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SUMMARY

The biotrophic pathogen Ustilago maydis causes smut disease on maize (Zea mays) and induces the

formation of tumours on all aerial parts of the plant. Unlike in other biotrophic interactions, no gene-for-

gene interactions have been identified in the maize–U. maydis pathosystem. Thus, maize resistance to

U. maydis is considered a polygenic, quantitative trait. Here, we study the molecular mechanisms of quanti-

tative disease resistance (QDR) in maize, and how U. maydis interferes with its components. Based on

quantitative scoring of disease symptoms in 26 maize lines, we performed an RNA sequencing (RNA-Seq)

analysis of six U. maydis-infected maize lines of highly distinct resistance levels. The different maize lines

showed specific responses of diverse cellular processes to U. maydis infection. For U. maydis, our analysis

identified 406 genes being differentially expressed between maize lines, of which 102 encode predicted

effector proteins. Based on this analysis, we generated U. maydis CRISPR/Cas9 knock-out mutants for

selected candidate effector sets. After infections of different maize lines with the fungal mutants, RNA-Seq

analysis identified effectors with quantitative, maize line-specific virulence functions, and revealed auxin-re-

lated processes as a possible target for one of them. Thus, we show that both transcriptional activity and

virulence function of fungal effector genes are modified according to the infected maize line, providing

insights into the molecular mechanisms underlying QDR in the maize–U. maydis interaction.

Keywords: Ustilago maydis, Zea mays, transcriptome analysis, effectors, quantitative disease resistance,

CRISPR-Cas9.

INTRODUCTION

In natural environments, plants are constantly exposed to

a variety of potentially pathogenic microbes. To protect

themselves, they have evolved multiple layers of immune

responses and in turn, microbes have developed so-called

effectors to cope with or suppress these immune

responses. Current studies in molecular plant pathology

have mainly focused on understanding the molecular

mechanisms of qualitative resistance, which is determined

by large-effect resistance (R) genes leading to almost com-

plete resistance or susceptibility. This is often conferred by

nucleotide-binding leucine-rich repeat (NLR) receptors (Cui

et al., 2015; Dangl and Jones, 2001; McHale et al., 2006). In

contrast, quantitative disease resistance (QDR) still remains

poorly understood (Corwin and Kliebenstein, 2017; Poland

et al., 2009; Roux et al., 2014), even though it determines

the outcome of the majority of plant–pathogen interactions

in crops and natural populations (Bartoli and Roux, 2017).

In QDR, many genes with small to moderate effects lead to

a continuous distribution of susceptible to resistant pheno-

types (Niks et al., 2015; Poland et al., 2009; Roux et al.,

2014; St. Clair, 2010).

Many QDR loci have been mapped in the past, but the

underlying complex genetic architecture has limited the

molecular characterisation of mechanisms involved (Cor-

win and Kliebenstein, 2017). Still, several QDR genes with

various functions have been cloned recently. In several

cases, kinases have been shown to play important roles in

QDR. Two maize (Zea mays) wall-associated kinases,

ZmWAK-RLK1 and ZmWAK, confer QDR to northern corn

leaf blight and head smut, respectively (Hurni et al., 2015;

Zuo et al., 2015). Other QDR genes encode putative
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transporters, and the ATP-binding cassette (ABC)

transporter encoded by Lr34 confers resistance to diverse

fungal pathogens in wheat (Triticum aestivum) (Krattinger

et al., 2009). A caffeoyl-CoA O-methyltransferase connected

to lignin production was shown to confer QDR to various

necrotrophic maize pathogens (Yang et al., 2017). Other

genes identified in QDR correspond to previously unidenti-

fied defence genes, such as the soybean (Glycine max)

wound-inducible domain protein WI12, the soybean serine

hydroxymethyltransferase RHG4 and the rice (Oryza sativa)

proline-containing protein Pi21 (Cook et al., 2012; Fukuoka

et al., 2009). In rare cases, NLR genes can also underlie

QDR (Barbacci et al., 2020; Poland et al., 2009), which led

to the hypothesis that allelic variants, i.e. weak alleles, of R

genes can cause incomplete resistance. Thus, compared to

qualitative resistance, the molecular functions underlying

QDR seem to be highly diverse. Additionally, studies of

QDR by RNA sequencing (RNA-Seq) approaches have indi-

cated highly interconnected and multifaceted defence

responses, which were mostly distinct from functions pre-

viously identified for plant immunity (Delplace et al., 2020;

Kebede et al., 2018; Pan et al., 2018).

The biotrophic fungus Ustilago maydis causes smut dis-

ease in maize. Characteristic disease symptoms are

tumours that can be formed on all aboveground organs of

maize plants in less than 2 weeks after infection (Basse

and Steinberg, 2004; K€amper et al., 2006). Ustilago maydis

has advanced to a model for biotrophic plant pathogens

due to its rapid symptom development, very compact gen-

ome, easy in vitro cultivation and accessibility to genetic

manipulation (Brefort et al., 2009; Dean et al., 2012;

K€amper, 2004; Schuster et al., 2016; Zuo et al., 2020; Zuo

et al., 2019). The infection cycle of U. maydis is initiated by

recognition and fusion of sporidia with compatible mating

types, leading to a morphological switch from yeast-like

haploid cells to diploid filaments (B€olker et al., 1992; Spel-

lig et al., 1994). The generation of the solopathogenic

strain SG200, derived from a field isolate collected in Min-

nesota, USA, and genetically engineered to be able to form

infectious filaments without prior mating, has greatly facili-

tated the investigation of U. maydis pathogenic develop-

ment (K€amper et al., 2006). Dutheil et al. (2016) predicted

553 candidate secreted effector proteins encoded in the

genome of U. maydis. This prediction includes proteins

which contain a signal peptide for secretion, as well as a

predicted extracellular location, and most of them lack any

known functional or structural domains (Dutheil et al.,

2016). Many effectors reside in clusters in the genome, are

expressed specifically during biotrophic development com-

pared to axenic culture and contribute to virulence

(K€amper et al., 2006; M€uller et al., 2008; Schilling et al.,

2014; Schirawski et al., 2010; Skibbe et al., 2010). However,

so far only a few individual effectors with large effects on

virulence have been functionally characterised (Djamei

et al., 2011; Doehlemann et al., 2009; Ma et al., 2018;
€Okmen et al., 2018; Redkar et al., 2015; Tanaka et al., 2014,

Sharma et al., 2019). Despite U. maydis being the predomi-

nant model organism of biotrophic plant pathogens, resis-

tance to U. maydis has been rarely described (Baumgarten

et al., 2007; L€ubberstedt et al., 1998). Unlike in other bio-

trophic interactions, no gene-for-gene interactions have

been identified in the U. maydis–maize pathosystem.

Crosses of U. maydis-resistant and -susceptible maize lines

have previously indicated that U. maydis resistance is a

polygenic, quantitative trait (Hoover, 1932; Immer, 1927).

Several QDR loci that contribute to U. maydis infection fre-

quency and severity have been identified, and some stud-

ies have suggested that specific loci may contribute to

U. maydis resistance in an organ-specific manner (Baum-

garten et al., 2007; L€ubberstedt et al., 1998). Interestingly,

several QDR loci conferring resistance to U. maydis con-

tain genes with a known role in defence against patho-

gens, such as NLRs, a pathogenesis-related protein, a

chitinase, a basal antifungal protein and a wound-inducible

protein (Baumgarten et al., 2007; Brefort et al., 2009). For

one U. maydis effector, ApB73, a maize line-specific viru-

lence function has been observed (Stirnberg and Djamei,

2016). This suggests that the fungus’ effectors might target

certain host genes contributing to QDR. However, the

molecular basis of QDR in maize and how U. maydis inter-

feres with its components is still mostly unknown.

