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We investigate the effect of large magnetic fields on the (2 + 1)-dimensional reduced-magnetohydrodynamical
expansion of hot and dense nuclear matter produced in

√
sNN = 200 GeV Au+Au collisions. For the sake of

simplicity, we consider the case where the magnetic field points in the direction perpendicular to the reaction plane.
We also consider this field to be external, with energy density parametrized as a two-dimensional Gaussian. The
width of the Gaussian along the directions orthogonal to the beam axis varies with the centrality of the collision.
The dependence of the magnetic field on proper time (τ ) for the case of zero electrical conductivity of the QGP
is parametrized following Deng et al. [Phys. Rev. C 85, 044907 (2012)], and for finite electrical conductivity
following Tuchin [Phys. Rev. C 88, 024911 (2013)]. We solve the equations of motion of ideal hydrodynamics for
such an external magnetic field. For collisions with nonzero impact parameter we observe considerable changes
in the evolution of the momentum eccentricities of the fireball when comparing the case when the magnetic field
decays in a conducting QGP medium and when no magnetic field is present. The elliptic-flow coefficient v2 of
π− is shown to increase in the presence of an external magnetic field and the increment in v2 is found to depend
on the evolution and the initial magnitude of the magnetic field.

DOI: 10.1103/PhysRevC.96.054909

I. INTRODUCTION

Two positively charged heavy nuclei produce ultraintense
magnetic fields in collider experiments at the Relativistic
Heavy Ion Collider (RHIC) and at the Large Hadron Collider
(LHC), e.g., B ∼ 1018–1019 G for

√
sNN = 200 GeV Au+Au

collisions. The intensity of the magnetic field in the transverse
plane grows approximately linearly with the center-of-mass
energy (

√
sNN) [1–3] (see also recent studies including nonzero

chiral conductivity [4,5]). The corresponding electric field
in the transverse plane also becomes very large since it
is enhanced by a Lorentz factor. Such intense electric and
magnetic fields are believed to have a strong impact on the
dynamics of high-energy heavy-ion collisions. For example, a
strong magnetic field may induce energy loss of fast quarks and
charged leptons via synchrotron radiation [6], or may enhance
dilepton and photon production [7,8]. There are several other
interesting phenomena related to the presence of ultraintense
magnetic fields in heavy-ion collisions. For example, in the
case of an imbalance in the number of left- vs. right-handed
fermions, a charge current is induced in the quark-gluon
plasma (QGP), leading to the separation of electrical charges,
which is known as the chiral magnetic effect (CME) [9]. Within
a (3 + 1)-dimensional anomalous hydrodynamics calculation,
Ref. [10] showed that the CME could be seen in azimuthal
correlations of charged hadrons. Along with the CME, it was
also theoretically predicted that massless fermions with the
same charge but different chirality will be separated, known as
chiral separation effect (CSE). A connection between these
effects and the Berry phase in condensed-matter systems
was pointed out in Refs. [11–16], and some nonlinear chiral

transport phenomena were studied in Refs. [17–20]. Within the
statistical hadron-resonance gas model of Ref. [21], significant
changes of hadron multiplicities were observed in the presence
of a strong magnetic field. Finally, the possibility of a change
in the quark-hadron phase transition line in the QCD phase
diagram under the combined influence of external magnetic
field and local vortices was explored in Ref. [22]; we refer the
reader to the recent reviews [23–27], where more details can
be found.

Relativistic dissipative hydrodynamics has so far been
successfully applied to explain the experimentally measured
flow harmonics in heavy-ion collisions. The success of
hydrodynamics implies that a QGP with small shear-viscosity
to entropy-density ratio is formed in Au+Au collisions at
top RHIC energies within a short time interval ∼0.2–0.6 fm
[28–35]. The system is close to local equilibrium, thus the
initial geometry of the collision has a strong influence on
the final momentum anisotropy. However, the possible effect
of a magnetic field on the hydrodynamical evolution has so
far not been studied extensively, except for some simplified
cases [36,37] and most recently using some approximate
form of the equations of relativistic magnetohydrodynamics
(MHD) [38,39], or employing a (3 + 1)-dimensional par-
tonic cascade Boltzmann approach to multiparton scatterings
(BAMPS) [40].

In a parallel analytical approach, in Refs. [41–43] solutions
of the ideal-MHD equations were found in simplified geome-
tries. More specifically, for Au+Au collisions at

√
sNN =

200 GeV, the electromagnetic field energy was shown to
be comparable to the initial energy density of the QGP in
Ref. [44]. In a recent work [45], it was argued that a magnetic
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field of magnitude eB ∼ m2
π ∼ 1018–1019 G, with mπ the pion

mass, can induce a large azimuthal anisotropy of the produced
particles. In Refs. [46,47] it was also shown that the magnitude
of the shear viscosity extracted from the experimental data is
underestimated when ignoring the magnetic field. On the other
hand, Ref. [38] has found that the elliptic flow is reduced
in the presence of a magnetic field when one considers a
temperature-dependent magnetic susceptibility of the QGP.
Similarly, in Ref. [48] magnetic fields were found to have only
a very small impact on the flow harmonics within the parton
hadron string model.

