thus, leaving unoccupied spots, which we consider as bare-ground.  

 

3.2.3 - SHRUB LIFE-FORM MODUS VIVENDI  

Resprouting vs. reseeding 

According to Knox and Clarke (2005), resprouters have higher carbon allocation to 

roots than reseeders. According to Midgley (1996) resprouters tend to be multi-stemmed 

and smaller than reseeders which tend to be single-stemmed. We compare our results to 

those provided by Knox and Clarke (2005) and by Midgley (1996). To do so, we analysed 

the relation between carbon allocation to storage and reproduction of woody individuals 

for three cases of absence/presence of shrubs and fire, and then for shrubs and trees 

separately in a scenario with shrubs and fire simulated. We distinguish resprouters from 

reseeders based on their carbon allocation strategies. Specifically, we classify resprouters 

as allocating relatively more to their roots and storage carbon pools and less to their 

reproduction carbon pool, while reseeders allocate relatively more to their reproduction 

carbon pool and less to their roots and storage carbon pools. 

 

Rooting strategies 

We analysed plant strategies in terms of carbon allocation to roots and to shoot. We 

first focused on grasses by analysing how allocations to roots and to shoot react to MAP 

and how allocation to roots and rooting depth are related. We then compared ratio of shoot 

to roots biomass for grasses, trees and shrubs (categorised following chapter 2) separately. 

 

Carbon strategies: shrubs vs. trees 

We investigated the growth strategies of shrubs and trees (categorised following 

chapter 2) relatively to their carbon allocation strategies. To this end, we compared the ratio 

of biomass to age (indicating carbon accumulation through time) vs. mean height. This 

shows trees and shrubs trends of carbon allocation and growth strategy. 
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3.3 - RESULTS 

3.3.1 - CHALLENGING THE MULTI-STEM SHRUB MODEL 

Model dynamics 

We observe that the ratio between grass and woody individuals relative to MAP, 

simulated by aDGVM2, is consistent with the distribution of savannas across sub-Saharan 

African. However, this relation depends on the model variables used to calculate this ratio. 

The ratio between the number of woody individuals and grass individuals (Figure 3.1, panel 

a) deviates from the ratios considering leaf biomass (Figure 3.1, panel b) or canopy area 

(Figure 3.1, panel c). Woody plants increasingly dominate over grasses with decreasing 

MAP, in terms of number of individuals, whereas this relation is reversed when considering 

canopy cover. The ratio is less dependent on MAP when considering leaf biomass, excepted 

at intermediate MAP in presence of fire, where we observe an increased competitiveness 

of grasses. This pattern is also visible when considering canopy area. Considering the ratio 

between grasses and woody individuals based on leaf biomass reveals an increased 

competitiveness of grasses at lower MAP, relatively to woody plants (Figure 3.1, panel d).  

Moreover, the introduction of shrubs shifts this relation (Figure 3.1, panel a) by increasing 

the prevalence of woody individuals at lower MAP. This is confirmed by considering 

shrubs (Figure 3.1, panel e) and trees (Figure 3.1, panel f) separately. At the lowest MAP 

values, competitiveness of trees versus grasses drops whereas competitiveness of shrubs 

continues to increase.  

We clipped ratio values in order to avoid values tending towards infinity. We 

limited these values to thresholds of 10, 50 and 100 to optimise readability while retaining 

as much information as possible. The ratio between woody plants and grasses typically 

tends towards infinite values everywhere but in grassland, when considering canopy area 

or leaf biomass. In the reverse relation, grass to woody, there are only a few grid cells 

exhibiting values above set limits, which shows that in most grasslands there are woody 

plants, whereas woodlands and forest vastly outcompete grasses. 

 

 

 



 91 
Chapter 3 - Shrub form & function in ecosystems structure & dynamics, simulated 

with aDGVM2 in African savannas 

a)      b) 

 
c)      d) 

 
e)      f) 

 
Figure 3.1: Ratios of plant types (grasses, shrubs, woody, trees) relative to number of individuals, leaf 

biomass and canopy area.  Ratios superior to 10, 50 and 100 have been set to 10, 50 and 100, respectively. 
10 for panels a, e and f, 50 for panels c and d, and 100 for panel b. Shrubs are classified as woody 

individuals with 4 or more stems while trees have 3 or less stems. 

 

The aDGVM2 simulates a relation between shrubs and trees in relation to MAP that 

is consistent with our expectations across sub-Saharan Africa (Figure 3.1). With decreasing 

MAP we observe an increase in relative shrub competitiveness, first, at intermediate MAP, 

because of reduced tree prevalence, then, at lower MAP, because of increased shrub 

prevalence. At very low MAP (under 200 mm/year) trees and shrubs could be seen as co-

dominants, however, it seems that actually either tree or shrubs dominate when looking at 

individual grid cells values (Figure 3.2, panel a). We also find (Figure 3.2, panel b) that 

below 500-700mm MAP, vegetation cover decreases, leaving more ground bare. Bare 
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ground becomes a major feature of simulated land cover. Shrublands with 100% of the 

woody population being shrubs start to appear below MAP of ca. 750mm and become more 

frequent below ca. 205mm MAP (Figure 3.2, panel c). 

 

a)        b) 

 
c) 

 
Figure 3.2: Ratios of individuals in the population, relatively to plant types (trees, shrubs) (panel a) and 

relatively to total plant individuals and to total simulated individual cells (panel b). Ratio of individuals in 
the population (panel a) have been limited to 10 (i.e., ratio superior to 10 are set to 10) to increase 

readability. 

 

 Adding more satellite derived products to benchmark our model increases the range 

of values given for African vegetation AGBM. Specifically, Bouvet et al. (2018) found 

higher biomass for most of the sites considered compared to alternative satellite derived 

products (Table 3.3). Biomass provided by Bouvet et al. (2018) agrees better with 

aDGVM2’s simulations results. The higher resolution of the datasets used to benchmark 

our results (Table 3.3) accounts for more diversity at the landscape scale than aDGVM2 

captures in our simulations. However, this information is lost when simply aggregated at 

the 1° scale of our simulations. To mitigate this loss we tested different aggregation 

methods (not shown), which do not change the general pattern. However, considering the 
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range of values (minimum and maximum) aggregated at the 1° resolution for each data set, 

we increase the overlap with our results. 

 

Table 3.3: Aboveground biomass for savanna sites, from field observations, remote sensing products 
(Bouvet et al. 2018, Avitabile et al., 2016; Baccini et al., 2012; Saatchi et al., 2011), and aDGVM2 

simulations. Field values sites 1–4: Higgins et al. (2007), site 5: Rutherford (1979), site 6: Rutherford 
(1975), site 7: Kelly and Walker (1976), site 8: Rushworth (1975). 

Site ID 1 2 3 4 5 6 7 8
Site longitude (°E) 31.4 31.8 31.6 31.3 28.7 17.1 31.6 26.3
Site latitude (°S) 23.5 24.4 25 25.2 24.7 20.4 27.2 18.9
Field observation
   Minimum (t/ha) 3 3 7 13 __ __ 8.7 4.7
   Mean (t/ha) __ __ __ __ 16.3 22.3 16.7 __
   Maximum (t/ha) 5 12 11 23 __ __ 30.8 5.8
aDGVM2 results
   Minimum (t/ha) 23 29.8 36.3 31.5 2.2 11.1 4.7 15
   Mean (t/ha) 44.7 49.5 58.5 79.2 50 28.8 44.2 40.5
   Maximum (t/ha) 79.4 75.9 82.3 120.3 91.8 58 110.3 71
Satellite data
   Saatchi et al. (2011) (t/ha) 17.7 21.3 26.6 49.9 16.9 12 32.8 22.8
   Baccini et al. (2012) (t/ha) 23.1 23.1 23.1 __ 10.1 4.6 __ 23
   Avitabile et al. (2016) (t/ha) 3 4.1 7.4 9.1 2.4 1.5 9.5 6.5
   Bouvet et al. (2018) (t/ha) 41 29 39 32 39 11 61 16  

 

We observe large discrepancies between satellite products, ground studies and our 

results. Nonetheless, the overall pattern of biomass appears to be similar among satellite 

derived products and our results, i.e. biomass increases with MAP. 

The aDGVM2 produces low AGBM at low MAP, and mainly high AGBM at higher 

MAP (Figure 3.3). In comparison, satellite derived products show a distribution of low and 

high AGBM throughout the MAP gradient, despite also displaying an increase with 

increasing MAP (Figure 3.3). Tree height simulated by aDGVM2 follows similar trend as 

simulated AGBM while satellite derived tree height follows similar trend to satellite 

derived AGBM (Figure 3.3). 
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a)         b) 

 
Figure 3.3: a) Aboveground biomass (t/ha) from remote sensing products (Bouvet et al. 2018, Avitabile et 
al., 2016; Baccini et al., 2012; Saatchi et al., 2011), and aDGVM2 simulations across sub-Saharan Africa 

along MAP (mm). b) Tree canopy height from remote sensing product (Simard et al. 2011) and the 95th, 
90th, 80th and 50th percentiles of the tallest tree and mean tree height simulated by aDGVM2. 

 

We conducted 10 replicate randomized simulations for the African South-West 

region, which confirm the discrepancies between our results and satellite derived products 

(Figure 3.4). However, we also observe a potential for lower discrepancies. Indeed, in some 

replicates, our model simulates a shrub cover more in range with satellite derived products 

for some grid cells (Figure 3.4, panel c) whereas on average aDGVM2 underestimates 

shrub cover, as shown by the standard deviation, representing up to ±40% shrub cover 

(Figure 3.4, panel e). 
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Figure 3.4: Mean (a), maximum (c), minimum (d), standard deviation (e) and variance (f) of shrub cover 
among 10 replicates simulations. Shrubs are classified as woody plant with 4 or more stems and up to 4m 
tall. b) aDGVM2 shrub cover as proportion of shrub individuals minus satellite derived vegetation cover 

classified as shrubs (Tuanmu et al. 2014). 

 

Shrubs’ classification schemes shape agreement between aDGVM2 and satellite 

derived products. The shrub cover of the satellite derived product is not directly a 

measurement of the canopy cover of shrubs defined as multi-stemmed plants with a height 

of up to 4m. It is in fact the categorisation of data from satellite sensors as area 

predominantly covered by shrubs or shrubland based on expert knowledge. Therefore, we 

used different classification methods to investigate the divergence between expert 

knowledge and aDGVM2 results. 

We observe that the proportion of shrub of total vegetation is lower in terms of 

biomass and canopy cover (Figure 3.5, panel 1.a) than it is in terms of individual numbers 

(Figure 3.4). Most of the simulated vegetation population is made up of small trees in the 

Namib region, whereas tall shrubs are absent (Figure 3.5, panel 2). Classifying shrubs based 

on stem number leads to an underestimation of shrub cover compared to satellite derived 

product (Tuanmu and Jetz, 2014) (Figure 3.5, panel 5), while classifying them only based 
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on height leads to a better fit with the benchmarking product in the most arid area and to 

an overestimation in area with higher vegetation cover (Figure 3.5, panel 4). It appears that 

when classifying shrubs, stem number overrides the effect of height, given that 

classification results based on height and stem together (Figure 3.5, panel 3) are more 

similar to classification results based on stem alone (Figure 3.5, panel 5) than based on 

height alone (Figure 3.5, panel 4). Finally, we observe that boundaries between vegetation 

cover classes are sharper in satellite derived products (Figure 3.5, panel 6) compared with 

aDGVM2 results.  

 

1) 

 
 

2) 
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3)        4)

  
5)      6) 

  
Figure 3.5: Following schemes presented in Table 1. 1) Share of a) biomass and b) canopy cover made of 
shrubs (Scheme 1).  2) Share of woody individuals classified (Scheme 2) as a) tall shrub, b) tree, c) small 

tree, d) grass.  3) Share of vegetation cover made of shrubs (Scheme 3). 4) Share of vegetation cover made 
of shrubs (Scheme 4) 5) Share of vegetation cover made of shrubs (Scheme 5) 6) Land cover classes as 

defined by Tuanmu et al. 2014; tree cover aggregates its 4 tree types; “no natural vegetation” aggregates 
its classes 7 to 12 (cultivated and managed, regularly flooded, urban, snow/ice, barren, open water).  
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The role of shrubs  

By comparing simulations with and without shrubs, we can assess the effect of 

shrubs on simulated vegetation. Introducing shrubs modifies vegetation distribution mainly 

across savannas and woodland regions bordering the central African rainforest by 

decreasing AGBM, canopy area and to a smaller extent mean height (Figure 3.6). 

 

 
Figure 3.6: Effects of shrubs on vegetation features: AGBM (t/ha), canopy area (m²/ha), mean height (m), 

and proportion grass, as simulated by aDGVM2 with or without shrubs included and the difference. 

 

Competitive interactions between grasses and woody vegetation are modified by 

the introduction of shrubs. Introducing shrubs in aDGVM2 induces more plant individuals 

per simulated hectare stand in non-hyper arid regions (Figure 3.7). This is due to an increase 
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in grasses and small woody individuals, while the number of tall woody individuals 

decreases. 

 

a)              b) 

 
c)             d) 

 
Figure 3.7: Number of individuals per hectare. a) all alive plants, b) grass, c) small woody plants (shorter 

than 4m), d) tall woody plants (taller than 4m). 

 

Our results suggest a complex relation between fire and shrub cover (Figure 3.8). 

Adding shrubs to aDGVM2 simulations increases grass biomass all over sub-Saharan 

Africa while decreasing tree biomass mainly in savanna regions. Moreover, the effect of 

introducing shrubs on fire frequency does not follow a specific geographic pattern. 
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Figure 3.8: Aboveground tree and grass biomass (t/ha) and fire frequency, as simulated by aDGVM2 with 

or without shrubs included and the difference. 

 

3.3.2 - SHRUB DISTRIBUTION DEPENDS ON SHRUB CLASSIFICATION 

Shrub distribution in non-geographic space 

The shrub strategy, as modelled by aDGVM2 according to our multi-stem scheme, 

allows for shrubs, as distinct life-form, to emerge. Indeed, we observe a relation between 

height and stem count per individual indicating that trees and shrubs are distinct life-form 

strategies; yet, overlapping at low height and low stem count (Figure 3.9, panel a). This 

overlap is found mainly at low MAP (Figure 3.9, panel b).  

a)        b) 

 
Figure 3.9: a) Mean vegetation height (m) versus mean stem count, b) height (m) per stem versus MAP 

(mm) across sub-Saharan Africa; as simulated by aDGVM2 per grid-cell. 
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The simulated plant life-forms ratios are unequivocal in Figure 3.2. However, it is 

a matter of perspective. When we use different classification schemes for shrubs and trees, 

the conclusions we can draw from our results are slightly different. If we consider only 

height to classify shrubs (Figure 3.10, panel a), their number is much higher than when 

considering only stem number (Figure 3.10, panel b). Simultaneously, stem number 

determines shrub characterisation, and thus their abundance, more strongly than height 

(Figure 3.10, panel c). 

 

a)        b) 

 
c) 

 
Figure 3.10: Ratio of shrub individuals in the vegetation population vs. MAP with shrubs classified as 

woody plants, a) with height smaller or equal to different thresholds, b) with x stems or more, c) with height 
smaller or equal than different thresholds and with x stems or more. 

 

Thresholds used to classify results impact their analysis. Considering different 

parameters has similar effects. The simulated prevalence of shrubs, characterised based on 

height alone, does not follow the same pattern when considering crown area (Figure 3.11, 

panel a), instead of individuals number (Figure 3.2, panel a). Considering stem biomass, 

leaf biomass or crown area change shrub prevalence. Yet, all the characterisation schemes 

we tested show similar trends: no matter the parameter and thresholds considered, we 

observe an overall increase of shrub prevalence with decreasing MAP. 
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    a)           b) 

 
c) 

 
Figure 3.11: Shrub ratios in the plant population vs. MAP based on: a) crown area. Shrubs characterised 

as woody plants, either based on height thresholds or on stem count thresholds (shorter than height 
threshold; with more stem than stem threshold), b) crown area. Shrubs characterised as woody plants, 

either based on height thresholds or on stem count thresholds, or on both thresholds simultaneously 
(shorter than height threshold; with more stem than stem threshold), c) either crown area, leaf biomass or 

stem biomass. Shrubs characterised as woody individuals with x or more stems. 

 

Classification 

The results of aDGVM2 simulations provide directly relevant ecological 

information, yet, classifying them is necessary to further analyses. However, using various 

definitions of shrubs and trees induces uncertainties. We illustrated this effect at the 

individual level (Figure 3.5 & 3.11), and it cascades to the biome level (Figure 3.12). The 

threshold set to categorise biomes has tremendous effects at the continental scale (Figure 

3.12, panels a and b). Adding more biome classes increases the precision of our 

interpretation of aDGVM2’s results (Figure 3.12, panel c vs. panel a). Changing the 

parameters used to categorise biomes (Figure 3.12, panel a: vegetation cover; panel d: 

height; panel h; stem count) impacts our understanding of vegetation cover, as does 

changing the thresholds categorising biomes. Overall, more complex classification systems 

imply more complex spatial patterns of biomes at continental scale.  
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Figure 3.12: Classifications of simulated vegetation cover across sub-Saharan Africa, following schemes 

presented in Table 3.2. 
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The thresholds we use to define categories (biomes, life-forms) also depend on the 

categories we consider. For example, as we observe in Figure 3.13, considering plant age 

(e.g.: to focus on established individuals by excluding seedlings) has varying consequences 

depending on the parameter considered and depending on prevailing environmental 

conditions. Mean stem count is impacted by age more strongly at lower MAP while mean 

height is more strongly impacted by age at high MAP. 

a) 

 

b) 

 
Figure 3.13: Mean stem count (panel a) and mean height (panel b) of woody individuals vs. MAP 

according to plant age. 
 

Considering seedlings as trees or not, and how to define seedlings has different 

impacts in regions with high longevity of individuals and in regions with a higher turn-over. 

We observe that plants simulated by aDGVM2 reach, on average, older age at intermediate 

MAP, while we observe relatively higher turn-over (shorter lived individuals) at low and 

high MAP (Figure 3.14, panel a). The number or individuals per age value sets apart short- 

& long-lived strategies across sub-Saharan Africa and among plant types (Figure 3.14, 

panel b). 
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a) 

 

b) 

 
Figure 3.14: a) Mean age of all plants or of woody plants only vs. MAP, b) number of individuals vs. mean 

age for vegetation classes (shrubs and trees being discriminated based on stem count). 

 

 The categorisation scheme we use impacts our assessment of model performance. 

Depending on the thresholds we used, our results’ accuracy change. Shrub cover, in terms 

of number of individuals, can vary vastly depending on the threshold and parameters used 

to characterise shrubs, which obscures the benchmarking process (Figure 3.15). This holds 

true if shrub cover is defined based on canopy cover or on biomass (figure not shown). The 

shrub category of Tuanmu et al. 2014, compared to aDGVM2 simulations, is as close to 

shrubs as we define them as it is to small woody individuals with a low stem count (i.e., 

shrubs with less stems), which could be classified as bushes in contrast to shrubs (Figure 

3.15). 
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Figure 3.15: Difference between shrub cover simulated by aDGVM2 and derived from satellite data 

(Tuanmu et al. 2014). Panels a) to h): shrubs defined either as smaller than height threshold (meters) or as 
having more stems than a threshold or considering both stem number and height at the same time. Panel 
h):  shrub cover calculated as a share of simulated alive plant individual and not as a share of the total 

individual space. Panel i) bush cover considered instead of shrub cover, with bush defined as shorter than 
4m and with less than 4 stems 

 

Footprint of shrubs 

 Investigating the imprint of our studied object can yield additional information 

about it. We analyse vegetation communities by looking at the bare-ground simulated by 

aDGVM2, either in terms of individual cells number or in terms of area cover (i.e., different 

from vegetation cover alone as it adds bare-ground to vegetation cover). We observe that 

the share of dead cells (i.e., individual cells with no living plant individual), or bare-ground, 

increases with increasing aridity, irrespective of the simulations settings, except for a 

slightly higher prevalence of bare-ground for intermediate values in the scenario without 
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fires and with shrubs (Figure 3.16). More precisely, simulated bare-ground prevalence, in 

terms of share of individual cells, is higher in the tropical forest and more particularly in 

hyper-arid and desert regions. When considering ground cover, we see that this bare-ground 

is shaded by canopy cover in the tropical forest, while it represents most of the landscape 

in deserts and hyper-arid regions (Figure 3.17). 

 

 
Figure 3.16: Ratio of dead individual cells (i.e., where no plant is simulated) per hectare stand vs. MAP 
across sub-Saharan Africa, simulated by aDGVM2 either with fires and shrubs, or with fires but without 

shrubs, or without fires but with shrubs. 
 

 

 
Figure 3.17: a) Percentage of dead cells (i.e., bare-ground, or empty cells) in comparison to cells with 

living plant individuals, per simulated hectare stand, b) percentage of dead cells in comparison to the total 
number of simulated cells, per simulated hectare stand, c) percentage, in terms of area, of dead cells in 

comparison to actual canopy cover, per simulated hectare stand (the total area can be superior to 1Ha as 
overlap can happen).  
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3.3.3 - SHRUB LIFE-FORM MODUS VIVENDI  

Resprouting vs. reseeding 

The aDGVM2 produces a weak distinction between resprouters and reseeders 

strategies as allocation to storage and allocation to reproduction are inversely related 

(Figure 3.18, panel a); yet, vegetation population does not show a strong division in 

separate clusters. Indeed, mean allocation to storage and to reproduction do not follow any 

clearly marked distribution pattern through Africa (figure not shown), indicating that both 

strategies tend to coexist. However, it appears that shrubs, characterised as multi-stemmed 

woody plants, have a strongly specific strategy, typically exhibiting high allocation to 

storage, whereas trees can allocate either more to storage or more to reproduction (Figure 

3.18, panel b). It could indicate that trees can be either resprouters or reseeders while shrubs 

are obligatory resprouters. 

             a)      b)

  
Figure 3.18: Relation between allocation to storage and allocation to reproduction, a) for all woody 
individuals under three different scenarios, b) for trees and shrubs separately, with shrubs defined as 

woody plant with 4 or more stems, for a scenario with shrubs and fire simulated. 

 

Rooting depth strategies 

Schenk and Jackson (2002a) found that herbaceous plants have larger root system 

in dry climate. Our results partially agree with these findings. aDGVM2 simulates a slight 

increase in grass allocation to root at low MAP agreeing with observations, while 

simulating lower mean roots biomass per grass individual, disagreeing with observations 

(Figure 3.19, panel a). However, root biomass can translate into different rooting systems 
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(i.e., different volume and depth). Additionally, aDGVM2 simulates higher allocation to 

roots and higher rooting depth of the total grass population at intermediate MAP (Figure 

3.20, panel b). More generally Pallardy (1981), Wilson (1988), Chapin, Autumn and 

Pugnaire (1993), all observed an increase in root to shoot ratio with increasing aridity. Our 

results are less straightforward as shoot to root ratios are relatively constant for grasses and 

highest for shrubs and trees at intermediate MAP; yet, underground biomass increases 

relatively to aboveground biomass with decreasing MAP.   

 

a) 

 
 

b) 
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c) 

 
Figure 3.19: a) Grass mean allocation to root and root biomass (t/ha) in relation to MAP (mm), b) sum of 

grass rooting depth and of allocation to roots in relation to MAP (mm), c) ratio of shoot to root biomass for 
grass, tree and shrub (defined as woody plants with 4 or more stems) in relation to MAP (mm). 

  

Carbon strategies: shrubs vs. trees 

Plant growth rate can be understood as the biomass accumulated per year. By 

comparing the ratio between plant biomass and age, against its height, for shrubs and trees 

separately, we observe that shrubs have an increasingly faster growth rate with increasing 

height, whereas trees tend to level off (Figure 3.20). However, drawing relevant conclusion 

on these behaviours is challenging as shrubs do not reach heights similar to trees. This 

might indicate that big shrubs have the ability to store more carbon than small shrubs. 

Concomitantly, it would mean that more mature trees have a decreasing ability to store 

carbon, relatively to their size, probably due to their higher maintenance cost. 
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Figure 3.20: Relation between the ratio of biomass accumulated by plants at a given age to the plant mean 

height (m); for a) shrubs (defined as woody individual with 4 or more stems) and b) trees separately. 

 

3.4 - DISCUSSION 

3.4.1 - CHALLENGING THE MULTI-STEM SHRUB MODEL 

Model dynamics 

MAP has been identified as a major determinant of vegetation community assembly 

processes (Ma and Frank, 2006; Reed et al., 2009; Báez et al., 2013; He, 2014). However, 

impact of MAP on competitive relation between woody plants and grasses, and on each of 

these life-forms, varies with the parameter considered (i.e., canopy area, leaf biomass, 

number of individuals). For example, relative number of grasses decreases below 500mm 

MAP, while relative grasses canopy increases. The same is true for fire as a driver of 

vegetation community assembly. We can expect this to hold true for other drivers. However, 

while, in terms of number of individuals, woody plants increasingly dominate over grasses 

with decreasing MAP, this relation is reversed when considering canopy cover. As we 

cannot conclude on the competitive relation between woody plants and grasses based on 

one parameter alone, when combining multiple perspectives, we can identify plants key 

characteristics under different conditions and unravel how competition between life-forms, 

depending on drivers, shapes these life-forms.  
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Some parameters react similarly to a particular driver. For example, relative woody 

canopy area and relative woody leaf biomass decrease at intermediate MAP when fire is 

introduced in the system. Investigating multiple parameters responses to different drivers 

can be done by simulating scenarios combining different levels of these drivers and provide 

useful insights in ecological processes. Simultaneously, analysing parameters responses to 

drivers can be used to foster model development, creating a positive feedback loop. For 

example, we observe that, for decreasing MAP, number of woody individual increases 

while woody canopy cover decreases, which can be explained when considering change in 

phenotype and not just in plant biomass and change in vegetation community share of each 

of these varying phenotypes. Therefore, increasing a model’s ability to represent life-forms 

in greater details allows to better understand the relation between ecosystems and 

environmental factors as well as ecosystem dynamics. 

In this regard, we need to be cautious about the interpretation of models results. For 

example, we observe that introducing shrubs as multi-stemmed woody individuals in 

aDGVM2 increases competitiveness of woody plant versus grasses with decreasing MAP. 