Extensive transcriptome analyses have revealed organ-,

cell type- and stage-specific expression patterns of the

U. maydis effector gene repertoire (Lanver et al., 2018;

Matei et al., 2018; Skibbe et al., 2010). Despite these efforts,

how gene expression is influenced by host lines of quanti-

tatively different resistance levels remains to be elucidated.

Such knowledge would help to draw a more comprehen-

sive picture of U. maydis virulence.

In this study, we analysed the transcriptome of U. may-

dis infecting six maize lines of quantitatively differing resis-

tance levels via RNA-Seq. This offered unprecedented

insights into transcriptional changes associated with host

disease resistance. In U. maydis, we found effector genes

being expressed in a host genotype-dependent manner

and for one effector, CRISPR-Cas9-mediated mutagenesis

identified a maize line-specific virulence function.

RESULTS

Ustilago maydis disease development in different maize

lines

To investigate QDR in the maize–U. maydis interaction, we

evaluated the susceptibility of different maize lines to

U. maydis infection. Ustilago maydis resistance levels

were assessed in the 26 inbred founder lines of the Nested

Association Mapping (NAM) recombinant inbred lines

(RILs) (McMullen et al., 2009; Yu et al., 2008), a set of maize
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lines selected to represent worldwide maize diversity. In

addition, the sweet corn Early Golden Bantam (EGB) was

used, which is commonly used in U. maydis research (Zuo

et al., 2019). Seedling infections were performed in three

independent biological replicates under controlled condi-

tions with an average of 102 plants per line being scored

for U. maydis disease symptoms (Figure 1a). In this experi-

mental setup, resistance levels were highly diverse and

ranged from very susceptible to very resistant (>94% ver-

sus <35% tumours, respectively), while no maize line

showed complete resistance to U. maydis infection (Fig-

ure 1a). Agglomerative hierarchical clustering of disease

indices as a measure of U. maydis infection severity identi-

fied five susceptibility groups (Figure 1b). Two groups con-

sisted only of the most resistant line CML322 and of the

most susceptible line Tx303, respectively, and three groups

were of comparable sizes, indicating a mostly even distri-

bution of U. maydis resistance levels within the NAM foun-

der lines and EGB. The U. maydis SG200 strain used in

this study was derived from a field isolate from a temper-

ate region (Minnesota, USA; K€amper et al., 2006). Strik-

ingly, among the maize lines with highest susceptibility,

most were local to regions close to the origin of SG200

(e.g. Oh43 from Ohio, Mo18w from Missouri, Il14H from

Illinois). In contrast, all four most resistant maize lines

were of tropical origin (CML322, NC350, NC358, Ki3). Thus,

maize lines of close provenance to SG200 were generally

more susceptible, indicating a possible adaptation of the

local U. maydis strain to the local host lines. From each

group, one to two lines were chosen based on resistance

level, provenance, growth soundness and seed production

for subsequent investigations (CML322, B73, EGB, Ky21,

Oh43 and Tx303).

To further characterise disease progression of U. maydis

within the different maize lines and to select a time point

suitable for transcriptome analysis, we assessed relative

fungal biomass by quantitative PCR (qPCR) using genomic

DNA (Figure 1c) and visualised fungal growth within leaf

tissue by WGA-AF488/propidium iodide co-staining

throughout the infection process at 1, 3, 6 and 9 days post-

infection (dpi) (Figure S1).

At 1 and 3 dpi, relative fungal biomass did not differ sig-

nificantly between the maize lines. At 6 dpi, however, fun-

gal biomass in Tx303, the most susceptible maize line, was

increased approximately twofold compared to the other

maize lines. In line with previous observations, relative

fungal biomass decreased at the late infection time point

(9 dpi), which might be due to impaired teliospore forma-

tion in the genetically engineered haploid SG200 strain

(Lanver et al., 2018). At the microscopic level, the infection

progress was comparable for 1 and 3 dpi in all maize lines.

At 6 dpi, strong differences could be observed, as for

CML322, the most resistant maize line, hyphae were

mostly proliferating similarly to earlier stages, whereas for

the more susceptible maize lines fungal aggregates, frag-

mented hyphae and enlarged maize cells were visible (Fig-

ure S1). Size and number of fungal aggregates and maize

cell enlargements increased with susceptibility levels of

the maize lines. Based on these fungal quantification and

microscopic growth data, the 3 dpi time point was chosen

for transcriptome analysis. At this time point, the different

maize lines showed comparable growth of biotrophic

hyphae while levels of fungal colonisation allowed suffi-

cient coverage of U. maydis genes by RNA-Seq.

Transcriptome analysis of U. maydis infecting maize lines

of distinct disease resistance levels

For gene expression analysis, maize seedlings of maize

lines CML322, B73, EGB, Ky21, Oh43 and Tx303 were

infected with U. maydis SG200 and water (mock control).

Infected and mock-treated leaf sections were collected 3

dpi in biological triplicates and their transcriptome was

subsequently analysed via RNA-Seq. After filtering for low

expression, 6284 of 6766 U. maydis genes remained for

the analysis and were considered to be expressed in our

samples (93%). To evaluate variability between the sam-

ples, we made a multidimensional scaling (MDS) plot (Fig-

ure 2a). To additionally examine whether the infection

stage in the different maize lines was comparable and to

demonstrate that gene expression differences were not

caused by faster infection progression in the more suscep-

tible maize lines, we included transcriptome data previ-

ously published by Lanver et al. (2018), where the maize

line EGB was infected with the mixture of the two compati-

ble U. maydis wild-type strains FB1 and FB2, and the fun-

gal transcriptome was mapped during different stages of

the infection process. All our samples clustered with the 2

dpi samples of Lanver et al. (2018), which likely reflects the

slower disease progression of SG200 compared to

FB1xFB2. Again, this showed no pronounced differences in

infection progression between the different maize lines at

the time point tested.

To analyse whether U. maydis gene expression is influ-

enced by the colonised maize line, we compared expres-

sion in all 15 possible pairs of the six different maize lines.

This identified in total 406 of the 6284 expressed genes

(6.4%) being differentially expressed (log2(expression fold

change) > 0.5, adjusted P value < 0.05, Data Set S1) in at

least one of the 15 comparisons. The number of differen-

tially expressed U. maydis genes (DEGs) ranged from zero

to 300 genes in the different comparisons and only a few

genes were differentially expressed in several of the 15

comparisons (Figure 2b,c). The majority of DEGs were only

differentially expressed in one to three comparisons (ap-

proximately 75%) and only 1% of DEGs was differentially

expressed in more than half of the comparisons, reflecting

diverse gene expression changes among different maize

lines. Strikingly, amongst the 406 DEGs, 102 encode
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candidate secreted effector proteins (CSEPs, Dutheil et al.,

2016), which represents a significant 3.3-fold enrichment

(hypergeometric P value = 5.65e�30) (Figure 2d). Most of

these CSEPs do not contain any predicted functional

domains (68%). A heatmap based on expression profiles of

the 102 line-specific CSEPs shows distinct groups of CSEPs

with similar expression patterns (Figure 2e, Data Set S2).

Of the 102 CSEPs, one group of 38 genes is upregulated in

Figure 1. Ustilago maydis disease development in the 26 maize NAM founder lines and EGB.

(a) Disease symptom classification. Maize seedlings were infected with U. maydis SG200 at the three-leaf stage. Three independent experiments were per-

formed and the average values are expressed as the percentage of the total number of infected plants. Disease symptom classification was done 12 days post-

infection (dpi) as described in Redkar and Doehlemann (2016). Average number of infected plants per line: 102. Maize lines selected for RNA-Seq are highlighted

in bold. Representative pictures of infected leaves at 12 dpi for each maize line are given at the top.