Here we will study the (2 + 1)-dimensional expansion of
matter with vanishing magnetization in terms of the dynamics
of a perfect fluid [49] in the presence of an external magnetic
field. We refer to this approach as reduced MHD and we note
that this is not a self-consistent solution of the full set of
MHD equations, since we only use a parametrized form for
the evolution of the magnetic field and do not solve Maxwell’s
equations together with the conservation equations of energy
and momentum. For the sake of simplicity, we also assume
that the electrical conductivity is infinite (i.e., the ideal-MHD
limit), since this allows us to eliminate the electric field in favor
of the magnetic field (see below). Contrasting our approach
with the one of Ref. [50], it is useful to remark that they
are quite complementary. In fact, while in Ref. [50] the full
set of ideal-MHD equations was employed, it was solved
only for a comparatively small value of the initial magnetic
field and for a simple ultrarelativistic equation of state (EOS).
Here instead, we employ the reduced-MHD formulation, but
study the impact of varying the initial magnetic field strength,
adopting, furthermore, a realistic EOS.

We should also note that, in principle, one should then
not use a parametrized form for the magnetic-field evolution,
because for a perfectly conducting fluid one can show that the
magnetic field follows the evolution of the entropy density (the
so-called frozen-flux theorem, see Refs. [41,42]). Vice versa,
using some parametrized form of the magnetic field generally
implies that the electric conductivity is finite. Assuming a
perfectly conducting fluid under the influence of an external
magnetic field still represents a reasonable first approximation,
which, however, calls for a future improvement towards a
self-consistent MHD solution, along the lines of the work
carried out in Ref. [50]. We also assume that the magnetic
field only points into the y direction. In Ref. [44] this was
shown to be a good approximation for peripheral collisions. In
a first approximation, we will also neglect the magnetization
of the QGP and the change in the EOS due to the magnetic
field. We then investigate the effect of the magnetic field on
the fluid evolution and the momentum anisotropy of charged
particles on an event-averaged basis. The goal of our study is
to clarify how large the external magnetic field has to be and
how slowly it has to decay in order to make a sizable impact
on the momentum anisotropy of charged particles.

The paper is organized as follows: in Sec. II we discuss
the mathematical formalism employed in our calculations,
while the numerical setup is presented in Sec. III. Our results
are discussed in detail in Sec. IV and a summary is given at
the end in Sec. V. We use natural units h̄ = c = ε0 = μ0 = 1,
where ε0 and μ0 are the electric permittivity and magnetic

permeability in vacuum, respectively, and the electric charge
e := √

4πh̄cα � 0.303, where α � 1/137 is the fine-structure
constant. In these units the quantity eB has dimension
GeV2. Throughout the paper the components of four-tensors
are indicated with greek indices, whereas three-vectors are
denoted as boldface symbols. The metric tensor in flat space
time is gμν = diag (+, − , − , − ,).

II. MAGNETOHYDRODYNAMICS

We consider a system consisting of matter, represented by
a QGP with electric charge, and fields, i.e., electromagnetic
fields, which are created in the collision of heavy ions. The
space-time evolution of the coupled system of QGP and
electromagnetic field is obtained by solving the equations of
motion of MHD, i.e., energy-momentum conservation coupled
to Maxwell’s equations. In order to relate our work to that of
others, we first discuss the MHD equations of nondissipative,
polarized, and magnetized fluids in general [51–53], and then
specialize to the case of a perfectly conducting, nondissipative
fluid.

A. MHD of nondissipative, polarized, and magnetized fluids

The energy-momentum conservation equation reads

∂νT
μν = 0, (1)

with T μν being the total energy-momentum tensor. The latter
can be decomposed into a matter part, T

μν
mat, and a field part,

T
μν

field, such that

T μν = T
μν

mat + T
μν

field, (2)

but this decomposition is not unique. Following Israel [52],
for a nondissipative, polarized, and magnetized fluid we define
(note that our convention for the metric tensor differs from that
of Israel [52] by an overall sign)

T
μν

mat := (ε + p)uμuν − p gμν − 	μuν, (3)

T
μν

field := Fμ
αHαν + 1

4gμνFαβF αβ, (4)

where ε and p are energy density and pressure of the fluid,
respectively, and uμ := γ (1,v) is the four-velocity of the fluid
in an arbitrary frame [in our context we choose the center-
of-momentum (CM) frame of the heavy-ion collision], where
the fluid moves with three-velocity v; γ := (1 − v2)−1/2 is
the Lorentz factor.1 Introducing antisymmetrization of a rank-
two tensor Aμν via the notation A[μν] := 1

2 (Aμν − Aνμ), the
auxiliary vector 	μ in Eq. (3) is defined as [52]

	μ := 2uλF
[μ

νM
λ]ν, (5)

where

Fμν = Eμuν − Eνuμ + εμναβuαBβ (6)

is the Faraday tensor. Here, εμναβ is the completely anti-
symmetric four-tensor, ε0123 = √

det |g| with gμν being the

1Note that hereafter we will indicate spatial three-vectors with a
bold face, i.e., V = �V.
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metric tensor, Eμ := Fμνuν is the electric field and Bμ :=
1
2εμναβuνFαβ the magnetic induction field, both measured in
a frame comoving with the fluid. Note that by definition Eμ

and Bμ are orthogonal to uμ, i.e., Eμuμ = Bμuμ = 0. Also,
both Eμ and Bμ are spacelike vectors, i.e., 0 > EμEμ and
0 > BμBμ =: −B2.

