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Abstract: Tumor–endothelial cell interactions represent an essential mechanism in spinal metastasis.
Ephrin-B2–EphB4 communication induces tumor cell repulsion from the endothelium in metastatic
melanoma, reducing spinal bone metastasis formation. To shed further light on the Ephrin-B2–EphB4
signaling mechanism, we researched the effects of pharmacological EphB4 receptor stimulation
and inhibition in a ligand-dependent/independent context. We chose a preventative and a post-
diagnostic therapeutic window. EphB4 stimulation during tumor cell seeding led to an increase in
spinal metastatic loci and number of disseminated melanoma cells, as well as earlier locomotion
deficits in the presence of endothelial Ephrin-B2. In the absence of endothelial Ephrin-B2, reduction of
metastatic loci with a later manifestation of locomotion deficits occurred. Thus, EphB4 receptor stimu-
lation affects metastatic dissemination depending on the presence/absence of endothelial Ephrin-B2.
After the manifestation of solid metastasis, EphB4 kinase inhibition resulted in significantly earlier
manifestation of locomotion deficits in the presence of the ligand. No post-diagnostic treatment effect
was found in the absence of endothelial Ephrin-B2. For solid metastasis treatment, EphB4 kinase
inhibition induced prometastatic effects in the presence of endothelial Ephrin-B2. In the absence of
endothelial Ephrin-B2, both therapies showed no effect on the growth of solid metastasis.

Keywords: spinal bone metastasis; cancer therapy; seed and soil; Ephrin-B2–EphB4

1. Introduction

Spinal metastasis leads to severe neurological symptoms due to rapid myelopathy
through metastatic epidural spinal cord compression (MESCC) and destabilization of
the spinal column’s osseous structures [1]. Current treatment strategies aim at surgical
decompression and stabilization of the spine followed by a combination of chemo- and
radiotherapy. The decisive molecular principles of spinal bone metastasis remain inade-
quately understood, explaining the lack of medical strategies to prevent this pathology.
The dissemination of circulating tumor cells requires tumor–endothelial cell interactions in
osseous organs and represents a critical feature in the metastatic cascade.

The Ephrin-B2–EphB4 pathway belongs to the largest receptor tyrosine kinase (RTK)
family and mediates cellular adhesion and repulsion in various biological scenarios [2–4].
The physiological interaction has been shown to induce bone homeostasis, whereas its
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dysfunction can induce multiple myeloma [5,6]. In metastatic disease, both proteins are
associated with organ-specific metastasis development, depending on the expression of
both Ephrin-B2 and EphB4 on tumor- and organ-specific endothelial cells [7]. The forward
(receptor) and reverse (ligand) signaling of the Ephrin-B2–EphB4 system enables this
pathway to act as a “molecular switch” mediating different, sometimes contradictory,
effects [4]. Hence, EphB4 signaling exerts both protumorigenic and antitumorigenic effects
that are dependent on the presence or absence of Ephrin-B2. In the context of melanoma,
a protumorigenic effect has been shown [7–9]. In an experimental melanoma metastasis
model, Ephrin-B2–EphB4 interaction prevents the metastatic dissemination of melanoma
cells after retrograde carotid artery injection by inducing melanoma cell repulsion from
bone endothelial cells [10]. Interference with this pathway using EphB4 kinase inhibition
or genetic depletion of endothelial Ephrin-B2 resulted in increased dissemination of tumor
cells, diverse metastatic loci in the spine, and an early onset of locomotion deficits [10].
However, the underlying signaling mechanism is only partly understood and the potential
of this pathway for therapeutic applications remains elusive. Therefore, it was the aim
to further elucidate the modulation of the metastatic capability by the Ephrin-B2–EphB4
pathway in a ligand-dependent and ligand-independent retrograde carotid artery injection
melanoma metastasis model and to validate its potential for future therapeutic strategies.

2. Results
2.1. Ephrin-B2-Fc Alters Metastatic Dissemination of Melanoma Cells Depending on the Presence
or Absence of Endothelial Ephrin-B2

The soluble EphB4-stimulating ligand Ephrin-B2-Fc or the EphB4 RTK inhibitor NVP-
BHG 712 were applied during the hematogenous dissemination of metastatic melanoma
cells. In this preventative therapy, the effects on tumor–endothelial cell interactions un-
der ligand-dependent conditions, i.e., in efnb2lox/lox control animals with physiological
endothelial Ephrin-B2 expression (Figure 1a) were investigated. In this regimen, metastatic
tumor cells showed a significant preference for osseous organs (forelimb, hindlimb, spine,
skull) when compared to soft tissue organs (liver, kidney, lung, heart, skin), independent of
therapy, with most metastatic cells found in the bones of the Ephrin-B2-Fc treatment cohort
(Figure 1c). Concomitantly, the number of metastatic cells in the spine was significantly in-
creased under Ephrin-B2-Fc treatment and remained unchanged through kinase-inhibition
(Figure 2b). We identified metastatic loci with focused spinal MRI and by in vivo biolumi-
nescence (BLM) imaging (representative images and timeline of workflow in Figure 1a).
The post seeding effects such as tumor cell proliferation or tumor angiogenesis were
not significantly altered. However, an increase in tumor vessels’ size was shown after
ligand-treatment (Figure 2c).