(b) Agglomerative hierarchical clustering of disease indices. Clustering is based on Euclidean distances of disease indices using complete linkage clustering.

Maize lines selected for RNA-Seq are highlighted in bold. The maize lines’ provenances are depicted by black symbols.

(c) Fungal biomass quantification based on the amount of genomic DNA. A qPCR with plant-specific (GAPDH) and fungus-specific (ppi) primers was performed

at 1, 3, 6 and 9 dpi in the maize lines selected for RNA-Seq. Solid points give mean ratios of fungal DNA to plant DNA (2�DDCt) of three biological replicates,

transparent points give individual values and error bars denote the standard deviation.
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the most resistant maize line CML322 and downregulated

in more susceptible maize lines, except for Oh43, while

another group of 29 CSEPs shows an opposite expression

pattern. Besides these two main expression patterns, some

CSEPs show no clear correlation to the resistance level.

Consequently, no dominant expression pattern that under-

lies all maize line-specific CSEPs was observed.

Weighted gene co-expression network analysis of

U. maydis genes during infection of maize lines of distinct

disease resistance levels

Next, we assessed the correlation of U. maydis gene

expression with the maize resistance levels. A weighted

gene co-expression network analysis (WGCNA) identifies

modules of co-expressed genes and represents the mod-

ules by summary expression profiles, referred to as the

module eigengene (Langfelder and Horvath, 2008; Zhang

and Horvath, 2005). This analysis identified 11 colour-

coded modules with differential expression profiles of the

module eigengenes, ranging in size from 1073 (‘turquoise’)

to 65 genes (‘purple’) (Figure 3a, Data Set S3). Subse-

quently, the correlation of each module eigengene with the

disease indices of the different maize lines was calculated

(referred to as gene significance [GS]) (Figure 3b). The

‘purple’ module showed a significant positive correlation

(GS > 0.5, P < 0.05) and the ‘greenyellow’ module showed

a significant negative correlation to the disease index (GS

< �0.5, P < 0.05), i.e. expression of genes in the ‘purple’

module is higher in more susceptible maize lines and

expression of genes in the ‘greenyellow’ module is higher

in more resistant maize lines. To evaluate which biological

processes were associated with the colonisation of more

resistant and more susceptible maize lines, the ‘purple’

Figure 2. RNA-Seq analysis of Ustilago maydis infecting maize lines of dif-

fering disease resistances.

(a) MDS plot of U. maydis RNA-Seq data. The top 1000 variable genes were

used to calculate pairwise distances between the samples. FB1xFB2 RNA-

Seq data were previously published and represent different time points in

the U. maydis disease cycle in EGB (Lanver et al., 2018). MDS: multidimen-

sional scaling.

(b) UpSet plot of the distribution of differentially expressed U. maydis

genes across maize lines. Genes with log2(expression fold change) > 0.5

and adjusted P value < 0.05 were considered differentially expressed. In

total, 406 of 6284 expressed genes were differentially expressed between

maize genotypes. The number of differentially expressed genes (DEGs) for

each of the 15 possible comparisons is given by set size (horizontal bars).

Overlaps of DEGs between comparisons are depicted by connected black

dots. DEGs unique to one of the comparisons are depicted by individual

black dots. The extent of overlap is shown by intersection size (vertical

bars).

(c) Number of differentially expressed genes by frequency of differential

expression within comparisons. The categories of the bar plot give the per-

centage of all DEGs that are differentially expressed in the indicated number

of comparisons. DE: differential expression.

(d) Enrichment of CSEPs in differentially expressed genes. Portion of CSEPs

in all 6284 expressed U. maydis genes compared to the portion of CSEPs in

DEGs between maize genotypes. Within DEGs, CSEPs show a 3.3-fold

enrichment (hypergeometric test, P value = 5.65e�30). EG: expressed gene.

DEG: differentially expressed gene. CSEP: candidate secreted effector pro-

tein.

(e) Expression profile of differentially expressed U. maydis CSEPs across

maize lines. The heatmap shows log2(expression fold change) values com-

pared to mean expression across all samples. CSEP: candidate secreted

effector protein.
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and ‘greenyellow’ modules were subjected to enrichment

analysis of Gene Ontology (GO) terms and CSEPs (Ash-

burner et al., 2000; The Gene Ontology Consortium, 2017),

(Figure 3c, Data Sets S4, S5). In summary, mostly ion

transport processes were significantly enriched in the ‘pur-

ple’ module, which might suggest that different availability

of nutrients in more resistant versus more susceptible

maize lines could be involved in QDR to U. maydis.

Figure 3. Weighted gene co-expression analysis (WGCNA) of Ustilago maydis genes during infection of maize lines of differing disease resistances.

(a) Modules of co-expressed U. maydis genes across maize lines. The RNA-Seq data were subjected to WGCNA to detect modules of co-expressed genes. Each

plot represents the expression profile of the module eigengene, which can be considered as representative of the expression of the respective co-expression

module. Error bars indicate standard deviation of three biological replicates. The modules are named according to their colour, and the size of each module is

given in parentheses. Modules significantly correlated with disease index are highlighted in bold and their respective colour.

(b) Module–disease index association. Correlation of modules of co-expressed genes with the disease index of the colonised maize line. Numbers in the heat-

map show the correlations with disease index and P values in parentheses for the respective module eigengene (ME). Correlation was considered significant if

correlation > 0.5 or < �0.5 and P < 0.05.

(c) GO and CSEP enrichments in modules correlated with disease index. GO biological process terms and additionally candidate secreted effector proteins

(CSEPs) were tested for significant enrichment in the purple (positive correlation to disease index) and greenyellow (negative correlation to disease index) mod-

ules. Gene sets were considered significantly enriched if P < 0.05 (hypergeometric test). Dot size is representative of the number of analysed genes in the

respective term. Only genes with a gene significance to disease index of >0.5 (purple) or <�0.5 (greenyellow) and P < 0.05 were considered for the analysis and

only terms with a set size of ≥2 are shown.
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Additionally, ‘oxidation-reduction’ was the GO term with

the most genes. Oxidation-reduction processes are

involved in metabolism as well, but can also have a sig-

nalling function or be related to detoxification of reactive

oxygen species. In the ‘greenyellow’ module, all signifi-

cantly enriched GO terms were related to carbohydrate

metabolism. In addition, CSEPs were significantly enriched

in this module and represented the biggest category which

might reflect an elevated need for the fungus to suppress

enhanced defence mechanisms in more resistant host

lines.

Transcriptome analysis of U. maydis-infected maize lines

of distinct disease resistance levels

To identify maize genes involved in QDR to U. maydis, we

analysed genotype-dependent transcriptional changes in

response to U. maydis via RNA-Seq. Of all 63 477 maize

annotated loci, 40 056 were expressed in our samples

(63%). To assess the variability between the samples we

used an MDS plot (Figure 4a). Ustilago maydis-infected

and control samples formed two distinct groups, within

which the samples of each maize line clustered together,

indicating both treatment-specific and genotype-specific

expression patterns. We compared expression fold

changes of the U. maydis-infected samples to the respec-

tive control samples for all 15 possible pairs of six different

maize lines (i.e. difference between genotypes in response

to infection). This analysis showed that in total 8675 of

40 056 transcripts (22%) responded differentially to

U. maydis infection (log2(expression fold change) > 0.5,

adjusted P value < 0.05, Data Set S6) in at least one of the

15 comparisons. The number of DEGs ranged from 358 to

1283 genes in the different comparisons and the fraction of

genes differentially expressed in several of the 15 compar-

isons was very small (Figure 4b). Around 50% of DEGs

were differentially expressed in only one of the compar-

isons and only 4% of DEGs were differentially expressed in

more than half of the comparisons. Together, this shows

that genes differentially responding to U. maydis infection

are highly diverse between maize lines.

