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Bioactive lipid mediators play a major role in regulating inflammatory processes. Herein,
early pro-inflammatory phases are characterized and regulated by prostanoids and
leukotrienes, whereas specialized pro-resolving mediators (SPM), including lipoxins,
resolvins, protectins, and maresins, dominate during the resolution phase. While pro-
inflammatory properties of prostanoids have been studied extensively, their impact on
later phases of the inflammatory process has been attributed mainly to their ability to
initiate the lipid-mediator class switch towards SPM. Yet, there is accumulating evidence
that prostanoids directly contribute to the resolution of inflammation and return to
homeostasis. In this mini review, we summarize the current knowledge of the
resolution-regulatory properties of prostanoids and discuss potential implications for
anti-inflammatory, prostanoid-targeted therapeutic interventions.

Keywords: prostaglandin, prostacyclin, thromboxane, specialized pro-resolving mediator, inflammation,
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INTRODUCTION

Inflammation is an integral part of protective host responses against pathogens or injury (1). Herein,
inflammatory processes usually follow a defined sequence of reactions characterized by the rapid
induction of a pro-inflammatory response, which is closely followed by an anti-inflammatory
response. To regain homeostasis resolution of inflammation represents an integral and crucial part
of acute inflammation. In fact, failure to completely resolve inflammatory processes is associated
with the emergence of chronic inflammatory conditions. While resolution was considered to merely
represent the downregulation or inactivation of inflammatory mediators for a long time, it is now
appreciated to be active and complex, involving the formation of pro-resolving mediators (2).
Moreover, it is widely accepted that resolution processes are initiated early during inflammation,
and classical pro-inflammatory mediators have been shown to directly impact on resolution as well
(3). Therefore, pro-resolving therapeutic approaches are increasingly being considered rather than
anti-inflammatory ones as the latter might diminish the host response against pathogenic challenges
(4, 5). Since lipid mediators play a crucial, yet often ambivalent role during the inflammatory
process, and prostanoid synthesis represents a major target for anti-inflammatory therapies, the
present mini review aims to recapitulate the current understanding of the role of prostanoids in the
context of resolution of inflammation.
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THE COURSE OF INFLAMMATION

Cellular Mediators
Upon an insult (e.g., pathogen contact, injury) local resident
immune cells are the first responders. Among these, tissue
resident macrophages (MF) represent not only an important
first line of defense but even more importantly they establish an
environment prone to recruit neutrophils and monocytes from
the circulation. Neutrophils are main executers in the acute
inflammatory environment, i.e. they produce high amounts of
reactive oxygen and nitrogen species to eliminate pathogens, and
secrete a plethora of inflammatory mediators (6). Within the
inflammatory environment neutrophils rapidly die by apoptotic
processes and are phagocytosed by MF in a process termed
efferocytosis (7, 8). Importantly, uptake of apoptotic cells (AC)
induces a shift in MF polarization from a pro-inflammatory to
an anti-inflammatory and immunomodulatory phenotype (9–14).
MF and other antigen-presenting cells such as dendritic cells
(DC) eventually activate adaptive immune responses, which
ensures complete removal of the invading pathogens and
enables accelerated responses upon anew contact to the
triggering stimulus (15). The return to cellular homeostasis
further requires successful emigration of infiltrated immune
cells from the cleared site of inflammation (16). In contrast to
the concept of a rapid return to homeostasis, recent reports
provided evidence that resolution is followed by a longer
lasting, immune-suppressive post-resolution phase characterized
by infiltrating regulatory T cells (Treg) and myeloid-derived
suppressor cells (MDSC), but also MF, which might be decisive
for a successful adaptation vs. chronic inflammation and/or
autoimmunity (17–19).

