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Background and Purpose: The cyclic nucleotides cAMP and cGMP are ubiquitous

second messengers regulating numerous biological processes. Malfunctional cNMP

signalling is linked to diseases and thus is an important target in pharmaceutical

research. The existing optogenetic toolbox in Caenorhabditis elegans is restricted to

soluble adenylyl cyclases, the membrane-bound Blastocladiella emersonii CyclOp and

hyperpolarizing rhodopsins; yet missing are membrane-bound photoactivatable

adenylyl cyclases and hyperpolarizers based on K+ currents.

Experimental Approach: For the characterization of photoactivatable nucleotidyl

cyclases, we expressed the proteins alone or in combination with cyclic nucleotide-

gated channels in muscle cells and cholinergic motor neurons. To investigate the

extent of optogenetic cNMP production and the ability of the systems to depolarize

or hyperpolarize cells, we performed behavioural analyses, measured cNMP content

in vitro, and compared in vivo expression levels.

Key Results: We implemented Catenaria CyclOp as a new tool for cGMP production,

allowing fine-control of cGMP levels. We established photoactivatable membrane-

bound adenylyl cyclases, based on mutated versions (“A-2x”) of Blastocladiella and

Catenaria (“Be,” “Ca”) CyclOp, as N-terminal YFP fusions, enabling more efficient and

specific cAMP signalling compared to soluble bPAC, despite lower overall cAMP pro-

duction. For hyperpolarization of excitable cells by two-component optogenetics, we

introduced the cAMP-gated K+-channel SthK from Spirochaeta thermophila and com-

bined it with bPAC, BeCyclOp(A-2x), or YFP-BeCyclOp(A-2x). As an alternative, we

implemented the B. emersonii cGMP-gated K+-channel BeCNG1 together with

BeCyclOp.

Abbreviations: Arch, Halorubrum sodomense archaerhodopsin-3; ATR, all-trans retinal; BeCNG1, Blastocladiella emersonii cyclic-nucleotide-gated channel; BeCyclOp, Blastocladiella emersonii

guanylyl cyclase opsin; bPAC, Beggiatoa photoactivatable adenylyl cyclase; BWM, body wall muscle; CaCyclOp, Catenaria anguillulae guanylyl cyclase opsin; ChR2, channelrhodopsin-2; CNG,

cyclic nucleotide-gated; CNGC, cyclic nucleotide-gated channel; cNMP, cyclic nucleoside-30 ,50-monophosphate; euPAC, Euglena photoactivatable adenylyl cyclase; GtACR, Guillardia theta anion

channel rhodopsin; mb, membrane-bound; NCs, nucleotidyl cyclases; NpHR, Natronomonas pharaonis halorhodopsin; PAC, photoactivatable adenylyl cyclase; PGC, photoactivatable guanylyl

cyclase; SthK, Spirochaeta thermophila cAMP-gated K+ channel; SV, synaptic vesicle.
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Conclusion and Implications: We established a comprehensive suite of optogenetic

tools for cNMP manipulation, applicable in many cell types, including sensory neu-

rons, and for potent hyperpolarization.
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1 | INTRODUCTION

Optogenetics enables the modulation of biological processes in a spa-

tiotemporally highly defined manner within living cells and animals. To

this end, photosensitive proteins are genetically targeted to specific

cell types (Knopfel et al., 2010; Yizhar et al., 2011). Several

optogenetic tools were developed for the manipulation of ionic cur-

rents across the plasma membrane (PM) as well as for the signalling

molecules cAMP and cGMP (Gao et al., 2015; Ryu et al., 2010;

Schroder-Lang et al., 2007; Stierl et al., 2011; Tanwar et al., 2018).

Both nucleotides are ubiquitous second messengers, triggering vari-

ous biological responses by activating, for example, protein kinases

(PKA and PKG) or cyclic nucleotide-gated channels (CNGCs)

(Podda & Grassi, 2014). In eukaryotic GPCR signalling, cAMP is gener-

ated predominantly by membrane-bound (mb) ACs, which are located

in microdomains together with GPCRs, PK(A) and their targets (Bock

et al., 2020; Cooper & Tabbasum, 2014). In rare cases, cAMP is cre-

ated by soluble ACs (Buck et al., 1999). Likewise, cGMP formation is

either catalysed by membrane bound or by soluble GCs (Lucas

et al., 2000).

Recently, several photoactivatable ACs and GCs (PACs and PGCs,

respectively) were characterized (Gao et al., 2015; Ryu et al., 2010;

Scheib et al., 2015; Stierl et al., 2011). In Caenorhabditis elegans, the

microbial PACs from Euglena (euPAC) and Beggiatoa (bPAC), as well as

the synthetic phytochrome-linked cyclases IlaC22 k27 and PaaC were

implemented for optogenetic cAMP generation (Etzl et al., 2018; Ryu

et al., 2014; Steuer Costa et al., 2017; Weissenberger et al., 2011). All

are soluble proteins; thus, they do not precisely mimic cAMP signalling

as occurring in response to membrane-bound ACs. The fungal GC rho-

dopsin from Blastocladiella emersonii, called BeCyclOp (BeRhGC,

BeGC1, RhoGC) is particular in combining a rhodopsin and a GC,

yielding an efficient mbGC for optogenetic cGMP generation (Avelar

et al., 2014, 2015; Gao et al., 2015; Scheib et al., 2015). Another fun-

gal CyclOp from Catenaria anguillulae was characterized in Xenopus

oocytes and rat hippocampal neurons (Gao et al., 2015; Scheib

et al., 2018). CyclOps, alternatively termed as RhoGCs, facilitate

research in sensory neurons, which often signal via cGMP

(Bargmann, 2006).

Nucleotide specificity is determined by two to three key amino

acids in the active site and can be interconverted. Thus, highly effi-

cient light-regulated cyclases can be turned into enzymes of the

corresponding other nucleotide specificity. Accordingly, BeCyclOp

and CaCyclOp were converted into ACs by distinct mutations (Scheib

et al., 2018), as was the AC domain of bPAC, mutated into a GC and

termed bPGC or BlgC (Ryu et al., 2010). The utility of nucleotidyl

cyclases (NC) extends beyond their primary function as enzymes,

when they are combined with CNGCs, resulting in “two-component

optogenetics” (see below), as opposed to normal applications of

microbial rhodopsins: these are most often used as directly light-gated

ion channels or pumps to depolarize (e.g., channelrhodopsin-2 [ChR2])

or hyperpolarize (e.g., Natronomonas pharaonis halorhodopsin [NpHR])

excitable cells (Chuong et al., 2014; Klapoetke et al., 2014), enabling

investigations of basic mechanisms of synaptic transmission, or to

decipher neuronal networks triggering behaviour (Han et al., 2009;

Husson, Costa, et al., 2012; Oranth et al., 2018; Schultheis

et al., 2011). In C. elegans, hyperpolarizing tools such as the proton

pump archaerhodopsin-3 (Arch) from Halorubrum sodomense, NpHR,

or the Guillardia theta anion channel rhodopsins (GtACRs) were

established (Bergs et al., 2018; Chow et al., 2010; Husson, Liewald,

et al., 2012; Zhang et al., 2007). However, no dedicated optogenetic

tool for transport or facilitation of K+ currents exists, with the excep-

tion of BLINK (Cosentino et al., 2015), which does not express in

What is already known

• Impairment of cNMP signalling is linked to various dis-

eases, such as neurodegeneration and cardiovascular

disorders.

What this study adds

• In vivo test system for the characterization of photo-

activatable nucleotidyl cyclases

• Optogenetic tools for cNMP production, coupled to CNG

channels to de- or hyperpolarize cells

What is the clinical significance

• Implementing photoactivatable nucleotidyl cyclases to

aid pharmaceutical research
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C. elegans (our unpublished observations). To overcome some of these

limitations, a two-component optogenetic silencing system comprising

the Spirochaeta thermophila cAMP-gated K+ channel (SthK) and bPAC

was implemented in several model organisms, enabling a more physio-

logical silencing of excitable cells (Beck et al., 2018; Bernal Sierra

et al., 2018).

Here, we characterize bPGC and CaCyclOp for their ability to

allow optogenetic cGMP generation by co-expressing them with the

TAX-2/-4 excitatory CNG channel in body wall muscle (BWM) cells of

C. elegans. Further, we generate mbPACs by mutation of mbPGCs,

and characterize them with respect to their light-induced cAMP pro-

duction. To this end, we express them in cholinergic motor neurons

and BWM cells and assess their influence on different behaviours of

the animal. We demonstrated that mbPACs were more efficient than

soluble bPAC in evoking behaviour, despite considerably higher over-

all cAMP production by the latter. Possibly, mbPACs affect signalling

in motor neurons better as they generate cAMP in close proximity to

the PM. Moreover, we implemented two-component optogenetic sys-

tems for silencing, consisting of SthK co-expressed with bPAC or

mbPACs, or the Blastocladiella emersonii CNG1 (BeCNG1) K+ channel

combined with BeCyclOp. We evaluated the properties of these tool

combinations, as well as their ability to silence BWM cells and cholin-

ergic neurons. Our work establishes a comprehensive optogenetic

toolbox for cGMP and cAMP manipulations or K+-fluxes in C. elegans.