The in-medium Faraday tensor in Eq. (4) is defined as
Hμν := Fμν − Mμν , where

Mμν = −P μuν + P νuμ + εμναβuαMβ (7)

is the polarization tensor, also appearing in Eq. (5), with the
polarization vector P μ := −Mμνuν and the magnetization
vector Mμ := 1

2εμναβuνMαβ . Note that also P μ and Mμ are
orthogonal to uμ, i.e., P μuμ = Mμuμ = 0, as well as being
spacelike, i.e., 0 > P μPμ, 0 > MμMμ. Hereafter, we will
assume that P μ = χEEμ and Mμ = χBBμ, which is char-
acteristic for matter with a linear response to electromagnetic
fields.

Inserting Eqs. (6) and (7) into Eq. (5) yields

	μ = εμναβuν(MαEβ − PαBβ), (8)

so that in the comoving frame

	0 = 0, and � = P × B − M × E. (9)

Note that neither T
μν

mat nor T
μν

field are by themselves symmet-
ric, but their sum is, T μν = T νμ. To see this, compute their anti-
symmetric parts T

[μν]
mat = −	[μuν] and T

[μν]
field = −F [μ

αHν]α ≡
F [μ

αMν]α and use the identity (see Eq. (6.24) of Ref. [52])

	[μuν] = F [μ
αMν]α, (10)

which can be readily proven using Eqs. (6) and (7), together
with the assumption that the response of the matter to
electromagnetic fields is linear.

A decomposition of the energy-momentum tensor where
each term is symmetric by itself reads [52]

T μν = T μν
sym + T

μν
free field, (11)

with the symmetric free energy-momentum tensor of the
electromagnetic field

T
μν

free field := Fμ
αFαν + 1

4gμνFαβF αβ, (12)

and the symmetric matter energy-momentum tensor

T μν
sym := T

μν
mat + Fμ

αMνα

= (ε + p)uμuν − pgμν − 	(μuν) + F (μ
αMν)α, (13)

where we used Eq. (10) and introduced a symmetrized rank-
two tensor via the notation A(μν) := 1

2 (Aμν + Aνμ).
Note that the definitions of energy-momentum tensor T

μν
mat

in Refs. [42,55] do not contain the terms proportional to
the auxiliary vector 	μ. This is because for the physical
conditions encountered in relativistic heavy-ion collisions,
both electromagnetic susceptibilities χE and χB , as well as
the ratio of the electromagnetic energy density to fluid energy
density are usually much smaller than unity [44], so that
	μ/(ε + p) ∼ χE,BB2/(ε + p) � 1, and the auxiliary vector
	μ can be neglected as a first approximation.

Maxwell’s equations in matter read

∂μHμν = jν, ∂μF̃ μν = 0, (14)

where jν := ρuν is the electric-charge four-current, with the
net electric charge density ρ, and F̃ μν := 1

2εμναβFαβ is the
dual Faraday tensor. Using these equations, one can show that

∂νT
μν

field = −Fμνjν + 1
2Mαβ∂μFαβ. (15)

Moreover, using the Boltzmann equation, Israel [52] proved
that

∂νT
μν

mat = Fμνjν − 1
2Mαβ∂μFαβ, (16)

so that the sum of both equations indeed gives total energy-
momentum conservation, Eq. (1). This implies that the sym-
metric matter energy-momentum tensor obeys the equation

∂νT
μν

sym = Fμν
(
jν + ∂λM

λ
ν

)
. (17)

B. Ideal MHD

The electric current induced by an electric field is j
μ
ind :=

σEμ, where σ is the electric conductivity. Since for a
perfect conductor, σ → ∞, we have to demand that Eμ → 0,
otherwise the induced current would be infinite. This simplifies
the equations of motion of MHD considerably, because in this
case also P μ = χEEμ → 0, which eliminates the auxiliary
vector 	μ in Eq. (5) from the discussion. The matter energy-
momentum tensor becomes that of a nondissipative fluid in the
absence of fields,

T
μν

mat → (ε + p)uμuν − p gμν, (18)

while the symmetric matter energy-momentum tensor assumes
the form given in Eq. (4) of Ref. [55],

T μν
sym → (ε + p)uμuν − pgμν + F (μ

αMν)α. (19)

For a linear response of matter to the magnetic induction field,
Mμ = χBBμ, the total energy-momentum tensor can then be
brought into the form2 [42,54–56]

T μν = (ε + p − MB + B2)uμuν

− (
p − MB + 1

2B2
)
gμν + (MB − B2)bμbν

= [ε + p + B2(1 − χB)]uμuν

− [
p + 1

2B2(1 − 2χB)
]
gμν + B2(1 − χB)bμbν,

(20)

where M = √−MμMμ and bμ = Bμ/B. Note that because of
Eμ = 0, the electric field Ē in the CM frame can be eliminated
in favor of the magnetic induction field B̄ in the CM frame
via Ē = −v × B̄. This implies B2 = B̄2(1 − v2) + (v · B̄)2.