However, this shift in competitiveness is relative to number of individuals and we see that 

canopy cover and leaf biomass exhibit different response patterns. 

 By focusing only on the prevalence of shrubs relatively to trees in the population, 

our results show that shrubs become dominant only at low MAP. However, by considering 

the prevalence of trees relatively to shrubs, our results show that tree prevalence already 

starts to decrease at intermediate MAP. This indicates that we cannot fully understand the 

role and strategy of a life-form by considering only one feature of this life-form. We need 

more holistic approaches to study vegetation community behaviour in response to 

particular life-form behaviour to fully grasp the strategy of this life-form. This also allows 

to understand land-cover dynamics. For example, by investigating shrubs, we observe that 

bare ground cover makes up an increasing share of the landscape at low MAP, while shrub 

makes up an increasing share of the vegetation population (Figure 3.2, panel b), which 

implies that shrubs are less negatively impacted by decreasing water availability than other 

life-forms. Discarding bare-ground, we could have concluded that shrubs abundance 

increases with increasing water scarcity, however, considering bare-ground shows that 

shrubs are only relatively more abundant with increasing water scarcity, as other life-forms 

fitness is more reduced by increasing water scarcity. Thus, analyses should not focus solely 

on a single object, disregarding its environment, as it can be misleading. 
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The aDGVM2 was first created with a focus on African savannas. The AGBM map 

provided by Bouvet et al. (2018) focuses specifically on African savannas, which can be 

expected to be more accurate for this region than satellite derived products having a global 

scope. In consequence, the better agreement of aDGVM2 results with this product than 

with other products for selected savannas site corresponds to our expectations. We argue 

that global scope satellite derived products of vegetation parameters should be used to 

benchmark simulated patterns while more focused products should be used to benchmark 

actual values. For example, benchmarking our results to Bouvet et al. (2018) increases our 

model’s confidence for savannas as it is its specific focus. 

The overall trend of increasing AGBM and vegetation height with increasing MAP 

holds true for all the satellite derived products used in this study and for aDGVM2 results. 

However, this effect appears more consistent among satellite derived products than with 

aDGVM2, irrespective of the method used to analyse aDGVM2 results. Uncertainties are 

present in satellite derived products. For example, Saatchi et al. (2011) display uncertainties 

going up to a ±50% in some regions. However, it seems that the discrepancy between 

aDGVM2 and these datasets is mainly due to aDGVM2 not being able to simulate AGBM 

and vegetation height as high as observations at the lowest MAP values and an overall 

tendency to overestimate the share of short plants. 

Stochastic processes included in aDGVM2 give both flexibility and robustness. The 

higher the number of replicate simulations performed, the more likely aDGVM2 is to 

capture a realistic representation of vegetation communities. On one hand, this increases 

the robustness of the simulated average vegetation; on the other hand, the range of model 

results allows to explore vegetation diversity. In this regard, looking at average value of 10 

replicates for the greater Namib region for which discrepancies were of concern confirms 

the gap between aDGVM2 results and benchmarking data sets. Simultaneously, it appears 

that aDGVM2 has the potential to simulate vegetation cover in high agreement with 

benchmarking data. Thus, for operational use, selecting simulations producing more 

“realistic” results appears as a viable shortcut, specifically if more precise and site specific 

climate data can be used to feed our model. Moreover, by investigating the variables 

responsible for variance in model results could provide useful insights for model 

development. 
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The discrepancy between simulation results and observations or satellite derived 

products depends directly on the parameters considered and indirectly on the methodology 

to analyse our results. We obtained conflicting results depending on the classification 

scheme we used. Ratio of shrub in plants population is different when calculated based on 

number of individuals or biomass or canopy cover. Satellite derived datasets are 

reclassification (through statistical models) of remote sensing signal based on expert 

knowledge and selected in situ observations, thus they are not direct observations of 

number of individuals or biomass or canopy cover. Such datasets merge both qualitative 

and quantitative values in a single product. Analysing aDGVM2 results solely based on 

individual parameters is still a purely quantitative approach. This conceptual difference and 

the challenge of holistically characterising aDGVM2 results (i.e., results can appear 

conflicting depending on characterisation schemes) call for adding qualitative approaches 

to model development and interpretation. This is what we aim to do when reclassifying our 

results. However, it does not equate to expert knowledge used to define biomes and to 

reclassify satellite data as our approach is purely numbers based and does not include 

qualitative observations, such as species, or landscape features, such as rock fields. 

Additionally, it appears that the distribution of bushes, (defined as short woody 

individuals with low stem count), as modelled by aDGVM2 is closer to the shrub cover 

displayed by Tuanmu and Jetz (2014), than the shrub cover modelled by aDGVM2, 

irrespective of the classification scheme used to define shrubs. This indicates a conceptual 

difference in defining life-forms or trivially a semantic disagreement. 

In conclusion, to answer our first question, it appears that aDGVM2’s extent of 

validity, or that of any mechanistic trait-based model, depends on the parameters 

investigated and the definitions and classifications schemes used to characterise 

simulations results (or even semantics). This problem challenges our understanding of 

simulations results and can limit our ability to accurately assess and benchmark them. 

However, we can use the multifaceted nature of our simulations results to increase the 

ecological relevance of our results as it opens perspectives breaking common categories 

while informing model development (Fischer, Rödig and Huth, 2018). For example, it 

seems that our approach to model shrubs has a weak effect at low biomass, which 

synergises with the lack of drought avoidance and resistance mechanisms in aDGVM2 to 

reduce model accuracy in hyper arid regions. This could be counter-balanced by including 

these drought adaptation mechanisms or by improving representation of the relation 
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between branching, stems and overall canopy architecture (Leaf Area Index (LAI), leaf 

angle) in regards to hydraulics and light interception (Tyree and Ewers, 1991; Fisher et al., 

2017; Trugman et al., 2019). 

 

The role of shrubs  

Modelling large scale ecological dynamics and variables requires simplifications of 

reality, for example by reducing biodiversity to PFTs. However, the assumptions made to 

simplify reality entail shortcomings (Fischer, Rödig and Huth, 2018). To overcome these 

limitations, adding complexity to models is necessary. For models based on PFTs, it implies 

to increase their number. For aDGVM2 and similar modelling approach (i.e., dynamic traits 

variation) it implies to increase the number of traits, trade-offs and processes which allow 

for the emergence of life-forms that are currently not represented by the model. Our 

approach to model shrubs based on mechanistic trade-offs is a step in this direction. 

Introducing shrubs in aDGVM2 increases the relative prevalence of woody plants 

against grasses with decreasing MAP (Figure 3.1, panel a). It means that aDGVM2 

simulates relatively more bushes and shrubs at low MAP, where it is still underestimating 

shrub-land cover. This underestimation is partially explained by the fact that we 

benchmarked shrub cover to shrubland cover in chapter 2. 

In the savannas and woodlands bordering the African tropical forest, introducing 

shrubs in aDGVM2 decreases simulated AGBM, which increases the agreement with data, 

as aDGVM2 typically simulated AGBM values above satellite derived observations in 

these regions. Simultaneously, woody canopy cover decreases in the same area, as 

expected; however, mean vegetation height does not follow the exact same pattern. 

Introducing shrubs in aDGVM2 increases the number of plant individuals with 

increasing MAP. More precisely it increases the number of grasses and small woody 

individuals (shrubs and bushes) while decreasing the number of tall woody individuals 

(trees). Hence, when considering shrubs, simulated canopy in these regions is more open, 

and aDGVM2 simulates more grassy (and shrubby) savannas and woodlands. The same 

effect seems to apply to forests, which is unexpected and could require further 

investigations, albeit shrubs numbers are still low in forests (Figure 2.6).  
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Many studies argued that fire can contribute to suppress shrubs and reduce their 

prevalence (Trollope, 1980; Bond, Woodward and Midgley, 2004; Stevens, Lehmann, et 

al., 2016), while in some ecosystems, shrubs can be adapted to fire (Keeley, 1986). Fire 

regime shift related to land use change has been identified as a possible explanation of 

shrub encroachment phenomenon across Africa  (Archer, Schimel and Holland, 1995; 

Roques, O’Connor and Watkinson, 2001). We observe a more complex relation between 

fire and shrubs. Introducing shrubs in aDGVM2 reduces AGBM mainly in savannas and 

woodland regions. In this regard, fire has a similar effect compared to simulations without 

shrubs. As shrubs open up space for grasses, we expect that simulated fire frequency and/or 

intensity would increase as grasses are the main contributor to fire fuel in aDGVM2. Yet, 

as the presence of shrubs in aDGVM2 allows for greater grass biomass (compared to 

simulations without shrubs), fire regime does not respond strongly; which is visible in the 

fact that the difference in fire frequency with or without shrub does not follow a clear 

pattern. Therefore, we argue that investigating the inverse relation of shrub effect on fire 

regimes is required for a holistic conclusion on the effect of fire on shrubs. We argue that 

this relation needs to be studied not only for sites where shrub encroachment is happening 

but that more global reviews of this relation are required (Stevens, Lehmann, et al., 2016).  

Our step towards more accurate modelling of vegetation communities allows for a 

previously absent life-form strategy to emerge in aDGVM2 via the inclusion of the stem 

number trait and its associated trade-off. Simultaneously it shapes our overall model results, 

making them more realistic, in agreement with hypothesis about model complexity (Fischer, 

Rödig and Huth, 2018). This partially answers our second question. 

 

3.4.2 - SHRUB DISTRIBUTION DEPENDS ON SHRUBS CLASSIFICATION 

Shrub distribution in non-geographic space 

Our implementation of a trade-off between height and stem count leads to the 

emergence of distinct strategies in aDGVM2. Tall individuals are associated to low stem 

count while multi-stemmed individuals are associated with low height. These strategies 

overlap at low height and low stem count. From another perspective, we observe that at the 

lowest MAP values, height per stem is constrained to low value, which implies that the 

relation between height and stem number is less relevant to discriminate between life-forms 
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at this level, according to the trade-off we use for our model (Figure 2.1). Therefore, the 

partitioning between shrubs and trees is stronger at higher MAP. The overlap between 

multi-stem and single stem strategies occurs in the most arid environment, where other 

criteria need to be investigated to discriminate between these strategies (Turner, 1978; 

Cushman, 2001; Dong and Zhang, 2001; Schwinning and Ehleringer, 2001; Gorai et al., 

2015; Soussi et al., 2016). 

Height and stem count can be used to characterise shrubs phenotype (Zizka, 

Govender and Higgins, 2014; Götmark, Götmark and Jensen, 2016). However, these 

criteria do not react equally to environmental conditions. Height thresholds have a stronger 

effect on shrub characterisation at high MAP whereas stem count thresholds have higher 

effect at low MAP. Moreover, more individuals can be classified as shrubs based on height 

solely than on stem count solely. We could expect that using multiple criteria to characterise 

a life-form improves the accuracy of our classification scheme, yet, we observe that the 

stem count criteria overrides the height criteria. In consequence, we can simplify our shrub 

classification scheme and rely mainly on stem count (less at higher MAP). This is counter 

intuitive as shrubs are typically seen as small woody plants, yet it shows that the correlation 

between height and stem count is high for shrubs and confirms the hypothesis in which our 

model approach is grounded. Additionally, we argue that, following Figure 3.12, defining 

a precise and appropriate vegetation classification scheme can provide better insight into 

our simulation results and improve the relevance of benchmarking aDGVM2 with data. 

The relation between height and stem count for shrub classification observed in 

aDGVM2 holds true in terms of number of individuals. However, considering, for example, 

leaf or stem biomass or crown area, produces different perspectives on shrub prevalence. 

In the case of crown area, we observe that, in contradiction with the individual numbers 

approach, height is a categorisation parameter that has more impact at low MAP. For most 

discriminating parameters, thresholds have stronger impact at low MAP. We hypothesize 

that the overlap between shrub and tree strategies at low height and low stem count is the 

reason for this pattern. The fact that the discriminating strength of various thresholds 

responds differently to MAP depending on the parameter considered could be used to 

investigate life-forms and associated strategies. We systematically observe a response of 

life-forms distribution to classification parameters and thresholds. Therefore, caution is 

necessary when comparing studies using different classification schemes and taking 

different perspectives on the same object, specifically for shrubs. 
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With these elements we conclude on our third question, strengthening our 

conclusion that shrub prevalence increases with aridity. We also highlight the need for 

caution when discussing this pattern as classification schemes and parameters considered 

shape the frame of this observation. 

 

Classification 

To interpret simulations results, multiple approaches are available. Individuals can 

be classified based on different parameters and variables (Estabrook, Johnson and Mc 

Morris, 1975; Bachmann, 1995), which is relevant for interpreting model’s results, as we 

have shown. To look at larger scale, vegetation cover can be classified into biomes or 

bioregions based on vegetation distribution map (Olson et al., 2001), and can include 

satellite derived observations (Tuanmu and Jetz, 2014). It has been argued that increase in 

complexity (Fischer, Rödig and Huth, 2018) leads to more accurate models. We observe 

that results are more informative when we increase the complexity of their analysis by 

refining categories; however, their accuracy relies on conceptual assumptions. Therefore, 

increase in complexity alone is not sufficient, and need to be associated with relevant 

conceptual development and classification scheme. In this regard, it appears that, here, a 

classification scheme based on both macro (population scale) and micro (individual scale) 

parameters holds the best potential to accurately analyse aDGVM2 results. However, it also 

appears that classification thresholds are spatially relative, which means that they are not 

equally accurate everywhere at the continental scale. We question to which extent it is due 

to either model’s limitations, or to regionally different classification of ground observations 

(for example, if different expert point of views are used to classify vegetation in different 

regions), or different regional/local vegetation specificities. For example, Zizka, Govender 

and Higgins (2014) found an average number of 2,2 +/- 1,4 stems for trees. This study was 

site specific. The site being in an African savanna, we expect the validity of results 

classified according to Zizka, Govender and Higgins (2014) to be savanna centric. This 

means that a model (or part of a model) based on a site-specific study is more likely produce 

more accurate results in regions similar to the site of the reference study. However, the 

characterisation of regions similarities requires caution as it can also be parameter/trait 

relative. Alternatively, it appears possible to directly benchmark the population level 
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parameters instead of categorised vegetation with products such as provided by Song et al. 

(2018). 

Additionally, we observe that the more complex the classification system, the more 

continental vegetation cover appears as a mosaic. This could be seen as contradicting the 

large scale biomes/bioregions maps (Olson et al., 2001). While  obscuring this mosaic large 

scale maps can also integrate finer mosaics by relying on more precise classification 

schemes (such as Mucina and Rutherford, 2006). 

We model shrubs based on height and stem count. Based on this assumption, we 

investigated how classifying shrubs based on height and stem count traits, shapes our 

understanding of this life-form. Precisely, we investigated how classification schemes 

shape shrub distribution patterns and how it shapes model benchmarking with existing 

datasets. It appears that other traits, implicitly (Tuanmu and Jetz, 2014) or explicitly 

(Carlson, Adams and Holsinger, 2016) considered, can also shape shrub distribution 

pattern. For example, plant age strongly impacts simulated mean stem count at low to 

intermediate MAP while it impacts mean height at high MAP; which means that excluding 

seedlings from our results leads to an increase in relative shrub cover at low to intermediate 

MAP and a decrease at high MAP. When such trait effects are explicitly disclosed we can 

consider them in our benchmarking process; yet, studies typically consider only a few key 

traits depending on their questions (Killingbeck and Whitford, 1996; Martínez-Cabrera et 

al., 2011; Carlson, Adams and Holsinger, 2016).  

Plant age and maturity are particularly of concern to our studies as age variation 

mainly impacts woody individuals at low to intermediate MAP, i.e., impacting the savanna 

region. Additionally, across sub-Saharan Africa, aDGVM2 simulates a disconnection 

between young and old populations. It simulates only few populations of intermediate age, 

showing that cohort dynamics (Oliver and Larson, 1996; Scholes, Bond and Eckhardt, 

2003; Boehmer et al., 2013) could have an impact on aDGVM2. This cohort effect could 

be linked to the model initialisation conundrum (Moncrieff et al., 2015). It could also be 

linked to the model stochasticity, since at similar MAP some simulated grid cells have a 

low mean age while others have a high mean age.  

The relevance of the classification scheme used to define shrubs depends on the 

regions considered. Thus, it could be possible to use aDGVM2 for site- or region-specific 

studies with higher accuracy by choosing a relevant classification of its results adapted to 
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the context. However, benchmarking overall model behaviour will remain challenging until 

global datasets are available which can be directly related to aDGVM2 results. This means 

that they need to be conceptually equal and not just similar. For example, shrub cover as 

modelled can be compared to satellite derived shrub cover, yet they are conceptually 

different, which limits how informative such comparison can be; limitation reinforced by 

the differences between similar products (Tuanmu and Jetz, 2014; Gaillard et al., 2018). 

Due to this limitation, models need to be benchmarked to multiple products and observation 

simultaneously; yet, as discussed above, results extent of validity appear different 

depending on the parameters and thresholds considered. 

In conclusion, definitions of life-form categories shape our understanding of these 

life-forms to various extents depending on classification scheme (i.e., parameters and 

thresholds). Thus, there is no final answer to our fourth question; precise analyses can be 

made only for specific cases, implying that assessment of models results, and extent of 

validity need to be as holistic as possible, yet generalisation should be avoided and results 

need to be explicitly framed. 

 

Shrubs footprint 

In order to better frame the extent of validity of models results it might be useful, 

or even necessary, to look at the imprint of the studied object. Looking at an object is useful 

to analyse it, however, it is not sufficient as it is always part of a context, specifically in the 

case of ecology where both biotic and abiotic processes are at play. For example, by looking 

at the ratio of bare ground (i.e., “dead cells”) simulated by aDGVM2, we observe that, at 

low MAP, most of the simulated space is actually bare ground. This limits the relevance of 

any result analysis for this region as statistical validity decreases with the number of plant 

individuals concerned. In such case, we can conclude that simulations below a set MAP 

threshold are less relevant and could be discarded, and/or that further model development 

is required to represent ecosystems dynamics in this context. We can add to our fourth 

question that characterising the environment of a life-form, both biotic and abiotic, refines 

the definition of this life-form and thus improves the accuracy of its study. 
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3.4.3 - SHRUB LIFE-FORM MODUS VIVENDI  

Resprouting vs. reseeding 

The aDGVM2 simulates a non-linear relation between carbon allocations to storage 

and to reproduction. This indicates that many simulated woody individuals are allocating 

relatively more to either storage or to reproduction. Thus, a division emerges in aDGVM2 

between resprouters (allocating more to storage) and reseeders (allocating more to 

reproduction). The presence or absence of shrubs and/or fire in our simulations does impact 

this relation. Fire appears as necessary for discrimination between resprouters and reseeders 

to happen. Shrubs appear as strongly determined resprouters. Our finding concurs with the 

literature (Canadell, Lloret and López-Soria, 1991; Midgley, 1996; Enright et al., 1998; 

Cruz, Perez and Moreno, 2003; Knox and Clarke, 2005; Reyes, Casal and Rego, 2009). 

However, literature also points at the role of nutrient (Knox and Clarke, 2005; Dybzinski 

et al., 2011) in explaining plant carbon allocation strategies; which are absent from 

aDGVM2. It could explain why we do not observe stronger clustering of considered traits 

to discriminate between resprouters and reseeders. Moreover, while strong resprouting may 

be common in savanna shrubs, many shrubs do not typically resprout after fire (Paciorek 

et al., 2000; Pausas et al., 2004), potentially due to environmental drivers, such as fire 

frequency, intensity and seasonality (Olson and Platt, 1995; Wright and Clarke, 2007) and 

nutrients and water availability (Cruz et al., 2002; Knox and Clarke, 2005). Additionally, 

fire impact on seed bank could contribute to discriminate fire adapted strategies among 

non-resprouters (Kelly and Parker, 1990; Enright et al., 1998). Hence, our approach to 

modelling shrubs is relevant to simulate and test how fire management strategies can 

interact with shrub encroachment scenarios in African savannas, but further development 

are required to consider other regions globally (Driscoll et al., 2010). Our shrub model can 

also be used to investigate ecosystems response to drought as resprouters might be more 

adapted to cope with increased drought stress in the future (Zeppel et al., 2015). 

 

Rooting depth strategies 

Similarly to shrubs, it has been observed that plants have deeper root systems in 

tropical dry savanna compared to tropical humid savanna (Schenk and Jackson, 2002b), yet 

globally, rooting depth increases with MAP for grasses (Schenk and Jackson, 2002a). The 
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trend of increasing root to shoot ratio with increasing aridity has been documented in many 

studies (Wilson, 1988; Chapin, Autumn and Pugnaire, 1993). The aDGVM2 agrees 

partially with these findings. It simulates an inverse relation for grasses. For trees and 

shrubs it simulates a similar relation below ca. 2000 mm MAP. The aDGVM2 simulates 

shrubs as mainly resprouters and trees as being able to be either resprouters or reseeders, 

but it simulates no direct correlation between shoot to root ratio and resprouting vs. 

reseeding. However, many resprouters store carbon preferentially in their root (Pate et al., 

1990), leading to higher root to shoot ratios for resprouters (Verdaguer and Ojeda, 2002). 

However observations relate this ratio to aridity while we measure it relatively to MAP 

(Figure 3.19), which are related parameters but not equal (Wallén, 1967; Sahin, 2012). 

Therefore, comparing aDGVM2 results based on MAP to observations based on aridity is 

challenging. Wind, solar radiation, ground cover and soil texture all play a role in defining 

aridity (Spinoni et al., 2015). They can impact rooting strategies through their impact on 

aridity, but also directly. For example, in sandy soils a larger proportion of roots is present 

at greater depths than in loamy and clayey soils (Jackson et al., 1996; Schenk and Jackson, 

2005) and rather than shifting maximum rooting depths downwards as texture changes from 

fine to coarse, plants in water-limited environments may shift the zone of maximum root 

activity downwards in the profile. These factors are considered to different extents by 

aDGVM2, but further model developments and analyses are required to comprehensively 

test their effects. Additionally, correlated factors (e.g.: nutrients, soil texture, solar 

radiation) are intertwined with aridity in regard to shoot to root ratio. For example root to 

shoot ratios decrease in soils richer in nutrients, where plants can attain higher productivity 

and higher biomass (e.g.: Schenk and Jackson, 2002b).  

 

Carbon strategies: shrubs vs. trees 

 Given the relation we used to implement our trade-off between height and stem 

number we expect its effect to be greater at higher biomass, and height. Additionally, our 

hypothesis implies that shrubs should grow faster than trees, relatively to their height 

(Wilson, 1995) and that mature trees accumulate more biomass in absolute value. We 

indeed simulate this last point, but it does not allow us to conclude on trees and shrubs 

carbon allocation strategies as shrubs do not get as tall as trees due to their definition. As 

our trade-off prevents shrubs from becoming tall, it also prevents them to accumulate as 
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much biomass as trees. To properly measure the effect we expect from this trade-off, we 

would need to investigate plant growth rate per biomass (e.g.: Stephenson et al., 2014), 

which implies to study further mechanisms, such as carbon maintenance costs, respiration 

rates, structural carbon architecture constraints (McCree and Troughton, 1966; Merino, 

Field and Mooney, 1982; Ryan, 1991; Nobel, Alm and Cavelier, 1992), which is out of our 

study scope, but have the potential to be studied with aDGVM2.  

With these observations, we can conclude on our fifth question. We observe that 

shrubs, contrarily to trees, are strongly determined resprouters, while following similar 

phenotypical relation to MAP (decreasing shoot to root ratio with decreasing MAP below 

a threshold). However, fully assessing their global carbon strategies will require further 

analysis, benchmarking and model development.  

 

3.5 - CONCLUSION 

The non-geographical distribution of shrubs and their role in vegetation community 

follows our assumptions, specifically in African savannas and woodlands. We specified the 

frame of our model’s validity (e.g.: we further differentiated our modelled shrubs from 

bushes) and highlighted opportunities for further refinements. We argue for better 

consensus about vegetation categorisation. We further argue for an increasing reliance on 

traits and not on categories, as disagreements or agreements can be made apparent 

depending on the parameters and thresholds considered for classifications. 

We show that complexity does not need to be high to characterise life-forms when 

analysis criteria are well defined. Additionally, we observed that it might be relevant to 

investigate parameters a priori not in scope with the study focus (e.g.: age). Studying an 

object (here, shrubs) can be achieved or enhanced by looking at this object imprint and not 

the object itself (e.g.: focusing on bare-ground cover at low MAP improves our 

understanding of vegetation dynamics in these regions). Simultaneously, high complexity 

is necessary at continental scale to consider the diversity of land-covers.  

Our shrub model, grounded on a mechanistic trade-off allows for a greater 

complexity of plant strategy to emerge in aDGVM2. Shrubs are simulated as a mainly 

resprouters strategy without being explicitly defined as such a priori. One to one 

comparison of carbon strategies between trees and shrubs are not always feasible as they 
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occupy distinct trait space, yet we show that one trait (stem count) has an impact on the 

whole plant life-form and associated strategy. 

In conclusion, from a mechanistic trait-based trade-off, distinct life-forms and 

associated plant strategies emerge in aDGVM2 from trait filtering processes. This drives 

the general vegetation communities’ dynamics towards higher realism and accuracy. The 

multi-factorial aspects of our results call for caution when generalising observations and 

argue for more holistic model benchmarking.  
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CHAPTER 4 - CHALLENGES AND OPPORTUNITIES OF 

MODELS INTEGRATING TRAITS AND PROCESSES TO 

SIMULATE ECOSYSTEMS STATES AND DYNAMICS 

This chapter is the work of the sole author of this thesis. 

ABSTRACT 

Background 

Assessing DGVMs is an extensively discussed topic among its research 

community. Data used to create, parameterise and benchmark models has uncertainties of 

its own. Thus, benchmarking a model is a process intermingling two different set of 

questions, and two specific perspectives: modelling and data/observation. In regards of 

these considerations, we ask: How can we relate data and simulations? Can we re-think this 

relation to ensure that simulations are effectively informative and to which extent? How 

can we make models more informative?  

Objectives 

 We discuss and assess how to better connect models and observations. In this order, 

we propose to answer the following questions: 

1. How are assumptions underlying model structure and operation limiting models’ 

relevance? 

