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Abstract

In a parsimonious regime switching model, we find strong evidence that
expected consumption growth varies over time. Adding inflation as a second
variable, we uncover two states in which expected consumption growth is
low, one with high and one with negative expected inflation. Embedded
in a general equilibrium asset pricing model with learning, these dynamics
replicate the observed time variation in stock return volatilities and stock-
bond return correlations. They also provide an alternative derivation for a
measure of time-varying disaster risk suggested by Wachter (2013), implying
that both the disaster and the long-run risk paradigm can be extended
towards explaining movements in the stock-bond correlation.
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1 Introduction

Long-run risk asset pricing models rest on the key assumption that the conditional distri-

bution of consumption growth, in particular its mean, is varying over time. Following the

seminal publication of Bansal and Yaron (2004), many papers have dealt with the issue of

detecting such time variation.1 In this paper, we take a step back and document the ex-

istence of long-run risk by fitting a parsimonious regime-switching model for consumption

growth to standard quarterly NIPA aggregate consumption data. We show that the hypoth-

esis of constant expected consumption growth can be rejected at any conventional level of

significance.

Though interesting in its own, we document that this fact of time variation in expected

consumption growth is more than just a statistical issue. It has implications for the way

we think about asset prices: our setup allows us to extend the standard consumption-based

long-run risk framework towards explaining the joint dynamics of real and nominal assets.

More precisely, augmenting the basic regime switching model by inflation significantly alters

the estimated dynamics of the conditional mean of consumption growth. This allows us

to match, among other things, the empirically observed time-varying nature of the return

correlation between stocks and nominal bonds in a rather simple model featuring recursive

preferences and learning. Importantly, we document that a model with time-separable CRRA

preferences cannot explain the time-varying (and in particular the episodes of negative)

stock-bond correlation.

Our analysis proceeds in several steps. First, we fit a model to US consumption data

(starting in 1947) which deviates as little as possible from the assumption of constant ex-

pected consumption growth. We find evidence for two regimes in expected growth, and a

Wald test strongly rejects the null hypothesis that expected growth is the same in these two

states. The importance of this result can hardly be overstated. The asset pricing literature

has intensely discussed the pros and cons of long-run risk models. Our test, which is based on

1A nice synopsis of arguments against or in favor of long-run risk is given by the two competing papers of
Beeler and Campbell (2012) and Bansal, Kiku, and Yaron (2012), respectively. Recent advances were made
by Schorfheide, Song, and Yaron (2018), who document and analyze the persistent component in expected
consumption growth employing sophisticated Bayesian mixed frequency techniques.
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consumption data only, i.e., exclusively on fundamentals, unambiguously supports one key

assumption of these models, namely that there is time variation in expected consumption

growth.

Second, augmenting this basic model by inflation as a second variable, we detect two

states in which expected consumption growth is low, one with very high expected inflation

(so-called “stagflation”) and one with negative expected inflation (“deflation”). While we

abstain from an explicit structural macroeconomic model in our paper, we argue that our

dynamics of expected inflation and expected consumption growth are qualitatively in line

with the recent New-Keynesian macroeconomic literature on time variation in monetary

policy regimes or on the identification of demand and supply shocks. Our model-implied

dynamics also match survey data on macroeconomic expectations rather well.

Third, we embed the estimated fundamental dynamics in a standard general equilib-

rium asset pricing model with recursive preferences and learning. We show that imperfect

information about expected consumption growth drives time variation in aggregate stock

market volatility and in the stock-bond correlation when we properly condition on inflation

as a signal. To this end, we feed the model with the estimated macro dynamics and price

stocks and bonds with the model-implied pricing kernel. When comparing model-implied

conditional moments with analogous moments from the data, we find a very good fit.

Fourth, we document that both assumptions, recursive preferences as well as learning,

are key for this result. In particular, when we feed our estimated fundamental dynamics into

a nested model with CRRA preferences, we find that the model has substantial problems to

produce a negative stock-bond correlation, and that the model-implied dynamics are strongly

at odds with the data in the second half of our sample. The regression of correlations on state

variables delivers coefficients with signs opposite to those found in the data. A nested model

in which the state of the economy is perfectly observable also has problems to generate the

recently observed negative correlation.

Finally, we perform a series of robustness checks and document that our results are ro-

bust to constraints on the economic states imposed in the estimation, to subsample analyses,

and to variations of the point estimates of the parameters within the error bounds.
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What are the economic mechanisms that recursive preferences offer for explaining the

stock-bond correlation, and why do CRRA preferences fail here? We basically identify two

such mechanisms. First of all, as is well known in the literature, if the representative agent

has recursive preferences, the intertemporal substitution effect dominates the income effect

upon an exogenous change in expected consumption growth. An increase in real expected

consumption growth thus leads to a positive stock return in equilibrium. In a CRRA world,

where the income effect dominates the substitution effect (in the usual case of risk aversion

exceeding one), the opposite is true, i.e. an increase in real expected consumption growth

generates a negative stock return. Second, also well-known, the real risk-free rate is very

volatile in standard CRRA settings. Therefore, in a CRRA model realized nominal bond

returns reflect both changes in expected inflation and (counterfactually large) changes in

real risk-free rates. The magnitudes and the signs of these two channels are much more

realistic in our model.

Importantly, our setup is designed to make these different channels visible. We produce

all the aforementioned results within a rather simple setup, where no asset price data are

used in the estimation of fundamental dynamics. As Schwenkler (2018) and many others

have pointed out, this is key for our analysis, since asset price data have the potential to

severely confound a macro estimation, e.g., via certain moment conditions to represent the

parametric structure of an asset pricing model included in an application of GMM. This is

what happens, e.g., in David and Veronesi (2013), who estimate a time series model similar

to ours, but do so with moment conditions derived from an asset pricing model with CRRA

preferences. The estimation then yields the counterfactual result of expected consumption

growth being constant across regimes, because the underlying asset pricing model suffers

from the tension between income and substitution effect described above.

The time variation in the correlation between expected consumption growth and expected

inflation generated by our model is also reflective of a broader macrofinance literature. Our

model is deliberately silent about monetary policy. Nevertheless, it seems natural to draw

a link from our expected inflation and expected consumption growth regimes to persistent

changes in monetary policy, for instance during the Volcker disinflation period. Such narra-
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tives can be in line with, e.g., New-Keynesian models with time-varying Taylor rule coeffi-

cients. Another interpretation could be regime switches in the fiscal/monetary policy mix.

Perhaps most closely related to our paper, but more oriented towards monetary economics, is

the paper by Song (2017). He distinguishes between procyclical and countercyclical inflation

shocks, and between active and passive monetary policy. There is no unique mapping from

the states in his model to those in ours, but, e.g., our State 1 (with high expected consump-

tion growth and medium expected inflation) can roughly be identified with a regime that is

characterized by countercyclical inflation shocks and passive monetary policy, whereas State

2 (with slightly lower expected growth and substantially lower expected inflation) resembles

a regime with rather procyclical shocks and active monetary policy. Similarly, Campbell,

Pflueger, and Viceira (2014) attribute changes in the pricing of nominal bonds to a shift

towards a more anti-inflationary US monetary policy around 1980 and a shift in the per-

sistence of monetary policy and shocks to the inflation target around 2000. However, these

models do not provide a deeper economic understanding of the rather infrequent States 3

and 4 from our estimation. We elaborate more on the macroeconomic background of our

model in Section 3.3 below.

In line with papers like Detemple (1986), or Croce, Lettau, and Ludvigson (2012), we

make the assumption that the representative investor knows the structural parameters of the

model, but cannot observe the true state and thus can only filter the respective probabilities

from the data. Given our estimation, extreme (high or low) inflation observations serve as

a useful signal, which allows to better infer the time-varying probability of very low or

even negative expected consumption growth. The fact that low expected real growth can be

linked to high or low expected inflation is key to producing a time-varying stock-bond return

correlation. When very high expected inflation occurs together with low expected real growth,

both bonds and stocks will tend to have negative returns, resulting in a positive return

correlation between the two types of assets. On the other hand, low growth expectations in

periods with low expected inflation will lead to negative equity returns, but positive bond

returns, implying a negative correlation. Stated differently, the long-run risk paradigm can

be extended towards the time-varying nature of the stock-bond return correlation when the

signaling role of inflation is taken into account properly.
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We test the asset pricing implications of our model by feeding it with the empirical time

series of observed consumption growth and inflation and then pricing stocks and bonds using

our model-implied pricing kernel. We then compare the dependence of stock return volatil-

ities and stock-bond correlations on the filtered probabilities in the model and the data. In

both model and data, the stock-bond return correlation is positively and significantly linked

to the probability of being in the high-inflation state, while for the deflationary state the

respective regression coefficient is negative, again both in the model and the data. The model

also qualitatively matches two key results about stock market volatility. First, volatility is

increasing in the (filtered) probability of being in a bad consumption growth state. Second,

the relation between volatility and this probability is nonlinear in both model and data.

On the other hand, we have to acknowledge that our model fails to match certain

unconditional asset pricing moments in the data. For instance, it does not reproduce the

unconditional level of asset price volatility or the dynamic properties of the term structure

of interest rates in the data. There are two key reasons for this. First, we strongly tie our

hands when estimating the model in the sense that we only rely on fundamental data, but

do not make use of any sort of asset price data. As a consequence, the estimation yields a

relatively small amount of “long-run risk”, i.e., too little persistence in the economic state

variables. Second, for the sake of simplicity and tractability, we deliberately shut down

channels like stochastic consumption growth volatility which have been shown to be helpful

when it comes to solving return volatility puzzles in the literature.

Finally, while our analysis is mainly directed towards time-varying second moments

of returns, we find a few interesting results on the side. First of all, our filtered estimates

of expected inflation track measures of expected inflation from the Survey of Professional

Forecasters (SPF) rather closely.

Second, while there is no comparable measure for expected consumption growth in the

SPF, this data set does offer an analogue for the probability of being in a low expected

consumption growth state, the so-called “Anxious Index”. This index gives the probability

that survey participants attach to the event of real GDP growth being negative in the quarter

following the quarter in which the survey is taken. We find that our probability estimate
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derived from consumption and inflation data tracks this index very well.

Third, our model-implied probability for low expected consumption growth also tracks

the historical price-earnings ratio of US equity well. It is therefore closely linked to implicit

long-run risk variables which have been obtained in the literature through the “reverse

engineering” of asset prices . An example of such a variable is the time-varying disaster

intensity introduced in Wachter (2013). The correlation between her variable and our filtered

probability for being in a low consumption growth states is 0.88, and this co-movement is

also reflected in the pronounced correlation between the dividend-price ratios in the data

and in our model.

The result concerning the close link between disaster intensity and our filtered proba-

bilities might seem surprising at first glance, since there is no explicit role for disaster risk

in our model. However, since the Poisson jumps in the model of Wachter (2013) are un-

compensated, changes in their intensity automatically translate into changes in expected

consumption growth. Hence, the state variable in her model represents a mixture of both

long-run risk and disaster risk. Besides this, papers like Constantinides (2008), Branger,

Kraft, and Meinerding (2016), and Schwenkler (2018) argue that disaster risk and long-run

risk are intertwined in historical data and hard to disentangle empirically. The episodes of

high marginal utility which Wachter (2013) labels as episodes of elevated disaster risk are

characterized by low expected consumption growth according to our Markov chain estima-

tion. Our paper thus offers an alternative interpretation of time-varying disaster risk.

We close the paper with a number of robustness checks concerning both the estimation

and the asset pricing model. First, we show that a Markov switching model for consumption

growth only (i.e., without inflation) cannot replicate the time series of the dividend-price

ratio. Second, our results do not depend on expected consumption growth being particularly

low (high) in one of the two bad (good) states. A model where expected growth is constrained

to be the same in the two good and in the two bad states, respectively, delivers qualitatively

the same results. Third, additional analyses with subsamples, with GDP growth instead of

consumption growth, or with monthly consumption data also largely confirm our findings.2

2We also estimate the Markov chain model on a long sample of annual data and identify a deflationary
state there as well. As is clear from the discussion above, the identification of a deflationary state is crucial
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2 Related Literature

Our paper contributes to and links two major strands of literature, namely the asset pricing

literature about inflation as a priced risk factor and the asset pricing literature featuring

long-run risk and its empirical estimation. We do not aim at giving a full review of the

numerous papers in the latter field. Contributions there were made by Bansal and Yaron

(2004), Bansal, Kiku, and Yaron (2016) Beeler and Campbell (2012), Bansal, Kiku, and

Yaron (2012), Constantinides and Ghosh (2011), Ortu, Tamoni, and Tebaldi (2013), and

Schorfheide, Song, and Yaron (2018), among many others.

Hasseltoft (2009) proposes a model with recursive utility, inflation, and long-run risk to

explain (among other things) the time-varying stock-bond return correlation. The mechanism

is very different from the one in our paper, since the model in Hasseltoft (2009) heavily

relies on stochastic volatility of inflation and consumption growth, but does not allow for a

“deflation state”, which we clearly identify from the data. In that model, a negative stock-

bond return correlation can be generated when inflation volatility decreases and becomes less

dominant for risk premiums in general. In such periods, other factors ( such as, e.g. dividend

growth, which affects only equity prices) gain in relative importance for the comovement

of equity and bond prices and may send the stock-bond return correlation into negative

territory. However, this mechanism fails to explain the prolonged period of negative stock-

bond correlation that we see in the data since roughly 2000, in a period of relatively high

inflation volatility.

In a follow-up paper, to address this problem, Burkhardt and Hasseltoft (2012) propose

an extension of the model in which the parameters governing the expected consumption

growth and expected inflation processes are driven by a two-state Markov chain. The model

does better in matching the stock-bond correlation, but, given the way in which the authors

introduce inflation risk premia, the asset pricing results seem to a certain degree hardwired

into the model. We consider our approach substantially less restrictive in terms of the speci-

fication of inflation and consumption growth. Finally, Piazzesi and Schneider (2006) discuss

to match the asset price data. In our benchmark estimation, this identification largely rests on the deflation
observations during the Financial Crisis in 2008. However, there are also deflationary episodes in pre-war
data, which are not contained in our benchmark sample of quarterly data starting in 1947.

8

Electronic copy available at: https://ssrn.com/abstract=4001498



the role of inflation as a signal about future consumption growth, but they focus on the

term structure of (nominal and real) interest rates and do not address time variation in the

stock-bond correlation.

Song (2017) studies an endowment economy model with recursive preferences, a regime-

switching Taylor rule, and a time-varying inflation target. Campbell, Pflueger, and Viceira

(2020) analyze the stock-bond correlation in a New Keynesian production economy with

habit formation preferences and monetary policy regimes. Complementary to our paper,

Constantinides and Ghosh (2017) assess the ability of several macroeconomic predictor vari-

ables to improve the performance of consumption-based equilibrium asset pricing models,

and they find that inflation data helps to generate the (non-)predictability of price-dividend

ratios by cash flow growth rates. In all these papers, however, asset price data is used to

calibrate or estimate the model. Ermolov (2018) estimates an external habit model with

macroeconomic data only, but his explanation of time variation in the stock-bond correla-

tion is very different from ours. He assumes that consumption and inflation can be hit by two

different shocks labeled as supply and demand shocks, whereas we rely on different regimes

for expected growth rates.