To identify biological processes which were associated

with the maize line-specific gene expression responses, all

DEGs were subjected to enrichment analysis of GO terms

(Ashburner et al., 2000; The Gene Ontology Consortium,

2017), highlighting processes involved in transport,

response to stimulus, cellular processes and metabolism

(Figure 4d, Data Set S8). The GO terms with most genes

were ‘transmembrane transport’, ‘oxidation-reduction’ and

‘protein phosphorylation’, which could indicate a special

importance of these processes in DEGs in response to

U. maydis between maize lines. Transport processes play

a pivotal role in signalling and nutrient uptake, as well as

growth and development. Oxidation-reduction processes

are involved in metabolism but can also have a signalling

function. Protein phosphorylation occurs during kinase sig-

nalling processes. A predominant role of genes related to

metabolism as well as kinase signalling cascades for QDR

has been proposed before (Delplace et al., 2020). Together,

this suggests that maize line-specific responses to U. may-

dis involve various cellular activities, consistent with the

complex nature of QDR. To examine if the maize DEGs

include genes associated with other forms of immunity,

we compared Arabidopsis thaliana orthologues of the

DEGs with A. thaliana genes previously found to be linked

to pathogen-associated molecular pattern (PAMP)-trig-

gered immunity (PTI) and/or effector-triggered immunity

(ETI) responses (Dong et al., 2015; Hatsugai et al., 2017;

Mine et al., 2018). However, of the 3264 DEG A. thaliana

orthologues, only about 11% (363 and 360 genes) were

found in common with either ETI- and/or PTI-associated

genes (Figure S2a).

To assess which processes were connected to U. maydis

resistance or susceptibility, the correlation of expression

changes between U. maydis infection and mock treatment

of each gene of the respective maize line to the disease

index was calculated (Data Set S7). All DEGs were then fil-

tered for genes with a significant positive (GS > 0.5 and P

< 0.05, Figure 5a) or negative (GS < �0.5 and P < 0.05, Fig-

ure 5b) correlation to the disease index. These two sets of

genes were again subjected to enrichment analysis of GO

terms (Figure 5a,b, Data Sets S9, S10). In the DEGs with

positive correlation to the disease index, i.e. upregulated in

more susceptible maize lines, enrichments were found in

four main cellular activities: cellular processes, response to

stimulus, transport and metabolism (Figure 5a). The

enriched GO term with the largest number of genes was

‘protein phosphorylation’, one of the most important cellu-

lar regulatory mechanisms involved in signal transduction.

Furthermore, biological process terms that can be linked to

cell division processes (‘DNA replication’, ‘microtubule-

based movement’) and ‘sexual reproduction’/’recognition

of pollen’ were significantly enriched. In DEGs negatively

correlated to the disease index, i.e. genes upregulated in

the more resistant maize lines, enrichments were found in

transport and metabolism (Figure 5b). The enriched GO

term with the largest number of genes was ‘translation’,

and a process that could be involved in photosynthesis

(‘porphyrin-containing compound biosynthetic process’)

was most strongly enriched.

Identification of maize line-specific U. maydis effectors

As U. maydis genes encoding CSEPs were enriched both

in genes differentially expressed between maize lines and

in the co-expression module correlated to infection sever-

ity, we investigated whether line-specifically expressed

CSEPs also have line-specific functions for virulence.

Twelve candidate maize line-specific CSEP genes were

selected from all 102 differentially expressed CSEPs based
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on a high log2 (expression fold change) value and an

expression pattern with higher expression in resistant and

lower expression in susceptible maize lines or vice versa

(sum of log2 (expression fold change) across all samples

>2; Figure 6a). CSEPs with similar expression patterns

were targeted for simultaneous knock-out (KO) in the
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SG200 background using the CRISPR/Cas9 system, gener-

ating frameshift mutations near the 50 ends of the respec-

tive genes (Figure 6a,b, Data Set S13, Schuster et al.,

2016). Plant infections with the generated U. maydis

mutant strains identified line-specific virulence functions

for the CSEP genes UMAG_02297 and/or UMAG_05027

(Figure 6c). While virulence of the double mutant KO_U-

MAG_02297/KO_UMAG_05027 was not reduced on B73 or

EGB, a significant reduction was observed on CML322 and

Oh43. For reasons of seed availability, subsequent analy-

ses of the mutants were focused on the maize line

CML322. Here, the virulence defect could be restored by

introducing single copies of both genes into the ip locus of

the double mutant strain, demonstrating specificity of the

observed virulence reduction (Figure 6c).

To assess if both or only one of the genes contribute to

maize line-specific virulence of KO_UMAG_05027/KO_U-

MAG_02297 on CML322, single KO mutants of

UMAG_02297 and UMAG_05027 were tested for virulence

on EGB and CML322. This showed that UMAG_02297

alone, but not UMAG_05027, was necessary for full viru-

lence on CML322. The virulence defect of KO_U-

MAG_02297 could be restored by introducing a single copy

of UMAG_02297 into the ip locus of the mutant strain (Fig-

ure 6c). In addition, a line-specific virulence function was

observed for UMAG_05318 and/or UMAG_11416 (Fig-

ure S4). Here, the double mutant KO_UMAG_05318/KO_U-

MAG_11416 showed reduced virulence on EGB, but not

B73. As the single KO strain KO_UMAG_11416 did not

show any virulence defect (Figure S5) and a reduction of

virulence for a UMAG_05318 deletion strain had already

been reported previously (Schilling et al., 2014), these

CSEPs were not further investigated. For all other tested

mutants, either no reduction of virulence or a reduction of

virulence on all tested maize lines was observed (Fig-

ure S4).

Relative expression levels of UMAG_02297 were anal-

ysed via quantitative reverse transcriptase-PCR (qRT-PCR)

on the six different maize lines (Figure S3b). Interest-

ingly, UMAG_02297 was expressed at the lowest levels

on CML322 throughout the infection process, the maize

line on which it was required for full virulence. Hence,

high expression levels do not seem to determine the

function for virulence. To investigate the relation of

expression level of the effector and U. maydis virulence,

we generated a strain in which UMAG_02297 was

expressed under control of the promoter ppit2, which is

highly active throughout the infection process and

results in strong overexpression of the gene (Mueller

et al., 2013). EGB and CML322 seedlings were infected

with Ppit2:UMAG_02297 single and multiple integration

strains (Figure 6d). Interestingly, the overexpression

strain showed a maize line-specific virulence defect as

well: on CML322, but not on EGB, the multiple integra-

tion strain was significantly reduced in virulence com-

pared to strain SG200. This shows that a fine-tuned

expression of UMAG_02297 is required for virulence on

maize line CML322.

Host transcriptional changes induced by UMAG_02297

To investigate which host processes might be influenced

by the maize line-specific effector UMAG_02297, leaf sam-

ples of CML322 maize seedlings infected with SG200 and

KO_UMAG_02297 were analysed by RNA-Seq at 3 dpi. Of

all 63 477 maize annotated loci, 30 637 were expressed in

these samples (48%). To assess variability between the

samples, we made an MDS plot (Figure 7a). Both U. may-

dis-infected samples formed one cluster highly distinct

from the mock-treated samples, indicating that maize gene

expression was mostly influenced by infection in general,

rather than by the different U. maydis strains.

