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Prof. Dr. Marcus Bleicher

Datum der Disputation: 19.07.2021



Contents

Zusammenfassung iii

I Introduction 1
I.1 Symmetries in fundamental physics . . . . . . . . . . . . . . . 6

II Hadron yields and fluctuations in heavy ion colli-

sions: thermal and transport model calculations 13
II.1 Canonical Ensemble Hadron Resonance Gas . . . . . . . . . . 14

II.2 Hadron yields in the UrQMD model . . . . . . . . . . . . . . . 18

II.3 Comparison with the experimental data . . . . . . . . . . . . . 23

III Modeling the hadronic phase of heavy ion colli-

sions by an expanding hadron gas 29
III.1 Hadronic phase in heavy ion collisions . . . . . . . . . . . . . . 30

III.2 Partial chemical equilibrium in Hadron Resonance Gas . . . . 31

III.3 Kinetic freeze-out temperature from yields of short-lived resonances 34

IV Repulsive interactions between baryons in a hadron

gas 43
IV.1 Classical excluded-volume model . . . . . . . . . . . . . . . . . 44

IV.2 Beth-Uhlenbeck approach . . . . . . . . . . . . . . . . . . . . . 46

IV.3 Estimating the hadron repulsion from the lattice QCD data . . 54

V A unified approach for QCD matter: Chiral Mean

Field model 59
V.1 Chiral Mean Field model . . . . . . . . . . . . . . . . . . . . . 60



ii CONTENTS

V.2 Constraining the CMF model to the lattice data . . . . . . . . 66

V.3 The CMF model phase diagram . . . . . . . . . . . . . . . . . 69

V.4 Taylor expansion at large densities and the role of HRG particle

list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

V.5 Application to heavy-ion collisions . . . . . . . . . . . . . . . . 76

V.6 Application to neutron stars . . . . . . . . . . . . . . . . . . . 82

VI Repulsive properties of hadrons in lattice QCD

data and neutron stars 89
VI.1 Lattice data comparison . . . . . . . . . . . . . . . . . . . . . 90

VI.2 Consequences of the modified excluded volumes . . . . . . . . 94

VII Summary and Outlook 107

Bibliography 111

Acknowledgments 133

Curriculum Vitae 134



Zusammenfassung
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Phys. Rev. C 101, no.3, 034904 (2020) [5]
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• A. Motornenko, J. Steinheimer, V. Vovchenko, S. Schramm and H. Stoecker,

“QCD equation of state at vanishing and high baryon density: Chiral Mean

Field model,” Nucl. Phys. A 1005, 121836 (2021) [8]

• A. Motornenko, S. Pal, A. Bhattacharyya, J. Steinheimer and H. Stoecker,

“Repulsive properties of hadrons in lattice QCD data and neutron stars,”

[arXiv:2009.10848 [hep-ph]] [9]

Die Eigenschaften von stark wechselwirkender Materie und die Zustände, in

denen sie auftreten kann, sind ein schwer fassbares Problem der modernen Quanten-

physik. Die Quanten-Chromo-Dynamik (QCD), die fundamentale Quantentheorie

der starken Wechselwirkung, gehört zu den am besten etablierten Theorien. Die

Theorie der QCD ist nicht nur notwendig, um die Stabilität von Atomkernen

zu beschreiben, sondern sie ist auch für die Entstehung von etwa 99% der sicht-

baren Masse im Universum verantwortlich (der Higgs-Mechanismus ist nur für das

restliche 1% verantwortlich). Aufgrund der Komplexität der Wechselwirkungen

in der Theorie sind direkte Berechnungen grundsätzlich nicht möglich. Daher ist

die Verwendung von phänomenologischen Modellen zur Beschreibung von QCD-

Materie in der wissenschaftlichen Gemeinschaft gut akzeptiert. Die sich daraus

ergebende QCD-Phänomenologie deutet auf ein ziemlich reichhaltiges Phasendia-

gramm der QCD-Materie bei hohen Temperaturen und Dichten mit der möglichen

Existenz extremer Materiezustände an, jedoch wurde noch kein wirklicher Konsen-

sus über die Struktur des Phasendiagramms erreicht. Weltweit werden erhebliche

Anstrengungen zur experimentellen Untersuchung des QCD-Phasendiagramms mit

Hilfe von Hochenergie-Atomkern-Experimenten an Collider-Anlagen unternom-

men. Die Vorhersage eines Phasenübergangs zu einem neuen Zustand der Materie,

der mit dem Bruch fundamentaler Symmetrien verbunden ist, weckt großes wis-

senschaftliches Interesse. Nach der Entdeckung der kosmischen Kollisionen zweier

Neutronensterne, der dichtesten bekannten Objekte, deren Gravitationskollaps

nur durch die Wechselwirkungen von Elementarteilchen verhindert wird, wurde

vorgeschlagen, die von einem solchen Ereignis emittierten Gravitationswellen zu

nutzen, um die Eigenschaften von QCD-Materie zu untersuchen.

Diese Doktorarbeit befasst sich mit der Phänomenologie der QCD-Materie,

ihren Aspekten bei Schwerionenkollisionen und in Neutronensternen. Die erste

Hälfte der Arbeit, die aus den Kapiteln II, III und IV besteht, konzentriert sich

auf die hadronische Phase der QCD-Materie. Ein Schwerpunkt liegt darauf, wie
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sich die hadronische Phase bei Schwerionenkollisionen zeigt und wie ihre Dynamik

simuliert werden kann.

Verschiedene Phasen von QCD-Materie, die bei Schwerionenkollisionen erzeugt

werden, können nicht direkt nachgewiesen werden, da die Materie die experi-

mentellen Detektoren nur in der hadronischen Phase erreicht. Es wird angenom-

men, dass sich das Auftreten des Übergangs zu einer anderen Phase in den

Eigenschaften der gemessenen Hadronenzhlen widerspiegelt. Die gemessenen Fluk-

tuationen der Hadronenzahl und einige spezielle Kombinationen von Hadronenmul-

tiplizität, wie das Verhältnis K+/π+, werden als die bekanntesten angesehen. Diese

Observablen reagieren jedoch auch empfindlich auf dynamische Effekte der Kolli-

sion, wie die Kollisionsgeometrie und die begrenzte Akzeptanz des experimentellen

Detektors. In Kapitel II dieser Arbeit wurden mikroskopische Transportmodellsim-

ulationen für SPS-Energien durchgeführt und mit thermischen Modellvorhersagen

verglichen, um einen Referenzwert für das Verhältnis K+/π+ und die Fluktuatio-

nen der Partikelmultiplizität zu erfahren. Das UrQMD-Transportmodell und das

Hadron Resonance Gas (HRG) -Modell wurden verwendet, daher waren die betra-

chteten Szenarien a priori ohne Übergang zu einer anderen Phase der QCD. Um

den experimentellen Versuchsaufbau zu imitieren, wurden die Zentralitätsauswahl

und die Detektorakzeptanz der NA61/SHINE-Kollaboration in den Simulatio-

nen reproduziert. Ein Vergleich mit verfügbaren experimentellen Daten wurde

durchgeführt. Es wird vorgeschlagen, ein Zentralitätsauswahlverfahren in p+p-

Reaktionen zu implementieren, um die dynamischen Eigenschaften der Kollisionen

zu verdeutlichen.

Statistische Modelle mit nur wenigen thermodynamischen Parametern liefern

eine überraschend gute Beschreibung der Hadron Multiplizitäten aus dem System

mit komplizierten Nichtgleichgewichts-Dynamiken und Wechselwirkungen. Die

thermische Modellanalyse ermöglicht die Abbildung des chemischen Ausfrierens

von Schwerionenkollisionen auf das QCD-Phasendiagramm. Das chemische Aus-

frieren des Systems, der Moment, in dem die chemische Zusammensetzung des

Systems festgelegt wird, ist jedoch nicht die letzte Etappe seiner Entwicklung.

Das System dehnt sich weiter aus und kühlt ab, bis das sogenannte kinetis-

che Ausfrieren auftritt. Ab diesem Punkt kann das kinetische Gleichgewicht

nicht mehr aufrechterhalten werden. Die Temperatur des kinetischen Ausfrierens

wird häufig durch Fits an die pT -Spektren stabiler Hadronen extrahiert. Dieses

Verfahren hängt von den Annahmen bezüglich des Strömungsgeschwindigkeit-
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sprofils und der Ausfrierhypersurfläche ab. In Kapitel III dieser Arbeit wird eine

Methode zur Bestimmung der kinetischen Ausfriertemperatur bei Schwerionenkol-

lisionen aus der gemessenen Multiplizität kurzlebiger Resonanzen vorgestellt. Die

Methode basiert auf einer Beschreibung von Schwerionenkollisionen durch ein

sich isentropisch ausdehnen Hadron-Resonanz-Gas im partiellen chemischen Gle-

ichgewicht. Die Expansion wird zwischen dem chemischen und dem kinetischen

Ausfrieren modelliert; in dieser Phase werden die Multiplizität vieler kurzlebiger

Resonanzen unterdrückt. Die Werte von Tkin und Tch werden für verschiedene

Zentralitäten in Pb-Pb-Kollisionen bei
√
s
NN

= 2.76 TeV durch Anpassung von

vielen sowohl stabiler Hadronen als auch kurzlebiger Resonanzen wie ρ0 und

K∗0, die durch die ALICE Kollaboration bestimmt wurden. Dieses Verfahren

ermöglicht es, die kinetische Ausfriertemperatur aus den gemessenen Hadronen-

und Resonanzmultiplizität zu extrahieren, unabhängig von Annahmen über das

Strömungsgeschwindigkeitsprofil und die Ausfrierhyperfläche.

Nachdem die dynamischen Aspekte von Schwerionenkollisionen und die bei

diesen Kollisionen verfügbaren Temperaturen abgeschätzt wurden, können die

Eigenschaften der QCD-Materie diskutiert werden. In Kapitel IV wird die Rolle der

Baryonenwechselwirkungen im Hadronenresonanzgas untersucht. Dies geschieht

durch Anwendung des Beth-Uhlenbeck-Formalismus (BU) für repulsive Hardcore-

Wechselwirkungen zwischen Baryonen. Der BU-Ansatz wird auch mit dem klas-

sischen, excluded Volume modell (EV-Modell) ”à la van der Waals” verglichen,

bei dem Quanteneffekte vernachlässigt werden. Der zweite Virialkoeffizient a2

- der excluded Volume Parameter, der im Rahmen des BU-Ansatzes berechnet

wird, ist temperaturabhängig und unterscheidet sich drastisch vom klassischen

EV-Modellergebnis. Bei Temperaturen von T = 100− 200 MeV unterschätzt das

weit verbreitete klassische EV-Modell den EV-Parameter für Nukleonen bei einem

bestimmten Wert des Nukleonen-Kernradius um Faktoren von 3-4. Die im Rahmen

des BU-Ansatzes berechneten Werte von a2 stimmen mit den Werten von a2, die

aus experimentell gemessenen Nukleonenphasenverschiebungen berechnet wurden,

überein. Diese Ergebnisse weisen darauf hin, dass die vorherige Studien, in denen

die Kernradien von Hadronen als Eingabe für das klassische EV-Modell verwendet

wurden, unter Verwendung der entsprechend umskalierten EV-Parameter neu

bewertet werden müssen.