2. How are the limits to data and models interacting and impairing model benchmarking? 

3. Are there limits to modelling approach which cannot be overcome and why? 

4. Which limits to modelling can be overcome and how? 

Methods 

As we extensively analysed and benchmarked aDGVM2 and specifically its shrub 

model, we have been able to gain knowledge about shrubs life-form and strategy and more 

generally about ecosystems processes and biogeography across African savannas. We will 

use these insights as baseline to go further and consider the broader picture to answer our 

questions. We first discus considerations specific to models, then specific to data and finally 

we investigate their interaction. We then propose a perspective on how to overcome 
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challenges faced by model development and take modelling of vegetation communities to 

the next level.  

Results 

 It appears that most current limitations to models can be solved through extensive 

research effort in terms of model development and benchmarking but also by the 

availability of further observation data. Given the scale of this effort and given the potential 

of integrated research projects between data providers and model developers, we argue for 

greater cooperation between research groups. This implies closer interactions and more 

coordinated research efforts. However, ultimately some limitations are inherent to modern 

modelling approaches. We need to fully consider these limitations to accurately and 

properly interpret models’ results. Finally, we discuss opportunities to step beyond current 

DGVMs’ limits. 

Conclusions 

There is room for improvement to model processes and biodiversity. Computing 

power and big data can be a part of it as brute force solutions. However, they cannot answer 

every question and the development of process and trait-based models to investigate 

mechanisms shaping ecosystems offer greater and smarter opportunities to step up models’ 

performances. 

 

4.1 - INTRODUCTION 

Model and simulation are concepts with extensive records of discussions and 

debates, crossing many disciplines over centuries (Baudrillard, 1981, 1988; Gleiniger et 

al., 2008). The use of mathematical models in ecology, biology, earth science and 

biogeography pre-dates their digital versions (Volterra, 1926; Lotka, 1927). However, the 

development of present day models came with the emergence of digital computers, such as 

the ENIAC, allowing to solve complex numerical problems (Shrukin, 1996). The increase 

in computing resources availability allowed for increasing models’ complexity and 

explanatory power. Over the last decades, we saw an exponential development of such 

models, the list of which being too long to do them justice in a few lines (Prentice et al., 

2007; Fisher et al., 2017). Among them and of concern to us are the DGVMs (Prentice et 
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al., 2007). However, despite a rapid increase in the number of models (Fisher et al., 2017; 

Trugman et al., 2019), models versions (Smith, Prentice and Sykes, 2001; Hickler et al., 

2006; Scheiter and Higgins, 2008; Scheiter, Langan and Higgins, 2013; Longo et al., 2019) 

and modelling studies (Hickler et al., 2005; Scheiter and Higgins, 2010; Bachelet et al., 

2017; Langan, Higgins and Scheiter, 2017; Pfeiffer et al., 2019; Kumar et al., 2020), their 

fundamental assumptions could benefit from more intense discussions (Song, Zeng and 

Zhu, 2013; Song, Zeng and Li, 2016; Fisher et al., 2017; Trugman et al., 2019). 

 We assess key questions contributing to the foundation and development of process 

based and trait-based models in ecology. We investigate how models are built and what 

their defining concept and fundamental structure entails in terms of relevance and accuracy. 

First, we discuss the very definition of “model”, as a word definition frames the item which 

it refers to (i.e., the validity of a concept is limited by its definition). It means that the 

definition of what is a model has technical consequences for the development of DGVMs. 

We discuss this on a conceptual level and then relatively to our modelling approach. 

Second, we discuss how the way we build models has direct consequences on models’ 

validity. Both the assumptions made to design a model and the observations and data it 

relies on will have consequences on its validity. Third, we discuss the entwinement of data 

and models concepts and structure. Finally, we discuss model development challenges and 

opportunities. 

 

4.2 - MODEL FOUNDATION 

4.2.1 - LIMITATIONS INHERENT TO MODEL CONCEPT 

 Models are a representation of reality, which means that they are a simplified 

version of reality, yet, they are intended to look like and function like reality. Thus, they 

represent (look like) and imitate (function like) reality. DGVMs are specifically useful as 

they combine these two traits, which allow us to handle, in a practical and controlled way, 

the subject of our study. It means that to create a model requires to define what is 

represented and, thus, to make assumptions. These assumptions define what is not in the 

model and what is included. Including an item in a model can be done in different ways 

and for different reasons. What is considered, how and why, frames the extent of validity 

of a model. We discuss the extent of validity of a model and, inversely, its limits. 
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 Because a model is a simplification of an object, it is typically limited by what it 

does not include but which is part of the item it represents. For example, Quillet, Peng and 

Garneau (2010) reviewed limitations to modern DGVMs. Carbon and nitrogen cycles, 

competition, land-use, land-use changes and disturbances, among others, are typically 

missing. In a more recent review, Fisher et al. (2018) identified the lack of underground 

competition representation, for water and nutrients among the major limitation to models 

validity at present. This limitation goes along the fact that below-ground studies of plants 

are more difficult than above-ground studies of plants. Research towards addressing these 

limitations and others is intense and multi-faceted. For example, nitrogen cycle is 

implemented in an increasing number of DGVMs, following different approaches (Quillet, 

Peng and Garneau, 2010). There are attempts at modelling plants migration (Sato and Ise, 

2012). Land use is also considered in some modelling studies (Bachelet et al., 2017). 

Additionally, processes can be represented through different conceptual approaches, 

potentially conflicting (Wang, 2003; Fisher et al., 2017). Besides these limitations, there 

are steps into a new generation of DGVMs. For example, Sato, Itoh and Kohyama, (2007), 

Hickler et al. (2008), Scheiter and Higgins, (2009), introduced representation of the 

processes controlling vegetation demographics. However, most modern DGVMs are based 

on PFTs (Hickler et al., 2006; Clark et al., 2011; Yang et al., 2015) which do not account 

for intermediate life-forms and are thus not as flexible as fully trait-based models. 

Considering the full trait range is a promising approach to further models development 

(Verheijen et al., 2013). Some models already explore territories beyond the PFT concept, 

such as aDGVM2 (Scheiter, Langan and Higgins, 2013), and others (Pavlick et al., 2013; 

Sakschewski et al., 2015) which propose to overcome the limitations related to the PFT 

concept by considering trade-offs as the basis of trait filtering. 

 Despite the continuous refinements of ecological models, DGVMs still lack explicit 

representation of many trait-based processes. DGVMs, considered altogether, represent a 

wide range of processes, yet, each represent only a fraction of these processes. Typically, 

models are created with a solid basis to demonstrate a modelling approach and/or to study 

a specific question or a specific region. They are then further refined to answer more 

specific questions and will implement processes specific to the given questions. However, 

the complexity of a model increases with the number of parameters it considers, which 

might lead to problematic developments or technical challenges (Fisher et al., 2017), thus, 

it might prove more practical to fork a model into different versions. Given that models 
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have different foundations and different development history they are more or less suited 

to represent specific regional vegetation processes and communities. Therefore, despite all 

DGVMs being benchmarked against data and simulating large scale trends and patterns 

reasonably well, they produce diverging results at the regional scale, as can be seen in 

studies using multiple models and in inter-comparison projects (Li et al., 2016; Restrepo-

Coupe et al., 2017). Each model considers differently parameters or processes which could 

locally be major drivers of vegetation community. Moreover, the potential interaction 

between missing parameters, or between a missing parameter and a modelled parameter, 

might be an additional indirect limitation.  

 

Stochasticity 

 Many DGVMs use randomization and stochastic computation (e.g.: Hickler et al., 

2008; Scheiter and Higgins, 2009; Pavlick et al., 2013; Scheiter, Langan and Higgins, 

2013). Stochasticity is used to approximate and account for parameters or mechanisms not 

explicitly considered in a model, for which no direct causal relations are drawn; either due 

to lack of knowledge, data or precision about a process or because explicitly simulating this 

process would be out of model scope or irrelevant at model scale. Typically, stochasticity 

represents processes which need to fluctuate in a model, but which cannot be fully 

mechanistically represented or for which no sufficient observation data is available. For 

example, in aDGVM2, during recruitment process, new individuals are randomly selected 

from the seed pool. By doing so, it does not need to represent the processes driving seed 

selection. It can avoid doing so without losing explanatory power as they can be 

stochastically represented at its scale even if some or all of its components might be 

deterministic. However, in aDGVM2, the number of seeds produced by an individual 

impacts the probability that one of its seed will be selected at random from the seed pool. 

Fisher et al. (2010) demonstrated that variability in demographic processes lead to major 

uncertainties, even when results are constrained. This is also what we observe with 

aDGVM2’s results (Figure 3.4 and Table 2.1). Stochasticity and randomization used in 

DGVMs is typically a source of variability in demographic processes, and, hence, source 

of uncertainties which limit the validity of a model. It is not possible to build DGVMs 

without any stochasticity being involved. Reducing its share by incorporating more 

processes in models means reducing the share of natural processes that are not explicitly 
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represented and which need to be approximated through randomization. Increasing the 

number of processes and mechanisms represented by a model would broaden the range of 

questions it could answer and the context for which it would be relevant, yet, increasing 

the computation power it requires. 

 

4.2.2 - MODEL BUILDING 

 Models built after observations of reality embed them on two levels. One level is 

relative to the assumptions made as baselines for the model. It represents the scope of the 

model, what is included in the model, and it represents the definition of the items that are 

considered and how they are represented. Another level is relative to the data used to 

represent these assumptions. Equations used to calculate processes are derived from 

observations and parameters values can be constrained by observed value range. 

 

Assumptions 

 The assumptions made to design a model are the conscious and desired 

simplification of reality. Each model is a unique concept as the sum of a unique set of 

assumptions, which are also the first source of its uncertainties and limitations. First, the 

model builders must decide which theories it relies on, or it wants to challenge, and it shapes 

how reality will be represented in the model. It can be theories about how to organize and 

structure an understanding of nature (DeAngelis and Waterhouse, 1987; Lavorel and 

Garnier, 2002). It can also be theories about what the drivers of ecosystems are. For 

example, assuming root competition to be a major driver of the grass-tree competition in 

savanna (Walter, 1971) or assuming that it does not play a major role (Scholes and Archer, 

1997; Scheiter and Higgins, 2007) can imply two different model architectures. In the first 

case, it is necessary to include mechanisms through which roots can compete for space and 

access to water and nutrients; not in the second case. Similarly, the focus of the study drives 

the processes and parameters to be included and how. For example, there is a need to 

include cold adaptation mechanisms when studying tundra ecosystems, which is irrelevant 

to study tropical rainforests. In fine, it is the builder perception and understanding of the 

model which sums up these necessary simplifications, introducing a bias. Indeed, model 

builders have knowledge and skills which cannot encompass every single detail and it 
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shapes how they prioritize different items for their models and studies. In resume, 

assumptions limit models validity via the interconnection of three levels: the theoretical 

framework, the scope of what is considered and the model builders’ perception and 

prioritization. These three points shapes the type of model created. For example, van Oijen 

et al. (2018) identifies three types of models: ecological, process-based and integrated, to 

study climate change impact on biodiversity and productivity of grasslands; whereas Fisher 

et al. (2018) refers to ESM (Earth System Models) which include first and second 

generations of DGVMs, further sub-divided into forest gap models, and vegetation 

demographic models, again sub-divided in individual-based models and cohort-based 

models. Each type of model has inherent strengths and weaknesses shaping its relevance. 

 Many models, built differently and using different variables and parameters can 

produce a similarly fair representation of reality (Guisan and Thuiller, 2005; Todd-Brown 

et al., 2013; Li X. et al., 2016; Li F. et. al., 2019), yet they can diverge when simulating 

future scenarios. This fact questions how meaningful the differences and similarities 

between these various approaches are. The possibility to create models so different yet all 

showing good agreement with reality could be due to the interactions between assumptions 

inside each model. Indeed, models built to answer specific questions and/or to study 

specific contexts can be precisely tailored. There are two consequences to that. First, the 

broader the question and/or context, the more complex a model needs to be to exhibit 

similarly accurate representation of reality compared to a model with a narrower focus. 

Second, using models outside of their designed scope should be considered very carefully.  

 Finally, the development of models and their quality rely on data availability to 

inform processes simulation. Thus, lack of data is a severe limitation, for example on the 

following key processes: sub-annual tree growth, dynamic biomass allocation, drought 

effects (Zuidema, Poulter and Frank, 2018). As such, a model can focus on interesting, 

relevant and meaningful questions, processes and topics, only as long as data can feed the 

model development as basic bricks. 

 

Data context dependency and constraints. 

 As data availability is critical to support models development, data quality is 

equally critical to models (Li, Brimicombe and Ralphs, 2000). Even assuming data 
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availability of the highest technical quality, their nature and their use can introduce 

additional biases. 

 While assumptions frame the outlines of the model, the data used to flesh out these 

frames are themselves constrained by the context from which they come from. Indeed, 

observations are made for a given point in time, a given region in space and with a focus 

on specific items (study subject and parameters measured). These three points directly limit 

the extent of observations validity. Specifically, ecological and biological processes have 

different weight in different contexts (Zaehle et al., 2005). Using larger scale data, where 

context is less specific and/or using multiple data sources are ways to reduce this effect 

(Johnson and Cox, 2019). However, and despite increasing data availability, the most 

complex models have to rely on patchy material. The incompleteness of data implies that 

models will fill up the holes in these observations. For example, a model of tree distribution 

might use observations of several representative species of different bioregions to model 

global tree distribution.  

 Scaling up context dependent observations to broader contexts, up to global scale, 

is problematic in itself. Li et al. (2018) showed that models results change depending on 

which study is used as reference for parameterisation. However, none of the tested studies 

are incorrect, or lacking per se. It simply means that the effect of scaling up local 

observations warps the meaningfulness of these observations; i.e., models are more 

accurate for the context they have been designed for. Therefore, scaling up local studies to 

continental or global scale produces more or less valid results depending on how close local 

studies are to the larger scale average. This implies that parameterising a model according 

to the site-specific study which is the closest to the large-scale average should produce the 

best fit between the model output and observations. However, it does not entail a necessary 

good representation of local spatial heterogeneity and it does not mean that the values and 

patterns obtained are accurate or even correctly grounded. Because of these two reasons, a 

model ability to extrapolate (out of its structure and baseline data range), test scenarios and 

produce meaningful forecast is still limited. In conclusion, being globally valid based on 

local studies without having an understanding of mechanisms and an accurate model of 

processes interactions impairs our ability to test scenarios and forecast potential futures. 
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Data regression 

 Data is selected as reference to build models according to its relevance regarding 

modelled processes. To be able to use this data in a model it needs to be processed into 

mathematical objects. Clouds of observation points are not typically directly embedded in 

a model. Observation data can be transformed into either equations (e.g.: through regression 

or interpolation of data) or into range of parameter values, or into constants. This 

transformation entails a loss of information. While regression equations used by a model 

“represent”, or capture, the whole range of data, actual model “values” are constrained to 

those given by the regression equation; thus, discarding all other values from the dataset, 

while potentially creating artificial values not corresponding to actual observation points. 

The strength of this effect depends on the dataset and the regression method (Figure 4.1). 

To dampen this effect, it is possible to either select more homogeneous data or to consider 

additional data to have a more globally relevant dataset. The trade-off between loss of 

explanatory power and context constraints should be carefully evaluated. 

 The degree of freedom characterising the regression of data, implies a trade-off 

between accurate representation of data and the relative weight of stochasticity in the model. 

As the degree of freedom increases, to capture an accurate picture of trait space requires an 

increasing number of replicate simulations (impacting computing resource requirement). 

This is further emphasized by the interplay between equations with varying degrees of 

freedom, which affects the relative weight of respectively represented processes. 

 Each DGVM is made up of a unique set of equations, parameters range and 

constants, coming from different context dependent studies. Despite common points 

between various models, the unique combination of sources they represent can contribute 

to explain why different models might perform better on some cases than others even if 

they include the same processes, due to stemming their equations from different contexts. 

For example, a model including a representation of fires based on dataset A might perform 

better at representing fires in region A than a model simulating fires based on dataset B. 

 Using observation data to build a model is necessary to represent reality. However, 

it introduces two sources of bias in a model. First, observations are context dependent. 

Second, transforming data to include it in a model reduces the realism of this data. By 

considering the trade-off between these two sources of bias, they can be mitigated; yet, they 
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cannot be completely negated and should be explicitly considered when assessing the 

accuracy and relevance of a model.  

 

 
Figure 4.1: Representation of limitations inherent to data regression/interpolation. Red dots: small trended 

data set (random values). Blue dots: large untrended data set (random values). Yellow lines: regression 
lines. a) 2 degrees of freedom for regression, b) maximum degrees of freedom for regression (i.e., as many 

degrees of freedom as there are data points), c) 6 degrees of freedom for regression, d) 6 degrees of freedom 
for regression. 

 

4.2.3 - DATA GATHERING AND RE-ANALYSIS LIMITS - DATA 

QUALITY & DATA CONTEXT 

Models rely on data, which introduce biases and limits relatively to their context 

dependency and through the data translation into models’ language. These limitations 

directly concern model developers, yet there are other potential limitations related to data 

about which modellers have little direct control. Concerns about data quality and about data 

creation and gathering is an intense debate (Borgman, Wallis and Enyedy, 2007; Costello 

et al., 2013; Kosmala et al., 2016), and the reliability of observations is of critical 

importance for modellers, impacting both the model building and model benchmarking 

phases of model development.  
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 Data quality might not be assessed by modellers due to two main reasons. First, 

they might not be expert in the tools and methodologies used to create these data and, thus, 

cannot assess their quality. Second, it might be that there is no full disclosure of the data 

gathering process, which can be for regulatory reasons, but also for sociological reasons 

(Leonelli, 2017). In these cases, data quality might introduce bias in the model, but it is out 

of scope for the modellers. However, when data is provided with a methodology which can 

be understood by the modellers and with a full disclosure of their strength and weaknesses 

(e.g.: Saatchi et al., (2011)), modellers can and should consider such limitations. 

 Data availability increases (Borgman, Wallis and Enyedy, 2007), which comes with 

its own challenges and opportunities (Michener and Jones, 2012). For example, increasing 

the number of samples and sources can mitigate gaps in data due to statistical effects. 

However, this can be invalidated if the overall data quality decreases among the selected 

sources. Evaluating such conundrum is a challenge for modellers. 

 Even if modellers are not experts in the specific methodologies used in a given 

research field to gather data, debates in this field (Hanan et al., 2014; Staver and Hansen, 

2015; Gerard et al., 2017) and expertise from collaborators in this field can be enlightening 

to discuss the relevance and accuracy of data sets for ESMs and particularly DGVMs. It is 

also possible to assess the quality of datasets without expertise in the field, either if full 

disclosure of data uncertainties is available (Saatchi et al., 2011), or if multiple datasets are 

available and can be compared (Table 2.1) (Avitabile et al., 2011; Saatchi et al., 2011). In 

such example (Saatchi et al., 2011),  if global dataset quality is deemed insufficient to be 

used for specific modelling questions, it might be necessary to focus on site specific studies. 

However, it requires more precise climate data, which might be unavailable. Focusing on 

site specific data brings us back to the context dependency limitation which we discussed 

in the first section of this chapter. 

 

4.3 - DATA: BENCHMARKING AND INITIALISING MODELS 

 When building models, such as ESMs and DGVMs, the relevance and quality of 

the model is insured via two components. One is reliance on evidences and theories; 

deemed correct and valid until proved otherwise. This component represents the basic 

bricks of models: equation and constants derived from observations. The other one is the 
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model benchmarking, which compares its results to observed variables, preferably different 

from the ones fed to the model as bricks. However, adding valid bricks to a model and 

controlling its output does not necessarily imply that the model structure is correct and that 

the interplay of its basic bricks functions as intended. This is a critical part, often 

overlooked, for which new control methodologies need to be developed. 

 Models are reaching a level of complexity and refinement that is challenging and 

controlling all the details of a model is increasingly unwieldy. Assessing the extent of 

validity of a model can be done via benchmarking methodologies and simulations analyses, 

which are thus at the core of model development. Consequently, how data and model output 

can be related needs to be properly understood in order to prevent introducing further biases 

and limitations. We investigate this conundrum to identify key connections between data 

and models. We propose arguments and ideas about how to bridge the conceptual and 

practical gaps between data and models, in order to better understand and further develop 

more realistic models. 

 

4.3.1 - MODEL INITIALISATION 

 Theoretically, if a model is initialised with observed data for all its parameters (i.e., 

at the beginning of a simulation, it has all its variables set to observed values), it should 

produce the best fit it can with benchmarking data, if benchmarking data is the same as 

initialisation data. In this case, divergence between model output and data would directly 

reflect the shortcomings of the model. In parallel, the more refined and correct a model, the 

closer its results to data when initialised with this data. Additionally, if benchmarked to 

extra data (B) not included in the initialisation (different parameters or different context), 

the divergence with this data (B), minus the divergence to data (A) used for initialisation, 

would reflect the processes lacking to represent parameters specific to extra data (B). 

Finally, the more complex a model, the more likely its results are to be closer to data not 

used for its initialisation (because it is more likely to include approximations of the missing 

parameters or context specific processes).  

 The more a model is supposed to fully represent reality, the closer it is to be reality 

and thus the more complex it is (given that models are a simplified version of reality). As 

trivial as it sounds, ultimately, only reality could be reality. However, the point of a model 
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is to represent as much of reality as possible with as little complexity as possible. This 

implies to consider only a very specific and constrained subset of reality in order to produce 

good results without being too complex; at the cost of having limited capacity to extrapolate. 

Thus, we can pinpoint a trade-off in model development. For a given level of complexity, 

aiming at explaining as much of the variance as possible (i.e., having the best fit possible 

with benchmarking data) implies to be more context specific. Conversely, trying to be as 

global as possible, and thus less context constrained, implies a reduction of the fit with 

benchmarking data locally. To maximize the fit to observations and the extent of validity 

implies an increase in model complexity. 

 To initialise the parameters for which no data is available, models typically assign 

to them, random values taken from a realistic range. The reliance on stochasticity depends 

on model complexity and scale simulated. In aDGVM2, the random initialisation of the 

model is a major driver of the model output. Indeed, replicate simulations with identical 

initialisation produce nearly identical results (Results not shown) compared to replicate 

simulations with different random initialisations (Table 2.1).  

 If we assume a model to be correct, when comparing multiple simulations with 

different random initialisations, the one producing results with the best fit to benchmarking 

data is likely to be the one which has assigned values to non-data-driven initialised 

parameters as close to reality as possible. This relation could also be used to identify the 

actual values for these randomly initialised parameters through reverse engineering. 

 

4.3.2 - ECOSYSTEMS: TRANSIENT OR EQUILIBRIUM 

 When we benchmark a model, we compare its output to observed values. Assuming 

that this comparison allows us to actually assess the relevance and accuracy of a model 

implies that we observe an ecosystem which is in equilibrium. This implication comes from 

the fact that models such as DGVMs typically produce results akin to an ecosystem in a 

dynamic equilibrium state. However, while the dynamic equilibrium concept has been 

widely used to describe ecosystem dynamics (Tuljapurkar and Semura, 1977; 

Winterhaider, 1984; DeAngelis and Waterhouse, 1987; Skarpe, 1992; Friend et al., 1997; 

Svirezhev, 2000; Quillet, Peng and Garneau, 2010; Laliberté et al., 2013), there are 

evidences about ecosystems being in a transient state (Van Minnen, Leemans and Ihle, 
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2000; Spagnolo and La Barbera, 2002; Hastings, 2004; Frank et al., 2011). Historic 

dynamics can be a key factor to explain present ecosystem state, either through long term 

impacts (Marshall et al., 2018) or through natural selection processes (such as coevolution, 

e.g.: Brooks (1990)). Thus, trying to model present ecosystem states based on context 

dependent observations might prevent from improving models’ ability to extrapolate as it 

could lead to simulating vegetation cover agreeing with observations while misrepresenting 

ecological processes; particularly when dynamics timescale, amplitude and direction are 

unknown. 

 Observation data, being context dependent, cover a limited time-period. 

Consequently, data might not cover a time period commensurate with the dynamic 

equilibrium time scale of an ecosystem. Indeed, many studies are only a snapshot of an 

ecosystem (e.g.: Kelly and Parker, 1990; Schleicher, Wiegand and Ward, 2011; Báez et al., 

2013). At ecological scales, even a decade of data might be only a snapshot (Thompson, 

1998; Hastings, 2004), and many datasets are made up of observations spanning only a few 

days to months. Only a limited number of studies provide observations for over a decade 

(e.g.: Laliberté et al., 2013; Lawley et al., 2013; Stevens, Erasmus, et al., 2016). Therefore, 

we typically assess models based on “points” in time, relatively to typical ecological time 

scale. To benchmark models, long term observations are required to grasp ecological time 

scale trends and dynamic equilibrium range of state parameters. As observation timescale 

is typically a limiting factor, it is challenging to assess if a model simulates dynamic 

ecosystem equilibrium, since it might be close to the real ecosystem equilibrium while 

being quite far from available observed values constrained for a specific point in time 

(Figure 4.2). Additionally, identifying at which point of a dynamic equilibrium 

observations are made is challenging. Figure 4.2 shows that while model results might be 

close to benchmarking data for a time point it does not allow to conclude on the agreement 

with the ecosystem equilibrium through time. Therefore, when data representativeness of 

dynamics through time is limited, we should not conclude on a model’s ability to represent 

the pattern and amplitude of the actual ecosystem equilibrium, irrespective of model 

agreement with data. This conundrum is particularly concerning at present, as land cover 

change is rapid and covers vast regions (Brink and Eva, 2009; Hansen et al., 2013). 
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Figure 4.2: Dynamic equilibrium through time for a given ecosystem state variable and observation data. 

1: One observation value through time for the given state variable. 2: Observation data for a period 
showing a trend not representative of the actual ecosystem dynamics. 3: Observation data over a period 
long enough to grasp the amplitude and frequency of state variable oscillation in a dynamic equilibrium. 

 

4.3.3 - HOLISTIC VS. PATCHY 

 When benchmarking a model for only a fraction of the parameters it simulates, it is 

possible to misinterpret results and draw the wrong conclusions (Figure 4.3). Thus, a model 

correctly simulating a given parameter does not necessarily simulate correctly other 

parameters, and a model could correctly represent one parameter but for the wrong reasons. 