Lipid Mediators
Regulation and execution of inflammatory reactions is mediated
by soluble mediators, such as cytokines and chemokines. In
addition, bioactive lipids emerged as crucial factors during all
phases of the inflammatory process (20, 21). Specifically, while
leukotrienes and prostaglandins appear early during the onset of
inflammation, specialized pro-resolving mediators (SPM), such
as lipoxins, resolvins, and maresins, are produced later on,
facilitating the resolution of inflammation (22). Prostanoids,
like leukotrienes, belong to the eicosanoid family of lipid
mediators (23). Both classes are synthesized from arachidonic
acid (AA) after the latter is released from membrane
phospholipids by phospholipase A2 (24). While leukotrienes are
synthesized by the lipoxygenases, prostanoid formation initially
requires conversionofAA to the unstable prostaglandinH2 (PGH2)
via thebifunctional cyclooxygenases1 (Cox-1) and2 (25, 26). In line
with the established pro-inflammatory function of the prostanoids,
the cyclooxgenases became an important target in the therapy of
inflammatory diseases, and as of today, non-steroidal anti-
inflammatory drugs (NSAIDs) rank amongst the most important
anti-inflammatory drugs (27, 28). Of note, while Cox-1 is
constitutively expressed in most cells, Cox-2 often is inducible
and emerged as the more important cyclooxygenase in the context
of inflammation. Consequently Cox inhibitors (Coxibs) selectively
targeting Cox-2 emerged as promising novel anti-inflammatory
Frontiers in Immunology | www.frontiersin.org 2
therapeutics (29, 30). The short-lived Cox product PGH2 is then
substrate to specific synthases, which produce potent prostanoids
including PGD2, PGE2, PGF2a, and PGI2, as well as thromboxane
A2 (TXA2) (Figure 1).

Interestingly, the production of the different lipid mediators
appears to be tightly connected across the course of
inflammation. For example, the presumably pro-inflammatory
PGE2 was shown to attenuate the synthesis of leukotrienes and to
induce the production of SPM, thus initiating the so-called lipid-
mediator class switch (31). While the SPM-regulatory impact of
prostanoids on the resolution of inflammation is rather well
characterized, there is accumulating evidence that prostanoids
also directly impinge on other aspects of the resolution process.
In the following sections, we will therefore summarize the
current understanding of the role of the most prominent
prostanoids in resolution of inflammation, aside from the
aforementioned lipid-mediator class switch, with a special
focus on PGE2.
PROSTANOIDS IN THE RESOLUTION
OF INFLAMMATION

Thromboxane A2
TXA2 is predominantly produced by platelets, but also at
appreciable amounts by MF (32). Interestingly, while
thromboxane A synthase (TXAS) appears to be coupled to the
activity of Cox-1 and Cox-2 constitutes the dominant Cox in
inflammatory conditions, the activity of TXA2 is largely pro-
inflammatory (33, 34). In fact, there is little evidence that TXA2

might contribute to the resolution of inflammation. In line,
Kupffer cell-derived TXA2 was shown to contribute to liver
fibrosis, a common outcome of ineffective resolution (35). The
observation that TXA2 synthesis is induced by pro-inflammatory
stimuli, while it is suppressed upon inflammatory restimulation
(36), further suggest that the prevention of TXA2, e.g. via
redirection of Cox-1-provided PGH2 towards PGE2 synthesis,
might be part of the immune-suppressive environment typical
for the post-resolution phase (18).

Prostaglandin I2 (Prostacyclin)
PGI2 (prostacyclin) has been characterized as the counterpart of
TXA2 as it inhibits platelet aggregation and acts as a potent vaso-
and bronchodilator (37). It is produced primarily by vascular
endothelial and smooth muscle cells, yet other cells such as
fibroblasts and dendritic cells also synthesize PGI2 (38). In the
context of inflammation, PGI2 was shown to inhibit LPS-induced
expression of pro-inflammatory cytokines in MF, DC, CD4+ T
cells, and endothelial cells (39–42). PGI2 further synergizes with
anti-inflammatory cytokines interleukin-4 (IL-4) and IL-13 to
suppress pro-inflammatory cytokines (43). Along the same lines,
PGI2 receptor (IP) deficient mice displayed stronger allergic
inflammation, which was attributable to enhanced Th2 cell
function (44). Thus, PGI2 emerges as a predominant anti-
inflammatory mediator, positioning it also as a counterpart of
TXA2 in the context of inflammation.
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Prostaglandin D2
PGD2 is produced by numerous immune cells including activated
MF, DC, Th2 cells, eosinophils, platelets, but also endothelial cells
(45). However, since its main source are mast cells (46, 47), PGD2