Der zweite Teil dieser Arbeit besteht aus den Kapiteln V und VI. Hier wird ein

einheitlicher Ansatz für die QCD-Materie das CMF-Modell vorgestellt. Das CMF-
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Modell umfasst viele Aspekte der QCD-Phänomenologie zusammen mit der zuvor

diskutierten HRG-Beschreibung und den EV-Wechselwirkungen und ermöglicht

eine einheitliche Beschreibung des Hadron-Quark-Übergangs, wodurch es für das

gesamte QCD-Phasendiagramm anwendbar ist. Kapitel V der Arbeit beschreibt

das CMF-Modell mit allen zugrunde liegenden Gleichungen und Freiheitsgraden

im Detail. Die Parameter des Quarksektors des CMF-Modells wurden angepasst,

um die Gitter-QCD-Daten zu beschreiben. Die Vorhersagen des CMF-Modells

werden mit dem Schwerpunkt auf Fluktuationsmessungen diskutiert, von denen

angenommen wird, dass sie die Phasenstruktur des Modells widerspiegeln. Die

Werte der Netto-Baryonenladungskewness und der Kurtosis werden in der T −
µB -Ebene für isospin-symmetrische Materie dargestellt. Diese Baryonenzahl-

Fluktuationsmessungen zeigen, dass das CMF-Modell die folgenden Übergänge hat:

ein Phasenübergang erster Ordnung, Nuklearer Flüßig-Gas, Wiederherstellung der

chiralen Symmetrie als Phasenübergang erster Ordnung, und ein glattes Crossover

ist mit dem Deconfinement verbunden. Das CMF-Modell wird angewendet, um

stabile Neutronensterne durch Lösen der Tolman-Oppenheimer-Volkoff-Gleichung

zu modellieren. Die CMF-Vorhersagen für die Massen und Radien der NS stimmen

mit den modernen astrophysikalischen Beobachtungen überein. Die berechneten

Werte der NS-Gezeitenverformbarkeiten stimmen gut mit den Werten überein,

die aus der Analyse von Gravitationswellen erhalten wurden, die von binären

Neutronenstern-Verschmelzungen emittiert wurden.

Die verschiedenen Szenarien von Hardcore-Interaktionen im CMF-Modell

werden in Kapitel VI untersucht. Die Werte der Volumenparameter von Hadro-

nen werden durch die verfügbaren Gitter-QCD-Daten für die Suszeptibilitäten

zweiter Ordnung χ11
ij von Baryonen-, Elektro- und Seltsamkeitsladungen, B, Q

und S eingeschränkt. Es wird festgestellt, dass χ11
ij besonders empfindlich auf

die kurzreichweitigen repulsive Wechselwirkungen von Hyperonen reagieren. Die

Verringerung der Hyperonengröße im Vergleich zur Größe der nicht-seltsamen

Baryonen verbessert die Übereinstimmung der CMF-Modellergebnisse mit den

Gitter-QCD-Daten erheblich. Die von der elektrischen Ladung abhängigen Suszep-

tibilitäten sind empfindlich gegenüber dem kurzreichweitigen -Repulsivesvolumen

der Mesonen. Der Vergleich mit Gitter-QCD-Daten deutet darauf hin, dass selt-

same Baryonen, nicht-seltsame Mesonen und seltsame Mesonen deutlich kleinere

Volumen haben als nicht-seltsame Baryonen. Das CMF-Modell mit diesen modi-

fizierten Hadronenvolumen erlaubt eine hauptsächlich hadronische Beschreibung
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der QCD-Suszeptibilitäten wesentlich oberhalb der chiralen pseudokritischen Tem-

peratur. Dieses verbesserte CMF-Modell, das auf den Gitter-QCD-Daten basiert,

wurde verwendet, um die Eigenschaften sowohl der kalten QCD-Materie als auch

der Neutronensternmaterie zu untersuchen. Die Phasenstruktur ist in beiden

Fällen im Wesentlichen unverändert. Die Hyperonen überleben das Deconfine-

ment zu höheren Dichten als nicht-seltsame Hadronen. Die maximale Masse des

Neutronensterns bleibt etwa bei 2.1M�, und das Masse-Radius-Diagramm wird

durch das Auftreten von Hyperonen nur geringfügig verändert und stimmt mit

astrophysikalischen Beobachtungen überein.



I
Introduction

On August 17th, 2017 the first gravitational wave (GW) signal from a binary

neutron star (BNS) merger was recorded by LIGO and VIRGO detectors [10].

This event was the first long-sought gravitational wave signal coming from, at

that time, only theorized neutron star collision. Such type of an event was long

awaited since it allows to study dynamical properties of matter contained in

neutron star interiors. The neutron stars are assumed to be the densest stable

objects in the universe with central core densities reaching several times the

density in nuclear cores n0 ≈ 1045 particles/m3 and their sizes are of the order of

10 km. An additional gravitational and the dynamical compression created by the

merger creates an even more exotic environment where temperatures may reach

up to T ∼ 100 MeV which equals ∼ 1012 ◦C. At such extreme conditions, the

matter properties are described by the theory of strong interactions – Quantum

Chromodynamics (QCD). This detection was fascinating not only because it

revealed the properties of macroscopic matter at extreme conditions, but also

because the conditions were very similar to ones created in collisions of microscopic

particles in the laboratory. It was pointed already in the early ’50s [11, 12], even

before the QCD was created, that similar extreme conditions can be created in

a laboratory by colliding nuclei that have sizes of the order of 1 fm=10−15m.

Since then the idea of performing particle collision experiments to study extreme

types of matter was dominant in high energy physics and allowed to gain a lot

of knowledge on the extremely hot and dense matter before it was detected in

neutron star mergers.
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In the second half of the 20th century the high energy particle collisions allowed

to establish the most precise theory available today – the Standard Model of

particle physics. The theory describes three out of four fundamental interactions,

the electromagnetic, weak, and strong interactions, while the gravitational force

still cannot be unified with the other three interactions. It can be split into two

parts, the Quantum Chromodynamics, and the Quantum Electroweak theory.

The Standard Model allows to classify all elementary particles (quarks, leptons,

gluons, photons, Z- and W- bosons, and the Higgs boson), and to describe their

interactions with exceptional accuracy. Only the quarks and gluons are subjects of

strong interactions, while all of these elementary particles, except gluons, interact

by the electroweak force. The quarks and leptons are fermions due to their half

spin, they form the matter, while the other particles are bosons due to their integer

spin, they mediate interactions among elementary particles. This classification

allows to classify any composite particle which contains two or more elementary

particles. High interest is attributed to hadrons, particles that are composed of

quarks and virtual gluons, the properties of hadrons are described by means of

QCD.

The Standard Model did help to answer many questions regarding the proper-

ties of composite and elementary particles, however, the complex structure of the

theory does not allow to give precise predictions regarding possible macroscopic

states of matter composed by these elementary and composite particles. Within

this thesis, the main interest will be attributed to the different phases of strongly

interacting matter, i.e., matter that is composed of particles that are subjected

to strong interactions, the QCD matter. All features of the QCD theory are

contained in its Lagrangian LQCD:

LQCD =
∑
i,j

ψ̄i

(
iγµ
(
∂µδij −

i

s
gAaµλa,ij

)
−miδij

)
ψj −

1

4
Ga
µνG

µν
a , (I.1)

Ga
µν = ∂µAaν − ∂νAaµ + gfabcAbµAcν , (I.2)

here ψj are quark fields, γµ, are Dirac matrices, g is the strong coupling constant,

λa,ij and fabc are generators and structure constants of the SU(3) group respectively,

mi is the mass of i-th quark. The summation over index i goes over all known

six quarks: up, down, strange, charm, bottom, and top. The Ga
µν is the gauge

invariant gluon field strength tensor and Aaµ is the gluon field. Contrary to the

electroweak theory where there are only two charges – electric and weak, which

can be separated, i.e., each charge can be described within one theory, QCD has
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three conserved charges – three colors (ref, green, and blue) which can not be

separated. Moreover, in QCD the gluons also carry a charge and can interact with

each other by means of gluon exchanges. All in all, six different quark flavors,

three different colors, gluons that can interact with each other, make QCD the

most complicated fundamental theory. However, there is one separate feature

of QCD that makes it outstanding, compared to the electroweak theory – quark

confinement, a phenomenon that quarks and gluons can not be isolated and always

form so-called color-neutral combinations, i.e. color-anticolor or in combinations

of three different colors. Thus, quarks and gluons must always be confined in

a group that forms a hadron. Asymptotic freedom is a feature of confinement

that allows the coupling between quarks to become asymptotically weak at high

energies or densities.

Color super-
conductuvity
Neutron stars
                       

QGP?
Stefan-Boltzmann 
limit

Chiral T
pc

Nuclear
CP

HRG  ..?

?
??

?

?

Figure I.1: Schematic view of the QCD phase diagram in temperature T and

baryon chemical potential µB. At low energy densities the QCD matter is in

a form of a hadron resonance gas, while at high energy densities the matter is

present in a form of QGP. The mechanism behind the transition between the two

phases is not known. The first principle Lattice QCD calculations allow to explore

matter at vanishing baryon density, µB = 0. The heavy ion collisions probe the

matter along the so-called freeze-out curve. The dense and cold QCD matter

forms the cores of neutron stars.

The high number of QCD degrees of freedom hints that the QCD matter may
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have a rich phase diagram [13, 14, 15, 16, 17]. Although the QCD theory is well

established, no direct calculations are possible and its phase structure remains

unclear. The QCD theory suffers from calculation problems: the large coupling

constant disfavors perturbative methods and the numerical sign problem prevents

lattice (LQCD) calculations at finite densities. A big scientific interest is attracted

to the state which is directly related to asymptotic freedom – the Quark-Gluon

Plasma (QGP), where the energy densities are so high that quarks and gluons

become free and form a new state of matter. A sketch of the QCD phase diagram

with the current knowledge of its structure is presented in Fig. I.1.

Experimentally the QCD phase diagram is accessed via heavy ion colli-

sions (HIC) where hundreds of neutrons and protons collide at high energy,

so the kinetic energy is transformed into compression and heat to create a lo-

calized portion of hot QCD matter. The temperature and density of this QCD

matter can be varied through the collision energy. However, there are numerous

obstacles in relating heavy ion collisions to the QCD phase diagram due to the

complicated dynamics that the system experiences due to the collision. After the

violent shock transforms the colliding nuclei into a hot fireball which then cools and

expands hence the temperature and density of created QCD matter varies. The

heavy ion collisions are “recorded” by an experimental detector by measuring and

identifying hadrons that yield from the fireball during its expansion. Surprisingly,

the system with complicated dynamics and interactions can be described with

just a few thermodynamic parameters which can be selected by analyzing the

identified particle yields. This simplified description of heavy ion collisions allows

mapping the latest stages of the collision to the QCD phase diagram via the

so-called thermal fit procedure [18, 19, 20, 21]. Collision energy dependence of

the extracted parameters, like temperature and chemical potential, defines the

chemical freeze-out line [22, 23].

Currently, the state-of-the-art lattice QCD techniques offer the best approach

to QCD matter by solving QCD at discretized space-time lattice. Due to the

infamous sign problem, the LQCD methods are only available at vanishing baryon

chemical potential µB = 0 which corresponds to a state where the number of

baryons is equal to the number of anti-baryons. The LQCD simulations suggest

that the transition from hadronic to QGP matter is a smooth crossover that takes

place in a sizable region of temperatures 150 MeV . T . 200 MeV, Fig. I.2.