In endothelial cell inducible Ephrin-B2 knockout (efnb2i∆EC) mice (i.e., under ligand-
independent conditions), the same preventive treatment with Ephrin-B2-Fc showed a later
onset of neurological symptoms compared to placebo-treated animals (Figure 3a). The
number of metastatic cells in the spine was not altered (Figure 3b), which is explained
by a later time point of tumor harvest because of the longer maintenance of hindlimb
locomotion. Ephrin-B2-Fc led to a significantly decreased number of metastatic loci and
significantly reduced the total metastasis volume in spinal MRI 25 days post tumor cell
injection (Figure 3c). The tumor cell proliferation and angiogenesis was significantly
increased under Ephrin-B2-Fc treatment [Figure 3d]. EphB4 kinase inhibition did not
significantly change the onset of neurological symptoms and remained without differences
to placebo-treated animals in the number of metastatic cells, metastatic loci, individual and
total metastasis volume (Figure 3a–d). Tumor cell proliferation was increased, whereas
angiogenesis was not affected by kinase inhibition (Figure 3d).
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  Figure 1. Experimental overview. (a) Retrograde carotid artery injection procedure followed by exemplary growth of

spinal metastases in bioluminescence imaging on days 5, 15, 20, and 25 and focused spinal MRI on day 25—shown in
placebo-treated efnb2lox/lox animals. Postmortem tissue extraction was performed and the tissue was used for histological
analysis and ex vivo luciferase assay for tumor cell count. (b) Standard curve generated after lysing 50 to 100,000 cells (n = 8,
slope = 18.22, r2 = 0.8614). Standard curve used for ex vivo luciferase assay. (c) Significant preference of metastatic tumor
cells for osseous organs independent of treatment regimen. Significant increase of metastatic cell count in osseous organs
after Ephrin-B2-Fc treatment (n = 4, p = 0.001, one-way ANOVA with Dunnett’s multiple comparison test). One star (*)
indicates p ≤ 0.05, two stars (**) indicate p ≤ 0.01 and three stars (***) indicate p ≤ 0.001.

2.2. EphB4 Kinase Inhibition Accelerates Metastasis Growth Depending on the Presence of
Endothelial Ephrin-B2

Ephrin-B2-Fc and NVP-BHG 712 were injected after solid metastasis development in
the spinal bone under ligand-dependent conditions to mimic a therapeutic translational
approach (Figure 4a). EphB4 kinase inhibition significantly shortened the time until
neurological symptoms developed (Figure 4b). No alterations of metastatic loci, number of
metastatic cells, individual or total metastasis volume were identified (Figure 4c,d). Ephrin-
B2-Fc did not affect neurological symptoms, the number of metastatic loci or metastatic
cells, individual and total metastasis volume and tumor cell proliferation (Figure 4b–d).
The number and size of tumor vessels were significantly increased under the Ephrin-
B2-Fc application, indicating a potential pro-angiogenic effect in the therapeutic setting
(Figure 4d).
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  Figure 2. Therapy in control animals. (a) Timeline of experiments of NVP-BHG 712, Ephrin-B2-Fc and Placebo IGG-Fc / PEG

300 treatment in efnb2lox/lox control mice (BLM = Bioluminescence measurements, MRI = Magnetic resonance imaging, IF =
Immunofluorescence, LA = Luciferase assay) (b) No. of metastatic cells found in spine of Ephrin-B2-Fc treated animals
significantly increased (n = 4, p = 0.002, one-way ANOVA with Dunnett’s multiple comparison test) (c) Number of tumor
vessels per FOV was not altered significantly by therapeutic use of Ephrin-B2-Fc compared to placebo-treatment. Size of
tumor vessels increased significantly upon administration of Ephrin-B2-Fc (n = 4, p = 0.0034, one-way ANOVA followed by
Dunnett’s multiple comparison test). Number of proliferating cells did not show significant differences upon application of
Ephrin-B2-Fc compared to placebo (n = 6 and 4 mice, respectively). (d) Representative images of confocal microscopy in
spinal metastatic tumors. Staining and treatment as indicated. Mean values ± SEM for all experiments shown. One star (*)
indicates p ≤ 0.05, two stars (**) indicate p ≤ 0.01 and three stars (***) indicate p ≤ 0.001.