 If we assume that, in a model, only benchmarked parameters can be deemed valid 

and that we cannot conclude on the non-benchmarked parameters, it implies that only the 

ecosystem parameters for which observation data is available can be modelled. Such 

assumptions reduce a model extent of validity and its usefulness. There are different 

possibilities to avoid this limitation. First, we can consider all the non-benchmarked 

parameters as non-relevant for the specific question for which a model is benchmarked (for 

example, in chapter 2 we did not consider phenology, as it was not relevant). Second, we 

can simulate only parameters and processes for which there are datasets which can be used 

to benchmark and/or parameterise the model, implying the absence of arbitrarily or 

stochastically parameterised variables. For high complexity models, an intermediate 

approach is the most sensible option, given the difficulty to exclude the use of random 

initialisations. In this case, it is more meaningful to have results reasonably fitting with data 

for as many parameters as possible instead of trying to fit one parameter perfectly. It has 
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been proposed to standardize model benchmarking methodologies and to systematically 

use all relevant data sets to have a comprehensive and holistic model assessment (Kelley et 

al., 2013). Thus, there is an increasing need for relevant datasets. Data availability and 

quality can increase even without increasing observations efforts. For example, new 

methodologies can increase datasets accuracy and quality (Tuanmu and Jetz, 2014; Bouvet 

et al., 2018). In general, satellite derived datasets come from an interaction between satellite 

imagery and ground observations. Following such approach, data inference methodologies 

can be developed. In this sense, a range of values for parameter A could be derived from 

the observed values of parameters B and C. For example, if we know vegetation height, 

AGBM and LAI, it might be possible to determine a realistic range of value for leaf biomass. 

Such methodology could benefit from Bayesian approach (Ellison, 2004). 

 Benchmarking multiple parameters can help to lower models’ uncertainties. 

However, it could be that, when benchmarking two different parameters, trying to optimise 

the fit for one parameter decreases the fit for the other. Thus, it could be that a model cannot 

be parameterised to optimise benchmarking fit for multiple parameters at the same time 

and that the model needs to undergo additional development. Moreover, to maximize a 

model’s fit to benchmarking data in a given context requires a specific parameterisation of 

the model. This parameterisation is likely to vary depending on the focus of the study, given 

that parameterisation accounts for adjustment of parameters and processes not implemented 

in the model but still contextually important. This is a major risk of misinterpretation. 

Indeed, if a model is parameterised to produce results fitting with benchmarking data, and 

if a major driver of a phenomenon or of a state parameter is absent from the model, it is 

unknowingly misleading. For example, if in reality a phenomenon is explained for 40% by 

parameter A, 30% by parameter B and 30% by parameter C, and if a model including only 

parameters B and C manages to explain 90% of the variance when parameterised, it is likely 

to overestimate the impact of parameters B and C on the phenomenon, despite appearing 

as more accurate than a similar model explaining only 60% of the variance. Zaehle et al., 

(2005), showed that parameters importance varies geographically, supporting the idea that 

models are unlikely to perform equally at global scale. Such effect could be at play in our 

model and impact our ability to study shrub encroachment as a global phenomenon. In 

cases where shrub encroachment is due to non-modelled factors, our model of shrub 

encroachment should show low fit with data, but, if we parameterise the model to increase 

its fit with data, we might reduce confidence in its future projections. 



 141 
Chapter 4 - Challenges and opportunities of models integrating traits and processes to 

simulate ecosystems states and dynamics 

 In conclusion, the patchier the data, the more the extent of a model’s validity is 

reduced, because it prevents the model from properly representing reality and it prevents 

from assessing the extent of this validity. The problem of data patchiness is particularly 

concerning for models representing ecosystems at large scale (continental or global) or in 

great details (considering many parameters); in the first case because many data are not 

available or not precise at such scales, in the second case because most ecosystems are 

studied for specific questions and not holistically. Models which need to extrapolate on 

patchy data sources should be considered carefully, yet, they are our best tools to model 

global or large-scale complex ecosystem processes. 

 

   

Figure 4.3: Looking at a subset of variables does not directly allow to grasp the big picture correctly. It 
might not be feasible to consider enough variable to draw a holistic representation of a system, thus model’s 

accuracy and relevance need to be properly framed (art by Gee). 

 

4.4 - MODEL DEVELOPMENT - OPPORTUNITIES & CHALLENGES 

 Ecological models improved due to technical developments, and thanks to the 

evolution of the underlying theoretical corpus (Lavorel and Garnier, 2002; Fisher et al., 

2017). Limitations to present modelling approaches could be overcome through new 
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developments (expending and refining modelled processes, improved theoretical corpus), 

technical improvements (code structure, computing efficiency and capacity), increase in 

data availability and quality (for benchmarking and parameterisation) or better model 

assessment. There are many opportunities to explore to take ecological modelling to the 

next level. We question key challenges and opportunities for the development of process-

based models in ecology. We advocate for an open and active debate on these questions 

among modellers to foster science. We focus on the following questions: 1 - How to 

consider ecosystems dynamic equilibrium in model development? 2 - How to model non-

deterministic natural behaviours? 3 - How can we better integrate stochasticity in model 

structure? 4 - Can we re-envision benchmarking methodologies for process-based models? 

 

4.4.1 - BENCHMARKING DYNAMIC EQUILIBRIUMS & ECOLOGICAL 

TIMESCALE 

 As ecological timescale might be conflicting with human timescale (Fresco and 

Kroonenberg, 1992), obtaining ecological information on a meaningful timescale through 

reconstruction of the past is a key research field and thus bridging the gap between plant 

ecology and paleoecology is required (Marignani et al., 2017). Research effort in this 

direction is intense and quickly progressing (Adams and Faure, 1998; Koch, 1998; Kröpelin 

et al., 2008; Feurdean et al., 2017, 2018; Gałka et al., 2018; Zanon et al., 2018; Ardenghi 

et al., 2019). However, reconstructing past ecosystem states and dynamics implies its own 

questions. To reconstruct past ecosystems, we assume that “rules” derived from present 

observations are valid for past periods, which can be debated. 

 As ecological timescale challenges our ability to benchmark model results against 

observation data, framing a model focus is a key methodological question (e.g.: ecosystem, 

life-form), as it shapes how we analyse a model’s results. A process based ecological model 

simulates a functioning ecosystem with its processes, states and dynamics, however, they 

are constrained, and, typically, represent only a snapshot of reality, relatively to its input 

data, even if it can exhibit inter-annual variability. However, ecosystems are also an 

historical phenomenon (Fritts and Rodda, 1998; Fukami et al., 2010; Tomscha and Gergel, 

2016). In this sense, ecological timeline is equivalent to historical timeline for humans. It 

means that, even dynamic equilibriums of ecosystems are relative and transient. At present, 
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models such as DGVMs, do not explicitly investigate evolutionary processes despite being 

able to simulate ecological timescale. This can be explained by the difficulty for the PFT 

approach to model evolution processes. However, trait-based model (e.g.: aDGVM2, JeDi 

DGVM) are well positioned to consider evolution from a DGVM perspective and to 

explicitly account for ecosystem history. Such approach could yield major outcomes for 

ecology and step up the development of DGVMs as it is theoretically and technically more 

correct to consider ecosystems as determined by their history (Wiens and Donoghue, 2004; 

Crisp, Trewick and Cook, 2011), and to model them as such.  

 Modelling ecosystems as an historical phenomenon is a challenging prospect. For 

example, ecosystems being bound by their history (Crisp, Trewick and Cook, 2011), 

species (and ecosystems or ecosystem states), or even functional equivalents, which 

disappear might not automatically reappear when the conditions under which they were 

existing come back. We propose two ways to take such effect into account in an ecological 

model. First, an ecological model can be initialised with observed values fitting with the 

timeframe which the model aims at simulating; which implies a limited ability to 

extrapolate through time. Second, an ecological model can integrate evolutionary 

mechanisms or be coupled to an eco-evolutionary model and take into account historical 

events relevant for ecosystems evolution, and thus be able to model ecosystems at 

ecological timescale. This second option could lead to mechanistic modelling of 

ecosystems evolution, based on modelling species evolution and modelling ecosystem 

processes. The aDGVM2 can be a first step in this direction thanks to its ability to represent 

mutation and crossover processes. When running simulations with aDGVM2 for 

ecologically relevant timescale (over 5000 years), we observe the potential for ecosystems 

to switch from one dynamic equilibrium to another due to intrinsic processes leading to 

evolutionary discontinuities (results not shown). Such perspective could allow studying 

questions such as: Are ecological equilibrium "true"? Are ecosystems intrinsically 

transitive due to history and/or specific mechanisms? However, one question would remain: 

To which extent can we derive rules and laws from ever-changing ecosystems? 

 

4.4.2 - MODELLING NON-DETERMINISTIC DYNAMICS? 

 Models are built on observations with the assumption that rules, in the form of 

deterministic equations, can be derived from said observations. However, studies can 
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propose alternative representations of a given phenomenon (Mäkelä and Sievanen, 1987; 

Wang, 2003), or propose conflicting observations and conclusions (Stevens, Lehmann, et 

al., 2016). Thus, the theoretical corpus framing our understanding of the natural world is 

partly relative. This is due to scientific improvement but also partly due to a reorganization 

of scientific views on the natural world. For example, Tuanmu and Jetz (2014) produced a 

land cover categorisation more comprehensive than the previous land cover products it is 

based on, but it is also a different way of categorising land cover as the categories 

themselves are different between all these products. Similarly, biome, ecoregions and 

ecotones are different concepts which characterise vegetation cover, among other factors, 

in a given area. They do not change the information we have about these regions, but it 

changes how we understand them, and they can be characterised following different 

schemes. Therefore, we need to question our point of view on nature and not just the 

theories we use to give it meaning. Can we assess if the rules we derive from observations 

are natural rules or if they are a simplification of nature to make it comprehensible? In other 

words: Are natural processes deterministic or chaotic? Which ones? To which extent? 

 

Chaos and average 

 The question of deriving general rules from observations is decreasingly relevant 

with narrowing focus. Not considering evolutionary processes in DGVMs narrows down 

focus and allows to rely on rules based on physical properties, such as carbon fixation rate 

through photosynthesis depending on ambient conditions (Collatz, Ribas-Carbo and Berry, 

1992; Ehleringer, Cerling and Helliker, 1997). However, DGVMs typically need to 

simulate random processes to face uncertainties and gaps in data. Simulations replicates are 

then used to mitigate the weight of stochasticity by considering average values. However, 

average values might be a chimera, not being simulated as such by a single replicate run; 

thus, the replicate with the most parameters as close to the average for each parameter 

should be selected.  

 Table 4.1 shows that average, variance, minimum and maximum values vary with 

the number of replicates considered and with the subset of replicates considered. It shows 

that increasing the number of replicates considered, despite increasing the range of 

possibilities, increases the statistical significance of the average. However, considering the 

possibility of chaotic natural processes implies to consider the possibility for ecosystems 
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to exhibit a non-deterministic dynamic; thus, deviating from observations through time. In 

this case, considering the average result of a model to perform predictive simulations and 

to test scenarios might be wrong, as the ecosystem considered might diverge from the 

average results under different circumstances. In the same sense, it could also be possible 

that an ecosystem observed at present could be in a non-average state, for example being 

in a transient state (Figure 4.2), or in an alternate stable state (Staal et al., 2016). 

Theoretically, relating two parallel versions of a system (real world observations and 

simulations) does not imply that they would evolve in the same way due to chaos and 

stochasticity. Therefore, we need to ask: can we model non-deterministic processes based 

on deterministic equations? Concomitantly, if we are to model chaotic processes, 

considering average values of replicate simulations is misleading. Averaging stochastically 

different simulation replicates induces determinism, which goes against the simulation of 

non-deterministic processes. Thus, considering average values of replicate simulations 

implicitly assumes a deterministic behaviour, albeit non-explicitly modelled. 

 Modelling non-deterministic phenomenon is intrinsically challenging (Worster, 

1989; Wood, 2010), and might be an unbridgeable gap between a model and reality. 

Explaining a share of ecosystems parameters variance can be achieved. However, to our 

knowledge, no model explains 100% of the variance. The non-explained fraction depends 

on what is considered as well as the model’s quality. If we assume that natural processes 

are not fully deterministic, then, stochasticity can also explain part of this variance, and 

this, no matter how refined and complex a model is. In this sense, chaos would be the gap 

between reality (the full variance) and the maximum percentage of variance explained in 

Table 4.1.  

 In conclusion, solving the conundrum of deterministic vs. non-deterministic 

ecological processes might be far-off at present, but thinking about it might lead us to 

consider more advanced modelling experiments. For example, bridging the gap between 

ecological models (such as DGVMs) and eco-evolutionary models offers a possibility to 

integrate some of the ecological stochasticity in DGVMs. In this endeavour, aDGVM2 

might be the most suitable candidate due to being the only DGVM being able to explicitly 

simulate mutation and cross-over to dynamically adapt vegetation communities to their 

environment, and thus represent non-deterministic ecosystem behaviour at large temporal 

scale. For example, it is able to simulate evolutionary processes leading to switch from a 
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dynamic equilibrium to another, due to vegetation community internal processes without 

further external constraints over ecologically relevant time scale (results not shown). 

 

Historical perspective 

 Trying to understand present ecosystem states by looking only at the mechanisms 

explaining the survival of any individual plant misses the point relative to how this specific 

plant came to exist in its specific place. Considering ecosystems history would improve our 

understanding of their state and dynamics (Wiens and Donoghue, 2004; Crisp, Trewick and 

Cook, 2011; Polly et al., 2011; Staver, Bond and February, 2011). However, historical 

legacy introduces uncertainties related to data availability. Long term records of ecosystem 

states are uncommon (e.g.: Laliberté et al., 2013; Lawley et al., 2013; Stevens, Erasmus, et 

al., 2016) and reconstruction of past ecosystem states is a challenging process (Adams and 

Faure, 1998; Koch, 1998; Kröpelin et al., 2008; Feurdean et al., 2017, 2018; Gałka et al., 

2018; Zanon et al., 2018; Ardenghi et al., 2019). To circumvent this limitation “rules” are 

derived from observations. However, different case studies focusing on the same question 

might lead to diverging observations. Considering more cases might smooth out these 

divergences. However, this might rule out underrepresented cases. This is particularly of 

concern for past ecosystem states, given that data availability is increasingly limited when 

considering increasingly older time period. Additionally, we cannot know if some cases 

about which no data is available ever existed. In conclusion, the fact that we typically have, 

at best, patchy historical data on ecosystems, implies that we need to be careful when we 

infer rules from ecological observations. 

 

Coevolution 

 It has been argued that some species might have appeared only due to the presence 

of other specific species, through coevolution and mutualistic or antagonistic relations 

(Janzen, 1966; Stuart-Hill and Mentis, 1982; Lunau, 2004). This process was referred to as 

coevolution for the 1st time by Ehrlich and Raven (1964). Typically, such processes are 

observed at ecological time scale, capturing mutation and speciation rates. While DGVMs 

can simulate such timescale they typically do not explicitly investigate coevolution 

processes. Yet, coevolution could have a considerable impact on models’ agreement with 
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observations. Not considering coevolution might also constrain models’ ability to represent 

specific ecosystem components (species) and ability to extrapolate model results in the past 

or the future. These limitations come from three points. First, model initialisation is used 

to take into account present or past ecosystem states; yet, it takes into account only a “state” 

and not a “dynamic”, thus, missing coevolution processes. In consequence, it limits the 

model’s ability to extrapolate, as it does not consider long term ecological trends. Second, 

during the model operation itself, as timescales of speciation and model simulation are 

different, the weight of processes related to speciation is typically not taken into account 

explicitly. Third, when benchmarking models, the weight of historic dynamics in an 

ecosystem is often unknown and identifying coevolution is challenging (Dybdahl, Jenkins 

and Nuismer, 2014), which might lead to disagreement between simulations and data 

unrelated to the model structure correctness. Therefore, assessing the importance of 

coevolution effects would contribute to improve models benchmarking. 

 As it has been demonstrated, model initialisation, contribute to explaining models 

results (Moncrieff et al., 2016). In a similar fashion, weighting the impact of history on 

ecosystems could help to better frame models extent of validity. In this regard, testing 

coevolution might be a promising approach as it could build upon the strength of both 

evolutionary models and DGVMs. Specifically of interest for DGVMs, evolutionary 

models can represent the mechanisms driving speciation (Fussmann, Loreau and Abrams, 

2007). Due to its unique design, aDGVM2 offers promising unique opportunities to 

investigate long term eco-evolutionary processes in a mechanistic ecological framework 

(results not shown), yet further efforts are required to better understand such processes and 

ensure their proper representation in aDGVM2. 

 In conclusion, we need to envision ecosystems as dynamics and not just as states to 

be able to capture coevolution and ecosystems history while considering scale effect 

(geographical and temporal) and its link with stochasticity. These questions offer vast 

possibilities for modelling research and particularly for DGVMs development, potentially 

leading to breakthrough in model architecture and ability to extrapolate. In this regard, 

aDGVM2’s unique design is well suited to investigate coevolution processes and long-term 

speciation trends, as preliminary results demonstrate (results not shown).  
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4.4.3 - STOCHASTICITY: TURN A WEAKNESS INTO STRENGTH 

 From a conceptual perspective, models’ extent of validity can be improved by using 

more adapted theories. The design of a model and the concepts it relies on directly limit 

what a model can represent and how well; limits which are further constrained by the actual 

structure and content of the model. Therefore, theories should be selected to provide a more 

accurate understanding of models design and operation, in turn allowing for more refined 

models. As such, developments of better model concepts provide frameworks more likely 

to lead to modelling breakthrough.  

 

Stochasticity as strength 

 DGVMs, while being process based models, include stochasticity to provide 

variability and diversity to their deterministic processes and to represent heterogeneity and 

mechanisms not explicitly captured by their structure and content. Variability introduced 

by stochasticity introduces uncertainty and, therefore, can reduce models extent of validity. 

Fisher et al. (2010) argue that variability between replicate simulations is linked to 

uncertainty in parameterisation, and thus to stochasticity (as it is used to initialise variables 

for which deterministic values cannot be used), which reduces models projections 

reliability. Fisher et al. (2010) argue that models output need to be constrained by 

observations to allow for more reliable results. By following up on this argument, we can 

also see simulations variability as a chance. Indeed, greater variability between simulations 

could allow models to perform in wider range of context, given that results are a posteriori 

constrained by observations. As a model has wider range of results it is more likely to have 

results close to observations no matter how diverse and different those observations are. It 

can then be constrained by these observations to improve its performances.  

 Alternatively, selecting among many replicates the one giving the best fit with data 

instead of the average, means selecting the one for which stochastic processes, considered 

as a proxy for non-explicitly modelled processes and parameters, are the closest to these 

processes they are supposed to account for. This could be used for a reverse engineering 

approach to identify and select realistic values for variables that are not deterministically 

initialised.  
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 A similar approach, yet less prone to misinterpretation, is to consider stochasticity 

as representing small scale heterogeneity. In chapter 2, we showed that mean value is not 

necessarily the most fitting with benchmarking data. Sampling trait space through 

stochastic simulation iteration (Table 4.1) can be used to find the most accurate output and 

to parameterise the model by re-constraining allowed trait space. Alternatively, aDGVM2 

variability can be used to simulate the wide range of local potential heterogeneity. 

Following Figure 4.2 it is also possible that simulated and observed vegetation state might 

be an extreme in a range of potentials and not average, which questions our ability to 

benchmark model results with relatively limited observations.  

 Models typically operate on a small-scale basic unit, which is then linearly scaled 

up to the grid-cell resolution at which environmental data is fed to the model. However, 

between the grid-cell scale and the actual variability throughout landscapes there is a non-

linear relation, varying geographically, which is neglected by the linear scaling from 

models’ basic unit to grid-cell scale. Additionally, assessing models based on their average 

results (out of randomized replicate simulations) partially misses the interest of using 

stochasticity, as it prevents from capturing landscape scale variability and potentially 

explaining the mismatch with simulations (Fisher et al., 2017). Rammig et al. (2018) solved 

the scale mismatch, between observed vegetation at the grid cell scale and models basic 

unit of operation, by statistically considering the small-scale variability and observation 

errors and using this information to correct model results. This approach supports the idea 

that stochasticity can be used to model sub-grid cell heterogeneity. Further, to consider sub-

grid cell heterogeneity, model benchmarking would need to consider the range of potential 

results and how it relates with the range of vegetation observations encompassed in a 

simulated grid cell. However, depending on the level at which stochasticity is embedded in 

a model (i.e., at the cell, leaf, individual or landscape scale), it has varying consequences. 

For example, Fisher et al., (2010), argue that stochasticity at the individual level is averaged 

out at the cohort scale. Therefore, stochasticity cannot be used to model vegetation 

heterogeneity per se, but only if properly parameterised, specifically when considering that 

it might be used to represent different types of heterogeneity depending on the region 

considered. Additionally, this requires a proper assessment of the weight of stochasticity in 

a model. For example, Table 4.1 shows that the number of simulations considered, and the 

sub-set of simulations considered can lead to different conclusions about model 
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performance. Such an assessment needs to be standardized in model development to assess 

the effect of stochasticity and design proper experimental set-ups for simulations studies. 

 Stochasticity can be seen as a strength on two accounts. First, it can be used to 

account for landscape heterogeneity and scaling up from model basic unit to grid-cell scale. 

Second, it can be used to represent non-explicitly modelled processes & variables. In this 

second understanding, a post-processing approach could be envisioned to improve model 

reliability, either by considering the simulation closest to reality as the most informative or 

accurate among replicates instead of considering the average, or by constraining the range 

of results to observations. Concomitantly, a reverse engineering approach could be used to 

infer realistic values for randomly initialised variables. In this regard, aDGVM2’s ability 

to produce different vegetation communities among different randomized simulation 

replicates (all controlled parameters being equal) could be used as a step forward in models 

design and performance. We propose to further investigate this question by testing if all the 

replicate simulations for a given region can be related to real vegetation communities, and 

if all the vegetation diversity is represented in models results. Such study requires precise 

and extensive observations to be available for the considered region, and strong 

collaboration between modelling team and observation team. This would allow to test the 

feasibility of representing fine scale variation in vegetation cover without the need for high 

resolution data to feed the model.  

 

4.4.4 - FORWARD BENCHMARKING 

 From a technical perspective, the extent of validity of models can be directly 

increased by performing more numerous and more refined model assessment and 

benchmarking. Models are developed to represent specific ecological variables. These 

variables are calculated from equation representing processes. These processes are assumed 

to be as accurate as the observations from which they are derived (minus the loss of 

precision due to data regression). These are the primary elements of a model. The secondary 

elements of a model are derived from them and are the targets of a model. For example, 

xylem conductivity is a primary element directly derived from observations and explicitly 

coded in a model, whereas vegetation cover is the model’s target, and it is calculated from 

xylem conductivity, and other processes, and not explicitly coded in the model. As we know 

the extent of validity of the primary variables included in a model, given that they are based 
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on observations, they are not the priority target for benchmarking. Even if they can be 

modified by the model operation, they are assumed to remain in range with realistic values. 

On the other hand, we need to assess the accuracy and realism of the secondary variables 

simulated by the model by benchmarking them; therefore, they are a target for 

benchmarking. 

 It is possible to benchmark an increasing array of parameters, thanks to increased 

data availability. Many modelling researches have explored various possibilities to 

benchmark models depending on what the model can represent and on research questions 

(Luo et al., 2012; Kelley et al., 2013; Best et al., 2015; Peng et al., 2015). Most studies 

consider only a set of parameters to benchmark as they are designed to answer specific 

ecological questions. Some studies focus on modelling questions per se by working towards 

unifying and standardizing models benchmarking processes (Abramowitz, 2012; Best et 

al., 2015; Rabin et al., 2017) and/or making them more holistic (Luo et al., 2012; Langan, 

2019). An extensive literature is available about models benchmarking, showcasing many 

approaches considering a range of different parameters. This allows for the development 

of integrated and standardized benchmarking projects, frameworks and tools. For example, 

PEcAn (LeBauer et al., 2013) is an “ecoinformatic workflow” aimed at facilitating the 

assessment of models uncertainties via statistical methods. iLAMB (F. M. Hoffman et al., 

2016; Collier et al., 2018) is a project to streamline models benchmarking and integrate 

data and models to improve their validity and facilitate their development. The PALS-

PLUMBER (Best et al., 2015) proposed a novel benchmarking framework by estimating 

the target results accuracy a priori and benchmarking results against this estimate. Under 

development, the “DGVMTools” R package (M. Forrest, S. Scheiter & J. Steinkamp, 

unpublished) proposes a unified technical methodology of processing, visualizing, 

analysing and benchmarking models output. There are also research efforts towards 

benchmarking results of multiple models for different parameters to assess the overall 

relevance of these models, their strength and weaknesses. Among such models inter-

comparison studies, the FireMIP project focuses on systematically comparing models 

performance to represent fire processes globally in ESM depending on a set of variable 

parameters (Rabin et al., 2017). The Inter-Sectoral Impact Model Inter-comparison Project 

(ISI-MIP) (Warszawski et al., 2014; Rosenzweig et al., 2017) is a framework for models 

inter-comparison focusing on questions related to climate impact. It already produced 

results (McSweeney and Jones, 2016) and allowed for improved robustness of related 
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research projects (Nishina et al., 2015). Similarly, the Coupled Model Inter-comparison 

Project (CMIP) (Eyring et al., 2016) coordinates and harmonize the development of models 

with a focus on the Amazon region, while Restrepo-Coupe et al. (2017) compared the 

ability of a set of DGVMs to represent carbon fluxes in the Amazon basin. By switching 

the focus, models inter-comparison studies can also be used directly to answer specific 

questions. For example, Sitch et al. (2008) used five different DGVMs to evaluate carbon 

cycle. Alternatively, they can provide insights on specific points of models’ structure. For 

example, Medlyn et al. (2015) proposed an “assumption-centred” model inter-comparison, 

which evaluated models against data depending on how they represent target ecological 

processes. 

 Such research approaches are necessary to provide an overview of the state of model 

development and ensure a consistent quality level. There is a lot to be gained from them. 