To identify genes which were uniquely responsive to

infection with SG200 or the UMAG_02297 KO strain, we

compared expression levels between the infected samples

and the CML322 mock sample (log2(expression fold

change) > 0.5, adjusted P value < 0.05, Data Set S11). Over-

all, the number of DEGs in response to the KO strain was

similar to that upon SG200 infection (SG200: 6046 genes

upregulated and 3646 genes downregulated compared to

mock; KO strain: 5699 genes upregulated and 3212 genes

downregulated compared to mock). Most of the DEGs

were jointly regulated: 91% of the upregulated genes

(5486) and 81% of the downregulated genes (2962) were

equivalently regulated in response to both strains. Only

Figure 4. RNA-Seq analysis of maize gene expression in response to Ustilago maydis.

(a) MDS plot of maize RNA-Seq data. The top 5000 variable genes were used to calculate pairwise distances between the samples. MDS: multidimensional scal-

ing.

(b) UpSet plot of the distribution of differentially expressed genes (DEGs) between maize lines in response to U. maydis. Genes with log2(expression fold

change) > 0.5 of the gene expression changes and adjusted P value < 0.05 were considered differentially expressed (difference between genotypes in response

to infection). In total, 8675 of 40 056 expressed genes responded differentially to U. maydis between maize genotypes. The number of DEGs for each of the 15

possible comparisons is given by set size (horizontal bars). Overlaps of DEGs between comparisons are depicted by connected black dots. DEGs unique to one

of the comparisons are depicted by individual black dots. The extent of overlap is shown by intersection size (vertical bars).

(c) Expression profile of differentially expressed maize genes in response to U. maydis. The heatmap shows log2(expression fold change) values of SG200-in-

fected versus mock-treated samples.

(d) GO enrichments in differentially expressed maize genes. GO biological process terms were tested for significant enrichment in all DEGs between maize lines

in response to U. maydis. Gene sets were considered significantly enriched for P < 0.05 (hypergeometric test). Dot size is representative of the number of anal-

ysed genes in the respective term. Only terms with a set size of ≥10 are shown.
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around 9% and 4% (560 and 213 genes) were uniquely

upregulated in response to SG200 or KO, respectively, and

around 19% and 8% (684 and 250 genes) were uniquely

downregulated in response to SG200 or KO, respectively.

Taken together, this indicates that maize gene expression

is slightly and specifically altered by UMAG_02297. To gain

insight into which host processes could be targeted by

UMAG_02297, genes uniquely responsive to each of the

strains were additionally filtered for genes that were differ-

entially expressed in response to U. maydis SG200 infec-

tion between CML322 and EGB, where UMAG_02297 was

not found to have a function for virulence (426 genes).

Within these, genes predicted to encode auxin efflux trans-

porters were strongly enriched (12-fold enrichment, hyper-

geometric P = 0.002, Data Set S12). Interestingly, we

additionally found several other genes predicted to be

related to auxin (Figure 7c). The auxin efflux carrier pin12

(GRMZM2G160496_P01) and auxin-responsive SAUR32

(GRMZM2G466229_P01) were similarly regulated in

CML322 in response to KO and in EGB in response to

SG200, while SAUR56 (GRMZM2G414727_P01) and the

auxin efflux carrier PIN5a (GRMZM2G025742_P01) differed

more strongly between the maize lines (SG200- and KO-in-

fected CML322 versus SG200-infected EGB). This observed

specific regulation of auxin-related genes identifies the

manipulation of the auxin pathway as a potential maize

line-specific target of UMAG_02297.

DISCUSSION

Our plant inoculation experiments revealed that U. maydis

resistance levels of the NAM founder lines and EGB are

highly diverse, which further corroborates the quantitative

Figure 5. Correlation of maize gene expression to Ustilago maydis resistance levels.

(a) Expression profile and enrichments of genes positively correlated with the disease index. Genes with a gene significance for the disease index of >0.5 and

P < 0.05 were considered to be significantly positively correlated to the disease index. The heatmap shows log2(expression fold change) values of SG200-in-

fected versus mock-treated samples. GO biological process terms were tested for significant enrichment in all DEGs between maize lines in response to U. may-

dis that were positively correlated to the disease index. Gene sets were considered significantly enriched for P < 0.05 (hypergeometric test). Dot size is

representative of the number of analysed genes in the respective term. Only terms with a set size of ≥3 are shown.

(b) Expression profile and enrichments of genes negatively correlated with the disease index. Genes with a gene significance for the disease index of <�0.5 and

P < 0.05 were considered to be significantly negatively correlated to the disease index. The heatmap shows log2(expression fold change) values of SG200-in-

fected versus mock-treated samples. GO biological process terms were tested for significant enrichment in all DEGs between maize lines in response to U. may-

dis that were negatively correlated to the disease index. Gene sets were considered significantly enriched for P < 0.05 (hypergeometric test). Dot size is

representative of the number of analysed genes in the respective term. Only terms with a set size of ≥3 are shown.
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nature of the U. maydis–maize interaction. The transcrip-

tome analysis of six U. maydis-infected maize lines of dif-

ferent resistance levels offered unprecedented insights

into the transcriptional changes associated with host dis-

ease resistance. Resistance levels of the NAM founder

lines to other diseases such as northern corn leaf blight

or aphids have been previously analysed, which revealed

distinct patterns from the U. maydis resistance levels

observed in this study. B73 for example is highly suscepti-

ble to northern corn leaf blight, while CML322 is very

resistant and Ky21, Oh43 and Tx303 showed medium sus-

ceptibility levels (Poland et al., 2011). Aphid resistance

Figure 6. Expression pattern and virulence function of candidate maize line-specific effectors.

(a) Selection of maize line-specific effector candidates for functional characterization.

(b) Expression profile of selected maize line-specific effector candidates across maize lines. The heatmap shows log2(expression fold change) values compared

to mean expression across all samples.

(c) Virulence function of candidate maize line-specific effectors. Double and single knock-out (KO) mutant strains of selected maize line-specific effectors were

injected into maize seedlings of the indicated line and symptoms were scored 12 days post-infection (dpi). Gene names are given at the top. KO refers to the

respective CRISPR/Cas9 knock-out strain. Gene names separated by a slash indicate double KO of these genes. KO/C indicates that a single copy of the respec-

tive gene(s) was introduced into the KO strain for complementation. Disease indices reflect disease symptom severity and are shown in relation to SG200, which

was set to unity. Asterisks indicate a significant reduction in disease index compared to SG200 (Student’s t-test, P < 0.05). All experiments were performed in

three independent biological replicates. Average number of infected plants per strain and maize line: 89.

(d) Impact of UMAG_02297 overexpression on virulence. SG200, KO_UMAG_02297, KO_UMAG_02297/C and OE_UMAG_02297 strains were injected into

CML322 and EGB seedlings and symptoms were scored 12 dpi. OE: overexpression. S.I.: single integration. M.I.: multiple integration. Disease indices reflect dis-

ease symptom severity and are shown in relation to SG200, which was set to unity. Asterisks indicate a significant reduction in disease index compared to

SG200 (Student’s t-test, P < 0.05). All experiments were performed in three independent biological replicates. Average number of infected plants per strain and

maize line: 86.
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was found high in Tx303, Oh43 and Ky21, whereas

CML322 was found to be highly susceptible and B73 dis-

played medium aphid susceptibility (Meihls et al., 2013).

For U. maydis, CML322 displayed the highest resistance

levels, followed by B73, and Ky21, Oh43 and Tx303 were

moderately to highly susceptible. This suggests that speci-

fic, rather than general defence mechanisms determine

the outcome of maize interactions with different patho-

gens and pests.