Under endothelial Ephrin-B2 depletion, there were no significant differences in the
neurological symptoms, metastatic loci, individual and total metastasis volume and tu-
mor angiogenesis between either therapeutic group compared to placebo treated animals
(Figure 5a–d). An increase in tumor cell proliferation was seen under EphB4 kinase inhibi-
tion (Figure 5d).
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Figure 3. Adjuvant therapy in efnb2i∆EC knockout animals. (a) Neurological deficit occurred significantly later in Ephrin-B2-
Fc treated animals (median 23 days, n = 8 mice) compared to placebo-treated group (median placebo: 18 days, n = 7 mice,
p = 0.0452, Log-rank (Mantel–Cox) test). By application of NVP-BHG 712, the time of neurological survival was not affected
(n = 9). Significance threshold adjusted for multiple comparisons by Bonferroni method. The red bars show median survival
of efnb2lox/lox control animals receiving respective therapy published previously (placebo: 24 days, NVP-BHG 712: 20 days,
Ephrin-B2-Fc: 20 days) [10]. (b) No significant difference in no. of spinal metastastic cells in placebo-, NVP-BHG 712- and
Ephrin-B2-Fc-treated animals (n = 5, 4 and 6 mice, respectively). (c) No. of spinal metastases was significantly lower in
Ephrin-B2-Fc compared to placebo-treated animals (n = 10 mice, p = 0.0371 (one-way ANOVA with Dunnett’s multiple
comparison test)). Application of NVP-BHG 712 showed no significant effect on the number of spinal metastases. Individual
metastasis volume was not significantly changed in both treatment groups. Total tumor volume significantly decreased after
application of Ephrin-B2-Fc (p = 0.045). It was unaffected by the application of NVP-BHG 712 (n = 4 mice). Mean ± SEM for
all experiments shown. The red bars show average metastasis numbers/volumes found in efnb2lox/lox control animals
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receiving respective therapy published previously (shading indicates the standard deviation) [10]. (d) No. of tumor vessels
remained unaffected. The application of Ephrin-B2-Fc significantly increased the size of tumor blood vessels (p = 0.0010,
(one-way ANOVA with Dunnett’s multiple comparisons test)). The fraction of Ki67 positive tumor cells significantly
increased after NVP-BHG 712 and Ephrin-B2-Fc treatment (p = 0.012). (e) Representative images of confocal microscopy in
spinal metastatic tumors. Staining and treatment as indicated. Mean values ± SEM for all experiments shown. One star (*)
indicates p ≤ 0.05, two stars (**) indicate p ≤ 0.01 and three stars (***) indicate p ≤ 0.001.

1 
 

 
  Figure 4. Post tumor formation therapy in control animals. (a) Timeline of experiments of NVP-BHG 712, Ephrin-B2-Fc and

Placebo IGG-Fc / PEG 300 treatment in efnb2lox/lox control mice (BLM = Bioluminescence measurements, MRI = Magnetic
resonance imaging, IF = Immunofluorescence, LA = Luciferase assay) (b) Animals treated with NVP-BHG 712 showed
significantly earlier signs of neurologic symptoms when compared with the placebo group (median NVP-BHG 712: 23 days,
n = 7, p = 0.035, Log-rank (Mantel–Cox) test). Significance threshold adjusted for multiple comparisons by Bonferroni
method. (c) Number of spinal metastases was unaffected by applying therapeutics. Mean individual and total tumor
volume was also unaffected by therapy. Mean ± SEM for all experiments shown. (d) No significant proliferation differences
were observed under post-tumor treatment in efnb2lox/lox mice. Statistically significant increase in the number of tumor
blood vessels of Ephrin-B2-Fc treated group (n = 7, 5, respectively, p = 0.023) and size of tumor blood vessels (n = 6, p = 0.008
(one-way ANOVA with Dunnett’s multiple comparison test)). (e) Representative images of confocal microscopy in spinal
metastatic tumors. Staining and treatment as indicated. Mean ± SEM for all experiments shown. One star (*) indicates
p ≤ 0.05, two stars (**) indicate p ≤ 0.01 and three stars (***) indicate p ≤ 0.001.
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Figure 5. Post tumor formation therapy in efnb2i∆EC knockout animals. (a) Median time until the neurological deficit was
19 days in the placebo-treated group (n = 9). No significant change detected after application of Ephrin-B2-Fc or NVP-BHG
712 (n = 11, 9, respectively, Log-rank (Mantel–Cox) test). Significance threshold adjusted for multiple comparisons by
Bonferroni method. (b) Number of metastatic spinal cells in the placebo-treated group (n = 4) was not significantly affected
by Ephrin-B2-Fc (n = 4) or NVP-BHG 712 (n = 4). (c) Mean number of spinal metastases remained unchanged (placebo n = 9,
NVP-BHG 712 n = 11, EB2-Fc n = 9). No significant changes in mean individual and total tumor volume under therapy
(One-way ANOVA with Dunnett’s multiple comparisons test, mean ± SEM for all experiments shown). (d) No. of tumor
vessels was not significantly changed by therapy. Treatment with Ephrin-B2-Fc significantly reduced % of tumor area
covered by vessels (n = 4, p = 0.0130). Tumor cell proliferation increased through NVP-BHG 712 administration (n = 2)
and remained unaffected by Ephrin-B2-Fc administration (n = 5, one-way ANOVA with Dunnett’s multiple comparison
test). (e) Representative images of confocal microscopy in spinal metastatic tumors. Staining and treatment as indicated.
Mean ± SEM for all experiments are shown. One star (*) indicates p ≤ 0.05, two stars (**) indicate p ≤ 0.01 and three stars
(***) indicate p ≤ 0.001.
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3. Discussion

Here, we demonstrate that the effects of the Ephrin-B2–EphB4 interaction on the
metastatic dissemination of circulating melanoma cells depend on intact forward and
reverse signaling. Interference with reverse signaling using soluble Ephrin-B2-Fc or the in-
hibition of EphB4-mediated forward signaling using kinase inhibition led to an earlier mani-
festation of neurological symptoms and increased metastatic loci, indicating a prometastatic
effect. In the absence of endothelial Ephrin-B2, Ephrin-B2-Fc prolongs the time window
until neurological symptoms and reduces the size and number of spinal metastatic loci. In
the treatment of solid spinal metastasis, EphB4 kinase inhibition shortened the time until
neurological deficits, highlighting a protumorigenic effect in the presence of endothelial
Ephrin-B2. Under endothelial Ephrin-B2 depletion, neither Ephrin-B2-Fc nor the kinase
inhibition influenced the growth of spinal metastases.