2 | METHODS

2.1 | Molecular biology

To express the NCs in C. elegans, the promoters punc-17 (cholinergic

neurons; in vivo driving expression of the vesicular Acetylcholine trans-

porter), and pmyo-3 (expression in BWM, driving expression of myosin

heavy chain A) were used. As fluorescence selection marker, fluores-

cence proteins were expressed under the control of the promoter

pmyo-2 (expression in pharyngeal muscle; myosin heavy chain C).

The plasmids pMS04 [pmyo-3::bPGC::SL2::mCherry] (RRID:

Addgene_168172), pMS05 [pmyo-3::bPAC::SL2::mCherry], pJN55

[pmyo-3::tax-2::GFP], pJN58 [pmyo-3::tax-4::GFP], and pJN63 [pmyo-

3::BeCyclOp::SL2::mCherry] (RRID:Addgene_168173) were described

earlier (Gao et al., 2015; Woldemariam et al., 2019). The plasmid

pASH3 [pmyo-3::BeCNG1-YFP] (RRID:Addgene_168167) was pro-

duced by amplification of the BeCNG1 cDNA fragment using primers

BeCNG1_fwd (50-CCGGGGATCCGCCACCATGGCTGTTGA-30) and

BeCNG1_rev (50-GCTATAGGTACCTTCTCGAGATCCTCTTCAGGC

ACA-30) and subcloning into the pmyo-3::YFP vector using BamHI and

KpnI. For pJN67 [punc-17::BeCyclOp::SL2::mCherry], the unc-17

promoter was amplified with primers oJN197 (50-CCTTTTGCT

CACATGGGATTACACCAATCATTTC-30) and oJN198 (50-TGTCC

TTCATTCTAGCTGAAAATTAAATATTTTAGTG-30) and inserted into

the BeCyclOp::SL2::mCherry vector via “in-fusion cloning.” To con-

struct pJN68 [punc-17::BeCyclOp(A-3x)::SL2::mCherry], site-directed

mutagenesis was conducted using primers oJN210 (5-0CTACAA

GGTCAAAACCATCGGAGACGC-30), oJN211 (50-ACTCCCCAACGCT

TGGCG-30), oJN212 (50-GACACTCGTCGGAGACACCGTC-30), and

oJN213 (50-CAATCTGGGTTGAGGTCTCCGAG-30). Plasmid pJN69

[pmyo-3::BeCyclOp(A-3x)::SL2::mCherry] was generated by restriction

digestion of pJN68 using KpnI and BspMI and subcloning into the

pmyo-3::BeCyclOp::SL2::mCherry backbone. To generate pTH01

[pmyo-3::CaCyclOp(A-2x)::SL2::mCherry] and pTH02 [pmyo-3::

CaCyclOp::SL2::mCherry], the respective CaCyclOp cDNA fragments

were amplified with primers oTH5 (50-GGCGCTCTAGAATGTCTA

TGAAAGATAAAG-30) and oTH6 (50-GCGGTACCTTACTTTCTAGC

GGTCAC-30) and inserted into pmyo-3::SL2::mCherry vector using

XbaI and KpnI. pTH04 [punc-17::CaCyclOp(A-2x)::SL2::mCherry] was

produced by amplification of CaCyclOp(A-2x) fragment using primers

oTH37 (50-TCGGCTAGCCCATGTCTATGAAAGATAAAG-30) and

oTH6 (50-GCGGTACCTTACTTTCTAGCGGTCAC-30) and subcloning

into punc-17::SL2::mCherry backbone using NheI and KpnI. To con-

struct pTH11 [punc-17::BeCyclOp(A-2x)::SL2::mCherry], BeCyclOp

fragment was amplified with primers oTH38 (50-CAACCCACACTGGG

ACCTCGTCGGAGACAC-30) and oTH39 (50-GTGTCTCCGACGAGGTC

CCAGTGTGGGTTG-30) and inserted into punc-17::BeCyclOp

[E497K]::SL2::mCherry vector using BclI and KpnI. For pTH12 [pmyo-

3::BeCyclOp(A-2x)::SL2::mCherry], the BeCyclOp(A-2x) fragment was

amplified using primers oTH01 (50-GCCGTCTAGAATGAAGGACAAG

GACAACAACC-30) and oTH04 (50-AGCCGGTACCTTACTTACGTCC

GAGGACCC-30) and subcloned into pmyo-3::SL2::mCherry backbone

using XbaI and KpnI. To generate pTH18 [pmyo-3::SthK-mCherry], the

SthK-mCherry fragment was amplified using primers oTH50 (50-CCA

TCTAGAATGAAAAGCTCCGCC-30) and oTH51 (50-CACCTTGTAGA

TGAAC-30) and inserted into the pmyo-3::mCherry vector using XbaI

and SbfI. The plasmid pTH20 [pmyo-3::SthK::SL2::GFP] was created

by amplification of the SthK fragment using primers oTH50 (50-

CCATCTAGAATGAAAAGCTCCGCC-30) and oTH52 (50-ATGGTACC

TTATCCCCGCCGTGATG-30) and subcloning into pmyo-3::SL2::GFP

backbone using XbaI and KpnI. To construct pTH21 [punc-17::SthK-

mCherry], the SthK-mCherry fragment was obtained by digestion with

NheI and SbfI and inserted into the punc17::mCherry vector. For

pTH23 [punc-17::SthK::SL2::GFP], the SthK fragment was amplified

with primers oTH53 (50-ATGCTAGCATGAAAAGCTCCGC-30) and

oTH52 (50-ATGGTACCTTATCCCCGCCGTGATG-30) and subcloned

into punc-17::SL2::mCherry backbone using NheI and KpnI. The SL2::

mCherry fragment was exchanged with SL2::GFP using KpnI and

ApaI. pTH32 [pmyo-3::YFP-CaCyclOp(A-2x)::SL2::mCherry] (RRID:

Addgene_168168) was generated by amplifying YFP fragment with

primers oTH69 (50-ACGACCACTAGATCCATCTAGAATGGTGAGCAA

GGGCGAGGAG-30) and oTH71 (50-CTTTATCTTTCATAGACATTGAT

CCCTTGTACAGCTCGTCCATGCC-30) and CaCyclOp(A-2x) fragment

with primers oTH72 (50-GGACGAGCTGTACAAGGGATCAATGTCTA

TGAAAGATAAAG-30) and oTH12 (50-GACAAGCAGTTAACTAGGTG-

30), followed by insertion into the pmyo-3::SL2::mCherry vector via

Gibson assembly. To construct pTH33 [pmyo-3::YFP-BeCyclOp(A-

2x)::SL2::mCherry] (RRID:Addgene_168169), the YFP fragment was

amplified with primers oTH69 (50-ACGACCACTAGATCCATCTAG

AATGGTGAGCAAGGGCGAGGAG-30) and oTH70 (50-
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GTTGTCCTTGTCCTTCATTGATCCCTTGTACAGCTCGTCCATG-30)

and the BeCyclOp(A-2x) fragment with primers oTH56 (50-

ATGAAGGACAAGGACAACAAC-30) and oTH12 (50-GACAAGCAG

TTAACTAGGTG-30). Subsequently, the fragments were inserted into

the pmyo-3::SL2::mCherry backbone via Gibson assembly. pTH41

[punc-17::YFP-BeCyclOp(A-2x)::SL2::mCherry] (RRID:Addgene_

168170) and pTH42 [punc-17::YFP-CaCyclOp(A-2x)::SL2::mCherry]

(RRID:Addgene_168171) were generated by amplification of the YFP-

CyclOp(A-2x) fragments using oTH81 (50-CGGCTAGCATGGT

GAGCAAGGG-30) and oTH12 (50-GACAAGCAGTTAACTAGGTG-30).

Subsequently, the fragments were subcloned into punc-17::SL2::

mCherry backbone using NheI and KpnI.

2.2 | C. elegans culture and transgenic animals

Cultivation was on nematode growth medium (NGM) in the presence

of the Escherichia coli strain OP50-1 according to standard methods

(Brenner, 1974). The C. elegans strains used or generated in this work

are listed in Table S1.

Transgenic C. elegans were obtained by microinjection of DNA

into the gonads of nematodes by standard procedures (Fire, 1986).

The strain lite-1(ce314), which lacks the intrinsic photophobic

response, was used as background strain (Edwards et al., 2008). For

ZX1741, 5.5 ng�μl�1 of pJN55 and pJN58 and 2 ng�μl�1 of pmyo-2::

mCherry were microinjected. To create ZX2316, ZX2400-ZX2406,

and ZX2609-2616, 15 ng�μl�1 of the plasmids pJN69, pJN63, pMS04,

pTH02, pTH12, pTH33, pTH01, and pTH32 were injected. ZX2408

and ZX2617 were generated by injection of 7.5 ng�μl�1 of pMS05.