David and Veronesi (2013) propose Markov switching dynamics for fundamentals, but

they assume a model featuring a representative agent with time-additive CRRA preferences

who suffers from bounded rationality in the form of money illusion in the spirit of Basak

and Yan (2010). Our contribution relative to this paper is twofold. First, David and Veronesi

(2013) assume that expected consumption growth is constant, i.e., does not vary with the

state of the economy. We show that this assumption is strongly rejected by the data. This

fact is important in its own right, but its relevance is not limited to that of a purely sta-

tistical result. Besides the dynamics of fundamentals, the second important ingredient to a

consumption-based asset pricing model are preferences. As stated above, David and Veronesi

(2013) assume CRRA utility (augmented by money illusion), while in our model the rep-

resentative agent is equipped with recursive preferences. This is not just a matter of taste,

but has far-reaching implications for the ability of the model to explain the data. Once one

takes the fact into account that expected consumption growth is time-varying, a CRRA
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model (irrespective of whether it features money illusion or not) cannot explain the pattern

in the time series of stock-bond correlations. To sum up, our paper documents that one can

take the estimates of the structural parameters purely from fundamentals and still build a

powerful asset pricing model, as long as preferences are flexible enough to properly handle

the dynamics estimated from fundamentals.

Boons, de Roon, Duarte, and Szymanowska (2020) provide empirical evidence for in-

flation risk being priced in the cross-section of stock returns. Their paper can be viewed as

complementary to ours, since the market price of inflation risk estimated from the cross-

section of stock returns switches sign and is linked to the stock-bond correlation in the data.

It can be considered a stylized fact that the correlation between inflation and other vari-

ables can change the sign of the stock-bond correlation, and we provide a model-theoretic

explanation for this result. Other papers in this area include Schmeling and Schrimpf (2011),

Balduzzi and Lan (2016), Campbell, Sunderam, and Viceira (2017), Hasseltoft (2012), Ang

and Ulrich (2012), and Marfe (2015), to name just a few. Baele, Bekaert, and Inghelbrecht

(2010) empirically analyze the determinants of the stock-bond return comovement. Flecken-

stein, Longstaff, and Lustig (2016) study the pricing of deflation risk using market prices of

inflation-linked derivatives. Applying a wide range of empirical tests, Duffee (2018a,b) argues

that a large fraction of the time series variation in nominal yields is explained by variation

in real yields, as opposed to variation in expected inflation. He argues that this is at odds

with standard asset pricing models like, e.g., those of the long-run risk type. As we show in

our analysis, incomplete information and Bayesian learning, by inducing time variation in

the correlation between expected inflation and real yields, help to at least partly resolve this

issue.

Through the re-interpretation of our state variables as measures of time-varying disaster

risk, our paper is also related to this area of research. Rietz (1988) and Barro (2006, 2009)

rationalize a high equity premium in the disaster risk framework. Extensions of their basic

model are studied by Chen, Joslin, and Tran (2012) and Julliard and Ghosh (2012), among

others. Constantinides (2008) criticizes that historically consumption disasters rather unfold

over several years instead of just one point in time. The assumption of extreme jumps is
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also questioned by Backus, Chernov, and Martin (2011). As a response, Branger, Kraft, and

Meinerding (2016) combine disaster risk and long-run risk and show that the equity premium

puzzle can still be solved with multi-period disasters. Similarly, Gabaix (2012), Wachter

(2013), and Tsai and Wachter (2015) analyze models with time-varying jump intensities and

recursive preferences. Our results imply that the disaster risk paradigm may be extended

towards an explanation of the time-varying stock-bond return correlation, when the effect

of inflation on real asset prices is captured properly. Finally, in this regard, our paper may

also contribute to the discussion about “dark matter” in asset prices started by Chen, Dou,

and Kogan (2020) in the sense that a large fraction of this dark matter may be attributed

to uncertainty about extreme inflation.

3 Fundamental Dynamics

3.1 Consumption and inflation

The two fundamental sources of risk in our model are aggregate consumption and inflation.

In the baseline version without inflation, we assume that log aggregate real consumption,

lnC, follows the process

d lnCt = µC(St)dt+ σCdWC
t . (1)

WC is a standard Wiener process, the volatility σC is constant. The conditional drift rate

µC(St) is stochastic and follows a continuous-time Markov chain whose current state is de-

noted by St. There are n states (indexed by i = 1, . . . , n), with state-dependent drifts µCi .

The state transitions of the Markov chain are governed by counting processes whose intensi-

ties are collected in the (n×n)-matrix Λ = (λij)i,j=1,...,n. Following the usual convention, we

set the diagonal elements λii of this matrix equal to −
∑

j 6=i λij so that the rows of Λ sum

to zero. In our benchmark empirical case, we will have n = 2.

In the full model, the joint dynamics of log aggregate real consumption and the log price
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level π are given as

d lnCt = µC(St) dt+ σC
(√

1− ρ2 dWC
t + ρ dW π

t

)
dπt = µπ(St) dt+ σπ dW π

t .
(2)

Here WC and W π are the (independent) components of a standard bivariate Wiener process.

The dynamics in (2) imply that the increments to lnC and to π are correlated with correlation

parameter ρ. The volatilities σC and σπ are assumed constant. The conditional drift rates

µC(St) and µπ(St) now follow a bivariate continuous-time Markov chain whose current state

is again denoted by St. Keeping the rest of the notation as above, the number of states in

the full model will later turn out to be n = 4.

We will often use the vector representation of the above dynamics, which can be written

as d lnCt

dπt

 = µ(St) dt+ Σ dWt

with

µ(St) =

µC(St)

µπ(St)

 , Σ =

σC√1− ρ2 σCρ

0 σπ

 , dWt =

dWC
t

dW π
t

 .

3.2 Markov chain estimation

To estimate the dynamics of the fundamentals we use quarterly real consumption growth

rates from NIPA and quarterly inflation rates constructed according to the Piazzesi and

Schneider (2006) mechanism.3 Our sample period ranges from 1947Q1 to 2014Q1 and repre-

sents the longest period for which quarterly data are available.4 Figure 1 shows time series

3The choice of this inflation time series is in line with the literature on consumption-based asset pricing
with a focus on inflation risk, with papers like Song (2017), David and Veronesi (2013), and Burkhardt and
Hasseltoft (2012) as examples. For a detailed discussion of this issue, we refer the reader to Piazzesi and
Schneider (2006).

4We have performed the estimation also with alternative samples to compare our findings to those stated
in other papers. These results are discussed in Section 6.1. Besides, we have also estimated various constraint
versions of the models in which the number of parameters is reduced. This does not change any of our results
qualitatively. Details on these constraint models are presented in Section 6.2.
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plots of the data.

Based on these data for consumption and inflation we estimate the two models (1) and

(2) using maximum likelihood.5 We assume a constant variance-covariance matrix and only

allow for time-varying drifts. Instead of the matrix of transition intensities Λ, the estimation

gives us an (n × n)-matrix Q = (qij)i,j=1...,n of transition probabilities, which are linked to

the intensities via λij = − log(1− qij) for j 6= i. The diagonal elements qii of the transition

probability matrix are set such that the rows sum to 1. Standard errors for the parameter

estimates are computed via a standard block bootstrap with a block length of ten quarters6

with overlapping blocks and 5,000 repetitions.

The results for the univariate case are presented in Table 1. The first important finding

is that, based on the Bayes Information Criterion (BIC), the algorithm clearly identifies two

regimes with values for expected consumption growth of 0.585 and −0.45 percentage points

per quarter, respectively. Moreover, a Wald test based on the bootstrapped standard errors

strongly rejects the null hypothesis that these two values are equal with a p-value of 0.003.

We regard this test as clear evidence that the conditional mean of consumption growth is

time-varying, which is the first key contribution of our paper.

Following the seminal publication by Bansal and Yaron (2004), many papers have dealt

with the issue of detecting such time variation and verifying this key assumption of the

long-run risk model. Most prominently, Beeler and Campbell (2012) argue that the long-run

risk model fails to match a series of asset pricing moments in the data, for instance it over-

states the predictability of stock returns for consumption and dividend growth and for stock

return volatility. Bansal, Kiku, and Yaron (2012) reply to this criticism and provide a set of

arguments in support of long-run risk models, for instance by fitting various ARMA models

to combined pre- and post-war US consumption data. In a similar spirit, Schorfheide, Song,

and Yaron (2018) document and analyze the persistent component in expected consumption

growth employing sophisticated Bayesian mixed frequency techniques.

We contribute to this literature by reducing the debate to its very core. Our Markov

chain specification with two states for expected consumption growth should be regarded as

5For details about the estimation procedure, see Online Appendix A.
6Varying the block length does not affect the results.
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the smallest possible deviation from a model with constant expected growth, and the statis-

tical test rejects the latter at any conventional significance level. We have further repeated

the test with both subsamples of the quarterly post-war data and longer samples of annual

data, with our key finding being confirmed in all cases. We regard this as independent, stand-

alone evidence that the key assumption of the long-run risk model, namely the existence of

non-negligible time variation in expected consumption growth, is strongly supported by the

data and can be regarded as a stylized empirical fact.

Adding inflation to the model, the estimation results change significantly (see Table 2).

For the bivariate model we identify four regimes: high expected growth–medium expected

inflation (state 1), medium expected growth–low expected inflation (state 2), low expected

growth–high expected inflation (state 3), and negative expected growth–negative expected

inflation (state 4). The estimated transition probabilities imply that state 1 lasts for around

11 quarters on average, while the average time spent in state 2 is 33 quarters.7 The other two

states are not very persistent with an average occupation time of around 6 and 3 quarters,

respectively. Most of the time, the economy is thus in state 1 or 2, but it is the rare states

3 and 4 which are very important in the context of asset pricing, since they feature low (or

even negative) expected consumption growth. State 3 with high expected inflation and low

expected real growth can be labeled “stagflation”, whereas in state 4 the expected change

in the price level is negative, i.e., there is deflation on average. With a p-value of 0.005, the

Wald test again strongly rejects the null hypothesis of equal expected consumption growth

across states.

Table 3 reports unconditional moments of consumption and inflation in the data and in

the estimated time series model represented by system (2) above. Note that the maximum

likelihood estimation does not explicitly target these moments. Still, the general fit of the

time series model is good. Only the autocorrelations of consumption growth in the model

are a little too low, due to the rather simple Markov chain structure.

A final plausibility check for our results is provided in Figures 2 and 3, where we plot the

time series of estimated expected consumption growth and expected inflation resulting from

7Transforming probabilities into intensities via λij = − log(1− qij), it follows that the average time spent
in state i is given by − 1∑n

j=1,j 6=i log(1−qij)
.
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our Markov chain estimation, next to the analogous measures from the Survey of Professional

Forecasters (SPF). As one can see from these graphs, our expectations time series fit the

SPF time series pretty well, in particular for inflation.

3.3 Macroeconomic interpretation

We want to briefly discuss possible macroeconomic interpretations of our time series model.

In particular, the time variation in the correlation between expected consumption growth

and expected inflation, which our model produces, deserves further attention. In traditional

New-Keynesian macroeconomic models, business cycle fluctuations are largely driven by

demand shocks. Such shocks push prices and output in the same direction, and we should

expect mostly positive comovement between realized output growth and realized inflation.

Equating output with consumption, State 1 of our estimated model could then ex-post be

interpreted as the result of a sequence of positive demand shocks, whereas State 2 would

reflect a rather calm period without such shocks. A deflationary episode like State 4 could,

in principle, emerge from a sequence of strongly negative demand shocks. Indeed, during the

recent period with interest rates at or even below the zero lower bound, policymakers were

worried that households and firms expect such a streak of negative demand shocks, leading

into a so-called deflationary spiral. A high average inflation state like State 3 in our model

could only be justified by a sequence of very large supply shocks. In a recent paper, Ermolov

(2018) incorporates this reasoning of demand versus supply shocks and the resulting time-

varying comovement of realized consumption growth and inflation in an asset pricing model

with habit formation preferences.

Expected consumption growth has been studied intensively in long-run risk models for

(real and nominal) asset pricing. In a number of such papers, e.g., in Piazzesi and Schneider

(2006) and Wachter (2006), the authors argue that a negative correlation between realized

inflation and expected consumption growth is generally necessary to generate an upward-

sloping nominal term structure. Such a negative correlation may arise in our model when

State 3 becomes more likely. According to this line of argument, investors require a premium

for holding nominal bonds if positive inflation surprises (i.e., negative bond returns) are
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associated with low expected consumption growth.

Turning the focus towards expected inflation, clearly the stance of monetary policy comes

into play. Our model is deliberately silent about monetary policy, but it seems natural to draw

a link from our expected inflation regimes to (highly) persistent changes in monetary policy.

For instance, Erceg and Levin (2003) develop a DSGE model in which households disentangle

persistent and transitory shifts in the monetary policy rule through filtering. Their calibrated

model matches the dynamics of output and inflation, in particular through the Volcker

disinflation period. Cogley and Sbordone (2008) make a similar point, albeit without learning.

Their paper includes an estimate of trend inflation that resembles our expected inflation in

Figure 2. Rudebusch and Swanson (2012) analyze the asset pricing properties of a DSGE

model with recursive preferences and a nominal long-run risk component, in the sense that

the central bank’s long-run inflation objective may vary over time. They show that their

model can reproduce many stylized facts about equity and term premia.

Adding fiscal policy to the picture, Bianchi and Ilut (2017) analyze regime switching

in the fiscal/monetary policy mix. They argue that the fiscal authority was in the lead

in the 1960s and 1970s, with only an accommodating role for monetary policy, whereas

the relation turned around in the 1980s. According to the authors, it is indeed a regime

switch that explains the events in the early 1980s, as opposed to a sequence of shocks.

The fiscal/monetary narrative is also in line with earlier studies on New-Keynesian models

with time-varying Taylor rule coefficients like Clarida, Gali, and Gertler (2000) and Lubik

and Schorfheide (2004). The paper of Duffee (2018a) can also be seen in this tradition. He

analyzes to what extent shocks to expected inflation can explain shocks to nominal bond

yields. Time variation in the fiscal/monetary policy mix is also at the heart of the “stepping

on a rake” narrative that has been prominently discussed by Sims (2011). In an environment

of uncertainty about future fiscal policy, policy-generated increases in the nominal interest

rate increase rather than reduce inflation.

This type of idea is extended in the direction of asset pricing by Song (2017), who

distinguishes between procyclical and countercyclical inflation shocks and between active

and passive monetary policy. There is no unique mapping from the states in his model
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to those in ours, but, for instance, State 1 in our model can roughly be identified with a

regime characterized by countercyclical inflation shocks and passive monetary policy, whereas

State 2 resembles a regime with procyclical shocks and active monetary policy. Similarly,

Campbell, Pflueger, and Viceira (2014) attribute changes in the pricing of nominal bonds

to a shift towards a more anti-inflationary US monetary policy around 1980 and and a shift

in the persistence of monetary policy and shocks to the inflation target around 2000. These

models, however, do not have much to say regarding the rather rare States 3 and 4 from our

estimation.

4 Asset Pricing Model

Long-run risk models with time-varying expected consumption growth were designed to

explain the time series behavior of asset prices and returns. In the following, we will therefore

embed the dynamics estimated in the previous section into a state-of-the-art asset pricing

model with recursive preferences and learning. Having inflation in the model allows us to

analyze the returns of stocks and nominal bonds jointly. The quantitative results presented in

Section 5 are based on the parameter estimates from the benchmark specification in Table 2.8

4.1 Preferences

The economy is populated by an infinitely-lived representative investor with stochastic dif-

ferential utility as introduced by Duffie and Epstein (1992b). The investor has the indirect

utility function

J(Ct, p̂1t, . . . , p̂nt) = Et

[∫ ∞
t

f(Cs, J(Cs, p̂1s, . . . , p̂ns))ds

]
, (3)

where the aggregator f is given by

f(C, J) =
βC1− 1

ψ(
1− 1

ψ

) [
(1− γ)J

] 1
θ
−1
− βθJ.

