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Abstract: The estimation of the minimum time since death is one of the main applications of forensic
entomology. This can be done by calculating the age of the immature stage of necrophagous flies
developing on the corpse, which is confined to approximately 2—4 weeks, depending on temperature
and species of the first colonizing wave of flies. Adding the age of the adult flies developed on
the dead body could extend this time frame up to several weeks when the body is in a building
or closed premise. However, the techniques for accurately estimating the age of adult flies are still
in their beginning stages or not sufficiently validated. Here we review the current state of the art
of analysing the aging of flies by evaluating the ovarian development, the amount of pteridine in
the eyes, the degree of wing damage, the modification of their cuticular hydrocarbon patterns, and
the increasing number of growth layers in the cuticula. New approaches, including the use of age
specific molecular profiles based on the levels of gene and protein expression and the application of

check for near infrared spectroscopy, are introduced, and the forensic relevance of these methods is discussed.
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The age estimation of necrophagous blow fly larvae and pupae as a function of
ambient temperature and species is the key task of forensic entomology when it comes
to the identification of the minimum post-mortem interval (PMl,n), which is the time
between the first insect colonization of a body and its discovery [1,2]. As adult blow flies are
able to colonize a corpse within minutes after death, age estimation of their juvenile stages
may yield “on-the-day” data for the PMly;, even several weeks post mortem. They are
therefore the most important diagnostic tool in the scientific estimation of time since death
in forensic medicine. An even greater extension of this period “several weeks post-mortem”
would be nevertheless a great success.

Quantifying the weathering and chemical degradation of empty fly puparia (the
shells, in which the transformation of the maggot via the pupal stage into the adult fly
takes place) discovered at a scene of a crime could be one opportunity, but relies on Gas
Chromatography—Mass Spectrometry methods and equipment, and is still tentative, as
the weathering varies among species. Moreover, puparia might be overlooked due to the
tendency of maggots to seek sheltered places to pupate and therefore not be collected by an
untrained investigator. Last but not least, a variety of different methods should always be
considered in order to minimize the problem of variability and natural noise of biological
systems or living animals. Just as different methods of age determination of juvenile
conditions of the Creative Commons  €CTOPhagous insects (further breeding to the adult stage, length measurements of larvae,
Attribution (CC BY) license (https;//  €tC-) improve the accuracy of forensic entomological expertise, different techniques can also
creativecommons.org/licenses /by / usefully complement each other in the analysis of the remains of the necrophagous fauna.
40/). Adult flies at the scene offer an important complement and support here [3-5]. Senescence
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or aging is the progressive deterioration in the physiological state of an organism over
time that culminates in death [6,7]. In the adult fly, it is linked with various morphological
and molecular variations, and by using these variations for the aging specimens, which
remain on the scene of the body after finishing their development, could open a new
door to the estimation of the PMIi,. This applies especially to indoor scenes, where the
majority of routine cases of insect infested bodies are located [8], and where hatched flies
have difficulty leaving the room due to closing conditions. While under field conditions, a
distinction between flies just arriving and those which developed on the body is difficult to
achieve, at indoor scenes many of the flies originating from the cadaver may be still present
at the scene for several weeks [9], and demonstrated that it is possible to establish the
origin of a population of such flies at a crime scene by means of a morphology examination.
As adult flies might reach ages of up to 68 days [10], adding their age to the time required
for larval development and metamorphosis could extend the calculable period by several
weeks (Figure 1). The present review summarizes the current state of the art of estimating
the age of adult flies and evaluates possible problems and pitfalls regarding techniques
and case work.

Adult flies

empty puparia

Figure 1. An exemplary PMI,,;, determination using a fictitious case. The dead body was discovered
in an apartment (20 °C ambient temperature), and only larvae, pupae, and empty puparia of one
single species, the blow fly Calliphora vicina, were found on the body and its surroundings. In order
to determine the PMl,i,, the most advanced stage of its development will be of relevance. In the
present case, these are empty puparia. Since there is no current method to narrow this down with
respect to the time of hatching, the entomologist will assume that the flies hatched immediately
before the body was found in order to determine a reliable PMI,,,j,. There is a risk that this may
lead to an underestimation of the time period. According to, e.g., Marchenko [11], C. vicina needs
about 21 days to complete a complete development cycle at a temperature of 20 °C. These 21 days
would be the PMIi, in the present case, based just on the immature specimens (larvae, pupae) and
remains (empty puparia). However, there are hundreds of adult C. vicina in the apartment. Thirty to
forty specimens are captured, and by using various techniques (see below), their age is estimated to
be 15-17 days. Based on the assumption that the animals have developed on the cadaver, this now
means that we are giving a PMIi, of 36 days in the entomological report (21 days development of
larva and pupa plus 15 days aging of the fly).
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2. Age-Grading Targets
2.1. Morphology
2.1.1. Reproductive System