2Note that this form of the energy-momentum tensor is different
from the one normally used in general-relativistic formulations of
the equations of MHD. In particular, in that notation bμ are the
contravariant components of the magnetic field in the frame comoving
with the fluid; see Appendix A of Ref. [41] for a more detailed
discussion.
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FIG. 1. Schematic diagram of a typical noncentral heavy-ion
collision and the corresponding electromagnetic fields in the reaction
zone.

Note also that the magnetization in the comoving frame is
actually defined as Mμ := χHμ = χBμ/(1 + χ ), where
Hμ = Bμ − Mμ is the magnetic field in the comoving frame
and χ = χB/(1 − χB) is the magnetic susceptibility. If the
latter is very small, then to first order χ � χB , and the magne-
tization can be approximated as Mμ � χBμ + O(χ2). Since
the magnetic susceptibility χ � 1 in the temperature range
applicable for heavy-ion collisions, i.e., χ � 0.05 for eB ∼
0.2 GeV2 [57], we will set M = 0 in the actual calculations.

C. Reduced-MHD evolution

As discussed above, a consistent MHD evolution would
require us to solve Maxwell’s equations (14) simultaneously
with the energy-momentum conservation equation (1). In this
work, we do not attempt this rather formidable task, but restrict
ourselves to the so-called reduced-MHD setup, where the
magnetic field evolution is prescribed from outside and only
the energy-momentum conservation equation is solved.

The evolution of magnetic field considered here follows that
of Ref. [2]. The physical picture is the following: although the
magnetic field produced at the time of collisions is large, it also
decays very quickly due to the high velocity of the spectators.
According to the Maxwell equation ∇ × Ē = −∂t B̄, a time-
varying magnetic field induces an electric field, which, in turn,
will produce an electric current j in the QGP medium, which
depends on the conductivity and the displacement current in
the medium. This induced current will give rise to an induced
magnetic field in the same direction as the original magnetic
field and hence the net magnetic field is expected to decay
more slowly than if the evolution took place in vacuum.

The physical conditions just described above are shown
schematically in Fig. 1. The initial large but time-varying
magnetic field produced mostly due to the spectators is shown
as Bs, whereas the induced magnetic field is shown by red
arrows and denoted as Bind. The induced electric field in the
reaction plane and the corresponding current j are shown by
the red circles. We remark that the calculation of Ref. [2]
assumes a constant electric conductivity, but in our case
the system evolves in space and time, so that the electrical
conductivity of the plasma should not be taken to be constant
but a function of temperature.

At this point, let us briefly comment on the treatment of the
conservation equations in Ref. [38]. A common feature to our
work is that the authors of Ref. [38] also assumed an ideally
conducting fluid, Eμ → 0. There are, however, two important
differences to our work: (i) the magnetization M was assumed
to be nonzero and (ii) the effect of the magnetic field B in
the energy-momentum conservation equation was neglected.
In essence, Ref. [38] just solved the evolution equation (16)
for the matter part of the energy-momentum tensor under the
assumption of a vanishing electric-charge four-current jμ = 0,
but for nonvanishing magnetization M . In this case, using the
relations

Mν = Mbν, Bν = Bbν, bνbν = −1, (21)

such that bν∂μbν = 0, Eq. (16) then reads

∂νT
μν

mat = −M∂μB. (22)

Equation (22) differs by a sign from Eqs. (2) and (3) of
Ref. [38]. However, note that the EOS of state used in the
fluid evolution in Ref. [38] did not include the effect from the
magnetic field. As discussed in Ref. [55], in this case one needs
to replace ε → ε − MB, p → p + MB, such that the right-
hand side of Eq. (22) is replaced by +B∂μM . For a constant
magnetic susceptibility χ , this is then equivalent to Eq. (4) of
Ref. [38]. However, that work used a temperature-dependent
χ , cf. their Eq. (5).

D. (2 + 1)-dimensional geometry

We will assume a Bjorken-scaling expansion in the lon-
gitudinal direction, so that, on account of boost invariance,
we may restrict the discussion to the z = 0 plane, where for
reasons of symmetry uz = 0. In this case, it is advantageous
to use Milne coordinates (τ,x,y,η), where τ := √

t2 − z2,
η := (1/2) ln[(t + z)/(t − z)], and the metric tensor is given
by gμν = diag(1, − 1, − 1, − 1/τ 2). The energy-momentum
conservation equations (1) then take the following form:

∂τ T̃
ττ + ∂x(T̃ ττ ṽx) + ∂y(T̃ ττ ṽy) = −pB + τfBB̃2(bη)2, (23)

∂τ T̃
τx + ∂x(T̃ τxvx) + ∂y(T̃ τxvy) = −∂x[p̃B − fBB̃2bx(bx − bτ vx)] + ∂y[fBB̃2bx(by − bτ vy)], (24)