Due to the nature of LQCD methods, it is not possible to estimate quark and
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3p/T4

ε/T4

3s/4T3

 0

 4

 8

12

16

130 170 210 250 290 330 370

T [MeV]

HRG

non-int. limit

Tc

Figure I.2: The bands represent LQCD pressure, energy density, and entropy

density as functions of the temperature at µB = 0. The dark lines correspond to

the predictions of the HRG model. The horizontal line at 95π2/60 corresponds to

the Stefan-Boltzmann limit for the energy density of massless 3 flavor quark-gluon

gas. The yellow vertical band illustrates the location of the chiral pseudo-critical

temperature, Tc = (154± 9) MeV. The figure is taken from [24].

hadron contributions separately at each temperature. An analysis of the so-

called chiral condensate suggests a pseudocritical temperature of the transition

Tpc ≈ 154 MeV [25, 26]. Significant interest is attributed to a possible critical

point associated with the transition to QGP, it is conjectured that it is located at

finite values of µB which are out of scope for the LQCD methods. The critical

point scenario assumes that at some finite µB the smooth crossover to QGP state

is replaced by a sharp first order transition, the point where this change occurs is

called the critical point. Numerous phenomenological approaches to QCD favor

this scenario [27, 17], however, these do not catch all aspects of QCD.

The LQCD results for the QCD equation of state at µB = 0, Fig. I.2, reveal

several important phenomenological aspects of the QCD matter. For temperatures

below T . 170 MeV the QCD thermodynamics can be described by the ideal

Hadron Resonance Gas (HRG) model which represents an equilibrated gas of all

known hadrons. This is the simplest approach for QCD matter which can be
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extended to finite values of chemical potentials. This is the HRG model which

is widely used for the discussed before the description of the chemical freeze-out

in heavy ion collisions. However, at some finite densities, the role of interactions

between hadrons becomes prominent. For the higher temperatures T & 300 MeV

the thermodynamic quantities start to approach the Stefan-Boltzmann limit for

non-interacting massless gas of quarks and gluons. However, the details of the

transition between the two regimes remain unknown and phenomenological models

are needed.

Another physical problem that can be used to explore another region of

the QCD phase diagram is to study the properties of neutron stars (NS). The

neutron stars are assumed to consist of neutron-dominated matter with densities

several times of densities available inside of nuclei. With such large densities it

is conjectured that a deconfined quark matter may be contained in NS interiors,

however, no direct confirmation is present yet. The theoretical description of the

NS relies on the knowledge of the QCD equation of state at zero temperature, T=0,

with an imposed condition of charge neutrality. Thus, astrophysical measurements

of neutron star properties can be used to constrain the QCD equation of state at

low temperatures. Recently, with the beginning of gravitational-wave astronomy,

the detection and study of binary neutron star mergers became possible. This

allows to analyze the properties of neutron stars at finite temperatures and to

study new regions of the QCD phase diagram.

I.1 Symmetries in fundamental physics

Symmetries are the main mathematical tool in modern fundamental theoretical

physics [28, 29]. All theories of fundamental interactions are based on symmetry

relations: electroweak theory is based on the SU(2) × U(1) symmetry group,

quantum chromodynamics is based on SU(3) symmetry group, and general rel-

ativity is based on the assumption of local symmetry that the laws of nature

should remain invariant under local changes of space-time coordinates, the famous

equivalence principle. An interpretation of the Stern-Gerlach experiment and

thus the discovery of particles’ spin was possible only after the formulation of the

exchange symmetry in quantum mechanics. The final discovery of particle physics

and the last prediction of the Standard Model – the discovery of the Higgs boson

is also an outcome of symmetries in theory.
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Figure I.3: The role of symmetry in fundamental Physics. Adapted from [29].

However, theory of symmetry didn’t receive much attention in theoretical

physics before the beginning of the 20th century. In 1905 Albert Einstein used

symmetry arguments to formulate Maxwell’s electrodynamics [30] which subse-

quently allowed to establish principles of special relativity. Then in 1918 Emmy

Noether proved that every global continuous symmetry of a physical system has

a corresponding conservation law [31]. The Noether theorem for some theory

L (ψ (x)) of field ψ(x) with action I(ψ) =
∫
d4xL (ψ (x)) is formulated as follows:

ψ(x)→ ψ(x) + αφ(x) : 0 = δI =

∫
d4x∂µ

(
∂L

∂(∂µψ)
φ(x)

)
(I.3)

where φ(x) is a generator of the symmetry. The invariance holds only on the

condition of a conservation law:

∂µj
µ = 0, jµ =

∂L
∂(∂µψ)

φ(x) , (I.4)

this implies that the amount of a conserved quantity within a closed surface cannot

change. A corresponding conserved charge Q is defined as follows:

Q =

∫
d3x0 ,

dQ

dt
= 0 . (I.5)

The Noether theorem formalized a concept of conservation laws in theoretical

physics: a conserved quantity is associated with every global continuous symmetry

of the system. Thus, the energy conservation law is a result of time invariance,

momentum is conserved as a result of translational invariance, and the angular

momentum is conserved due to the rotation invariance.

Hand in hand with conservation laws the principle of gauge symmetry is

used in fundamental physics. The concept of local gauge symmetry allows the
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formulation of physical forces in terms of fields that only can be measured up

to some local gauge, which value does not affect the physical laws. This implies

that the application of some local symmetry transformation doesn’t change the

description of the same physical situation. Historically the gauge symmetry was

first discovered in the classical theory of electromagnetism. The electric field ~E

and magnetic field ~B can be defined through a four-potential Aµ = (φ, ~A):

~E = −∇φ− ∂ ~A

∂t
(I.6)

~B = ∇× ~A . (I.7)

The four-potential Aµ can not be directly measured and can be inferred from

measured values of ~E and ~B up to a constant in A0 → A0 +C and up to a gradient

of some function in ~A→ ~A+∇f . The importance of the invariance of the Maxwell

laws with respect to these gauge transformations was not fully understood until

the significant development of quantum mechanics. In the quantum theory of

electrodynamics, gauge symmetry is a feature of both electromagnetic waves,

photons, and electron waves, electrons. These two symmetries are interrelated and

are a result of U(1) symmetry of the electron wave function. The QED Lagrangian

reads as:

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν , (I.8)

Dµ = ∂µ + ieAµ , (I.9)

Fµν = ∂µAν − ∂νAµ , (I.10)

where ψ is the electron quantum field, and Aµ is the photon quantum field. The

electron field is required to obey U(1) symmetry since only the phase difference of

the wave function is measurable. The electron wave function ψ should be invariant

under the local U(1) gauge transformation:

ψ(x)→ expiqΘ(x) ψ(x) , (I.11)

this is only possible when the photon field Aµ transforms as:

Aµ → Aµ − iq∂µΘ(x) . (I.12)

In the language of the group theory, the electron field is in the fundamental

representation and the photon field is in the adjoint representation of U(1). This
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symmetry then, according to the Noether theorem, is associated with a conserved

electric charge. Moreover, the U(1) symmetry requires the photon to be massless.

After the formulation of QED it was realized that in quantum field theories the

interactions between conserved charges are associated with gauge symmetries.

Then in 1954 the idea of gauge of interactions was generalized mathematically

by Yang and Mills [32] and extended to non-abelian symmetry groups such as

SU(N), however, at these times the theory was set aside. At these times particle

physicists discovered an ever-growing number of hadrons. Such a plethora of

particle species was assumed not to be fundamental. The particles were classified

by charge, nuclear isospin, and strangeness by Gell-Mann and Nishijima [33,

34, 35]. This classification scheme led to the suggestion that the hadrons are

composed of elementary particles – quarks which have three flavors, up, down,

and strange. The discovery of ∆++ and Ω− baryons became a benchmark for

the hadron classification scheme. According to the Gall-Mann–Nishijima formula

these hadrons should consist of three up and three strange quarks, respectively,

which was forbidden by the Pauli principle, since quarks are fermions. This issue

was suggested to resolve by an additional SU(3) color charge attributed to quarks

by Bogoliubov, Struminsky, Tavkhelidze [36], and separately by Greenberg [37],

and by Han-Nambu [38]. With the concept of the color charge the nuclear force

was naturally described as an SU(3) gauge theory which was named Quantum

Chromodynamics. QCD as any non-abelian theory, in contrast to QED which is

abelian, has a different structure of the gauge field strength tensor Ga
µν :

Ga
µν = ∂µAaν − ∂νAaµ + gfabcAbµAcν , (I.13)

where the term gfabcAbµAcν allows the QCD gauge bosons, gluons, to interact

with each other and carry a color charge. In the QED theory, on the other hand,

photons can not interact with each other directly. The self-interaction of the gauge

bosons makes the QCD theory highly complicated since all equations become

non-linear.

Then it was realized that the weak interaction which, for example, describes

weak decay of the neutron, can be unified together with electromagnetism and

described by U(1)×SU(2) gauge theory [40, 41, 42]. However, initially this theory

predicted, besides then photon, three additional massless gauge bosons which

were not observed yet. However, the short-range nature of the weak interactions

suggested that these gauge bosons are massive. The problem was that no explicit
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Figure 1: A prototypical effective ‘Mexican hat’ potential that leads to ‘spontaneous’
symmetry breaking. The vacuum, i.e., the lowest-energy state, is described by a randomly-
chosen point around the bottom of the brim of the hat. In a ‘global’ symmetry, movements
around the bottom of the hat corresponds to a massless spin-zero ‘Nambu-Goldstone’
boson [4,20]. In the case of a local (gauge) symmetry, as was pointed out by Englert and
Brout [5], by Higgs [2] and by Guralnik, Hagen and Kibble [24], this boson combines with
a massless spin-one boson to yield a massive spin-one particle. The Higgs boson [2] is a
massive spin-zero particle corresponding to quantum fluctuations in the radial direction,
oscillating between the centre and the side of the hat.

3 And then there was Higgs

Spontaneous breaking of gauge symmetry was introduced into particle physics in 1964 by
Englert and Brout [5], followed independently by Higgs [2,6], and subsequently by Gural-
nik, Hagen and Kibble [24]. They demonstrated how one could dispose simultaneously of
two unwanted massless bosons, a spinless Nambu-Goldstone boson and a gauge boson of
an exact local symmetry, by combining them into a single massive vector boson in a fully
relativistic theory. The two polarization states of a massless vector boson are combined
with the single degree of freedom of a spin-zero particle to yield the three degrees of
freedom of a massive spin-one particle V with mass:

mV = gV
v√
2
, (3.1)

where gV is the corresponding gauge coupling constant.
Englert and Brout [5] considered explicitly a non-Abelian Yang-Mills theory, assumed

the formation of a vacuum expectation value (vev) of a non-singlet scalar field, and used
a diagrammatic approach to demonstrate mass generation for the gauge field. The first
paper by Higgs [6] demonstrated that gauge symmetry provides a loophole in the ‘no-go’
theorem of Gilbert mentioned above, and his second paper [2] exploited this loophole to
demonstrate mass generation in the Abelian case. The subsequent paper by Guralnik,
Hagen and Kibble [24] referred in its text to the Englert/Brout and Higgs papers, and
also demonstrated mass generation in the Abelian case.