Examining qualitative or quantitative changes in the reproductive morphology of
an insect is one of the oldest methods of age grading. Morphological changes in the
reproductive system of maturing flies are well studied and have been described in sev-
eral reviews [12-14]. Only few studies demonstrated age dependent changes in the male
reproductive system. Ponlawat and Harrington [15] showed, e.g., a positive correlation
of the number of spermatozoa with age, which also correlates with body size in Aedes
aegypti (Diptera: Culicidae). Mahmood and Reisen [16] found that the number of total and
mature spermatocysts in the mosquito Anopheles culicifacies (Diptera: Culicidae) declined
significantly with age, but also noted that the changes in males may be reversible after a
rest period and are therefore misleading. Studies on age dependent changes in males of
forensically relevant Diptera like blow flies are still missing. Instead, age estimation of
various Diptera species focuses on the female ovarian development [17-24] e.g., by evaluat-
ing the stages of egg development [19] or the examination of ovarioles for follicular relicts
to determine the number of ovarian cycles [25]. Krafsur et al. [26] applied age-grading
techniques based on ovarian morphology of the muscid stable fly Stomoxys calcitrans and
Sutherland [27] defining age categories to distinguish between newly-emerged, nulliparous
and uniparous females of S. calcitrans and females that have reproduced twice (biparous)
or more (pauciparous). This kind of staging is also established for forensically relevant
Muscidae or blow flies like Chrysomya spp. [28-31] The dependence on protein sources for
egg formation and the absence of oviposition sites, which could delay the egg formation,
but also the numbers of ovarian cycles in female flies, are a disadvantage of these methods,
as they are the source of significant variation [12]. Moreover, Gillies and Wilkes [32] high-
lighted the lack of reproducibility of this technique across species and between technicians
during their work on Anopheles spp.

2.1.2. Cuticle Growth Layers

Cuticle growth layers are on the internal cuticular projections of the exoskeleton on
which muscles attach and are the result of the cuticle deposition rhythm, which is under
control of circadian clocks in epidermal cells, as shown for Drosophila melanogaster [33,34].
After eclosion, epidermal cells secrete additional material in order to thicken the endocuti-
cle, which is, beside epi- and exocuticle, part of the exoskeleton. Hence, counting those
regularly growing cuticle layers seems to be an appropriate age estimation tool, as they are
comparable with annual rings of trees, but occur here on a daily basis [35]. Schlein and
Gratz [36,37] demonstrated a daily cuticle growth at two thoracic structures for various
Diptera species like Sarcophaga falculata, Calliphora erythrocephala (=vicina), Glossina austeni,
Culex pipiens molestus, Aedes aegypti, and Anopheles gambiae. Johnston and Ellison [38] ob-
served similar growth layers at one of these structures in different strains of Drosophila sp.,
and Tyndale-Biscoe and Kitching [39] used cuticular growth rings to determine age in field
studies on the sheep blowfly, Lucilia cuprina. They are visible in a light microscope and,
according to [40], it was found that for the screwworm Cochliomyia hominivorax, agreement
with known age was within plus or minus one day. However, the latter study was per-
formed only on laboratory-reared specimens and differentiated between two age cohorts
(6 versus 15 days). A detailed overview on this topic regarding various insect families and
species is given by Neville [41,42]. Even if the great simplicity of the method at first sight
is convincing, one should keep in mind that there is a certain abiotic bias (e.g., light-dark
regime and temperature adjustments), moreover the classification/identification of the
different cuticle layers is not a simple routine task. Last but not least, these growth bands
might be visible until a certain age only.
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2.1.3. Wing Fray