Maize line-specific gene expression in U. maydis

For U. maydis, our analysis of genes which were differen-

tially expressed between host genotypes showed a signifi-

cant enrichment of CSEPs. Additionally, CSEPs were

significantly enriched in the co-expression module that

was negatively correlated to the disease index, i.e. within

genes that were upregulated in the more resistant maize

lines. Both these findings indicate a predominant role of

Figure 7. Maize gene expression changes in response to Ustilago maydis KO_UMAG_02297. The transcriptome of CML322 maize seedlings infected with

SG200, KO_UMAG_02297 and mock was analysed via RNA-Seq 3 days post-infection (dpi). KO: knock-out.

(a) MDS plot of maize RNA-Seq data. The top 5000 variable genes were used to calculate pairwise distances between the samples. MDS: multidimensional scal-

ing.

(b) UpSet plot of maize genes differentially expressed in response to SG200 and KO_UMAG_02297 infections in comparison to mock. Genes with log2(expres-

sion fold change) > 0.5 or < �0.5 and adjusted P value < 0.05 were considered differentially expressed. In total, 10 155 of 30 637 expressed genes were differen-

tially expressed. The number of differentially expressed genes (DEGs) for each of the 15 possible comparisons is given by set size (horizontal bars). Overlaps of

DEGs between comparisons are depicted by connected black dots. DEGs unique to one of the comparisons are depicted by individual black dots. The extent of

overlap is shown by intersection size (vertical bars).

(c) Expression profile of auxin-related maize genes in response to U. maydis SG200 and KO_UMAG_02297 in EGB and CML322. The heatmap shows log2(ex-

pression fold change) values of infected versus mock-treated samples.
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CSEPs in colonising host lines of different resistance levels

and point to an important involvement of CSEPs in target-

ing components of QDR.

In the co-expression module correlated to colonisation

of more resistant host lines, enriched biological processes

included mechanisms connected to carbohydrate metabo-

lism, which in plant pathogenic fungi has been directly

linked to plant cell wall degradation (Ospina-Giraldo

et al., 2003; Tonukari et al., 2000). During U. maydis infec-

tion, degradation of cell walls was previously found to be

important at very early stages to allow initial penetration

and intracellular growth, as well as in later stages when

plant cell walls need to be loosened to enable cell

enlargement for tumour formation, rather than being

used as a nutrient source (Doehlemann et al., 2008b; Lan-

ver et al., 2018). One could speculate that enhanced cell

wall reinforcements or different cell wall compositions

might be an additional obstacle the fungus needs to over-

come when colonising host lines of higher resistance

levels. Several studies have suggested differences in cell

wall composition as factors in host–pathogen interactions

(Bacete et al., 2020; Vorwerk et al., 2004). Arabidop-

sis thaliana mutants of the GPI-anchored putative pectate

lyase PMR6 were found to be highly resistant to powdery

mildew (Vogel et al., 2002). In wheat, variation in pectin

composition has been associated with resistance to the

stem rust fungus Puccinia graminis (Wieth€olter et al.,

2003). In maize, differences in cell wall composition

between different lines have been reported (Hazen et al.,

2003). A cell wall carbohydrate profiling of all NAM foun-

der lines would allow investigating if more resistant or

more susceptible maize lines share similar cell wall com-

positions and would thereby help to answer the question

to which extent natural variation in cell wall composition

affects pathogen resistance.

Another functional group of U. maydis genes that were

correlated to infection of more susceptible lines is linked

with ion transport processes. The exchange of nutrients

between cells is predominantly driven by an ion gradient

which is produced by the activity of plasma membrane H+-

ATPases that transport ions through the membrane (Giani-

nazzi-Pearson et al., 1991; Palmgren, 1990; Sondergaard

et al., 2004; Wang et al., 2014). During mycorrhizal symbio-

sis, plant H+-ATPases were found to energise nutrient

uptake in rice and Medicago truncatula (Wang et al., 2014).

Ustilago maydis contains two H+-ATPases that could be

involved in nutrient uptake (Robles-Mart�ınez et al., 2013).

Together with the previous finding that different nutrient

transporters are important virulence factors tied to bio-

trophic development in U. maydis (Lanver et al., 2018;

Schuler et al., 2015; Wahl et al., 2010), this could indicate

that different availability of nutrients in more resistant ver-

sus more susceptible maize lines is involved in QDR to

U. maydis.

Maize processes involved in QDR against U. maydis

To gain insight into the host processes which are involved

in QDR to U. maydis, we analysed genotype-dependent

transcriptional changes in response to U. maydis in maize

lines of distinct resistance levels. The major functional

classes within maize DEGs were related to ‘transmembrane

transport’, ‘oxidation-reduction’ and ‘protein phosphoryla-

tion’. Protein phosphorylation through kinases is a central

process for signal transduction in immune responses.

Interestingly, kinases have been shown to play important

roles in QDR in several cases. Two maize wall-associated

kinases, ZmWAK-RLK1 and ZmWAK, confer QDR to north-

ern corn leaf blight and a close relative of U. maydis,

Sporisorium reilianum, respectively (Hurni et al., 2015; Zuo

et al., 2015). Transport processes are essential for plant

responses during interactions with pathogens, and several

QDR genes encode putative transporters. For example, the

ABC transporter encoded by Lr34 confers resistance to

diverse fungal pathogens in wheat (Krattinger et al., 2009).

Hence, this suggests a possible role for kinases as well as

transport processes also in QDR against U. maydis.

Together, our analysis shows that genes associated to

QDR to U. maydis include genes of various functional

classes, in line with the complex nature of QDR and the

idea that QDR extends beyond pathogen perception (Cor-

win and Kliebenstein, 2017). The finding that only a small

fraction of the DEGs was shared with genes previously

found to be associated with PTI and ETI in A. thaliana,

assuming conservation of PTI and ETI between maize and

A. thaliana, implies that QDR mechanisms are mostly dis-

tinct from PTI and ETI gene networks (Dong et al., 2015;

Hatsugai et al., 2017; Mine et al., 2018).

Correlation analysis of gene expression to resistance

levels via WGCNA again identified processes involved in

protein phosphorylation, as well as cell division being

upregulated in the more susceptible maize lines in

response to U. maydis. To build a tumour, the fungus

actively triggers cell division and reactivates DNA synthe-

sis in the leaf tissue, which goes along with alterations of

genes involved in cell cycle regulation (Matei et al., 2018;

Redkar et al., 2015; Villajuana-Bonequi et al., 2019). In the

A. thaliana–Plasmodiophora brassicae interaction, which is

also accompanied by gall formation, genes involved in cell

proliferation were found to be associated with QDR

(Jubault et al., 2013). In addition to the obvious involve-

ment in tumour formation, cell cycle deregulation was also

found to have an impact on expression of R genes and can

thereby modulate plant defence (Bao et al., 2013). Thus,

one could speculate that genes involved in cell division

might also play a role in QDR against U. maydis.

In the more resistant maize lines, processes involved in

photosynthesis were significantly enriched. It was shown

previously that U. maydis suppresses the induction of
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photosynthesis-associated genes in infected leaves

(Doehlemann et al., 2008a; Horst et al., 2008). This is

accompanied by an increase of free hexose levels and a

decrease in chlorophyll content, reflecting that the fungus

blocks the transition to a photosynthetically active source

tissue (Doehlemann et al., 2008a; Matei et al., 2018). Free

hexoses within tumour cells are thought to serve as an

easily accessible carbon source for the fungus, as well as

help to build up osmotic pressure for tumour cell expan-

sion (Horst et al., 2010; Horst et al., 2008). Infection experi-

ments using maize mutants with distorted starch

metabolism showed that alterations in carbon allocation

are an important factor influencing U. maydis growth and

plant defence (Kretschmer et al., 2017). Inefficient suppres-

sion of photosynthesis, as found in the more resistant

maize lines, might result in changes in carbon allocation as

well and consequently lead to a reduction in fungal prolif-

eration. However, based on the available data one cannot

exclude the possibility that the positive correlation of pho-

tosynthesis repression and fungal infection is a conse-

quence rather than a cause of enhanced susceptibility.