∂τ T̃
τy + ∂x(T̃ τyvx) + ∂y(T̃ τyvy) = −∂y[p̃B − fBB̃2by(by − bτ vy)] + ∂x[fBB̃2by(bx − bτ vx)], (25)

where we have defined

pB := p − MB + B2

2
, fB := 1 − M

B
, (26)
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as well as T̃ μν := τT μν , p̃B := τpB , B̃2 := τB2, and

ṽx := T xτ

T ττ
= wγ 2vx − fBB2bxbτ

wγ 2 − pB − fBB2(bτ )2
, (27)

ṽy := T yτ

T ττ
= wγ 2vy − fBB2bybτ

wγ 2 − pB − fBB2(bτ )2
, (28)

with w := ε + p + fBB2. Note that, at η = 0, bi − bτ vi =
B̄i/(γB). Note also that, at η = 0, bη = B̄z/(γB), which
vanishes if the magnetic field B̄ has no component in beam
direction.

From Eq. (25) it is clear that a magnetic field along the
y direction decreases the total pressure. However, since what
drives the evolution of the fluid are the pressure gradients,
a constant magnetic field does not lead to a change of the
fluid acceleration. That said, and we will see below, the
spatial distribution of the magnetic field is such that also
pressure gradients are enhanced (reduced) along the x (y)
axis, respectively. Ultimately, this will result in an increase in
the momentum-space anisotropy of the fluid.

The set of equations (23)–(25) is closed by an EOS and we
use the EOS indicated as s95p-PCE165-v0 in Refs. [58,59],
which is constructed from lattice-QCD data at high tempera-
ture and a partially chemically equilibrated hadron resonance
gas at low temperature. From now on we will refer to this as
EOS-LHRG. Note that, for M = 0, neither ε nor p change due
to a nonvanishing magnetization energy density.

III. NUMERICAL SETUP

We solve the conservation equations (23)–(25) for M =
0, i.e., fB ≡ 1, by using an appropriately modified (see
below) version of the publicly available (2 + 1)-dimensional
perfect fluid dynamics code AZHYDRO [60,61], which uses the
multidimensional flux-correcting algorithm SHASTA to solve
the energy-momentum conservation equations.

At each time step the conserved quantities T ττ ,T xτ , and
T yτ are evolved to the next time step using the SHASTA algo-
rithm. In order to find the primitive variables ε,p,vx,vy from
the time-evolved conserved quantities we use the following
algorithm [62]. First we define the quantities

E := T ττ = wγ 2 − pB − B2(bτ )2, (29)

Mx := T τx = wγ 2vx − B2bτbx, (30)

My := T τy = wγ 2vy − B2bτby. (31)

Note that the momentum flow vector M = (Mx,My) is not
always parallel to the fluid velocity vector v = (vx,vy) and thus
we cannot apply the algorithm given in the original AZHYDRO

code to find the new velocity. To counter this problem we next
introduce the new quantities

E ′
:= E + B2(bτ )2 = wγ 2 − pB, (32)

Mx ′
:= Mx + B2bτbx = wγ 2vx, (33)

My ′
:= My + B2bτby = wγ 2vy, (34)

where the new three-vector M′ = (Mx ′
,My ′

) is always
parallel to v. As a result, we can now apply the well-known
technique (given below) of finding primitive variables at each

time step. More specifically, after defining M′
:= |M′ | and

v := |v|, we can write

M′ = (E ′ + pB)v, (35)

ε = E ′ − M′
v − B2

2
, (36)

and use the above expressions to replace ε in p(ε) to finally
obtain

v = M′

E ′ + p(ε)

∣∣∣∣∣
ε=E ′ −M′

v−B2/2

. (37)

For given values of E ′
,M′

, and B2, Eq. (37) can be solved
iteratively for the velocity v, which, once known, allows us to
compute ε from Eq. (36). Finally, the distinct components vx

and vy can be obtained from the collinearity of M′
and v.

A. Initial data

Obviously, in order to solve the system of coupled partial
differential equations (23)–(25) a set of initial conditions
needs to be specified. In particular, at the initial time of the
hydrodynamical evolution, which we choose as τ0 = 0.6 fm,
we set vx = vy = 0, while the initial energy density in the
transverse plane is obtained from the Glauber model via the
following two-component form

ε(x,y,b) = ε0[xhNpart(x,y,b) + (1 − xh)Ncoll(x,y,b)].

(38)

Here, Npart(x,y,b) and Ncoll(x,y,b) are the transverse profiles
of the average number of participants and the average number
of binary collisions, respectively, both calculated within a
Glauber model for a given impact parameter b. The fraction
of hard scattering xh is important to explain the centrality
dependence of the average charged hadron multiplicity. Since
we will not compare our result to experimental data, we take
xh = 0.25 in all cases considered.