Insects accumulate small wing injuries (so called wing frays) [43] during their life
time, which can be used for evaluating the age of the specimen [44,45]. This method was
already applied in a variety of fly families like Glossinidae [46], Scatophagidae [47], or
Psychomyiidae [48]. Hayes et al. [44] adapted this method for forensically relevant blow
flies. The authors developed a “wing fray index”, which comprises the distance of missing
parts of wing margins and of the length of the posterior cross vein. Davies [49] published a
study on Calliphora vicina where he defined five classes or states of wing fray based mainly
on the number of indents on the fringe of the wings and the percentage of its damage.
Beside the potential benefit of this technique, there are serious shortcomings, as the amount
of wing fray is not solely linked to the age of the fly, but to its life history in terms of activity
and wing movement, predator attack, and intraspecific interactions [44]. This is the reason
why Beutler et al. [9] recommend the use of wing fray mainly to determine if flies sampled
at an actual crime scene had developed on the body or are wild flies attracted to the body
(showing a high degree of wing fray), but not as a sound tool for estimating the age of a fly.

2.2. Biochemistry

The numerous metabolic processes in flies leave traces that can sometimes be tracked
and used as time markers.

2.2.1. Pteridines

Pteridines derive from a pyrimidine-pyrazine ring and are 2-amino-4-hydroxy deriva-
tives [50,51]. They had been first identified by Hopkins in the wings of pierid butterflies
in 1895 [52]. Together with ommochromes, pteridines represent the pigments in the om-
matidia of the insect compound eye [50,51] where they are either coloured or colourless.
Their stability allows for their long-term accumulation in the eyes of Diptera. The so called
drosopterins contribute to the red [53], and sepiapterin and isosepiapterin to the yellow-
brown pigmentation [51]. Some pteridines have been considered to be just degradation
products [51], but some authors suggested that they may function as a light filter in the
near UV and blue regions [51,54]. In 1965, Patat [54] studied pteridine patterns in the
eyes of the blow fly Calliphora erythrocephala (=vicina) and observed that pteridines showed
age-dependent quantitative changes in their composition. From eclosion of the adult flies to
Day 10, the amount of pteridines increased linearly and thereafter showed constant levels.
Summers and Howells [55] demonstrated that in wild type and eye colour mutants of
another blow fly, Lucilia cuprina, the pteridine sepiapterin increases shortly before eclosion
of the fly and steadily increased thereafter.

In a study by Mail et al. [56], pteridine accumulation was firstly described as an age-
grading parameter for the adult stages of the blood feeding Stomoxys calcitrans (Diptera:
Muscidae). In this study, pteridines were shown to increase consistently in a linear manner
and did not exhibit constant levels at a certain point as described by Patat [54] and Summers
and Howells [55] for blow fly species. For a number of dipteran species, pteridine amounts
were measured as a function of age, temperature, and sex. While an age dependent, (curvi-)
linear increase was demonstrated for a broad range of Diptera, some exceptions exist, such
as for the Culicidae species [57,58]. Recently, Bernhardt et al. [59] and Dimitrov et al. [60]
presented for both sexes of the two forensically most important blow flies of central Europe,
L. sericata and C. vicina, key reference values for the age-related accumulation of pteridine at
room temperature. Cammack et al. [61] analysed pteridine accumulation for the forensically
relevant blow flies Chrysomya megacephala, Cochliomyia macellaria, and Phormia regina, when
reared at temperatures ranging from 5 to 35 °C. Age could be estimated for almost all
temperature-sex combinations, underlining the promising usability of this method.

Due to the curvilinear increase in some species, an age-estimation may not be appli-
cable for the complete adult stage. Moreover, Kiemenova et al. [62] showed for several
bed bug species that the accumulation of particular pteridines varied between different
populations and rearing temperatures. As pteridines have unique absorption spectra, there
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is the potential for a fast and low-cost quantification by spectrofluorometry [59-61]. How-
ever, simple fluorimeters have a low laboratory specific sensitivity and may not be able to
withstand testing or validation under field conditions. More sophisticated methods like
high-pressure liquid chromatography may be better suited to provide reproducible results
even under environmental = natural conditions. Moreover, the authors stated that more
than one standard should be applied and measured simultaneously to subsequently select
those that show consistent changes over time [62]. In the end, however, the effort should
pay off, as such a decrease could be observed over a very long period of time: Ref. [63]
proved that the ant Platythyrea punctata shows a decrease in pteridine levels over time until
70-80 days of age, and if such long lasting aging processes could also be elucidated in
detail in flies, this would be a great benefit in FE.

