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Simple Summary: Prostate carcinoma (PCa) is the most common tumor in men with an increasing
age-associated risk. Several therapy strategies, one of which is docetaxel (DX) chemotherapy, have
been established. However, due to the development of therapy resistance, in which chemotherapy no
longer effectively combats the cancer, advanced, metastasized PCa with a poor prognosis may become
manifested and therapy inevitably fails. Thus, new treatment options are urgently needed. Shikonin
(SHI), from Traditional Chinese Medicine, has revealed promising antitumor activity in several
tumor entities. In the current study, the impact of SHI on four therapy-sensitive and four respective
DX-resistant PCa cell lines was determined. SHI induced growth inhibition mainly by necroptosis,
a type of cell death, in all the tested therapy-sensitive, but more importantly, DX-resistant PCa cell
lines. Corresponding molecular alterations contributing to growth inhibition after SHI exposure were
found. SHI could, therefore, be a promising additive in treating advanced PCa.

Abstract: The prognosis for advanced prostate carcinoma (PCa) remains poor due to development of
therapy resistance, and new treatment options are needed. Shikonin (SHI) from Traditional Chinese
Medicine has induced antitumor effects in diverse tumor entities, but data related to PCa are scarce.
Therefore, the parental (=sensitive) and docetaxel (DX)-resistant PCa cell lines, PC3, DU145, LNCaP,
and 22Rv1 were exposed to SHI [0.1–1.5 µM], and tumor cell growth, proliferation, cell cycling, cell
death (apoptosis, necrosis, and necroptosis), and metabolic activity were evaluated. Correspondingly,
the expression of regulating proteins was assessed. Exposure to SHI time- and dose-dependently
inhibited tumor cell growth and proliferation in parental and DX-resistant PCa cells, accompanied by
cell cycle arrest in the G2/M or S phase and modulation of cell cycle regulating proteins. SHI induced
apoptosis and more dominantly necroptosis in both parental and DX-resistant PCa cells. This was
shown by enhanced pRIP1 and pRIP3 expression and returned growth if applying the necroptosis
inhibitor necrostatin-1. No SHI-induced alteration in metabolic activity of the PCa cells was detected.
The significant antitumor effects induced by SHI to parental and DX-resistant PCa cells make the
addition of SHI to standard therapy a promising treatment strategy for patients with advanced PCa.

Keywords: prostate cancer (PCa); docetaxel (DX) resistance; shikonin (SHI); Traditional Chinese
Medicine (TCM); growth inhibition; apoptosis; necroptosis
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1. Introduction

Prostate carcinoma (PCa) is the most common cancer and the second leading cause
of cancer mortality in men, with increasing risk associated with age. Early detection
programs in middle age and new therapeutic strategies are attempts to extend the life
expectancy of PCa patients [1]. Despite the advantages of currently approved therapeutic
strategies, advanced PCa remains an aggressive disease with poor prognosis. For high-risk,
non-metastatic, and metastatic castration-resistant PCa, the efficacy of the chemothera-
peutic agent docetaxel (DX) was established [2] and approved as a “first-line” therapy
after androgen deprivation therapy (ADT). In the following years, DX was further ap-
proved as a first-line therapy in combination with ADT [3]. A good response in high-risk
non-metastatic PCa patients to DX applied together with ADT and radiation has been
reported [4]. However, therapy resistance limits the effect of DX to a few months and
failure inevitably occurs [5]. The efficacy in second-line treatment decreases considerably
with therapy resistance [6].

Failure of conventional therapy prompts cancer patients to turn to traditional and
alternative medicine [7,8]. Nearly half of cancer patients in Europe use complementary
and alternative therapies [9–11], hoping to increase effectiveness or reduce the side effects
of conventional therapy [12,13]. The turn to complementary medicine is critical, as reliable
studies, and thus proven efficacy of natural substances, are often not available, leading
to uncoordinated self-treatment. Lack of studies also increases the risk of unidentified
contraindications and adverse side effects of the natural compounds combined with con-
ventional therapy [14]. However, some studies have been carried out indicating antitumor
effects of natural compounds, notably if applied together with an established therapy or by
counteracting therapy resistance [15–21].

One natural compound that has revealed promising antitumor activity is shikonin
(SHI). SHI is a herbal pigment traditionally used for the natural coloration of textiles and
food. It is isolated from the dried roots of Lithospermum erythrorhizon. Several studies
show that SHI, in addition to its function as a color pigment, has antimicrobial [22],
antiinflammatory [23], and antitumor [24,25] activity.

The antitumor activity has been demonstrated in different tumor entities. In gastric
cancer, cells exposed to SHI underwent cell cycle arrest in the G2/M phase [26]. SHI
has induced apoptosis in gastric cancer [27] and pancreatic cancer [28] in vitro. Other
types of regulated cell death have also been detected [29]. One of these is necroptosis and
exposure to SHI in glioma [30], breast [31], and pancreatic cancer cells [28] has resulted in
this type of regulated cell death. Necroptosis is a caspase-independent, programmed form
of necrosis [32]. Receptor-interacting serine/threonine-protein kinase 1 and 3 (RIP1/RIP3)
are relevant key players in this signaling pathway. Their activation is associated with the
inactivation of caspase 8, followed by mixed lineage kinase domain-like protein (MLKL)
complex formation and degeneration of cell membranes and organelles [33]. In bladder
cancer [34] and chronic myeloid leukemia cells [35], SHI led to a decrease in chemotherapy
resistance through induction of necroptosis.

In addition, SHI exerted a direct influence on cell metabolism, specifically inhibiting
pyruvate kinase isozymes M2 (PKM2) and directly or indirectly resulting in reduced
growth of bladder cancer [34] and lung cancer in vitro [36] and in vivo [37]. SHI inhibited
the mitochondrial activity of cancer cells [38]. However, data for SHI in PCa are sparse and
not available for DX-resistant PCa cells. Thus, the current study was designed to evaluate
the impact of SHI on the growth behavior of therapy-sensitive (parental) and DX-resistant
PCa cells.

2. Results
2.1. Shikonin Inhibited Cell Growth of Parental and DX-Resistant PCa Cells

To determine the SHI concentration necessary to influence cell growth in the four
parental and DX-resistant PCa cell lines (PC3, DU145, LNCaP, and 22Rv1), the cells were
exposed to SHI ranging from 0.1 to 1.5 µM. A dose- and time-dependent growth inhibi-
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tion was apparent in all four cell lines, compared to their respective unexposed controls
(Figure 1). A significant growth reduction of parental PC3 and DU145 cells with an IC50 of
0.37 µM SHI after 72 h was determined (Figure 1a,c). The growth of DX-resistant PC3 and
DU145 cells was inhibited with an IC50 of 0.54 µM and 0.55 µM SHI after 72 h treatment
(Figure 1b,d), indicating that growth inhibition of the parental and DX-resistant PC3 and
DU145 cells is similar, but slightly stronger in parental cells. However, for both parental
and DX-resistant PC3 cells significant growth inhibition was first reached with 0.5 µM
SHI (Figure 1a,b). For parental and DX-resistant DU145 cells, considerable inhibition was
achieved with 0.75 µM SHI after 72 h incubation (Figure 1b,c). For LNCaP cells, it was the
other way around. Here, with an IC50 of 0.59 µM (Figure 1d), parental LNCaP showed a
lower response to SHI, comparable to DX-resistant PC3 and DU145 cells. The DX-resistant
LNCaP counterpart displayed a higher sensitivity with an IC50 of 0.32 µM (Figure 1e).
22Rv1 revealed the lowest sensitivity to SHI with an IC50 of 1.05 µM in the parental and
an IC50 of 1.12 µM in the DX-resistant cells after 72 h (Figure 1g,h). Statistically signifi-
cant growth inhibition in 22Rv1 was reached only with the highest dose of 1.5 µM SHI
(Figure 1h). Thus, for further investigation into the mechanisms responsible for the growth
inhibitory activity of SHI, 0.5 µM to 1.0 µM SHI was used for PC3, DU145, and LNCaP
cells and 0.5–1.5 µM SHI for the 22Rv1 cells.
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Figure 1. Tumor cell growth of parental (par) and DX-resistant (res) PC3 (a,b), DU145 (c,d), 
LNCaP (e,f), and 22Rv1 (g,h) cells after 24, 48, and 72 h exposure to shikonin (SHI) [0.1–1.5 μM]. 
Cell number set to 100% after 24 h incubation. The IC50 of SHI after 72 h treatment is specified. 
Error bars indicate standard deviation (SD). Significant difference to untreated control: * = p ≤ 0.05, 
*** = ≤ 0.001. n = 5. 
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Figure 1. Tumor cell growth of parental (par) and DX-resistant (res) PC3 (a,b), DU145 (c,d), LNCaP (e,f), and 22Rv1 (g,h)
cells after 24, 48, and 72 h exposure to shikonin (SHI) [0.1–1.5 µM]. Cell number set to 100% after 24 h incubation. The IC50
of SHI after 72 h treatment is specified. Error bars indicate standard deviation (SD). Significant difference to untreated
control: * = p ≤ 0.05, *** = p ≤ 0.001. n = 5.