The second paper by Higgs [2] is the only one of the 1964 papers to mention explicitly
[his equation (2b)] the existence of a massive scalar particle associated with the curvature

4

Figure I.4: Symmetry breaking effective ‘Mexican hat’ potential V (φ). The

vacuum, the lowest energy state, is located at a random point around the lowest

value of the potential. Adapted from [39].

mass term Lmass:

Lmass = −m2AaµA
µ
a (I.14)

is possible for a gauge field Aaµ because it violates the SU(N) symmetry under

the gauge transformations:

Aaµ → Aaµ + ∂µα
a + gεabcA

b
µα

c , (I.15)

Lmass → −m2
∣∣Aaµ + ∂µα

a + gεabcA
b
µα

c
∣∣2 6= Lmass . (I.16)

It was suggested by Englert and Brout, and separately Higgs [43, 44] that the

mass of the weak bosons may be generated by a complex scalar field φ with a

non-zero vacuum expectation value 〈ψ〉 = v given that the φ is also invariant

under SU(N):

Lscalar = |Dµφ|2 − λ
(
φ†φ− v2

)2
(I.17)

In this Lagrangian the coupling to the gauge field takes the form:

−g2φ†φAµAν (I.18)

which resembles a mass term with dynamical mass m2 = g2φ†φ which is gauge

invariant. The potential V (φ) =
(
φ†φ− v2

)2
ensures that at the vacuum expecta-

tion value is 〈ψ〉 = v, so the mass of the gauge boson is m2 = g2v2. This is the
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Higgs mechanism of local gauge symmetry breaking which is a particular case of

spontaneous symmetry breaking.

Spontaneous symmetry breaking is a process that appears in systems where

the Lagrangian obeys symmetries but vacuum solutions do no exhibit the same

symmetry. The origin of the symmetry breaking is clearly visible from the shape of

the potential V (φ) as depicted in Fig. I.4. Even though the potential is symmetric,

the lowest energy state is not and thus the system in a vacuum state favors the

state with broken symmetry.

Spontaneous symmetry breaking is a useful tool for constructing effective field

theories. It was used to describe quark interactions before the Higgs mechanism

was proposed and QCD was formulated [46, 47]. In QCD an approximate chiral

and flavor symmetry holds since the masses of up and down quarks can be approxi-

mately assumed negligible as compared to the QCD energy scale. Chiral symmetry

assumes that the QCD Lagrangian is symmetrical under chiral transformations,

transformations between the left and right quarks. This SU(2)L×SU(2)R symme-

try implies that composite quark states, i.e. hadrons, are also chirally symmetrical

which means that hadrons with the same quantum numbers but opposite parity

3

S I(JP ) T/Tc = 0.24 0.76 0.84 0.95 PDG

0
N

1
2
( 1
2

+
) 1159(13) 1192(39) 1169(53) 1104(40) 939

1
2
( 1
2

−
) 1778(52) 1628(104) 1425(94) 1348(83) 1535

∆
3
2
( 3
2

+
) 1459(58) 1521(43) 1449(42) 1377(37) 1232

3
2
( 3
2

−
) 2138(117) 1898(106) 1734(97) 1526(74) 1710

Σ
1( 1

2

+
) 1277(13) 1330(38) 1290(44) 1230(33) 1193

1( 1
2

−
) 1823(35) 1772(91) 1552(65) 1431(51) 1750

−1 Λ
0( 1

2

+
) 1248(12) 1293(39) 1256(54) 1208(26) 1116

0( 1
2

−
) 1899(66) 1676(136) 1411(90) 1286(75) 1405–1670

Σ∗ 1( 3
2

+
) 1526(32) 1588(40) 1536(43) 1455(35) 1385

1( 3
2

−
) 2131(62) 1974(122) 1772(103) 1542(60) 1670–1940

−2
Ξ

1
2
( 1
2

+
) 1355(9) 1401(36) 1359(41) 1310(32) 1318

1
2
( 1
2

−
) 1917(27) 1808(92) 1558(76) 1415(50) 1690–1950

Ξ∗
1
2
( 3
2

+
) 1594(24) 1656(35) 1606(40) 1526(29) 1530

1
2
( 3
2

−
) 2164(42) 2034(95) 1810(77) 1578(48) 1820

−3 Ω
0( 3

2

+
) 1661(21) 1723(32) 1685(37) 1606(43) 1672

0( 3
2

−
) 2193(30) 2092(91) 1863(76) 1576(66) 2250

TABLE II. Groundstate masses m± (in MeV) for baryons with strangeness S in both parity sectors (P = ±) in the confined
phase. Estimates for statistical and systematic uncertainties are included. The final column shows the T = 0 values from the
PDG. Note that in some cases there is more than one candidate.

A few things can be noted. We start at the low-
est temperature. Since the light quarks are somewhat
heavy, the S = 0 states at the lowest temperature are
also heavier than in nature. However, since in our sim-
ulations the s quark has its physical mass, for hyper-
ons this difference is reduced as strangeness decreases.
Negative-parity states are typically about 500-600 MeV
heavier than their partners, both in our simulations and
in the PDG. Some negative-parity states in the PDG
seem anomalously light, such as the Λ(1405), and the sta-
tus of this state is indeed under discussion (see e.g. the
review [31] and references therein). In these cases, Table
II also lists masses from the PDG which are separated
by about 500 MeV and hence are potential candidates
for parity partners, as suggested by our results at the
lowest temperature (we note here that our spectroscopy
methods are not specifically designed for high-precision
spectroscopy in vacuum). As a final remark at the low-
est temperature, we note that the positive-parity masses
satisfy, to high precision, the Gell-Mann–Okubo mass re-
lation [32, 33]

3

4
mΛ +

1

4
mΣ −

1

2
(mN +mΞ) = 0, (3)

for octet baryons and Gell-Mann’s equal spacing rule

mΣ∗ −m∆ = mΞ∗ −mΣ∗ = mΩ −mΞ∗ (4)

for decuplet baryons, also for our choice of quark masses,
but the negative-parity masses do not (as is expected).
We now turn to the discussion of temperature effects,

also presented in Table II and summarised in Figs. 1 and
2, where we show m±(T ) in the various channels, nor-
malised with m+ at the lowest temperature, T0 = 44

1

1.2

1.4

1.6

N(−)
N(+)

Σ(−)
Σ(+)
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T [MeV]

1

1.2

1.4

m
(T
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m

+
(T

0)

Λ(−)
Λ(+)
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Ξ(−)
Ξ(+)

S=0 S=−1

S=−1 S=−2

octet (spin 1/2)

FIG. 1. Temperature dependence of the groundstate
masses, normalised with m+ at the lowest temperature,
m±(T )/m+(T0), in the hadronic phase, for octet baryons.
Positive- (negative-) parity masses are indicated with open
(closed) symbols.

MeV. Several observations can be made. The positive-
parity masses are largely temperature independent. A
slight increase and subsequent drop when approaching
the transition can be seen, but it is not significant within
current errors. A corollary is that the relations (3, 4) are
satisfied throughout the confined phase (within error),
which constrains thermal model-building efforts. The
negative-parity masses on the other hand drop in all
channels in a similar way, and become near-degenerate
with the corresponding positive-parity mass near the

Figure I.5: Restoration of chiral symmtery in QCD at finite temperatures. The

groundstate baryons become degenerate in mass with their parity partners as

temperature rises. Adapted from [45].
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have the same masses. However, no such symmetry is present in vacuum which

means that chiral symmetry is spontaneously broken. The simplest Lagrangian

which contains spontaneously broken chiral symmetry has the following form:

LQCDnf=2 ≈ iψ̄∂µγµψ +
1

2
∂µ~π∂µ~π +

1

2
∂µσ∂µσ−

− gψ̄(σ + i~τ~πγ5)ψ − λ(σ2 + ~π2 − v2)2 , (I.19)

here ~τ are Pauli matrices, generators of SU(2), and ψ = (u, d). Since here not

gauge, but global symmetry is broken, massless Goldstone bosons are not eaten

by the gauge bosons and appear as interaction carriers. These are identified with

pions and σ meson.

Detailed first-principle lattice QCD calculations suggest that the chiral sym-

metry is indeed a feature of QCD. At high temperatures T ≈ mπ the masses of

baryons become degenerate with the masses of baryons with the same quantum

numbers but opposite parity [48, 45]. For example, nucleon becomes degenerate

in mass with its parity partner N∗. Thus, at high energy densities the chiral

symmetry becomes restored.



II
Hadron yields and
fluctuations in heavy ion
collisions: thermal and
transport model
calculations

The phase structure of the QCD matter is studied experimentally by measuring

and analyzing hadron yields from laboratory heavy ion collisions. Only the latest,

hadronic phase, of the fireball evolution created in the collisions reaches the detec-

tors, thus, the full evolution of the system created in the collisions requires major

effort to be reconstructed. However, the appearance of the transition to another

phase is assumed to be reflected in the properties of several hadronic observables.

The fluctuations of the measured hadron number, and special combinations of

hadron yields, like the K+/π+ ratio, are considered to be the most prominent.

However, these observables are also sensitive to the dynamical effects of the colli-

sion, like collision geometry and finite acceptance of the experimental detector. In

this chapter, the microscopic transport model simulations were performed for p+p,

Be+Be, Ar+Sc, and Pb+Pb collisions at the CERN Super Proton Synchrotron

energy range to reveal the system size dependence of hadron production. The

simulations results were compared with the thermal model predictions to evaluate

a correct baseline for K+/π+ ratio and particle multiplicity fluctuations. The

UrQMD transport model and Hadron Resonance Gas (HRG) models were used,
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plab (AGeV/c)

NA49: Pb+Pb − 20 30 40 80 158

NA61: p+p 13 20 31 40 80 158

NA61: Be+Be and Ar+Sc 13 19 30 40 75 150

Table II.1: Collision momenta available at the SPS collider at CERN for the

NA49, and NA61/SHINE collaborations.

so the considered scenarios were a priori without a transition to another phase

of QCD. To mimic the experimental setup, the centrality selection and detector

acceptance of the NA61/SHINE collaboration were reproduced in the simulations.

A comparison with available experimental data was done. To understand a dif-

ference of the event-by-event fluctuations in p+p and heavy ion collisions the

centrality selection procedure in the sample of all inelastic p+p events is proposed

and analyzed within the UrQMD simulations.

This chapter is based on the research performed by the author of this thesis

and published in Ref.[3].

II.1 Canonical Ensemble Hadron Resonance Gas

In the high multiplicity collisions of heavy nuclei, the formation of a statistical

system is expected, this system is usually referenced as a fireball due to the

estimated high temperatures in the interior. At the latest stages of the evolution,

the system is in chemical and thermal equilibrium, so a hadron-resonance gas

(HRG) description is applicable. The application of the HRG model to the hadron

yields allows for a successful description of the chemical freeze-out in p+p and

A+A collisions [49, 50, 51, 52], and references therein. In the case of p+p collisions,

the small size of the system requires exact charge conservation for each microstate

of the statistical system. This leads to the Canonical Ensemble description. Here,

the CE HRG calculations are performed for all systems in order to allow for a

systematic comparison of the hadron production for both small and large systems

within the HRG model. In large systems, i.e., Pb+Pb collisions, the hadron

yields at the SPS energies and higher, most of the CE results converge to the

grand canonical ensemble (GCE) results. That is a result of the thermodynamic

equivalence of the statistical ensembles. The GCE fixes the average values of the

conserved charges, but their changes from one microstate to another are allowed.
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The e-by-e hadron number fluctuations are naturally different in the CE and GCE

in the thermodynamic limit [53].

Here, a non-interacting CE HRG description is used in accord with previ-

ous works [50, 52]. The calculations are performed using a publicly available

Thermal-FIST package [54]. The CE description utilizes the following free param-

eters:

T, V, γS , (II.1)

where T and V are, respectively, the system temperature and volume at the

chemical freeze-out, and γS [55, 56, 57] is the strangeness suppression parameter

that implements the incomplete chemical equilibration of strange hadrons. In

the following the system radius R ≡ [3V/(4π)]1/3 is used instead of volume V for

convenience. Additional constraints on the baryon number B, electric charge Q,

and net strangeness S = 0 are imposed to satisfy the conservation laws given by

the content of the colliding nuclei.