2.2.2. Cuticular Hydrocarbons

In insects, a thin lipid wax layer mainly composed of hydrocarbons, alcohols, waxes,
acylglycerides, phospholipids, and glycolipids covers the cuticle [64—67]. Insect cuticular
hydrocarbons (CHC) often consist of complex mixtures of straight chain, unsaturated, and
methyl-branched components with up to 40+ carbons. They function to restrict water loss
and desiccation, and they facilitate chemical communication in many species [64,68-72]. In
social insects, this layer, e.g., functions in nestmate recognition, task decision control, or
caste recognition [72]. It is secreted by oenocytes, which are of ectodermal origin and vary
in size, number, and anatomical location among species [73].

Jackson et al. [67] compared the CHC composition of newly eclosed, 7-days-old, and
19-days-old adults of the flesh fly Sarcophaga bullata. They showed that the total amount
of CHC’s increased with age, especially CHC's with a chain length between C25 and C32.
Uebel et al. [74-77] also described age-dependent changes in the cuticular CHC composition
for Musca autumnalis, Fannia canicularis, Fannia pusio, and Fannia femoralis. In their study on
Drosophila virilis (Diptera: Drosophilidae), Jackson and Bartelt [78] showed that the quantity
of total CHC's increased 3-fold between Day 0 and Day 4 in both sexes, but after Day 4 the
quantity increased 2-fold in male flies, while it remained unchanged in females until Day 8.
The authors also observed that the average chain length of CHC’s decreased with increasing
age [78]. In the following years, the first blow flies of forensic interest were investigated
regarding age-dependent changes of their CHC composition, but these findings were not
linked with PMIi, estimations [79-83]. In 2008, Roux et al. [84] described CHC assays as
potential age-grading tools for juvenile and adult stages of the forensically relevant blow
flies Protophormia terraenovae, Calliphora vomitoria, and C. vicina. Later on, only a few studies
on CHC’s as age-grading tools of adult blow flies like C. macellaria, Chrysomya rufifacies,
and Chrysomya putoria have been published [66,85]. However, their relevance in forensic
entomological casework is low, since age-dependent changes are, at least partly, minor,
and clear CHC profiles on a daily basis have not been presented yet. Bernhardt et al. [86]
analysed the CHC n-pentacosane (nC25) on the legs of the adult blow flies L. sericata and
C. vicina with gas chromatography—mass spectrometry at room temperature until day 20
post-emergence. The amounts of nC25 increased linearly in both species, but revealed
differences between the two sexes in L. sericata. The authors provide sex-specific equations
for both species for the prediction of fly age. There are indications for abiotic effects, such
as diet, temperature, humidity, and laboratory-rearing-effects [64,87,88], which may have
an impact on the CHC abundance. Despite that, CHC-based age-prediction models for
mosquitos have been validated against field caught specimens and seem robust up to about
15 days [89].

One of the most recent innovations for differentiating a variety of insect traits (age,
species, and infection) based on chemical compounds has been the use of near-infrared
spectroscopy (NIRS) [90]. NIRS measures the absorption of organic compounds within a
sample using an electromagnetic spectrum in the near-infrared region (350-2500 nm) [91]
and subsequent analysis may detect compositional differences between samples according
to the near-infrared energy absorbed [90]. It is difficult to attribute specific signals to



Diagnostics 2021, 11, 152

6 of 13

particular chemical signatures, but it seems that age-related degradation of, e.g., surface
CHC'’s on insect exoskeletons creates unique absorption spectra [41,92]. This is the pro-
posed basis of the capacity of NIRS-based models to place laboratory-reared, adult An.
gambiae s.s. mosquitoes into binary age categories (e.g., less than and greater than 7 days
old) with a reported accuracy of approximately 80% [93-95]. NIRS has been described
as an age-grading technique by Perez-Mendoza et al. [92] in studies on Musca domestica,
Stomoxys calcitrans, and Musca autumnalis. They used whole flies, fresh and dried heads,
and identified age-dependent changes in -CH3, -CH2, and -CH functional groups of not
further described molecules. However, the authors stated that their calibration model for
regression equations is not transferable, since they are unique for each instrument. Villet
and Amendt [96] suggested age estimation of adult necrophagous fly species with NIRS,
but unfortunately no forensic motivated studies were performed until today. Voss et al. [97]
published a study on reflection profiles of blow fly pupae, including infrared wavelengths,
for the age and species identification. Recently, developments around NIRS technology
have improved [98,99] and moreover expanded to related methods using the midinfrared
region (MIRS; 2500-25,000 nm) for spectral analysis [100]. This wavelength penetrates
less deeply into the target than NIRS, and is easier to handle in terms of the biochemical
differences identified. Spectral outputs are also less sensitive to the moisture content of the
sample. Early evidence for yellow fever transmitting Aedes aegypti, derived from 2- and
10-day-old, laboratory-reared specimens, showed that these can be separated with 0-3%
prediction errors [100,101].