8Alternative parametrizations are discussed in Section 6 below.
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In (3), p̂jt denotes the probability of being in state j which the agent has to filter from the data

(see next section). γ, ψ, and β represent the degree of relative risk aversion, the elasticity

of intertemporal substitution (EIS), and the subjective time preference rate, respectively,

where we we assume γ 6= 1 and ψ 6= 1. Furthermore, θ = 1−γ
1− 1

ψ

. The special case of time-

separable CRRA preferences is represented by the restriction γ = ψ−1, which implies θ = 1.

Throughout the paper, we will set γ = 10, ψ = 1.7, and β = 0.02.9 With this parameter

choice, the agent has a preference for early resolution of uncertainty, since γ > ψ−1.

4.2 Filtering

We assume that the representative agent cannot observe the current state St (and thus does

not have perfect knowledge about µC(St) and µπ(St)). Instead she has to filter her estimates

from the data.10 Incomplete information generates an additional layer of uncertainty that

will turn out to be highly relevant for our results. Besides the risk to switch to a bad state

next period, which would also be present in a full information model, we add the uncertainty

about the current regime and thus about the probability of switching to a bad regime.11

Mathematically, there are two filtrations, F and G, where F is generated by the processes

(Ct)t, (πt)t and (St)t, whereas G ⊂ F is generated by the processes (Ct)t and (πt)t only. The

conditional expectations of the drifts given the investor’s information, µ̂Ct and µ̂πt , are given

as

µ̂Ct = E
[
µC(St)|Gt

]
=

n∑
i=1

p̂itµ
C
i

and

µ̂πt = E [µπ(St)|Gt] =
n∑
i=1

p̂itµ
π
i .

Here p̂it = E
[
1{St=i}|Gt

]
denotes the subjective conditional probability of being in state

i at time t. As indicated by the structure of the indirect utility in (3), these conditional

9A nested version of our model with CRRA preferences (θ = 1) is discussed in Section 5.5 below.
10As pointed out in the introduction and as it is standard in the literature, we assume that the represen-

tative agent knows the structural parameters of the model. The only thing she does not know is the current
state of the economy.

11In Section 5.6 we compare our results to those from a nested model with full information, in which the
agent can observe the economic state at any point in time.
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probabilities represent the state variables in our economy. Since probabilities always sum up

to 1, we will have n− 1 state variables p̂1, . . . , p̂n−1, whose support is the standard simplex

in Rn−1.

Consumption growth and inflation realizations are observable and serve as a signal for

the aggregate state. The dynamics of p̂it follow from the so-called Wonham filter and are

given by

dp̂it =

(
λiip̂it +

∑
j 6=i

λjip̂jt

)
dt+ p̂it

µCi
µπi

− n∑
j=1

p̂jt

µCj
µπj

′ (Σ′)−1
dŴC

t

dŴ π
t

 (4)

with the “subjective” Brownian motionsdŴC
t

dŴ π
t

 = Σ−1

µCi
µπi

− n∑
j=1

p̂jt

µCj
µπj

 dt+

dWC
t

dW π
t

 .

A proof of the filtering equation based on Theorem 9.1 of Liptser and Shiryaev (2001) and

a discussion of its properties are provided in Online Appendix B.

In the context of our analysis it is essential to note that the update in the estimated

probability p̂i depends on both signals, i.e., on both realized consumption growth and realized

inflation. Inflation observations have an impact on the perceived probability of being in state

i and thus on the conditional expected consumption growth rate. This will be the key driver

for our asset pricing results described below.

Figure 4 shows the filtered estimates for the probabilities of the four states, i.e., the

estimates the investor would have computed based on information up to and including time

t. These estimates are the key quantities analyzed in the following subsection. They will also

serve as the explanatory variables in our regression analyses in Section 5. First of all, there

is considerable variation in each of the four time series, i.e., the probability of being in state

i changes substantially over time. State 1 with the highest expected real growth rate, but

also above-average inflation is considered most likely by the investor during the 1960s and

much of the 1970s. The investor furthermore perceives a high probability to be in the regime

2 with low inflation and stable growth for extended periods during the 1950s and much of
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the 1990s, but this probability is very low during the 1970s. Not surprisingly, there is a very

high probability for the high inflation state 3 during the latter period. The deflation state 4

is seen as very likely in the beginning of the sample right after the war and during the Great

Recession.

4.3 Real Pricing Kernel and Wealth-Consumption Ratio

As shown in Duffie and Epstein (1992a), the real pricing kernel depends on the log wealth-

consumption ratio v and is given by

ξt = C−γt e
−βθt+(θ−1)

(
t∫
0

e−vudu+vt

)
.

The wealth-consumption ratio I ≡ ev depends on the estimated expected consumption

growth µ̂C , and therefore in particular on the estimated probabilities p̂i. It solves a nonlinear

partial differential equation given in Online Appendix C.1. A proof and details concerning

the numerical solution using a Chebyshev polynomial approximation are also presented in

Online Appendix C.1.

Given a solution for I, the pricing kernel has dynamics

dξt
ξt

= −βθdt− (1− θ)I−1 dt− γ dCt
Ct

+
1

2
γ2(σC)2dt− (1− θ)

n−1∑
i=1

Ip̂i
I
dp̂it

+
1

2

n−1∑
i=1

n−1∑
j=1

(θ − 1)

[
Ip̂ip̂j
I

+ (θ − 2)

(
Ip̂iIp̂j
I2

)]
σp̂iσ

′
p̂j
dt− γ(θ − 1)

n−1∑
i=1

Ip̂i
I
σc,p̂i dt

with the dynamics of dp̂it given in Equation (4). Importantly, shocks to the state variables

p̂i affect the pricing kernel. Since these shocks are themselves driven by both consumption

and inflation observations, realized inflation indirectly enters the pricing kernel through the

learning mechanism.
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4.4 Pricing the Assets in the Economy

We are mainly interested in two types of assets, equity and nominal bonds. Equity is defined

as a claim to real dividends. When defining dividends, one has to be careful not to alter

the informational setup of the model. Dividends are observable, and if they provided a

non-redundant signal about the state of the economy, this would affect the initial filtering

problem. Technically, this requires the two systems of equationsdŴC
t

dŴ π
t

 = Σ−1

µCi
µπi

− n∑
j=1

p̂jt

µCj
µπj

 dt+

dWC
t

dW π
t


and 

dŴC
t

dŴ π
t

dŴD
t

 = Σ−1∗



µCi

µπi

µDi

−
n∑
j=1

p̂jt


µCj

µπj

µDj


 dt+


dWC

t

dW π
t

dWD
t


to yield the same solution for dŴC

t and dŴ π
t . Here the superscript D denotes terms related

to dividend dynamics and Σ∗Σ
′
∗ is the covariance matrix of innovations to lnC, π and lnD.

The above condition for the redundance of dividends is satisfied by assuming

d lnDt = µ̄ dt+ φ

(
n∑
i=1

(µCi − µ̄)p̂it

)
dt+ φσC

(√
1− ρ2 dŴC

t + ρ dŴ π
t

)
.

Similar to Bansal and Yaron (2004), the deviation of the drift from its long-term average µ̄

is levered by a factor of φ, and we assume φ = 5.12

Let ω denote the log price-dividend ratio. Starting from the Euler equation for the price

of the dividend claim, we can apply the Feynman-Kac formula to g(ξ,D, ω) ≡ ξDeω. This

yields
Ag(ξ,D, ω)

g(ξ,D, ω)
+ e−ω = 0,

where A denotes the infinitesimal generator. Using Ito’s Lemma, we can translate this equa-

12The results concerning the stock-bond correlation remain qualitatively the same when φ is set to a lower
value.

21

Electronic copy available at: https://ssrn.com/abstract=4001498



tion into a PDE for ω as a function of the filtered probabilities p̂. This PDE, together with

details regarding its derivation, is given in Online Appendix C.3. We solve this PDE again

numerically using a Chebyshev approximation.

A nominal bond pays off one unit of money at maturity T , which, in real terms, is equal

to exp
(
−
∫ T
t
dπsds

)
= exp(πt − πT ). The price of a nominal bond at time t is thus equal to

B$,T
t = Et

[
ξT
ξt

exp(πt − πT )

]
.

Equivalently, one can define the nominal pricing kernel as
ξ$T
ξt$
≡ ξT

ξt
exp(πt − πT ) and rewrite

the pricing formula as

B$,T
t = Et

[
ξ$T
ξt$

]
.

The dynamics of the nominal pricing kernel then follow from Ito’s lemma:

dξ$t
ξ$t

=
dξt
ξt
− dπt +

1

2
d[π]t −

d[ξ, π]t
ξt

.

Importantly, the nominal risk-free short rate, i.e., the negative of the drift of ξ$, is

not just the sum of the real short rate and expected inflation, but involves the covariation

between the real pricing kernel and inflation, d[ξ, π] (and the quadratic variation of π). The

covariation is nonzero if inflation shocks affect the real pricing kernel, as they do in our

model, and can be interpreted as an equilibrium inflation risk premium.

The Euler equation and the Feynman-Kac formula applied to H(ξ$t , b
T,$
t ) = ξ$t e

bT,$t yield

a partial differential equation for the (log) price bT,$t ≡ lnBT,$
t of a nominal zero coupon bond.

Details on this partial differential equation and its solution are given in Online Appendix C.5.
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5 Results

5.1 Dividend-price ratios

It is instructive to start the analysis by comparing the dividend-price ratio generated by

our model with the one observed in the data. To this end, we plug the historical quarterly

consumption and inflation time series and our estimated state variables p̂i into the numerical

solution of the model.

Figure 5 shows the model-implied dividend-price ratio together with the historical

dividend-price ratio of the S&P 500 index. The correlation between the two time series

is 0.45, and they share all major upward and downward trends. Given that we have not used

any asset price data in the estimation, we consider this a pretty strong result. We take this

as a first piece of evidence that our proposed state variables p̂i, embedded into an otherwise

standard asset pricing model featuring recursive Epstein-Zin preferences, indeed capture the

time variation in valuation ratios well.

5.2 Extreme inflation as a signal about disaster risk

Motivated by the similarity between model-implied and empirical dividend-price ratios, we

now turn towards a deeper analysis of the time series pattern of the state variables in our

model. The main result of this section is depicted in Figures 6 and 7. The dashed red line

in both graphs represents the sum of the filtered probabilities p̂3 + p̂4 from our model. To

obtain these filtered probabilities, we plug realized consumption growth and inflation data

into our filtering equations and compute the probabilities, which a Bayesian learner would

have obtained at each point in time.

We then compare these probabilities to two other time series. The first one is the implied

disaster intensity shown in Figure 8 (p. 1017) in the paper of Wachter (2013).13 She reverse-

engineers this quantity from asset prices based on her model, where the intensity of rare

consumption disasters follows a mean-reverting process and serves as a state variable. Given

13We thank Jessica Wachter for sharing her data with us.
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the parameters of her model, she recovers monthly implied values for this state variable

from a smoothed time series of historical S&P 500 price-earnings ratios. To make her series

comparable to our estimates we take averages of the monthly implied disaster intensities

over each quarter. Moreover, the plot shows 5-year moving averages of p̂3 + p̂4 in order to

account for the smoothing in Wachter (2013).14

The second series is the so-called “Anxious Index” obtained from the SPF. This index,

which is available only from 1968 onwards, gives the probability that survey participants

attach to the event of real GDP growth being negative in the quarter following the quarter

in which the survey is taken. To facilitate the comparison, we lag the Anxious Index by one

quarter in the figure.

The two series in Figure 6 exhibit a correlation of 0.88 over our sample period covering

almost 70 years, and the correlation in Figure 7 is 0.52. These high levels of correlation

are even more remarkable, given that the series are computed from very different data and

using rather different approaches. Furthermore, they share all important trends, peaks, and

troughs. The time series of Wachter (2013) shows up a pronounced downturn during the

1950s, followed by rather low values in the 1960s, a sharp increase during the 1970s up to

around 1982, and then, basically following the same kind of cycle, we observe the sharp

decline and low level during the Great Moderation, followed by the recent spike at the

beginning of the Great Recession. The SPF time series is more or less reflecting the business

cycle, but our probabilities p̂3 + p̂4 also pick up most of the recession periods, except the

one in the early 1990s. In particular, both the high inflation regime and the deflation regime

and their respective probabilities are relevant here. For instance, a look at the time series

plots of the filtered probabilities in Figure 4 shows that the peak of p̂3 + p̂4 in the early

1980’s can be traced back to the high probability of the high inflation regime (state 3) over

that period, and the deflation regime prevails towards both the beginning and the end of the

sample period. This result strongly supports the notion that inflation can serve as a signal

for expected real consumption growth in that it allows to quantify the probability of large

negative future consumption shocks.

14More precisely, for her reverse engineering exercise, she uses the ratio of prices to the previous 10 years
of earnings. The two time series depicted in Figure 6 both exhibit an autocorrelation of around 0.99.
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To check whether it is indeed inflation that is important here, and not just certain special

characteristics of the consumption time series, we redo the analysis based on only consump-

tion data using the univariate baseline model presented in the beginning. Figure 8 presents

the time series of the estimated probability for the state with low expected growth. Already

from a first rough inspection it becomes clear that the disaster intensity is matched much

less precisely than before. The correlation between the series based on Wachter (2013) and

the filtered probability of being in the low expected growth state derived from consumption

only goes down to roughly 0.33. Even more importantly, the series of estimated probabilities

for low consumption growth is now substantially off during basically all periods when the

risk of the economy being in a bad state is actually high, e.g., during most of the 1970’s and

1980’s and also to a certain degree towards the end of the sample period. We interpret these

findings as a clear indication that information about inflation in necessary to obtain reliable

estimates for the probability of low real growth.

We chose these two time series for a comparison with our model, because their inter-

pretation as “probabilities” (of very low consumption growth) is more in line with our state

variables p̂i than, for instance, time-varying conditional means of consumption growth, which

are typically discussed in long-run risk papers. Nevertheless, besides a simple “sanity check”

for our filtered probabilities, the pictures also provide additional insights on the asset pricing

literature featuring rare disasters and long-run risk.

Our model does not explicitly feature “disaster risk”. Instead, our time-varying expected

consumption growth is more in line with a long-run risk interpretation. However, Constan-

tinides (2008), among others, argues that it is empirically very challenging to distinguish

models with long-run risk from those featuring time-varying rare disaster risk. Branger,

Kraft, and Meinerding (2016) support this argument based on the international panel of

consumption growth data used by Barro (2006) and others to calibrate disaster risk models.

The authors document that the null hypothesis of these data having been generated by a

Markov switching model similar to ours cannot be rejected at conventional significance levels.

Similarly, one can argue that the asset pricing model of Wachter (2013) is not a pure

disaster model either, but rather a mixture of long-run risk and disaster model. The expected
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consumption growth rate in her model is time-varying and a linear function of the stochastic

disaster intensity. Consequently, the labeling of the time series plotted in Figure 6 as “im-

plied disaster probability” is disputable. Our comparison shows that it can equally well be

interpreted as a long-run risk time series.

5.3 Conditional stock return volatilities

Given that Wachter (2013) documents the important role of time-varying disaster intensities

for the dynamics of second moments of returns, we continue the discussion of our asset

pricing results by analyzing second moments.