The strains ZX1940, ZX1941, ZX2154, and ZX2391 were created by

injection of 30 ng�μl�1 of pJN67, pJN68, pTH04, and pTH11. For

ZX2326, 40 ng�μl�1 of pASH3 and 15 ng�μl�1 of pJN63 were micro-

injected. To generate ZX2398 and ZX2399, 10 ng�μl�1 of pTH18 and

pTH21 and 1.5 ng�μl�1 of pmyo-2::CFP were microinjected. ZX2393

was produced by injection of 5.5 ng�μl�1 of pTH20 and 1.5 ng�μl�1

pmyo-2::mCherry. The strains ZX2504–ZX2507 were created by

injection of 15 ng�μl�1 of pJN63, pTH12, pJN69, and pTH01. For

ZX2394, 7.5 ng�μl�1 of pMS05 were microinjected. To create

ZX2395, 5.5 ng�μl�1 of pTH23 and 3 ng�μl�1 pmyo-3::mCherry were

injected. ZX2530 was generated by injection of 60 ng�μl�1 of pJN69.

For ZX2606, 2.5 ng�μl�1 pTH23 and 100 ng�μl�1 pJN68 were micro-

injected. To obtain ZX2607 and ZX2608, 1 ng�μl�1 pTH23 and

30 ng�μl�1 pJN68 or 15 ng�μl�1 pTH11 were injected. For ZX2659

and ZX2660, 30 ng�μl�1 of pTH41 or pTH42 and 1.5 ng�μl�1 of pmyo-

2::mCherry were used. For ZX2796 and ZX2797, 15 ng�μl�1 of pTH41

and 0.01 ng�μl�1 or 0.1 ng�μl�1 pTH23 were injected. ZX2798 was

created by injection of 0.05 ng�μl�1 pTH23 and 30 ng�μl�1 pTH41.

2.3 | Fluorescence microscopy

Transgenic animals were immobilized on 2% agarose pads in M9

buffer (20-mM K2HPO4; 40-mM Na2HPO4; 80-mM NaCl; 1-mM

MgSO4) using 50-mM NaN3 in H2O. Expression was observed on an

AxioScope.A1 (Zeiss, Germany) equipped with a 50-W (HBO) mercury

lamp and Natronomonas halorhodopsin (NpHR) or green fluorescent

protein (GFP) specific excitation/emission filter sets (AHF

Analysentechnik, Germany). Images were obtained with a Hamamatsu

ORCA-Flash 2.8 digital camera. For determination of protein expres-

sion level, z-stacks (0.3-μm intervals) were acquired under 10� magni-

fication on a Zeiss Cell Observer Spinning Disk Confocal Microscope

(Zeiss, Germany), using a 514-nm excitation laser at 40% power, a

Rolera EM-C2 with EM Gain of 150, full resolution, and 100-ms expo-

sure time. Images were exported as 16 bit czi files. Using ImageJ

([ImageJ, RRID:SCR_003070] version 1.52i), z-projections of the

respective stacks were generated, and regions of interest (ROIs) were

drawn along the whole body of the animal to measure the mean fluo-

rescence intensity.

2.4 | C. elegans behavioural assays

Transgenic strains were kept in the dark on standard NGM plates

(5.5-cm diameter; 8-ml NGM) with OP50-1 bacteria at room tempera-

ture. For behavioural assays, transgenic L4 larvae were selected for

fluorescence under a Leica MZ16F dissection scope and transferred

to freshly seeded plates and kept in the dark. Animals supplemented

with all-trans retinal (ATR) were transferred to plates with OP50-1

containing 200-μM ATR. Measurements of the body length were per-

formed as described previously (Liewald et al., 2008). Young adult ani-

mals were individually placed under red light (>600 nm) on plain NGM

plates and assayed on an AxioScope.A1 microscope (Zeiss, Germany)

with a 10� objective and transmission light filtered through a red

675 ± 50 nm bandpass filter. For colour illumination, the light of a

50-W HBO lamp was channelled through excitation bandpass filters

of 470 ± 40 nm or 530 ± 50 nm with intensities of 0.1, 0.2, 0.4, 0.9,

or 2.1 mW�mm�2. Intensity was measured using a S120UV Sensor

with PM 100D power meter (Thorlabs, Dachau, Germany). Video

recordings of worms were done using a Canon G9 powershot camera.

The duration of illumination was defined by a computer-controlled

shutter (Sutter Instruments, USA). The body length values were calcu-

lated using a custom-made workflow in KNIME (KNIME, RRID:

SCR_006164) version2.10 (Warr, 2012). Here, the length was normal-

ized to the averaged values measured before illumination (0–5 s), and

normalization was carried out for each worm. All the values below

80% or above 120% were excluded, and the length profiles were aver-

aged for each strain. Swimming behaviour was analysed in a 96-well

microtiter plate containing 100 μl of NGM and 50 μl of M9 buffer per

well. Young adult animals were transferred to the microtiter plate

under red light (650/50 nm) and adapted for 10 min in the dark. Video

acquisition was performed with a Canon G9 powershot camera on a

Axio Scope.A1 microscope (Zeiss, Germany). Animals were illuminated

with a 50-W HBO lamp (Carl Zeiss AG, Germany, 470/40 nm, 530

± 50 nm 0.1, 0.2, 0.4, 1, or 1.35 mW�mm�2) and 4� magnification.

Stimulation protocol was 30 s in darkness, 30 s in light, and if neces-

sary 30, 60, or 270 s in darkness. Swimming cycles were counted for

defined time periods of 15 or 30 s.
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Locomotion behaviour analysis on NGM plates was performed

using a worm tracker as previously described (Stirman et al., 2011). A

mechanical shutter (Sutter Instruments, USA) was placed between the

projector and the microscope and synchronized to the light protocol.

Further, the transmission light was filtered through a red 675 ± 50 nm

bandpass filter, and the intensity was measured using a S120UV Sen-

sor with PM 100D power meter. Young adult animals were placed

individually on NGM plates under red light (>600 nm) and kept for

15 min in the dark before the transfer to the worm tracker. The light

protocol was 15 s dark/25 s light/and 15 s dark using a light intensity

of 0.2 mW�mm�2 at 470/10 nm. Speed, bending angle, and body

length values were calculated using a custom-made workflow in

KNIME as previously described (Steuer Costa et al., 2017). Speed

values >1.25 mm/s and length values which depicted deviations

>25% with respect to the mean first 5 s of the video were excluded.

Videos containing >15% of discarded data points were

excluded. Speed, bending angle, and body length values of each ani-

mal were normalized to the averaged values measured before illumi-

nation (0–15 s).

2.5 | cNMP measurements using C. elegans extract

For C. elegans extract preparation, transgenic L4 larvae were selected

for fluorescence under a Leica MZ16F dissection scope and trans-

ferred to freshly seeded OP50-1 plates containing 200-μM ATR and

kept in the dark; 60 young adult animals were transferred under red

light (>600 nm) into an Eppendorf tube containing 50-μl M9 buffer

and 1-mM 3-isobutyl-1-methylxanthine (IBMX, a phosphodiesterase

blocker). Control animals (dark condition) were placed for 30 s or

15 min on an AxioScope.A1 microscope (Zeiss, Germany) with a 4�
objective and transmission light filtered through a red 675 ± 50 nm

bandpass filter. For colour illumination, the light of a 50-W HBO lamp

was channelled through excitation bandpass filters of 470 ± 40 nm

with an intensity of 0.5 mW�mm�2 for 30 s or 15 min. Subsequently,

the animals were subjected to three freeze–thaw cycles using liquid

nitrogen. Next, the animals were vortexed with 0.25- to 0.5-mm glass

beads for 5 min. The supernatant after centrifugation (2000 rpm,

1 min) was used for measurement of the cNMP content. cAMP was

measured using AlphaScreen cAMP Detection Kit (PerkinElmer),

whereas cGMP was measured using cGMP Direct Chemiluminescent

ELISA Kit (Arbor Assays); for both, a CLARIOstar PLUS (BMG Labtech)

Microplate Reader was used.

2.6 | Western blot analysis

Twenty transgenic adult animals were transferred into 20-μl M9

buffer and subjected to three freeze–thaw cycles using liquid nitro-

gen. Subsequently, 4-μl 4� SDS sample buffer was added, followed

by boiling (10 min), incubation on ice (5 min), and loading onto a 12%

SDS polyacrylamide gel. Subsequently, separated proteins were

transferred onto a polyvinylidene fluoride (PVDF) membrane

(Roth, Germany), incubated with blocking buffer containing

Tris-buffered saline with Tween20 (TBS-T) (20-mM Tris, 0.15-M NaCl,

0.05% Tween20) plus 5% milk powder for 1 h at room temperature.