has been characterized extensively in the context of allergic
reactions (48). PGD2 can further be metabolized to the
cyclopentenone, PGJ2-type prostanoids, including PGJ2 and 15d-
PGJ2, which also display biological activity in the context of
resolution of inflammation (49). PGD2 binds to the PGD2

receptors 1 (DP1) and DP2 [also known as chemoattractant
receptor-homologous molecule expressed on Th2 cells (CRTH2)]
(50). Activation of DP2 is of specific importance in allergic
inflammation, where mast cell-derived PGD2 stimulates the
recruitment of innate lymphoid type 2 cells (51) and Th2 cells
(52), and causes activation of these as well as of basophils and
eosinophils (53). While PGD2 was shown to contribute to allergic
inflammation, PGD2 synthase (PGDS) decreases during the acute
inflammatory phase, while it rises again at later stages
corresponding to the resolution phase in animal models (54).
PGD2 and 15d-PGJ2 both exert pro-inflammatory functions via
CRTH2 (55). In contrast, PGD2-dependent activation of DP1 as
well as 15d-PGJ2-mediated activation of peroxisome proliferator-
activated receptor g (PPARg) inhibit the production of
inflammatory cytokines and chemokines by antigen-presenting
cells including DC or MF by interfering with inflammatory
transcription factors nuclear factor kappa B (NFkB), activator
protein 1 (AP1), and signal transducer and activator of
transcription 3 (STAT3) (56–58) and additionally by enhancing
Frontiers in Immunology | www.frontiersin.org 3
the activity of anti-inflammatory nuclear factor erythroid 2-like 2
(Nrf2) (59, 60). Consequently, PGD2 and 15d-PGJ2 support
emigration of MF to the draining lymph nodes and attenuate the
recruitment of leukocytes (54). They further inhibit effector
functions of and induce apoptosis in T lymphocytes (57). Thus,
PGD2 contributes to normalize the local environment, an
important aspect of the resolution of inflammation (61).

Prostaglandin F2a
PGF2a is produced by the aldo-keto reductase (AKR) 1C3, also
known as PGF2a synthase (PGFS) using PGH2 or PGD2 (62).
Alternatively, PGE2 can be converted to PGF2a by AKR1C1 or
AKR1C2 (63). While PGF2a is synthesized in most tissues (64), its
prime site of production is the female reproductive system (65),
where PGF2ahas been shown tobe offunctional importance (66, 67).
Nevertheless, PGF2a also appears to be involved in inflammatory
processes (64, 68). PGF2a is elevated in rheumatoid arthritis (69) and
was shown to contribute to and correlatewith fibrosis (70, 71), which
is characteristic for insufficient resolution. Interestingly though,
PGFS expression and concomitantly PGF2a levels decrease similar
to PGD2 during acute inflammation, only to increase again in the
resolution phase (72), which might be indicative for an active role of
PGF2a in the resolution of inflammation. Yet, the exact role of PGF2a
in inflammation-resolving processes remains to be determined.