B. Magnetic-field evolution

In a fully consistent solution of the MHD equations with
appropriate boundary conditions the induction equation would
provide the evolution of the magnetic field as a result of the
dynamics of the magnetized flow. However, as mentioned in
Sec. I, we here employ a reduced set of MHD equations, and
the evolution of the external magnetic field is taken to follow
some suitably defined function in space and time. Inspired by
a previous study [44], we use the following parametrized form
in space and time for the y component of the magnetic field

eB̄y(x,y,τ )

m2
π

= f (τ ) exp

[
− (x − x0)2

4σ 2
x

− (y − y0)2

4σ 2
y

]
. (39)

In all cases considered we center the Gaussian in Eq. (39) at
x0 = y0 = 0 and use σx, σy to set the widths of the Gaussian
in x and y direction, respectively. For an impact parameter
b = 0, we use σx = σy = 3.5 fm, while for b = 10 fm, we set
σx = 1.5 fm and σy = 2.2 fm. The corresponding magnetic
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(a) (b) (c)

FIG. 2. Evolution of eB̄y , normalized to the pion mass squared at x = y = 0. (a) Evolution of eB̄y in vacuum, for b = 0 fm collisions (red
circles and line), and for b = 10 fm collisions (blue triangles and line). The values corresponding to symbols are taken from Ref. [1], the lines
are fits, respectively. (b) Evolution of eB̄y in medium with a finite conductivity for b = 10 fm collisions, red open circles are from Ref. [2], the
black solid line is a fit. (c) The same as middle panel, but for various values of the fit parameters.

energy densities at τ = 0 are shown in Fig. 3 for the cases of
b = 0 (left panel) and b = 10 fm (right panel).

The evolution of the magnetic field in the QGP is not
well known. In vacuum, the decay time of the magnetic field
is inversely proportional to the

√
sNN of the collision [1].

However, several studies have shown that the QGP possesses
a nonzero temperature-dependent electrical conductivity
[63–65]. In this case, the decay of the magnetic field can be
substantially delayed [5,46].

In view of these considerations and uncertainties, we
here employ a function of proper time only, i.e., f (τ ) in
Eq. (39), as a fully phenomenological ansatz for a reasonable
parametrization of the evolution of the magnetic field B̄y ,
distinguishing the case in which the field is in vacuum from
when it is in a QGP.

(i) In vacuum we parametrize the evolution of the mag-
netic field as in Ref. [1], so that for b = 0 fm collisions

f (τ ) = 1

a1 + b1τ
, (40)

and for b = 10 fm collisions

f (τ ) = a2e
b2/(τ+c2). (41)

Adjusting the constants in these parametrizations to the
data given in Ref. [1], we obtain a1 = 78.2658, b1 =
79.5457 fm−1, a2 = 1.357 × 10−4, b2 = 3.1031 fm,
and c2 = 0.2483 fm. The data are shown by the
symbols in Fig. 2(a), while our parametrizations (40)
and (41) are given by the lines in that figure. From now
on we denote these parametrizations as Parvac, since
they are valid in vacuum.

(ii) In a QGP with nonzero electrical conductivity we
parametrize the evolution of the magnetic field as in
Ref. [2] [see Fig. 3 of Ref. [2]]

f (τ ) = Maa3e
b3/(Mτ τ+c3). (42)

We denote this parametrization as Parmed. Data from
Ref. [2] are shown in Fig. 2(b). We fit these data
setting Ma = Mτ = 1 and adjusting the constants,
giving a3 = 1.99 × 10−3, b3 = 8.1306 fm, and c3 =
1.2420 fm. We note that at late times, i.e., for τ � 5 fm,
the fit (black line) overestimates the corresponding data
points (open red circles), but also that the magnetic field
at this time is already two orders of magnitude smaller
than its initial value, so that this mismatch is likely not
dynamically important.

FIG. 3. Magnetic-field energy density in the transverse plane at τ = 0 fm. (a) refers to collisions with b = 0 fm, while (b) to collisions
with b = 10 fm.
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FIG. 4. Evolution of the momentum anisotropy εp for b = 10 fm
collisions when the magnetic field is taken to be zero (solid red line)
or to follow the Parvac parametrization (dashed blue line).

As an extension of the space of parameters we have
also studied variations of the parametrization (42) by
changing the constants Ma and Mτ . Since varying Ma

changes the value of B̄y at τ = 0, we have considered
Ma = 1,5, and 10, which corresponds to eB̄y/m2

π ∼
1,5, and 10 at τ = 0, respectively. Furthermore, the
decay rate has been varied by using different values of
Mτ and for each value of Ma we use three different
values, namely, Mτ = 1,1/2, and 1/3.

IV. RESULTS

In order to measure the effect of a strong magnetic field we
investigate the evolution of the momentum anisotropy of the
fluid flow in Au+Au collisions and defined as

εp(τ ) := 〈T xx − T yy〉
〈T xx + T yy〉 , (43)

where 〈· · · 〉 denotes the energy-density weighted average
over the transverse plane at proper time τ , i.e., for a

generic component

〈T ij (τ )〉 :=
∫

dx dy ε(x,y,τ ) T ij (x,y,τ )∫
dx dy ε(x,y,τ )

. (44)

The momentum anisotropy is a particularly interesting
quantity to study since an azimuthally asymmetric energy-
density distribution in the transverse plane in noncentral
collisions is expected to give rise to stronger pressure gradients
along the x direction than along the y direction, at least in our
geometrical setup. In turn, since pressure gradients drive the
fluid flow, a momentum anisotropy of this type is directly
related to a higher flow velocity along the x direction than
along the y direction. In Ref. [60] it was shown that εp at freeze
out is directly related to the transverse-momentum squared
(p2

T ) weighted elliptic flow of pions. Thus, any change in εp

also indicates a possible change in the elliptic flow of hadrons
and the following results corroborate this expectation.