Nevertheless, as the developmental stages of the fungus in

all our samples were comparable, it is likely that the

observed resistance level-specific transcriptional changes

directly contribute to the outcome of the quantitative inter-

action with U. maydis.

Maize line-specific activity of U. maydis CSEPs

It has been hypothesized that allelic variation between

plant genotypes in genes contributing to resistance or sus-

ceptibility likely builds the molecular basis of QDR (Niks

et al., 2015). This can lead to altered expression patterns or

different modes of defence reactions, but also alter the effi-

ciency an effector can interact with and thereby manipulate

its respective host target. Therefore, the targets of patho-

gen effectors which quantitatively contribute to virulence

are potential candidates contributing to QDR and thus, the

identification of these targets can help to elucidate the

diverse genetic basis of QDR. For one U. maydis effector,

ApB73, a maize line-specific virulence function has been

demonstrated as well; however, the differences were only

quantitative (Stirnberg and Djamei, 2016). One other exam-

ple supporting the hypothesis that allelic variations in

effector targets may be the basis of QDR came from the

comparison of the capacity of the EPIC1 effector from two

different Phytophthora species to suppress their target

RCR3, a papain-like cysteine protease. EPIC1 from Phytoph-

thora infestans was able to inhibit RCR3 from tomato

(Solanum lycopersicum) and potato (Solanum tuberosum),

but not PmEPIC1 from the non-adapted Phytoph-

thora mirabilis. However, PmEPIC1 was highly effective in

inhibiting an RCR3-like protease in Mirabilis jalapa. These

different specificities resulted from single amino acid poly-

morphisms in both the host target and the pathogen

effectors, underpinning the importance of ecological effec-

tor diversification (Dong et al., 2014).

In this study, we identified a maize line-specific virulence

function for the effector gene UMAG_02297. The unex-

pected finding that overexpression of UMAG_02297, simi-

lar to its KO, resulted in a maize line-specific virulence

defect, additionally underlines that manipulation of host

processes by effectors requires a fine-tuned adaptation to

the host genotype. The analysis of transcriptional changes

induced by the UMAG_02297 KO mutant in comparison to

wild type infections identified auxin-responsive processes

being a possible target of this effector. Maize transcrip-

tional changes in response to another U. maydis effector

mutant of attenuated virulence, ΔSee1, did not show an

enrichment of auxin-related genes (Redkar et al., 2015; Vil-

lajuana-Bonequi et al., 2019), suggesting that the observed

changes in auxin-related gene expression are specific to

the deletion of UMAG_02297 rather than a general conse-

quence of altered virulence. In general, auxins play a cardi-

nal role in controlling plant growth and development. A

role for auxin in the cell enlargement of U. maydis-induced

tumours has been proposed before, as auxin synthesis as

well as auxin-responsive genes are transcriptionally

induced during tumour development and auxin levels

within U. maydis-induced tumours are elevated (Doehle-

mann et al., 2008a; Reineke et al., 2008; Turian and Hamil-

ton, 1960). Additionally, auxin can act as an antagonist of

the SA pathway in plant defence, and thereby could pro-

mote fungal growth and disease development (Kazan and

Manners, 2009). Previous studies have identified a large

number of auxin-related genes that underlie QDR. For

example, in the soybean–Phytophthora sojae interaction,

auxin catabolite accumulation differed between a relatively

resistant and a more susceptible soybean cultivar, and the

ability of resistant cultivars to cope with auxin accumula-

tion was suggested to play an important role in QDR in this

pathosystem (Stasko et al., 2020). In maize, cloning of the

causal gene of the Gibberella stalk rot resistance QTL

qRfg2 identified ZmAuxRP1, which encodes a plastid

stroma-localised auxin-regulated protein, presumably

modulating auxin biosynthesis (Ye et al., 2019). Further-

more, increased auxin levels have been generally found to

lead to enhanced susceptibility to several biotrophic patho-

gens (Mutka et al., 2013; Navarro et al., 2006; Wang et al.,

2007) and a few pathogen effectors that target auxin-re-

lated processes have been identified so far. The Pseu-

domonas syringae effector AvrRpt2 for example initiates

auxin signalling through degradation of auxin/indole acetic

acid proteins (Cui et al., 2013), and the effector PSE1 from

Phytophthora parasitica modulates local auxin levels

through altered distribution of auxin efflux transporters

(Evangelisti et al., 2013). Together, this renders auxin-re-

lated processes an interesting and promising possible tar-

get of UMAG_02297, which will be tested in future studies.
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Together, our study revealed the influence of different

host genotypes on U. maydis virulence and thereby found

that activity and function of effector genes are specifically

dependent on the host line. For future studies, it will be

seminal to investigate the intraspecific variability of the

maize line-specific effector genes in U. maydis: Are vari-

ants from different wild-type strains (Depotter et al., 2021)

of the same effectors functional in different host geno-

types? And how does a highly specific, biotrophic patho-

gen like U. maydis co-adapt with its host maize in different

ecologic backgrounds?

EXPERIMENTAL PROCEDURES

Plant growth conditions, fungal infections and collection

of samples

Zea mays L. Early Golden Bantam (EGB) (Olds Seeds, Madison,
WI, USA) and the inbred founder lines of the Nested Association
Mapping (NAM) population (McMullen et al., 2009; Yu et al., 2008;
North Central Regional Plant Introduction Station, IA, USA) were
used for infections.

Virulence assays of U. maydis on Z. mays were performed as
described in Redkar and Doehlemann (2016) in three independent
biological replicates. Virulence symptoms were scored 12 dpi
using the disease rating scheme developed previously (K€amper
et al., 2006). Disease indices were calculated as follows: The num-
bers of plants sorted into categories ‘small tumours’, ‘normal
tumours’, ‘heavy tumours’ and ‘dead plants’ were multiplied by
the number of the category (1, 3, 5 and 7, respectively), summed
and then divided by the total number of infected plants:
{[(1 9 number of plants in category 1) + (3 9 number of plants in
category 3) + (5 9 number of plants in category 5) + (7 9 number
of plants in category 7)] / total number of plants}. The resulting
value for SG200 was set to unity. Indices of deletion mutants are
given relative to the score for SG200. An unpaired t-test was used
to calculate the statistical significance of the differences in disease
indices between mutant strains and SG200.

Samples of 20 infected maize seedlings were collected at 1, 3, 6
and 9 dpi in three independent biological replicates. For 1 dpi, 2-cm
sections of the third leaves were excised 0.5 cm below the infection
holes. At later time points (3, 6 and 9 dpi), 5-cm sections of the third
leaves were excised 1 cm below the infection holes. Comparable
sections were harvested for mock-treated controls. For each sam-
ple, leaf sections of 20 different plants were pooled, immediately
frozen in liquid nitrogen and stored at �80°C.

Generation of fungal strains

All U. maydis strains used in this study were derived from the
solopathogenic strain SG200 (K€amper et al., 2006). To generate
U. maydis KO mutants, the CRISPR-Cas9 system using the non-in-
tegrative, self-replicating backbone plasmid pMS73 was employed
(Schuster et al., 2018; Schuster et al., 2016). All target sequences
for the guide RNA constructs were designed using the E-CRISP
tool (www.e-crisp.org; Heigwer et al., 2014) with medium strin-
gency settings towards the 50 end of the respective gene (Data Set
S13). For integration into the ip locus of U. maydis, plasmids
derived from p123 were used and linearised within the cbx gene
before transformation into the respective U. maydis strains. Trans-
formation of U. maydis was carried out as described previously
(Schulz et al., 1990). To identify strains with Cas9-induced

mutations leading to gene KO, the respective loci were amplified
and sequenced with gene-specific primers. The stable integration
of p123-based plasmids into the ip locus was verified by Southern
blot analysis. All complementation constructs were integrated in a
single copy into the U. maydis ip locus.