Recent data suggests that the effect of EphB4 on the metastatic process in malignant
melanoma is highly dependent on the absence or presence of its preferred ligand Ephrin-B2,
and its effects are primarily related to tumor cell dissemination and not post-seeding pro-
cesses like the growth of solid metastases [3,7]. NVP-BHG 712 has been evaluated in vitro
and in vivo to inhibit intracellular EphB4 kinase activity efficiently [10]. Consequently,
applying NVP-BHG 712 during the metastatic dissemination of melanoma cells inhibits
EphB4-mediated forward signaling in tumor cells. In contrast, Ephrin-B2-Fc, a dimeric
extracellular domain (ECD) of Ephrin-B2, has been associated with opposing effects on
EphB4, leading to either the activation or downregulation of EphB4 [11]. Nevertheless,
the application of the soluble antibody fragment Ephrin-B2-Fc leads to the interruption of
Ephrin-B2-mediated reverse signaling because it is not cell-bound, representing a tool to
prevent reverse signaling to, e.g., endothelial cells [12]. In the setting of efnb2lox/lox control
mice, endothelial expression of Ephrin-B2 is present. In this context, NVP-BHG 712 has
been shown to increase spinal metastasis and metastasis-induced neurological deficits
when applied during the hematogenous metastatic dissemination of melanoma cells [10].
Ephrin-B2-Fc induces a comparable effect by increasing spinal metastasis when applied
during the dissemination of circulating tumor cells. In vitro experiments demonstrate that
Ephrin-B2-Fc leads primarily to activation of cell-bound EphB4 [13]. However, the promi-
gratory effects of EphB4 in A375 melanoma cells are independent of forward signaling,
underlining the importance of reverse signaling for migratory processes [3,7], which are
decisive during metastatic dissemination [12].

Interrupted reverse signaling to endothelial cells may translate into increased adhesion
of melanoma cells to bone endothelium comparable to observations under endothelial
Ephrin-B2 depletion [10]. The significant increase in the number of spinal metastases,
while individual metastasis volume remained unaffected, implies that seeding mechanisms
have actively been affected and that the increased extravasation of circulating tumor cells
has taken place [10]. In contrast, efnb2i∆EC mice are characterized by endothelial-specific
depletion of Ephrin-B2 [14]. Under these conditions, Ephrin-B2-Fc leads to a reduction of
metastatic loci and a prolonged time window until neurological deficits occur if applied
during the dissemination of tumor cells. Consequently, antimetastatic effects are observed,
contradicting the prometastatic results in efnb2lox/lox control animals. Under endothelial
Ephrin-B2 depletion, the barrier function of Ephrin-B2–EphB4 is severely impeded through
the lack of endothelial reverse signaling [14]. Application of soluble Ephrin-B2-Fc in this
setting seems to reestablish this repulsive pathway leading to a reduction of osseous spinal
metastatic loci. The activation of cell-bound EphB4 resulting in increased cellular repulsion
from bone endothelial cells might be responsible for this observation. The overexpression
of EphB4 in the presence of endothelial Ephrin-B2 has been shown to induce similar
effects by leading to an increase in melanoma cell repulsion from the endothelial cells,
translating into a reduced number of spinal metastatic loci and a prolongation of the time
window until neurological deficits occur [10]. Interestingly, the application of NVP-BHG
712 under endothelial Ephrin-B2 depletion did not result in antimetastatic effects, which



Int. J. Mol. Sci. 2021, 22, 8028 9 of 13

might be explained by the missing activation of tumor cell-bound EphB4 in the absence of
endothelial Ephrin-B2.

After spinal metastases are established, only NVP-BHG 712 alters metastasis growth
by shortening the time window until the neurological deficits occur. The increase of
the metastasis growth rate is demonstrated by a comparable size of total and individual
metastasis volume between groups. Harvesting of the spinal metastasis was performed
after neurological deficits occurred. Therefore, the tumor cells had to grow faster under
NVP-BHG 712 treatment to reach a comparable volume as they were harvested at a
significantly earlier time point. However, the increased rate of tumor growth was not
paralleled by differences in tumor angiogenesis.

Ephrin-B2–EphB4 interactions have also been implicated in the interaction between tu-
mor cells and osteoblasts in bone metastasis development [5]. Potentially, interference with
this interaction might play a role in the observed prometastatic effects under NVP-BHG
712 treatment. Interestingly, under endothelial Ephrin-B2 depletion, the protumorigenic
effects of NVP-BHG 712 did not progress, even though we could demonstrate an increased
number of proliferating tumor cells. This indicates that the endothelial Ephrin-B2–EphB4
interaction contributes to metastasis growth during the development of solid spinal metas-
tasis. The underlying mechanisms remain elusive and require further analysis to elucidate
the cellular consequences of EphB4 inhibition in spinal melanoma metastatic disease. In
this regard, Ephrin-B2-Fc neither affected the neurological symptoms nor the individual or
total metastasis volume and therefore remained ineffective independent from endothelial
Ephrin-B2 expression. It seems that Ephrin-B2-Fc exerts only minor effects when melanoma
cells have reached the metastatic niche and are developing into a solid lesion. Different in-
teractions between varieties of cells that express Ephrin-B2 on their surface (e.g., osteoblasts,
endothelial cells) might be responsible for this phenomenon.