We proceed in the following way. We take the time series of filtered probabilities as shown

in Figure 1, plug them into our model solution and compute model-implied real prices for

equity and for nominal bonds with five years to maturity. From these time series of real prices

we compute model-implied quarterly real log returns for these two assets. More precisely, with

St and Bt(20) denoting the price of the equity claim and the 20-quarter (five-year) nominal

zero coupon bond in quarter t, the returns from quarter t to quarter t + 1 are computed

as ln(St+1 + Dt+1) − lnSt and lnBt+1(19) − lnBt(20). We then add log realized inflation

to the real returns to obtain nominal returns. The corresponding quantities in the data are

quarterly returns of the CRSP value-weighted index and log bond returns computed from the

US Treasury yield curve data provided by Gürkaynak, Sack, and Wright (2007)15 from 1962

on. As the final input to our analyses we compute 20-quarter rolling window return volatilities

and correlations and regress them on (the logarithm of) 20-quarter moving averages of the

relevant state probabilities p̂. Note that these right-hand variables are the same for model

and data in all the regressions reported below.

For the regressions in the model and in the data we state Newey-West adjusted t-

statistics with 20 lags, but in addition we also provide confidence intervals derived from

a Monte Carlo simulation of the model (shown in square brackets below the respective

coefficient). Here we first simulate the model given the dynamics for the fundamentals and

15The data are available for download at http://www.federalreserve.gov/pubs/feds/2006/200628/

200628abs.html.
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the filtered probabilities in Equations (1) to (4) with monthly time increments over a time

span of 68 years, corresponding to the length of our sample period for the macroeconomic

variables. These monthly data are then aggregated to quarterly and used in the regressions

in the same way as described before, i.e., we only use the later 50 years of each sample path,

corresponding to the period over which financial market data are available. We repeat this

exercise 5,000 times and then take the 5% and the 95% quantile to to obtain 90% confidence

intervals.16

A look at Figure 9 shows that our model nicely reproduces the patterns of state-

dependent stock return volatilities in the data along two important dimensions. First, the

estimated probabilities for the states with low consumption growth, p̂3+p̂4, exhibit a positive

covariation with stock return volatilities. Second, this relationship is nonlinear and concave,

both in the model and in the data. It is worth noting that the second result confirms another

prediction from the model of Wachter (2013), namely that stock market volatility is a con-

cave function of time-varying disaster risk.17 Figure 10 shows the time series of volatilities

in the data and in the model.

Motivated by the visual evidence, we regress stock return volatilities on the logarithm

of the moving averages of the relevant state probabilities p̂. Table 4 reports the results. The

regression coefficients are positive and significant in both model and data. The R2 is also

high in both model and data, and the R2 obtained from the data is within the simulated

confidence bounds for the model.18 Moreover, almost all of the regression coefficients from

the data are within the simulated confidence bounds for the model. The only exception with

respect to this last point is the low constant in our model regressions, which indicates that

the model-implied unconditional stock return volatility is somewhat on the low side.19

Overall, we conclude that the relation between the conditional probability of low con-

16Due to the discretization error in the simulation it sometimes happens that the sum of the filtered
probabilities exceeds 1 by a very small amount. In that case we rescale the filtered probabilities such that
they exactly sum to 1.

17See, for instance, Figure 4 (p. 1002) in Wachter (2013).
18Not surprisingly, the model R2 is generally higher than that found in the data, which is due to the

stylized structure of the model, where the relations between certain variables are naturally “cleaner” than
in the data.

19We discuss this issue in detail in Section 6.3 below.
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sumption growth (given by the sum p̂3 + p̂4) and stock market volatility is indeed nonlinear,

and our model reproduces this stylized fact. Finally, given that our estimation is based on two

macro time series only, the goodness of fit in Figure 10 is also remarkable, with a correlation

between the data and the model-implied time series of 0.47.

To get an intuition for how our model generates these results, a look at the filtering

equation (4) is instructive. The nonlinear expressions in front of the Wiener processes make

p̂3 and p̂4 fluctuate a lot more when they are at intermediate levels as compared to when

they are close to 0 or 1. Moreover, the unconditional averages of both p̂3 and p̂4 are rather

low, so that higher values for p̂3 and p̂4 more or less automatically go together with higher

fluctuations in these quantities. States 3 and 4 are the least persistent in our estimation, so

that when the agent currently has a high estimate for the probability of being in one of these

two states, this probability is likely to decrease again quickly.

Altogether, there is thus more movement in state variables when the likelihood of low

consumption growth is large. This in turn means that a high likelihood of low consumption

growth goes together with a high volatility of the price-dividend ratio, which is a function of

these state variables. In sum, the higher the likelihood of low consumption growth, the higher

the equity return volatility. Note that our model of course also reproduces the relevance of

the probability of being in a good state, i.e., of the sum p̂1 + p̂2, for stock return volatilities.

The coefficients in the data and in the model are both significantly negative, which follows

from the simple fact that p̂1 + p̂2 = 1− p̂3 − p̂4.

Finally, Table 5 presents the results from additional regressions to investigate the notion

of a signaling role of inflation for second moments of stock returns. Here we regress the same

left-hand side variable as before on rolling averages of what we call the extreme entropy of

the state distribution (defined as p̂3 ln p̂3 + p̂4 ln p̂4). We propose this quantity as another

proxy for uncertainty about low consumption growth. We also show results for expected

inflation (defined as
∑4

i=1 µ
π
i p̂i) and realized inflation as explanatory variables.

The results for extreme entropy can be interpreted in the way that uncertainty about

extreme inflation and low consumption growth is a main driver of stock return volatilities,

and our model provides an economic equilibrium mechanism to explain this stylized fact.
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On the other hand, expected and realized inflation as the right-hand side variables do not

have explanatory power in the data and are only marginally significant in the model as well

(the simulated confidence bounds include zero). This provides additional support for our

model. Inflation itself cannot explain stock return volatilities, unless it is decomposed into

components capturing the risk of very high inflation (represented by p̂3) and of a deflationary

regime (represented by p̂4), respectively. Our Markov chain estimation implies that inflation

is positively correlated with p̂3, but negatively correlated with p̂4. Depending on the amount

of observations from the deflation regime along a given sample path, the coefficient from a

regression of equity return volatility on inflation in model-generated data can thus be positive

or negative.

Recursive preferences are a key ingredient of our model. With respect to this feature, our

paper is closely related to recent studies like Benzoni, Collin-Dufresne, and Goldstein (2011)

and Drechsler (2013), where it is shown that models featuring recursive preferences, coupled

with learning about fundamentals, are very well able to match stylized facts about stock

return volatility, in particular in terms of its dynamics (i.e., capturing the predictive power

of implied volatilities, variance risk premia, and other related conditional quantities).20

5.4 Conditional stock-bond return correlations

For the results concerning stock market volatility, it is the total estimated probability of

being in a bad state for expected consumption growth, given by the sum p̂3 + p̂4, which is

relevant. When we now look at the stock-bond return correlation, the distinction between the

two bad consumption states with respect to expected inflation becomes relevant. Figure 11

shows the time series of correlation in the data and in the model. Tables 6 and 7 contain the

results of our regression analyses, Figure 12 presents the corresponding scatter plots.21

The most important result here is that both in the model and in the data the estimated

coefficient for log(p̂3) is positive (and highly significant), while the coefficient for log(p̂4) is

20The impact of preferences is also analyzed in more detail in Section 5.5 below.
21Note that we regress ’raw’ correlation ρ on the state variables. Since correlation is bounded between −1

and 1, transformations like ρ̃ = ln( 1+ρ
1−ρ ) might seem warranted to guarantee that the regressions are well

specified. Rerunning all our regressions using this transformation leaves the results qualitatively unchanged.
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negative (and also highly significant). Given that we do not use any asset price information

to estimate the fundamental dynamics in our model, the similarity between model and data

appears again remarkable. Moreover, the scatter plots again reveal a pronounced nonlinearity

in the relation between correlation and the filtered probabilities, both in the model and in

the data. Finally, the goodness of fit in Figure 11 is also very pronounced. The correlation

between the data and the model-implied time series is 0.44 in the upper picture.

Our benchmark data is the sample of interpolated term structures of U.S. Treasury

bonds provided by Gürkaynak, Sack, and Wright (2007), which is shorter than our macro

data sample. Given that the latter starts in 1947, we can in principle compute model-implied

asset returns for the whole time period from 1947 to 2014. As a robustness check, we there-

fore determine the stock-bond correlation in the data from an alternative sample, namely

the holding period return of the Ibbotson U.S. Long-Term Government Bond Index which

measures the performance of 20-year maturity U.S. Treasury bonds. These index returns are

available from 1926 onwards, but since our macro estimation uses quarterly data after 1947,

we constrain ourselves to the sample from 1947 until 2014.

The lower graph in Figure 11 shows the resulting time series of rolling window correla-

tions. As one can see from the figure, the model-implied correlation tracks the correlation in

the data closely also in this extended sample. The two time series have a correlation of 0.49,

i.e., they exhibit the same correlation over this longer sample as over our shorter benchmark

sample. Interestingly, in the data we now see another period with negative correlation in the

very early part of the sample, and our model captures this negative correlation as well.

The only period where our model-implied stock-bond correlation is slightly off is the

early 1990s. As can also be seen from Figure 7, our stylized time series model featuring only

consumption and inflation does not capture this recession period in the U.S., suggesting that

the economic downturn during this time is driven by factors which are beyond the scope of

our model. When we exclude the period 1991-1998 from our sample, the correlation between

model-implied and empirical stock-bond correlation goes up even further to 0.66.

What is the mechanism inside the model responsible for these patterns? First, an in-

crease in p̂3 makes it subjectively more likely for the investor that the economy is in the
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high inflation state now, and probably also over the next few quarters. This has a positive

effect on expected inflation and a negative effect on expected consumption growth across all

horizons. In this case the bond return over the next quarter is composed of a positive ’carry’

component (which is, if nothing changes, equal to the yield of the bond) and a negative

component due to an upward shift in the nominal yield curve. In general the second effect

dominates the first, so that bond prices tend to go down. Note that the upward shift in the

nominal yield curve itself is the composite of two effects: an increase in expected inflation

and a slight decrease in the level of the real yield curve. The second of these two effects is

typically negligible with recursive preferences, and therefore, the nominal yield curve shifts

upwards in response to an increase in p̂3. The stock return upon a positive shock to p̂3 de-

pends on real quantities only. A high p̂3 implies that the economy is more likely to be in a

low consumption growth regime, and stock prices tend to be low in such an environment.

Taken together, the reactions of bond and stock prices to an increase in p̂3 go in the same

direction, implying a positive correlation.

State 4 is a low expected inflation state with low expected growth, so the response of

bond prices to a high p̂4 is different. Again, there is the positive carry return. But now there

is also an additional positive return because the nominal yield curve shifts downwards in

response to a higher probability for deflation. This is because the increase in p̂4 decreases

both expected inflation and expected consumption growth across all horizons. Altogether,

the impact of a high p̂4 on bond returns is large and positive. At the same time, such a

high p̂4 signals a high likelihood of low (even negative) expected consumption growth, which

depresses equity prices. In sum, the impact of a high likelihood for the deflationary regime

is strong on both stock and bond prices, but it is of opposite signs, implying a negative

correlation between the two types of assets.

The above findings concerning the role of p̂3 and p̂4 for the conditional stock-bond

correlation are well in line with the literature. In a purely empirical paper, Baele, Bekaert,

and Inghelbrecht (2010) try to fit the correlations of daily stock and bond returns with a

multi-factor model. They find that macro factors (in particular output gap and inflation) do

not add much explanatory power when the loadings of stock and bond returns are assumed
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to be constant over time. The performance of the macro factors improves, however, in a

regime switching estimation when the loadings are allowed to switch sign. Our findings are

potentially related to this in the sense that we show that the overall risk of low expected

consumption growth, proxied by the sum p̂3 + p̂4, does not predict correlation, neither in the

model nor in the data (the confidence bounds derived from simulation include zero).

For both model and data, the regressions with extreme entropy generate the expected

result with insignificant coefficient estimates. The reason is again that this measure cap-

tures general uncertainty about bad consumption growth states. Uncertainty about being

in the deflation state, however, decreases correlation, whereas uncertainty about the high

inflation state increases it. An aggregate measure of uncertainty cannot capture these two

opposing effects adequately. Again, the R2 values in the model are on the high side due

to the somewhat stylized model structure, but the fact that the confidence bounds for the

model-based regressions contain the R2 from the data indicates that our model generates a

sensible goodness of fit.

5.5 Recursive Preferences, Money Illusion, CRRA preferences

Recursive preferences are essential to match the time-varying stock-bond correlation in our

model. We have also solved a version of our model with constant relative risk aversion

preferences, where we set the elasticity of intertemporal substitution to ψ = 1
10

so that θ = 1,

but leave the parameters that we obtain from the Markov chain estimation unchanged.

Figure 13 shows the time series of model-implied return correlations. Remarkably, the

model is no longer able to produce a negative stock-bond correlation in the 2000s. The

constrained model does not match the historical time series at all, the correlation between

model and data is even negative at −0.15. Table 8 presents results from regressions analogous

to those presented in Table 6. The constrained model generates positive and significant

regression coefficients for both p̂3 and p̂4.

To get the intuition behind this result, look again at the three components of the holding

period bond return as described in Section 5. Both the carry component and the change in

expected inflation are independent of the representative agent’s preferences, but the change
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in the real yield curve is clearly not, since real bond prices are determined in equilibrium. A

slightly higher current value of p̂3 or p̂4 results in a reduced estimate of conditional expected

consumption growth, which leads to a massive decline in the overall level of the real yield

curve in a CRRA economy. It is well known that CRRA models have a hard time matching the

empirically observed smoothness of the real risk-free rate. Altogether, in a CRRA economy

bond returns are thus positively related to both p̂3, the probability of being in a stagflation

regime, and p̂4, the probability of being in a deflationary regime.

Concerning stock returns, high values for p̂3 or p̂4 signal low expected consumption

growth, while consumption volatility is not affected. With the usual popular CRRA pa-

rameterization of γ > 1 and, consequently, ψ = γ−1 < 1, the income effect dominates the

substitution effect, and a lower expected consumption growth rate actually implies a higher

stock price. This means that stock returns will be positively related to both p̂3 and p̂4 in a

CRRA economy (and the effect is stronger for p̂4, since State 4 has the lowest expected con-

sumption growth rate). This can also be seen from Figure 14, which plots the model-implied

dividend-price ratio in the constrained CRRA model together with the historical dividend-

price ratio in the data. The two time series are actually negatively correlated. Altogether, we

can conclude that with CRRA preferences the stock-bond return correlation loads positively

on both p̂3 and p̂4, which is at odds with the data.

The above facts imply that, in order to obtain results similar to ours in a CRRA model,

one has to keep the variation in the expected consumption growth rate small enough to

mitigate the consequences of the typical counterintuitive CRRA result that prices are low in

high-growth states. This is exactly the path taken by David and Veronesi (2013). Since the

estimation in David and Veronesi (2013) relies on both asset pricing and macroeconomic data

and uses moment conditions from an asset pricing model with CRRA preferences, they find

that expected consumption growth is hardly varying across states, so they constrain it to be

equal across states in their following numerical evaluation (see p. 703 of their paper). This is

in pretty strong contrast to our estimation results presented above. We show that recursive

preferences can resolve this contradiction, i.e., with this more flexible utility representation

the problem of a counterintuitive link between fundamentals and valuation ratios vanishes.
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Moreover, in contrast to David and Veronesi (2013), we also do not need to assume any sort

of bounded rationality on the part of the representative investor.22

5.6 Full Information

In our model we make the assumption that the current state of the economy is unobservable

and has to be filtered from macro data. To see why this imperfect observability is relevant in

the context of our analysis, we also solve a version of our model with full information. The

theoretical solution is presented in Appendix D, the proof is a slight modification of the proof

in Appendix A of Branger, Kraft, and Meinerding (2016). In an economy with four states,

we obtain four possible values for the wealth-consumption ratio, for the price-dividend ratio

and for the price of a nominal bond with a given maturity.