Next, the membrane was incubated with anti-α-tubulin antibody

(mouse IgG, 1:50; Piperno and Fuller Cat# 4A1, RRID:AB_2732839) in

blocking buffer, washed three times with TBS-T, incubated with anti-

mouse IgG secondary antibody conjugated with HRP (1:100; Thermo

Fisher Scientific Cat# 32430, RRID:AB_1185566) for 1 h at room

temperature in blocking buffer. After three washing steps in TBS-T,

detection was performed using GE Healthcare Amersham™ ECL Prime

Western-Blot-Detection Reagent (Cytivia, USA) on a ChemoCam

ECL & Fluor Blot Imager (Intas Science Imaging, Germany). After-

wards, the membrane was incubated with anti-mCherry (rabbit,

1:10,000; OriGene, Cat# TA150125, RRID:AB_2890005) in blocking

buffer for 1 h at room temperature. After three washing steps with

TBS-T, the membrane was incubated with anti-rabbit-HRP secondary

antibody (1:3000, Carl Roth, Cat# 4750, RRID:AB_2890006) in block-

ing buffer for 1 h at room temperature, washed three times, and

detection was performed as described above. For western blot

analysis, the Gel Analyzer plugin in ImageJ was used. For calculation

of the relative density values, the percent values of each strain were

normalized to the percent value of BeCyclOp(A-2x), depicting the

lowest α-tubulin content. Finally, the mCherry/α-tubulin ratio was

calculated.

2.7 | Data and statistical analysis

Data are shown as mean ± SEM or mean, median, interquartile range,

whiskers (1.5 * IQR), and outliers, with n = number of measured ani-

mals. Statistical analyses were performed using GraphPad Prism 8 soft-

ware (GraphPad Prism, RRID:SCR_002798) or Microsoft Excel 2019

(Microsoft Excel, RRID:SCR_016137). Student's t test, one-way or

two-way ANOVA followed by Bonferroni correction as post hoc test

were conducted, as indicated in the figure legends. P values ≤0.05

were determined as statistically significant. The data and statistical

analysis comply with the recommendations on experimental design

and analysis in pharmacology (Curtis et al., 2018).

2.8 | Materials

ATR, IBMX and Tween20 were obtained from Sigma-Aldrich

(Darmstadt, Germany). MgSO4, SDS, Tris-HCl, KH2PO4, Na2HPO4,

NaN3, NaCl, milk powder, PVDF membrane and the anti-rabbit-HRP

secondary antibody were supplied by Roth (Karlsruhe, Germany). The

E. coli strain OP50-1 was received from the Caenorhabditis Genetics

Center (Minnesota, USA). The AlphaScreen cAMP Detection Kit

was purchased from PerkinElmer (Waltham, USA). cGMP Direct

Chemiluminescent ELISA Kit was obtained from Arbor Assays

(Ann Arbor, USA). The anti-α-tubulin antibody was obtained from the

Developmental Studies Hybridoma Bank (Iowa City, USA), and the

anti-mouse IgG secondary antibody conjugated with HRP was
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received from Thermo Fisher Scientific (Waltham, USA). The GE

Healthcare Amersham™ ECL Prime Western-Blot-Detection Reagent

was obtained from Cytivia, (Marlborough, USA), and the anti-mCherry

antibody was purchased from OriGene (Rockville, USA).

2.9 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-

OGY (http://www.guidetopharmacology.org) and are permanently

archived in the Concise Guide to PHARMACOLOGY 2019/20

(Alexander, Fabbro et al., 2019; Alexander, Mathie et al., 2019).

3 | RESULTS

3.1 | Two-component optogenetic systems for
cGMP generation and depolarization comprising
CyclOps or bPGC and the TAX-2/-4 CNG channel

We wanted to expand the optogenetic toolkit for cGMP generation in

C. elegans. The previously established BeCyclOp enabled the genera-

tion of a very high amount of cGMP at a high turnover rate, while the

soluble bPGC produced cGMP with low efficiency and slow kinetics

(Gao et al., 2015; Woldemariam et al., 2019). Thus, we were looking

for a tool with features in between those of BeCyclOp and bPGC, and

hence generated or tested different GCs or AC mutants and com-

pared them. To this end, we expressed the proteins in BWM cells,

together with the TAX-2/-4 CNG channel, a mostly cGMP-gated,

nonselective cation channel (Komatsu et al., 1999; Ramot et al.,

2008). TAX-2/-4 activation by cyclic nucleotide monophosphate

(cNMP) (EC50
cGMP = 8.4 μM; EC50

cAMP = 300 μM, in HEK293 cells;

Komatsu et al., 1999) causes muscle depolarization and contraction

and thus a macroscopic reduction of the body length that can be mea-

sured by video microscopy (Gao et al., 2015; Liewald et al., 2008).

Other channels used in this study are as follows (see below): cAMP-

gated K+ channel from Spirochaeta thermophila (EC50
cAMP = 3.68 μM;

Brams et al., 2014) and the cGMP-gated K+-channel BeCNG1 (not

activated by cAMP) from Blastocladiella emersonii (Avelar et al., 2015).

Illumination of animals co-expressing TAX-2/-4 and CaCyclOp (from

Catenaria) resulted in light-dependent muscle contractions that by

amplitude and ON-kinetics fell in between those observed in animals

expressing TAX-2/-4; BeCyclOp and TAX-2/-4; bPGC (Figure 1a,b).

To more rigorously compare the activities of the GCs, we analysed

them at different light levels. Light saturation conditions for each pro-

tein were already reached at ≥0.2 mW�mm�2 (Figure 1c). Further-

more, we determined the expression level of the GCs using western

blot analysis (indirectly via mCherry, as each GC transgene also

expressed mCherry from a bicistronic mRNA). This indicated the

highest expression level for BeCyclOp, and lowest for bPGC. Though

we do not know the GC protein expression levels (likely to be lower

for the integral membrane proteins), high mRNA levels were in line

with more potent optogenetic effects (Figure 1d). Thus, while

BeCyclOp is the most potent GC, CaCyclOp is a useful, membrane-

bound alternative to bPGC, which is a soluble tool.

3.2 | Implementation and analysis of membrane-
bound PACs in cholinergic motor neurons

For the generation of mbPACs, the GC domains of BeCyclOp and

CaCyclOp were mutated by distinct changes into AC domains

(Linder, 2005; Ryu et al., 2010; Sunahara et al., 1998): BeCyclOp

(E497K/C566D), termed “BeCyclOp(A-2x)”; BeCyclOp(E497K/

H564D/C566T) = “BeCyclOp(A-3x)”; and CaCyclOp(E497K/C566D)

= “CaCyclOp(A-2x).” Previously, we showed that cAMP generation in

cholinergic motor neurons via bPAC caused increased neurotransmis-

sion and has profound effects on locomotion behaviour (Steuer Costa

et al., 2017). Thus, we used this bPAC induced behaviour as a positive

control and to compare the effectiveness of the engineered mbPACs.

The induced behavioural change could be assessed by the swimming

frequency in liquid and by determination of crawling speed and body

bending on solid media (Steuer Costa et al., 2017; Weissenberger

et al., 2011). Illumination of animals expressing BeCyclOp(A-2x) or

bPAC in cholinergic neurons evoked comparably increased swimming

cycles and crawling speeds (BeCyclOp(A-2x) appeared even more effi-

cient). However, the effects induced by bPAC decayed faster than

those induced by BeCyclOp(A-2x) (Figures 2b,c,e,f and S1A,E,F). In

contrast to bPAC, light stimulation of BeCyclOp(A-2x) expressing ani-

mals produced no change in their mean bending angles and only a

small decrease in body length (Figures 2i,j and S4E,G,H,J). For CaCy

clOp(A-2x) and BeCyclOp(A-3x) expressing animals, no light-evoked

change in their swimming behaviour was observed (Figures 2b,c and

S1B,D,F). With the exception of CaCyclOp(A-2x) expressing animals,

all analysed PACs effected decreased basal swimming frequency,

compared with the genetic background lite-1(ce314) (lite-1 was used

since these animals lack intrinsic photophobicity; Figure S1E,F).

Whether this is due to basal (dark) activity of the cyclases or a poten-

tial burden due to expression of the foreign protein is unclear, but see

below for cAMP measurements in extracts (Figure 3f). Further,

BeCyclOp(A-2x) expressing animals exhibited decreased basal

crawling speed, independent of the addition of ATR (Figure S4B,D).

To possibly improve expression and/or membrane targeting of

the mbPACs, BeCyclOp(A-2x) and CaCyclOp(A-2x) were fused

N-terminally with yellow fluorescent protein (YFP; Scheib et al., 2018).

For YFP-CaCyclOp(A-2x), this improved effects strongly, turning it

into a tool as useful as BeCyclOp(A-2x) or YFP-BeCyclOp(A-2x). In

both cases, expression of the protein reduced the basal swimming

frequency compared to the genetic background (lite-1(ce314)),

(Figures 2d,g,h,k,l, S5, and S6). This may be due to basal (dark) activity

(however, cAMP measurements did not provide indications for this;

Figures 3j,k and S7) or could reflect some compromising effect of pro-

tein expression on neuronal physiology (e.g., due to evoked ER stress).