In conclusion, the Ephrin-B2–EphB4 pathway is primarily involved in mediating
tumor-endothelial cell interactions during metastatic dissemination of circulating melanoma
cells. Both forward and reverse signaling and ligand-dependent and -independent mech-
anisms have to be considered when exploiting this pathway for preventing tumor cell
extravasation to the bone. The stimulation of intact Ephrin-B2–EphB4 communication
might represent a more promising approach for this purpose compared to interruptive
strategies using Ephrin-B2-FC or NVP-BHG 712

4. Materials and Methods
4.1. Cell Line and Cell Culture

Luciferase-expressing B16-luc mouse melanoma cells (ATCC® CRL-6323™) cells were
infected with a FFLUC-eGFP-Puro vector as described before [9,15]. Cells were routinely
maintained in DMEM-high glucose medium supplemented with 10% FBS, 50 units/mL
penicillin, 50 µg/mL streptomycin and 5 µg/mL puromycin in a humidified incubator at
37 ◦C and 5% CO2.

4.2. Animal Preparation

Adult tamoxifen-inducible, EC-specific Ephrin-B2-knockout (efnb2i∆EC) mice and
efnb2lox/lox littermates were used for the study (C57/Bl6J.Alb.EB2.CDH5creERT2 strain) [16].
Both groups were injected i.p. with tamoxifen (75 mg/kg bw) to activate Cre-induced en-
dothelial Ephrin-B2-knockout in efnb2i∆EC mice (according to Jackson Laboratory protocol,
Heffner, 2011). All mice were submitted to a 7-day resting period before inclusion in the
experiment. After tumor cell injection mice were checked daily to analyze behavior and
symmetrical hind limb movement.

4.3. Retrograde Carotid Artery Injection

A retrograde intraarterial injection method was performed as described previously [15].
Briefly, adult mice (efnb2i∆EC and efnb2lox/lox littermates) were anesthetized, and a longi-
tudinal skin incision was performed on the left region of the neck to expose the common
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carotid artery. The artery was temporarily ligated and a catheter (0.8 mm Ø) was retro-
gradely inserted and fixed. B16-luc mouse melanoma cells (1 × 105 cells suspended in
100 µL DMEM) were slowly injected retrogradely into the aortic arch, followed by 100 µL
0.9% NaCl. The artery was permanently ligated, the catheter was removed and the skin
was sutured.

4.4. Treatment Regimens
4.4.1. Dissemination (Pre-Tumor) Treatment

Ephrin-B2-Fc treatment cohort (efnb2i∆EC and efnb2lox/lox) received 4 i.v. injections of
100 µL Ephrin-B2-Fc (R&D Systems, Minneapolis, MI, USA, 1 mg/kg bw) on days −5, −2,
1 and 4. NVP-BHG 712 treatment cohort (efnb2i∆EC and efnb2lox/lox) received 100 µL of
NVP-BHG 712 (Sigma Aldrich, St. Louis, MO, USA, 50 mg/kg bw) i.p. for 8 consecutive
days, starting on day 5.

4.4.2. Metastasis (Post-Tumor) Treatment

Ephrin-B2-Fc treatment cohort (efnb2i∆EC and efnb2lox/lox) received 4 i.v. injections of
100 µL Ephrin-B2-Fc (R&D Systems, Minneapolis, MI, USA, 1 mg/kg bw) on days 12, 15,
18 and 21. NVP-BHG 712 treatment group (efnb2i∆EC and efnb2lox/lox) received 100 µL of
NVP-BHG 712 (Sigma Aldrich, St. Louis, MO, USA, 50 mg/kg bw) i.p. for 8 consecutive
days, starting on day 13. Placebo group received either one injection containing 4.35 µL of
IgG-Fc (i.v.) every three days, or 100 µL PEG 300 (i.p.) for 8 consecutive days.

4.5. In Vivo Bioluminescence Imaging

Bioluminescence imaging was performed on postoperative days 5, 15, 20 and 25 using
the IVIS Lumina II (Caliper LS, Hopkinton, MA, USA). Mice were anesthetized using
2% isoflurane. D-luciferin (Caliper LS, Hopkinton, MA, USA) solution (30 mg/mL) was
injected i.p. as described in the manufacturers protocol (10 µL/g bw). A dorsal and a
ventral image were obtained, each with an exposure time of 5 min.