2.3. Genetics and Proteomics
2.3.1. Genes

Gene expression can be measured by using reverse transcriptase quantitative PCR
(RT-gPCR) and by this, correlation between the transcription products of multiple genes
and age-dependent expression patterns can be examined. Gene expression analysis as
an age-grading tool for forensically important blow flies so far is exclusively performed
on immature stages by studying changes in mRNA levels during development because
genes are temporally up- and down-regulated to achieve appropriate progress in develop-
ment [102-105]. First data of gene expression patterns for adult stages of Diptera were ob-
tained by studies on D. melanogaster [106-109] and on Ae. aegypti [110]. Cook et al. [110,111]
identified orthologous D. melanogaster genes in Ae. aegypti and Marinotti et al. [112] pub-
lished a genome-wide analysis of gene expression in the adult stages of Anopheles gambiae
and detected age related expression patterns, which depended on blood meals. Extensive
genomics work on Drosophila revealed several more candidate genes, which may be worth
analysing in blow flies and in other forensically relevant taxa as well. One possible target is
the genetic background of the neurotransmitter dopamine, which is known to be involved
in a multitude of physiological processes. Bednarova et al. [113] showed recently that old
D. melanogaster specimens exhibited different levels of dopamine, which additionally are
sex-dependent. Already DeLuca et al. [114] mentioned that genes which are important
for the synthesis of dopamine producing enzymes (like Ddc) are potential candidates for
life span analysis, and Carnes et al. [115] found significant differences in gene expression
with the population and the age for D. melanogaster populations. However, the method
requires extensive target identification and optimization and from a forensic perspective
the technological effort, the costs, and the need for species-specific profiling do not make
it seem realistic that this method will prevail in routine applications. Recently, Martin-
son [116] provided groundwork by establishing sex and developmental-specific gene sets
for the flesh fly S. bullata, based on RNA-sequencing. This work can be seen in one line
with various other recent transcriptomic and genomics studies focusing on carrion-feeding
flies of the forensically relevant blow fly genera Lucilia and Chrysomya [117-120]. However,
despite the fact that there is a growing body of literature, there are no applicable data sets
for estimating the age of an adult blow fly due to gene expression and/or RNA data.
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2.3.2. Proteins

Age-dependent changes to the expression of proteins also provide biomarkers for age
grading. An earlier study by Fleming et al. [121] analysed quantitative protein expression
patterns during the life-span of D. melanogaster by means of two-dimensional protein gel
patterns at “young”, “middle”, and “old” flies and found significant age-related quantita-
tive changes. Much research is done on mosquitos, as their age is a crucial determinant
of their ability to transmit pathogens and their resistance to insecticides. Hugo et al. [122]
tested proteomic biomarkers as possible age-grading tools in Ae. aegypti and could detect
four promising candidate proteins like, e.g., actin depolymerising factor, which decreased
in adultsbetween Day 1 and Day 34 after eclosion. Similar results have been presented
by lovinella et al. [123] for Aedes albopictus and by Chang [124] for Bactrocera dorsalis.
Sikulu et al. [125] identified several proteins with characteristic changes in abundance
in both A. gambiae and A. stephensi during their aging process. Rabani et al. [126] re-
cently published a study on two forensically relevant taxa but in a non-forensic context.
Moreover, they were just examining larval stages. No studies on adult specimens of foren-
sically relevant flies exist which investigate changes on protein expression level in an
age-related manner.