2.2. Shikonin Impaired PCa Cell Proliferation

Application of SHI for 24 and 48 h resulted in a dose-dependent inhibition of prolifer-
ation in all four investigated PCa cell lines (Figure 2). Analogous to growth, parental PC3
and DU145 cells showed a higher sensitivity to SHI, compared to their DX-resistant coun-
terparts (Figure 2a–d). Most of the PCa cells already revealed strong or most potent effects
after 24 h SHI treatment. However, parental DU145 cells responded better to SHI after 48 h
exposure. In the DX-resistant subcells, first significant antiproliferative events were only
apparent after 48 h SHI application (Figure 2c,d). In contrast, treatment of both parental
and DX-resistant LNCaP cells with 0.5 µM SHI resulted in a significant inhibition of pro-
liferation at all measured time points (Figure 2e,f). Proliferation was further suppressed
with a higher SHI concentration. Similar to the growth experiments, 22Rv1 exhibited the
lowest sensitivity to SHI, and the highest concentrations of 0.75 µM and 1.0 µM SHI were
necessary to significantly reduce the proliferation of parental and DX-resistant 22Rv1 cells
(Figure 2g,h).
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Figure 2. Tumor cell proliferation of parental and DX-resistant PC3 (a,b), DU145 (c,d), LNCaP
(e,f), and 22Rv1 (g,h) PCa cells incubated for 24 h and 48 h with SHI [0.5–0.8 µM] (a–f) or [0.5–1.0]
(g,h). Untreated controls were set to 100%. Error bars indicate standard deviation (SD). Significant
difference to untreated control: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. n = 3.

2.3. Shikonin Induced Cell Cycle Arrest and Alterations in the Expression and Activity of Cell
Cycle Regulating Proteins

Diminished tumor cell growth and proliferation after SHI treatment were partially
due to impaired cell cycle progression (Figure 3). Exposure to 0.5 µM SHI provoked a
significant increase of cells in the G2/M phase in parental PC3 and DX-resistant DU145
cells. This was associated with a decrease of G0/G1 phase cells in parental PC3 and a
reduction of S phase cells in DX-resistant DU145 (Figure 3a,d). DX-resistant 22Rv1 cells
showed a significant elevation of the S phase after exposure to SHI, independent of the SHI
concentration. This was accompanied by tendency by a decrease of cells in the G0/G1 and
G2/M phases.
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Figure 3. Distribution in the cell cycle phases: Proportion of parental (par) and DX-resistant (res)
PCa cells, PC3 (a,b), DU145 (c,d), LNCaP (e,f), and 22Rv1 (g,h), in the G0/G1, S, and G2/M phases
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controls (dotted line; set to 100%). Error bars indicate standard deviation (SD). Significant difference
to untreated control: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. n = 3.

DX-resistant PC3, parental DU145, parental 22Rv1 cells, as well as parental and DX-
resistant LNCaP cells showed no significant changes in cell cycle progression after SHI
exposure (Figure 3b–g). This indicates that other mechanisms are responsible for the
observed inhibition of tumor cell growth and proliferation in these PCa cells.

As exposure to SHI revealed the strongest effects on the cell cycle progression in PC3
and DU145 cells, the expression and activity of cell cycle regulating proteins in these cell
lines were evaluated. Indeed, modulation of the cell cycle phases was accompanied by sig-
nificant alteration in the cell cycle regulating proteins (Figures 4–6, and Figures S1 and S2).
Exposure to SHI resulted in a significant accumulation of p21 in parental but not in DX-
resistant PC3 cells (Figures 4 and 5a, and Figure S1a). In addition, there was a significant
decrease of p27 in parental cells, whereas DX-resistant cells showed by tendency an in-
crease (Figures 4 and 5b, and Figure S1b). Cyclin A, B and Cyclin-dependent kinase
(CDK) 1, essential for G2/M phase [39], were significantly reduced by SHI in both parental
and DX-resistant PC3 cells (Figures 4 and 5c,d,g, and Figure S1c,d,g). Furthermore, to-
gether with Cyclin A, the expression of CDK2, both responsible for regulating S phase
progression [40], was significantly reduced by exposure to SHI (Figures 4 and 5f,g, and
Figure S1f,g). The active, phosphorylated form of CDK2 was also significantly decreased
after exposure to SHI (Figures 4 and 5h, and Figure S1h). Cyclin D1, involved in G0/G1
phase progression, was not affected (Figures 4 and 5e, and Figure S1e). In good accordance
with the cell cycle arrest of DX-resistant DU145 cells in the G2/M phase, alterations in the
expression and activity of cell cycle-regulating proteins were mainly seen in DX-resistant
cells (Figures 4 and 6, and Figure S2). This included the proteins Cyclin B, CDK1, CDK2,
and pCDK2 (Figures 4 and 6d,f–h, and Figure S2d,f–h). However, CDK1 and 2 protein
levels were also significantly reduced in parental DU145 cells (Figures 4 and 6f,g, and
Figure S2f,g).
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2.4. Shikonin Induced Cell Death

Exposure to SHI dose-dependently resulted in an accumulation of apoptotic events in
parental and DX-resistant PC3, and DU145 cells (Figure 7a,b). 22Rv1 cells displayed less
pronounced cell death (Figure 7d). No apoptosis was detectable in parental LNCaP cells,
and only applying a higher concentration of 0.7 µM SHI or more contributed to apoptosis
in the DX-resistant LNCaP cells (Figure 7c). Consequently, other antitumor effects of SHI
must be responsible for the observed inhibition of growth and proliferation. Necrotic
events were not apparent in the PCa cells.

Due to the low sensitivity of the 22Rv1 cell lines to SHI, further investigation was
directed towards parental and DX-resistant PC3, DU145, and LNCaP cells. As a caspase-
dependent cell death could account for the growth inhibition induced by SHI, cells were
exposed to zVAD, a multi-caspase inhibitor. However, in combination with SHI, zVAD
did not influence the growth of parental and DX-resistant PC3, DU145, and LNCaP cells
(Figure 8a–f), indicating a caspase-independent cell death induction. Parental DU145 cells
treated with 12.5 nM DX were used as a positive control, as DU145 has been shown to
respond with a caspase-dependent apoptosis initiation after DX application [41]. In fact,
combined treatment with DX and zVAD led to a significant recovery in tumor cell growth
(Figure 8g). No changes in the protein expression of PARP or caspase 3 were apparent
after SHI exposure, neither in parental nor in DX-resistant DU145 cells (Figure 8h,i and
Figures S3 and S4), further corroborating the hypothesis of a caspase-independent cell
death. Notably, the expression of caspase 8 significantly decreased after exposure to SHI
(Figure 8j and Figure S5), indicating a caspase-independent cell death induction, such as
necroptosis.
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Figure 8. Caspase-dependent cell death: Cell growth of parental and DX-resistant PC3 and DU145
cells treated for 48 h with SHI [0.5, 0.8, 1.0 µM] and the multi-caspase inhibitor zVAD [20 µM] (a–f).
SHI mono-treated and untreated (set to 100%) cells served as controls. Parental DU145 cells treated
with 12.5 nM DX alone or in combination with 20 µM zVAD were used as a positive control to confirm
zVAD activity (g). Error bars indicate standard deviation (SD). Significant difference compared to
untreated controls, except for asterisk brackets indicating a significant difference between untreated
and zVAD treated cells: * = p ≤ 0.05. n = 3 (a–g). Protein expression of PARP (h), caspase 3
(i), and caspase 8 (j) in parental and DX-resistant DU145 cells after 24 h exposure to 0.5 µM SHI:
Representative Western blot images and pixel density analysis. Protein analysis was accompanied
and normalized by a total protein control. Untreated cells served as controls (set to 100%). Error bars
indicate standard deviation (SD). Significant difference to untreated control: *** = p ≤ 0.001. n = 3.
For detailed information regarding the Western blots, see Figures S3–S5.

2.5. Shikonin Induced Necroptotic Effects

Necroptosis is a caspase-independent cell death and necrostatin-1 inhibits the activity
of RIP1 and blocks the necroptosis pathway. As SHI induced necroptosis in various
tumors [28,30,32,34], necrostatin-1 was applied to determine whether SHI also has an
impact on PCa tumor cell growth. SHI application significantly reduced growth in all cell
lines (Figure 9a–f). Combined administration of 0.5–1.0 µM SHI and 80 µM necrostatin-1
resulted in a reversal of SHI’s antigrowth effect in all parental and DX-resistant PCa cell
lines, leading to cell growth comparable to the untreated controls (Figure 9a–f).

Representative for the tested PCa cell lines, PC3 and DU145 cells showed an increase in
pRIP1 and/or pRIP3 activation after exposure to SHI (Figure 10b,d,g,i and Figure S6b,d,g,i).



Cancers 2021, 13, 882 12 of 23

In parental PC3, pRIP1 and pRIP3 were significantly activated by SHI, whereas additional
application of necrostatin-1 reversed this activation (Figure 10b and Figure S6b). DX-
resistant PC3 cells revealed no effect on pRIP1 after exposure to SHI but displayed by
tendency an elevation of pRIP3, compared to the SHI-untreated controls (Figure 10d and
Figure S6d). Again, combined treatment with SHI and necrostatin-1 counteracted this
activation and led to a significant decrease of pRIP1 and pRIP3, compared to the SHI-
treated cells. In the DU145 cells both parental and stronger DX-resistant DU145 cells
showed a significant upregulation of pRIP1 by SHI (Figure 10g and Figure S6g). Addition
of necrostatin-1 to SHI in parental and DX-resistant DU145 cells significantly abolished
RIP1 phosphorylation. pRIP3 was also significantly amplified after SHI application in
parental DU145 cells (Figure 10i and Figure S6i). As before, phosphorylation was abrogated
by combining SHI with necrostatin-1. In contrast, the expression of total RIP1, RIP3, and
MLKL was not significantly affected by SHI (Figure 10a,c,e,f,h,j and Figure S6a,c,e,f,h,j), and
pMLKL was not detectable in the PC3 and DU145 cells. Combined application to SHI and
necrostatin-1 significantly reduced the total amount of RIP3 in parental PC3 (Figure 10c
and Figure S6c) and of RIP1 in DX-resistant DU145 (Figure 10f and Figure S6f).
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Figure 9. Necroptosis in PCa cells: Necroptosis induction of parental and DX-resistant PC3 (a,b),
DU145 (c,d) and LNCaP (e,f) cells treated for 24 h with 0.5, 0.8, and 1.0 µM SHI and 80 µM necrostatin-
1 (Nec-1). SHI mono-treated and untreated (set to 100%) cells served as controls. Error bars indicate
standard deviation (SD). Significant difference, compared to untreated controls, except for asterisk
brackets indicating a significant difference between Nec-1 untreated and treated cells: *** = p ≤ 0.001.
n = 5.