As a first step to describe the system size dependence in a transparent way,

the complete strangeness equilibrium, γS = 1, is assumed and the same value of

temperature T for all colliding systems is considered. The values of T at different

collision energies are taken in the form of the freeze-out curve parameterization

from [22]:

T (µB) = a− b µ2
B − c µ4

B , µB(
√
sNN ) =

d

1 + e
√
sNN

(II.2)

where the parameters a, b, c, d, and e are extracted from fits to the central Pb+Pb

data at the SPS energies as in Ref. [50]. The
√
sNN is the center of mass energy

of the nucleon pair in the colliding systems. With the above assumptions, the

considered systems only differ at the freeze-out by the size R.

The system size at the freeze-out can be calculated by using an approximation

of equal baryon densities ρB in all considered A+A systems, and assuming that

this value of ρB is equal to the value found in the GCE HRG with Eq. (II.2). The

function ρB(
√
sNN ) calculated in this way is shown in Fig. II.1 (a). The radius

then can be calculated as R = [3B/(4πρB)]1/3, where total baryonic number B

equals the number of nucleon participants. The radius of different systems studied

by the NA61/SHINE Collaboration is shown in Fig. II.1 (b). These results may

be modified by the presence of nonzero baryon proper volumes which would lead

to smaller ρB and larger R values [58].
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Figure II.1: The baryon density ρB (a), the radius R (b), and the temperature T

(c) calculated with CE HRG of the fireball at the chemical freeze-out as functions

of the collision energy.

In the GCE, the intensive quantities K+/π+ and ω− are the functions of T

and µB, and are not sensitive to the system volume V . In the CE the global

charge conservation introduces sensitivity to the volume and suppresses the mean

multiplicities of hadrons in small systems. Significant CE suppression effects

happen for hadron yields when the total number of particles and antiparticles of

that corresponding conserved charge is of an order of unity or smaller. This leads,

e.g., to 〈K+〉CE < 〈K+〉GCE at finite values of V because of the exact strangeness

conservation. This difference of the hadron yields in the CE and GCE becomes
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negligible in the thermodynamic limit V →∞. On the other hand, the smaller

CE values of the particle number fluctuations, e.g., ω−CE < ω−GCE
∼= 1, are just

most pronounced in the thermodynamic limit.

Figure II.2: The K+/π+ ratio and the scaled variance ω− of negatively charged

particles calculated with CE HRG along at the fireball freeze-out as functions of

the collision energy.

The CE effects due to the charge conservation can be observed in Fig. II.2, i.e.,

(K+/π+)A+A > (K+/π+)p+p and (ω−)A+A < (ω−)p+p. The K+/π+ ratio increases

and ω− decreases monotonously with the size of colliding systems. Therefore,

the CE suppression is stronger for the particle yields in small systems like p+p,

and for particle number fluctuations in large systems like Pb+Pb, Figs. II.2 (a)

and (b), respectively (see also Ref. [53]). The differences between p+p and A+A

collisions are stronger at the smallest collision energies. These features of the CE

HRG are similar to those observed in the data.

II.1.1 Strangeness suppression and acceptance corrections in HRG

A comprehensive comparison between the CE HRG results and the data re-

quires additional concepts to be incorporated in the model, namely, incomplete

equilibration of strange hadrons and finite acceptance of detectors.

Previous analysis of the experimental hadron yields demonstrated suppression

of strange hadrons as compared to the predictions of the HRG model, which is

interpreted as an incomplete strangeness equilibration. That is usually treated
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by the strangeness suppression factor γS [59, 55, 56, 57] with numerical values

in the range of 0.5 < γS < 1 for the SPS energies. The suppression factor γnS
takes into account the quark content of each hadron by considering the number

n of strange quarks and/or antiquarks in the given hadron. The small values

of γS ∼ 0.5 correspond to p+p at small SPS energies, larger γS ∼ 1 to central

collisions of heavy nuclei, and large SPS energies [60].

By default, the HRG model considers contributions to the hadron multiplicities

from the whole phase space, i.e., the so-called full 4π acceptance. In the lab frame

experiments, as NA61 is, the averaged full 4π particle yields can be measured

by mirroring the yields measured at positive rapidity to the negative rapidity

region. However, that is not applicable for fluctuation studies, and only the

fluctuations of particles at the forward rapidity region are measurable. The

acceptance can be considered by the assumption that the probability of a particle

to be detected governs binomial statistics. This assumption leads to a so-called

binomial acceptance correction to the HRG model, here the scaled variance with

respect to the experimental acceptance can be calculated by simple formula (see,

e.g., [53])

ω− = 1 − q + q ω−4π . (II.3)

In Eq. (II.3), q = 〈N−〉/〈N−〉4π, where 〈N−〉 and 〈N−〉4π are the average N−

values in the accepted region and in the full phase space, respectively, ω− and

(ω−)4π denote the scaled variances of the accepted hadrons and all final hadrons,

respectively. The binomial acceptance is a reasonable approximation in most

cases, but can be violated in some scenarios (see, e.g., Ref. [61]).

II.2 Hadron yields in the UrQMD model

The transport model simulations of heavy ion collisions allow to study the dynamics

of the collisions in great detail, here the UrQMD model [62, 63] will be used as

a well-adopted approach for medium energy heavy ion collisions. The UrQMD

model operates on the hadronic level and directly allows to estimate effects of

finite acceptance, centrality selection, and strangeness suppression.
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II.2.1 Centrality selection in A+A collisions

Before studying the hadron yields in heavy ion collisions, the proper centrality se-

lection should be implemented. For this purpose, the NA61/SHINE Collaboration

uses the Projectile Spectator Detector (PSD) to measure the forward energy EF,

these values then can be used to quantify the centrality of an event. This is the

energy deposited in a small angle of the forward hemisphere where the spectators

are assumed to be located. The calorimeter is not able to identify particles, thus,

not only the projectile spectators contribute to EF. For a proper comparison with

the experimental data, the experimental centrality selection procedures should

be replicated and the detector acceptance should be imposed in the UrQMD

simulations. This is done in Be+Be and Ar+Sc collisions with the acceptance

maps of the PSD and NA61/SHINE detectors [64]. For the Pb+Pb collisions the

zero value of the impact parameter b can be used as a good approximation to 1%

most central collisions (see, e.g., Refs. [65, 66]), and so only the acceptance maps

of the NA61/SHINE detectors are to be imposed.

The selection of an appropriate centrality class is a special task. One has

to select an appropriate sample of events with a sufficient number of events

that correspond to some centrality to minimize the ‘background fluctuations’.

By studying events from one narrow centrality class, only the fluctuations that

originate from strong interactions are expected to contribute to the particle

production, so geometrical fluctuations of the impact parameter b which change

the number of participating nucleons are removed from the event sample. The

centrality classes obtained in the UrQMD simulations with the PSD acceptance

maps are presented in Fig. II.3. Ideally, these distributions should have strong

peaks located at EF = k ·Elab where Elab is the projectile energy and k is an integer

number, so each peak will correspond to k spectators in the event. However, the

distributions are rather smooth since contributions from every single participant

are smeared out by secondary particles that fly into the forward calorimeter.

However, for small systems and/or low energies, the peaks still can be identified

to quantify the contribution from a single participant. For example, in Be+Be at

30A GeV one can observe 7 peaks that are produced by 1-7 spectator nucleons in

the Be+Be collision, see Fig. II.3(a).

The effect of centrality selection on the scaled variance ω− is shown in Fig. II.4.

The values of scaled variance ω− saturate for 1% most central collision events and

increase in the wider samples of collision events. This is, as discussed before, an
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effect due to the large fluctuations of the number of nucleon participants which

has mostly geometrical origin.
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Figure II.3: Numbers of events as a functions of the forward energy EF calculated

in the minimum bias UrQMD simulations for Ar+Sc and Be+Be collisions at

Elab = 30 and 150 AGeV/c. The colored bands correspond to different centrality

classes that are indicated with respective numbers.

The sufficient centrality class to study the particle number fluctuations can be

also selected using a comparison of ω− with the strongly intensive analog of the

scaled variance – Ω[N−, EP] [67]:

Ω[N−, EP] = ω− − (〈N−EP〉 − 〈N−〉 · 〈EP〉)/〈EP〉 , EP = Ebeam − EF . (II.4)

The calculations confirm that Ω[N−, EP] is almost insensitive to the centrality
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Figure II.4: The UrQMD results for the scaled variance ω− (full symbols) and

strongly intensive quantity Ω[N−, EP] (open symbols) as a functions of the cen-

trality for Be+Be (top) and Ar+Sc (bottom) collisions at plab = 30 A GeV/c (left)

and plab = 150 A GeV/c (right).

class, see Fig. II.4. Moreover, the saturation of ω− does occur in the region of

centralities where ω− ∼= Ω[N−, EP].

II.2.2 Centrality selection in p+p collisions

Contrary to A+ A ion collisions, the proton-proton collisions are usually divided

only into two classes: elastic and inelastic, since the number of participants is

always fixed to two, and the geometric fluctuations are hard to interpret. However,

the centrality selection based on forward energy EF can be introduced also to p+p

which may give some intuition about the geometric fluctuations there. Moreover,

it is important in the context of recent observation by the NA61 collaboration

where it was found that multiplicity fluctuations in p+ p are smaller than in most
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central A+ A collisions. In the model of independent sources, particularly in the

wounded nucleon model [68], where A+A collisions are considered as independent

nucleon-nucleon collisions, the scaled variance ω− can be presented as [68]

ω−A+A = ω−N+N +
1

2
〈n−〉N+N ωpart . (II.5)

Here ω−N+N and 〈n−〉N+N are, respectively, the scaled variance and mean multi-

plicities of negatively charged hadrons in nucleon-nucleon collisions, and ωpart is

the scaled variance for the e-by-e fluctuations of the nucleon participants. Under

these assumptions, ω− in any A+A collisions is larger than in p+p collisions,

ω−A+A ≥ ω−p+p. To have ω−A+A
∼= ω−p+p one needs ωpart

∼= 0 which may be possible for

a very rigid centrality selection in A+A collisions. However, Eq. (II.5) is evidently

in contradiction with ω−p+p > ω−Pb+Pb seen in the data of NA61 collaboration. The

experimental data suggests that at the largest SPS collision energies the ω−p+p > 1,

and ω−A+A < 1 for most central heavy ion collisions.

What is the origin of ω−p+p > 1 at large collision energies? One could argue

that the main reason for the large e-by-e fluctuations of hadron multiplicities is

the absence of the ‘centrality selection’ in p+p inelastic reactions.

This problem can be tackled by an introduction of the ‘centrality selection’ for

p+p inelastic reactions within the UrQMD simulations. The centrality samples in

p+p inelastic reactions may be defined by the values of EF the same as in the

A+A collisions. Here a physical interpretation of these different centralities in

p+p reactions is omitted. The Be+Be experimental maps to calculate the energy

deposited in the PSD are used due to the lack of the PSD acceptance maps for

p+p collisions. The UrQMD results for the ‘centrality samples’ in p+p inelastic

reactions are shown in Figs. II.5 (a) and (b). For the p+p inelastic reactions,

there is always a non-vanishing probability that no particle is emitted to the

forward energy calorimeter due to the relatively low particle multiplicity. Among

inelastic p+p collisions at plab = 31 GeV/c and 158 GeV/c there are, respectively,

about 48% and 13% of inelastic collision events with EF = 0. The samples with

EF = 0 are thus considered as the most central p+p inelastic reactions. In future

experimental improvements, a more precise centrality triggering may be possible.