4.6. In Vivo Magnetic Resonance Imaging

MRI scans were performed regularly on day 15 and 25 and whenever any gait or
movement abnormalities of the hind limbs occurred. A 7-Tesla rodent MRI scanner (BioSpec
70/20 USR, Brucker, Billerica, MA, USA) with a 16cm horizontal bore magnet and a
1H-RF-Volumeresonater (72 mm) was used. The H-resonance frequency was 300 MHz,
the maximum gradient strength was 300 mT/m. Mice were placed on a heating mat
and continuously anesthetized using 1.5–2% isoflurane. Paravision 6 (Brucker, Billerica,
MA, USA) was used to generate sagittal T2-weighted images-10 sagittal slices of 2 mm
(0.5 × 30 × 30 mm). Images were assessed using Analyze 11.0 software (Mayo Clinic,
Rochester, MI, USA). Tumor area was marked manually in all slices and number of tumors,
total and mean metastatic volumes were calculated.

4.7. Behavior Analysis

Mice were screened daily for any gait or movement abnormalities of the hind limbs.
As described previously hind limb paresis occurs abruptly in this experimental mouse
model [10].

4.8. Tissue Homogenization

Animals were sacrificed at the given time points. All organs were immediately frozen
in −50 ◦C isopentane and transferred to −80 ◦C for long-term storage. Osseous organs
were pulverized using pestle and mortar under continuous cooling with liquid nitrogen
(particle size 1–2 mm). Powder and soft tissue organs were transferred to individual gentle
macs tubes (Miltenyi Biotec, Bergisch Gladbach, Germany) and homogenized using Xiril
Dispomix tissue tearer (Miltenyi Biotec, Bergisch Gladbach, Germany) at 400 rpms for
15 s twice. Lysates were constantly kept on ice and consequently centrifuged at 1300× g
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for 5 min at 4 ◦C (Heraeus Multifuge, Thermo Fisher Scientific, Waltham, MA, USA).
Supernatant was transferred and utilized for in vitro luminometry.

4.9. In Vitro Luminometry for Cell Count

A standard calibration curve was generated using a Tecan 200M spectrometer (Tecan,
Männedorf, Switzerland) after addition of 60 µL Bright-Glo luciferase substrate to 30 mi-
croliters of organ lysate supernatant in a black flat bottom 96 well plate. The measurement
and quantification of the relative number of photons (Relative Light Units = RLU) was
measured for three seconds as described in the manufacturers kit (Promega, Fitchburg, WI,
USA). Specific organ metastasis to the spine was analyzed by calculating the approximate
number of bioluminescent metastatic tumor cells after termination of the study. For this, a
standard calibration curve was created by using know numbers of light-emitting B16-luc
tumor cells and extrapolating the number of relative light (RLUs) generated by tumor cell
lysates (Resulting curve slope 18.22 ± 0.7540 (95% confidence interval). The number of
tumor cells was calculated for every individual organ including the spinal cord.

4.10. Immunohistochemical Staining and Processing of Spines

Murine spines were immediately fixed in 4% (wt/vol) PFA for 4 h at 4 ◦C. Decal-
cification was carried out using 0.5M EDTA at 4 ◦C under constant agitation for 96 h.
For cryoprotection, decalcified spines were immersed in 20% (wt/vol) succrose and 2%
(wt/vol) polyvinylpyrrolidone (PVP, Sigma Aldrich, St. Louis, MO, USA)) for 24 h. The
freezing was carried out in a gelatin-based freezing solution containing 8% (wt/vol) gelatin,
20% (wt/vol) sucrose and 2% (wt/vol) PVP. Sagittal sections of 200 µm were prepared
by using a Cryotome (Microm HM 560—Thermo Fisher Scientific, Waltham, MA, USA).
Sections were permeabilized using 0.3% Triton X-100 for 10 min at RT, unspecific binding
was precluded by blocking in 1% (wt/vol) casein/PBS for 30 min at RT. Incubation with
primary antibodies was carried out in 1% (wt/vol) casein/PBS for 2 h at RT, samples were
then washed three times with PBS and incubated with appropriate secondary antibodies for
1 h at RT (1:400). Nuclei were counterstained with DAPI for 10 min. Slides were embedded
after thorough washing in Immu-Mount (Thermo Fisher, Waltham, MA, USA), mounted
with glass cover slips and kept in a dark place at 4 ◦C. Confocal microscopy was used
with tile Z-stacks of 60–70 micrometers (Z-step size 4 micrometers), generated using an
oil-immersed 63× magnification in a Leica DM 2500 microscope (Leica, Wetzlar, Germany).

4.11. Immunohistological Analysis

Four field of views (FOVs) were analyzed in n = 5 slices per tumor. The number of
tumor blood vessels and their area coverage was analyzed by generating stacked images of
scan z-stacks (15–16 images per stack) and manually defining regions of interests (ROIs)
using freely available ImageJ software (NIH, Bethesda, MD, USA, http://imagej.nih.
gov/ij/, date accessed on 6 January 2015). The number of Ki67+ proliferating cells was
determined using the Cell Counter application of ImageJ in the z-stacks. Analysis of
acquired data was performed as depicted in the Statistical Analysis Section.

4.12. Statistical Analysis

Quantitative data are given as mean ± SEM. Number of animals used is indicated
in the respective figure legend. Log-rank (Mantel–Cox) test was used for the comparison
of survival data; significance level was adjusted for multiple comparisons utilizing the
Bonferroni method. A one-way ANOVA followed by Dunnett’s multiple comparison cor-
rection was applied for differences in multiple group comparisons. An unpaired t-test was
applied to compare two groups. Results with p < 0.05 were considered significant. One star
(*) indicates p ≤ 0.05, two stars (**) indicate p ≤ 0.01 and three stars (***) indicate p ≤ 0.001.
GraphPad Prism 6 (Graphpad, La Jolla, CA, USA), RStudio 1.3.1093 (Boston, MA, USA),
Adobe Illustrator (Adobe, San José, CA, USA) and Microsoft Excel (Microsoft, Seattle,
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WA, USA) software were used. Graphs were generated using open source R packages
(ggplot2, RColorBrewer).