Prostaglandin E2
The best characterized and presumably most important
prostanoid in the context of inflammation is PGE2. It can be
FIGURE 1 | Prostanoid synthesis. Arachidonic acid, liberated from membrane phospholipids by phospholipase A2, is converted to prostaglandin H2 (PGH2) by the
dual peroxidase/cyclooxygenase activity of the cyclooxygenases (Cox-1, Cox-2). PGH2 serves as the substrate for the terminal synthases to produce PGD2, PGE2,
PGF2a, PGI2, and thromboxane A2 (TXA2). PGD2 is further dehydrated and isomerized spontaneously to 15-deoxy−D12,14-PGJ2 (15d-PGJ2). Alternatively, arachidonic
acid can be converted to lipoxins, i.e. SPM, via the activity of the lipoxygenases (LO). L-PGDS, lipocalin-type PGD synthase; H-PGDS, hematopoietic-type PGDS;
mPGES, microsomal PGES; cPGES, cytosolic PGES; TXAS, TXA synthase.
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synthesized by all cell types. In the context of inflammation the
prime producers are fibroblasts, epithelial cells, and immune cells
(73). PGE2 exerts its functions via four G-protein-coupled PGE2
receptors (EP1-4) (74). While EP2 and 4 represent Gas-coupled
receptors increasing cAMP levels upon activation (75), the Gai-
coupled EP3 variants inhibit adenylate cyclase, thus reducing
cAMP (76), and Gaq EP1 enhances intracellular Ca

2+ levels (74).
The distinct downstream signals as well as the cell type-specific
distribution of the receptors, and their differential sensitivity for
PGE2 account for the diverse functions of PGE2 also in
inflammation (77).