To evaluate the model with full information, we perform the following exercise, which

is analogous to our analyses in the previous sections. Our Markov chain estimation above

gives time series of ex-post probabilities that the economy was in one of the four states at a

particular historical point in time. We assume that the state with the highest probability is

the true state. Combining this time series of states with the model solution gives us histor-

ical time series of wealth-consumption ratios, price-dividend ratios, and bond prices under

the assumption of full information. From these time series and historical consumption and

inflation shocks, we then again compute time series of model-implied returns, and from these

model-implied returns we compute rolling-window correlations and volatilities as before.

For brevity, we discuss the stock-bond return correlation results only because the failure

of a full information model becomes most evident here. Figure 15 shows the respective time

series from model-generated and empirical data. The two time series differ substantially

throughout the sample. Most importantly, the model with full information has problems to

generate the negative correlation between stock and bond returns that we see in the data in

22In addition to the constant expected consumption growth, David and Veronesi (2013) also assume that
the representative agent suffers from money illusion to make inflation enter the pricing kernel. The agent (in
their setup irrationally) bases real decisions partly on nominal variables. Basak and Yan (2010) show that,
with CRRA utility, this assumption results in a pricing kernel which is composed of the original real pricing
kernel and an adjustment for inflation. We also solved versions of our model with CRRA preferences and
money illusion, but this does not change any of the results discussed in this section.
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the most recent years.

The reason for this poor performance can be traced back to the estimated Markov chain

transition probabilities (Table 2). According to the estimation, there is a zero probability to

enter the deflationary state 4 from state 2 or 3. In an economy with full information, this

implies that the threat of entering the worst possible economic state in the next quarter is

shut down completely for about 70% of the time. In an economy with partial information, on

the other hand, there is always a nonzero subjective probability assigned to being in a state

from which the economy can slide into state 4. Consequently, the average risk of being in a

state with low expected growth is much lower in the full information economy. Moreover, in

the full information economy the price-dividend ratio of the stock is high in states 2 and 3

and low in states 1 and 4 , while it should be high in states 1 and 2 and low in states 3 and

4 in order to match the time variation in the stock-bond correlation.23

6 Robustness

6.1 Alternative samples

The finding that extreme inflation provides information about low expected real consumption

growth is, strictly speaking, of course based on the estimation for our given sample. To alle-

viate potential concerns that our results might be sample-specific, we repeat the estimation

with four alternative data sets. The first two are subsamples of our quarterly consump-

tion and inflation data starting in 1962 and 1965, respectively, which are used in David

and Veronesi (2013) and Burkhardt and Hasseltoft (2012). Moreover, we analyze monthly

US consumption and inflation data, which are available from 1959 onwards. Finally, we re-

estimate our model with GDP growth rates instead of consumption growth rates, where the

former are available on a quarterly basis starting in 1947.

Figure 16 shows the proxies for the time-varying probability of low expected consump-

tion growth obtained by applying exactly the same methodology as before to the alternative

23The exact numbers for the price-dividend ratio in the full information model are 138.9, 159.8, 150.5, and
143.2 for states 1 to 4, respectively.
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samples. More precisely, we proceed as follows. For every sample, we estimate the time series

model as defined in Equations (1) and (2). The number of states identified by the Bayes

Information Criterion is four for all samples. As in the benchmark estimation, we label the

states in which the conditional expected consumption growth rate µCi is below the uncondi-

tional average consumption growth rate as “bad states”. This refers to two of the four states

in each of the cases. We then compute the filtered probabilities p̂i for these two bad states

and add them. In the upper pictures in Figure 16, the red dashed line shows this sum. The

blue solid line is the same as in Figure 6. Finally, we also repeat the estimation without

inflation data, i.e., with only consumption or GDP data. In these cases we have only two

states, and we treat the state with the lower expected consumption growth rate as the bad

state. The filtered probability of this state is depicted in the lower row of pictures.

We can draw two conclusions from this exercise. First, recovering the time series of

implied disaster probabilities from Wachter (2013) is to a very large degree independent of

the specific sample. In each of the graphs in Panel A, the red dashed line tracks the blue

line very closely, the correlations between the two time series are in fact even higher than

for the benchmark sample (0.88, 0.90, 0.89, and 0.89, respectively). Second, the result that

the replication fails with consumption (or GDP) data only is also confirmed. The best fit is

obtained in the case with GDP instead of consumption data, but the correlation between

the two time series is only 0.51. The monthly consumption data is too noisy to replicate the

time-varying probability of low expected consumption growth.

6.2 Constrained model specifications

Besides analyzing alternative samples, one might also consider imposing more structure on

the Markov chain model. The benchmark specification has 27 free parameters to estimate,

so there may be constrained versions of the model in which the number of parameters can be

reduced without losing too much explanatory power. One may even allow for more states, but,

e.g., restrict expected consumption growth rates or expected inflation to be the same across

some of these states. Generally, the number of possible constrained models is infinitely large,

and we think that an unconstrained estimation provides the cleanest setup. Nevertheless,
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given our interpretation of states 3 and 4 as the two bad states, an obvious candidate for

a constrained model is one in which expected consumption growth is equal across the two

good states and across the two bad states, i.e. µC1 = µC2 and µC3 = µC4 . This constraint is

also justified by the fact that our estimates of the expected consumption growth rates in

the two good states and in the two bad states are relatively close together. For instance,

using the bootstrapped sample paths, an F -test yields that the joint hypothesis µC1 = µC2

and µC3 = µC4 cannot be rejected at the 10%-level. Moreover, among the many different

constrained models we have estimated, this particular one exhibits the lowest BIC value and

should thus be preferred.

Figure 17 presents the proxy for time-varying probability of low expected consumption

growth that we obtain in the constrained model. This time series is very similar to those

that were generated using the benchmark unconstrained model.24

To sum up, the finding that extreme inflation helps to recover the time-varying proba-

bility of low expected consumption growth is robust across different samples and robust to

the constraint of equal expected real growth rates in the two bad and the two good states,

respectively. If anything, the benchmark specification, on which we rely throughout the pa-

per, yields conservative estimates with respect to the correlation between our and Wachter’s

measure for the probability of being in a bad state for real growth.

6.3 Parameter variations and unconditional moments

The unconditional asset pricing moments generated by our model are computed via the

Monte Carlo simulation as described in Section 5. The results are shown in Table 9. When

interpreting the numbers, one has to keep in mind that our model is estimated only on the

basis of fundamental data for consumption and inflation, i.e., it is not calibrated to match

unconditional return moments, and that there are no additional risk factors like stochastic

volatility. So it should not come as a surprise that the model does not match the data perfectly

with respect to unconditional risk premia or volatilities. The equity premium generated by

our model, for instance, is roughly 1 percentage point and the equity return volatility is 7.5

24Moreover, none of our asset pricing findings change when we use this constrained specification.
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percentage points annually, which reflects the fact that there is relatively little variation in

the market prices of risk. The average spread between bonds with a maturity of 5 years and

those with 3 months is small on average in the data and in the model (where it is basically

equal to zero). Finally, the unconditional stock-bond correlation is matched pretty well by

the model.

A few slight modifications of the parametrization lead to substantial improvements

with respect to unconditional asset pricing moments. Besides the results for our bench-

mark parametrization, Table 9 presents unconditional moments from four such variations.

Parametrization 2 is the same as the benchmark parametrization except that we lower the ex-

pected consumption growth in states 3 and 4 by one standard error, so that now µC3 = 0.032

and µC4 = −0.407. Such a parametrization reflects results from an estimation with GDP

growth instead of consumption growth data. Parametrization 3 differs from the benchmark

parametrization in that we increase the probability of the Markov chain to remain in state

3 or 4 by one respective standard error. The new third and fourth row of the transition

matrix are then given as (0.057, 0.027, 0.916, 0.000) and (0.000, 0.137, 0.000, 0.863), respec-

tively. This reflects the fact that the bad states (in particular state 4) are relatively rare

and their persistence is thus estimated relatively imprecisely (see Table 2). The only change

in Parametrization 4 relative to the benchmark is the use of the leverage parameter φ = 8.

Finally, the column labeled “Combined” reports the results when Parametrizations 2 and 3

are applied jointly.

In all these modifications, the equity premium is substantially higher than in the bench-

mark case, reaching about 6 percentage points when Parametrizations 2 and 3 are combined,

and also the equity return volatility increases. The largest overall effect on unconditional mo-

ments can be seen in Parametrization 3. This is in line with existing research on asset pricing

models with long-run risk or disaster risk, in which parameters governing the average length

of the time spent in a low expected growth or disaster state have a very large effect on

the equity premium (see, e.g., the discussion in Branger, Kraft, and Meinerding (2016)).

When calibrating such a model to post-war consumption data only, one may considerably

underestimate this length.
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On the other hand, even with these modifications, the model falls short in generating a

reasonably large asset price volatility. For instance, the real and the nominal risk-free short

rate in our model are not volatile and not persistent enough. This is consistent with the

general failure of our model to generate a sufficiently high stock price volatility (see also

the regression intercepts in Table 4 or the graph in Figure 9). Similarly, the persistence and

volatility of the price-dividend ratio (not shown in the table) are rather low.

There are two major reasons for this general failure. First, our estimated Markov chain

model exhibits a rather low persistence of consumption growth and inflation (see Table 3).

The estimation does not target moments like the autocorrelation explicitly. And since we

deliberately choose a very simple time series model, which is estimated with macro data only,

expected consumption growth is found to be time-varying, but the persistence is not enough

to generate sufficient variation in the tails of the distribution of the equilibrium pricing

kernel. Long-run risk models in the literature are typically calibrated/estimated with the

explicit goal of matching asset pricing moments, i.e. the authors always make a compromise

between macro and asset pricing moments, sacrificing a bit of macroeconomic fit to asset

pricing purposes.

Second, the conditional volatility of consumption growth and inflation is constant in

our model. Similar to Bansal and Shaliastovich (2013), we make this assumption in order to

sharpen our understanding of the impact of time variation in expected consumption growth

and expected inflation. It is, however, well known from the literature that a pronounced

persistence of shocks to macroeconomic volatility strongly helps to match unconditional risk

premia and return volatilities. The respective mechanisms have been studied extensively in

papers like Bansal and Yaron (2004) or Bansal, Kiku, and Yaron (2016).

The unconditional stock-bond correlation is hovering around zero across all parametriza-

tions shown in Table 9, similar to its value in the data. We would like to emphasize though

that a key takeaway from our paper is the existence of pronounced swings in the condi-

tional stock-bond correlation, which can take large positive and large negative values both

in the model and in the data. This implies that the unconditional stock-bond correlation is

a relatively uninformative moment when it comes to assessing the quality of the model.
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Finally, we also do not do a good job at matching properties of the term structure of

interest rates, and in particular of long-term bonds. Again, the reason is that our model is

deliberately simple and lacks a lot of features that have been found to be crucial for bond

pricing. The macro variables are not persistent enough in our estimated model so that we

do not have enough “long-run risk”. This finding is consistent with other papers featuring

long-run risk models for bond pricing like Bansal and Shaliastovich (2013). These authors

use interest rate data to estimate their model and find that a high persistence of expected

consumption growth and expected inflation is key to reproduce the dynamic properties of

the term structure. However, as Table 9 shows, there is considerable variation in the slope

of the term structure. While the slope is close to zero unconditionally, the conditional term

structure in our model can be upward-sloping or downward-sloping, depending on the state

variables p̂i.

7 Conclusion

Long-run risk models for asset pricing rest on the key assumption that the conditional

distribution of consumption growth is time-varying. We provide evidence in favor of this

assumption using a simple Markov regime switching model for expected consumption growth.

While already interesting in itself, this reduced-form approach turns out to be very fruitful

when it comes to explaining the joint dynamics of real and nominal asset prices. Augmenting

the time series model by inflation as a second macro variable significantly alters the estimated

regimes. In particular, we then find two states in which expected consumption growth is low,

one with high expected inflation and one with negative expected inflation. Embedding the

estimated dynamics in a standard general equilibrium asset pricing model with recursive

preferences and learning allows us to match time series of aggregate stock return volatility

and the stock-bond return correlation.

The basic intuition underlying our results is that low consumption growth tends to

occur together with either very high or very low inflation. In contrast to the volatility of

stock returns, where it is mainly the overall probability of the two bad states for expected
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consumption growth that matters, it is the distinction between the two with respect to

expected inflation which becomes relevant for the stock-bond return correlation. In the high

expected inflation state, stocks and bonds will both tend to have negative returns, so that

their correlation will be positive, while in the deflationary state, stocks will still do poorly,

but nominal bonds will exhibit positive returns, resulting in a negative correlation between

the two types of assets.

Our research design differs from other approaches to calibrate dynamic asset pricing

models, where often both asset pricing moments and macroeconomic moments are used to

identify the deep parameters of the model. This has the potential to yield a parametrization

where macro dynamics are not matched very well. Given the parsimony of the research

design, in particular the fact that the model is estimated from two macro time series only,

we regard our results as evidence that the long-run risk paradigm in asset pricing can be

extended towards an explanation of the time-varying stock-bond return correlation when

the signaling role of inflation is properly accounted for. Besides, we also document that

our filtered probability of being in a bad consumption growth regime closely tracks the

evolution of state variables like the so-called “Anxious Index” from the Survey of Professional

Forecasters or the “time-varying disaster risk” which Wachter (2013) obtains via reverse-

engineering asset prices. Our findings thus also contribute to the recent debate about the

empirical distinguishability of long-run risk and disaster risk models.

In summary, our paper shows that a large part of the variation in asset prices may

actually be attributable to inflation risk, and that the long-run risk model class provides a

promising framework to study the link between inflation, consumption growth and both real

and nominal asset returns.
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Figure 1: Fundamental data

Consumption growth

Inflation

The graph shows time series plots of the quarterly data for consumption growth and inflation over our sample

period from 1947 to 2014.

Figure 2: Expected Consumption Growth and Expected Inflation

Expected Consumption growth

Expected Inflation

The graphs show time series plots of expected consumption growth and expected inflation obtained from the

Kalman filter. Shaded areas indicate NBER recessions.
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Figure 3: Expected Inflation and SPF Forecasts

Expected Inflation vs. SPF GDP deflator forecast

Expected Inflation vs. SPF CPI forecast

The graphs plot expected inflation obtained from the Kalman filter (blue solid line) together with the SPF

forecasts for the GDP deflator and the CPI (red dashed lines). Shaded areas indicate NBER recessions.
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Figure 4: Real-time filtered probabilities of a Bayesian learner

p̂1

p̂2

p̂3

p̂4

The graphs present the real-time filtered probabilities for each of the four states estimated for our Markov

switching models, as defined in Section 4.2, with parameters shown in Table 2. Shaded areas indicate NBER

recessions.
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Figure 5: Dividend-price ratio

The figure depicts quarterly time series of dividend-price ratios. The blue solid line is the dividend-price

ratio of the S&P 500 index. The red dashed line is obtained by plugging the historical paths of consumption,

inflation, and our state variables p̂i into the numerical solution of the model. The model parameters are

estimated using macroeconomic data since 1947. The correlation between the data and the model-implied

time series is 0.45.

Figure 6: Time-varying probability of low expected consumption growth vs. implied disaster
intensity from Wachter (2013)

The solid (blue) line depicts the time-varying disaster intensity, which Wachter (2013) extracts from asset

price data. The dashed (red) line shows 20-quarter moving averages of the sum of the estimated probabilities

p̂3 + p̂4 from our Markov switching model using consumption and inflation data for the period from 1947 to

2014. To obtain p̂3 and p̂4 we plug realized consumption growth and inflation data into our filtering equations

and compute the probabilities, which a Bayesian learner would have assumed at each point in time. The

correlation between the two time series is 0.88.