The change in scaled variance ω− in p + p collisions due to the introduced

centrality selection and a comparison with strongly intensive Ω[N−, EP] is shown

in Figs. II.5 (c) and (d). At plab = 158 A GeV/c the value of ω− ∼= 1.15 is obtained

for all inelastic p+p reactions and ω− ∼= 0.76 for 13% most central p+p collisions
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Figure II.5: The numbers of events as functions of the forward energy EF calcu-

lated within UrQMD for inelastic p+p collisions at plab = 30 A GeV/c (a) and

plab = 150 A GeV/c (b). The scaled variance ω− (full symbols) and strongly inten-

sive scaled variance Ω[N−, EP] (open symbols) are presented as functions of the cen-

trality for inelastic p+p collisions at plab = 30 A GeV/c (c) and plab = 150 A GeV/c

(d).

which illustrates a significant lowering of fluctuations in the most central samples.

II.3 Comparison with the experimental data

Here comparisons of the model calculations with the experimental data of NA61/SHINE

Collaboration and older Pb+Pb data of the NA49 Collaboration are presented.

The CE HRG results are depicted in Figs. II.6 there γS = 1 was fixed. The

values of γS almost have no effect on the ω−, since the majority of negative charge
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is carried by non-strange π− mesons. A monotonous decrease of the 4π values of ω−

with the atomic number of colliding nuclei is predicted by the CE HRG which was

presented in Fig. II.2 (b). The results presented in Figs. II.6 (c) and (d) are based

on the binomial acceptance model in Eq. (II.3) where the acceptance parameter

q was estimated from microscopical simulations of the detector acceptance. The

non-monotonous behavior of ω− with A seen in Figs. II.6 (c) and (d) for the

accepted particles appear only because of the smaller values of the acceptance

parameter q in Eq. (II.3) for Pb+Pb collisions (q ∼= 0.06 and q ∼= 0.16 for 30

and 158 AGeV/c, respectively) in comparison to other A+A and p+p reactions

(q ∼= 0.3 and q ∼= 0.4 for 30/31 and 150/158 AGeV/c, respectively).

The value of ω− < 1 are observed for all colliding systems at 30/31 AGeV/c and

for large systems, namely Ar+Sc and Pb+Pb, at the highest available SPS energy,

150/158 A GeV/c. All these data can be qualitatively described by the CE HRG.

However, for the two smallest systems, p+p and Be+Be, at 150/158 A GeV/c the

data correspond to the large values, ω− > 1. In these two cases, the CE HRG

results are in contradiction with the data.

As seen from Figs. II.7 (a) and (b) the UrQMD values of the K+/π+ ratio

are systematically smaller than the experimental ones. In the UrQMD model the

strange hadron production is underestimated because only the two-body hadron

collisions are possible and no partonic degrees of freedom are excited [72]. In the

transport approach which includes the parton degrees of freedom, the strange

hadron production seems to be in agreement with the data [73]. On the other

hand, a monotonic increase of the K+/π+ ratio with the size of colliding nuclei

observed in the data is reproduced by the UrQMD simulations.

The scaled variance ω− is very sensitive to the centrality selection. Figures

II.7 (c) and (d) present a comparison of the UrQMD results with the available

data for ω−. The UrQMD model produces a satisfactory agreement with the ω−

data for Ar+Sc and Pb+Pb central collisions, and for all inelastic p+p collisions.

Only for the Be+Be collisions at 150A GeV/c the model is not able to provide a

description of the data. However, it should be noted that this data point has still

a preliminary status, and additional experimental checks are in progress [74].

For the UrQMD simulations of p+p reactions, we also present the results for

‘most central’ p+p events calculated in the samples with EF = 0. These results

are presented by crosses. The centrality selection performed for p+p reactions

within the UrQMD simulations leads to essentially smaller values of ω−p+p. The
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Figure II.6: The CE HRG results for K+/π+ (a-b) as functions of W ≡ A1 +

A2 which equals to the total number of nucleons in the colliding nuclei. The

calculations are done at for the fireball at the freeze-out stage. The data are

shown by red squares for K+/π+ [69, 70, 71].

suppression of fluctuations in the p+ p collisions due to the centrality selection

suggests a monotonic behavior of fluctuations with the system size.

The UrQMD explains the qualitative trends of the K+/π+ ratio. A comparison

of the UrQMD results with the data on ω− looks well except for only one point –

Be+Be at 150A GeV/c.

Two effects – statistical and dynamical – are identified in the e-by-e fluctuations

of hadron production at the SPS energies. Statistical effects are clearly seen in
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Figure II.7: The data are the same as in Fig. II.6. The UrQMD results are shown

by open circles. See text for details. Crosses denote the UrQMD results for the

most central p+p inelastic collisions.

both CE HRG and UrQMD calculations. The global charge conservation imposed

in the HRG by the CE formulation suppresses the particle number fluctuations.

This effect is stronger for large collision systems. On the other hand, the dynamical

fluctuations are most pronounced in the p+ p reactions at high collision energy.

The experimental value of the scaled variance ω− becomes larger than unity. The

values higher than 1 can not be explained within the CE HRG model. However,

the UrQMD is capable to take into account these dynamic effects in p+p reactions.

The only reaction for which the value of ω− is not described by the UrQMD
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simulation is Be+Be at 150 A GeV/c. Note that the UrQMD results for ω− in

this reaction appear to be extremely sensitive to the exact centrality selection

procedure.

To clarify the dynamical features of the e-by-e fluctuations, an implementation

of the centrality selection procedure in p+p reactions is proposed. A comparison of

p+p and A+A collisions should be done with the appropriate centrality selection

procedures in both reactions.
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III
Modeling the hadronic
phase of heavy ion
collisions by an
expanding hadron gas

The thermal statistical model discussed in the previous chapter provides a surpris-

ingly accurate description of the latest stages of the heavy ion collisions. Only with

a handful of thermodynamic parameters the thermal model is able to describe the

particle yields at the chemical freeze-out stage of the collision. Though the thermal

model does not take into account the complicated non-equilibrium dynamics and

interactions of the system, assuming non-interacting Hadron Resonance Gas de-

scription, it provides as simple yet convenient tool to analyze heavy ion collisions.

The thermal model analysis allows mapping the chemical freeze-out of heavy ion

collisions to the QCD phase diagram. However, the chemical freeze-out of the

system, the moment when the chemical composition of the system is assumed

to be fixed, is not the latest stage of its evolution. The system continues to

expand and cool down until the so-called kinetic freeze-out occurs, at this stage,

the kinetic equilibrium can not be maintained anymore. The temperature of the

kinetic freeze-out is often extracted by blast-wave fits to the pT spectra of stable

hadrons. This procedure depends on the assumptions regarding the flow velocity

profile and the freeze-out hypersurface. In this chapter, a method to determine

the kinetic freeze-out temperature in heavy-ion collisions from the measured yields



30 III.1. HADRONIC PHASE IN HEAVY ION COLLISIONS

of short-lived resonances is presented. The method is based on a description of

heavy ion collisions by an isentropically expanding Hadron Resonance Gas in

partial chemical equilibrium. The expansion is modeled between the chemical and

kinetic freeze-outs, during this stage, the yields of many short-lived resonances

are suppressed. The framework describes the suppression of the yields of many

short-lived resonances at T = Tkin < Tch. The values of Tkin and Tch are extracted

for various centralities in Pb–Pb collisions at
√
s
NN

= 2.76 TeV by fitting the

abundances of both the stable hadrons and the short-lived resonances like ρ0

and K∗0, that were measured by the ALICE collaboration. This allows to ex-

tract the kinetic freeze-out temperature from the measured hadron and resonance

yields alone, independent of assumptions about the flow velocity profile and the

freeze-out hypersurface. The extracted Tch values exhibit a moderate multiplicity

dependence whereas Tkin drops, from Tkin ' Tch ' 155 MeV in peripheral collisions

to Tkin ' 110 MeV in 0-20% central collisions. Predictions for other short-lived

resonances are presented.

This chapter is based on the research performed by the author of this thesis

and published in Ref.[7].

III.1 Hadronic phase in heavy ion collisions

The abundances of stable hadrons measured in relativistic heavy-ion experiments at

the Schwerionen Synchrotron (SIS), the Super Proton Synchrotron (SPS), the Rel-

ativistic Heavy Ion Collider (RHIC), and the Large Hadron Collider (LHC) agree

quite well with thermal model calculations which are based on the assumption of

chemical freeze-out at temperature Tch ' 150−160 MeV [75, 76, 21, 77]. However,

the thermal model significantly overpredicts the yields of short-lived resonances,

like K∗ or ρ [78, 79, 80, 81], this indicates a presence of an additional mechanism

that suppresses these yields. This suppression of resonances is usually attributed

to the existence of a hadronic phase, which properties are usually estimated by

analyzing particle pT spectra which are measured in detail at experiment [82, 77]

for both, the long-lived and short-lived hadrons. The analysis of the measured

particle spectra suggests that the expanding system seems to be in kinetic (but

not in chemical) equilibrium. This kinetic equilibrium is maintained during the

cooling after the chemical freeze-out down to a kinetic freeze-out temperature

Tkin < Tch. The common way to estimate the kinetic freeze-out temperature is by
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performing blast-wave fits to the pT spectra of stable hadrons. This procedure

assumes an interplay of a particular flow velocity profile and a kinetic freeze-out

hypersurface. Usually, a cylindrically-symmetric blast-wave model is sufficient to

describe the expansion of the fireball [83], which yields Tkin ∼ 100 MeV for the

most central collisions at LHC [84], RHIC [77], and SPS [85]. However, different

freeze-out geometries can lead to different conclusions [86]. This chapter suggests a

novel approach to extract Tkin by simulating the fireball expansion in the hadronic

phase. The method, contrary to blast-wave fits, is independent of assumptions

about the flow velocity profile and the freeze-out hypersurface.

III.2 Partial chemical equilibrium in Hadron

Resonance Gas

The experimentally observed survival of stable hadron yields and the suppres-

sion of the resonance yields during the fireball expansion can be explained by

rescattering in the hadronic phase. While the system expands in the hadronic

phase the resonances decay and their decay products are rescattered [87, 88,

89]. After that these short-lived resonances can no longer be identified in in-

variant mass measurements. Hence, this looks like the “observed” resonance

yields are suppressed. This scenario was used earlier to estimate the lifetime

of the hadronic phase at RHIC and SPS energies from the measured resonance

abundances [90, 91, 92], neglecting the effect of resonance regeneration. However,

the resonance regeneration plays a significant role in a gas of hadrons, since many

elastic hadronic reactions do form intermediate short-lived resonance states, this

is reflected in meson-meson and meson-baryon cross-sections [93]. Common exam-

ples are ππ ρ ππ, πK K∗ πK, and πN ∆ πN. Rescattering of a

resonance decay product in a hadronic fireball is likely to regenerate a resonance.

This picture was verified in microscopic transport calculations [89] where it was

proved that in the hadronic phase the resonance-formations dominate in pure

elastic meson-meson and meson-baryon rescatterings.