In addition, administration of 0.5 µM SHI resulted in a significant decrease of the GSH-
content in parental and DX-resistant DU145 cells (Figure 11), indicating ROS generation.
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Figure 10. Expression and activity of necroptosis markers in PCa cells: Protein expression of RIP1
(a,f), pRIP1 (b,g), RIP3 (c,h), pRIP3 (d,i), and MLKL (e,j) in parental and DX-resistant PC3 (a–e) and
DU145 (f–j) cells after 12 h exposure to 0.5 µM SHI and 80 µM necrostatin-1 (Nec-1). Representative
Western blot images and pixel density analysis. Protein analysis was accompanied and normalized by
a total protein control. Untreated cells served as controls (set to 100%). Error bars indicate standard
deviation (SD). Significant difference to untreated control: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001.
n = 3. For detailed information regarding the Western blots, see Figure S6a–j.
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2.6. Shikonin Showed No Effects on Metabolism

SHI has been shown to directly influence mitochondrial activity [38] and serve as a
specific pyruvate kinase M2 inhibitor [24]. Inhibiting this enzyme with SHI could therefore
directly influence tumor cell metabolism. Basal oxygen consumption rate and extracellular
acidification rate were comparable in parental and DX-resistant PCa cells. However,
treatment with SHI resulted only in temporarily elevated mitochondrial respiration and
decreased aerobic glycolysis in the DU145 cells, indicating transient enhanced oxidative
phosphorylation in response to a stress stimulus (Figure S7).

3. Discussion

Prostate carcinoma is the most common malignant tumor in men. Currently, there
is no curative therapy for advanced prostate carcinoma, and palliative treatment is most
often the only open option. Conventional therapeutic approaches are intended to prolong
progression-free survival but are limited in their effect and result in resistance, so that
new treatment strategies are crucial. Addition of SHI is a possible treatment strategy, as
in the current study it inhibited growth and reduced proliferation of four parental and
DX-resistant PCa cell lines. In good accordance with this, SHI treatment in lung [42],
gallbladder [43], esophagus [44], and breast cancer [45] has resulted in reduced growth
in vitro. SHI has also shown in vivo growth inhibition of nasopharyngeal cancer [46] and
melanoma [37]. Diminished growth with SHI has also been shown in therapy-sensitive PC3
and LNCaP cells [47] through inhibition of the AKT/mTOR signaling pathway. Exposure
to SHI has been shown to restrict the growth of LNCaP, and 22Rv1 cells by affecting the
androgen receptor [48].

Growth and proliferation inhibition after treatment with SHI was associated with a
cell cycle arrest of parental PC3 and DX-resistant DU145 cells in the G2/M phase, and an
S-phase arrest in DX-resistant 22Rv1. Furthermore, in pancreatic, lung [25], breast [31],
gastric cancer cells [26], and melanoma [49] the administration of SHI resulted in cell cycle
arrest in the G2/M phase. In a study on therapy-sensitive PC3 and DU145 cells, SHI
induced a shift to the G2/M phase [47]. However, data of cell cycle regulating proteins
were missing.

In the current study, the SHI-initiated G2/M phase arrest in PC3 and DU145 cells
was evident at the protein level. In parental and DX-resistant PC3 cells, SHI induced a
significant decrease in the cell cycle regulating proteins Cyclin A, Cyclin B, CDK1, and
CDK2, which are responsible for G2/M phase progression, whereas an increase of p21 and
a decrease of p27 was only apparent in parental PC3 cells. Consistent with the cell cycle
data, DX-resistant DU145 cells showed a stronger downregulation of Cyclin B, CDK1, and
CDK2 by SHI, compared to the parental cells. In line with the current data on PCa cells,
treatment of gastric cancer cells with SHI resulted in a G2/M phase arrest, associated with a
reduction of cell cycle activating proteins and an increase in the cell cycle inhibitor p21 [26].
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Reduced Cyclin B and increased p21, concomitant to a G2/M arrest after SHI application,
have also been detected in melanoma cells [49]. Downregulation of p27 triggered cell cycle
arrest in endothelial cells [50] and pancreas cancer cells [51], in connection with a tumor
suppressor activity. As Cyclin B in complex with CDK1, mediates the transition from the
G2 to M phase [52] the downregulation of Cyclin B by SHI may prevent the transition from
the G2 to M phase. This may produce the cell cycle arrest in the parental and DX-resistant
PCa cells observed here.

Aside from the cell cycle arrest in the G2/M phase, growth inhibition was accompanied
by a significant apoptosis increase in all the PCa cell lines, except for LNCaP, where only a
higher dose of SHI induced significant apoptotic effects in the DX-resistant cells. Necrotic
events after SHI exposure were not detectable in the parental and DX-resistant PCa cells;
thus, necrosis induction could not be responsible for SHI’s growth inhibitory effect. In
good accordance with the current apoptosis data, SHI induced apoptosis in various tumor
entities. In esophageal cancer cells, apoptosis induction by SHI was a result of the specific
inhibition of PKM2, leading to a loss of energy generation [53]. In contrast, in lung cancer
cell lines the apoptosis induction by SHI has been attributed to the FOXO3a/EGR1/SIRT1
pathway [42]. In leukemia cells, SHI led to apoptosis, postulated to be associated with the
inhibition of c-Myc [54]. Apoptosis could also be induced in gastric cancer cell lines via the
mitochondrial caspase-dependent pathway, as shown by the multi-caspase inhibitor zVAD,
which inhibits the antigrowth effect of SHI [27].

However, in the current study zVAD did not abolish the inhibitory effect of SHI on
growth, indicating a caspase-independent induction of cell death. In fact, zVAD even
significantly decreased the inhibitory effect of DX on DU145 cell growth. It is known that
DX induces caspase-dependent apoptosis in DU145 cells [41]. However, in good accordance
with the current SHI data regarding PCa, zVAD did not block the growth inhibitory effect of
SHI in lung cancer cells [29]. Similar results have been obtained with osteosarcoma [55], and
gastric cancer cells [28]. Here too, growth inhibition by SHI could not be reverted by zVAD,
indicating an absence of caspase-dependent apoptosis. Indeed, exposure to SHI alone
in bladder carcinoma [34] and osteosarcoma cells [55] had no impact on the expression
of caspase 3. Accordingly, in the PCa cells the expression of caspase 3 was not altered
by the application of SHI, further corroborating the hypothesis of a caspase-independent
apoptosis induction.

Notably, caspase 8 was significantly reduced in the PCa cells after exposure to SHI,
suggesting a necroptosis induction, an apoptosis-related programmed cell death [32].
Necroptosis is a regulated cell death, but in contrast to “classic” apoptosis, which is known
to be caspase 3-dependent, necroptosis is characterized by diminished caspase 8 expression
and activity. Activated caspase 8 would lead to apoptosis induction. Inactivation and
downregulation of caspase 8 plays a pivotal role in necroptosis, facilitating the formation
of a necrosome complex, consisting of RIP1, RIP3, and MLKL. This complex leads to
membrane permeabilization and finally to cell death.

Indeed, adding the necroptosis inhibitor necrostatin-1 resulted in a tumor cell growth
equivalent to the untreated controls in all parental and DX-resistant PCa cells, including
LNCaP. Accordingly, in gastric cancer cell lines, necrostatin-1 blocked the antitumor effect
of SHI [56]. In lung cancer cells, administration of SHI and necrostatin-1 resulted in
a significant reversion of SHI’s inhibitory effect [29]. Notably, the combined treatment
with SHI, necrostatin-1, and DX in the DX-resistant PC3 and DU145 cells displayed even
increased growth beyond the growth of the SHI and necrostatin-1 untreated controls.
Taxanes, such as DX, induced necroptosis in lung [57] and breast cancer [58,59]. Thus, at
least in the DX-resistant PC3 and DU145 cells, necroptotic processes seem to be enhanced
after the combined exposure to SHI and DX, which might indicate re-sensitivation of the
DX-resistant PCa cells. Pancreatic cancer treatment with SHI and gemcitabine [28] as
well as combined application of SHI and erlotinib to glioblastoma induced synergistic
effects [60]. Furthermore, chronic administration of SHI with cisplatin or paclitaxel to
different cancer cell lines prevented resistance induction [61]. These studies with SHI
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application to other tumor entities seem to further corroborate our hypothesis that SHI
reactivates the necroptotic activity of DX.

RIP1 and RIP3 are critical proteins involved in necroptosis induction [32]. Consistent
with this, S166 phosphorylation of RIP1, indicating induction of necroptotic signaling,
was evident in parental PC3 and DU145 cells, as well as in DX-resistant DU145 and by
tendency in PC3 cells after SHI treatment. Furthermore, in gastric cancer cell lines [28],
glioma [62], and osteosarcoma cells [55] administration of SHI resulted in a significant
increase of RIP1 and RIP3. In the parental PCa cells, pRIP1 facilitated phosphorylation of
RIP3, a downstream effector of the necrosome complex. Elevated phosphorylation of RIP1
and RIP3 was reversed when necrostatin-1 was added. pMLKL is another component of
the necrosome complex downstream of RIP3 [63]. MLKL is recruited and phosphorylated
by pRIP3, the next step in initiation of necroptosis. In the PCa cells, no pMLKL was
detectable after exposure to SHI, as a downstream target probably occurring after the
chosen 12 h incubation. The application period might also explain why the parental PCa
cells showed stronger effects in the phosphorylation of RIP3 than the DX-resistant cells,
although necroptotic effects were more pronounced - but at a later time point. However,
after 12 h SHI treatment, pRIP1 and pRIP3 were upregulated in the parental and by
tendency in the DX-resistant PCa cells, further confirming the postulated functional role of
SHI in necroptosis initialization.