Light-evoked effects on swimming saturated for YFP-BeCyclOp(A-2x)

already at 0.1 mW�mm�2, while for bPAC, there appeared to be a
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maximum at 0.2 mW�mm�2, that dropped again at 0.4 mW�mm�2,

possibly due to strong body bending counteracting swimming speed

(Figure S2A–D). We also determined expression levels of the YFP-

CyclOps and bPAC using fluorescence microscopy, depicting much

lower levels for the mbPACs (Figure 2m–p). Our analyses show differ-

ences in the triggered behavioural output (crawling speed, swimming

cycles, body contraction evoked by stimulation of BWMs) and the

expression level between the soluble bPAC and the engineered

mbPACs: given the lower expression level and higher light sensitivity,

BeCyclOp(A-2x); YFP-BeCyclOp(A-2x), and YFP-CaCyclOp(A-2x) are

as efficient or even more powerful as the soluble bPAC. This may have

to do with the generation of cAMP in vicinity to the membrane, rather

than in the cytosol. The details in the parameters of their action that

we determined here may enable choosing one tool over another for

specific applications (Figure 8, Tables S2 and S3).

3.3 | Evaluating cGMP or cAMP production by
membrane-bound PACs

The behavioural analysis of animals expressing mbPACs provided a

strong indication that these tools indeed generated cAMP. However,

F IGURE 1 Characterization of light activated guanylyl cyclases with respect to CNG-channel mediated muscle contraction. (a) Body length
measurements (normalized to the initial length ±SEM) of animals co-expressing the TAX-2/-4 CNG channel and either BeCyclOp, CaCyclOp, or
bPGC in body wall muscle cells before, during, and after a 15-s light pulse (0.9 mW�mm�2; 470 nm). Animals were supplemented with (+) or
without (�) all-trans retinal (ATR). Onset-time constants were determined by fitting as mono-exponential decay (dotted lines). (b) Group analysis
for the data in (a) during light stimulation (6.5–15 s). (c) Mean normalized body lengths of animals in (a) during light stimulation at different light
intensities, as indicated. (d) Western blot analysis of extracts from transgenic animals expressing the GCs and mCherry from bicistronic pre-
mRNAs (including the SL2 trans-splicing sequence). Shown is the mCherry intensity relative to the α-tubulin signal, normalized to the signal of the
strain expressing BeCyclOp(A-2x) (Figure 3i) (N = 1 sample of n = 20 animals each). In (b) and (c), the interquartile range (IQR), median ( ), mean
values (●), individual measurements (�), and whiskers (1.5 * IQR) are shown. n = number of animals. Blue bar indicates period of illumination.
*P < 0.05, significantly different as indicated; one-way ANOVA with Bonferroni correction
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the actual extent of the specificity change and the potential of

remaining cGMP production could not be analysed accurately this

way. Thus, to further evaluate the mbPACs for their yield of

optogenetic cNMP production, they were co-expressed with the

TAX-2/-4 CNG channel in BWM cells of C. elegans. This channel is

mostly specific for cGMP, although it can also be activated by cAMP,

with 200-fold lower sensitivity. We then used body length measure-

ments (following photostimulation) to assess the respective mbPACs

for possibly remaining cGMP production (that would efficiently acti-

vate the CNG channel and evoke body contraction), as well as induced

cAMP production (this would evoke contraction if considerable

amounts of cAMP would be generated, or a mixture of cGMP and

cAMP) (Gao et al., 2015). With exception of CaCyclOp(A-2x), that was

ineffective, light stimulation (2 s, 535 nm) of all mbPACs evoked simi-

lar overall body contraction (Figure 3b,c). Importantly, none of the

mbPACs induced contractions as effectively as BeCyclOp, in line with

the largely reduced activation of the CNG channel by cAMP. Slight

differences in the light-triggered behavioural changes induced by the

mbPACs are present in the time course, while the effect induced by

TAX-2/-4; BeCyclOp(A-2x) expressing animals decayed much more

slowly (Figure 3b). Interestingly, in contrast to CaCyclOp(A-2x), YFP-

CaCyclOp(A-2x) could mediate a light-triggered body contraction,

whereas in comparison to BeCyclOp(A-2x), YFP-BeCyclOp(A-2x)

exhibited a faster decay of the evoked effect (Figure 3b). To further

F IGURE 2 Characterizing membrane-bound
photoactivatable adenylyl cyclases in cholinergic
motor neurons via induced effects on locomotion.
(a) Colour code for the analysed strains in (b)–(p).
(b) Normalized swimming cycles (±SEM) of animals
expressing bPAC, BeCyclOp(A-2x), BeCyclOp(A-
3x), wild type BeCyclOp, or CaCyclOp(A-2x) in
cholinergic motor neurons of Caenorhabditis
elegans, in the genetic background lite-1(ce314),

during and after a 30-s light pulse (0.2 mW�mm�2;
470 nm). The swimming cycles are normalized to
the mean swimming frequency 15 s before light
application (n = 40–50). (c,d) Mean swimming
cycles 30 s before and 30 s during illumination of
the animals in (b) (c, n = 40–50) and of animals
expressing YFP-BeCyclOp(A-2x) or YFP-CaCyclOp
(A-2x) (d, n = 39–52), normalized to the mean
swimming frequency 30 s before the light
stimulus. (e,g) Time course of the speed
(normalized to the first 15 s without light; ±SEM)
of the genetic background lite-1(ce314) and
animals expressing bPAC or BeCyclOp(A-2x) (e),
or YFP-BeCyclOp(A-2x) or YFP-CaCyclOp(A-2x)
(g) (e: n = 47–72; g: n = 47–64). (f,g) Mean
normalized speed of the time periods before (0–
15 s), during (15–40 s; blue bar), and after (40–
55 s) illumination (0.2 mW�mm�2; 470 nm) (f:
n = 66–72; h: n = 58–61). (i,k) Normalized
bending angles (±SEM) of the animals in (e) and (g)
(i: n = 47–72; k: n = 47–64). (j,l) Mean normalized
bending angles before, during, and after light (j:
n = 66–72; l: n = 58–61). Fluorescence images of
animals expressing bPAC-YFP (m), YFP-BeCyclOp
(A-2x) or YFP-CaCyclOp(A-2x) in cholinergic
neurons. (p) Mean fluorescence intensities of
animals in (m)–(o). n = number of animals. The
blue bars indicate the period of illumination.
Shown in (c), (d), (f), (h), (j), (l), and (p) are the
interquartile range (IQR), median ( ), mean values
(●), individual measurements (�), and whiskers
(1.5 * IQR). *P < 0.05, significantly different as
indicated; one-way ANOVA and Student's t test
(b,c,d) or one-way ANOVA with Bonferroni

correction (e–l,p)
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classify the cNMP production generated by BeCyclOp(A-2x), we com-

pared changes in the body lengths due to light application (2 s,

470 nm) between TAX-2/-4; BeCyclOp(A-2x) and TAX-2/-4; bPAC

expressing animals. Here, bPAC induced a stronger body contraction,

indicating higher overall cAMP production than mbPAC (Figure 3d,e).

Body contraction evoked by bPAC, via TAX-2/-4 channels showed

F IGURE 3 mbPACs and the TAX-2/-4 CNG channel in body wall muscle cells show different efficiency and kinetics in cNMP generation.
(a) Colour code for the investigated strains in (b)–(e) (all strains express the TAX-2/-4 CNG channel). (b) Body lengths (±SEM) of TAX-2/-4-
expressing animals co-expressing BeCyclOp(A-2x), YFP-BeCyclOp(A-2x), BeCyclOp(A-3x), wild type BeCyclOp, CaCyclOp(A-2x), or YFP-

CaCyclOp(A-2x) in body wall muscle cells, before, and after a 2-s light pulse (0.9 mW�mm�2; 535 nm). Time constants were calculated by
nonlinear fitting for monoexponential decay of the body lengths (dotted lines). (c) Body length reductions after light application (7–9 s), triggered
by optogenetic cNMP generation and TAX-2/-4 activation (n = 17–27). (d) Body length measurements (±SEM) of animals, co-expressing TAX-
2/-4 and either BeCyclOp(A-2x) or bPAC before and after a 2-s light pulse (0.9 mW�mm�2; 470 nm) (n = 16–27). (e) Mean normalized body
lengths for the time periods before (0–5 s), during (8–10 s), and after (22.5–24.5 s) light stimulation (n = 19–28). Fluorescence images of animals
expressing YFP-BeCyclOp(A-2x) (f) or YFP-CaCyclOp(A-2x) (g). (h) Mean fluorescence intensities of animals in (f) and (g). (i) Western blot analysis
of animals expressing the respective adenylyl cyclase and mCherry, from a bicistronic mRNA, resulting in the translation of two separated
proteins. Shown is the mCherry intensity relative to the α-tubulin signal, normalized to the signal of the strain BeCyclOp(A-2x) (N = 1 replicate of
n = 20 animals). (j,k) Quantification of cAMP (j) and cGMP (k) levels using Caenorhabditis elegans extracts. Animals expressing bPAC, bPGC,
BeCyclOp, BeCyclOp(A-2x), YFP-BeCyclOp, BeCyclOp(A-3x), CaCyclOp, CaCyclOp(A-2x), or YFP-CaCyclOp(A-2x) were illuminated with blue
light (0.5 mW�mm�2; 470 nm, 15 min) or incubated with red filtered transmission light (675 nm; 15 min) as dark condition. Data shown are the
mean values (±SEM) including the individual measured values (●). n = 3 samples of 60 animals each. (l) Quantification of cAMP levels of animals
expressing bPAC or YFP-BeCyclOp(A-2x), illuminated for 30 s with blue light (light = L) (0.5 mW�mm�2; 470 nm) or with red filtered transmission
light (675 nm) (dark = D). N = 3 replicates of n = 60 animals each. In (c), (e), (h), and (l), the interquartile range (IQR), median ( ), mean values (●),
individual measurements (�), and whiskers (1.5 * IQR) are shown. The green and blue bar indicate the period of illumination. *P < 0.05, significantly
different as indicated; one-way ANOVA with Bonferroni correction (b-e) or two-way ANOVA with Bonferroni correction (j–l)
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light saturation at 0.2 mW�mm�2 (Figure S2E,F), thus much below the

light intensity used for the comparison of the tools described above.