Microscopic analyses

To visualise U. maydis infection progression, infected maize leaf
samples were stained with WGA-AF488 and propidium iodide as
described in Redkar et al. (2018) and analysed using a Zeiss Axio
Zoom V16 using the GFP filter for WGA-AF488 and the DsRed filter
for propidium iodide visualisation. Image processing was done
using ImageJ.

Extraction of nucleic acids and RNA sequencing

For the isolation of genomic DNA from U. maydis, a phenol-based
extraction method was used (Hoffman and Winston, 1987). For iso-
lation of nucleic acids from maize leaves, pooled leaf sections of
the individual maize samples were homogenised using a mortar
and pestle under constant liquid nitrogen cooling. Isolation of
genomic DNA from leaf powder was performed using the Master-
PureTM Complete DNA and RNA Purification Kit from Epicentre (Epi-
centre, Chicago, IL, USA) according to manufacturer’s instructions.
For isolation of total RNA, TRIzol� reagent (Invitrogen, Darmstadt,
Germany) was used according to the manufacturer’s instructions.
To approximately 400 ll of homogenised tissue, 1 ml TRIzol�
reagent was added immediately. To eliminate genomic DNA con-
tamination, the Turbo DNA-FreeTM Kit from Ambion (Ambion Life
TechnologiesTM, Carlsbad, USA) was used according to the manu-
facturer’s instructions. Sequencing library preparation was done
using the Illumina TruSeq mRNA stranded Kit (Illumina, San Diego,
CA, USA) or NEB Next� UltraTM RNA Library Prep Kit (NEB, Ipswich,
MA, USA). Illumina sequencing of mRNA was performed with 150-
bp paired-end reads at the Cologne Center for Genomics (Cologne,
Germany) on an Illumina HiSeq 4000 (Illumina) and at Novogene
(Peking, China) on an Illumina NovaSeq 6000 (Illumina).

RNA-Seq data analysis

By Illumina sequencing of mRNA libraries, approximately 60 mil-
lion 150-bp paired-end reads per U. maydis-infected sample and
40 million paired-end reads per mock-treated sample were cre-
ated. The reads were filtered using the Trinity software (v2.9.1)
option trimmomatic with standard settings (Grabherr et al., 2011).
The reads were then mapped to the reference genome using Bow-
tie 2 (v2.3.5.1) with the first 15 nucleotides on the 50-end of the
reads being trimmed (Langmead and Salzberg, 2012). As refer-
ence genome the U. maydis genome assembly (K€amper et al.,
2006) and the Z. mays B73 version 3 (Schnable et al., 2009) gen-
ome assembly were used simultaneously. Reads were counted for
U. maydis and Z. mays loci using the R (www.r-project.org) pack-
age Rsubread (v1.34.7) (Liao et al., 2019). On average, 640 000
mapping read counts for the U. maydis genome were found per
sample in the data set of different maize lines (1.3% of total read
counts) and 783 000 read counts for the data set of CML322
infected by SG200 or KO_UMAG_02297 (1.8% of total read
counts). For maize, approximately 50 million reads were counted
for the U. maydis-infected samples and 43 million for the mock
samples. Pre-filtering was applied to keep only genes with at least
10 counts in three samples (6284 genes for U. maydis, 40 056
genes for the data set of different maize lines and 30 637 genes
for the data set of CML322 infected by SG200 or KO_U-
MAG_02297). Counts for U. maydis or maize were normalised and
differential gene expression was analysed by DESeq2 v1.26.0

© 2021 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2021), 106, 733–752

Line-specific effectors of Ustilago maydis 747

http://www.e-crisp.org
http://www.r-project.org


(differential expression analysis for sequence count data 2, Love
et al., 2014) in R. For U. maydis, the design formula was ~geno-
type, and for maize, the design formula was ~genotype+condi-
tion+genotype:condition to identify differences in condition effects
(SG200-infected versus mock) between genotypes. Genes with
log2(expression fold change) > 0.5 and Benjamini–Hochberg-ad-
justed P value < 0.05 were considered differentially expressed. To
identify co-expressed genes, a WGCNA was performed using the
WGCNA package (v1.69) (Langfelder and Horvath, 2008; Zhang
and Horvath, 2005) in R. Only genes with at least 10 counts in 50%
of the analysed maize samples or in 90% of the analysed U. may-
dis samples were considered. For U. maydis, 4013 genes and for
maize 29 729 genes passed this filtering. Log2-transformed
DESeq2-normalised counts were used as input for the network
analysis. The function blockwise Modules was used to create a
signed network of a Pearson-correlated matrix; only positive cor-
relations were considered. For U. maydis, all genes were treated
in a single block. For maize, the maximum blocksize was set to
15 000. The soft power threshold was set to 4 for U. maydis and
for maize because this was the lowest power needed to reach
scale-free topology (R2 = 0.901 and 0.871, respectively). Modules
were detected using default settings with a mergeCutHeight of
0.15 and a minimal module size of 25 genes. For each module, the
expression profile of the module eigengene was calculated, which
represents the modules by summary expression profiles of all
genes of a given module. For each gene and module eigengene,
the Pearson correlation to the disease index of the different maize
lines was calculated (= gene significance for the trait).

GO enrichment analysis

Gene ontology term enrichment analysis (Ashburner et al., 2000;
The Gene Ontology Consortium, 2017) for U. maydis was per-
formed with the Gene Ontology Panther Classification System (Mi
et al., 2019) using a P value cut-off of <0.05. For the enrichment
analysis of the modules correlated to the disease index, only
genes were considered that had a gene significance for disease
index of >0.5 or <�0.5 and a P value of <0.05. For maize, GO terms
were annotated to the version 3 protein annotation of maize line
B73 using InterProScan (v5.42-78.0) (El-Gebali et al., 2019; Jones
et al., 2014; Schnable et al., 2009). Significance of GO term enrich-
ments in a subset of genes was calculated for all expressed genes
with a Fisher exact test with the alternative hypothesis being one-
sided (greater).

Quantitative reverse-transcriptase PCR and quantitative

PCR

The qRT-PCRs/qPCR reactions were set up using the GoTaq�
qPCR Mastermix (Promega, Madison, WI, USA) according to the
manufacturer’s instructions in a total volume of 15 ll. All qRT-
PCRs/qPCRs were performed in an iCycler system (Bio-Rad,
Munich, Germany) with the following program: 95°C for 2 min,
followed by 45 cycles of 95°C for 30 s, 62°C for 30 s and 72°C for
30 s. For gene expression analysis by qRT-PCR, cDNA was synthe-
sised from 1–5 µg of template RNA using he Thermo Scientific
RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufac-
turer’s instructions. The U. maydis ppi gene was used for normali-
sation and relative expression values were calculated using the
2�DDCt method. For fungal biomass quantification, DNA extracted
from infected maize leaves was subjected to qPCR analysis with
maize-specific GAPDH and U. maydis-specific ppi primers. The rel-
ative fungal biomass was calculated as the ratio of U. maydis
DNA to maize DNA (2�DDCt).

Mapping of maize genes to Arabidopsis

For comparison to genes previously described to be involved in PTI
or ETI in Arabidopsis, mapping of maize gene IDs to Arabidopsis
was performed on the Monocots PLAZA 4.0 workbench (https://
bioinformatics.psb.ugent.be/plaza/, Van Bel et al., 2018) using the
PLAZA orthologous genes integrative method with standard set-
tings and a minimum number of required evidence types of three.
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