The GSH-content was also significantly diminished after SHI application in the
parental and DX-resistant PCa cells, indicating ROS generation. Necroptosis induction has
also been shown to be accompanied by increased ROS levels in nasopharyngeal carcinoma
cells [46]. SHI-induced GSH depletion and intracellular ROS increase in tumor cells has
been demonstrated to be RIP1- and RIP3-mediated [62,64] as well, further confirming that
SHI induces necroptosis, as observed in the current investigation.

Therefore, the measured “apoptotic” effects mainly seem to be due to necroptosis.
However, the SHI treatment of LNCaP cells revealed only marginal apoptosis, indicating
another mechanism. In contrast to the other tested PCa cells, LNCaP cells are androgen
receptor (AR)-positive and androgen-sensitive [65,66]. As SHI inhibited AR [48], which
prevents cell death processes through the tumor necrosis factor-α (TNF-α) [67], this inhi-
bition might play a crucial role in the necroptosis induction in LNCaP. Notably, TNF-α
is involved in necroptotic processes [68,69]. However, the role of TNF-α in LNCaP cells
requires further investigation.

SHI has also been described to directly or indirectly influence the metabolism of
cancer cells [38,70]. In the current investigation, SHI only induced a significant short-term
increase in OCR in the DU145 cells, partially accompanied by decreased glycolysis. This
short-lasting metabolic shift towards mitochondrial respiration might indicate a temporary
avoidance of apoptosis induction, as has previously been hypothesized [71]. Necroptosis
induction by SHI has been postulated to overcome apoptosis resistance [34,72]. Indeed,
SHI-induced necroptosis prevented tumor escape, resulting in significant growth inhibition
of the PCa cells.

The androgen-insensitive PC3 and DU145 cells showed the highest sensitivity to
SHI, whereas LNCaP exhibited the lowest sensitivity. However, in all four parental and
DX-resistant PCa cell lines investigated here, SHI induced significant growth inhibition
and necroptosis, accompanied by corresponding alterations in cell cycle and cell death
regulating proteins. Further investigations in vitro and in vivo are necessary to verify this
in vitro data.

4. Materials and Methods
4.1. Cell Cultures

Prostate cancer cell lines PC3, DU145, LNCaP, and 22Rv1 were obtained from the
German Collection of Microorganisms and Cell Cultures (DSMZ). The DX-resistant sublines
were derived from the Resistant Cancer Cell Line (RCCL) collection (https://research.kent.
ac.uk/industrial-biotechnology-centre/the-resistant-cancer-cell-line-rccl-collection/) [73].

https://research.kent.ac.uk/industrial-biotechnology-centre/the-resistant-cancer-cell-line-rccl-collection/
https://research.kent.ac.uk/industrial-biotechnology-centre/the-resistant-cancer-cell-line-rccl-collection/
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LNCaP cells were grown and subcultured in Iscove Basal medium (Biochrom GmbH, Berlin,
Germany), and PC3, DU145, and 22Rv1 cells were grown in RPMI-1640 medium (Gibco,
Thermo Fisher Scientific, Darmstadt, Germany). Media were supplemented with 10% fetal
calf serum (FCS) (Gibco, Thermo Fisher Scientific, Darmstadt, Germany), 1% glutamax
(Gibco, Thermo Fisher Scientific, Darmstadt, Germany), and 1% Anti/Anti (Gibco, Thermo
Fisher Scientific, Darmstadt, Germany). Twenty micromolar HEPES buffer (Sigma-Aldrich,
Darmstadt, Germany) was added to the RPMI-1640 medium. Tumor cells were cultivated
in a humidified, 5% CO2 incubator.

4.2. Resistance Induction and Application of Docetaxel and Shikonin

DX-resistant sublines were established by continuous exposure to stepwise increasing
drug concentrations as previously described [74]. The DX-resistant tumor cells were
exposed to 12.5 nM DX (Sigma-Aldrich, Darmstadt, Germany) three times a week. Therapy-
sensitive (parental) PCa cells served as controls. Shikonin (SHI) (Sigma-Aldrich, Darmstadt,
Germany) was applied for 24, 48, or 72 h at a concentration of 0.1–1.5 µM. Controls
(parental and DX-resistant) remained SHI-untreated. The IC50 (half-maximal inhibitory
concentration) of SHI in parental and DX-resistant PCa cells was evaluated using the 72 h
growth data at a concentration of 0.1–1.5 µM SHI. To evaluate possible toxic effects of DX
and/or SHI, cell viability was determined parallel to experimentation by testing aliquoted
cells with trypan blue (Sigma-Aldrich, Darmstadt, Germany). Only viable cells were used
for growth and proliferation assays (see Sections 4.3 and 4.4).

4.3. Tumor Cell Growth

Cell growth was assessed using 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium
bromide (MTT) dye. PCa cells (50 µL, 1 × 105 cells/mL) were seeded into 96-well plates.
After 24, 48, and 72 h, 10 µL MTT (0.5 mg/mL) (Sigma-Aldrich, Darmstadt, Germany)
was added for 4 h. Cells were then lysed in 100 µL solubilization buffer containing 10%
SDS in 0.01 M HCl. The plates were subsequently incubated overnight at 37 ◦C, 5% CO2.
Absorbance at 570 nm was determined for each well using a multimode microplate-reader
(Tecan, Spark 10 M, Crailsheim, Germany). After subtracting background absorbance and
offsetting with a standard curve, results were expressed as mean cell number. To illustrate
dose-response kinetics, the mean cell number after 24 h incubation was set to 100%. Each
experiment was done in triplicate.

4.4. Proliferation

Cell proliferation was measured using a BrdU (bromodeoxyuridine/5-bromo-2′-
deoxyuridine) cell proliferation enzyme-linked immunosorbent assay (ELISA) kit (Cal-
biochem/Merck Biosciences, Darmstadt, Germany). Tumor cells (50 µL, 1 × 105 cells/mL),
seeded into 96-well plates, were incubated with 20 µL BrdU-labeling solution per well for
24 h, and fixed and stained using anti-BrdU mAb according to the manufacturer’s protocol.
Absorbance was measured at 450 nm using a multimode microplate-reader (Tecan, Spark
10 M, Crailsheim, Germany). Values were presented as percentage compared to untreated
controls set to 100%.

4.5. Cell Cycle Phase Distribution

For cell cycle analysis, cell cultures were grown to sub-confluency. A total of 1 × 106

cells was stained with propidium iodide (50 µg/mL) (Invitrogen, Thermo Fisher Scientific,
Darmstadt, Germany) and then subjected to flow cytometry (Fortessa X20, BD Biosciences,
Heidelberg, Germany). Ten-thousand events were collected from each sample. Data
acquisition was carried out using DIVA software (BD Biosciences, Heidelberg, Germany),
and cell cycle distribution was analyzed by ModFit LT 5.0 software (Verity Software House,
Topsham, ME, USA). The number of cells in the G0/G1, S, or G2/M phases was expressed
as a percentage. Untreated cells served as controls (dotted line; set to 100%).
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4.6. Western Blot Analysis of Cell Cycle and Cell Death Regulating Proteins

To explore the expression and activity of cell cycle and cell death regulating proteins,
Western blot analysis was performed. Tumor cell lysates (50 µg) were applied to 10% or
12% polyacrylamide gels and separated for 10 min at 80 V and for ~60–90 min at 120 V. The
proteins were then transferred to nitrocellulose membranes (1 h, 100 V). After blocking
with 10% non-fat dry milk for 1 h, the membranes were incubated overnight with the
following primary antibodies directed against cell cycle proteins: p21 (Rabbit IgG, clone
12D1, dilution 1:1000, Cell Signaling, Frankfurt am Main, Germany), p27 (Mouse IgG1,
clone 57/Kip1, dilution 1:500, BD Biosciences, Heidelberg, Germany), Cyclin A (Mouse
IgG1, clone 25, dilution 1:500, BD Biosciences, Heidelberg, Germany), Cyclin B (Mouse
IgG1, clone 18, dilution 1:1000, BD Biosciences, Heidelberg, Germany), CDK1 (Mouse IgG1,
clone 2, dilution 1:2500, BD Biosciences, Heidelberg, Germany), CDK2 (Mouse IgG2a, clone
55, dilution 1:2500, BD Biosciences, Heidelberg, Germany), and pCDK2 (Rabbit, polyclonal
antibody, dilution 1:1000, Cell Signaling, Frankfurt am Main, Germany).

To detect apoptosis- and necroptosis-related proteins, the following primary antibod-
ies were used: Caspase 3 (Rabbit IgG, polyclonal antibody, dilution 1:1000), Caspase 8
(Rabbit IgG, clone D35G2, dilution 1:1000), PARP (Rabbit IgG, clone 46D11, dilution 1:1000),
RIP1 (Rabbit IgG, clone D94C12, dilution 1:1000), pRIP1S166 (Rabbit IgG, clone D1L3S,
dilution 1:1000), RIP3 (Rabbit IgG, clone E1Z1D, dilution 1:1000), pRIP3S227 (Rabbit IgG,
clone D6W2T, dilution 1:1000), MLKL (Rabbit IgG, clone D2I6N, dilution 1:1000), and pM-
LKLS358 (Rabbit IgG, clone D6H3V, dilution 1:1000) (all Cell Signaling, Frankfurt am Main,
Germany). HRP-conjugated rabbit-anti-mouse IgG or goat-anti-rabbit IgG served as sec-
ondary antibodies (IgG, both: dilution 1:1000, Dako, Glosturp, Denmark). The membranes
were incubated with ECL detection reagent (AC2204, Azure Biosystems, Munich, Germany)
to visualize proteins with a Sapphire Imager (Azure Biosystems, Munich, Germany). The
exposure time was adapted to the signal intensity (device-specific maximum, >65,000 =
oversaturated). Only images with a maximum band intensity of below 65,000 were used for
evaluation. β-actin (clone AC-1, dilution 1:10,000, Sigma Aldrich, Taufkirchen, Germany)
served as internal control for cell cycle regulating proteins. Cell death regulating proteins
were normalized to total protein that was quantified by staining total protein from all mem-
branes with Coomassie brilliant blue and measuring with a Sapphire Imager. AlphaView
software (ProteinSimple, San Jose, CA, USA) was used for pixel density analysis of the
protein bands. The ratio of protein intensity/β-actin intensity or whole protein intensity
was calculated and expressed in percentage, related to untreated controls, set to 100%.