Upon inflammatory stimulation, both the expression of Cox-
2 and microsomal PGE2 synthase 1 (mPGES-1) are induced in
MF (78), skewing the prostanoid spectrum towards PGE2
production in the acute inflammatory phase (73). PGE2 signals
towards enhanced recruitment of neutrophils, MF, and mast
cells (79–81) and enhances the expression and secretion of pro-
inflammatory cytokines in DC, MF, and T cells (82–84). Its
NFkB-activating properties further support neutrophil survival,
thereby extending the pro-inflammatory impact of neutrophils
in the inflammatory niche (85, 86). Yet, this initial increase in
PGE2 is only moderate and transient in character, and PGE2
levels rise again during the resolution phase, eventually
increasing to much higher levels in the post-resolution phase
(18, 87, 88). This seemingly biphasic regulation of PGE2 might at
least in part be due to a shift from transcriptional to post-
transcriptional programs governing not only PGE2 production,
but more generally the course of inflammation (89). With respect
to the regulation of PGE2 synthesis, Cox-2 rapidly accumulates
during early inflammation. In a negative feedback loop, elevated
PGE2 induces the expression of dual specificity phosphatase 1
(DUSP1), thereby enhancing the activity of the RNA-binding
protein tristetraprolin (TTP), which destabilizes the mRNA of
Cox-2, but also of pro-inflammatory tumor necrosis factor
(TNF) (90). The second wave of PGE2 production by MF
appears to be facilitated by another increase of Cox-2
expression induced by sphingosine-1-phosphate released from
apoptotic cells, which activates the RNA-stabilizing protein
human antigen R (HuR) in MF to increase Cox-2 expression
(91). As a side note, while PGE2 is predominantly produced in a
Cox-2/mPGES-1 dependent manner during the inflammatory
and early resolution phase, PGE2 levels during the post-
resolution phase are approx. 3-fold higher, which is due to
enhanced Cox-1/mPGES-1 expression in MF (18). While these
findings might explain the kinetics of PGE2 production and even
some of the inhibitory effects of PGE2 on pro-inflammatory
mediators, further evidence for an immunosuppressive function
of MF-derived PGE2 emerged in the tumor context, where PGE2
inhibits CD80 expression via EP2, thereby attenuating activation
of cytotoxic T cells (92, 93). Similarly, PGE2 suppresses cytolytic
functions of NK cells (94, 95) and inhibits phagocytic and
bacteria killing activities of MF, thus preventing the
establishment of appropriate inflammatory, anti-microbial
responses largely via EP2-dependent cAMP induction (96–98).
In line, EP2- and EP4-signaling limits secretion of TNF and IL-
1b, and enhances expression of anti-inflammatory IL-10 in
Frontiers in Immunology | www.frontiersin.org 4
response to LPS by microglia (99), i.e. resident MF of the
central nervous system (100). In general, EP2- and EP4-
activation by PGE2 appears to be crucial to establish an anti-
inflammatory and resolving MF phenotype (101, 102), which is
characterized by further immune-modulatory factors such as
transforming growth factor b (TGFb) (103). Nevertheless, there
are contradictory reports regarding the exact impact of PGE2 on
T cell functions. On the one hand, PGE2 appears to inhibit IL-2
production by T cells, thereby attenuating both T cell activation
and activation-dependent apoptosis (104–106). On the other
hand, while PGE2 appears to contribute to sustained
inflammation by differentiation and activation of Th1 and gd T
cells, considered to support inflammation (107–109), other
findings indicate that PGE2 selectively inhibits Th1 cytokine
production leaving Th2 cytokines, such as IL-4 and IL-5,
unaffected (110, 111), thus provoking a PGE2-dependent shift
towards Th2 responses, which are associated with repair
mechanisms instead (112–114). This notion is substantiated by
the high levels of PGE2 observed in Th2-driven diseases such as
atopic allergy (115). Indeed, the intricate impact of PGE2 on the
balance between different T cell subtypes might be one of the key
mechanisms how PGE2 affects a self-limiting inflammation
throughout resolution and post-resolution phases. Elevated
PGE2 impairs interferon g (IFN g) synthesis, thereby directly
attenuating Th1 responses, while leaving Th2 responses
unaltered (110, 111). PGE2 further favors Th17 responses via
EP2 and EP4 by shifting the IL-12/IL-23 balance towards Th17-
supportive IL-23 (116–118). While Th17 cells are largely
inflammatory in nature contributing to severe inflammatory
diseases (107, 119), they have been shown to be highly plastic,
being able to trans-differentiate into Treg thereby contributing to
resolution of inflammation (120). Yet, PGE2 not only promotes
differentiation of naïve T cells or Th17 cells towards Tregs (121,
122), it also supports further expansion of differentiated Tregs
(123). Conclusively, the concentration, source, and timing of PGE2
appear critical to determine the exact T cell response in the context
of inflammatory responses. Moreover, while the pro-resolving
activity of cyclooxygenase metabolites has long been attributed
predominantly to PGD2 and 15d-PGJ2 (124), PGE2 emerged as an
important facilitator of the lipid-mediator class switch inducing
not only the production of PGD2 and its derivatives, but also of the
so-called specialized pro-resolving mediators (SPM) (20). SPM,
synthesized by 15-lipoxygenase (ALOX15) (31, 125–127), are key
players in the resolution of inflammation (114, 128). PGE2 induces
the expression of the relevant lipoxygenases, thereby skewing the
balance towards a pro-resolving lipid mediator profile (129, 130).
While SPM levels are mostly considered to reciprocally reflect
PGE2 levels during the course of inflammation, they in fact coexist
(131). The exact temporal and spatial distribution of both PGE2
and SPM might eventually determine the course of the resolution
of inflammation. Of note, SPM also have been shown to affect the
T cell balance (132–134). Yet, there is mounting evidence that
PGE2 also directly supports further resolution-associated
functions. Along these lines, PGE2 has been shown to inhibit
pro-inflammatory cytokine production (99, 135) and to stimulate
the expression of anti-inflammatory cytokines (136, 137), thereby
July 2021 | Volume 12 | Article 714042
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contributing to the early steps of the resolution process (138).
Furthermore, blocking PGE2 synthesis attenuated efficient
resolution in a peritonitis model by preventing the emigration of
MF from the site of inflammation in a CX3CL1-dependent
manner (87). Extending beyond its impact on the resolution
phase, PGE2 contributes to the immune suppressive post-
resolution phase, where PGE2 suppresses innate immune
responses, inhibits lymphocyte functions, and contributes to the
generation and activity of Treg (121, 139) andMDSC (140).While
these immune suppressive effects appear negative in the context of
novel infections, they lower the risk of autoimmune responses (18,
19) (Figure 2). The complexity of the resolution of inflammation
both at cellular as well as (lipid) mediator level, highlights the need
for further studies unraveling details of the resolution phase to
allow for the development of refined therapeutic intervention
strategies, especially for chronic inflammatory diseases lacking
proper resolution mechanisms.
THERAPEUTIC CONSIDERATIONS