51

Electronic copy available at: https://ssrn.com/abstract=4001498



Figure 7: Time-varying probability of low expected consumption growth vs. Anxious Index

The dashed red line depicts the “Anxious Index”, i.e. the probability of a negative realized GDP growth rate

in the next quarter, according to the Survey of Professional Forecasters, shifted by one quarter to ease the

interpretation of the figure. The solid blue line shows the sum of the estimated probabilities p̂3 + p̂4 from our

Markov switching model using consumption and inflation data for the period from 1947 to 2014. To obtain p̂3

and p̂4 we plug realized consumption growth and inflation data into our filtering equations and compute the

probabilities, which a Bayesian learner would have assumed at each point in time. The correlation between

the two time series is 0.52.
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Figure 8: Time-varying probability of low expected consumption growth (estimated from
consumption growth only)

The solid (blue) line depicts the time-varying disaster intensity, which Wachter (2013) extracts from asset

price data. The dashed (red) line shows 20-quarter moving averages of the estimated probability for the state

with low expected consumption growth from a Markov switching model using only consumption data for the

period from 1947 to 2014. To obtain this probability we plug realized consumption growth into our filtering

equations and compute the probabilities, which a Bayesian learner would have assumed at each point in

time. The correlation between the two time series is 0.33.
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Figure 9: Stock return volatilities and probability of low expected consumption growth

Data Model

The figure depicts scatter plots for the regressions presented in Table 4. The dependent variables in each

regression are volatilities of quarterly stock returns computed over rolling windows of 20 quarters. The

independent variable is the logarithm of the averages of p̂3 + p̂4 over the same 20 quarters periods. The left

figure labeled “Data” is based on the estimated time series of the p̂i depicted in Figure 1 as well as the CRSP

value-weighted index and the interpolated yield curve data from the Federal Reserve (see Gürkaynak, Sack,

and Wright (2007)). The right figure labeled “Model” is based on the same time series of the p̂i, but uses

the returns which our model would have implied given this path of consumption, inflation, and the state

variables. The financial data for these regressions starts in 1965. The model parameters are estimated using

macroeconomic data since 1947.
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Figure 10: Conditional stock return volatilities

The figure depicts conditional 20-quarter rolling window stock return volatilities. The red dashed line is

based on the CRSP value-weighted index. The blue solid line is based on the returns which our model would

have implied given the historical paths of consumption, inflation, and state variables (this series is multiplied

by 3). The model parameters are estimated using macroeconomic data since 1947. The correlation between

the data and the model-implied time series is 0.47.
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Figure 11: Conditional stock-bond return correlation

Bond returns based on Gürkaynak, Sack, and Wright (2007) data

Bond returns based on the Ibbotson U.S. Long-Term Government Bond Index

The figure depicts conditional 20-quarter rolling window correlations of stock returns and returns of 5-year

nominal bonds. The red dashed line is based on the CRSP value-weighted index and on the interpolated

yield curve data from the Federal Reserve starting in 1962 (upper picture) or the Ibbotson U.S. Long-Term

Government Bond Index starting in 1947 (lower picture). The blue solid line is based on the returns which

our model would have implied given the historical paths of consumption, inflation, and state variables. The

model parameters are estimated using macroeconomic data since 1947. The correlation between the data

and the model-implied time series is 0.44 and 0.49, respectively.
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Figure 12: Stock-bond return correlations and probabilities for high inflation and deflation

Data Model

correlation vs. p̂3 correlation vs. p̂3

Data Model

correlation vs. p̂4 correlation vs. p̂4

The figure depicts scatter plots for the regressions presented in Table 6. The dependent variables in each

regression are correlations of quarterly holding-period returns of stocks and 5-year nominal bonds computed

over rolling windows of 20 quarters. The independent variables are the logarithms of the averages of p̂3 and

p̂4, respectively, over the same 20-quarter periods. The left figures labeled “Data” are based on the estimated

time series of the p̂i depicted in Figure 1 as well as the CRSP value-weighted index and the interpolated yield

curve data from the Federal Reserve (see Gürkaynak, Sack, and Wright (2007)). The right figures labeled

“Model” are based on the same time series of the p̂i, but use the returns which our model would have implied

given this path of consumption, inflation, and the state variables. The financial data for these regressions

starts in 1965. The model parameters are estimated using macroeconomic data since 1947.
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Figure 13: Conditional stock-bond return correlation with CRRA preferences

The figure depicts conditional 20-quarter rolling window correlations of stock returns and returns of 5-year

nominal bonds. The red dashed line is based on the CRSP value-weighted index and the interpolated yield

curve data from the Federal Reserve. The blue solid line is based on the returns which a constrained version of

our model with CRRA preferences (i.e. γ = 1
ψ ) would have implied given the historical paths of consumption,

inflation, and state variables. The model parameters are estimated using macroeconomic data since 1947.

The correlation between the data and the model-implied time series is -0.15.
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Figure 14: Dividend-price ratio with CRRA preferences

The figure depicts quarterly time series of dividend-price ratios. The blue solid line is the dividend-price

ratio of the S&P 500 index. The red dashed line is obtained by plugging the historical paths of consumption,

inflation, and our state variables p̂i into the numerical solution of the constrained model with CRRA prefer-

ences. The model parameters are estimated using macroeconomic data since 1947. The correlation between

the data and the model-implied time series is -0.45.
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Figure 15: Conditional stock-bond return correlation with full information

The figure depicts conditional 20-quarter rolling window correlations of stock returns and returns of 5-year

nominal bonds. The red dashed line is based on the CRSP value-weighted index and the interpolated yield

curve data from the Federal Reserve. The blue solid line is based on the returns which a version of our

model with full information would have implied given the historical paths of consumption, inflation, and

state variables. The model parameters are estimated using macroeconomic data since 1947. The correlation

between the data and the model-implied time series is 0.09.
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Figure 17: Time-varying probability of low expected consumption growth for constrained
model (estimated from consumption growth and inflation)

The blue solid line depicts the time-varying disaster intensity which Wachter (2013) extracts from asset price

data. The red dashed line shows the 20-quarter moving average of the estimated p̂3 + p̂4 from the constrained

model with equal expected consumption growth in states 1 and 2 and in states 3 and 4, respectively, for the

period from 1947 to 2014. The correlation between the two time series is 0.88.
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Table 1: Markov chain estimation

Panel A: Consumption and inflation parameters

µC1 µC2 σC

Consumption growth 0.585 -0.450 0.421
(0.094) (0.301) (0.047)

Panel B: Markov chain transition probabilities
to state 1 to state 2

from state 1 0.939 0.061
(0.092) (0.092)

from state 2 0.467 0.533
(0.217) (0.217)

Panel C: Optimal number of states

2 states 3 states
Log likelihood -195.44 -184.14
Penalty term 39.14 72.68
Bayes Information Criterion 430.02 440.96
(= −2 · logL+ penalty term)

Panel D: Wald test of µC1 = µC2
Test statistic p-value

14.818 0.000

This table reports the results from our univariate Markov chain estimation for consumption growth only.

Growth rates are given in percentage points and quarterly. The data span the period from 1947 to 2014 at

quarterly frequency. Numbers in parantheses are standard errors obtained from a standard block bootstrap

with block length of 10 quarters. Panel D reports results from a Wald test of the null hypothesis µC1 = µC2 ,

based on the bootstrapped standard errors.
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Table 2: Markov chain estimation

Panel A: Consumption and inflation quarterly parameters

µi1 µi2 µi3 µi4 σi ρ
Consumption growth 0.591 0.475 0.111 -0.249 0.504 -0.218

(0.242) (0.077) (0.157) (0.315) (0.052) (0.103)
Inflation 1.176 0.540 2.379 -0.729 0.309

(0.486) (0.423) (0.831) (1.221) (0.029)

Panel B: Markov chain transition probabilities
to state 1 to state 2 to state 3 to state 4

from state 1 0.909 0.027 0.039 0.025
(0.202) (0.087) (0.160) (0.049)

from state 2 0.022 0.970 0.008 0
(0.029) (0.056) (0.027) (0.024)

from state 3 0.135 0.037 0.828 0
(0.064) (0.077) (0.088) (0.028)

from state 4 0 0.337 0 0.663
(0.065) (0.253) (0.152) (0.203)

Panel C: Optimal number of states

3 states 4 states 5 states 6 states
Log likelihood -357.80 -317.65 -307.60 -287.75
Penalty term 119.40 169.70 238.80 320.50
Bayes Information Criterion 835.00 805.00 854.00 896.00
(= −2 · logL+ penalty term)

Panel D: Wald test of µC1 = µC2 = µC3 = µC4
Test statistic p-value

12.051 0.007

This table reports the results from our bivariate Markov chain estimation for consumption growth and

inflation. Growth rates are given in percentage points and quarterly. The data span the period from 1947 to

2014 at the quarterly frequency. Numbers in parentheses are standard errors obtained from a standard block

bootstrap with block length of 10 quarters. Panel D reports results from a Wald test of the null hypothesis

µC1 = µC2 = µC3 = µC4 , based on the bootstrapped standard errors.
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Table 3: Unconditional moments of consumption growth and inflation

Data Model
Cons. growth Inflation Cons. growth Inflation

Mean 0.456 0.868 0.453 0.828
[0.403, 0.504] [0.645, 1.017]

Volatility 0.5324 0.682 0.531 0.649
[[0.498, 0.565] [0.509, 0.786]

Correlation -0.138 -0.100
[-0.241, 0.041]

AC(1) 0.261 0.756 0.0695 0.622
[-0.020, 0.161] [0.474, 0.742]

AC(2) 0.237 0.631 0.049 0.520
[-0.038, 0.135] [0.362, 0.657]

AC(3) 0.208 0.578 0.031 0.439
[-0.051, 0.114] [0.271, 0.592]

The table reports unconditional moments of quarterly consumption growth and inflation. The columns

labeled “Data” are based on quarterly data from 1947 to 2014. The columns labeled “Model” have been

obtained by Monte Carlo simulation using the parameters given in Table 2 (5,000 paths of 68 years each).

The numbers in parentheses give 90% confidence bounds around the point estimates.
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Table 4: Regressions of stock return volatilities on state variables

Panel A: Model
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

0.127 0.014 0.010 0.811
(28.215) (9.201) (9.816)

[0.084, 0.178] [0.002, 0.018] [0.000, 0.023] [0.155, 0.761]

0.098 0.020 0.817
(24.194) (11.388)

[0.075, 0.133] [0.004, 0.027] [0.049, 0.721]

Panel B: Data
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

0.278 0.012 0.023 0.304
(12.679) (1.416) (4.475)

0.214 0.022 0.214
(9.056) (1.976)

The table reports results from time series regressions. The dependent variables in each regression are volatil-

ities of quarterly stock returns computed over rolling windows of 20 quarters. The independent variables are

logarithms of the averages of the p̂i over the same 20 quarters periods. The regressions labeled “Data” are

based on the estimated time series of the p̂i depicted in Figure 1 as well as the CRSP value-weighted index

and the interpolated yield curve data from the Federal Reserve (see Gürkaynak, Sack, and Wright (2007)).

The regressions labeled “Model” are based on the same time series of the p̂i, but use the returns which our

model would have implied given this path of consumption, inflation, and state variables. The financial data

for these regressions starts in 1965. The model parameters are estimated using macroeconomic data since

1947. The numbers in parentheses are t-statistics adjusted following Newey and West (1987) (20 lags). The

numbers in brackets denote 90% confidence bounds around the regression coefficients and are obtained from

a Monte Carlo simulation of the model (5,000 paths of 68 years each, with the last 50 years of each path

used in the regressions).
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Table 5: Regressions of stock return volatilities on alternative explanatory variables

Panel A: Model
const. extreme entropy expected inflation realized inflation Adj. R2

0.005 0.291 0.460
(0.569) (5.608)

[−0.019, 0.065] [0.020, 0.561] [-0.002, 0.566]
0.031 0.007 0.427

(2.991) (3.705)
[0.032, 0.078] [-0.009, 0.042] [-0.009, 0.539]

0.024 0.008 0.443
(2.109) (3.915)

[0.024, 0.079] [-0.009, 0.053] [-0.009, 0.546]
Panel B: Data

const. extreme entropy expected inflation realized inflation Adj. R2

0.097 0.399 0.187
(2.607) (2.320)
0.147 0.006 0.036

(4.814) (0.855)
0.153 0.004 0.040

(6.010) (0.781)

The table reports results from time series regressions. The dependent variables in each regression are volatil-

ities of quarterly stock returns computed over rolling windows of 20 quarters. The independent variables are

the average of the extreme entropy (p̂3 ln p̂3+p̂4 ln p̂4), the average expected inflation and the average realized

inflation, always taken over the same 20 quarter periods. “Data” and “Model” have the same meaning as in

Table 4.
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Table 6: Regressions of stock-bond return correlations on state variables

Panel A: Model
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

0.282 0.304 -0.178 0.788
(3.315) (11.599) (-7.754)

[−7.465, 6.482] [0.079, 0.423] [-0.515, -0.015] [0.172, 0.725]

0.679 0.263 0.409
(4.193) (3.830)

[−0.265, 0.995] [-0.111, 0.392] [-0.008, 0.474]

Panel B: Data
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

-0.512 0.182 -0.294 0.363
(-1.61) (2.731) (-3.608)

0.239 0.091 0.041
(0.923) (0.774)

The table reports results from time series regressions. The dependent variables in each regression are correla-

tions of quarterly holding-period returns of stocks and 5-year nominal bonds computed over rolling windows

of 20 quarters. The independent variables are logarithms of the averages of the p̂i over the same 20 quarters

periods. “Data” and “Model” have the same meaning as in Table 4. Numbers in parentheses are t-statistics

adjusted following Newey and West (1987) (20 lags), numbers in brackets are 90% confidence bounds around

the regression coefficients and have been obtained from a Monte Carlo simulation of the model (5,000 paths

of 68 years each, with the last 50 years of each path used in the regressions).
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Table 7: Regressions of stock-bond return correlations on alternative explanatory variables

Panel A: Model
const. extreme entropy expected inflation realized inflation Adj. R2

-0.312 2.513 0.217
(-1.481) (1.783)

[−1.315, 0.718] [-3.856, 8.848] [-0.009, 0.313]
-0.473 0.154 0.645

(-5.036) (10.846)
[−0.759, 0.069] [0.118, 1.024] [0.005, 0.577]

-0.627 0.194 0.678
(-6.132) (11.430)

[−0.928, 0.059] [0.117, 1.239] [0.002, 0.558]
Panel B: Data

const. extreme entropy expected inflation realized inflation Adj. R2

-0.047 0.560 0.012
(-0.096) (0.220)
-0.613 0.167 0.334

(-2.028) (3.172)
-0.488 0.135 0.328

(-1.904) (3.324)

The table reports results from time series regressions. The dependent variables in each regression are correla-

tions of quarterly holding-period returns of stocks and 5-year nominal bonds computed over rolling windows

of 20 quarters. The independent variables are the average of the extreme entropy (p̂3 ln p̂3 + p̂4 ln p̂4), the

average expected inflation and the average realized inflation, always taken over the same 20 quarter periods.