As an initial test of the numerical infrastructure we have
considered the simplified but also physically less interesting
case of central collisions, i.e., b = 0. In this case, the
symmetry of the system yields εp = 0 at all times in a purely
hydrodynamical flow. Actually, this result applies also in
the presence of a magnetic field, since the magnetic-field
contribution in the x direction is expected to be the same
as the one in the y direction, at least when b = 0. However,
our numerical setup, in which only B̄y is switched on, does not
allow us to validate this behavior, but we have verified that the
growth of εp is nevertheless extremely small, being εp � 10−6

for a Parvac parametrization and εp � 2 × 10−3 for a Parmed
parametrization with Ma = 5.

On the other hand, for peripheral collisions one expects an
anisotropy to develop already from the underlying asymmetric
hydrodynamical flow. This anisotropy can then be further
amplified if a magnetic field is present. Figure 4 shows
the growth of such anisotropy by reporting the evolution of
εp for a collision with b = 10 fm. Shown with a solid red
line is the purely hydrodynamical evolution (i.e., with zero
magnetic field), while the dashed blue line refers to the Parvac
parametrization. Clearly the two curves are very similar and
this is essentially because with the parametrization (41) the
magnetic field is effectively very small, eB̄y/m2

π � 10−2 [cf.
Fig. 2(a)].

(a) (b) (c)

FIG. 5. Evolution of the momentum anisotropy for b = 10 fm collisions for the Parmed case. (a) The solid red line corresponds to the
result for zero magnetic field, the dashed blue, dash-dotted magenta, and dotted black lines correspond to results with external magnetic field
for Mτ = 1,1/2, and 1/3, respectively; in all cases Ma = 1. (b) The same as in (a), but for Ma = 5. (c) The same as in (a), but for Ma = 10.
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(a) (b) (c)

FIG. 6. The elliptic-flow coefficient v2 for π− as a function of transverse momentum pT for b = 10 fm collisions. (a) The solid red line
corresponds to the result for zero magnetic field, the dashed blue, dash-dotted magenta, and dotted black lines correspond to results for an
external magnetic field with Mτ = 1,1/2, and 1/3, respectively. All results are obtained for Ma = 1. (b) The same as in (a), but for Ma = 5.
(c) The same as in (a), but for Ma = 10.

The evolution of the momentum anisotropy εp for the
case of collisions with b = 10 fm and when the magnetic
field is evolved using the Parmed parametrization is shown
in Fig. 5. More specifically, Fig. 5(a) corresponds to the case
where the initial magnetic-field amplitude is Ma = 1, i.e.,
when the magnetic field at τ = 0 is set to be eB̄y ∼ m2

π . The
solid red line corresponds to the case without magnetic field,
while the dashed blue, dash-dotted magenta, and the dotted
black lines correspond to Mτ = 1,1/2, and 1/3, respectively.
The evolution is shown up to freeze out, that is when the
temperature is nowhere larger than Tf = 130 MeV.

A rapid inspection of Fig. 5(a) reveals that a visible change
in εp is seen only when the magnetic field decays very
slowly, i.e., for Mτ = 1/3 (dotted black line). Under these
conditions one is induced to conclude that the influence of
the magnetic field is very limited and that the momentum
anisotropy remains small, with a relative variation relative
to the purely hydrodynamical case of |1 − εp/εp(B̄y = 0)| �
3 × 10−2. However, because the common expectation is that
the initial magnetic field in b = 10 fm Au+Au collisions can
be substantially larger than m2

π , Fig. 5(b) reports the evolution
of the momentum anisotropy for a larger initial magnetic field,
i.e., Ma = 5 or eB̄y � 5 m2

π at τ = 0. In this case, in fact, even
for the most rapid decay of the magnetic field, i.e., Mτ = 1,
the momentum anisotropy εp is larger when compared to the
case of zero magnetic field; the largest relative difference
in this case is |1 − εp/εp(B̄y = 0)| ∼ 0.8 and is obviously
obtained for Mτ = 1/3. Finally, as can be seen from Fig. 5(c),
a much higher initial value of the magnetic field (i.e., Ma = 10)
increases εp even more, with a relative difference that can now
be |1 − εp/εp(B̄y = 0)| ∼ 3.2 for Mτ = 1/3.

As mentioned earlier, the elliptic-flow coefficient v2 of
charged hadrons is directly proportional to the momentum
anisotropy εp, so that we expect also a noticeable change
of v2 due to the magnetic field. For demonstration purposes,
we show here v2 of π− only.3 Since we are not trying to
match experimental data, the input parameters for simulations

3Note that elliptic-flow coefficient v2 for π+ would be identical,
since any effect of the magnetic field after freeze out is neglected.

are not adjusted to reproduce any experimentally measured
charged-hadron multiplicity. However, we do use realistic
values for the input parameters corresponding to Au+Au
collisions at

√
sNN = 200 GeV. More specifically, at the initial

time τ0 = 0.5 fm and for central collisions (b = 0 fm) we set
the central energy density to be ε = 50 GeV fm−3 and consider
a constant freeze-out temperature of 120 MeV. However,
neither resonance decays nor viscous corrections are taken
into account.