However, none of them is fully holistic and there is room to expand model extent of validity 

to new dimensions (new parameters, new contexts, and new processes). The absence of 

systematic benchmarking of all the parameters for each model development step is a 

problem as biases and unchecked constraints could be inadvertently introduced. However, 

it is practically a relative problem, as models are typically benchmarked for the parameters 

relevant to the specific studies for which they are used. Thus, by constraining models use 

to specific questions, it is possible to ensure their accuracy and relevance. For example, 

when investigating the impact of fire on vegetation and how it might change in the future, 

DGVMs must represent fire processes, and be benchmarked for their simulated parameters 

that are related to fire. Model development efforts on these questions are intense (Spessa et 

al., 2013; Burton et al., 2019; Forkel et al., 2019). They are informed by and help inform 

the progress of our understandings of fires globally (Hantson et al., 2016; Nogueira et al., 

2016; Laurent et al., 2019). Likewise, Luo et al. (2012) present a comprehensive 

framework for benchmarking and assessing strengths and weaknesses associated to these 

benchmarks for modelling biophysical processes, biogeochemical cycles and vegetation 

dynamics with DGVMs. Representations of processes, such as fire, are increasingly refined 

in DGVMs. Additionally, more and more traits and parameters are considered and 

benchmarked. For example, NDVI (Normalized Difference Vegetation Index) and LAI 

were modelled in Hickler et al. (2005), NPP in Hickler et al. (2006), SLA (Specific Leaf 

Area), maximum carboxylation rate at 25 ◦ C (Vcmax25) and maximum electron transport 

rate at 25 ◦ C (Jmax25) in Verheijen et al. (2013). While model confidence and extent of 
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validity are increasing, many parameters require the development of specific benchmarking 

techniques. For example, Fisher et al. (2018) highlights five development priorities for 

VDMs (Vegetation Dynamic Model): plant competition for light and partitioning through 

canopies, plant hydrodynamics, below-ground resources, demographic processes, land use 

and fire disturbances. In conclusion, the availability of more datasets to benchmark models 

against and the development of model inter-comparison projects are the most promising 

ways to expand model extent of validity. Integrating and streamlining these two approaches 

should be the goal of model developers to ensure consistent quality among all models and 

to question their assumptions, allowing the integration of more complex dynamics into 

ecological models. 

 

Scale 

 To improve model benchmarking, the relevance of scaling the basic unit of a 

simulation needs to be considered. Models are built to perform simulations on grid-cells 

represented by basic units. Typically, these units are of smaller size than the grid-cells they 

represent. For example, the basic unit for aDGVM2 is a 1ha square (Scheiter, Langan and 

Higgins, 2013), whereas for SEIB-DGVM it is a 30mx30m square that is used as a basic 

unit (Sato, Itoh and Kohyama, 2007). However, they typically simulate grid cell resolution 

of 0.5° to 2°. To account for this gap, the basic unit simulated by the model is typically 

scaled linearly to the simulated grid-cell resolution. Stochastic processes and randomized 

simulation replicates are used to account for the environmental heterogeneity at the grid-

cell scale. This is problematic when the same level of stochasticity and replicates is 

supposed to scale the model from its basic unit to the grid-cell resolution, no matter what 

the grid-cell resolution is, and thus, no matter how much diversity it is supposed to account 

for. Additionally, models typically represent a fixed number of potential individuals (or 

individual cells, as simulated individuals can be alive or dead, or present or absent) at their 

basic unit scale. 

 Simulated proportions need to be considered given the scale of their simulation and 

the scale of their benchmarking, because representing plants traits proportions (the relative 

occurrence of each trait) for a small-scale basic unit does not imply that the model would 

represent the same proportions if it was to be used with a larger scale basic unit. 

Concomitantly, scaling up linearly the results produced by the model at its basic unit scale 
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to the grid-cell resolution is arguable. For example, one could ask how SEIB-DGVM, with 

a basic unit of 30mx30m, can mechanistically simulate competition between multiple large 

trees and how modifying its basic unit size would impact simulations in this regard. 

Generally, a model built to produce realistic results when run at its basic unit scale might 

perform differently if its basic unit scale is modified. This is what Table 4.1 shows. 

Modifying the number of individual cells simulated at the 1Ha square of the aDGVM2’s 

basic unit modifies the simulations, both in terms of variables values and in terms of model 

behaviour. Simulations with greater individual cells number result in greater minimum and 

mean simulated AGBM, associated with greater number of woody individuals. The 

variance between replicate simulations decreases more rapidly with increasing number of 

replicates when more individual cells are simulated. Changing the number of simulated 

individual cells does not change the spatial dimension of the basic unit but it changes its 

density and can therefore be assimilated to running the model for a larger (or smaller) area 

but considering the same number of individual cells. These results imply that models might 

simulate the correct trait distribution at its basic unit scale and that it can be deemed correct 

at larger grid-cell resolution only if linear scaling is correct. At the same time, these results 

question the validity of the linear scaling assumption.  

Table 4.1 also shows that, to efficiently sample trait space, there is a trade-off 

between simulating more individuals per basic unit, which requires less replicates to 

constrain variance, and simulating less individuals per basic unit which requires more 

replicates to constrain variance. In this regard, it appears that increasing trait space (by 

adding more traits or allowing for greater potential trait range, including more sub-division 

of trait range) calls for increased computation effort (either through increased number of 

replicates or “larger” basic unit) to constrain variance. 

 In conclusion, the linear scaling used to transform model results from the basic unit 

scale to the grid-cell resolution needs to be questioned on two terms. First, the scaling of 

stochasticity, representing grid-cell diversity unaccounted for by the model at its basic unit 

should be questioned. The stochastic processes can be called for accounting for diversity 

of different magnitudes depending on the resolution at which the results are scaled up, and 

this, without modifying these stochastic processes. Yet, they cannot be expected to 

represent equally heterogeneous diversities, or scaling results at varying resolutions. 

Second, the structure of a model, the parameters and processes it is built on, are used to 

perform simulations at the scale of the model’s basic unit and are expected to reproduce 
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the correct traits distributions & proportions of a larger region. However, the linear scaling 

that is assumed to justify that the basic unit of a model are representative of larger grid-cell 

scale vegetation is typically unchecked. Our preliminary results show that the scale of the 

basic unit can have consequences on model performances. In consequence, we should ask: 

can the model perform equally, or at least similarly, if the scale of its basic unit is modified? 

Or, how to ensure that scaling up model’s simulations from their basic unit to grid-cell level 

does not distort model’s performance? 

Table 4.1: 100 replicate simulations were performed for a savanna site in South Africa, on the border of the 
Kruger National Park (coordinates: 30°E 24°S), following the procedure described in chapter 2. It was 

performed for 2 scenarios: a) a grid of 40*40 individual cells per hectare was computed, b) A grid of 80*80 
individual cells per hectare was computed. It implies that in a) up to 1600 plant individuals could be 

simulated and in b) up to 6400 individuals could be simulated. A set of x simulations (x=3, 5, 10, 20, 50) 
was drawn at random five times for each set size. The mean AGBM, over the last 10 simulated years, was 

calculated for each simulation. We showed mean, minimum and maximum values among the x replicates of 
each set and Standard Deviation (S.D.) and Variance calculated among the 5 replicates of each set. The 

number of simulated individuals (# indiv.) is given for a) the full set of simulations and for b) each replicate. 
 

a) 40*40 
Replicates Set of 3 Set of 5 Set of 10 Set of 20 Set of 50 Set of 100  

 AGBM AGBM AGBM AGBM AGBM AGBM # Alive indiv. 

Mean 

1 62 42 59 57 56 54 568 

2 43 47 57 49 56   
3 27 83 35 59 52   
4 55 35 66 53 57   
5 60 55 33 57 55   

S. D. 14 18 15 4 2   
Variance 168 272 180 13 2   

Min 

1 41 3 15 11 1 1 277 

2 2 2 9 1 2   
3 5 60 4 3 2   
4 40 2 39 0 2   
5 42 5 1 3 3   

S. D. 20 26 15 4 1   
Variance 333 522 177 13 0   

Max 

1 82 82 101 101 119 119 1011 

2 82 75 83 118 109   
3 64 101 83 107 107   
4 79 72 94 101 117   
5 89 107 107 109 109   

S. D. 9 16 11 7 5   
Variance 70 197 88 40 23   

Variance       2341 90195 
S. D.       57 360 
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b) 
80*80 

Replicates Set of 3 Set of 5 Set of 10 Set of 20 Set of 50 Set of 100 

  AGBM # indiv. AGBM 
# 

indiv. AGBM # indiv. AGBM 
# 

indiv. AGBM 
# 

indiv. AGBM # indiv. 

Mean 

1 45 2404 60 3044 64 3058 72 2784 64 2964 67 2940 
2 57 3730 76 2575 64 3007 59 2765 65 2977     
3 78 2926 76 2942 68 2946 73 2987 67 2882     
4 59 2898 67 2904 66 2973 67 2844 68 2922     
5 48 2489 79 3099 58 2685 64 2981 69 3015     

S. D. 13 526 8 204 4 145 6 106 2 51     

Variance 134 221048 50 33371 11 16879 27 8997 4 2098     

Min 

1 29 1911 39 1911 29 2195 25 1789 8 1819 8 1789 
2 40 3200 52 1958 27 2223 16 1819 8 1819     
3 43 2579 49 2057 38 1958 25 1881 20 1789     
4 40 1819 55 2056 8 2455 8 1911 26 1819     
5 20 1859 64 2303 26 1911 26 1819 8 1819     

S. D. 10 604 9 151 11 220 8 50 9 13     

Variance 73 292127 65 18329 96 38845 49 2026 60 145     

Max 

1 67 2687 91 4281 82 3987 110 4235 110 4235 112 4281 
2 65 4281 95 3687 99 4281 93 3873 101 4281     
3 98 3518 101 3711 109 4235 112 3787 109 4281     
4 82 3675 94 3543 99 3758 108 3688 112 3987     
5 64 3304 98 3518 97 3304 101 3873 112 4281     

S. D. 15 579 4 310 10 400 8 207 5 128     

Variance 172 268043 12 76795 78 127852 47 34121 17 13136     
Variance                       1915 1037042 
S. D.                       51 1247 

 

Demographic processes 

 Following up on arguments from Fisher et al. (2018), the representation of 

demographic processes is a priority for model development. We propose an approach to 

benchmark vegetation demographics through DBH (Diameter at Breast Height), considered 

as an indicator variable, following works of Muller-Landau et al. (2006), Lima et al. (2016), 

and Moore et al., (2018). These studies show trees density as a function of their DBH for 

North America, Panama and tropical forests respectively. Additionally, Lima et al. (2016) 

identified a relation between DBH density, growth rate and mortality following a Weibull 

distribution. As shown in Moore et al. (2018), Muller-Landau et al. (2006), Crowther et al. 

(2015) and Lima et al. (2016), no matter the species or the site, DBH density distribution 

follows similar trends, albeit with some differences, therefore, we can use such material to 

benchmark models results. Figure 4.4 shows that aDGVM2 also simulates a decreasing 

number of individuals with increasing DBH, but only above a certain DBH, depending on 

the pool of plant individuals considered. Lima et al. (2016) shows that the relation between 
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DBH, growth rate and mortality rate varies with species, making precise benchmarking of 

demographics unpractical. However, it could be used to constrain model processes by 

linking DBH to growth rate and mortality rate based on α and β parameters of the Weibull 

relation identified by Lima et al. (2016) used as traits. DBH size class distribution 

observations are available for some sites in the TRY database (Kattge et al., 2011) but not 

systematically available globally. Crowther et al. (2015) tree density map is available at 

the global scale (with the limitation that only trees with DBH>10cm are taken into account). 

By correlating such map with DBH distribution studies, it should be possible to derive an 

estimate of DBH distribution globally, which could then be used to benchmark 

demographic processes more precisely.  

 Tree density per DBH at the global scale cannot be benchmarked at present due to 

data availability issue. However, we argue that further research on this question could yield 

major results in the near future and step-up models’ representation of vegetation 

demographics. We propose two approaches to investigate this question. First, we can 

benchmark the number of trees to Crowther et al. (2015) world map of tree density. Second, 

we can check if models’ representation of DBH distribution is in range with observations 

from Moore et al. (2018), Muller-Landau et al. (2006) and Lima et al. (2016) or similar 

studies. However, this makes sense only if the considered model can properly represent the 

correct number of individuals, as we have seen that it can affect overall models’ behaviour 

(Table 4.1) and that linearly scaling up results should be considered carefully. Finally, 

benchmarking state variables is only a proxy to benchmark processes. Directly 

benchmarking processes is conceptually more challenging as it revolves around a circular 

logic since models’ representation of processes are built on equations which are regression 

of observations data. In this regard, it is possible to benchmark processes themselves only 

if there is variability in a process representation (e.g.: being modelled as the sum of various 

observations) or if it can be checked by studying its footprint (i.e., looking at how 

introducing a given process in a model modifies the behaviour of other processes in the 

model). For example, growth and mortality rates can be benchmarked by looking at their 

relation with DBH, following observations from Lima et al. (2016). Figure 4.4 shows that 

aDGVM2 can simulate similar trend of decreasing woody plant density with increasing 

DBH and also exhibits sites of low plant density and low DBH, where woody plants growth 

is constrained by environmental factors. More generally, representation of vegetation 
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structure by aDGVM2 can be more precisely benchmarked, for example, using LIDAR 

data. 

 
Figure 4.4: Number of simulated woody individuals per grid-cell, either taller than 1m (red) or with a DBH 

larger than 10cm (blue) against their mean DBH, across sub-Saharan Africa; according to simulations 
from chapter 2, in the presence of fire, with shrubs included in the model. 

 

4.5 - DISCUSSION 

4.5.1 - FOUNDATIONS: MODELS & DATA 

 Each approximation and assumption made to design a model and any additional 

biases, which can be introduced through different processes, have different consequences. 

Each of these consequences need to be considered and addressed to parameterise and 

accurately frame models’ extent of validity, in order to compensate for their specific biases. 

It has been shown, albeit for hydrologic models, that models performances can be impacted 

more by models structure and the assumptions and observations they are based on than by 

their complexity, or range of considered elements (Yew Gan, Dlamini and Biftu, 1997). 

Similarly, Warren and Seifert (2011) show that, for ecological niche modelling, models 

complexity should aim for a middle ground, as models too complex are as likely as models 

too simple to improperly represent parameters and processes and thus to have lower 

accuracy and ability to extrapolate. Therefore, modellers should aim to improve models’ 

accuracy and relevance without increasing their complexity. For example, Hayat et al. 
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(2017) propose a more refined model of trees to be used in DGVMs. Such representation 

could improve the validity of DGVMs by considering more plant level trade-offs and 

processes without necessarily making it more convoluted. However, this approach has been 

designed and tested for constrained geographical extents and it needs to be tested globally 

before being implemented in a DGVM aiming at representing global vegetation. 

 Models could benefit from being assessed on their structure and content and not just 

on their results. Being correct on a benchmarked parameter does not imply to be correct on 

another non benchmarked parameter. Therefore, a model extent of validity is relative to 

benchmarked parameters and not a general assumption on a model. Thus, model 

shortcomings can be hidden by misleadingly good benchmarks on at least some parameters. 

Alternatively, a model can be grounded on sound concepts and data yet exhibit poor 

performances for a given set of benchmarked parameters. Such conundrum calls for in 

depth technical assessment of models’ structure and content.  

 Observations or derived products have their own sources of bias (Moilanen, 2002; 

Hortal et al., 2008; Martin, Blossey and Ellis, 2012; Kosmala et al., 2016). Modellers need 

to be aware of these sources of bias and carefully assess data they rely on in order to 

improve models’ accuracy and reliability. Variability among observations can be large 

(Table 2.1) (Saatchi et al., 2011). Figure 4.2 shows that observations can also be misleading, 

as they are typically shorter than ecological time scale (i.e., too short to capture the full 

range of variability of a dynamic equilibrium) (Hastings, 2004). The trade-off between 

large-scale observations which lack precision and site-specific studies which are more 

contextually constrained is a key determinant of data selection for modellers. Including 

data encompassing different scales to build and benchmark models can impact simulated 

ecological processes (Lawes et al., 2007; Fisher, 2010; Fisher et al., 2010). 

 

4.5.2 - BENCHMARKING & INITIALISATION 

 The potential benefit of closer collaboration between expertise in data analysis and 

modelling has been demonstrated for life science at large (Carius and Findeisen, 2016), 

environmental questions in particular (Aspinall and Pearson, 2000; Li, Brimicombe and 

Ralphs, 2000) and can be expected to hold true for ecological models. The interactions 



 160 Chapter 4 - Challenges and opportunities of models integrating traits and processes to 
simulate ecosystems states and dynamics 

between data and model, either pre or post process face challenges specific to their 

entanglement. 

 Data regression is necessary to translate observations into models, however, it 

introduces biases (Whittingham et al., 2006). To limit this effect, an array of alternatives 

are available. For example, adding a varying distribution probability along the regression, 

in order to represent density of data points along the regression line. Alternatively, a 

“regression area” could be used to cover the whole range of observations points by having 

a distribution probability covering the entire virtual distribution space. Further 

opportunities are highlighted in the literature, for example by Whittingham et al. (2006). 

Such solutions are mathematically more complex than a linear regression and might be a 

limit to models’ operation due to their higher computation intensity. Alternatively, the use 

of neural network architecture (Lek et al., 1996; Lek and Guégan, 1999; Liu et al., 2018; 

Brodrick, Davies and Asner, 2019) and deep learning (Christin, Hervet and Lecomte, 2019; 

Rammer and Seidl, 2019; Guo et al., 2020) could be envisioned to provide a more suited 

methodology to feed data into models as well as an opportunity to increase data quality and 

availability, thus, counter-acting the loss of data quality through regression. For example, 

such methodologies could be used to feed models with “real” data distribution yet 

stochastically. 

 Models with very good statistical fit to benchmarking datasets are not necessarily 

the most informative (Pitt and Myung, 2002). Concomitantly, difficulty to interpret models 

results and to draw conclusions from them increases with models’ complexity. Such 

phenomenon implies to re-think the assessment of models results and how to relate them 

to observations. Where direct statistical fit with benchmarking data might not be sufficient 

to assess models’ validity, it might be necessary to rely more on expert knowledge (data 

experts and models experts), emphasizing the need for interdisciplinary model 

development. Additionally, considering average values of multiple replicate simulations 

implies to model a mean which might not exist. Similarly, aggregated data used to 

benchmark models’ results can be an average value which does not exist; the greater the 

biodiversity it encompasses the greater the weight of this effect.  

 Models are typically fitted pre-process and benchmarked post-process, but they can 

also be constrained post-process. We propose three ways to envision such methodology. 

First, selecting among replicate simulations the one producing the results closest to 



 161 
Chapter 4 - Challenges and opportunities of models integrating traits and processes to 

simulate ecosystems states and dynamics 

observation data, instead of considering the average result of multiple replicates, might 

prove suitable. It would imply that stochastic parameterisation and processes produced the 

most realistic model behaviour for a given simulation, despite not being the model average 

behaviour. Second, results heterogeneity among replicate simulations could be seen as a 

representation of the local scale heterogeneity, which has been identified as having a strong 

influence on ecosystems despite being typically not explicitly modelled (Pappas et al., 

2015). Third, constraining results post-process with observations could be used to 

operationalise models and improve their reliability to inform society. Alternatively, a 

model’s ability to extrapolate could be improved by weighting results of scenario 

simulations with present day difference between model and simulations. 

 In any case (using the replicate simulation with the best fit to observation data, or 

using the range of replicate to simulate local scale heterogeneity, or using the average of 

simulation replicates), there is an implicit assumption. That is: observed vegetation states 

used to parameterise and benchmark models are a valid foundation and/or target for models. 

However, this assumption needs to be questioned. Indeed, models are typically built to 

represent natural ecological and biological processes. Some models are parameterised to 

account for anthropological impacts, but typically not in a mechanistic way (Forrest et al., 

2020). Considering that the current observed vegetation states are not necessarily the 

“natural” or “optimal” states, given anthropological impacts, it appears that directly 

correlating a model built to represent potential natural vegetation and observed vegetation 

state, be it for model development or benchmarking, is problematic. It is possible to exclude 

anthropised areas from the considered datasets, but this has two issues. First, it might 

severely limit data availability. Second, human impact is difficult to quantify and qualify 

(Galli et al., 2016; Kaplan and Valle, 2018; Corbau et al., 2019). In this regard, the 

limitation through time of many datasets (e.g.: typically, global and satellite derived 

datasets) challenges our ability to assess human impact history. This is particularly of 

concern given that historic dynamics can drive ecosystems behaviour more than climate 

change (Thom et al., 2018). 

 

Benchmarking vs. Understanding 

 Smith et al. (2016) showed that ecosystem responses to drivers can lead to similar 

ecological responses through different plant community responses. Zaehle et al. (2005) 
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showed that models can accurately represent ecological processes yet produce highly 

variable results. Consequently, it is important to look at mechanisms and fine detail 

ecosystem structure variables and not just at upper-level indicators and to take different 

perspectives on models’ results. Comparing data and models results gives an estimation of 

models’ extent of validity, however, it is different from assessing models’ structure. The 

critical part to weight models’ confidence is to assess the operation of its framework by 

drawing connections between benchmarks and model content. We argue that this process 

calls for more holistic benchmarking in order to draw multiple connections between 

benchmarks and model content in order to weave a mesh covering as much of the models’ 

structure and to provide information about their functioning. We propose a contribution to 

this approach in chapter 3. This requires in depth knowledge and understanding of a model, 

from its components to its benchmarks, which might be unpractical for model 

intercomparison projects. Yet, Medlyn et al. (2015), showed that, for specific questions, 

model intercomparison studies can inform about models’ structure and functioning.  

 

4.5.3 - CHALLENGES & OPPORTUNITIES 

 Depending on the model assumptions, and specifically on the data it relies on, it can 

be more adapted to represent certain regions or natural features than others. For example, 

a model considering every natural process but not those related to cold adaptation could 

have excellent fit with benchmarking data everywhere but in the cold regions. The 

importance of limits originating from a model underlying assumptions is increasing with 

increasing models complexity. As stated by Pitt and Myung (2002), increasing models 

complexity increases the difficulty to interpret models results and to draw conclusions from 

them. Additionally, models with better fit to benchmarking data are not necessarily the 

most informative. The more complex a model, the less likely it is to correctly parameterise 

it (Moore et al., 2018). Thus, there is a paradoxical trade-off between model complexity 

and the ability to infer knowledge from model. 

 Limits to model development depend on the theoretical and observational 

references framing a model development. They can be mitigated by revising models design, 

but they can also be mitigated by novel benchmarking approaches. For example, Hartig et 

al. (2012) revisit the parameterisation and benchmarking paradigm of DVMs (Dynamic 
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Vegetation Model) and proposes to overcome some of its limits by switching to a new 

paradigm, relying on bayesian statistics and inverse inference to estimate parameters. 

Prentice et al. (2015) propose a different approach to improve parameterisation and models 

development at large, relying on a systematization of parameterisation and benchmarking 

techniques and on the use of stochastic processes.  

 One of the main challenges driving models performances is its parameterisation 

(Lawrence et al., 2011; Cipriotti et al., 2012; Li, Zeng and Levis, 2012; Pappas et al., 2013; 

Verhoef and Egea, 2014; Moncrieff et al., 2016; Kim et al., 2019). The progress in models’ 

realism, and added complexity, makes parameterisation more and more challenging. To 

solve this conundrum, it has been argued that stochastic parameterisation can be used to 

improve models “validity” (Prentice et al., 2015). Such approach implies an a posteriori 

assessment and confirmation of a model extent of validity. Simulations made with a model 

randomly initialised need to be replicated until results are deemed robust enough or until 

the correct initialisation is found. Machine learning techniques could be used as an 

alternative to random initialisation. Machine learning can be used to improve 

parameterisation accuracy either by providing new data (Wäldchen and Mäder, 2018) or 

by automating parameterisation (Thessen, 2016). In this sense, machine learning can be 

used to find the parameterisation producing the best fit between simulations and 

benchmarking data. Machine learning can also be used to facilitate models development 

(Recknagel, 2001; Peters et al., 2014; Thessen, 2016; Gobeyn et al., 2019; Ma et al., 2019; 

Mehta and Pankaj, 2019). For example, Gobeyn et al. (2019), proposed evolutionary 

algorithms, derived from machine learning, to help calibrate models, but also to reduce 

models complexity. Ma et al. (2019) envisioned to use machine learning to identify major 

drivers and key mechanisms explaining vegetation state. Such stirring perspectives come 

with a cost. First, they might require more computing resources, possibly in amount usually 

beyond what is available to the ecological modelling research field. Second, letting 

algorithms extract relevant information from data, while facilitating models’ development 

might be detrimental to the theoretical and conceptual development of models. Third, 

improving models’ performance does not directly equal to an improved understanding of 

ecosystems functions, processes and parameters. Improving the fit between a model and 

benchmarking data does not necessarily inform about its ability to extrapolate. Therefore, 

machine learning techniques hold great promises for ecological models’ development, yet 

they need to be carefully supervised to avoid mistakes and pitfalls. 
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 To further model development typically comes at the cost of increase computing 

demand. To meet this demand, it is possible to either invest more in computing resources, 

or by investing in improving models’ efficiency. This second point means investing in 

programming, either to optimise code structure or to use more advanced computing 

techniques, such as GPU acceleration, particularly well adapted to support individual based 

models. To compensate for the increasing demand on computation time, optimization can 

also be made on the models’ development workflow. This encompasses technical tools 

made to facilitate benchmarking of models, such as the “DGVMTools” R package (Forrest, 

Scheiter and Steinkamp, unpublished) as well as standardized and streamlined 

methodologies (LeBauer et al., 2013; Warszawski et al., 2014; Best et al., 2015; Eyring et 

al., 2016; F. M. Hoffman et al., 2016; Rosenzweig et al., 2017; Collier et al., 2018).  

 Model development can also be enlightened and informed by ecological 

perspectives. For example, biodiversity metrics (Santini et al., 2017) can be used to assess 

simulations results and answer critical ecological questions (Langan, 2019). In general, the 

ecological questions aimed at being answered by a model shape this model development. 

Therefore, we argue for model development to focus on previously unanswered questions 

in order to expand models’ capabilities and to improve our representation and 

understanding of ecosystems states and behaviours. Focusing on trait trade-off and traits 

responses, effects and drivers holds great potential (Langan, Higgins and Scheiter, 2017; 

Gaillard et al., 2018; Pfeiffer et al., 2019; Berzaghi et al., 2020), as modelling mechanisms 

and processes is crucial to improve models ability to represent and “forecast” scenarios.  