The resonance-forming pseudo-elastic reactions obey the law of mass action

during the hadronic phase. The kinetic equilibrium in an expanding system

is maintained by these reactions, and the conditions of this scenario can be

summarized as follows:
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Figure III.1: Temperature dependence of effective chemical potentials of stable

hadrons in the HRG in PCE approach. The trajectories describe the evolution in

the hadronic phase for the ALICE Pb+Pb most central data, the trajectories star

at the chemical freeze-out and end at the kinetic freeze-out which is marked by

circles. The baryons are depicted by solid and mesons by dashed lines.

• After the chemical freeze-out occurs at T = Tch the inelastic reactions

drive the system out of the chemical equilibrium. The nonequilibrium is

maintained in such a way that the total yields of all stable hadrons are

frozen. This corresponds to the sum of the primordial yields of table hadrons

and their yields that stem from decays of short-lived resonances.

• After the chemical equilibrium is lost, the system expands isentropically

until the kinetic freeze-out temperature Tkin < Tch is reached. This stage is

identified with the hadronic phase. It is modeled by the concept of partial

chemical equilibrium (PCE) [94]. The resonance decays and regenerations

obey the law of mass action, hence the abundances of the different resonances

stay in equilibrium with their decay products.

• After the kinetic freeze-out at T = Tkin the resonance regeneration ceases

to occur and the resonance decay products do not rescatter. At this point,

the resonance abundances at T = Tkin are identified with those measured
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experimentally. This implies that the chemical freeze-out of short-lived

resonances coincides with the kinetic freeze-out of bulk hadron matter.

Of course, the actual decoupling of particles in an expanding system is a continuous

process that takes place over a range of temperatures. In that sense, the Tch and

Tkin temperatures characterize average conditions for the chemical and kinetic

freeze-outs.

The description suggested above is generally consistent with the pioneering

ideas regarding strangeness production in heavy-ion collisions [95]. The thermo-

dynamics of the matter in the hadronic phase of the fireball is described here

using a hadron resonance gas (HRG) model in PCE [94, 96, 97, 98, 99]. The

effective chemical potentials µ̃j of all species can be obtained from the condition

of equilibrium between the particle and its decay products, and thus are given by:

µ̃j =
∑

i∈stable

〈ni〉j µi . (III.1)

The index i runs over all particles, whose final abundances are frozen at T = Tch.

These hadrons are the ones stable w.r.t. strong decays, i.e. π, N, η, η′, K, Λ, Σ’s,

Ξ’s, Ω, as well their antiparticles(1). µi are the chemical potentials of particles

considered stable. 〈ni〉j is the mean number of hadron species i resulting from

decays of hadron species j. Then the system evolution in PCE follows from the

conditions of the conservation of the total yields of the stable hadrons and constant

entropy per baryon, i.e. isentropic expansion:∑
j∈hrg

〈ni〉j nj(T, µ̃j)V = N tot
i (Tch), i ∈ stable, (III.2)∑

j∈hrg

sj(T, µ̃j)V = S(Tch) . (III.3)

The description of the system can then be obtained after solving the above

equations. The solution will provide the chemical potentials µj and the system

volume V during the system’s expansion. The index j runs over all hadrons and

resonances in the list, nj and sj are the grand-canonical number- and entropy

densities of the hadron species j in the multi-component ideal hadron gas, N tot
i (Tch)

and S(Tch) are, respectively, the total yield of stable hadron species i and the

(1)Alternatively, one can treat the yields of long-lived resonances such φ, ω, Ξ(1530), and/or

Λ(1520) to be frozen at T = Tch as well [99]. We verified that the results presented here look

very similar in such a scenario.
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total entropy of the system during the whole expansion. In the following, the

energy-dependent Breit-Wigner (eBW) scheme is used for modeling the spectral

functions of all resonances [100]. The hadron branching ratios are assumed

to be energy independent. 〈ni〉j is evaluated using the PDG branching ratios.

Excluded-volume and strangeness undersaturation effects are omitted unless stated

otherwise. The calculations are performed using the open-source Thermal-FIST

package [54], which contains a numerical implementation of the PCE-HRG model

defined above (available since version 1.2.6 via [101]).

The Equations (III.2) and (III.3) can be solved numerically to obtain the

temperature dependence of the volume V and of the chemical potentials µ̃j of all

species during the hadronic phase III.1. Within the proposed PCE-HRG model,

this dependence was presented earlier in Ref. [102] for the LHC energies. During

the cooling, the yields of short-lived resonances, such as K∗/K and ρ/π, are not

conserved while the system is in the hadronic phase. They decrease as the system

expands, their values at T = Tkin are suggested to describe the suppression seen in

measurements, as first predicted in Ref. [103] before precision data were available.

This method of relating the resonance suppression to the duration of the hadronic

phase is suggested to extract the kinetic freeze-out temperature from experimental

data.

III.3 Kinetic freeze-out temperature from yields

of short-lived resonances

Here the above approach is presented for a determination of the kinetic freeze-out

temperature of 2.76 TeV Pb–Pb collisions at the LHC. This is done by performing

PCE-HRG model fits to the measured yields of pions, kaons, protons, Λ, Ξ, Ω,

φ, KS
0 , K∗0, and ρ0, of the ALICE collaboration, for 0-20%, 20-40%, 40-60%, and

60-80% centralities [82, 104, 105, 80, 81]. It should be noted that the yields are

symmetrized between particles and antiparticles, i.e., we assume µB = 0. The

fitting procedure assumes three fit parameters: the chemical freeze-out temperature

Tch and volume Vch, and the kinetic freeze-out temperature Tkin. As compared to

the conventional chemical freeze-out fit, this procedure employs one additional

parameter Tkin to describe the yields of short-lived resonances. The final yields of

all species are evaluated at T = Tkin. The single freeze-out scenario, Tkin = Tch, is

also analyzed. All abundances of all species are, in this single freeze-out scenario,
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Table III.1: Values of the PCE-HRG model thermal fit parameters to ALICE

data for
√
s
NN

= 2.76 TeV Pb-Pb collisions at different centralities. For each

centrality the first row corresponds to the single freeze-out scenario, the second

row corresponds to separate chemical and kinetic freeze-outs scenario.

Centrality Tch (MeV) Tkin (MeV) χ2/dof

0-20% 160.2± 3.1 – 23.6/8

158.3± 2.8 107.1± 8.2 10.5/7

20-40% 162.9± 3.1 – 19.5/8

161.7± 2.9 117.3± 10.8 12.8/7

40-60% 162.3± 3.0 – 12.5/8

161.8± 2.9 131.2± 15.9 10.6/7

60-80% 155.5± 2.5 – 19.1/8

155.5± 2.5 155.5+2.5
−24.5 19.1/7

described by the chemical equilibrium ideal HRG model. The PCE-HRG fit

procedure described above has been implemented in Thermal-FIST since version

1.2.6 and can be obtained via Ref. [101].

The results of the performed fits are exhibited in Table III.1. The centrality

dependencies of both Tkin and Tch are shown in Fig. III.2 as a function of the

charged particle multiplicity dNch/dη [106]. The parameter errors of the performed

fits were obtained by analyzing the χ2 profiles, see e.g. χ2 profiles as functions of

Tkin in Fig. III.3. The error bar of Tkin is asymmetric for the 60− 80% centrality

because of the restriction Tkin ≤ Tch.

As discussed before, the single freeze-out scenario cannot describe simultane-

ously the yields of stable hadrons and short-lived resonances in central collisions.

The yields of short-lived K∗0 and ρ0 mesons are significantly overestimated by

the model with Tch = Tkin ' 155 MeV. This overestimation becomes milder in

peripheral collisions, where the suppression of the resonance yields is measured to

be not so strong. The separation of kinetic and chemical freeze-outs leads to an

improved description of the measured yields for all centralities, except for the most

peripheral bin where the suppression is almost absent. Tch shows only a slight cen-

trality dependence, suggesting a consistent and universal value in the 155-160 MeV

range throughout. The extracted kinetic temperature increases monotonically

from Tkin ' 110 MeV for the 0-20% centrality bin, to Tkin ' Tch = 155 MeV for
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Figure III.2: The values of the chemical Tch (green symbols) and kinetic Tkin (blue

symbols) freeze-out temperatures extracted from the PCE-HRG model fits to the

ALICE collaboration data on the production of hadrons and resonances in Pb+Pb

collisions at
√
sNN = 2.76 TeV for various centralities, depicted as a function

of charged multiplicity. The red symbols depict the Tkin values extracted from

blast-wave fits to the pT spectra of pions, kaons, and protons in Ref. [82].

60-80% centrality. These results point out the existence of a hadronic phase in

heavy-ion collisions with a lifetime that depends on the geometry of the collision,

a rather long-lived one in central collisions and a short-lived one in peripheral

collisions.

Let us compare these results to the Tkin values resulting from blast-wave model

fits [83] to the pT spectra of pions, kaons, and protons, as presented by the ALICE

collaboration in Ref. [82] (red symbols in Fig. III.2). The predictions of the

proposed PCE-HRG model are in a fair agreement with this analysis, although

the Tkin values of Ref. [82] are on the lower side of our error bands. Recent

blast-wave model studies [107, 108] take into account the resonance feeddown

and the outcoming modifications of the pT spectra. The Tkin values calculated

in Ref. [107] lie considerably closer to Tch than in the present study, whereas

Ref. [108] predicts a much smaller value Tkin ' 80 MeV for most central collisions.

The present in the literature large spread of the Tkin values is an indication of

significant systematic uncertainties which are currently present in the blast-wave

model approach. It should be noted that none of those above three analyses does
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Figure III.3: The χ2 profiles of the fits from Fig. III.2 as functions of the kinetic

Tkin freeze-out temperature. The profiles were obtained by fitting the chemical

Tch freeze-out temperature and the freeze-out volume V at fixed Tkin.

incorporate constraints from the data on short-lived resonances, in contrast to the

study presented here. Thus, the inclusion of the measured spectra of resonances

is one way to improve the blast-wave approach. The pT spectra fit also depend on

the validity of the blast-wave model’s assumed flow velocity profile and freeze-out

hypersurface. The concept presented here is free of this issue.

The uncertainties arising from the implementation of the HRG model deserve

separate attention. The sensitivity to the modeling of spectral functions was esti-

mated by considering, additionally to the eBW scheme, the zero-width treatment

of resonances. The extracted Tch and Tkin values are, respectively, about 2-3 MeV

smaller and 5 MeV larger in the zero-width case than in the eBW case. The

fit quality worsens for all centralities (except for the most peripheral bin). This

is mainly a consequence of the increased proton yield in the zero-width scheme.

An incomplete strangeness equilibration in the HRG model can be studied by

introducing a strangeness saturation parameter, γS ≤ 1 [95, 109]. This influences

significantly the most peripheral (60-80%) bin only. Here, γS ' 0.85, and the

extracted χ2 value decreases by about a factor of two, while Tch increases to about

160 MeV. This is in line with previous statistical model analyses of the LHC

data [110, 111, 112]. Separate chemical freeze-outs of strange and non-strange

hadrons is another possibility that has been discussed [113, 114].
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Figure III.4: The data/model ratios resulting from thermal fits to particle yields

measured in Pb-Pb collisions of various centrality at
√
sNN = 2.76 TeV. Fits are

performed within the single freeze-out HRG picture (open red circles), and the

separate freeze-outs PCE-HRG picture (full blue circles). Here Λ∗ corresponds to

the Λ(1520). The Λ(1520) yields were not used in the fit procedure.