3. Conclusions

The age determination of adult flies could extend the day-exact identification of
a PMlin period by several weeks, but many of the current methods of determining
their age seem not yet robust enough to meet forensic requirements. This can be seen
in the possibilities of the promising genetic methods: Tomberlin et al. [127] suggested
that quantitative genetic studies may contribute to understand variation in phenotypes
and to what extent phenotypes are affected by individual genetic differences and by
their interaction with the environment. These interactions of genotype, phenotype, and
environment are one of the most exciting, but also difficult, challenges in the near future
when it comes to age grading of adult flies in a forensic context.

The application of a single method for age estimation of an adult fly seems to be
moderately successful and may provide a rough idea of a specimen’s age, but not on a daily
basis. Reliable age estimation of adult flies might be achieved in the future by the simultane-
ous application of several methods, as shown by Wall et al. [23], Perez-Mendoza et al. [92],
Moon and Krafsur [128], or Butler et al. [129]. Pteridine, CHC assays, and the evaluating of
cuticular bands and ovarian development are currently most promising (and mainly inex-
pensive) (Table 1) and may be performed with the head, legs, wings, thorax, and abdomen
of just one and the same specimen. Being able to use the same sample for many different
methods is one of the great advantages of age determination of adult flies (Figure 2), to-
gether with the rather easy sampling and storage of the evidence: Dry storage at room
temperature (if possible, in the dark) seems to be recommended for many of the methods,
at least if a timely transfer is ensured. After receiving the samples, the material can be
examined morphologically and biochemically without much preparation and provide
initial results within 24 h.

The question that remains to be answered is whether the flies studied are actually the
F1 generation of the population developing on the corpse. If the adults have little wing
damage and a high proportion of males, this would indicate an F1 or later generation
of adults, i.e., that they developed on the body [9]. If there are mostly female with a
significant amount of wing damage, investigators could conclude that these flies came
from the outside. The flies’ nutritional history might also reveal whether they developed
on the scene. Bernhardt et al. [130] compared the isotope signatures (here: The stable
carbon (8'3C) and nitrogen (§'°N)) of tissue from humans and 12 additional vertebrates,
and from the flies developing on these tissues of the adult flies. They concluded that the fly
patterns mirrored the isotope signatures for the respective tissues on which they developed
as larvae. The authors recommend that the isotope signatures for the body in question
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should also be determined so that they can be compared with the signatures from the
entomological specimens from the crime scene.

Table 1. Summary of existing methods [in brackets key references] and an assessment of their current value/benefit with a

scale from 1: bad to 5: excellent.

Technique Pro Contra Value
Reproductive system . mainly just for females rough
[25,27,31] easy to do preparation classification into categories 3
Cuticle growth layers easy to do preparation, Iden.t1f1cat10n apd Categorlgatlon of
L . different cuticles not a simple 2
[36,38,39] day-precise information .
Morphology routine task
Wine fra not solely linked to the age of the fly
[ 4g3 4 6]y easy to classify but to its life history rough 1
o classification into categories
1 casy t.o do extract.10.n Species and sex specificity makes it
Pteridines many different pteridines
. necessary to produce separate 4
[59,61,62] = targets some analytical
- references for each taxa
Biochemistr techniques are low cost
y Sophisticated analysis and
. evaluation
Cutlculﬁ;zhg:ld;;)]c arbons easy to do extraction Species and sex specificity makes it 4
Y necessary to produce separate
references for each taxa
requires extensive target
. identification and optimization, i.e.,
Easy to do extraction and .
Genes applying a simple expensive laboratory work 2
Genetics & [111,112,116] method (RT-qPCR) Species and sex specificity makes it
proteomics necessary to produce separate
references for each taxa
Proteins easv to do extraction No data at all for species of forensic 1
[111,112,116] y relevance expensive laboratory work

Pteridine of the fly eye

Cuticular
on the

hydrocarbons
fly leg

Figure 2. Different methods can use/analyse one and the same adult specimen by different techniques.
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Last but not least, an important extension of the optional analysis of adult flies is
the clarification of the extent to which the different methods or targets also apply to dead
specimens. As there may not be a source of water or sugar to supply emerging flies, and
they frequently fly to a window where they dehydrate quickly, the sampling of adult flies
at a scene will most likely be of dead specimens. Here, proteomics and genomics are not
promising tools, but, e.g., pteridines and NIRS could be still useful.
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