4.7. Cell Death

To investigate apoptotic and necrotic events the binding of Annexin V/propidium
iodide (PI) in PC3, DU145 and LNCaP cells was quantified with the FITC-Annexin V
Apoptosis Detection kit (BD Biosciences, Heidelberg, Germany). After washing tumor cells
twice with PBS, 1× 105 cells were suspended in 500 µL of 1× binding buffer and incubated
with 5 µL Annexin V-FITC and (or) 5 µL PI in the dark for 15 min. Staining was measured
by flow cytometer (Fortessa X20, BD Biosciences, Heidelberg, Germany). Ten-thousand
events were collected from each sample. The percentage of apoptotic and necrotic cells in
each quadrant was calculated using DIVA software (BD Biosciences, Heidelberg, Germany).
Further analysis was done by FlowJo software (BD Biosciences, Heidelberg, Germany).

An L-Lactate dehydrogenase Cytotoxicity Assay Kit (Thermo Scientific, Waltham,
MA, USA) was used to evaluate cell death/cytotoxicity of 22Rv1. Tumor cells (50 µL,
1 × 105 cells/mL) were seeded into 96-well plates and treated for 48 h with 50 µL 0.5, 0.75,
and 1.0 µM SHI. After incubation, 50 µL medium supernatant of treated cells was trans-
ferred to a new 96-well plate, mixed with a reaction solution for 30 min, and then stopped
with 50 µL stop solution, according to the manufacturer’s protocol. Absorbance was mea-
sured at 490 nm using a multimode microplate-reader (Tecan, Spark 10 M, Crailsheim,
Germany). Values were presented as a percentage compared to untreated controls.
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Necroptotic effects were assessed using 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetra-
zolium bromide (MTT) dye. To evaluate necroptosis, tumor cells were treated for 24 h
and 48 h with 0.5, 0.8, and 1.0 µM SHI or SHI combined with 80 µM necrostatin-1 (Sigma-
Aldrich, Darmstadt, Germany), a necroptosis inhibitor or with 20 µM zVAD (Selleckchem,
München, Deutschland), a multi-caspase inhibitor. For more details, see “Tumor Cell
Growth” (Section 4.3).

4.8. GSH-Assay

The GSH level was evaluated with the GSH-Glo™ Glutathione Assay (Promega
Corporation, Madison, WI, USA). Five-thousand cells/well were seeded onto a 96-well
plate and incubated for 24 h with 0.5 µM SHI. Experiments were performed according to
the manufacturer’s protocol. Luminescence was measured using a multimode microplate-
reader (Tecan, Spark 10 M, Tecan, Grödig, Austria).

4.9. Evaluation of Mitochondrial Respiration and Anaerobic Glycolytic Activity

Mitochondrial respiration (OCR = oxygen consumption rate) and anaerobic glycolytic
activity (EACR = extracellular acidification rate) were assessed in real-time by the Sea-
horse XFp Extracellular Flux Analyzer using the Seahorse XF Cell Mito Stress Test Kit
(both: Agilent Technologies, Waldbronn, Germany). The OCR is defined by multiple
parameters, including basal respiration, ATP production-coupled respiration, maximal
and reserve capacities, and non-mitochondrial respiration. Cells stained with CellTracker
Green CMFDA (Thermo Fisher Scientific, Darmstadt, Germany) were plated at a density of
2 × 104 cells/well and media was replaced with XF Assay media the following day, 1 h
prior to the assay and incubated without CO2. Five measurements of OCR and ECAR were
done at baseline and 30 measurements after SHI injection. Data were normalized to the
mean fluorescent intensity of cells in the area of measurement using Wave 2.6.1 (Agilent
Technologies, Waldbronn, Germany) desktop software.

4.10. Statistical Analysis

All experiments were performed at least three times. The evaluation and generation
of mean values, the associated standard deviation, and normalization in percent were
done by Microsoft Excel. Statistical significance was calculated with GraphPad Prism 7.0
(GraphPad Software Inc., San Diego, CA, USA): two-sided t-test (Western blot, apoptosis,
cell cycle), one-way ANOVA test (BrdU), and two-way ANOVA test (MTT). Correction
for multiple comparison was done using the conservative Bonferroni method. Error bars
indicate standard deviation (SD). Differences were considered statistically significant at a
p-value ≤ 0.05 with * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001.

5. Conclusions

SHI induced a time- and dose-dependent inhibition of tumor cell growth and prolif-
eration in a panel of parental and DX-resistant PCa cells. SHI’s growth inhibitory effect
was accompanied by necroptosis induction in all PCa cell lines, including the DX-resistant
cell lines. Exposure to SHI triggered necroptosis by decreasing caspase 8 and increasing
pRIP1 and pRIP3. Notably, in the more aggressive, androgen-insensitive PCa cells—PC3
and DU145, the strongest necroptotic effects were apparent. Furthermore, evidence is
presented showing that SHI may reactivate the necroptotic action of DX in those cells.
SHI also contributed to a cell type specific cell cycle arrest in the G2/M or S phase with
corresponding modulations of the cell cycle regulating proteins. In regard to these findings,
it is postulated that SHI could hold promise as a beneficial addition to the conventional
treatment of advanced PCa. Further investigation is necessary to evaluate other possible
in vitro antitumor effects of SHI and to verify these in vivo.



Cancers 2021, 13, 882 20 of 23

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/4/882/s1, Figure S1: Detailed information about Figure 5—Protein expression profile of cell
cycle regulating proteins in parental and DX-resistant PC3 cells, Figure S2: Detailed information
about Figure 6—Protein expression profile of cell cycle regulating proteins in parental and DX-
resistant DU145 cells, Figure S3: Detailed information about Figure 8h—Protein expression profile of
PARP in parental and DX-resistant DU145 cells, Figure S4: Detailed information about Figure 8i—
Protein expression profile of Caspase 3 in parental and DX-resistant DU145 cells, Figure S5: Detailed
information about Figure 8j—Protein expression profile of Caspase 8 in parental and DX-resistant
DU145 cells, Figure S6: Detailed information about Figure 10—Protein expression profile of RIP1,
pRIP1, RIP3, pRIP3, MLKL and pMLKL in parental and DX-resistant PC3 and DU145 cells, Figure S7:
Detailed information about Section 2.6—Shikonin showed no effects on metabolism.

Author Contributions: Conceptualization, E.J.; methodology, S.D.M., K.M.J., K.H., P.S., K.S.S. and
A.T.; software, S.D.M., K.M.J. and O.V.; validation, S.D.M., O.V. and T.E.; formal analysis, S.D.M.,
K.M.J. and E.J.; investigation, E.J.; resources, E.J., M.M., J.C. Jr. and T.E.; data curation, O.V.; writing—
original draft preparation, S.D.M.; writing—review and editing, E.J., I.T., A.H. and T.E.; visualization,
S.D.M.; supervision, E.J.; project administration, E.J.; funding acquisition, E.J., M.M. and J.C. Jr. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Friedrich-Spicker-Stiftung (E.J.), grant number 01-2017;
Hilfe für krebskranke Kinder Frankfurt e.V. (J.C. Jr.), Frankfurter Stiftung für krebskranke Kinder
(J.C. Jr.), Kent Cancer Trust (M.M.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article and
Supplementary Materials.

Acknowledgments: The main portion of the results presented here are part of the medical doctor
thesis of K.M.J. at the Department of Urology and Pediatric Urology (University Medical Center
Mainz, Langenbeckstraße 1, 55131 Mainz, Germany). Some elements stem from the bachelor thesis
of K.H. and the master thesis of P.S.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cornford, P.; Bellmunt, J.; Bolla, M.; Briers, E.; De Santis, M.; Gross, T.; Henry, A.M.; Joniau, S.; Lam, T.B.; Mason, M.D.; et al.

EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate
Cancer. Eur. Urol. 2017, 71, 630–642. [CrossRef] [PubMed]

2. Tannock, I.F.; De Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Theodore, C.; James, N.D.; Turesson, I.; et al.
Docetaxel plus Prednisone or Mitoxantrone plus Prednisone for Advanced Prostate Cancer. N. Engl. J. Med. 2004, 351, 1502–1512.
[CrossRef] [PubMed]

3. Fizazi, K.; Faivre, L.; Lesaunier, F.; Delva, R.; Gravis, G.; Rolland, F.; Priou, F.; Ferrero, J.-M.; Houede, N.; Mourey, L.; et al.
Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised
prostate cancer (GETUG 12): A phase 3 randomised controlled trial. Lancet Oncol. 2015, 16, 787–794. [CrossRef]

4. Rosenthal, S.A.; Hu, C.; Sartor, O.; Gomella, L.G.; Amin, M.B.; Purdy, J.; Michalski, J.M.; Garzotto, M.G.; Pervez, N.; Balogh, A.G.;
et al. Effect of Chemotherapy With Docetaxel With Androgen Suppression and Radiotherapy for Localized High-Risk Prostate
Cancer: The Randomized Phase III NRG Oncology RTOG 0521 Trial. J. Clin. Oncol. 2019, 37, 1159–1168. [CrossRef]

5. Armstrong, A.; Garrett-Mayer, E.; De Wit, R.; Tannock, I.; Eisenberger, M. Prediction of Survival following First-Line Chemother-
apy in Men with Castration-Resistant Metastatic Prostate Cancer. Clin. Cancer Res. 2009, 16, 203–211. [CrossRef]

6. Thelen, P.; Gschwend, J.; Wolff, J.-M.; Miller, K. Resistenzmechanismen unter antihormoneller Therapie des fortgeschrittenen
Prostatakarzinoms. Aktuel. Urol. 2016, 47, 79–85. [CrossRef] [PubMed]

7. Poonthananiwatkul, B.; Howard, R.L.; Williamson, E.M.; Lim, R.H. Cancer patients taking herbal medicines: A review of clinical
purposes, associated factors, and perceptions of benefit or harm. J. Ethnopharmacol. 2015, 175, 58–66. [CrossRef]

8. Saghatchian, M.; Bihan, C.; Chenailler, C.; Mazouni, C.; Dauchy, S.; Delaloge, S. Exploring frontiers: Use of complementary and
alternative medicine among patients with early-stage breast cancer. Breast 2014, 23, 279–285. [CrossRef]

9. Ebel, M.-D.; Rudolph, I.; Keinki, C.; Hoppe, A.; Muecke, R.; Micke, O.; Muenstedt, K.; Huebner, J. Perception of cancer patients of
their disease, self-efficacy and locus of control and usage of complementary and alternative medicine. J. Cancer Res. Clin. Oncol.
2015, 141, 1449–1455. [CrossRef]

https://www.mdpi.com/2072-6694/13/4/882/s1
https://www.mdpi.com/2072-6694/13/4/882/s1
http://doi.org/10.1016/j.eururo.2016.08.002
http://www.ncbi.nlm.nih.gov/pubmed/27591931
http://doi.org/10.1056/NEJMoa040720
http://www.ncbi.nlm.nih.gov/pubmed/15470213
http://doi.org/10.1016/S1470-2045(15)00011-X
http://doi.org/10.1200/JCO.18.02158
http://doi.org/10.1158/1078-0432.CCR-09-2514
http://doi.org/10.1055/s-0041-108295
http://www.ncbi.nlm.nih.gov/pubmed/26814975
http://doi.org/10.1016/j.jep.2015.08.052
http://doi.org/10.1016/j.breast.2014.01.009
http://doi.org/10.1007/s00432-015-1940-3


Cancers 2021, 13, 882 21 of 23

10. Horneber, M.; Bueschel, G.; Dennert, G.; Less, D.; Ritter, E.; Zwahlen, M. How Many Cancer Patients Use Complementary and
Alternative Medicine. Integr. Cancer Ther. 2011, 11, 187–203. [CrossRef]

11. Huebner, J.; Micke, O.; Muecke, R.; Buentzel, J.; Prott, F.J.; Kleeberg, U.; Senf, B.; Muenstedt, K. User rate of comple-mentary
and alternative medicine (CAM) of patients visiting a counseling facility for CAM of a German comprehensive cancer center.
Anticancer Res. 2014, 34, 943–948. [PubMed]

12. Christensen, C.M.; Morris, R.S.; Kapsandoy, S.C.; Archer, M.; Kuang, J.; Shane-McWhorter, L.; Bray, B.E.; Zeng-Treitler, Q. Patient
needs and preferences for herb-drug-disease interaction alerts: A structured interview study. BMC Complement. Altern. Med. 2017,
17, 272. [CrossRef] [PubMed]

13. Mani, J.; Juengel, E.; Arslan, I.; Bartsch, G.; Filmann, N.; Ackermann, H.; Nelson, K.; Haferkamp, A.; Engl, T.; Blaheta, R.A. Use of
complementary and alternative medicine before and after organ removal due to urologic cancer. Patient Prefer. Adherence 2015, 9,
1407–1412. [CrossRef]

14. Kessel, K.A.; Lettner, S.; Kessel, C.; Bier, H.; Biedermann, T.; Friess, H.; Herrschbach, P.; Gschwend, J.E.; Meyer, B.; Peschel, C.;
et al. Use of Complementary and Alternative Medicine (CAM) as Part of the Oncological Treatment: Survey about Patients’
Attitude towards CAM in a University-Based Oncology Center in Germany. PLoS ONE 2016, 11, e0165801. [CrossRef] [PubMed]

15. Juengel, E.; Thomas, A.; Rutz, J.; Makarevic, J.; Tsaur, I.; Nelson, K.; Haferkamp, A.; Blaheta, R.A. Amygdalin inhibits the growth
of renal cell carcinoma cells in vitro. Int. J. Mol. Med. 2015, 37, 526–532. [CrossRef]

16. Rutz, J.; Maxeiner, S.; Juengel, E.; Bernd, A.; Kippenberger, S.; Zöller, N.; Chun, F.K.-H.; Blaheta, R.A. Growth and Proliferation of
Renal Cell Carcinoma Cells Is Blocked by Low Curcumin Concentrations Combined with Visible Light Irradiation. Int. J. Mol. Sci.
2019, 20, 1464. [CrossRef]

17. Lee, H.M.; Moon, A. Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells. Biomol. Ther.
2016, 24, 62–66. [CrossRef]

18. Wang, F.; Wang, W.; Li, J.; Zhang, J.; Wang, X.; Wang, M. Sulforaphane reverses gefitinib tolerance in human lung cancer cells via
modulation of sonic hedgehog signaling. Oncol. Lett. 2017, 15, 109–114. [CrossRef] [PubMed]

19. Yang, C.; Ma, X.; Wang, Z.; Zeng, X.; Hu, Z.; Ye, Z.; Shen, G. Curcumin induces apoptosis and protective autophagy in
castration-resistant prostate cancer cells through iron chelation. Drug Des. Dev. Ther. 2017, 11, 431–439. [CrossRef]

20. Singh, S.K. Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer.
Front. Biosci. 2017, 9, 235–245. [CrossRef]

21. Markowitsch, S.D.; Schupp, P.; Lauckner, J.; Vakhrusheva, O.; Slade, K.S.; Mager, R.; Efferth, T.; Haferkamp, A.; Juengel, E.
Artesunate Inhibits Growth of Sunitinib-Resistant Renal Cell Carcinoma Cells through Cell Cycle Arrest and Induction of
Ferroptosis. Cancers 2020, 12, 3150. [CrossRef]

22. Papageorgiou, V.P.; Assimopoulou, A.N.; Couladouros, E.A.; Hepworth, D.; Nicolaou, K.C. The Chemistry and Biology of
Alkannin, Shikonin, and Related Naphthazarin Natural Products. Angew. Chem. Int. Ed. 1999, 38, 270–301. [CrossRef]

23. Lu, L.; Qin, A.; Huang, H.; Zhou, P.; Zhang, C.; Liu, N.; Li, S.; Wen, G.; Zhang, C.; Dong, W.; et al. Shikonin extracted from
medicinal Chinese herbs exerts anti-inflammatory effect via proteasome inhibition. Eur. J. Pharmacol. 2011, 658, 242–247.
[CrossRef] [PubMed]

24. Thonsri, U.; Seubwai, W.; Waraasawapati, S.; Wongkham, S.; Boonmars, T.; Cha’On, U.; Wongkham, C. Antitumor Effect of
Shikonin, a PKM2 Inhibitor, in Cholangiocarcinoma Cell Lines. Anticancer. Res. 2020, 40, 5115–5124. [CrossRef] [PubMed]

25. Wang, F.; Pozo, F.M.; Tian, D.; Geng, X.; Yao, X.; Zhang, Y.; Tang, J. Shikonin Inhibits Cancer Through P21 Upregulation and
Apoptosis Induction. Front. Pharmacol. 2020, 11, 861. [CrossRef] [PubMed]

26. Kim, S.-J.; Kim, J.M.; Shim, S.H.; Chang, H.I. Shikonin induces cell cycle arrest in human gastric cancer (AGS) by early growth
response 1 (Egr1)-mediated p21 gene expression. J. Ethnopharmacol. 2014, 151, 1064–1071. [CrossRef]

27. Liang, W.; Cai, A.; Chen, G.; Xi, H.; Wu, X.; Cui, J.; Zhang, K.; Zhao, X.; Yu, J.; Wei, B.; et al. Shikonin induces mitochondria-
mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species. Sci. Rep. 2016,
6, 38267. [CrossRef]

28. Chen, C.; Xiao, W.; Huang, L.; Yu, G.; Ni, J.; Yang, L.; Wan, R.; Hu, G. Shikonin induces apoptosis and necroptosis in pancreatic
cancer via regulating the expression of RIP1/RIP3 and synergizes the activity of gemcitabine. Am. J. Transl. Res. 2017, 9,
5507–5517.