 

4.5.4 - OUTLINE 

 To conclude on a theoretical perspective on models, we argue that, in the same way 

as an object exists only in a given context, a model should be equally framed by its context, 

which includes the constraints of the data it relies on for its design and context of the object 

it simulates (local biotic and abiotic factors). It means that we have to ensure that a model 

has the same context as the object it is supposed to represent. For example, a model should 

incorporate empirically derived equations obtained for the same geographical extent as the 

one for which the model is designed for. However, references from diverse sources, 

corresponding to different contexts, might be used to build a model; which can conflict 
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with the model target context. For example, a model might be made to represent vegetation 

in general but all its parameters’ values could come from equatorial Africa only, or a model 

could aim at representing specifically African savanna but its fire model could come from 

global observations. Consequently, a model produces a virtual ecosystem which is a 

chimera made of all of its references and not necessarily an existing ecosystem. From this 

perspective, it appears that a model, based on context-dependent observations, when tasked 

to represent ecosystems and scenarios outside of the range of its references is biased. 

Assessing the magnitude and “direction” of this bias is a challenge; which could prove 

highly valuable for a model’s relevance. Additionally, benchmarking processes should first 

be used to support model development by providing information about the discrepancies 

between the context of the references constitutive of the model and the context of the 

benchmarked regions. Therefore, we need a model based on ecological processes which 

are valid regardless of the ecosystem state and context considered. In this regard, a DGVM 

based on universally valid ecological processes, compared to a model empirically derived, 

has the potential to have greater extent of validity and be better adapted to study scenarios 

(i.e., cases for which we do not have observation data but which could realistically happen). 

DGVMs in general are going in this direction, with more process rich models. The 

aDGVM2 makes an extra-step in this direction (Scheiter, Langan and Higgins, 2013). 

 

4.6 - CONCLUSION  

 Models simplify the object they represent by selecting a set of key characteristics, 

for DGVMs, these are major ecological processes and fundamental vegetation traits. Their 

specific structures represent a given fraction of real ecosystems and this varies 

geographically depending on the relative weight of its represented processes and traits 

locally. Models’ extents of validity are inherently constrained by the data they are based 

on. Consequently, at large scale, DGVMs, and ESMs in general, should not be expected to 

have a consistent match with observation data, and should not strictly aim for one for one 

benchmarking fit. 

 Interplays between processes can have different relative importance depending on 

the network of processes they are related to, specifically given that vegetation communities 

create their own biotic environment shaping potential co-existence (Bruelheide et al., 2018). 

Such processes are better studied with models similar to aDGVM2 (Scheiter, Langan and 
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Higgins, 2013; Langan, Higgins and Scheiter, 2017), which can represent trait-based 

community assembly processes. 

 As “a rising tide lifts all boats”, the emergence of trait-based models drives DGVMs 

development towards more realism (Pavlick et al., 2013). This trend holds the potential to 

address concerns faced by all ecological models and potentially lead to conceptual 

breakthroughs. Simulating future ecosystems, specifically under changing climatic 

conditions, is challenging when they might be out of the range of what is known at present 

(Purves and Pacala, 2008; Allen et al., 2010). To address such problem and to simulate 

accurately such ecological dynamics, we need to study processes and mechanisms and not 

only states. This implies to benchmark processes instead of benchmarking states. 
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CHAPTER 5 - MODELLING IMPACTS OF ATMOSPHERIC 

[CO2], FIRE, GRAZING AND MAP ON SHRUB 

ENCROACHMENT WITH ADGVM2 

This chapter is the work of the sole author of this thesis. 

ABSTRACT 

Background 

 Shrub encroachment is a widespread phenomenon worldwide, more generally part 

of the larger trend of woody cover expansion. It is of particularly high concern in Africa 

where vast swathes of grasslands and savannas are at risk. Despite numerous studies on the 

subject, there is no consensus about the mechanisms explaining it. 

Objectives 

 We assess the relative importance of several parameters identified as major drivers 

of shrub encroachment events across multiple sites in southern Africa. This allows us to 

estimate the relative importance of each factor depending on context dependencies. 

Methods 

 We use the aDGVM2, an individual-based and trait-based DGVM able to 

mechanistically simulate the emergent properties of shrub life-forms in African savannas. 

We test the effect of MAP, grazing, fire and atmospheric [CO2] on vegetation community 

assemblages across 35 sites in southern Africa where woody cover expansion has been 

documented. 

Results 

 We simulate higher shrub prevalence at lower MAP depending on considered 

combination of factors. Elevated atmospheric [CO2] decreases shrub prevalence, indicating 

that cases identified as shrub encroachment might be a step towards woody cover expansion. 

Fire and grazing have a complex interaction and absence of fire as well as elevated fire 

frequency can limit shrub prevalence in some cases. 
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Conclusions 

 As shrub encroachment is driven by a complex interaction of drivers, management 

strategies should be case specific and should not rely on generalisations. A consensus 

should emerge about classification of “shrub encroachment”, “bush encroachment” and 

“woody cover expansion” to avoid overlap. This would ease further investigations and 

communication about each phenomenon. Our simulations indicates that in some cases 

shrub encroachment can be a steppingstone towards overall woody cover expansion. We 

recommend further simulations, including site specific ecosystem history in order to 

precisely test this dynamic. 

 

5.1 - INTRODUCTION 

5.1.1 - SHRUB ENCROACHMENT 

 Shrub encroachment became a major scientific topic in ecology and related fields 

around ten years ago, with around 600 publications per year between 2014 and 2019 (Figure 

1.8). Vast swathes of land have been identified as experiencing shrub encroachment 

globally (Stevens, Lehmann, et al., 2016). Shrub encroachment can impact ecosystems in 

multiple ways, for example by reducing rangeland farming carrying capacity, or by 

modifying biodiversity and potentially leading to biome change (Mugasi, Sabiiti and 

Tayebwa, 2000; Lett et al., 2004; Knapp et al., 2008; Sirami et al., 2009; Eldridge et al., 

2012). The role of drivers of ecosystem states is also modified by shrub encroachment as it 

feeds back on these drivers. For example, woody plant encroachment can modify 

ecohydrological systems (Huxman et al., 2005), which then feeds back on vegetation cover 

as water availability is a strong driver. Similarly, many studies show that controlled fire, 

along with browsing (Staver et al., 2009) can suppress tree and shrub density in African 

savannas (Sankey et al., 2012), while shrub encroachment reduces fire intensity and 

frequency. Further, grazing interacts with aridity to explain vegetation distribution patterns 

(Pfeiffer et al., 2019). Several studies identified over-grazing as a cause for shrub 

encroachment (Archer, Schimel and Holland, 1995; Roques, O’Connor and Watkinson, 

2001; Rutherford, Powrie and Husted, 2012; Stevens, Erasmus, et al., 2016), whereas 

Tocco et al. (2013) contradicts these results.  
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 The global extent of shrub encroachment follows its diversity (Eldridge et al., 2012; 

Stevens, Lehmann, et al., 2016). The first explanation for this diversity is the lack of a 

consensus on the definition of “shrub” in the literature. Often, shrubs are categorised as 

short or small woody individuals, sometimes without definitions of state parameter 

thresholds (e.g.: height). However, even when there is a clear numerical categorisation, 

comparison between studies is difficult because the threshold to classify woody plants as 

small, and, thus, as shrubs, varies typically between 3m and 6m. This classification 

fuzziness can lead to overlaps between categories of bushes (typically defined as woody 

plants shorter than shrubs) (Cao et al., 2018), shrubs and trees, and intermediate categories. 

This could be related to global vegetation cover classifications, such as biomes maps (Olson 

et al., 2001; Ellis and Ramankutty, 2008; Conradi et al., 2020), typically having one or 

more shrubland category but no bushland category. Additionally, shrub encroachment 

might contribute to woody cover expansion globally, encompassing encroachment of trees, 

shrubs and bushes (Wigley, Bond and Hoffman, 2009; O’Connor, Puttick and Hoffman, 

2014) and forest expansion (Donohue et al., 2013). The intertwining of these phenomena 

can be explained both by authors considering them as part of the same process and by the 

lack of consensus among the research community on the definition of these phenomena. 

 As shrub encroachment is part of larger ecological dynamics (woody cover 

expansion), it needs to be understood in the light of these dynamics. Forest expansion has 

been associated with changes in human societies (Mather and Needle, 1998; Parés-Ramos, 

Gould and Aide, 2008). This concurs with the general observation that land use is a main 

driver of vegetation cover (Aleman, Blarquez and Staver, 2016), but it also questions the 

perception of woody cover change as it depends on stakeholders perspectives (Wigley, 

Bond and Hoffman, 2009). We know that biome distributions can also be explained by 

objective biotic and abiotic factors. For example, grassland distribution depends on 

availability of resource and disturbances (fire and herbivory) (Bond, 2008). Other studies 

point at atmospheric [CO2] increase as a main driver of global woody cover expansion 

(Donohue et al., 2013) and particularly of shrub encroachment in South Africa (Buitenwerf 

et al., 2012). Atmospheric [CO2] increase generally promotes woody vegetation over C4 

grasses due to [CO2] fertilization effects (Ehleringer, Cerling and Helliker, 1997; 

Kicklighter et al., 1999; Bradley and Pregitzer, 2007; Donohue et al., 2013; Kumar, 

Pfeiffer, Gaillard, Langan and Scheiter, 2020), while land use change related to overgrazing 

reduces grass biomass and thereby fire activity which can favour woody vegetation (Grover 
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and Musick, 1990; Caracciolo et al., 2016; Pfeiffer et al., 2019). As Ringrose et al. (2002) 

show, shrub encroachment can happen due to natural or anthropogenic factors, and 

O’Connor, Puttick and Hoffman (2014) suggest that an interplay of factors (rainfall, history 

and management) drives shrub encroachment, while Aleman, Jarzyna and Staver (2018) 

emphasise the role of history to explain current biomes boundaries. Explaining shrub 

encroachment is further challenged as it feeds back on vegetation dynamics and ecosystem 

functions. For example, increasing woody biomass typically contributes to suppress grass 

growth and thereby fire, which is important to open the landscape, to suppress growth of 

woody vegetation and thereby to maintain vegetation in an open savanna state (Bond and 

Midgley, 2012). Additionally, reduced grass biomass implies reduced food availability for 

grazing animals (Pfeiffer et al., 2019). Solving such feedback cycle is challenging. Shrub 

encroachment can be explained by its drivers but also by the dynamics it relies on. For 

example, Silva and Anand (2011) and Duarte et al. (2006) showed that the expansion of 

forest into grasslands relies on various mechanisms but that it exhibits a consistent 

“phenotypic” or “strategic” pattern. Pioneer trees or shrubs establish in grassland and create 

clusters of forest expansion. Various explanatory mechanisms have been proposed: varying 

nutrient concentration, absorption and use (Silva and Batalha, 2011), sheltering effect vs. 

grass competition mediated by water competition, light competition and fire resistance 

competition (pioneer tree excluding grass via water and light competition and sheltering 

seedlings from fire via low canopy branching), seed aggregation by providing preferential 

habitat for seed dispersers (Puyravaud, Dufour and Aravajy, 2003).  

 

5.1.2 - OBJECTIVES 

 Many studies aimed at understanding shrub encroachment and many studies aimed 

at modelling woody vegetation cover distribution (Staal et al., 2018). Due to intense 

research efforts, several factors driving woody cover distribution and shrub encroachment 

have been identified. However, if we are to comprehensively understand interactions 

among drivers of woody encroachment, we require process-based models and multi-

factorial experiments considering all the potential drivers. Such an approach has long been 

limited by the lack of an explicit mechanistic representation of shrub life-forms as a unique 

strategy in models, distinct from tree life-forms. To be able to explore potential factors 

influencing shrub encroachment and to project future vegetation, we require a model that 
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(1) uses ecophysiological principles to simulate vegetation in response to environmental 

conditions, (2) includes shrubs as distinct life-form based on explicitly simulated 

mechanisms and (3) simulates how environmental factors, hypothesized as potential 

explanatory factors of shrub encroachment (such as grazing and fire), influence abundances 

and community structure of grasses, trees and shrubs. Despite recent research effort 

(Hickler et al., 2006; Zeng, Zeng and Barlage, 2008; Clark et al., 2011; Lawrence et al., 

2011), the present study is, to our knowledge, the first study that includes all these aspects. 

Our study was facilitated by the unique design of aDGVM2, an individual-based dynamic 

vegetation model (Prentice et al., 2007) that allows traits values of individual plants to 

dynamically adjust to the biotic and abiotic environment (Scheiter, Langan and Higgins, 

2013; Langan, Higgins and Scheiter, 2017). An updated version of aDGVM2 includes 

grazing and a detailed representation of grasses dynamics (Pfeiffer et al., 2019) and 

includes a mechanistic representation of shrubs as multi-stemmed woody individuals 

(chapter 2). With these new developments, the aDGVM2 now fulfils the requirements 

necessary for a multi-factorial mechanistic modelling study of shrub encroachment.  

 For our study, following chapter 2, we classify as shrubs simulated woody plants 

which are multi-stemmed (>2) and up to 4m. We refer to shrub encroachment as an increase 

of the prevalence of shrubs in a plant community. Shrub encroachment, in this sense, is 

more common in ecosystems such as savannas and grasslands (Stevens, Lehmann, et al., 

2016). We focus on shrub encroachment in southern Africa, and particularly on savanna 

cases. This focus is particularly relevant due to Africa’s vegetation meta-stability, 

originating from being disturbance-driven. Wilcox et al. (2018) points at alternative stable 

state theory and pyric herbivory to explain grasslands and open savannas distribution. 

Shrub encroachment impacts large expanses of these ecosystems and can lead to rapid 

vegetation change between alternative stable states (Midgley and Bond, 2015; Stevens, 

Erasmus, et al., 2016; Stevens, Lehmann, et al., 2016). Focusing on southern Africa also 

aligns with the fact that aDGVM2 has been tailored for African savannas. Stevens, 

Lehmann, et al. (2016) assembled studies quantifying shrub encroachment in southern 

Africa which we rely on to focus our simulations.  

 We aim to assess the relative importance and the mechanisms associated to each 

identified driver of shrub encroachment in order to derive a comprehensive explanation of 

the phenomenon. We use aDGVM2 to study how atmospheric [CO2], rainfall, fire and 
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grazing interact to drive shrub encroachment. These are the main drivers identified by 

Stevens et al. (2016), which aDGVM2 is able to simulate. Our main questions are:  

1. How do atmospheric [CO2], grazing, fire and rainfall shape shrubs prevalence across 

southern African savannas? 

2. Are the interactions between these factors synergistic or antagonistic? 

3. How understanding shrub encroachment drivers shapes our understanding of the future 

of shrub encroachment cases? 

4. Can fire management and grazing contribute to suppress undesired shrub encroachment? 

 

5.2 - METHODS 

5.2.1 - THE ADGVM2  

 We use the aDGVM2 (Scheiter, Langan and Higgins, 2013; Langan, Higgins and 

Scheiter, 2017) for our simulations. The aDGVM2 is an individual-based model which 

simulates growth, reproduction and mortality of individual plants while keeping track of 

state variables such as biomass, height and leaf area index of individual plants. Each plant 

is characterised by a potentially unique set of traits describing plant type (grass or woody), 

leaf characteristics, leaf phenology, carbon allocation to different plant compartments, 

plant architecture, response to fire, reproduction and mortality. Growth, reproduction and 

mortality of plants are influenced by both the plant specific combination of trait values and 

the environmental conditions. Plant traits are linked by trade-offs to constrain overall plant 

performance. Mass conservation trade-offs regulate allocation to roots, stems, leaves, bark, 

storage and reproduction. Engineering trade-offs regulate plant architecture (Niklas and 

Spatz, 2010), while empirical functions define, for example, trade-offs between specific 

leaf area (SLA) and leaf longevity (Reich, Walters and Ellsworth, 1997) or between SLA 

and the capacity of a plant to extract water from the soil. The aDGVM2 simulates soil water 

competition and light competition via impacts of each individual plant on the total resource. 

Water uptake of single plants is defined by the fraction of root biomass in different soil 

layers, the moisture content of these soil layers and by the plant capacity to extract water 

from the soil (i.e., P50, matric potential corresponding to 50% loss of xylem conductivity 

(Langan, Higgins and Scheiter, 2017)). The light available to an individual plant is 
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influenced by the height and LAI of neighbouring plants. Light and water availability 

influence the photosynthetic rate and thereby, via carbon status, the reproduction and 

mortality rates of each individual plant. Reproduction includes trait inheritance, cross-over 

and mutation of trait values. Plants that allocate enough carbon to reproduction can produce 

seeds. Seeds can exchange trait values thereby allowing recombination of the community 

trait pool (cross-over). Mutation adds new trait values to the community trait pool. 

Randomly selected seeds are drawn from the resulting community trait pool and are added 

to the plant population as seedlings. By simulating inheritance, mutation and crossover, the 

model generates a large variety of different trait combinations and iteratively, via mortality 

and reproduction, assembles a plant community that is adapted to the environmental 

conditions.  

 The aDGVM2 is particularly well suited for our study as it stems from aDGVM 

which was developed for African savannas (Scheiter and Higgins, 2007, 2008, 2012; 

Moncrieff et al., 2015, 2016; Scheiter, Moncrieff, et al., 2019). The aDGVM2 has been 

benchmarked (Langan, Higgins and Scheiter, 2017), its shrub component has been 

benchmarked (chapter 2) and its grazing module has been benchmarked in Pfeiffer et al., 

(2019).  

 The aDGVM2 is the only DGVM that simulates shrubs based on a trait trade-off, 

and not as a PFT. In aDGVM2, shrubs are represented as multi-stemmed woody individuals 

(chapter 2), in contrast to single-stemmed trees. The advantage of multi-stemmed shrubs is 

the higher sapwood area for a given biomass and therefore higher competitiveness in water 

limited environments, compared to single-stemmed trees. The disadvantage of multi-

stemmed individuals is that they are typically smaller than single-stemmed trees, which 

reduces their ability to compete for light. The number of stems is a trait and it is passed 

from one generation into the next generation. Stem number is constant during a plant’s life, 

while in reality, the number of stems is dynamic and can change for example due to re-

sprouting after fire. We use mean stem count of all woody plant individuals in a grid-cell 

as a proxy for shrub prevalence. The higher this value, the higher the share of multi-

stemmed plants in the vegetation community. However, this does not consider the number 

of stem per shrub.  The relative balance between grasses and woody plants is also 

discounted. 
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 A recent addition to aDGVM2 allows to simulate the impact of grazing on grasses 

(Pfeiffer et al., 2019). It represents grass biomass removal by grazers while distinguishing 

between annual and perennial grasses. In aDGVM2, each plant individual is simulated by 

a potentially unique trait combination. This allows to link grass removal to both biomass 

and trait values of individual plants and hence to simulate that grazers are selective (they 

preferentially eat fresh, nutrient rich biomass). When animals visit a grass stand, an amount 

of biomass is removed. This amount is defined by the daily requirement of animals and by 

the number of animals. Days when animals visit a vegetation stand are randomly selected 

and influenced by the visitation frequency of animals (see Pfeiffer et al., 2019).  

 In aDGVM2, fire is represented mechanistically. Days with fire ignitions are 

randomly distributed during the years and the ignition probability is influenced by tree 

canopy area and precipitation. More open landscapes with low tree cover favour grasses 

(which are the main type of fuel in the study system, and rapid desiccation of fuel biomass). 

Low precipitation is used as proxy to represent low fuel moisture which promotes fire. Fuel 

biomass, fuel moisture and wind speed are used to calculate fire intensity (Higgins et al., 

2008). When potential fire intensity exceeds a given threshold, an ignition event can 

randomly occur and fire spreads and damages vegetation. Fire removes grass leaf biomass 

while tree biomass removal is influenced by height and bark characteristics. 

 Finally, aDGVM2 takes into account atmospheric [CO2] and precipitation effects 

on vegetation due to the representation of ecophysiological processes, such as 

photosynthesis, respiration and plant hydrology. Therefore, we can use it for our multi-

factorial experiment to test effects of MAP, [CO2], grazing and fire on shrub encroachment 

and shrub distribution and competitiveness in general. 

 

5.2.2 - SIMULATION EXPERIMENTS 

 We selected 35 sites across southern Africa (Figure 5.1) where woody cover 

expansion has been observed within savannas (Stevens, Lehmann, et al., 2016). Details 

about site coordinates, observed shrub cover change and proposed drivers, measured MAP 

and simulated MAP are given in Table 5.1. We tested a matrix of scenarios to identify 

conditions that maximize shrub prevalence. We explicitly prescribed values for 

atmospheric [CO2], fire and grazing (Table 5.2), while MAP and other climate parameters 
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were considered through sites specific differences. Among the selected study sites, the 

magnitude of woody cover change ranges from a -5% to +44% (Table 5.1) and covers a 

range of pre-existing vegetation covers, from open grasslands to dense savanna.  

 We tested three levels of fire frequency: a high frequency with prescribed yearly 

fires, an intermediate “natural” fire frequency (i.e., simulated by the aDGVM2 fire 

routines), and an exclusion of fire. While the natural fire regime can occur any day of the 

year depending on climatic conditions, the prescribed fire has a fixed ignition date on day 

90, representing late wet season fires. We tested three levels of grazing: absence of grazing, 

a grazing demand of 20kg/day/ha and a grazing demand of 30kg/day/ha; these values 

correspond to grazing intensity with low and high impact, respectively, on grasses 

communities, as identified by Pfeiffer et al. (2019). The low intensity can induce shifts in 

grass community assembly, while the high intensity systematically induces shifts in grass 

community assembly. We tested three levels of atmospheric [CO2]: pre-industrial, with a 

concentration of 283ppm (Meinshausen et al., 2011), present, with a concentration of 

387ppm (Giorgetta et al., 2013), future, with a concentration of 670ppm, following the 

RCP 6.0 scenario (Meinshausen et al., 2011). Various levels of MAP were considered 

based on the MAP of each selected site, which ranged from 87mm/year to 1415mm/year 

according to the CRU (Climate Research Unit) dataset used to perform our simulations 

(New et al., 2002), and from 223mm/year to 1067mm/year for the values given by the site 

studies (Stevens, Lehmann, et al., 2016) (Table 5.1).  

 We conducted factorial simulations considering interactions between all the fire and 

grazing levels we selected. We considered atmospheric [CO2] only for the scenario with 

natural fire and absence of grazing in order to limit the computation time, which implies 

that we used C1 (Table 5.2) for all scenarios unless stated otherwise. In aDGVM2, 

stochastic processes related to fire, plant demography and community assembly imply that 

repeated simulations for similar environmental conditions can differ. We therefore 

performed 10 replicate simulations for each of our scenarios. Each simulation was run for 

500 years as previous tests demonstrated that this time length is necessary and sufficient 

for vegetation community assembly to reach a dynamic equilibrium. 
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Figure 5.1: Selected sites across southern Africa where woody encroachment has been documented 

(Stevens, Lehmann, et al., 2016), and for which we performed simulations. (Image: Landsat/Copernicus, 
Data: SIO, NOAA, U.S. Navy, NGA, GEBCO, Image: IBCAo; obtained with Google Earth Pro, 2019). 
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Table 5.1: Coordinates of simulated sites; observed cover changes and proposed driver; MAP measured on 
site (Stevens, Lehmann, et al., 2016), MAP used to perform simulations (New et al., 2002) and difference 
between them. Cover change indicates change in the absolute value of woody cover, not relative changes 

(for example, 4% indicates shift from 10% to 14% and not from 10% to 10.4%). 

Longitude Latitude Site ID Change Driver 
MAP 
Stevens 

MAP 
aDGVM2 

MAP 
difference 

25.09 -28.98 1 -5% Rainfall & CO2 435 442 -7 

30.39 -28.21 2 4% CO2 775 730 45 

24.63 -28.69 3 2% - 441 417 24 

31.28 -22.99 4 5% Fire 473 497 -24 

31.05 -27.88 5 6% - 854 850 4 

30.98 -22.38 6 7% - 478 422 56 

31.46 -23.12 7 7% Grazing 438 524 -86 

26.03 -25.00 8 6% Grazing, Fire 476 595 -119 

29.36 -28.81 9 9% Grazing 869 727 142 

24.37 -29.42 10 15% Rainfall, CO2 386 338 48 

30.32 -28.21 11 9% CO2 774 730 44 

30.13 -28.73 12 10% - 691 730 -39 

26.82 -33.50 13 13% Grazing 605 519 86 

29.64 -23.45 14 15% - 686 466 220 

30.24 -28.10 15 28% CO2 776 730 46 

24.68 -28.50 16 9% - 438 417 21 

31.61 -24.73 17 18% - 631 570 61 

32.14 -28.03 18 19% CO2 891 1007 -116 

27.67 -32.67 19 18% Rainfall, Grazing 715 1093 -378 

32.31 -28.23 20 36% - 978 1007 -29 

31.42 -27.50 21 34% Elephants 816 850 -34 

30.03 -28.23 22 33% CO2 775 730 45 

32.21 -28.02 23 36% CO2 916 1007 -91 

24.69 -28.96 24 42% Rainfall, CO2 450 417 33 

32.04 -28.04 25 44% CO2 891 1007 -116 

30.25 -28.87 26 38% Grazing 771 730 41 

29.30 -22.38 27 29% Grazing 351 344 7 

28.93 -18.22 28 -37% Cultivation 761 703 58 

18.12 -28.23 29 22.2-27% Elephants, Fire, Harvesting 642 87 555 

24.36 -18.80 30 -30%, +28% Elephants 486 586 -100 

26.94 -23.87 31 13% Grazing 464 407 57 

31.90 -26.27 32 1-23-29-40% Fire, Grazing 672 1211 -539 

18.00 -24.00 33 6% CO2 223 205 18 

17.00 -22.00 34 14% Grazing 360 366 -6 

34.50 -18.79 35 10% CO2, Elephants 1067 1415 -348 
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Table 5.2: Parameters used for the simulations. Grazing levels were derived from Pfeiffer et al. (2019). Fire 
levels represent: fire exclusion, frequent & regular artificial fire ignition, and natural fires. Atmospheric 

[CO2] values are taken from Meinshausen et al. (2011) for pre-industrial and future values and from 
Giorgetta et al. (2013) for contemporary values. 