Author Contributions: Conceptualization: R.H.A., M.C., T.B. and P.V.; methodology: C.H., A.P. and
T.B.; software: A.P.; validation: T.B. and M.C.; formal analysis: A.P. and T.B.; investigation: A.P. and
T.B.; resources: R.H.A., C.H., M.C. and P.V.; data curation, A.P., T.B. and M.C.; writing—original
draft preparation: A.P.; writing—review and editing: T.B. and M.C.; visualization: A.P. and T.B.;
supervision: M.C., T.B. and P.V.; funding acquisition T.B., M.C. and P.V. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the German research foundation DFG GEPRIS: 267716524
and the FOR2325 DFG Forschergruppe. A.P. received a Berlin Institute of Health (BIH) scholarship
for this project. T.B. was a doctoral student of the Charité Medical Neuroscience, NeuroCure
cluster of excellence graduate school, received the Ernst von Leyden fellowship from the ‘Berliner
Krebsgesellschaft e.V.’ and the Early/Advanced Postdoc Mobility fellowship from the Swiss National
Science Foundation. M.C. was part of the Friedrich C. Luft Clinical Scientist Pilot Program funded by
the Volkswagen Foundation and the Charité Foundation.

Institutional Review Board Statement: Animal experiments were conducted in strict accordance
with German animal care guidelines and the guidelines of the Declaration of Helsinki. All experi-
ments were approved by the German state office for health and social affairs (LaGeSo—Landesamt
für Gesundheit und Soziales Berlin, G0260/12, 26 November 2012).

Informed Consent Statement: Not applicable.

Acknowledgments: A.P. was a medical student at University Medicine Charité and this work was
part of his medical dissertation titled “Ephrin-B2—EphB4 interaction as a therapeutic target in spinal
metastasis formation”, which was presented to the medical faculty in 2019.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Klimo, P., Jr.; Schmidt, M.H. Surgical Management of Spinal Metastases. Oncologist 2004, 9, 188–196. [CrossRef] [PubMed]
2. Noren, N.; Lu, M.; Freeman, A.; Koolpe, M.; Pasquale, E.B. Interplay between EphB4 on tumor cells and vascular ephrin-B2

regulates tumor growth. Proc. Natl. Acad. Sci. USA 2004, 101, 5583–5588. [CrossRef] [PubMed]
3. Rutkowski, R.; Mertens-Walker, I.; Lisle, J.E.; Herington, A.C.; Stephenson, S.A. Evidence for a dual function of EphB4 as

tumor promoter and suppressor regulated by the absence or presence of the ephrin-B2 ligand. Int. J. Cancer 2012, 131, 614–624.
[CrossRef] [PubMed]

4. Pasquale, E.B.; Hunter, S.; Hwang, Y.; Chen, J.; Bouvier, D.; Doucet, G.; Corera, A.T.; Fon, E.A.; Zisch, A.H.; Murai, K.K.; et al.
Eph-Ephrin Bidirectional Signaling in Physiology and Disease. Cell 2008, 133, 38–52. [CrossRef] [PubMed]

5. Zhao, C.; Irie, N.; Takada, Y.; Shimoda, K.; Miyamoto, T.; Nishiwaki, T.; Suda, T.; Matsuo, K. Bidirectional ephrinB2-EphB4
signaling controls bone homeostasis. Cell Metab. 2006, 4, 111–121. [CrossRef] [PubMed]

6. Pennisi, A.; Ling, W.; Li, X.; Khan, S.; Shaughnessy, J.D.; Barlogie, B.; Yaccoby, S. The ephrinB2/EphB4 axis is dysregulated in
osteoprogenitors from myeloma patients and its activation affects myeloma bone disease and tumor growth. Blood 2009, 114,
1803–1812. [CrossRef] [PubMed]

7. Kandouz, M. The Eph/Ephrin family in cancer metastasis: Communication at the service of invasion. Cancer Metastasis Rev. 2012,
31, 353–373. [CrossRef] [PubMed]

8. Yang, N.-Y.; Lopez-Bergami, P.; Goydos, J.S.; Yip, D.; Walker, A.M.; Pasquale, E.B.; Ethell, I. The EphB4 receptor promotes the
growth of melanoma cells expressing the ephrin-B2 ligand. Pigment. Cell Melanoma Res. 2010, 23, 684–687. [CrossRef] [PubMed]

9. Yang, N.Y.; Pasquale, E.B.; Owen, L.B.; Ethell, I.M. The EphB4 receptor-tyrosine kinase promotes the migration of melanoma cells
through Rho-mediated actin cytoskeleton reorganization. J. Biol. Chem. 2006, 281, 32574–32586. [CrossRef]