Cox inhibitors are amongst the most widely used over the
counter anti-inflammatory drugs worldwide (141). Despite the
Frontiers in Immunology | www.frontiersin.org 5
undisputed beneficial effects of the broad spectrum Cox
inhibitors, specific Cox-2 inhibitors (Coxibs) were developed to
more selectively interfere with the production of inflammation-
associated prostanoids (142). Due to the prominent role of PGE2
in the establishment of inflammatory processes, recent
therapeutic approaches aimed at inhibiting the inflammation-
associated terminal PGE2 synthase mPGES-1 to selectively
block the production of PGE2 only (73, 143, 144). Yet,
considering the major impact of PGE2 on successful resolution
of inflammation, therapeutic approaches targeting PGE2

synthesis should be critically revisited as continued PGE2
inhibition in inflammatory diseases might be expected to lead
to chronic diseases due to insufficient resolution. In fact, even
attenuating inflammation itself might interfere with successful
resolution, since the process of resolution is initiated already very
early during the inflammatory process (3). Thus, it might be
warranted to focus on therapeutic approaches promoting
resolution rather than on anti-inflammatory ones in the future
(4, 145). Indeed, there are numerous efforts to target SPM
production or receptors (146). Considering promising effects of
PGE2 receptor antagonists (e.g. EP4) in the context of chronic
inflammatory diseases (147), it will be interesting to see
combinatorial approaches in the future.
FIGURE 2 | PGE2 in the context of inflammation. An inflammatory insult is recognized by resident immune cells such as resident MF. Upon inflammatory stimulation
Cox-2 and mPGES-1 are induced in MF resulting in increased PGE2 synthesis. PGE2 then contributes to the MF-mediated recruitment of neutrophils, which act as a
first line of defense to eliminate the pathogenic stimulus and incite further inflammatory responses. Already at this early stage of the inflammatory process PGE2 initiates
the lipid mediator class switch towards the production of specialized pro-resolving mediators (SPM) including lipoxins, resolvins, maresins, and protectins e.g. in
neutrophils. Neutrophils are rapidly followed by monocytes again facilitated by PGE2, which upon infiltration into the affected tissue differentiate into pro-inflammatorily
activated MF and release soluble mediators including cytokines and chemokines, as well as further PGE2. PGE2-triggered transcriptional programs eventually induce
post-transcriptional feedback circuits, which reduce Cox-2 mRNA stability and thus protein expression to eventually inhibit PGE2 production, and also attenuate the
expression of pro-inflammatory cytokines such as TNF. In addition, anti-inflammatory mediators (including IL-10) are induced restricting the intensity of the inflammatory
reactions. Within the inflammatory niche, activated neutrophils rapidly undergo apoptotic cell death and are phagocytosed by MF, which causes a shift in MF polarization
towards an alternatively activated, immune-modulatory, resolution phenotype characterized by the secretion of e.g. TGFb. Apoptotic cells further release sphingosine-1-
phosphate (S1P), which enhances the mRNA stability of Cox-2 again, resulting in increasing PGE2 production. Within the resolving environment PGE2 supports a shift
from Th1 T cells to the repair-associated Th2-type further supporting tissue normalization. In addition, PGE2 attenuates expression of CX3CL1 in MF, thereby eventually
allowing their emigration from the resolving tissue. PGE2 further supports the recruitment of T cells and myeloid cells, which differentiate into regulatory T cells and
myeloid-derived suppressor cells, respectively, thereby establishing an immune-suppressive post-resolution environment. Lower part: During inflammation, PGE2 levels
transiently increase in the acute inflammatory phase. After a decrease during the anti-inflammatory and the early resolution phase, PGE2 tends to increase again during
the progress of resolution, reaching highest levels in the post-resolution phase. AC, apoptotic cells; MF, macrophages (gray – naïve, resident; red – pro-inflammatory;
blue – anti-inflammatory; green – resolution phase); MDSC, myeloid-derived suppressor cells; MO, monocytes; PMN, neutrophils (gray – naïve, red – inflammatory); T cells
(red – Th1; blue – Th2; green – Treg); ⇨, infiltration/emigration; !, development within the inflammatory niche.
July 2021 | Volume 12 | Article 714042