Grazing 
intensity 

G0 No grazing 

G1 20kg/day/ha 

G2 30kg/day/ha 

Fire 
frequency 

F0 No fire 

F1 Natural fire regime 

F2 Yearly late wet season fire 

Atmospheric 
[CO2] 

C0 283ppm (Pre-industrial) 

C1 387ppm (Present) 

C2 670ppm (2100, RCP 6.0) 

 

5.3 - RESULTS 

 The aDGVM2 simulated higher shrub prevalence (i.e., mean stem count) and 

standard deviation in scenario F1_G0_C0 than for any other scenario. Differences among 

the other scenarios were smaller (Figure 5.2). The second highest shrub prevalence was 

simulated for scenario F1_G0, albeit only slightly higher than the other scenarios. The 

lowest shrub prevalence was simulated for scenario F1_G2. The higher the simulated mean 

stem count, the higher the standard deviation. 

 

 
Figure 5.2: Simulated mean stem count of all alive plant individuals. Mean among all replicates and all 
sites (Mean), standard deviation among all mean site value (SD), minimum (Min) and maximum value 

among all averaged replicates per site (Max). C1 is considered for all scenarios unless stated otherwise. 
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 By considering each site individually, we assessed if MAP explains shrub 

prevalence in aDGVM2. The relation between MAP and shrub prevalence was non-linear. 

The aDGVM2 simulated a sharp threshold in shrub prevalence between MAP of 

703mm/year and 727mm/year, for most scenarios (Table 5.3). Scenarios F0_G0, F0_G1, 

F0_G2 and F1_G0_C2 did not follow this pattern, highlighting the importance of fire and 

elevated atmospheric [CO2]. Even when discounting the threshold effect observed in most 

scenarios, the increase in shrub prevalence with decreasing MAP, below 703mm/year, 

varies for most scenarios. Some sites strongly deviate from the general trend. For example, 

site 10, despite having the third lowest simulated MAP, has a relatively low shrub 

prevalence for most scenarios. The aDGVM2 simulates higher shrub prevalence with pre-

industrial atmospheric [CO2]. Fire scenario F1 (with natural fires) has higher shrub 

prevalence compared to scenarios without fire F0 and with artificially increased fire 

frequency F2 (Figure 5.2), for grazing scenarios G0 (no grazing) and G1 (low grazing) but 

not for grazing scenario G2 (high grazing) (Figure 5.2). Thus, the higher the grazing 

pressure, the less natural fires favour shrubs. Comparing grazing scenarios, shrub 

prevalence is lowest for grazing scenario G1 (low grazing) and fire scenarios F0 and F2, 

while it decreases with increasing grazing pressure for fire scenario F1 (Figure 5.2). 
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Table 5.3: Mean stem count averaged among all replicates for each site and each scenario. MAP is given 
for each site based on the values used to perform our simulations. Values are colour coded: from light for 

low values to dark for high values. 
Scenario F0_G0 F1_G0 F2_G0 F0_G1 F1_G1 F2_G1 F0_G2 F1_G2 F2_G2 F1_G0_C0 F1_G0_C2 MAP 

29 2.56 2.31 2.73 2.30 2.10 2.58 3.11 1.82 2.16 2.65 2.83 87 
33 1.92 2.56 2.57 1.83 3.11 1.72 1.87 2.26 3.18 3.36 1.93 205 
10 1.61 2.20 1.85 1.31 1.32 1.35 1.45 1.39 1.44 1.97 1.32 338 
27 1.56 1.66 2.14 1.77 1.60 1.80 1.67 1.45 1.73 3.50 1.58 344 
34 1.72 2.84 2.26 1.62 2.53 2.22 1.79 2.52 3.04 4.21 1.98 366 
31 1.84 1.70 1.70 1.50 1.35 1.37 1.52 1.50 1.88 3.04 1.49 407 

3 1.83 2.26 1.40 1.48 1.23 1.27 1.47 1.30 1.59 2.25 1.42 417 
16 1.41 1.59 1.94 1.34 1.50 1.29 1.50 1.40 1.39 2.22 1.44 417 
24 1.43 1.98 1.41 1.39 1.27 1.42 1.42 1.32 1.32 2.31 1.38 417 

6 1.46 1.48 1.49 1.49 1.77 1.44 1.41 1.37 1.34 1.77 1.46 422 
1 1.48 1.81 1.91 1.51 1.36 1.40 1.74 1.36 1.38 3.23 1.48 442 

14 1.45 2.01 1.59 1.51 1.43 1.57 1.36 1.46 1.33 2.53 1.38 466 
4 1.58 1.52 1.43 1.52 1.38 1.83 1.65 1.45 1.49 3.11 1.41 497 

13 1.45 1.25 1.17 1.46 1.30 1.19 1.39 1.29 1.27 2.01 1.28 519 
7 1.50 1.33 1.45 1.64 1.47 1.34 1.66 1.31 1.40 2.09 1.33 524 

17 1.63 1.32 1.29 1.40 1.36 1.32 1.58 1.45 1.38 1.55 1.37 570 
30 1.47 2.21 2.23 1.70 1.67 1.98 1.61 1.70 1.72 3.59 1.52 586 

8 1.64 2.15 1.61 1.40 1.46 1.51 1.35 1.51 1.41 3.46 1.40 595 
28 1.43 3.10 2.32 1.38 2.08 2.02 1.30 2.04 1.98 4.15 1.69 703 

9 1.54 1.39 1.54 1.37 1.32 1.30 1.40 1.19 1.23 1.80 1.34 727 
2 1.52 1.55 1.39 1.32 1.18 1.32 1.44 1.22 1.20 2.03 1.35 730 

11 1.46 1.33 1.32 1.29 1.36 1.27 1.51 1.22 1.39 2.05 1.36 730 
12 1.42 1.46 1.43 1.36 1.33 1.44 1.38 1.34 1.32 2.42 1.49 730 
15 1.47 1.47 1.21 1.41 1.32 1.21 1.32 1.30 1.36 1.87 1.38 730 
22 1.43 1.40 1.40 1.41 1.26 1.32 1.45 1.30 1.24 2.23 1.41 730 
26 1.42 1.36 1.24 1.33 1.32 1.19 1.36 1.35 1.21 1.53 1.28 730 

5 1.42 1.29 1.17 1.41 1.30 1.17 1.28 1.17 1.15 1.35 1.41 850 
21 1.46 1.45 1.45 1.33 1.28 1.22 1.40 1.26 1.29 1.91 1.37 850 
18 1.48 1.27 1.11 1.33 1.29 1.26 1.33 1.35 1.19 1.32 1.30 1007 
20 1.37 1.36 1.12 1.35 1.23 1.25 1.43 1.32 1.25 1.22 1.33 1007 
23 1.44 1.24 1.14 1.47 1.28 1.29 1.34 1.24 1.27 1.32 1.37 1007 
25 1.44 1.33 1.11 1.28 1.36 1.23 1.33 1.26 1.21 1.43 1.27 1007 
19 1.38 1.28 1.16 1.30 1.28 1.21 1.41 1.24 1.25 1.81 1.27 1093 
32 1.57 1.43 1.11 1.35 1.44 1.34 1.45 1.35 1.34 1.75 1.34 1211 

35 1.51 1.34 1.36 1.71 1.35 1.43 1.60 1.32 1.42 1.30 1.33 1415 
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5.4 - DISCUSSION 

5.4.1 - EXPERIMENT RESULTS 

 Among the combinations of factors we tested, shrub prevalence was highest for 

scenario F1_G0_C0 (“natural” fires, no grazing and pre-industrial atmospheric [CO2]) 

except for a few sites. We also observed that absence of fire as well as heightened fire 

frequency are detrimental to shrub prevalence as simulated by aDGVM2. Shrub prevalence 

was the lowest for scenario F1_G2, but scenarios F0_G1, F2_G1 and F1_G0_C2 had very 

similar values.  

 We argue that the decrease of shrub prevalence with increasing atmospheric [CO2] 

is due to CO2 fertilisation effect. As CO2 fertilisation effect (Kgope, Bond and Midgley, 

2010; Hickler, Rammig and C, 2015) has been simulated by aDGVM2 (Langan, 2019; 

Kumar, Pfeiffer, Gaillard, Langan and Scheiter, 2020) and aDGVM, its predecessor 

(Scheiter and Higgins, 2009; Higgins and Scheiter, 2012; Scheiter et al., 2015, 2018), we 

understand this result as indicating a transition towards higher prevalence of trees due to 

their enhanced growth capacity (taller woody vegetation would suppress shorter shrubs). 

Therefore, the apparent contradiction between our results and studies highlighting elevated 

[CO2] as a driver of shrub encroachment is deceptive, as in such cases, shrub encroachment 

is simulated as vegetation greening by aDGVM2, and more specifically, as woody cover 

encroachment, yet not shrub encroachment per se.  

 Study sites showing shrub encroachment cases (Stevens, Lehmann, et al., 2016) do 

not show a strong correlation between rates of shrub encroachment and MAP (Table 5.1), 

yet change in precipitation regime was identified as a driver in a number of these studies. 

This implies that change in precipitation regime should drive shrub encroachment more 

than MAP per se, which means that shrub encroachment is related to ecosystems history, 

which was not considered in our experiment. Other factors can explain shrub distribution 

(chapter 2), such as elephants or land use change, which were excluded from this study. 

Additionally, the selection of sites where shrub encroachment was observed can introduce 

a bias in our study which is unaccounted for, and which could be related to parameters not 

considered in our simulations.  

 The aDGVM2 simulated a sharp threshold for shrub prevalence between MAP of 

703mm/year and 727mm/year, for most scenarios (Table 5.3), but F0_G0, F0_G1, F0_G2 
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and F1_G0_C2 did not follow this pattern. This result highlights the importance of elevated 

atmospheric [CO2]. It indicates that increasing atmospheric [CO2] is likely to favour woody 

cover expansion more than shrub encroachment alone. Thus, shrub encroachment might be 

only a step towards woody cover expansion in a range of cases. In this regard, we can say 

that increasing atmospheric [CO2] decrease the MAP threshold at which woody cover 

expansion can occur. 

 The interaction between fire and grazing is complex. However, we can conclude 

that shrub prevalence can be lowered both by increased fire frequency and suppressed fires, 

in cases with no to low grazing, as this relation is blurred at higher grazing intensity. 

Additionally, shrub prevalence is highest in the absence of grazing, but it is non-uniformly 

reduced by increasing grazing pressure as it interacts with fire regimes.  

 While shrub prevalence might respond linearly to a single driver, our results show 

that it is also possible for shrub prevalence to exhibit threshold effect relatively to certain 

parameters. Thus, as shrub encroachment can be explained by a combination of diverse 

drivers, conclusions on shrub encroachment should be drawn cautiously as it is challenging 

to disentangle the relative weight of each driver in diverse contexts and as shrub 

encroachment can be multi-faceted and confused with woody cover expansion. Conducting 

our experiments for sites where shrub cover decrease was observed could yield different 

results. However, we hypothesise that our results would remain consistent, unless site 

specific ecosystem history could be accounted for. This could be achieved by considering 

all possible transitive cases between our tested scenarios (for example, switching from 

scenario F1_G1 to scenario F2_G2 during a simulation), at the cost of computing time and 

resource. Another possibility would be to investigate only case specific scenarios for which 

history is documented, which would require to focus on a subset of site-specific studies.  

 Shrub encroachment is a multi-factorial phenomenon. Across southern Africa shrub 

encroachment cases associated to elevated atmospheric [CO2] are ultimately cases of 

woody encroachment, associated with vegetation greening and increase in vegetation 

height. Shrubs thrive best in the presence of natural fires and can be stressed both by 

heightened and suppressed fires frequencies while grazing impact is more complex and 

mediated by other drivers. We hypothesise that, while it is possible to identify a primary 

driver of shrub encroachment, locally there is no unique explanation to such a widespread 

phenomenon. Thus, it is necessary to investigated local drivers, without relying on 
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generalisation, and it is necessary to tailor precise management plans to successfully shape 

vegetation communities when facing shrub encroachment. 

 

5.4.2 - EXPERIMENT LIMITATIONS 

 Our study is circumscribed to the combinations of factors we tested. We excluded 

some factors, which have been identified as relevant for shrub encroachment in other 

studies, because of their absence from aDGVM2, such as elephants, trampling, 

management strategies, wood fuel harvesting (Stevens, Lehmann, et al., 2016), or browsers 

(Staver and Bond, 2014). We excluded some combinations of factors to keep the study 

scale manageable. We did not test transitivity between states, which could be important as 

hysteresis has been demonstrated to be relevant for many ecological processes in a wide 

range of ecosystems (Sternberg, 2001; Staal et al., 2018). Heterogeneity among our results 

might be explained by local parameters impacting shrub prevalence, but this heterogeneity 

could also be explained by stochasticity, as 10 replicates might not be sufficient. We also 

did not include processes for which aDGVM2 is not precise enough, such as invasion 

through clustering and sheltering (Duarte et al., 2006; Silva and Anand, 2011) or such as 

ecosystem history (Grover and Musick, 1990).  

 Some limitations about the number of scenarios (factors and levels) considered 

could be readily taken into account for atmospheric [CO2], as historical data and future 

projections scenarios are available, at the cost of increased computing resources demand. 

Fire, grazing and precipitation would require records and projections which are patchy or 

absent and thus require to focus on a subset of sites. Additionally, the factors we tested 

have additional dimensions which we did not consider, such as seasonality and fire 

intensity, yet they have been considered in several field studies (e.g.: Perkins and Owens, 

2003; Wright and Clarke, 2007). Finally, stochastic processes in aDGVM2 might be 

impacting our results, despite our 10 replicate simulations for each scenario. This could 

contribute to explain why the increase in shrub prevalence with decreasing MAP, below 

703mm/year, has ups and downs simulated for most scenarios. However, this pattern might 

also be explained by local factors non-explicitly considered (e.g.: soil depth and texture, 

precipitation seasonality). For example, site 10, despite having the third lowest simulated 

MAP has a relatively low shrub prevalence for most scenarios. 
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 While mean stem count among all simulated plant individuals represent a satisfying 

proxy for relative shrub prevalence, it does not further inform on ecosystem states. 

Therefore, a lower mean stem count, while indicating a lower shrub prevalence, can be 

associated with either an opening of the landscape, with an increased relative abundance of 

grasses (having no stem, as defined in aDGVM2), or it can be associated with canopy 

closure and an increased relative abundance of trees (being typically single-stemmed). Thus, 

further investigations are required to disentangle this conundrum. However, we expect to 

find decreasing mean vegetation height with decreasing MAP and increasing mean 

vegetation height (and canopy closure) with increasing MAP (cf. chapter 3). This would 

concur with present findings indicating an increase in shrub prevalence with decreasing 

MAP, depending on scenarios considered. Therefore, depending on scenarios, vegetation 

tends towards grassland or towards shrublands with decreasing MAP, while it tends 

towards savanna and increasing tree prevalence with increasing MAP. Given our present 

findings and aDGVM2 design, we propose to investigate soil texture, soil depth and 

seasonality (precipitation and incoming radiations) to identify the parameters driving 

ecosystems into grasslands or shrublands at lower MAP. 

 Additionally, considering shrub prevalence relatively to mean stem count indicates 

only a relative abundance of multi-stemmed plants. As shown in chapter 3, our 

understanding of vegetation cover depends on the variable considered. We argue that a 

more holistic assessment, considering different parameters would provide a better 

understanding of ecosystem responses to the relative impact of different drivers. As mean 

stem count response to our scenarios and sites is heterogeneous, we expect responses of 

other variables (e.g.: canopy cover, number of individuals, AGBM) to diverge, challenging 

our ability to conclude on shrub encroachment drivers. 

 

5.4.3 - ECOLOGICAL PERSPECTIVES 

 Stress factors are deemed to constrain trait space (Mason and Pavoine, 2013; 

Lamanna et al., 2014; de la Riva et al., 2018). However, assessing the relative weight of 

different factors, of their levels, modality, interactions and direct or indirect feedbacks is 

challenging. Thus, we constrained our study scale in order to limit the complexity. For 

example, grazing can have impact on grassland community composition similar to that of 
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aridity (i.e., overgrazing and drought often have similar effects on grasslands) (Fynn and 

O’Connor, 2000; Pfeiffer et al., 2019). Yet, no direct equivalence has been drawn between 

aridity and overgrazing. Venter, Cramer and Hawkins (2018) found out that both high and 

low extremes of herbivory pressure, specifically browsers, can mitigate woody 

encroachment; which agrees with our results in the case of natural fire. They also argued 

that fire and grazing management can be used locally to control woody cover. However, 

Pellegrini et al. (2017) showed that fire has an increasingly limited impact on plant 

community assembly when biomass productivity increases, whereas elephants have a 

relatively stable impact on vegetation regardless of the primary productivity. Additionally, 

while the effects of shrub encroachment drivers can be difficult to disentangle due to their 

interactions, shrub cover itself feeds back on environmental factors and their drivers (Smit 

and Prins, 2015). The mechanism explaining such feedbacks remains to be explored.  

 Disentangling the precise effect of different drivers in different contexts to explain 

shrub encroachment is challenging. Considering the bigger picture instead of focusing on 

the details might allow to draw generally meaningful conclusions. For example, Axelsson 

and Hanan (2018) argued that the main explanation to shrub encroachment is the difference 

between potential woody cover and actual woody cover. This could imply that ecosystems 

history, including land use change, animal density, or MAP, but also shifts per se (e.g.: 

pressure release or increase), play a major role in shrub encroachment. However, Stevens, 

Lehmann, et al. (2016) did not list any study pointing explicitly at ecosystems history to 

explain woody cover expansion in southern African savannas. 

 

5.4.4 - SHRUB ENCROACHMENT MANAGEMENT  

 Deliberate burning has been commonly proposed as a valid strategy to open savanna 

landscapes and to manage shrub encroachment (Trollope, 1980; Joubert, Smit and 

Hoffman, 2012; Sankey et al., 2012; Lohmann et al., 2014). However, whether controlled 

burnings are suitable to prevent or revert shrub encroachment in savannas is questioned on 

terms of fire regime parameters (frequency, intensity, seasonality) and interactions with co-

drivers, such as grazing regimes (Midgley and Bond, 2015; Smit et al., 2016; Stevens, 

Lehmann, et al., 2016; Case and Staver, 2017b), which our findings support. Our 

simulations show that increased fire frequency decreases shrub prevalence, thus 
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maintaining vegetation in an open state. Yet, compared to the scenario without fire, our 

results suggest that natural fire does not reduce shrub cover. Therefore, the presence of 

shrubs might be “natural” in large savanna areas (Eldridge et al., 2011). Our findings 

indicate that proposing fire as a management tool to control shrub encroachment should be 

assessed with caution. However, our study is limited by the number of parameters and 

scenarios we tested. Further studies are necessary to fully test how fire management can 

influence shrub encroachment by controlling fire return intervals, fire intensity and fire 

seasonality. These factors have been shown to modify vegetation structure in savannas both 

in empirical studies (Higgins et al., 2007; Savadogo et al., 2009) and in previous aDGVM 

modelling studies (Scheiter et al., 2015; Scheiter and Savadogo, 2016). 

 

5.5 - CONCLUSION 

 From an ecological perspective, two further questions need to be answered to assess 

shrub encroachment. First, what are the ecological dynamics underlying it? Is shrub 

encroachment indicating that vegetation cover was below its “optimum” (Axelsson and 

Hanan, 2018) or related to alternative stable states (A C Staver, Archibald and Levin, 2011; 

D’Odorico, Okin and Bestelmeyer, 2011)? Second, what can be the future of shrub 

encroachment phenomenon? Does it lead to desertification (Grover and Musick, 1990; Van 

Auken, 2000; Archer, Boutton and Hibbard, 2001; Eldridge et al., 2012) or to forest 

expansion (Maestre et al., 2009; Donohue et al., 2013; Stevens, Lehmann, et al., 2016)? 

As shrub encroachment is a protean phenomenon, the question is: under which conditions 

shrub encroachment can be a step towards forest expansion and under which conditions 

towards desertification? To answer this question, further investigations are required. For 

example, by initialising aDGVM2 with different states, desert or forest, and simulating how 

vegetation expands or regresses when shrubs are introduced. 

 From a policy and management perspective, the protean nature of the shrub 

encroachment and the interaction between its drivers is challenging as it prevents from 

drawing general conclusions. Therefore, management strategies need to be specifically 

tailored according to the unique combination of parameters of each case and the weight and 

direction of each action need to be precisely assessed as it is not possible to conclude that 

“less grazing” or “more fire” are always the best solution. 
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 Drawing comprehensive conclusions about shrub encroachment is further 

challenged by the lack of consensus in the literature. For example, “bush encroachment”, 

“shrub encroachment” and “woody cover expansion” are often overlapping. We call for a 

unification and clarification of the terminology and propose to define shrub encroachment 

as an increase in the prevalence of short multi-stemmed woody plants. This matters as the 

perception of the phenomenon determines its analysis and proposed management 

responses. Shrub encroachment has been characterised as a threat in many studies (e.g.: 

MacLeod, Brown and Noble, 1993; Blaum et al., 2007; Sirami et al., 2009; Eldridge et al., 

2012), yet, it is not clear if it is the shrub encroachment per se that is a threat or the causes 

of this encroachment that are a threat (Eldridge et al., 2013). Moreover, the characterisation 

of this potential threat implies to define what is at risk, and thus, what is desirable. For 

example, while fire can be used to manage shrub cover in some cases, it can also have 

negative impact on biodiversity (Parr and Chown, 2003).  

 We argue that studying shrub encroachment as a global phenomenon part of the 

woody cover expansion trend can improve our understanding of ecological processes, 

specifically about the interaction between stress factors, and is necessary to forecast future 

shrub encroachment trajectories. We conclude that shrub encroachment management 

policies should be designed at site to regional scale, considering context specific 

parameters, avoiding general solutions. 
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CHAPTER 6 - DISCUSSION 

This chapter is the work of the sole author of this thesis. 

6.1 - OVERVIEW 

6.1.1 - CHAPTER 2 - AFRICAN SHRUB DISTRIBUTION EMERGES VIA A 

TRADE-OFF BETWEEN HEIGHT AND SAPWOOD CONDUCTIVITY 

 We implemented a new trait in aDGVM2 representing the number of stems an 

individual woody plant has. This trait is controlled by a trade-off between higher potential 

height growth at lower stem count and higher hydraulic capacity at higher stem count. This 

methodological approach allows for shrubs, defined as multi-stemmed short woody plants, 

to emerge dynamically in aDGVM2 as a successful growth form in African savannas. Thus, 

we can simulate the biogeographical distribution of shrubs according to this definition 

across African savannas. Concomitantly, our model simulates the biogeographical 

distribution of the ecological relevance of the trait-based trade-off between height growth 

and hydraulic conductivity. By not defining plant a priori, as in PFT based approaches, we 

can highlight a posteriori which life-forms rely on implemented physiological and 

ecological mechanisms and where they matter. We envision that such an approach can be 

extended worldwide to all life-forms, implying a continuum between them and allowing to 

go beyond the traditional characterisation approach. Specifically, further developments are 

required to capture processes eluding our approach in the most arid biomes, where shrubs 

are observed as dominant. This implies that other ecological and physiological processes 

are more relevant for shrubs in some regions. The specificities of aDGVM2 and our 

methodological and conceptual approach allow to test the effect of environmental factors 

on plants more dynamically and flexibly than categorical approaches, and thus is well 

suited to test shrub encroachment drivers. Finally, our study contributes to understanding 

and studying life-forms and their associated strategies based on trait trade-offs and 

enhances our understanding of shrubs per se. 
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6.1.2 - CHAPTER 3 - SHRUB FORM & FUNCTION IN ECOSYSTEMS 

STRUCTURE & DYNAMICS, SIMULATED WITH ADGVM2 IN AFRICAN 

SAVANNAS 

 The aDGVM2 is a trait-based model and thus does not define a priori life-forms 

categories. Therefore, interpreting and benchmarking its results raises specific challenges 

which require adapted methodology. We characterised shrubs, neither as PFT nor as plant 

species but as life-form with a distinct biogeographical distribution due to its unique trait 

combination and life-strategy. Shrubs, according to our characterisation, are well adapted 

to African savannas, but shrubs characteristics can differ regionally (e.g.: Esler and Rundel, 

1999). For example, we found out that our approach does not adequately distinguish shrubs 

at lower plants height, contributing to explain the discrepancies between our simulations 

and observations in the most arid regions of Africa.  

 The use of fire as a management tool against woody cover encroachment, is 

intensely debated (Trollope, 1980; Smit et al., 2016; Case and Staver, 2017a). Contributing 

to this discussion, the shrubs emerging from our hypothesis are typically adapted to fire as 

a resprouter strategy. Shrub encroachment, and woody cover expansion at large, should not 

be regarded as homogeneous phenomena if they are meant to be accurately studied and 

efficiently managed. We argue for a consensus on terminology, considering shrub 

encroachment for plants that are multi-stemmed, short and adapted to fire as resprouters. 

Finally, our methodological approach concurs to the increasingly documented argument 

for more holistic and process focused models benchmarking (Luo et al., 2012; Kelley et 

al., 2013; Collier et al., 2018) while supporting the trend towards trait-based non-

categorical study of ecosystems (Lavorel and Garnier, 2002; Laughlin et al., 2012; Pavlick 

et al., 2013; Scheiter, Langan and Higgins, 2013; Verheijen et al., 2013; Koven et al., 2015; 

Langan, 2019). Such move could yield long-term benefit in terms of model confidence and 

capabilities to test scenarios.  
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6.1.3 - CHAPTER 4 - CHALLENGES AND OPPORTUNITIES OF MODELS 

INTEGRATING TRAITS AND PROCESSES TO SIMULATE ECOSYSTEMS 

STATES AND DYNAMICS 

 Our study produced insights about challenges and opportunities of process-based 

models. Model uncertainty can come from the very foundation of a model. Due to the 

concepts and data on which a model relies, there might be a mismatch between what a 

model is supposed to represent and what it actually represents. Trait-based, non-categorical, 

models are prone to such mismatch as they diverge from historical definitions of ecological 

objects (e.g.: species). Such models hold great potential for a more realistic and accurate 

simulation of ecosystems, yet, they require more careful consideration about their 

development and benchmarking.  

 Uncertainty can be introduced in modelling studies from the assessment of models 

results. Ensuring the meaningfulness of a model benchmarking methodology implies 

multiple levels of discussion; from the data gathering or creation step to the interpretation 

of models results. Benchmarking models can be seen as a language translation process. 