We note that some BeCyclOp(A-2x) expressing animals had altered

morphology, that is, shortened and wider body, for unknown reasons.

Such animals were excluded from our analyses.

The expression levels of the respective PACs were determined by

western blot analysis and fluorescence microscopy. The results

showed the highest expression levels for BeCyclOp(A-2x),

BeCyclOp(A-3x), and bPAC, whereas YFP-CyclOp(A-2x)s showed

about half or intermediate expression levels (Figure 3f–i).

Because both cGMP and cAMP can activate the TAX-2/-4 CNG

channel, leaving some ambiguity in the interpretation of the above

results, we wanted to use a more defined assay probing for cAMP and

cGMP production and specificity. We thus employed in vitro assays

for cAMP and cGMP quantification, measuring the cNMP content of a

fixed number of animals (i.e., their entire body) after 15 min of illumi-

nation. Here, for BeCyclOp(A-2x), YFP-BeCyclOp(A-2x), and YFP-

CaCyclOp(A-2x), we could determine a high level of cAMP produced

in transgenic C. elegans tissue, though not reaching the same extent as

the soluble bPAC (bPAC produced ca. 2.5� more cAMP than YFP-

BeCyclOp(A-2x); dark activity could not be determined with this

assay, as cAMP levels in dark were as in non-transgenic controls).

Importantly, none of the mbPACs showed any measurable cGMP pro-

duction (Figures 3f,g and S7). To measure optogenetic cAMP genera-

tion at conditions that match the behavioural experiments, we

stimulated the animals with blue light (470 nm) for only 30 s. Here,

the cAMP level for bPAC was about fourfold higher compared to the

mbPAC (Figure 3l). For GCs, cGMP production was highest for

BeCyclOp, while bPGC and CaCyclOp were comparable, generating

approximately 4.5 times less cGMP than BeCyclOp. In sum, BeCyclOp

proved to be the most potent mbPGC optogenetic tool, while the

novel engineered optogenetic cAMP tools produce (and accumulate)

cAMP at high levels in vivo, with high specificity. The effective induc-

tion of behaviour by the engineered mbPACs compared to bPAC,

despite much lower cAMP generation at brief illumination periods,

emphasizes the higher effectivity of the mbPACs in generating mem-

brane proximal cAMP.

3.4 | Combining BeCyclOp and the cGMP-gated
K+-channel BeCNG1 for K+-based cell
hyperpolarization

Recently, the cGMP-gated K+-channel BeCNG1 (not activated by

cAMP) was found in the genome of the aquatic fungus Blastocladiella

emersonii and characterized as the effector protein downstream of

BeCyclOp, participating in the phototactic response of the zoospore

(Avelar et al., 2015). We wanted to adopt this mechanism to achieve

optogenetic hyperpolarization using K+-conductance, for which only

few examples have been demonstrated so far. We thus co-expressed

BeCyclOp and the BeCNG1 channel in BWM cells (Figure 4a,b) to

obtain a two-component optogenetic system for the manipulation of

K+ currents. Optogenetic cGMP production should activate the

BeCNG1 channel, thus triggering muscle hyperpolarization and body

elongation (Gao et al., 2015; Liewald et al., 2008). BeCNG1-YFP

showed a clustered appearance along the muscle membrane

(Figure 4a). Illumination of animals co-expressing BeCNG1 and

BeCyclOp, supplemented with ATR, evoked a slightly increased body

length within �3 s, which remained at this level even after turning

light off (Figure 4c,d). No effects were observed in control animals cul-

tivated without ATR. As we showed earlier, animals expressing only

BeCyclOp do not exhibit changes in body length (Gao et al., 2015). In

conclusion, BeCyclOp and BeCNG1 achieved moderate but long-

lasting optogenetic hyperpolarization of BWM cells of C. elegans.

3.5 | Implementation of the cAMP-gated K+-
channel SthK and bPAC in BWM cells

Previously, a two-component optogenetic silencing system, consisting

of bPAC and the cAMP-gated SthK channel from Spirochaeta

thermophila (EC50
cAMP = 3.68 μM, in Xenopus oocytes; Brams

et al., 2014), was used to manipulate K+ currents in various model

organisms (Beck et al., 2018; Bernal Sierra et al., 2018). To analyse the

functionality of this system in C. elegans, we co-expressed the SthK

channel and bPAC in BWM cells (Figure 5a) and performed behav-

ioural experiments, that is, swimming and body length measurements.

Muscle hyperpolarization decreases swimming frequency and

increases body length (Zhang et al., 2007). Expressing the SthK chan-

nel alone reduced the basal swimming frequency, compared with the

genetic background lite-1(ce314), likely due to intrinsic cAMP, and this

was further decreased by co-expression with bPAC, even in the dark,

arguing for effects of the known dark activity of bPAC (Figure 5b).

Illumination of SthK; bPAC expressing animals, however, caused a

complete arrest of their swimming behaviour (Figure 5b). In body

length measurements, light stimulation caused long-lasting elongation

of approximately 4%, that is, comparable to other strong hyper-

polarizers like GtACR2 or Arch (Bergs et al., 2018; Husson, Liewald,

et al., 2012), within �1 s (Figure 5c,d), which lasted up to 10 min

(Figure S8), possibly, as C. elegans BWM expresses no or only low

levels of phosphodiesterases. In conclusion, bPAC and SthK evoked

light dependent, robust, long-term muscle hyperpolarization. How-

ever, SthK is so sensitive that intrinsic cAMP levels already suffice for

its activation.

3.6 | mbPACs enable more precise control of the
SthK channel for inhibition in BWM cells

Because the SthK channel is very sensitive and activated by very low

levels of cAMP, and bPAC produces very high amounts of cAMP and

exhibits dark activity, we combined SthK with the engineered variants

of the cyclase rhodopsins. These should have no dark activity and pro-

duce lower amounts of cAMP, as shown in our in vitro assays

(Figures 3f,g and S7A,B). We co-expressed the SthK channel with the

CyclOp PACs (mbPACs) in BWM cells and investigated their
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hyperpolarizing potential and light control using swimming assays and

body length measurements. First, we investigated the parental

cyclase, BeCyclOp, in combination with SthK. Interestingly, illumina-

tion of animals co-expressing SthK and wild type BeCyclOp increased

the swimming cycles and decreased the body length, possibly because

cGMP acts an antagonist (Kesters et al., 2015), or agonist with low

efficacy (Schmidpeter et al., 2018) (Figure 6a–c).

Next, we tested the mbPAC variants, as these produce lower

amounts of cAMP and could thus lead to preferable outcomes in

the evoked effects on muscle hyperpolarization. Animals co-

expressing SthK and BeCyclOp(A-2x) showed a high variability in

their swimming frequency, independent of the addition of ATR,

which was not observed for SthK; BeCyclOp(A-3x) animals

(Figure 6a). In contrast to this, SthK; CaCyclOp(A-2x) expressing ani-

mals exhibited a decreased basal swimming frequency in comparison

to SthK expressing animals (Figure 6a). Illumination of the SthK;

BeCyclOp(A-2x) and (A-3x) variant expressing animals reduced the

swimming cycles, although it did not trigger a complete arrest

(Figure 6a). Also, light stimulation of these animals increased the

body length (Figure 6b,c). Whereas for SthK; BeCyclOp(A-3x) ani-

mals, the evoked hyperpolarization reached a higher level and

decayed a few seconds after turning off the light; it remained con-

stant for SthK; BeCyclOp(A-2x) animals (Figure 6b). For SthK;

CaCyclOp(A-2x) animals, light application slightly decreased

the swimming rate and had no influence on their body length

(Figure 6a–c). Overall, the combination of SthK and BeCyclOp(A-3x)

appears to be the most favourable for K+-based inhibition: Adding

BeCyclOp(A-3x) had no influence on the basal swimming rate of

animals expressing SthK, and light triggered a strong inhibition and

body elongation. As light did not trigger a complete arrest of

swimming, we tried to improve this by increasing the expression

level of BeCyclOp(A-3x). However, this reduced the basal swimming

cycles independent of ATR supplementation (Figure S9); thus, the

expression levels need to be titrated for optimal performance.