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Schmid and Brüne Prostanoids and Resolution of Inflammation
AUTHOR CONTRIBUTIONS

TS and BB wrote and edited the manuscript. All authors
contributed to the article and approved the submitted version.
Frontiers in Immunology | www.frontiersin.org 6
FUNDING

This work was supported by grants of the DFG (GRK 2336 TP6,
SCHM2663/7, SFB1039 B04).
REFERENCES

1. Medzhitov R. Origin and Physiological Roles of Inflammation. Nature
(2008) 454(7203):428–35. doi: 10.1038/nature07201

2. Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP. The Resolution of
Inflammation. Nat Rev Immunol (2013) 13(1):59–66. doi: 10.1038/nri3362

3. Serhan CN, Savill J. Resolution of Inflammation: The Beginning Programs
the End. Nat Immunol (2005) 6(12):1191–7. doi: 10.1038/ni1276

4. Fullerton JN, Gilroy DW. Resolution of Inflammation: A New Therapeutic
Frontier. Nat Rev Drug Discov (2016) 15(8):551–67. doi: 10.1038/nrd.2016.39

5. Dalli J. Does Promoting Resolution Instead of Inhibiting Inflammation
Represent the New Paradigm in Treating Infections? Mol Aspects Med
(2017) 58:12–20. doi: 10.1016/j.mam.2017.03.007

6. Smith JA. Neutrophils, Host Defense, and Inflammation: A Double-Edged
Sword. J Leukoc Biol (1994) 56(6):672–86. doi: 10.1002/jlb.56.6.672

7. Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C.
Macrophage Phagocytosis of Aging Neutrophils in Inflammation.
Programmed Cell Death in the Neutrophil Leads to its Recognition by
Macrophages. J Clin Invest (1989) 83(3):865–75. doi: 10.1172/JCI113970

8. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM.
Exposure of Phosphatidylserine on the Surface of Apoptotic Lymphocytes
Triggers Specific Recognition and Removal by Macrophages. J Immunol
(Baltimore Md: 1950) (1992) 148(7):2207–16.

9. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM.
Macrophages That Have Ingested Apoptotic Cells In Vitro Inhibit
Proinflammatory Cytokine Production Through Autocrine/Paracrine
Mechanisms Involving TGF-Beta, PGE2, and PAF. J Clin Invest (1998)
101(4):890–8. doi: 10.1172/JCI1112

10. Johann AM, Knethen Av, Lindemann D, Brüne B. Recognition of Apoptotic
Cells by Macrophages Activates the Peroxisome Proliferator-Activated
Receptor-Gamma and Attenuates the Oxidative Burst. Cell Death Differ
(2006) 13(9):1533–40. doi: 10.1038/sj.cdd.4401832

11. Weigert A, Johann AM, Knethen Av, Schmidt H, Geisslinger G, Brüne B.
Apoptotic Cells Promote Macrophage Survival by Releasing the
Antiapoptotic Mediator Sphingosine-1-Phosphate. Blood (2006) 108
(5):1635–42. doi: 10.1182/blood-2006-04-014852

12. Mora J, SchlemmerA,Wittig I, Richter F, PutyrskiM,FrankA-C.Et alInterleukin-
38 Is Released From Apoptotic Cells to Limit Inflammatory Macrophage
Responses. J Mol Cell Biol (2016) 8(5):426–38. doi: 10.1093/jmcb/mjw006

13. Kourtzelis I, Li X, Mitroulis I, Grosser D, Kajikawa T, Wang B, et al. DEL-1
Promotes Macrophage Efferocytosis and Clearance of Inflammation. Nat
Immunol (2019) 20(1):40–9. doi: 10.1038/s41590-018-0249-1