Figure 6 shows the elliptic-flow coefficient v2 of π− as
a function of the transverse momentum pT for noncentral
collisions with b = 10 fm. Different lines refer to the same
set of conditions as in Fig. 5, namely, the solid red line
corresponds to the result for zero magnetic field, the dashed
blue, dash-dotted magenta, and dotted black lines correspond
to results with external magnetic field for Mτ = 1,1/2, and
1/3, respectively. In analogy with what we discussed for the
momentum anisotropy, it is clear from Fig. 6 that changes in
v2 are noticeable only when either the initial magnetic field
is large or when the magnetic field decay is substantially
delayed. For the largest initial value of the magnetic field
considered here, i.e., for eB̄y � 10 m2

π , we notice a consider-
able enhancement of the elliptic-flow coefficient, which can
become as large as v2 � 0.9 for pT ∼ 2.5 GeV [cf. dotted
black line in Fig. 6(c)]. A smaller initial magnetic field, i.e.,
eB̄y � 5 m2

π , leads to a smaller increase of the elliptic-flow
coefficient, which however remains rather large, with v2 � 0.7
for pT ∼ 2.5 GeV [cf. dotted black line in Fig. 6(b)], thus
highlighting that quite realistic values of the magnetic field
can have a considerable impact on the ellipticity of the flow
of particles. Overall, these results and their implications for
the understanding of the physics of ultrarelativistic heavy-ion
collisions clearly call for the extension of this study towards
a fully self-consistent MHD treatment of the evolution of hot
and dense strongly interacting matter created in heavy-ion
collisions, following the spirit of the work in Ref. [50].

V. CONCLUSIONS

We have investigated the effect of a strong external
magnetic field on the evolution of matter created in

√
sNN =

200 GeV Au+Au collisions within a (2 + 1)-dimensional
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reduced-MHD description. In particular, we have assumed that
the external magnetic field has only a nonvanishing component
transverse to the reaction plane (i.e., it is aligned with the
y direction) and we have employed the space-time variation
suggested in Refs. [1,2]. Overall and on average, we found no
visible changes in the fluid-velocity profile when comparing
the magnetic-field decays in vacuum with the case in which
the magnetic field is actually zero.

On the other hand, a substantial change in the fluid velocity
and, consequently, in the elliptic-flow coefficient v2 of π− is
observed when the magnetic field is sufficiently large, i.e.,
for eB̄y � 5 m2

π , or when a nonzero electrical conductivity
of the QGP is accounted for such that it decays slowly,
i.e., for Mτ � 1/2. Under these conditions, the momentum
anisotropy shows a relative variation relative to the purely
hydrodynamical case of |1 − εp/εp(B̄y = 0)| � 1/2, while
the elliptic-flow coefficient can become as large as v2 ∼ 0.7
for pT ∼ 2.5 GeV (all of the values reported refer to an initial
magnetic field strength eB̄y � 5 m2

π ).
Our results are obtained under some simplifying assump-

tions: (i) We have used an analytic prescription for the
magnetic-field evolution, but the latter should really be the
result of a self-consistent solution of the full set of ideal-MHD
equations [50]. (ii) We have considered event-averaged values
for the initial energy density and the magnetic field, but both of
them fluctuate event to event in reality. Indeed, a previous study
[44] has shown that because of the event-by-event fluctuations
of both the magnetic energy density and of the fluid energy
density, in some cases the ratio of these two quantities can
be ∼1. In such cases, the magnetic field will have a larger
effect than considered here. (iii) We have neglected the x
component of the magnetic field as we expect that B̄x � B̄y

in the present geometrical setup. Although this is a good
approximation for peripheral collisions, in central collisions
B̄x is of the same order as B̄y and one needs to consider
both. (iv) We have considered a decay of the magnetic field
pertaining to a constant electrical conductivity [2]. However,
one should use the appropriate temperature-dependent electri-

cal conductivity of the QGP. (v) We have considered the case
of vanishing magnetization, but, depending on the magnetic
properties of the QGP and the hadronic phase, a nonzero
magnetization of the medium needs to be accounted for in
the full energy-momentum tensor, as some recent preliminary
studies show that this could also affect the QGP evolution
[38,42]. (vi) We have considered here only perfect fluids
[49], but it is important to take into account also dissipative
corrections to the fluid evolution. Nonzero magnetic fields
will have an impact on the value of the shear viscosity-to-
entropy density ratio ηsh/s extracted from a comparison to
experimental data, as was also speculated in some previous
studies [45,46].

Overall, we regard the present study as being of exploratory
nature. In addition to the considerations made above and
together with a systematic exploration of the input parameters,
our work will need to be extended in a number of ways. These
include: the study of the corrections to the final particle spectra
due to the magnetic field at and after freeze out; the study of
several other experimental observables, e.g., charge-dependent
azimuthal correlations and soft-photon production [66–69]; as
well as the investigation of smaller collision energies, where
the decay of the magnetic field is slower and thus its impact
on the fluid evolution is expected to be more pronounced.
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