10. Broggini, T.; Piffko, A.; Hoffmann, C.J.; Ghori, A.; Harms, C.; Adams, R.H.; Vajkoczy, P.; Czabanka, M. Ephrin-B2–EphB4
communication mediates tumor–endothelial cell interactions during hematogenous spread to spinal bone in a melanoma
metastasis model. Oncogene 2020, 39, 7063–7075. [CrossRef]

11. Binda, E.; Visioli, A.; Giani, F.; Lamorte, G.; Copetti, M.; Pitter, K.L.; Huse, J.T.; Cajola, L.; Zanetti, N.; DiMeco, F.; et al. The EphA2
receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell
2012, 22, 765–780. [CrossRef] [PubMed]

12. Pasquale, E.B. Eph receptors and ephrins in cancer: Bidirectional signaling and beyond. Nat. Rev. Cancer 2010, 10, 165–180.
[CrossRef] [PubMed]

http://doi.org/10.1634/theoncologist.9-2-188
http://www.ncbi.nlm.nih.gov/pubmed/15047923
http://doi.org/10.1073/pnas.0401381101
http://www.ncbi.nlm.nih.gov/pubmed/15067119
http://doi.org/10.1002/ijc.27392
http://www.ncbi.nlm.nih.gov/pubmed/22161689
http://doi.org/10.1016/j.cell.2008.03.011
http://www.ncbi.nlm.nih.gov/pubmed/18394988
http://doi.org/10.1016/j.cmet.2006.05.012
http://www.ncbi.nlm.nih.gov/pubmed/16890539
http://doi.org/10.1182/blood-2009-01-201954
http://www.ncbi.nlm.nih.gov/pubmed/19597185
http://doi.org/10.1007/s10555-012-9352-1
http://www.ncbi.nlm.nih.gov/pubmed/22549394
http://doi.org/10.1111/j.1755-148X.2010.00745.x
http://www.ncbi.nlm.nih.gov/pubmed/20649938
http://doi.org/10.1074/jbc.M604338200
http://doi.org/10.1038/s41388-020-01473-y
http://doi.org/10.1016/j.ccr.2012.11.005
http://www.ncbi.nlm.nih.gov/pubmed/23238013
http://doi.org/10.1038/nrc2806
http://www.ncbi.nlm.nih.gov/pubmed/20179713


Int. J. Mol. Sci. 2021, 22, 8028 13 of 13

13. Héroult, M.; Schaffner, F.; Pfaff, D.; Prahst, C.; Kirmse, R.; Kutschera, S.; Riedel, M.; Ludwig, T.; Vajkoczy, P.; Graeser, R.; et al.
EphB4 Promotes Site-Specific Metastatic Tumor Cell Dissemination by Interacting with Endothelial Cell-Expressed EphrinB2.
Mol. Cancer Res. 2010, 8, 1297–1309. [CrossRef] [PubMed]

14. Sawamiphak, S.; Seidel, S.; Essmann, C.L.; Wilkinson, G.A.; Pitulescu, M.E.; Acker, T.; Acker-Palmer, A. Ephrin-B2 regulates
VEGFR2 function in developmental and tumour angiogenesis. Nature 2010, 465, 487–491. [CrossRef] [PubMed]

15. Broggini, T.; Czabanka, M.; Piffko, A.; Harms, C.; Hoffmann, C.; Mrowka, R.; Wenke, F.; Deutsch, U.; Grötzinger, C.; Vajkoczy,
P. ICAM1 depletion reduces spinal metastasis formation in vivo and improves neurological outcome. Eur. Spine J. 2015, 24,
2173–2181. [CrossRef] [PubMed]

16. Wang, Y.; Nakayama, M.; Pitulescu, M.E.; Schmidt, T.S.; Bochenek, M.L.; Sakakibara, A.; Adams, S.; Davy, A.; Deutsch, U.;
Lüthi, U.; et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 2010, 465, 483–486. [CrossRef]
[PubMed]

http://doi.org/10.1158/1541-7786.MCR-09-0453
http://www.ncbi.nlm.nih.gov/pubmed/21047731
http://doi.org/10.1038/nature08995
http://www.ncbi.nlm.nih.gov/pubmed/20445540
http://doi.org/10.1007/s00586-015-3811-7
http://www.ncbi.nlm.nih.gov/pubmed/25711910
http://doi.org/10.1038/nature09002
http://www.ncbi.nlm.nih.gov/pubmed/20445537

	Introduction 
	Results 
	Ephrin-B2-Fc Alters Metastatic Dissemination of Melanoma Cells Depending on the Presence or Absence of Endothelial Ephrin-B2 
	EphB4 Kinase Inhibition Accelerates Metastasis Growth Depending on the Presence of Endothelial Ephrin-B2 

	Discussion 
	Materials and Methods 
	Cell Line and Cell Culture 
	Animal Preparation 
	Retrograde Carotid Artery Injection 
	Treatment Regimens 
	Dissemination (Pre-Tumor) Treatment 
	Metastasis (Post-Tumor) Treatment 

	In Vivo Bioluminescence Imaging 
	In Vivo Magnetic Resonance Imaging 
	Behavior Analysis 
	Tissue Homogenization 
	In Vitro Luminometry for Cell Count 
	Immunohistochemical Staining and Processing of Spines 
	Immunohistological Analysis 
	Statistical Analysis 

	References