3.7 | PACs and the SthK channel in cholinergic
neurons

Last, we assessed the SthK and PAC systems for their ability to hyper-

polarize C. elegans cholinergic neurons, by analysing swimming behav-

iour. As observed in muscle, expression of the SthK channel

F IGURE 4 BeCyclOp and the
cGMP-gated BeCNG1 K+-
channel trigger muscle
hyperpolarization. Co-expression
of BeCNG1-YFP (a) and
BeCyclOp::SL2::mCherry (b) in
BWMs of Caenorhabditis elegans.
Scale bar, 50 μm. (c) Body length
measurements (±SEM) of animals

co-expressing BeCNG1 and
BeCyclOp, supplemented with (+)
or without (�) ATR before, during
and after a 15-s light pulse
(0.9 mW�mm�2; 535 nm). Onset-
time constant was determined by
fitting as mono-exponential
growth (dotted line). (d) Group
data, mean normalized body
lengths for the time periods
before (0–5 s), during (5–20 s),
and after (20–30 s) light
application. Displayed are the
interquartile range (IQR), median
( ), mean values (●), individual
measurements (�), and whiskers
(1.5 * IQR). n = number of
animals. The green bar indicates
the period of illumination.
*P < 0.05, significantly different as
indicated; one-way ANOVA with
Bonferroni correction
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decreased the basal swimming rate in the genetic background lite-1

(ce314) and in wild-type animals (as expected, because these neurons

use cAMP for intrinsic signalling to regulate transmitter output and

neuropeptide release; Steuer Costa et al., 2017), which was further

reduced by co-expression with bPAC and the likely increased cAMP

levels due to its dark activity (Figure 7b). Illumination of these animals

depressed the swimming frequency to nearly complete arrest

(Figure 7b,c). This effect was long lasting, and the swimming rate

increased again after 90–150 s following the end of the illumination

(Figure 7c). As the reduction of swimming rate by SthK and bPAC co-

expression was already substantial in the dark, this combination of

tools appears of limited use in C. elegans, unless one wants to achieve

permanent K+-based inhibition. Thus, we investigated if co-expres-

sion of SthK with BeCyclOp(A-2x) or BeCyclOp(A-3x) would be an

alternative for this cell type. Using the same expression level of SthK

as used before, no viable mbPAC transgenes were obtained. Conse-

quently, we reduced the expression level of SthK. Still, all transgenes

decreased basal swimming rates (Figure 7d), though not as much as

for SthK expressed at higher levels. Light stimulation of these animals

evoked a further, robust decrease in swimming frequency, which

increased again after turning off the light (Figure 7d,e). In an attempt

to optimize the system, we combined YFP-BeCyclOp(A-2x) with low

levels of SthK. This restored the normal basal swimming rate but no

light-dependent inhibition was detectable (Figure 7f,g). Possibly, the

relative expression might be further titrated to achieve an optimum.

The best results were obtained with BeCyclOp(A-2x) with low SthK

expression. To summarise, SthK in combination with bPAC or the

BeCyclOp PACs are able to hyperpolarize cholinergic neurons in

C. elegans. However, they also affect the physiology, most probably

the resting potential of the neurons.

F IGURE 5 Establishment of the SthK channel and bPAC as a two-component optogenetic system for the manipulation of K+ currents in
BWM cells. (a) Fluorescence micrograph (right) and DIC brightfield image (left) of the head of an animal expressing SthK-mCherry in BWM cells
(anterior is up). Scale bar, 50 μm. (b) Swimming behaviour of animals expressing either SthK alone or co-expressing SthK and bPAC, as well as the

genetic background lite-1(ce314). Swimming cycles (±SEM) were calculated 30 s before, and 30 s during light stimulation (0.2 mW�mm�2;
470 nm). (c) Body length measurements (±SEM) of animals expressing either SthK alone or co-expressing SthK and bPAC before and after a 2-s
light pulse (0.9 mW�mm�2; 470 nm). Onset-time constant was determined by fitting as mono-exponential growth (dotted line). (d) Mean
normalized body lengths before (0–5 s), during (5–7 s), and after (7–9 s) illumination. In (b) and (d), the interquartile range (IQR), median ( ), mean
values (●), individual measurements (�), and whiskers (1.5 * IQR) are shown. n = number of animals. The blue bar indicates the period of
illumination. *P < 0.05, significantly different as indicated; one-way ANOVA and Student's t test (b) and one-way ANOVA with Bonferroni
correction (d)
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4 | DISCUSSION

In this study, we present a comprehensive optogenetic toolbox for

cGMP and cAMP manipulation in excitable cells of C. elegans, as well

as a combination with depolarizing and K+-specific hyperpolarizing

CNG channels for two-component optogenetics. We analysed the

C. anguillulae CyclOp for its efficiency in optogenetic cGMP produc-

tion and characterized engineered adenylyl cyclases, emerging by

F IGURE 6 Membrane-bound PACs and SthK
as tools for the manipulation of K+ currents. (a)
Swimming behaviour of animals expressing the
SthK channel alone or with wild type BeCyclOp,
BeCyclOp(A-2x), BeCyclOp(A-3x), or CaCyclOp(A-
2x), respectively, in the genetic background lite-1
(ce314). Swimming cycles (±SEM) were calculated
30 s before and 30 s during light application
(1 mW�mm�2; 535 nm). (b) Body lengths (±SEM)

of animals co-expressing SthK and wild type
BeCyclOp, BeCyclOp(A-2x), BeCyclOp(A-3x), or
CaCyclOp(A-2x) before and after a 2-s light pulse
(0.9 mW�mm�2; 535 nm). Onset-time constants
were determined by fitting as mono-exponential
growth (dotted line). (c) Mean normalized body
lengths of the animals shown in (b) after light
stimulation (7–9 s). Shown in (a) and (c) are the
interquartile range (IQR), median ( ), mean values
(●), individual n values (�), and whiskers
(1.5 * IQR). n = number of animals. The green bar
indicates the period of illumination. *P < 0.05,
significantly different as indicated; one-way
ANOVA and Student's t test (a) and one-way
ANOVA with Bonferroni correction (c)
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F IGURE 7 Application of bPAC or mbPACs and the SthK channel for hyperpolarization of cholinergic neurons. (a) Expression of SthK-
mCherry in cholinergic neurons of Caenorhabditis elegans. Scale bar is 50 μm. (b) Swimming behaviour (±SEM) analysis of animals expressing SthK,
bPAC, or co-expressing SthK and bPAC, the genetic background lite-1(ce314) and wild-type animals, 30 s before and 30 s after a 30-s light pulse

(0.4 mW�mm�2; 470 nm). (c) Swimming cycles (±SEM) of animals co-expressing SthK and bPAC 30 s before and 270 s after 30-s light application
(0.4 mW�mm�2; 470 nm). (d,f,g) Swimming frequency (±SEM) of animals co-expressing the SthK channel and BeCyclOp(A-3x) or BeCyclOp(A-2x)
(D) or YFP-BeCyclOp(A-2x) (f,g) in the genetic background lite-1(ce314), 30 s before and during a 30-s light pulse (1.35 mW�mm�2; 535 nm (d),
0.4 mW�mm�2; 470 nm (f,g). Strains were generated using different amounts of plasmid DNA (indicated by ng�μl�1). (e) Swimming behaviour
(±SEM) analysis of animals in (d), 30 s before and 60 s after a 30-s light pulse (1.35 mW�mm�2; 535 nm). In (b), (d), (f), and (g), the interquartile
range (IQR), median ( ), mean values (●), individual measurements (�), and whiskers (1.5 * IQR) are shown. n = number of animals. The green and
blue bars indicate the period of illumination. *P < 0.05, significantly different as indicated; one-way ANOVA and Student's t test (b,d,e) and paired
Student's t test (c)
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F IGURE 8 Evaluation of guanylyl and adenylyl cyclases, as well as depolarizing and hyperpolarizing two-component optogenetic tools
characterized in this paper. (a) Changes in crawling speed triggered by adenylyl cyclases. Data shown are the mean normalized speed (±SEM)
relative to the initial crawling speed of the animal. (b) Scheme of photoactivatable adenylyl cyclases expressed in cholinergic neurons, classified by
the time course of evoked behavioural changes, as a proxy for cAMP generation rate (τ) and efficiency. The efficiency was calculated as follows:
comparison of crawling speed changes, induced by the respective tool (0.2 mW�mm�2; 470 nm), relative to the maximum crawling speed increase.
The best performing tool (BeCyclOp(A-2x)) was arbitrarily set to 100% efficiency. (c) Body length changes evoked by depolarizing and
hyperpolarizing combinations of cyclases and CNG channels, as indicated. Shown is the mean normalized body length (±SEM) relative to the initial
body length of the animal. (d) Scheme of optogenetic depolarizer and hyperpolarizer two-component optogenetic tools, as well as ChR2 and
ACR1 “benchmarks,” expressed in body wall muscle cells, categorized by opening kinetics (τ) and efficiency. The efficiency was estimated as
follows: depolarizer (hyperpolarizer)—comparison of body length reduction (increase), evoked by the respective tool (0.9 mW�mm�2; 470 nm;
535 nm) relative to the maximum body length decrease (elongation); 100% efficiency was arbitrarily set for the best performing optogenetic tools
in such assays, ChR2(L132C, H134R, T159C) and ACR1 (Bergs et al., 2018). (e) Photoactivatable guanylyl cyclases expressed with the TAX-2/-4
CNG channel in body wall muscle, classified by the time course of evoked behavioural changes, as a proxy for cGMP generation rate (τ) and
efficiency. The efficiency was calculated as follows: comparison of body length changes, induced by the respective tool (0.9 mW�mm�2; 470 nm),
relative to the initial body length. The best performing tool (BeCyclOp; see panel c) was arbitrarily set as being 100% efficient. It should be kept in
mind that the relative placement of the proteins in panels (b), (d), and (f) could be altered by changing expression levels and intensity of light
stimulation. Data in this paper provide a guideline on which factors may be altered to fine-tune the activity of the optogenetic tools
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conversion of the guanylyl cyclase domains of BeCyclOp and