29. Kim, H.-J.; Hwang, K.-E.; Park, D.-S.; Oh, S.-H.; Jun, H.Y.; Yoon, K.-H.; Jeong, E.-T.; Kim, H.-R.; Kim, Y.-S. Shikonin-induced
necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. J. Transl. Med. 2017, 15, 1–12. [CrossRef]

30. Ding, Y.; He, C.; Lu, S.; Wang, X.; Wang, C.; Wang, L.; Zhang, J.; Piao, M.; Chi, G.; Luo, Y.; et al. MLKL contributes to
shikonin-induced glioma cell necroptosis via promotion of chromatinolysis. Cancer Lett. 2019, 467, 58–71. [CrossRef]

31. Shahsavari, Z.; Karami-Tehrani, F.; Salami, S.; Ghasemzadeh, M. RIP1K and RIP3K provoked by shikonin induce cell cycle arrest
in the triple negative breast cancer cell line, MDA-MB-468: Necroptosis as a desperate programmed suicide pathway. Tumor Biol.
2015, 37, 4479–4491. [CrossRef] [PubMed]

32. Dhuriya, Y.K.; Sharma, D. Necroptosis: A regulated inflammatory mode of cell death. J. Neuroinflamm. 2018, 15, 1–9. [CrossRef]
[PubMed]

33. Gong, Y.; Fan, Z.; Luo, G.; Yang, C.; Huang, Q.; Fan, K.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; et al. The role of necroptosis in cancer
biology and therapy. Mol. Cancer 2019, 18, 1–17. [CrossRef]

http://doi.org/10.1177/1534735411423920
http://www.ncbi.nlm.nih.gov/pubmed/24511037
http://doi.org/10.1186/s12906-017-1630-6
http://www.ncbi.nlm.nih.gov/pubmed/28526079
http://doi.org/10.2147/PPA.S90061
http://doi.org/10.1371/journal.pone.0165801
http://www.ncbi.nlm.nih.gov/pubmed/27812163
http://doi.org/10.3892/ijmm.2015.2439
http://doi.org/10.3390/ijms20061464
http://doi.org/10.4062/biomolther.2015.172
http://doi.org/10.3892/ol.2017.7293
http://www.ncbi.nlm.nih.gov/pubmed/29285189
http://doi.org/10.2147/DDDT.S126964
http://doi.org/10.2741/e798
http://doi.org/10.3390/cancers12113150
http://doi.org/10.1002/(SICI)1521-3773(19990201)38:3&lt;270::AID-ANIE270&gt;3.0.CO;2-0
http://doi.org/10.1016/j.ejphar.2011.02.043
http://www.ncbi.nlm.nih.gov/pubmed/21392503
http://doi.org/10.21873/anticanres.14515
http://www.ncbi.nlm.nih.gov/pubmed/32878800
http://doi.org/10.3389/fphar.2020.00861
http://www.ncbi.nlm.nih.gov/pubmed/32581812
http://doi.org/10.1016/j.jep.2013.11.055
http://doi.org/10.1038/srep38267
http://doi.org/10.1186/s12967-017-1223-7
http://doi.org/10.1016/j.canlet.2019.09.007
http://doi.org/10.1007/s13277-015-4258-5
http://www.ncbi.nlm.nih.gov/pubmed/26496737
http://doi.org/10.1186/s12974-018-1235-0
http://www.ncbi.nlm.nih.gov/pubmed/29980212
http://doi.org/10.1186/s12943-019-1029-8


Cancers 2021, 13, 882 22 of 23

34. Wang, Y.; Hao, F.; Nan, Y.; Qu, L.; Na, W.; Jia, C.; Chen, X. PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in
Bladder Cancer by Inducing Necroptosis. Int. J. Biol. Sci. 2018, 14, 1883–1891. [CrossRef] [PubMed]

35. Huang, X.; Jin, J.; Qian, W.; Ye, X. Shikonin Overcomes Drug Resistance and Induces Necroptosis By Regulating the Mir-92a-1-
5p/Mlkl Axis in Chronic Myeloid Leukemia Cells. Blood 2019, 134, 1633. [CrossRef]

36. Tang, J.-C.; Ren, Y.-G.; Zhao, J.; Long, F.; Chen, J.-Y.; Jiang, Z. Shikonin enhances sensitization of gefitinib against wild-type EGFR
non-small cell lung cancer via inhibition PKM2/stat3/cyclinD1 signal pathway. Life Sci. 2018, 204, 71–77. [CrossRef]

37. Zhao, X.; Zhu, Y.; Hu, J.; Jiang, L.; Li, L.; Jia, S.; Zen, K. Shikonin Inhibits Tumor Growth in Mice by Suppressing Pyruvate Kinase
M2-mediated Aerobic Glycolysis. Sci. Rep. 2018, 8, 1–8. [CrossRef]

38. Wiench, B.; Eichhorn, T.; Paulsen, M.; Efferth, T. Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction
in Cancer Cells. Evid.-Based Complement. Altern. Med. 2012, 2012, 1–15. [CrossRef] [PubMed]

39. Otto, T.; Sicinski, T.O.P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 2017, 17, 93–115. [CrossRef]
40. Ingham, M.; Schwartz, G.K. Cell-Cycle Therapeutics Come of Age. J. Clin. Oncol. 2017, 35, 2949–2959. [CrossRef]
41. Ogura, T.; Tanaka, Y.; Tamaki, H.; Harada, M. Docetaxel induces Bcl-2- and pro-apoptotic caspase-independent death of human

prostate cancer DU145 cells. Int. J. Oncol. 2016, 48, 2330–2338. [CrossRef] [PubMed]
42. Jeung, Y.-J.; Kim, H.-G.; Ahn, J.; Lee, H.-J.; Lee, S.-B.; Won, M.; Jung, C.-R.; Im, J.-Y.; Kim, B.-K.; Park, S.-K.; et al. Shikonin induces

apoptosis of lung cancer cells via activation of FOXO3a/EGR1/SIRT1 signaling antagonized by p300. Biochim. Biophys. Acta BBA
Bioenergy 2016, 1863, 2584–2593. [CrossRef] [PubMed]

43. Zhai, T.; Hei, Z.; Ma, Q.; Liang, H.; Xu, Y.; Zhang, Y.; Jin, L.; Han, C.; Wang, J. Shikonin induces apoptosis and G0/G1ï¿ 1
2 phase

arrest of gallbladder cancer cells via the JNK signaling pathway. Oncol. Rep. 2017, 38, 3473–3480. [CrossRef]
44. Du, W.; Hao, X.; Yuan, Z.; Wang, Y.; Zhang, X.; Liu, J. Shikonin potentiates paclitaxel antitumor efficacy in esophageal cancer cells

via the apoptotic pathway. Oncol. Lett. 2019, 18, 3195–3201. [CrossRef] [PubMed]
45. Wei, Y.; Li, M.; Cui, S.; Wang, D.; Zhang, C.-Y.; Zen, K.; Li, L. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by

Reducing Tumor-Derived Exosomes. Molecules 2016, 21, 777. [CrossRef]
46. Zhang, Z.; Zhang, Z.; Li, Q.; Jiao, H.; Chong, D.; Sun, X.; Zhang, P.; Huo, Q.; Liu, H. Shikonin induces necroptosis by reactive

oxygen species activation in nasopharyngeal carcinoma cell line CNE-2Z. J. Bioenerg. Biomembr. 2017, 49, 265–272. [CrossRef]
[PubMed]

47. Chen, Y.; Zheng, L.; Liu, J.; Zhou, Z.; Cao, X.; Lv, X.; Chen, F. Shikonin inhibits prostate cancer cells metastasis by reducing
matrix metalloproteinase-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways. Int. Immunopharmacol. 2014, 21, 447–455.
[CrossRef]

48. Jang, S.Y.; Jang, E.H.; Jeong, S.Y.; Kim, J.-H. Shikonin inhibits the growth of human prostate cancer cells via modulation of the
androgen receptor. Int. J. Oncol. 2014, 44, 1455–1460. [CrossRef]

49. Liu, Y.; Kang, X.; Niu, G.; He, S.; Zhang, T.; Bai, Y.; Li, Y.; Hao, H.; Chen, C.; Shou, Z.; et al. Shikonin induces apoptosis and
prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways. Artif. Cells Nanomed.
Biotechnol. 2019, 47, 626–635. [CrossRef]

50. Trochon, V.; Blot, E.; Cymbalista, F.; Engelmann, C.; Tang, R.P.; Thomaïdis, A.; Vasse, M.; Soria, J.; Lu, H.; Soria, C. Apigenin
inhibits endothelial-cell proliferation in G2/M phase whereas it stimulates smooth-muscle cells by inhibiting P21 and P27
expression. Int. J. Cancer 2000, 85, 691–696. [CrossRef]

51. Yadav, V.; Sultana, S.; Yadav, J.; Saini, N. Gatifloxacin Induces S and G2-Phase Cell Cycle Arrest in Pancreatic Cancer Cells via
p21/p27/p53. PLoS ONE 2012, 7, e47796. [CrossRef] [PubMed]

52. Gavet, O.; Pines, J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev. Cell. 2010, 18, 533–543. [CrossRef]
53. Tang, J.-C.; Zhao, J.; Long, F.; Chen, J.-Y.; Mu, B.; Jiang, Z.; Ren, Y.; Yang, J. Efficacy of Shikonin against Esophageal Cancer Cells

and its possible mechanisms in vitro and in vivo. J. Cancer 2018, 9, 32–40. [CrossRef] [PubMed]
54. Zhao, Q.; Assimopoulou, A.N.; Klauck, S.M.; Damianakos, H.; Chinou, I.; Kretschmer, N.; Ríos, J.-L.; Papageorgiou, V.P.; Bauer,

R.; Efferth, T. Inhibition of c-MYC with involvement of ERK/JNK/MAPK and AKT pathways as a novel mechanism for shikonin
and its derivatives in killing leukemia cells. Oncotarget 2015, 6, 38934–38951. [CrossRef] [PubMed]

55. Fu, Z.; Deng, B.; Liao, Y.; Shan, L.; Yin, F.; Wang, Z.; Zeng, H.; Zuo, D.; Hua, Y.; Cai, Z. The anti-tumor effect of shikonin on
osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer 2013, 13, 580. [CrossRef]

56. Lee, M.-J.; Kao, S.-H.; Hunag, J.-E.; Sheu, G.-T.; Yeh, C.-W.; Hseu, Y.-C.; Wang, C.-J.; Hsu, L.-S. Shikonin time-dependently induced
necrosis or apoptosis in gastric cancer cells via generation of reactive oxygen species. Chem. Interact. 2014, 211, 44–53. [CrossRef]