Observation data and models results do not correspond directly and the context and 

specificities of both need to be accounted for. Therefore, a qualitative assessment of models 

and their benchmark is as relevant as a quantitative approach. 

 We argue that more comprehensive and more explicit model development can 

contribute to addressing uncertainties. Models’ foundations in terms of concept and 

structure should be assessed regarding their aims and purposes. Categorisation of 

ecosystems should shift towards trait-based approaches in order to be more correctly 

matched with trait-based models. This is challenging as it implies to re-think typically 

human-centred understandings of nature (i.e., categorical), for example, by using trait-

based approaches (i.e., non-categorical). Concomitantly, adopting holistic benchmarking 

approaches would better frame models accuracy and extent of relevance. This could be 

achieved by integrating data experts in model development loops. 
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6.1.4 - CHAPTER 5 - MODELLING IMPACTS OF ATMOSPHERIC [CO2], 

FIRE, GRAZING AND MAP ON SHRUB ENCROACHMENT WITH 

ADGVM2 

 The aDGVM2, being the first DGVM able to mechanistically simulate shrubs 

across African savannas, offers unprecedented opportunities to investigate shrub 

encroachment. Researching shrub encroachment is highly relevant to inform management 

policies as it affects vast swaths of lands across the Earth and impacts an array of E.S., from 

biodiversity and nature conservation to local livelihood and economic activities. 

Researching shrub encroachment is also an opportunity to further our understanding of 

ecological processes. Unravelling the ecological dynamics underlying this phenomenon 

can question ecosystems optimum, dynamic equilibriums and alternative stable states. 

Investigating such dynamics also furthers our understanding of afforestation and 

desertification processes and enhance our ability to forecast future scenarios. Finally, we 

argue that studying shrub encroachment goes along understanding the impact of stress 

factors on trait space, which is a key ecological question, specifically to further model 

development. 

 We tested a matrix of scenarios, covering a range of hypotheses to explain this 

phenomenon. We considered atmospheric [CO2], fire, grazing and MAP. We found that 

elevated atmospheric [CO2] might suppress shrub encroachment and replace it by woody 

cover expansion. We simulated that shrub encroachment is more likely at lower MAP. Fire 

reduces shrub prevalence only at extreme frequency (yearly) or when excluded, while 

natural fires are not detrimental. Interactions between drivers are complex and non-linear. 

Therefore, to fully disentangle the relative weight of potential shrub encroachment drivers, 

further scenarios need to be tested. For those, ecosystems history, transitivity, additional 

drivers and additional drivers’ levels need to be considered. Many more studies will be 

necessary to fully understand the causes and consequences of shrub encroachment. We 

argue that these investigations should go along research about shrub, bush and tree life-

forms, characterising key traits and trade-offs of various plant types and strategies, driving 

and supported by model development. 

 We conclude that shrub encroachment is a protean phenomenon and that consensus 

among the scientific community is required to ease its investigation and avoid confusion 

between closely related but distinct phenomenon (i.e., bush and shrub encroachment and 
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woody cover expansion or afforestation). The diversity and complexity of this phenomenon, 

highlighted by our results, advise to avoid general solutions to manage shrub encroachment. 

Potentially conflicting stakeholders’ interests (e.g.: rangeland farming vs. nature 

conservation?) need to be evaluated against locally specific combination of drivers of shrub 

encroachment. 

 We argue that studying shrub encroachment as a global phenomenon and part of 

the woody cover expansion trend can improve our understanding of ecological processes, 

specifically about the interaction between stress factors, and is necessary to forecast future 

shrub encroachment trajectories. We conclude that shrub encroachment management 

policies should be designed at site to regional scale, considering context specific 

parameters, avoiding general solutions. 

 

6.2 - BRANCHING STUDIES 

6.2.1 - ONGOING STUDY - MODELLING VEGETATION STRUCTURE 

FOR ECOSYSTEM SERVICES - BENCHMARKING ADGVM2 WITH 

LIDAR DATA 

 Building upon aDGVM2’s new capabilities given by our shrub model, we test its 

ability to represent vegetation structure and use it to translate aDGVM2 simulations into 

E.S. supply potential. We simulate vegetation structure with aDGVM2 for four parks across 

southern Africa for which we obtained data about vegetation structure and wildlife tourism 

(Arbieu et al., 2017) and for four savanna sites in South Africa for which we obtained 

LIDAR data (Figure 6.1). We benchmark vegetation structure simulated by aDGVM2 

against the LIDAR data we obtained. Following arguments from Fisher et al. (2010), we 

constrain our results according to this benchmarking in order to improve their reliability. 

Similarly, we adjust our results to consider the local specificities of each park site. Then, 

we translate simulated vegetation structure into E.S. supply potential for wildlife tourism 

according to the data gathered for each park site. Our methodology is summarized in Figure 

6.2. Our conceptual framework and terminology to translate vegetation structure into ES 

supply potential are given in Figure 6.3. This study answers a gap in ecological modelling 

studies. E.S., despite being extensively investigated (Boyd and Banzhaf, 2007; Naidoo et 

al., 2008; Harrington et al., 2010; Egoh et al., 2012; Martín-López et al., 2014; Díaz et al., 
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2019), are rarely modelled, specifically by DGVMs (Bachelet et al., 2017; Boit et al., 2019; 

Scheiter, Schulte, et al., 2019). We question:  

 1. Can we use LIDAR data to assess and adjust aDGVM2’s simulation of 
vegetation structure?  

 2. Can we translate aDGVM2 simulation of vegetation structure into E.S. supply 
potential for wildlife tourism?  

 3. How can our methodology inform decision making for E.S. and park 
management? 

 

 
Figure 6.1: Study sites location. Red drops: sites where LIDAR data was obtained. Ga: Gaselwana. Ma: 
Mafarana. Nd: Ndengeza. Vy: Vyeboom. Green drops: parks where field studies were conducted. Chobe 

National Park. Etosha National Park. Hluhluwe-Imfolozi Park. Kruger National Park. (Image: 
Landsat/Copernicus, Data: SIO, NOAA, U.S. Navy, NGA, GEBCO, Image: IBCAo; obtained with Google 

Earth Pro). 
 

 
Figure 6.2: Schematic representation of our methodology. We simulate vegetation structure with aDGVM2, 
which we benchmark and constrain according to LIDAR data. Similarly, we adjust our results to take into 

account local specificities of each park site. According to observation data from the four park sites 
investigated, we translate simulated vegetation structure into our target E.S. (wildlife visibility). 
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Figure 6.3: Framework of subdivisions of the E.S. concept and terminology. Vegetation structure translates 

into wildlife visibility which translates into tourists’ satisfaction. From a wildlife tourism perspective, 
vegetation structure is an ecological supply, wildlife visibility is a service supply, tourists’ satisfaction is a 

demand. Therefore, when modelling vegetation structure, we model potential E.S. supply. 

 

6.2.2 - TESTED POTENTIAL ADGVM2’S DEVELOPMENT 1 - CROWN 

BASE HEIGHT, LIGHT COMPETITION & FIRE AVOIDANCE 

 The aDGVM2 represents tree crown form based on two shape functions, following 

the methodology of the first aDGVM (Scheiter and Higgins, 2008) allowing cylindrical to 

hemispheric geometries from top to bottom of trees. Additionally, leaves are evenly 

distributed through tree crowns based on LAI. Ignoring the fact that most leaves’ 

photosynthetic activity occurs towards the top of a tree is a shortcoming particularly 

relevant in two cases. In savannas, fire drives crown base upward as it burns low hanging 

leaves. In forests, light competition drives crown base upward as lower leaves are more 

shaded. To account for these processes, we implemented in aDGVM2 a crown base trait 

and a crown base state parameter defined as a fraction of plant height. Implementing these 

two elements allowed for variability in crown base height to be simulated by aDGVM2 

(results not shown). We further tested possibilities to constrain this trait. We considered a 

fractional fire effect on leaves which drives tree crown upwards based on fire intensity and 

frequency (results not shown). Flame height is calculated depending on fire intensity and a 

fraction of leaf biomass is removed calculated as the leaf biomass fraction included between 

crown base height and flame height, assuming a homogeneous leaf distribution through the 

crown. Through aDGVM2 community assembly processes, tall trees with crown base 

height above typical flame height are selected, while no specific selection pressure affects 

woody plants smaller than typical flame height as the whole plant burns regularly. Similarly, 
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we devised a scheme for light competition to drive crown base upward (results not shown). 

When a woody plant crown base height is smaller than another neighbouring plant, the 

fraction lower than the neighbouring plant base height is shaded using the already existing 

light competition scheme in aDGVM2. Calibration of the strength of these two effects and 

benchmarking of their results are limited due to a lack of data. Indeed, extensive and precise 

LIDAR data would be required for several savanna and forest sites where fire intensity and 

frequency has been measured. With an increase in LIDAR data availability, we expect to 

be able to benchmark and parameterise these processes in the near future.  

 

6.2.3 - TESTED POTENTIAL INVESTIGATION 2 - GRASS SELF-

SHADING 

 In African savannas, non-evergreen woody plants shed their leaves when they are 

dormant, while grasses tend to form a layer of standing dead biomass as they typically do 

not shed their leaves (Mingo and Oesterheld, 2009). Grasses are key contributors to fires 

in savannas, notably through their standing biomass (Trollope and Potgieter, 1986; Shea et 

al., 1996; Ward et al., 1996) whereas fire frequency contributes to grasses coexisting with 

trees in savannas (San José and Montes, 1997; Higgins, Bond and Trollope, 2000; 

D’Odorico, Laio and Ridolfi, 2006; Lehsten et al., 2016). The fact that grasses do not shed 

their dead leaves has the side effect of shading the smaller active leaves (Zimmermann et 

al., 2010). We simulated this effect with aDGVM2 by adding a pool of standing dead grass 

biomass, which burns during a fire along with the dead lying grass biomass. This pool 

contributes preferentially to fuel load as lying biomass decays, lowering fuel load, while 

standing biomass does not decay, and as standing dead grass biomass dries faster than lying 

biomass. Standing dead grass leaves become lying biomass after a set time period. We 

assume that dead standing grass biomass shades grasses homogeneously over each 

simulated hectare stand, thus lowering indiscriminately photosynthetic activity of each 

grass individual. We lacked references to parameterise this effect precisely. Benchmarking 

this effect requires specific data which are to be obtained. 
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6.2.4 - TESTED POTENTIAL INVESTIGATION 3 - FIRE, SHRUBS & 

RESPROUTING 

 Many woody plants have been identified as exhibiting a resprouting strategy, in 

contrast to reseeding, as an adaptation to fire (Lawes and Clarke, 2011; Pausas and Keeley, 

2014), many of them are classified as shrubs (Gratani and Amadori, 1991; Knox and 

Clarke, 2005; Reyes, Casal and Rego, 2009; Schafer and Mack, 2014). We attempted to 

represent this strategy by a trade-off between carbon investment in height (to escape flame 

zone) or fire protection vs. carbon investment in storage and roots. Resprouters invest more 

carbon in storage and roots, thus storing resources, protected from fire, which allow them 

to rebuild their aboveground biomass quickly after it has been destroyed by fire, by tapping 

in their stored resources, either right after the fire or during their next normal growth period. 

Reseeders by investing in height growth and fire protection avoid having their aboveground 

biomass removed due to fire, either by outgrowing the flame zone or by being protected 

from critical damages. Benchmarking data showing resprouters rate of regrowth after fire 

compared to reseeders and data quantifying the abundance of resprouters vs. reseeders 

across African savannas are required to assess the relevance and accuracy of our proposed 

approach.  

 

6.3 - ENVISIONING FURTHER EXPANSIONS 

6.3.1 - SHRUBS & CROWN FIRE  

 Crown fires affect many woody ecosystems around the world (Pausas et al., 2004) 

and are even a defining characteristic for some, such as the Fynbos, where they are frequent 

(Archibald et al., 2013). Crown fires behave differently from ground fire, typically being 

less frequent and more intense than grass fires (Archibald et al., 2013). Shrubs are 

particularly prone to and contribute to crown fires as they typically do not escape the flame 

zone; thus, shrublands can be associated with crown fires (Martins Fernandes, 2001; Zhou, 

Mahalingam and Weise, 2005; Morvan, 2007; Saglam et al., 2008; Tachajapong et al., 

2009; Lozano, 2011). The representation of shrubs we developed for aDGVM2, combined 

with an improved representation of tree crown architecture as we propose it could be used 

as a basis to a mechanistic model of crown fires in shrublands. The first step would be to 

parameterise our shrub model for such shrublands. The second step would be to improve 
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fire representation by including crown fires. To do so would require taking into account 

shrubs as fuel for crown fire and to implement an additional fire scheme, or to adapt the 

existing one, taking into account the specificities of crown fires, such as higher flames and 

fire intensity, based on experimental data. Additionally, subsidiary factors might need to 

be taken into account, such as topography, influencing fire spread (Lopes, Cruz and Viegas, 

2002), or flammability of living leaves, as fire adapted species might also favour fire 

ignition, spread and intensity. 

 

6.3.2 - HISTORIC BIODIVERSITY TRAJECTORIES: COEVOLUTION 

CONSTRAINT ON TRAIT SPACE AND ECOSYSTEMS DYNAMICS  

 Shrubs and fire can be intertwined components characterising an ecosystem, such 

as in the Fynbos where shrub crown fires are a defining biome trait (Pausas et al., 2004; 

Archibald et al., 2013). This could be seen as a case of coevolution, where shrubs are 

adapted to a fire regime which they support and maintain and which is detrimental to their 

competitors (Possingham, Comins and Noble, 1995; Scheiter et al., 2012). To investigate 

such eco-evolutionary dynamic, we can build upon our assessment of the potential drivers 

of shrub encroachments, by studying how stress factors constrain trait space and how a 

constrained trait space leads to different ecosystem dynamics. At present, aDGVM2 is the 

most suited DGVM to conduct such investigation as it models each individual as a 

potentially unique set of traits, which is a necessary ability to study trait space 

comprehensively. The aDGVM2 can select successful strategies by stochastically sampling 

trait space depending on prevailing environmental conditions, and depending on vegetation 

community internal dynamics (e.g.: competition for resources, cross-overs and mutations). 

Our study on shrub encroachment drivers can serve as a basis to study stress factors 

constraints on trait space, by investigating how trait space varies depending on simulated 

scenarios. To explicitly consider coevolution per se would require adding alternative 

scenarios. For example, comparing trait space when trait A is manually constrained from 

range α to range β and then do the same for trait B, with a focus on trait A and B in the 

overall trait space. This can be done for any number of traits and traits values through any 

time length. In the case of shrubs and fire in the Fynbos, instead of testing the effect of 

artificially forced directional evolution for a given number of traits, we simply would 

compare the effect of forced fire variables (e.g.: intensity, frequency) and forced shrub 
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variables (e.g.: growth rate, leaf flammability). By assessing the importance of coevolution, 

ecosystems stability and trait space constraints under constant or changing environmental 

conditions, such study could yield major results for theoretical ecology and for nature 

conservation. 

 

6.4 - COMMENTARIES 

6.4.1 - LONG LASTING HISTORIC DYNAMICS & NUTRIENT 

LIMITATION 

 Human impacts on ecosystems can be traced back to prehistoric periods (Carcaillet, 

1998; Yi et al., 2003; Drescher-Schneider et al., 2007; Nosova, Severova and Volkova, 

2017; Pini et al., 2017) and have been accelerating over the recent decades globally 

(Ordway, Asner and Lambin, 2017; Aleman, Jarzyna and Staver, 2018; Díaz et al., 2019). 

This dynamic is a challenge for ecological models as it impacts their study object while 

being outside of their scope. An increasing number of research aims at resolving this issue, 

either by coupling ecology with social and economic sciences (Davies et al., 2016; Scheiter, 

Schulte, et al., 2019) or by incorporating it directly into ecological models (Forrest et al., 

2020) . Particularly challenging are the historical legacies of human impact due to their 

long-lasting effect shaping ecosystems dynamics. For example, while the Amazonian 

biodiversity has been managed by local human populations over long time period, even 

modifying soil structure and nutrients content (Roosevelt, 2013; Fausto and Neves, 2018), 

it is often mistaken as pristine. Marshall et al. (2018) found out that long lasting effects of 

human land use explain savannas mosaic landscape; fertilization by herds allows 

productive grass patches to exist and this effect can last centuries or even millennia. 

Termites mounds have been identified as vegetation drivers in savannas through differential 

nutrients enrichment and soil structure modification (Nutting, Haverty and Lafage, 1987; 

Moe, Mobæk and Narmo, 2009; Gosling et al., 2012; Schaefer et al., 2016). While nutrient 

limitation is increasingly considered by DGVMs (Quillet, Peng and Garneau, 2010), its 

interaction with long lasting biotic and anthropogenic effects are still missing. 

 Nutrients distribution is related to current and historic biotic and anthropogenic 

factors of long-lasting consequences, but also to geological processes of soil formation and 

rock weathering. Nutrients limitation is a major driver of plant distribution through 
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savannas (Pellegrini, 2016), notwithstanding historical legacy effects. Considering that in 

savannas tree-grass competition is mediated by fire, while fire frequency depends on grass 

productivity (Shea et al., 1996), itself shaped by nutrient availability (Craine, Morrow and 

Stock, 2008), we can argue that soil nutrient distribution is also responsible for tree-grass 

mosaics in savannas. Both geological soil formation and biotic dissemination of nutrients, 

such as grazers and browsers behaviours and distribution patterns need to be considered to 

fully account for nutrients distribution. Adding historic legacy and human activity to the 

system makes a holistic explicit representation of nutrients cycle and distribution a 

challenging prospect, yet, it would greatly enhance aDGVM2’s capabilities and particularly 

its representation of savannas mosaics while allowing to study the feedbacks between 

plants and nutrients dispersers. 

 

6.4.2 - MODEL PARAMETERISATION 

 The weight of historic legacy, human impact and nutrient limitation varies 

depending on their interaction, interactions with environmental drivers and plant types. 

Thus, depending on what a model includes and the target it simulates, a model’s fit to 

observations data should vary. In this regard, studies, such as Zaehle et al. (2005) are 

necessary to provide a global map of the relative importance of multiple factors driving 

ecosystems states and dynamics. Global traits database, such as the TRY database (Kattge 

et al., 2011), could also be used as an indicator of the relative weight of different 

environmental drivers if a link can be established between traits and drivers. The more 

model operation is geographically constrained the more useful such information can be to 

improve a model accuracy by adjusting model content a priori. Thus, model 

parameterisation allows a model to produce results closer to observations in a given context 

(i.e., it improves model results fit with specific benchmarking data).  

 Model parameterisation also constrains model ability to extrapolate scenarios that 

are outside of the context for which it has been parameterised. Thus, parameterising models 

implies a trade-off between context specific accuracy and ability to extrapolate. Through 

our study, we showed that implementing new ecological processes in a model is a valid 

alternative to parameterisation with the added benefit of expanding model capabilities and 

particularly the ability to extrapolate. We showed that our implementation of shrubs can be 

used across African savannas and woodlands and allows tackling previously out of reach 
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questions, such as shrub encroachment, while improving aDGVM2’s representation of 

vegetation structure. Parameterisation alone could not have achieved similar outcome. 

Simultaneously, our model development allowed to identify other key processes and 

parameters for African savannas and closely related biomes, which could be implemented 

in aDGVM2 to expand its capabilities. For example, plants succulence is relevant for plant 

adaptation to aridity in many drylands and savannas of Africa (e.g.: high prevalence of 

Euphorbia and Agave trees) (Conradi et al., 2020). Additionally, specific features can be 

worth considering, such as rock outcroppings (e.g.: inselberg) or rock fields (e.g.: 

Karoo/Namib quartz field) (Porembski et al., 1994; Desmet and Cowling, 1999; Schmiedel 

and Jürgens, 1999; Schmiedel, 2002; Siebert et al., 2003), which lower the vegetation 

growth potential while mediating hydrology and temperature differently from other ground 

covers (Nobel, Miller and Graham, 1992; Valentin, 1994). Parameterisation can be seen as 

a data driven methodology, as it relies on testing parameters value against a fit with 

benchmarking data, while process implementation could be seen as a  an analytical 

approach, as it requires to derive and test the theoretical understanding of ecosystem 

dynamics based on observations. 

 

6.4.3 - CATEGORISATIONS IN ECOLOGY 

 The aDGVM2 is a DGVM which does not define a priori categories as a PFT based 

DGVM would. This unique feature implies specific challenges. While parameterisation can 

limit model ability to extrapolate, categorisation might limit its accuracy or relevance. Yet, 

analysing simulations results can require categorisation. 

 Characterising and classifying objects is consubstantial with human understanding 

and communication, and different approaches exist to conceptualize this relation. The 

scientific method followed the historic Western theoretical corpus on this question, which 

defines objects based on their intrinsic characteristics (Berque, 1987). In contrast, East 

Asian historic theoretical corpus emphasized the relation between objects and their context 

to define them. Merging these two perspectives would mean that an object can be 

characterised due to its intrinsic traits but only in a context framing it. We can envision a 

new approach to modelling which would rely on studying relations between objects and 

how they shape ecosystems without focusing specifically on a priori defined species. 
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 Using increasingly refined categorisation schemes to better study objects is 

meaningful and allows to produce relevant analyses and to gain new insights. However, 

limits between categories can be uncertain, with variability potentially larger within 

categories than between categories. This uncertainty can be related to the fact that there is 

a continuum of life-forms. From a theoretical perspective this could indicate that both the 

Western and East Asian approaches to define objects (Berque, 1987) are actually 

complementary; i.e., objects are defined per se as well as in relation to other objects. This 

blur can be visualized in trait space, as hypervolumes can be related to successful strategies 

or species, yet trait space is not necessarily empty outside of these hypervolumes (Cornwell, 

Schwilk and Ackerly, 2006). 

To overcome conceptual challenges related to categorisation and take ecological 

models to the next level, going beyond a priori defined categories offers great 

opportunities, as it implies to consider what connects objects (here, individual plants), 

between them and to their surroundings. Defining objects by their interaction means to 

investigate factors explaining their existence and thus to study processes directly. We 

demonstrated that aDGVM2 offers great opportunities to contribute to this endeavour. 

Going further could be achieved by refining model development methodology, model 

operation assessment and results analysis. It implies to focus on characteristics of objects 

instead of objects as categories. For example, instead of considering plants as either grasses 

or trees, we can consider plants lignin content, which implies to consider processes driving 

lignin content in a plant. 

 A non-categorical methodology might challenge the historic Western perspective. 

In the sense of Plato and his ontology, “beings” are or exist by themselves, and only their 

“image” (which is a model) is embedded in a place (Berque, 1987). This means that an 

object can be characterised based on intrinsic parameters regardless of its context. Such 

essentialist perspective could be related to the Western academic tradition to explain the 

world, which searches for immanent characteristics and rules. From an East Asian 

perspective, following, for example, Nishida Kitaro (Berque, 1987), objects exist only in 

relation to their surroundings and are explained and framed by these relations; thus, objects 

are defined by what they are not, contrarily to the Western perspective which defines 

objects by what they are. Developing non-categorical modelling approaches might have 

greater reach than simply being a more holistic benchmarking methodology. 
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Most DGVMs embed categories to be able to represent them; this is the conceptual 

basis of the PFT approach. While requiring an increasing number of categories to represent 

ecosystems, narrower categories can be more accurate and thus improve models’ 

performances. At the same time, more numerous and narrower categories might impair 

models’ ability to extrapolate into simulating states and scenarios outside of their defined 

ranges. The more specific a model is, the more constrained is its ability to extrapolate. 

Developing non-categorical models would require considering the continuum and the 

relations between categories and thus might imply an opposite development path to 

categorical approaches; by focusing on traits, it reduces the number of required categories. 

The aDGVM2, is at the forefront of research on this question and paves the way for 

stimulating science. 

 

6.5 - CONCLUSION 

 Our investigations concur with the statement by White and Marshall's (2019): 

“Phenomenological models can have substantial predictive power, unless a prediction 

outside of the current known set of parameters is required, in which case mechanistic 

models should be superior”. They also stated that “mechanistic models are particularly 

powerful if sufficient information exists to make a priori estimates of parameters and 

thereby make predictions that are robust to the state of a system.” To which we add with 

our present thesis that a posteriori characterisation of model results can also ensure the 

reliability of a process-based model. The more a model is process focused and non-

categorical, the more this statement is relevant. We are also in agreement with the argument 

by White and Marshall (2019) : “the goodness of fit of model predictions to data alone is 

not a sufficient test of a model. Free parameters derived from fits to data provide too much 

flexibility, and additional tests are therefore necessary”. We demonstrate that holistic 

assessment of model results and behaviour is a relevant approach to solve this conundrum, 

considering multiple parameters and multiple perspective on each of these parameters. 

The aDGVM2, being process based and less categorical than DGVMs based on 

PFTs, has an increased realism and ability to extrapolate which improves the reliability of 

simulations of future scenarios and which brings greater ecological insights and 

understandings. Thus, development efforts towards such modelling approach are promising 

and offer unprecedented research opportunities, having the potential to be more holistic 
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than more categorical models. However, such approach comes with its own challenges, 

requiring adequate investigation to address them. Our investigations demonstrate the 

relevance to develop models which allow for life-forms to emerge dynamically, and we 

argue that such approach should be prioritised over modelling framework relying on 

increasingly refined a priori categories (e.g.: increasing the number of PFTs in a DGVM). 

The aDGVM2 approach requires more precise investigations of ecological and biological 

dynamics to support model development, but it allows for more in-depth studies of these 

processes, while requiring less parameterisation than a categorical approach.  

We demonstrate that it is possible to model life-forms and life-strategies based on 

underlying physiological processes and that it allows to simulate and investigate ecological 

dynamics. This approach is valid in the framework of a trait-based DGVM (considering 

plant individuals non-categorically) and allowing for ecosystems to adjust to prevailing 

environmental conditions through selection processes, as the aDGVM2 exemplifies. We 

argue that further development focusing on different life-form, plant strategies and drivers 

of vegetation community assembly would improve model realism and ability to extrapolate, 

allowing to test more scenarios, while providing ecological insights on life-forms and plant 

strategies. Such capabilities are needed to answer critical ecological questions related to 

climate change, biodiversity loss and anthropogenic impacts in general.  
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