CaCyclOp, for light-induced cAMP generation in C. elegans. These

tools were combined with different cNMP-gated channels and

assessed for their potential to activate or silence BWM cells or cholin-

ergic neurons, highlighting different combinations with different rela-

tive expression levels, light saturation properties, levels of activity,

kinetics, and long- or short-lasting effects (Figure 8). Thus, researchers

can choose the appropriate tool for their specific application, for

example, in experiments addressing effects of candidate drugs on a

particular behaviour, affected by cyclic nucleotides or membrane

potential changes, in cells of the nematode, for example, the pharynx

that can serve as a cardiac model (Fischer et al., 2017; Schuler

et al., 2015).

Until now, BeCyclOp was the only mbPGC implemented in

C. elegans (Gao et al., 2015). cGMP generation by BeCyclOp is charac-

terized by a high magnitude reached within a few seconds (Gao

et al., 2015; Scheib et al., 2015). Depending on the cell type in which

the tool is expressed, application could be accompanied by over-

activation of cGMP signalling pathways or by cross-talk to cAMP sig-

nalling or NTP utilizing pathways, for example, due to macroscopic

depletion of GTP or NTPs via interconverting enzymes, thus interfer-

ing with the cellular output or metabolism of the cell. To overcome this

problem, we characterized CaCyclOp, which is less efficient than

BeCyclOp (Gao et al., 2015), for its applicability in C. elegans: CaCyclOp

showed lower light inducible cGMP production, slower cGMP produc-

tion rate, but similarly high substrate specificity, when compared to

BeCyclOp. Thus, CaCyclOp enables fine-tuning of cGMP levels, which

makes it a beneficial optogenetic tool for future studies of cGMP sig-

nalling, comprising mbPGCs for signal transmission. Specific subcellular

targeting would allow studies of cGMP signalling closer to physiologi-

cal conditions, allowing its application in C. elegans research areas such

as sensory signalling and plasticity or regulation of the dauer arrest

(Bargmann & Horvitz, 1991; Birnby et al., 2000; Fielenbach &

Antebi, 2008; Schultheis et al., 2011). Our test system, in combination

with the possibility of studying subcellular cGMP signalling within a liv-

ing organism, would further support the development of mbPGCs and

their application in higher organisms with a need for spatial and tem-

poral control of cGMP levels, not only through subcellular localization

of PDEs (Bock et al., 2020; Houslay, 2010) but also by local photo-

activation, thus allowing new insights into cellular processes such as

cell growth and survival.

Previously, the existing optogenetic tools for cAMP generation in

C. elegans were soluble proteins. These did not mimic the physiologi-

cal conditions under which cAMP is produced by mbACs within

microdomains in close vicinity to the PM (Bock et al., 2020;

Cooper, 2003; Etzl et al., 2018; Ryu et al., 2014; Steuer Costa

et al., 2017; Weissenberger et al., 2011). To generate mbPACs, we

used CyclOps and converted them into ACs by specific mutations.

Amongst the analysed mbPACs, YFP-CyclOps and BeCyclOp(A-2x)

showed the highest amounts of light-triggered cAMP produced over a

long incubation period (15 min), though not reaching the levels pro-

duced by bPAC, and no obvious residual cGMP generation. At shorter

time scales, mbPACs produced considerably less cAMP than bPAC.

Also, they were expressed at lower levels. Nonetheless, the cAMP

production by these tools evoked more potent activation of motor

neurons. Besides the desired enhanced locomotion behaviour, we

observed differences between behavioural changes induced by local

(YFP-CyclOps; BeCyclOp(A-2x)) and cytosolic (bPAC) cAMP signalling

in cholinergic neurons, that is, increased diversity of the behavioural

output (bending angles, body length; for speed, mbPACs were slightly

more effective than bPAC) and a more rapidly decaying response

(swimming and crawling behaviour) for cytosolic cAMP signalling. The

latter could be a hint that PDEs do not access cAMP generated in

the vicinity of the membrane as readily as the cAMP in the cytosol.

Generally, undesired cAMP signalling pathways may be activated by

cytosolic cAMP generation, thus triggering changes in the bending

angles and body length. In contrast, local (membrane proximal)

optogenetic cAMP production may more specifically activate cAMP

dependent neurotransmission, that is, increased mobilization and

priming/docking of synaptic vesicles (SV) and an increased filling of

the SVs with ACh (Steuer Costa et al., 2017) and thus an increase in

locomotion behaviour.

In contrast to CaCyclOp(A-2x), expression of wild type BeCyclOp,

mbPAC variants and bPAC reduced the basal swimming frequency,

which could be due to a common “toxicity” of these proteins, or due

to cNMP production in the dark. Furthermore, expression of

BeCyclOp(A-2x) in cholinergic neurons reduced the basal crawling

speed, and in some cases, expression in muscle cells changed the mor-

phology of the animals. These observations are independent of ATR

addition, thus indicating (some) constitutive cAMP production by this

variant, which was also reported before (Trieu et al., 2017). However,

as expression of bPAC in cholinergic neurons reduced the basal swim-

ming frequency too, and the YFP-CyclOp variants showed the highest

tolerability in these neurons, they constitute the preferred optogenetic

tools and may facilitate studies, for example, in neuropeptidergic sig-

nalling, memory formation, or cell growth. Activation of BeCyclOp(A-

3x) in cholinergic neurons evoked no obvious behavioural changes;

however, a light-dependent increase in cAMP by expression in muscle

cells (co-expressed with TAX-2/-4 or SthK) could be detected. Due to

the generation of low amounts of cAMP, this variant could be of inter-

est for further studies of cAMP signalling (Rost et al., 2017).

Generation of second messengers is accompanied by amplifica-

tion of the primary signal, making combinations of photoactivated

nucleotide cyclases (PNCs) and CNG channels useful tools due to a

reduced need for light. Aiming at multicomponent systems for the

depolarization of excitable cells, we combined the TAX-2/-4 CNG

channel with PNCs. In this context, none of the analysed systems

were able to induce comparably high depolarization effects as the pre-

viously implemented TAX-2/4; BeCyclOp system in regard of the

magnitude (Gao et al., 2015); however, in contrast to this system, no

desensitization was observed for TAX-2/-4 combined with

BeCyclOp(A-2x), CaCyclOp, or bPGC. Yet, these systems require the

expression of three genes (cyclase plus two subunits of the TAX-2/-4

CNGC), making them less versatile than ChR2.

Because no optogenetic silencing tool on the basis of transport

or facilitation of K+ currents in C. elegans exists, we characterized
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two-component optogenetic systems, composed of a cNMP-gated

channel and a PNC, for their potential to hyperpolarize BWM cells

and/or cholinergic neurons. Here, the system composed of the

cGMP-gated BeCNG1 channel and BeCyclOp was able to slightly

hyperpolarize BWM cells. Its potential to hyperpolarize other cell

types still has to be investigated. In case of the system comprising

the cAMP-gated SthK channel, expression of the channel alone

reduced the basal swimming frequency of the animals, independent

of the cell type (muscle or cholinergic motor neurons), indicating

a preactivation of the channel due to intrinsic cAMP. Also,

co-expression with the PACs further reduced the basal swimming

frequency (with the exception of BeCyclOp(A-3x) in BWMs),

emphasizing the high affinity of SthK for cAMP, and a low dark

activity of the PACs. Though the SthK-PAC system achieved strong

and long-lasting hyperpolarizing effects, its applicability is restricted

to cell types not containing intrinsic cAMP. To overcome this prob-

lem, SthK variants with specific mutations in the cAMP binding

pocket might be helpful, to generate a channel with decreased

cAMP affinity, that may then be used to obtain a more controllable

tool for optogenetic silencing.
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