14. Watanabe S, Alexander M, Misharin AV, Budinger GRS. The Role of
Macrophages in the Resolution of Inflammation. J Clin Invest (2019) 129
(7):2619–28. doi: 10.1172/JCI124615

15. Newson J, Stables M, Karra E, Arce-Vargas F, Quezada S, Motwani M, et al.
Resolution of Acute Inflammation Bridges the Gap Between Innate and Adaptive
Immunity. Blood (2014) 124(11):1748–64. doi: 10.1182/blood-2014-03-562710

16. Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of
Inflammation: What Controls Its Onset? Front Immunol (2016) 7:160. doi:
10.3389/fimmu.2016.00160

17. RajakariarR,LawrenceT,BystromJ,HilliardM,Colville-NashP,BellinganG,etal.
Novel Biphasic Role for Lymphocytes Revealed During Resolving Inflammation.
Blood (2008) 111(8):4184–92. doi: 10.1182/blood-2007-08-108936

18. Newson J, Motwani MP, Kendall AC, Nicolaou A, Muccioli GG, Alhouayek
M, et al. Inflammatory Resolution Triggers a Prolonged Phase of Immune
Suppression Through COX-1/mPGES-1-Derived Prostaglandin E2. Cell Rep
(2017) 20(13):3162–75. doi: 10.1016/j.celrep.2017.08.098

19. Motwani MP, Newson J, Kwong S, Richard-Loendt A, Colas R, Dalli J, et al.
Prolonged Immune Alteration Following Resolution of Acute Inflammation in
Humans.PLoSOne (2017) 12(10):e0186964.doi: 10.1371/journal.pone.0186964
20. Buckley CD, Gilroy DW, Serhan CN. Proresolving Lipid Mediators and
Mechanisms in the Resolution of Acute Inflammation. Immunity (2014) 40
(3):315–27. doi: 10.1016/j.immuni.2014.02.009

21. Serhan CN, Haeggström JZ, Leslie CC. Lipid Mediator Networks in Cell
Signaling: Update and Impact of Cytokines. FASEB J (1996) 10(10):1147–58.
doi: 10.1096/fasebj.10.10.8751717

22. Serhan CN, Chiang N, Dalli J, Levy BD. Lipid Mediators in the Resolution of
Inflammation. Cold Spring Harb Perspect Biol (2015) 7(2):a016311. doi:
10.1101/cshperspect.a016311

23. Korotkova M, Jakobsson P-J. Persisting Eicosanoid Pathways in Rheumatic
Diseases. Nat Rev Rheumatol (2014) 10(4):229–41. doi: 10.1038/
nrrheum.2014.1

24. Dennis EA. Phospholipase A2 in Eicosanoid Generation.Am J Respir Crit Care
Med (2000) 161(2 Pt 2):S32–5. doi: 10.1164/ajrccm.161.supplement_1.ltta-7

25. Samuelsson B, Granström E, Green K, Hamberg M, Hammarström S.
Prostaglandins. Annu Rev Biochem (1975) 44:669–95. doi: 10.1146/
annurev.bi.44.070175.003321

26. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, van de Putte
LB, et al. Cyclooxygenase in Biology and Disease. FASEB J (1998) 12
(12):1063–73. doi: 10.1096/fasebj.12.12.1063

27. Rainsford KD. Anti-Inflammatory Drugs in the 21st Century. Subcell
Biochem (2007) 42:3–27. doi: 10.1007/1-4020-5688-5_1

28. Bacchi S, Palumbo P, Sponta A, Coppolino MF. Clinical Pharmacology of
non-Steroidal Anti-Inflammatory Drugs: A Review. AntiinflammAntiallergy
Agents Med Chem (2012) 11(1):52–64. doi: 10.2174/187152312803476255

29. Mazaleuskaya LL, Ricciotti E. Druggable Prostanoid Pathway. Adv Exp Med
Biol (2020) 1274:29–54. doi: 10.1007/978-3-030-50621-6_3

30. Ferrer MD, Busquets-Cortés C, Capó X, Tejada S, Tur JA, Pons A, et al.
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