“Data” and “Model” have the same meaning as in Table 4. Numbers in parentheses are t-statistics adjusted

following Newey and West (1987) (20 lags), numbers in brackets are 90% confidence bounds around the

regression coefficients and have been obtained from a Monte Carlo simulation of the model (5,000 paths of

68 years each, with the last 50 years of each path used in the regressions).
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Table 8: Regressions of return correlations on state variables with CRRA preferences

Panel A: Model with CRRA preferences
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

0.996 0.143 0.092 0.756
(11.953) (4.081) (3.597)

[0.338, 1.915] [0.001, 0.264] [-0.061, 0.355] [0.056, 0.618]

0.719 0.196 0.753
(12.465) (5.296)

[0.388, 1.198] [0.051, 0.396] [0.016, 0.589]

Panel B: Data
const. log(p̂3) log(p̂4) log(p̂3 + p̂4) Adj. R2

-0.512 0.182 -0.294 0.363
(-1.61) (2.731) (-3.608)

0.239 0.091 0.041
(0.923) (0.774)

The table reports results from time series regressions. The dependent variables in each regression are correla-

tions of quarterly holding-period returns of stocks and 5-year nominal bonds computed over rolling windows

of 20 quarters. The independent variables are logarithms of the averages of the p̂i over the same 20 quarters

periods. “Data” and “Model” have the same meaning as in Table 4. Numbers in parentheses are t-statistics

adjusted following Newey and West (1987) (20 lags). The numbers in brackets denote 90% confidence bounds

around the regression coefficients and are obtained from a Monte Carlo simulation of the model (5,000 paths

of 68 years each, with the last 50 years of each path used in the regressions).
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Table 9: Unconditional asset pricing moments

Data Benchmark Param. 2 Param. 3 Param. 4 Combined
mean 0.116 0.074 0.079 0.114 0.081 0.127

nominal (0.009) (0.008) (0.010) (0.013) (0.013)
equity vol 0.148 0.075 0.079 0.117 0.123 0.121
return (0.004) (0.004) (0.009) (0.007) (0.009)

AC(1) 0.079 -0.054 -0.075 -0.131 -0.062 -0.141
(0.044) (0.043) (0.050) (0.043) (0.050)

mean 0.043 0.062 0.063 0.066 0.062 0.066
nominal (0.005) (0.004) (0.008) (0.005) (0.006)
3-month vol 0.050 0.006 0.006 0.005 0.006 0.010
risk-free (0.001) (0.001) (0.001) (0.001) (0.001)

rate AC(1) 0.987 0.774 0.752 0.620 0.775 0.632
(0.065) (0.066) (0.101) (0.065) (0.099)

mean 0.067 0.018 0.018 0.016 0.018 0.016
real (0.008) (0.006) (0.006) (0.008) (0.006)

dividend vol 0.139 0.051 0.051 0.052 0.082 0.052
growth (0.001) (0.001) (0.001) (0.002) (0.001)

AC(1) -0.251 0.030 0.031 0.055 0.030 0.053
(0.038) (0.038) (0.042) (0.038) (0.042)

mean 0.010 0.001 0.001 -0.012 0.001 -0.024
yield spread (0.002) (0.002) (0.003) (0.002) (0.003)

(5y-3m) vol 0.012 0.011 0.011 0.012 0.011 0.014
(0.002) (0.002) (0.002) (0.002) (0.003)

uncond. stock-bond corr. 0.114 0.105 0.083 -0.316 0.188 -0.194
(0.128) (0.130) (0.151) (0.110) (0.153)

The table shows unconditional asset pricing moments. “Data” refers to the CRSP value-weighted index for

stocks and to the data set provided by Gürkaynak, Sack, and Wright (2007) for bonds. The model-implied

values are computed via Monte Carlo simulation. All numbers are computed based on monthly observations

and then annualized. In the data the average yield spread (5y - 3m) is available from 1952 onwards. The

correlation between nominal stock and 5y-bond returns is based on five-year rolling window estimates with

data from 1962 onwards. The column labeled Benchmark presents results for the model with the estimated

parameters from Table 2. Parametrization 2 is the same as the benchmark parametrization except that we

lower the expected consumption growth in states 3 and 4 by one standard error, i.e. we set µC3 = 0.129 and

µC4 = −1.628. Parametrization 3 is the same as the benchmark parametrization except that we increase the

transition probabilities from states 3 and 4 to the other states by one standard error, i.e. we set the third and

fourth row of the transition matrix to (0.057 0.027 0.916 0.000) and (0.000 0.137 0.000 0.863), respectively.

Parametrization 4 is the same as the benchmark parametrization except for a leverage parameter φ = 8. The

column labeled “Combined” reports results when Parametrization 2 and 3 are applied jointly.
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A. Maximum Likelihood Estimation

The maximum likelihood estimation is based on Hamilton (1994). The parameters of the model and

the transitions probabilities pij are collected in the vector Θ. This vector Θ is estimated based on

the data YT that is observed until time T . This data forms a T×2 matrix. Let P (st = j|Θ, Yt) define

the probability of state st conditional on all data until t and conditional on the knowledge of the

parameters Θ. The econometrician assigns P (st = j|Θ, Yt) to the possibility that the observation at

time t is generated by state j. These conditional probabilities are collected in the n× 1 vector ξ̂t|t,

where n denotes the number of states, which is fixed throughout the entire estimation. We have

ξ̂t|t =
ξ̂t|t−1 � ηt

1′ · (ξ̂t|t−1 � ηt)

ξ̂t+1|t = Q · ξ̂t|t.

Here ηt is the conditional density, whose jth element is

f(yt|st = j; Θ) =
1√

2π|Ω|
exp

{
0.5 · (yt − µj)′Ω−1(yt − µj)

}
,

where yt is an n× 1 vector, µj = (µCj , µ
π
j )′ and Ω = ΣΣ′ where

Σ =

 σC
√

1− ρ2 σCρ

0 σπ


Q is the transition probability matrix

Q =


q11 . . . q1n
...

. . .
...

qn1 . . . qnn

 ,

� denotes element-by-element multiplication, and 1 denotes a vector of ones. The jth element of

the product ξ̂t|t−1 � ηt is interpreted as the conditional joint density of yt and st

P (st = j|Θ)× f(yt|st = j; Θ) = p(yt, st = j|Θ).
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The density of the observed vector yt is the sum

f(yt|Θ) = 1′ · (ξ̂t|t−1 � ηt)

The objective is to find a maximum of the log likelihood function

L(Θ) =

T∑
t=1

log f(yt|Θ).

The starting value for the maximization, ξ̂1|0, is set to 1
n · 1.

B. Filtering

B.1. Dynamics of the state variables

The dynamics of consumption and the log price level can be rewritten as

d lnCt =

(
n∑
i=1

µCi 1{St=i}

)
dt+ σC

(√
1− ρ2dWC

t + ρdW π
t

)
dπt =

n∑
i=1

µπi 1{St=i} + σπdW π
t ,

where 1{St=i} is the indicator function equal to one, if the economy is in state i at time t, (i =

1, . . . , n), and equal to zero otherwise. In matrix form, this becomes

 d lnCt

dπt

 =

 ∑n
i=1 µ

C
i 1{St=i}∑n

i=1 µ
π
i 1{St=i}

 dt+ Σ

 dWC
t

dW π
t

 ,

with

Σ =

 σC
√

1− ρ2 σCρ

0 σπ


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and d[WC ,W π] = 0.

The inverse of the of the volatility matrix Σ is

Σ−1 =
1

σCσπ
√

1− ρ2

 σπ −σCρ

0 σC
√

1− ρ2

 .

We assume that the drift rates are unobservable and need to be filtered by the investor.

Mathematically, there are two filtrations, F and G, where F is generated by the processes (Ct)t,

(πt)t and (St)t, whereas G ⊂ F is generated by the processes (Ct)t and (πt)t only. The equilibrium

in the economy is based on the dynamics of (Ct)t and (πt)t under the investor filtration G, i.e. on

the projections µ̂Ct = E
[
µC(St)|Gt

]
=
∑n

i=1 p̂itµ
C
i and µ̂πt = E [µπ(St)|Gt] =

∑n
i=1 p̂itµ

π
i , where

p̂it = E
[
1{St=i}|Gt

]
.

An application of Theorem 9.1 on p. 355 of Liptser and Shiryaev (2001) yields dynamics for

the projected (henceforth also called “subjective”) probabilities:

dp̂it =

p̂itλii +
∑
j 6=i

p̂jtλji

 dt + p̂it

µCi
µπi

− n∑
j=1

p̂jt

µCj
µπj

′ × Σ′−1

dŴC
t

dŴ π
t

 ,

where dŴC
t

dŴ π
t

 = Σ−1

µCi
µπi

− n∑
j=1

p̂jt

µCj
µπj

 dt+

dWC
t

dW π
t

 .

In particular, d[ŴC , Ŵ π] = 0. Under the investor’s filtration, log consumption dynamics are given

as

d lnCt =

n∑
i=1

µCi p̂itdt+ σC
(√

1− ρ2dŴC + ρdŴ π
)

For notational convenience, we define

σp̂idŴt ≡ p̂it

µCi
µπi

− n∑
j=1

p̂jt

µCj
µπj

′ × Σ′−1 ×

dŴC
t

dŴ π
t


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and

σc,p̂i ≡
(
ρσC ,

√
1− ρ2σC

)
× σ′p̂i

σπ,p̂i ≡ (0, σπ)× σ′p̂i .

B.2. Discussion

In order to understand the dynamics of p̂it, it is instructive to analyze the drift and the diffusion

component separately. The drift in (4) is a linear function of the transition intensities λ and the

current estimates of the probabilities p̂. Since the states (and consequently also switches between

states) are unobservable, the subjective probability of being in state i changes deterministically

over time, depending on the conditional probabilities to enter or exit state i. The drift therefore

comprises two terms. The first term, p̂itλii = −p̂it
∑

j 6=i λij , involves the intensities for a switch

from state i to some other state j 6= i. Loosely speaking, the more time goes by, the higher the

chance that an unobserved switch from state i to some other state j has occurred in the meantime.

This effect induces a negative drift for p̂it, i.e., the estimated probability of still being in state i

decreases in expectation. The second term,
∑

j 6=i p̂jtλji, captures the probabilities of entering state

i, given that the economy is currently in a state j different from i. Suppose one of the p̂jt (j 6= i) is

currently large. Then, as time passes and if no other conflicting signals arrive, it becomes more and

more likely that an unobserved switch to state i has occurred in the meantime. This effect induces

a positive drift in p̂it. The overall sign of the drift of p̂it thus depends on the current estimate of

all state probabilities. In particular, the drift terms ensure that the probabilities p̂ will always be

between zero and one.

The volatility of the change in p̂i is a quadratic function of all probabilities p̂j (j = 1, . . . , n).

The probability update is largest when the investor is rather uncertain about the current state of

the economy, i.e., for intermediate values of p̂i. When the investor is almost sure about the current

state of the economy (i.e., when one of the p̂j is close to one and the others are close to zero), the

estimated probability will change in a basically deterministic fashion. To see this, note that when

the respective estimate p̂i is close to zero, the diffusion term in (4) is obviously also close to zero,

since p̂i is one factor of the product in front of the Wiener innovations. When p̂i is in turn close to

one, the term in square brackets in (4) will be very close to zero, since in the sum only the term

involving p̂i will remain, whereas all the others will vanish.
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The volatility of the innovation in the filtered probability also depends on the precision of the

signals. When the signals are very imprecise, i.e., when the volatilities σC and σπ are large, an

observed innovation in (log) consumption growth or inflation delivers less information about the

true state, and the investor will put less weight on them when computing the new estimate for pi.

The sign of the diffusion term depends on the sign of the ‘observed’ Brownian shocks dŴ .

These are defined via the restriction that lnC and π are observable, so technically speaking they

have to be adapted to both F and G, which implies µ(St)dt+ ΣdWt = µ̂tdt+ ΣdŴt.

C. Solution of the Model with Partial Information

C.1. Wealth-consumption ratio

The indirect utility function of the investor is given by

J(Ct, p̂1t, . . . , p̂nt) = Et

[∫ ∞
t

f(Cs, J(Cs, p̂1s, . . . , p̂ns)) ds

]
.

J (Ct, p̂1t, . . . , p̂nt) +
∫ t
0 f (Cs, J(Cs, p̂1s, . . . , p̂ns)) ds is a martingale, therefore we have the Bellman

equation

E[dJ(Ct, p̂1t, . . . , p̂nt) + f(Ct, J(Ct, p̂1t, . . . , p̂nt)) dt] = 0,

or, equivalently,

AJ(Ct, p̂1t, . . . , p̂nt)

J(Ct, p̂1t, . . . , p̂nt)
+
f(Ct, J(Ct, p̂1t, . . . , p̂nt))

J(Ct, p̂1t, . . . , p̂nt)
= 0, (C.1)

where A is the infinitesimal generator. The aggregator function is given by

f(C, J) =
βC

1− 1
ψ(

1− 1
ψ

) [
(1− γ)J

] 1
θ
−1
− βθJ.

We conjecture a functional form for J :

J(Ct, p̂1t, . . . , p̂nt) =
C1−γ
t

1− γ

(
βev(p̂1t,...,p̂nt)

)θ
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where in the end v will turn out to be the log wealth-consumption ratio. This functional form

together with the definition of f(C, J) implies

f(C, J)

J
= θe−v − θβ.

With I ≡ ev the partial derivatives of J (denoted by subscripts) are

Jc = C−γ (βev)θ

Jcc = −γC−γ−1 (βev)θ

Jp̂i =
C1−γ

1− γ
βθθIθ−1Ip̂i

Jp̂ip̂j =
C1−γ

1− γ
βθθ

[
(θ − 1)Iθ−2I2p̂i + Ip̂ip̂jI

θ−1
]

Jcp̂i = C−γβθθIθ−1Ip̂i ,

resulting in

Jc
J
dCt = (1− γ)

n∑
i=1

µCi p̂itdt+
1

2
(σC)2(1− γ)dt+ (1− γ)σC

(√
1− ρ2dŴC

t + ρdŴ π
t

)
Jccd[C,C]t

J
= (σC)2(−γ)(1− γ)dt

Jcp̂id[C, p̂i]t

J
= θ(1− γ)

Ip̂i
I
σc,p̂idt

Jp̂idp̂it

J
= θ

Ip̂i
I
dp̂it

Jp̂ip̂jd[p̂i, p̂j ]t

J
=

1

2
θd[p̂i, p̂j ]t

[
(θ − 1)

(
Ip̂i
I

)2

+
Ip̂ip̂j
I

]
.

Plugging everything into (C.1) results in the following partial differential equation for I:

0 =

[
(1− γ)

n∑
i=1

µCi p̂it +
1

2
(1− γ)2(σC)2 − βθ

]
+ θI−1 (C.2)

+

n−1∑
i=1

θ
Ip̂it
I

p̂iλii +

n∑
j=1
j 6=i

p̂jtλji

 +
n−1∑
i=1

θ(1− γ)
Ip̂i
I
σc,p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

θ

[
(θ − 1)

(
Ip̂iIp̂j
I

)
+
Ip̂ip̂j
I

]
σp̂iσ

′
p̂j
,
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There are n − 1 state variables due to the restriction
∑n

i=1 p̂it = 1. We solve the PDE with a

Chebyshev approximation similar to Benzoni, Collin-Dufresne, and Goldstein (2011). We guess the

following functional form for I as a function of the vector p̂ = (p̂1, p̂2, ..., p̂n−1) with:

I(p̂) = exp(B(p̂)) (C.3)

B(p̂) =
d∑
j=0

αjTj(p̂),

where the Tj(p̂) are multivariate Chebyshev polynomials. For the interval [−1, 1], the univariate

Chebyshev polynomials are defined recursively via

T0(x) = 1

T1(x) = x

Td+1(x) = 2xTd(x)− Td−1(x).

Univariate Chebyshev polynomials for the general interval [a, b] are given by transformations

Td

(
2x− b− a
b− a

)
.