57. Diao, Y.; Ma, X.; Min, W.; Lin, S.; Kang, H.; Dai, Z.; Wang, X.; Zhao, Y. Dasatinib promotes paclitaxel-induced necroptosis in lung
adenocarcinoma with phosphorylated caspase-8 by c-Src. Cancer Lett. 2016, 379, 12–23. [CrossRef]

58. Mann, J.; Yang, N.; Montpetit, R.; Kirschenman, R.; Lemieux, H.; Goping, I.S. BAD sensitizes breast cancer cells to docetaxel with
increased mitotic arrest and necroptosis. Sci. Rep. 2020, 10, 1–11. [CrossRef]

59. Wu, X.; Wu, M.-Y.; Jiang, M.; Zhi, Q.; Bian, X.; Xu, M.-D.; Gong, F.-R.; Hou, J.; Tao, M.; Shou, L.-M.; et al. TNF-α sensitizes
chemotherapy and radiotherapy against breast cancer cells. Cancer Cell Int. 2017, 17, 1–12. [CrossRef]

60. Zhao, Q.; Kretschmer, N.; Bauer, R.; Efferth, T. Shikonin and its derivatives inhibit the epidermal growth factor receptor signaling
and synergistically kill glioblastoma cells in combination with erlotinib. Int. J. Cancer 2015, 137, 1446–1456. [CrossRef] [PubMed]

61. Wu, H.; Xie, J.; Pan, Q.; Wang, B.; Hu, D.; Hu, X. Anticancer Agent Shikonin Is an Incompetent Inducer of Cancer Drug Resistance.
PLoS ONE 2013, 8, e52706. [CrossRef]

http://doi.org/10.7150/ijbs.27854
http://www.ncbi.nlm.nih.gov/pubmed/30443191
http://doi.org/10.1182/blood-2019-125600
http://doi.org/10.1016/j.lfs.2018.05.012
http://doi.org/10.1038/s41598-018-31615-y
http://doi.org/10.1155/2012/726025
http://www.ncbi.nlm.nih.gov/pubmed/23118796
http://doi.org/10.1038/nrc.2016.138
http://doi.org/10.1200/JCO.2016.69.0032
http://doi.org/10.3892/ijo.2016.3482
http://www.ncbi.nlm.nih.gov/pubmed/27082738
http://doi.org/10.1016/j.bbamcr.2016.07.005
http://www.ncbi.nlm.nih.gov/pubmed/27452907
http://doi.org/10.3892/or.2017.6038
http://doi.org/10.3892/ol.2019.10662
http://www.ncbi.nlm.nih.gov/pubmed/31452796
http://doi.org/10.3390/molecules21060777
http://doi.org/10.1007/s10863-017-9714-z
http://www.ncbi.nlm.nih.gov/pubmed/28547157
http://doi.org/10.1016/j.intimp.2014.05.026
http://doi.org/10.3892/ijo.2014.2306
http://doi.org/10.1080/21691401.2019.1575229
http://doi.org/10.1002/(SICI)1097-0215(20000301)85:5&lt;691::AID-IJC15&gt;3.0.CO;2-Q
http://doi.org/10.1371/journal.pone.0047796
http://www.ncbi.nlm.nih.gov/pubmed/23133524
http://doi.org/10.1016/j.devcel.2010.02.013
http://doi.org/10.7150/jca.21224
http://www.ncbi.nlm.nih.gov/pubmed/29290767
http://doi.org/10.18632/oncotarget.5380
http://www.ncbi.nlm.nih.gov/pubmed/26472107
http://doi.org/10.1186/1471-2407-13-580
http://doi.org/10.1016/j.cbi.2014.01.008
http://doi.org/10.1016/j.canlet.2016.05.003
http://doi.org/10.1038/s41598-019-57282-1
http://doi.org/10.1186/s12935-017-0382-1
http://doi.org/10.1002/ijc.29483
http://www.ncbi.nlm.nih.gov/pubmed/25688715
http://doi.org/10.1371/journal.pone.0052706


Cancers 2021, 13, 882 23 of 23

62. Lu, B.; Gong, X.; Wang, Z.-Q.; Ding, Y.; Wang, C.; Luo, T.-F.; Piao, M.-H.; Meng, F.-K.; Chi, G.-F.; Luo, Y.-N.; et al. Shikonin induces
glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation. Acta Pharmacol. Sin.
2017, 38, 1543–1553. [CrossRef]

63. Rodriguez, D.; Weinlich, R.; Brown, S.L.; Guy, C.T.; Fitzgerald, P.J.; Dillon, C.P.; Oberst, A.; Quarato, G.; Low, J.; Cripps, J.G.; et al.
Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. 2016,
23, 76–88. [CrossRef] [PubMed]

64. Zhou, Z.; Lu, B.; Wang, C.; Wang, Z.; Luo, T.; Piao, M.; Meng, F.; Chi, G.; Luo, Y.; Ge, P. RIP1 and RIP3 contribute to shikonin-
induced DNA double-strand breaks in glioma cells via increase of intracellular reactive oxygen species. Cancer Lett. 2017, 390,
77–90. [CrossRef] [PubMed]

65. Horoszewicz, J.S.; Leong, S.S.; Kawinski, E.; Karr, J.P.; Rosenthal, H.; Chu, T.M.; A Mirand, E.; Murphy, G.P. LNCaP model of
human prostatic carcinoma. Cancer Res. 1983, 43, 1809–1818. [PubMed]

66. Alimirah, F.; Chen, J.; Basrawala, Z.; Xin, H.; Choubey, D. DU-145 and PC-3 human prostate cancer cell lines express androgen
receptor: Implications for the androgen receptor functions and regulation. FEBS Lett. 2006, 580, 2294–2300. [CrossRef]

67. Wen, S.; Niu, Y.; Lee, S.O.; Chang, C. Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including
apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treat. Rev. 2014, 40, 31–40. [CrossRef]

68. Metzig, M.O.; Fuchs, D.; E Tagscherer, K.; Grone, H.; Schirmacher, P.; Roth, W. Inhibition of caspases primes colon cancer cells for
5-fluorouracil-induced TNF-α-dependent necroptosis driven by RIP1 kinase and NF-κB. Oncogene 2016, 35, 3399–3409. [CrossRef]

69. Xu, Y.; Ma, H.-B.; Fang, Y.-L.; Zhang, Z.-R.; Shao, J.; Hong, M.; Huang, C.-J.; Liu, J.; Chen, R.-Q. Cisplatin-induced necroptosis in
TNFα dependent and independent pathways. Cell. Signal. 2017, 31, 112–123. [CrossRef]

70. Chen, J.; Xie, J.; Jiang, Z.; Wang, B.; Wang, Y.; Hu, X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor
pyruvate kinase-M2. Oncogene 2011, 30, 4297–4306. [CrossRef]

71. Shimada, N.; Takasawa, R.; Tanuma, S.-I. Interdependence of GLO I and PKM2 in the Metabolic shift to escape apoptosis in GLO
I-dependent cancer cells. Arch. Biochem. Biophys. 2018, 638, 1–7. [CrossRef]

72. Shahsavari, Z.; Karami-Tehrani, F.; Salami, S. Shikonin Induced Necroptosis via Reactive Oxygen Species in the T-47D Breast
Cancer Cell Line. Asian Pac. J. Cancer Prev. 2015, 16, 7261–7266. [CrossRef] [PubMed]

73. Michaelis, M.; Wass, M.N.; Cinatl, J. Drug-adapted cancer cell lines as preclinical models of acquired resistance. Cancer Drug
Resist. 2019, 2, 447–456. [CrossRef]

74. Michaelis, M.; Rothweiler, F.; Barth, S.; Cinatl, J.; Van Rikxoort, M.; Löschmann, N.; Voges, Y.; Breitling, R.; Von Deimling, A.;
Rödel, F.; et al. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of
p53-mutated multi-drug-resistant cancer cells. Cell Death Dis. 2011, 2, e243. [CrossRef] [PubMed]

http://doi.org/10.1038/aps.2017.112
http://doi.org/10.1038/cdd.2015.70
http://www.ncbi.nlm.nih.gov/pubmed/26024392
http://doi.org/10.1016/j.canlet.2017.01.004
http://www.ncbi.nlm.nih.gov/pubmed/28108311
http://www.ncbi.nlm.nih.gov/pubmed/6831420
http://doi.org/10.1016/j.febslet.2006.03.041
http://doi.org/10.1016/j.ctrv.2013.07.008
http://doi.org/10.1038/onc.2015.398
http://doi.org/10.1016/j.cellsig.2017.01.004
http://doi.org/10.1038/onc.2011.137
http://doi.org/10.1016/j.abb.2017.12.008
http://doi.org/10.7314/APJCP.2015.16.16.7261
http://www.ncbi.nlm.nih.gov/pubmed/26514521
http://doi.org/10.20517/cdr.2019.005
http://doi.org/10.1038/cddis.2011.129
http://www.ncbi.nlm.nih.gov/pubmed/22170099

	Introduction 
	Results 
	Shikonin Inhibited Cell Growth of Parental and DX-Resistant PCa Cells 
	Shikonin Impaired PCa Cell Proliferation 
	Shikonin Induced Cell Cycle Arrest and Alterations in the Expression and Activity of Cell Cycle Regulating Proteins 
	Shikonin Induced Cell Death 
	Shikonin Induced Necroptotic Effects 
	Shikonin Showed No Effects on Metabolism 

	Discussion 
	Materials and Methods 
	Cell Cultures 
	Resistance Induction and Application of Docetaxel and Shikonin 
	Tumor Cell Growth 
	Proliferation 
	Cell Cycle Phase Distribution 
	Western Blot Analysis of Cell Cycle and Cell Death Regulating Proteins 
	Cell Death 
	GSH-Assay 
	Evaluation of Mitochondrial Respiration and Anaerobic Glycolytic Activity 
	Statistical Analysis 

	Conclusions 
	References