Multivariate versions of the Chebyshev polynomials are defined as sums of products of the univariate

ones. The derivatives of the guess in (C.3) are

Ip̂i = eB(p̂)Bp̂i = eB(p̂)
d∑
j=1

αj
∂Tj
∂p̂i

(p̂)

Ip̂ip̂j = eB(p̂)
[
(Bp̂i)

2 +Bp̂ip̂j
]

= eB(p̂)

 d∑
j=1

αj
∂Tj
∂p̂i

(p̂)

2

+

 d∑
j=2

αj
∂2Tj
∂p̂i∂p̂j

(p̂)

 .
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Plugging the partial derivatives into (C.2) gives

0 =

[
(1− γ)

n∑
i=1

µCi p̂i +
1

2
(1− γ)2(σC)2 − βθ

]
+ e−

∑d
j=0 αjTj(p̂)θ

+

n−1∑
i=1

θ

 d∑
j=1

αj
∂Tj
∂p̂i

(p̂)


p̂itλii +

n∑
j=1
j 6=i

p̂jtλji

 +

n−1∑
i=1

θ(1− γ)

 d∑
j=1

αj
∂Tj
∂p̂i

(p̂)

σc,p̂i

+
1

2

n−1∑
i=1

n−1∑
k=1

θ

(θ − 1)
d∑
j=1

αj
∂Tj
∂p̂i

(p̂)
d∑
j=1

αj
∂Tj
∂p̂k

(p̂) +
d∑
j=2

αj
∂2Tj
∂p̂i∂p̂k

(p̂)

σp̂iσ′p̂k .
This equation is defined on the simplex ∆n−1. We partition this simplex by choosing grid points

according to the Chebyshev methodology. Evaluating the equation on every grid point leaves us

with a number of algebraic equations, whose solution gives the Chebyshev coefficients αj . For the

multivariate Chebyshev polynomials we choose the order of d = 4. We have also tried higher values

for d but the solution remained unchanged.

C.2. Pricing kernel

The pricing kernel is given by

ξt = exp

(∫ t

0
−βθ − (1− θ)I−1(p̂s)ds

)
C−γt (I(p̂t))

θ−1

with dynamics

dξt
ξt

= −βθdt− (1− θ)I−1 dt− γ dCt
Ct

+
1

2
γ2(σC)2dt

− (1− θ)
n−1∑
i=1

Ip̂i
I
dp̂it +

1

2

n−1∑
i=1

n−1∑
j=1

(θ − 1)

[
Ip̂ip̂j
I

+ (θ − 2)

(
Ip̂iIp̂j
I2

)]
σp̂iσ

′
p̂j
dt

− γ(θ − 1)
n−1∑
i=1

Ip̂i
I
σc,p̂idt,
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where p̂ = (p̂1, p̂2, ..., p̂n). For later use, we abbreviate the drift term as

µξ,t ≡ −βθ − (1− θ)I−1(p̂t) − γ
n∑
i=1

µCi p̂it +
1

2
γ2(σC)2 −

n−1∑
i=1

(1− θ)
Ip̂i
I

p̂itλii +

n∑
j=1
j 6=i

p̂jtλji


+

1

2

n−1∑
i=1

n−1∑
j=1

(θ − 1)
[Ip̂ip̂j
I

+ (θ − 2)

(
Ip̂iIp̂j
I2

)]
σp̂iσ

′
p̂j

− γ(θ − 1)

n−1∑
i=1

Ip̂i
I
σc,p̂i .

C.3. Price-dividend ratio

We want to price a claim on levered consumption. Under the investor’s filtration, dividends follow

the process

d lnDt = µ̄dt+ φ

(
n∑
i=1

(µCi − µ̄)p̂it

)
dt+ φσC

(√
1− ρ2dŴC

t + ρdŴ π
t

)
.

Let ω denote the log price-dividend ratio. For g(ξ,D, ω) ≡ ξDeω, the Feynman-Kac formula yields

Ag(ξ,D, ω)

g(ξ,D, ω)
+ e−ω = 0. (C.4)

Itô’s Lemma gives

Agt
gt

= µξ,t + µD,t + µω,t +
1

2

d[ω]t
dt

+
d [ξ,D]t
ξDdt

+
d [ω,D]t
Ddt

+
d [ω, ξ]t
ξdt

.

Another application of Itô’s Lemma leads to

dωt =
n−1∑
i=1

ωp̂idp̂it +
1

2

n−1∑
i=1

n−1∑
j=1

ωp̂ip̂jσp̂iσ
′
p̂j
dt

where the subscripts denote partial derivatives with respect to the state variables p̂i. We can rewrite

the drift of ω as a function of the derivatives ωp̂i and ωp̂i,p̂j and the state variables p̂i:

µω,t =

n−1∑
i=1

ωp̂i

p̂itλii +
n∑
j=1
j 6=i

p̂jtλji

 +
1

2

n−1∑
i=1

n−1∑
j=1

ωp̂ip̂jσp̂iσ
′
p̂j
.
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The quadratic variation terms are:

d[ω]t =

n−1∑
i=1

n−1∑
j=1

ωp̂iωp̂jσp̂iσ
′
p̂j
dt

d[ξ, ω]t
ξt

= −(1− θ)

n−1∑
i=1

Ip̂i
I
ωp̂i +

n−1∑
i=1

n−1∑
j=1

Ip̂i
I
ωp̂j

σp̂iσ
′
p̂j
dt− γ

n−1∑
i=1

ωp̂iσc,p̂idt

d[ξ,D]t
ξtDt

= −γφ(σC)2 − (1− θ)
n−1∑
i=1

Ip̂i
I
φσc,p̂idt

d[ω,D]t
Dt

=
n−1∑
i=1

ωp̂iφσc,p̂idt.

Plugging everything into (C.4) gives the following PDE for ω:

0 = −βθ − (1− θ)I−1 + e−ω − γ
n∑
i=1

µCi p̂it + µ̄+ φ

(
n∑
i=1

(µCi − µ̄)p̂it

)
+

1

2
(φ− γ)2(σC)2

+

n−1∑
i=1

(
(θ − 1)

Ip̂i
I

+ ωp̂i

)p̂itλii +

n∑
j=1
j 6=i

p̂jtλji

 +

n−1∑
i=1

(
(φ− γ)(θ − 1)

Ip̂i
I

+ (φ− γ)ωp̂i

)
σc,p̂i

+

n−1∑
i=1

(
1

2
(θ − 1)(θ − 2)

(
Ip̂i
I

)2

+ (θ − 1)
Ip̂i
I
ωp̂i +

1

2
ω2
p̂i

)
σp̂iσ

′
p̂i

+
n−1∑
i=1

n−1∑
j=1

(
1

2
(θ − 1)(θ − 2)

Ip̂iIp̂j
I2

+ (θ − 1)
Ip̂i
I
ωp̂j +

1

2
ωp̂iωp̂j

)
σp̂iσ

′
p̂j

+
1

2

n−1∑
i=1

(
(θ − 1)

(
Ip̂ip̂i
I

)
+ ωp̂ip̂i

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)

Ip̂ip̂j
I

+ ωp̂ip̂j

)
σp̂iσ

′
p̂j
.

Similar to the wealth-consumption ratio, we approximate the price-dividend ratio U ≡ eω via a

multivariate Chebyshev polynomial expansion, i.e., we approximate the function U(p̂) as

U(p̂) = exp


d∑
j=0

βjTj(p̂)

 ,

and solve the PDE numerically.
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C.4. Pricing real bonds

Let the price of a real bond expiring at time T be denoted by BT
t = Et[

ξT
ξt

] with the real pricing

kernel

ξT
ξt

= βθ
(
CT
Ct

)−γ
exp

{
−βθ(T − t) + (θ − 1)

(∫ T

t
I−1(p̂s)ds

)}
(I(p̂t))

θ−1

Let bt ≡ lnBT
t be the log real bond price (we will omit the superscript T in the following). The

Feynman-Kac formula applied to H(ξt, bt) = ξte
bt yields the partial differential equation:

0 = AH = µξ,t + µb,t +
1

2

d[b]t
dt

+
d[ξ, b]t
ξtdt

, (C.5)

where µξ and µb are the drifts of the processes ξt and bt respectively. The dynamics of bt are

dbt =
∂bt
∂t
dt+

n−1∑
i=1

bp̂idp̂it +
1

2

n−1∑
i=1

n−1∑
j=1

bp̂ip̂jσp̂iσ
′
p̂j
dt.

Plugging everything into (C.5) gives the following PDE for bt:

0 = −βθ − (1− θ)I−1 − γ
n∑
i=1

µCi p̂it +
1

2
γ2(σC)2 +

∂bt
∂t

+
n−1∑
i=1

(
(θ − 1)

Ip̂i
I

+ bp̂i

)p̂itλii +
n∑
j=1
j 6=i

p̂jtλji

 − γ(θ − 1)
n−1∑
i=1

Ip̂i
I
σc,p̂i − γ

n−1∑
i=1

ωp̂iσc,p̂i

+
n−1∑
i=1

(
1

2
(θ − 1)(θ − 2)

(
Ip̂i
I

)2

+ (θ − 1)
Ip̂i
I
bp̂i +

1

2
b2p̂i

)
σp̂iσ

′
p̂i

+

n−1∑
i=1

n−1∑
j=1

(
1

2
(θ − 1)(θ − 2)

Ip̂iIp̂j
I

+ (θ − 1)
Ip̂i
I
bp̂j +

1

2
bp̂ibp̂j

)
σp̂iσ

′
p̂j

+
n−1∑
i=1

1

2

(
(θ − 1)

(
Ip̂ip̂i
I

)
+ bp̂ip̂i+

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)

Ip̂ip̂j
I

+ bp̂ip̂j

)
σp̂iσ

′
p̂j
.

We approximate the bond price ebt at each time point t by a multivariate Chebyshev polynomial,

i.e.,

bt =

n∑
j=0

α
(T )
j,t Tj(p̂).
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Note that the PDE for the bond price involves a time derivative. We use an explicit Euler dis-

cretization for this time derivative and solve the PDE recursively backwards in time, starting from

the boundary condition bT = 0, i.e. α
(T )
j,T = 0 for j = 0, . . . , n.

C.5. Pricing nominal bonds

Let the price of the nominal bond maturing at time T be denoted by BT,$
t with

BT,$
t = Et

[
ξ$T
ξ$t

]

= Et

[
ξT
ξt

eπt

eπT

]
,

where ξ$t ≡ ξte−πt is the nominal pricing kernel. Define b$t ≡ lnBT,$
t (we again omit the superscript

T in the following). Then the Feynman-Kac formula applied to H(ξ$t , b
$
t ) = ξ$t e

b$t yields the partial

differential equation

0 = AH = µξ$,t + µb$,t +
1

2

d[b$t ]

dt
+
d[ξ$, b$]t

ξ$t dt
, (C.6)

where µξ$ and µb$ are drifts of the processes ξ$t and b$t respectively. Notice that

dξ$t
ξ$t

=
dξt
ξt
− dπt +

1

2
d[π]t −

d[ξ, π]t
ξt

.

The dynamics of b$t are

db$t =
∂b$t
∂t

dt+

n−1∑
i=1

b$p̂idp̂it +
1

2

n−1∑
i=1

n−1∑
j=1

b$p̂ip̂jσp̂iσ
′
p̂j
dt.
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Plugging everything into (C.6) yields the following PDE for b$t :

0 = −βθ − (1− θ)I−1 − γ
n∑
i=1

µCi p̂it +
1

2
γ2(σC)2 +

∂b$t
∂t
−

n∑
i=1

µπi p̂it +
1

2
(σπ)2 + γρσCσπ

+

n−1∑
i=1

(
(θ − 1)

Ip̂i
I

+ bp̂$i

)p̂itλii +
n∑
j=1
j 6=i

p̂jtλji


− γ(θ − 1)

n−1∑
i=1

Ip̂i
I
σc,p̂i − γ

n−1∑
i=1

b$p̂iσc,p̂i − (θ − 1)
n−1∑
i=1

Ip̂i
I
σπ,p̂i −

n−1∑
i=1

b$p̂iσπ,p̂i

+
n−1∑
i=1

(
1

2
(θ − 1)(θ − 2)

(
Ip̂i
I

)2

+ (θ − 1)
Ip̂i
I
b$p̂i +

1

2
(b$p̂i)

2

)
σp̂iσ

′
p̂i

+
n−1∑
i=1

n−1∑
j=1

(
1

2
(θ − 1)(θ − 2)

Ip̂iIp̂j
I

+ (θ − 1)
Ip̂i
I
b$p̂j +

1

2
b$p̂ib

$
p̂j

)
σp̂iσ

′
p̂j

+
1

2

n−1∑
i=1

(
(θ − 1)

(
Ip̂ip̂i
I

)
+ b$p̂ip̂i+

)
σp̂iσ

′
p̂i

+
1

2

n−1∑
i=1

n−1∑
j=1

(
(θ − 1)

Ip̂ip̂j
I

+ b$p̂ip̂j

)
σp̂iσ

′
p̂j
.

Again, this PDE involves a time derivative. As for the prices of real bonds, we approximate eb
$
t

at each time point t by multivariate Chebyshev polynomials, use an explicit Euler discretization for

this time derivative and solve the PDE recursively backwards in time, starting from the boundary

condition b$T = 0.

D. Solution of the Model with Full Information

The dynamics of consumption and the log price level are

d lnCt =

(
n∑
i=1

µCi 1{St=i}

)
dt+ σC

(√
1− ρ2dWC

t + ρdW π
t

)
dπt =

n∑
i=1

µπi 1{St=i} + σπdW π
t ,

For ease of notation, we relabel the indicator variable as pi,t = 1{St=i}. These are the state variables

in a model in which the representative agent perfectly knows the state of the economy at every
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point in time. The dynamics of these state variables are

dpi,t = −pi,tdNi,i + (1− pi,t)
∑
j 6=i

dNj,i

where the counting process Nj,i counts transitions from state j to state i and has the intensity

λj,i. The counting process Ni,i counts the transitions from state i to any other state j 6= i and has

the intensity
∑

j 6=i λi,j . These dynamics imply that the state variables almost surely only take the

values 0 and 1.

The indirect utility function of the investor is given by

J(Ct, p1t, . . . , pnt) = Et

[∫ ∞
t

f(Cs, J(Cs, p1s, . . . , pns)) ds

]
.

With the same reasoning as in the incomplete information economy (i.e. defining the indirect utility

function, setting up the Bellman equation, conjecturing the same functional form for the indirect

utility function) and after some simplifications, we arrive at the following algebraic equations (one

equation for each state i) for the four unknowns vi (the log wealth-consumption ratios in each state

i):

0 =

[
(1− γ)µCi +

1

2
(1− γ)2(σC)2 − βθ

]
+ θe−vi +

∑
j 6=i

λij ·
(
eθ(vj−vi) − 1

)
.

The proof is only a very slight modification of the proof in Appendix A of Branger, Kraft, and

Meinerding (2016). Similarly, for the log price-dividend ratio ωi of the equity claim, we get the

equations (one for each state i):

0 = −βθ − (1− θ)e−vi + e−ωi − γµCi + µ̄+ φ
(
µCi − µ̄

)
+

1

2
(φ− γ)2(σC)2

+
∑
j 6=i

λij ·
(
e(θ−1)(vj−vi) · eωj−ωi − 1

)
.

For the prices of nominal bonds b$i we get the four ordinary differential equations

0 = −βθ − (1− θ)e−vi − γµCi +
1

2
γ2(σC)2 +

∂b$i
∂t
− µπi +

1

2
(σπ)2 + γρσCσπ

+
∑
j 6=i

λij ·
(
e(θ−1)(vj−vi) · eb

$
j−b

$
i − 1

)
.
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