The HRG model is often extended by considering repulsive interactions via

excluded volume corrections, this can have a sizable influence on thermal fits to

the data [115, 116, 117]. A moderate excluded volume correction is considered

here by repulsive (anti)baryon-(anti)baryon interactions with a baryonic eigen-

volume parameter b ' 1 fm3. This is motivated by the analysis of lattice QCD

data on baryon number susceptibilities [1] and Fourier coefficients [118]. The

excluded-volume PCE-HRG model fits slightly change Tch and Tkin values which
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are, respectively, about 2-3 MeV larger and 2-3 MeV smaller than in the ideal

HRG case. The changes in the χ2 values are insignificant.

The particle list of the thermal HRG model is often extended by light nuclei

to consider their yields in the analysis of experimental data [119]. Within the

PCE-HRG framework, one can either treat the nuclei as stable species whose yields

are frozen at Tch or one accepts that these loosely bound objects, as compared to

the temperatures available, can be destroyed and regenerated during the evolution

in the hadronic phase. In the latter case, the nuclear abundances are in equilibrium

with the abundances of their constituents, as follows from the Saha equation (see

Ref. [102] for details). We verified that the available data on light nuclei production

in 0-20% central Pb–Pb collisions are well described in both scenarios.

The presented analysis can be further extended to study potentially mea-

surable particles. Within the PCE-HRG model, it is interesting to test the

sensitivity of other unstable hadrons to the value of kinetic freeze-out temperature

Tkin. This can be done by analyzing resonance-to-stable hadron yield ratios.

Specifically, the behavior of ratios φ/π, ω/π, ρ/π, ∆++/p, K∗0/K−, f0(980)/π,

Σ(1385)/Λ, Λ(1520)/Λ, Ξ(1530)0/Ξ, and Ξ(1820)/Ξ, is studied here at the LHC

conditions (µB = 0). Given that the obtained chemical freeze-out temperature is

in general independent on the centrality, here we fix Tch = 155 MeV and study

the dependence of the ratios on Tkin only. It was checked that the results are

not sensitive to the specific value of Tch, e.g. Tch = 160 MeV giving very similar

results. All presented ratios here are normalized by their values at Tch = 155 MeV

to eliminate the influence of effects not related to the hadronic phase dynamics.

These double ratios quantify the suppression of resonance yields in (semi-)central

collisions, where Tkin < Tch, relative to the most peripheral collisions (or, alter-

natively, to a pp/pA baseline), where Tkin ' Tch. The Tkin dependence of the

above-listed double ratios is depicted in Fig. III.5.

In general, different resonance particles interact differently in the medium and

thus can have different freeze-out temperatures. The effect of the hadronic phase

on the resonances can be quantified by the temperature dependence in Fig. III.5.

The yields of long-lived resonances φ (τ ≈ 46 fm/c) and Ξ(1530) (τ ≈ 22 fm/c)

change little in the PCE-HRG approach for Tkin & 100 MeV, even though this

scenario assumes equilibrium of these long-lived resonances with their decay

products. Hence, an absence of suppression of long-lived resonance yields, which

does not necessarily imply that these objects do not interact after the chemical
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freeze-out. The long-lived ω meson (τ = 23 fm/c), on the other hand, would be

notably suppressed in central collisions if it interacts in the hadronic phase.

The short-lived ρ0 (τ = 1.3 fm/c) and K∗0 (τ = 4.2 fm/c) meson yields exhibit

a significant suppression as Tkin decreases, as elaborated earlier. On the other

hand, the yields of short-lived baryonic resonances ∆++ (τ = 1.7 fm/c) and

Σ(1385) (τ = 5 fm/c) change only mildly. For Tkin = 100 MeV one observes

only a 10-15% suppression in the ∆++ yields and virtually no change for Σ(1385).

Thus, if the slight system size dependence of the yield ratios involving these

resonances will indeed be observed experimentally, such an observation cannot be

interpreted as evidence against the existence of a long-lived hadronic phase. The

presented observations are qualitatively consistent with prior results of Monte Carlo

simulations of heavy-ion collisions where the hadronic afterburner UrQMD [87]

was employed. The result for Σ(1385)/Λ is also in line with a weak system-size

dependence of this ratio as was observed experimentally at RHIC for
√
sNN =

200 GeV [121].

A particularly interesting case is the scalar f0(980) meson. The nature of

f0(980) is not established and its lifetime is not constrained. The PDG listing [93]

gives a loose bound on the mass width Γf0 ∼ 10–100 MeV. This corresponds to a

lifetime between about 2 and 20 fm/c. For the lower bound, the lifetime is shorter

than the lifetime of the hadronic phase, hence the PCE-HRG model assumption of

detailed balance between decays and regenerations of f0(980) is valid. If this is the

case and the lifetime of f0(980) is much shorter than the lifetime of the hadronic

phase then the f0(980)/π ratio will be significantly suppressed as presented in

Fig. III.5, there the ratio drops by about a factor three for Tkin = 100 MeV. For the

upper bound of the f0(980) lifetime, it is more reasonable to expect that its yield

is frozen at Tch and will not be modified significantly in the hadronic phase. The

measurements of the f0(980)/π ratio in heavy-ion collisions at different centralities

in the highest energy heavy ion collisions at the LHC (or RHIC) can thus provide

indirect information on its lifetime: If the suppression of the f0(980)/π ratio in

central collisions relative to peripheral ones will be observed, this will be evidence

for a short f0(980) lifetime. An absence of such suppression, on the other hand,

favors a large f0(980) lifetime.

To summarize, the above-presented approach can be used as a novel method

to extract the kinetic freeze-out temperature in heavy-ion collisions based on the

yields of short-lived resonances. This method, which assumes expanding hadron
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resonance gas in partial chemical equilibrium, does not require additional input

such as the flow velocity profile and the freeze-out hypersurface. In this sense,

the PCE-HRG approach to extracting Tkin is advantageous to the commonly

adopted fits to the pT spectra. The analysis of ALICE data on Pb–Pb collisions

at the LHC yields a moderate multiplicity dependence of Tch whereas the kinetic

freeze-out temperature drops from Tkin ' Tch ' 155 MeV in peripheral collisions

to Tkin ' 110 MeV in 0-20% most central collisions. This result is in qualitative

agreement with prior studies employing the blast-wave model fits.

An interesting observation is that not all short-lived resonances are necessarily

suppressed in a long-lasting hadronic phase: In contrast to ρ0 and K∗0 mesons,

the yields of baryon resonances ∆++ and Σ(1385) change slightly in the hadronic

phase. We point out a possibility to constrain the lifetime of f0(980) meson: A

(non)observation of a suppressed f0(980)/π± ratio in central collisions favors a

long (short) f0(980) lifetime. Studies within this framework can be extended

further to lower collision energies, and to analyze other sensitive probes of freeze-

out dynamics and properties of the hadronic matter, such as fluctuations and

correlations of identified hadron numbers [122, 123].
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Figure III.5: Dependence of the yield ratios (a) 2φ/(π+ + π−) (solid black line),

2ω/(π+ + π−) (dashed blue line), and 2ρ0/(π+ + π−) (dot-dashed red line), (b)

∆++/p (solid black line), K∗0/K− (dashed blue line), and 2f0(980)/(π+ +π−) (dot-

dashed red line), (c) Σ(1385)/Λ (solid black line) and Λ(1520)/Λ (dashed red

line), and (d) Ξ(1530)/Ξ (solid black line) and Ξ(1820)/Ξ (dashed blue line)

on the kinetic freeze-out temperature Tkin. The ratios are normalized to their

values at T = Tch = 155 MeV. The points in (a) and (b) depict, respectively,

the experimental data for the ratios of 2ρ0/(π+ + π−) and K∗0/K− in 0-20%,

20-40%, and 40-60% relative to the ones in 60-80% Pb–Pb collisions at
√
sNN =

2.76 TeV. The red point in (c) depicts ALICE collaboration data [120] for the

ratio of Λ(1520)/Λ measured in 0-20% to the one in 50-80% Pb–Pb collisions at
√
sNN = 2.76 TeV. The dashed vertical line corresponds to a Tkin = 100 MeV – a

typical value for the kinetic freeze-out temperature in most central collisions.



IV
Repulsive interactions
between baryons in a
hadron gas

The previous chapters were related to the hadronic evolution of the heavy ion colli-

sions. This chapter is related to static hadronic matter with repulsive interactions.

The repulsive interactions are modeled by assigning finite volume to baryons. This

is done by applying the Beth-Uhlenbeck (BU) formalism for repulsive hard-core

interactions between baryons. The BU approach is also compared to the classical

van der Waals excluded volume model which neglects quantum effects. The second

virial coefficient a2 – the “excluded volume” parameter, calculated within the BU

approach is found to be temperature-dependent, and it differs dramatically from

the classical EV model result. At temperatures T = 100− 200 MeV, the widely

used classical EV model underestimates the EV parameter for nucleons at a given

value of the nucleon hard-core radius by large factors of 3-4. Previous studies,

which employed the hard-core radii of hadrons as an input into the classical EV

model, have to be re-evaluated using the appropriately rescaled EV parameters.

The BU approach is used to model the repulsive baryonic interactions in the

hadron resonance gas (HRG) model. Lattice data for the second and fourth-order

net baryon susceptibilities are described fairly well when the temperature depen-

dent BU baryonic excluded volume parameter corresponds to nucleon hard-core

radii of rc = 0.25− 0.3 fm. The role of the attractive baryonic interactions is also
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considered. It is argued that the HRG model with a constant baryon-baryon EV

parameter vNN ' 1 fm3 provides a simple yet efficient description of baryon-baryon

interaction in the crossover temperature region.

This chapter is based on the research performed by the author of this thesis

and published in Ref.[1].

IV.1 Classical excluded-volume model

In a gas of parties the short-rage repulsive interactions can be modeled within the

classical EV model where the available system volume is reduced by the particle

finite volume v, i.e. V V − vN , where N is the total number of particles [124,

125, 126, 127, 128, 129, 130]. The repulsive interactions transform the system

energy E in the Grand Canonical Ensemble as:

E = −pV + sT + µN → E = −pV + sT + (µ− pv)N (IV.1)

which introduces the effective chemical potential µ∗ = µ− pv. In the Canonical

Ensemble this substitution results in the well known van der Waals equation of

state

pev(T, n) =
Tn

1− vn, (IV.2)

in which the attractive van der Waals interactions are omitted. Here n ≡ N/V is

the particle number density.

The pressure function, p(T, n), can be expanded in a series where k-th term is

proportional to the particlle density to the power of k, i.e. nk, this is the virial

expansion [131, 132, 133]

p(T, n) = T
∞∑
k=1

ak(T )nk. (IV.3)

Here ak are the virial coefficients. From Eq. (IV.2) it follows that in the classical

EV model these virial coefficients are temperature independent:

aev
k = vk−1. (IV.4)

From the second virial coefficient a hard-core radius rc of a given constituent

can be extracted. In an approximation where quantum mechanical effects are
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neglected, 2-body interaction potential can be related to a2(T ) by

a2(T ) =
1

2

∫
d3r

{
1− exp

[
−U(r)

T

]}
. (IV.5)

A repulsive hard-core potential U(r) is a barrier with an infinite wall placed at

r = 2rc:

U(r) =

∞, if r < 2rc

0, if r > 2rc.
(IV.6)

Substituting U(r) from (IV.6) into (IV.5) yields

aev
2 = v =

16πr3
c

3
. (IV.7)

On the other side, the pressure of an interacting thermodynamic system can

be expressed via the Mayer’s cluster expansion. This expansion is in terms of the

powers of the fugacity, λ = eµ/T . It will be used below for the comparison with

the Beth-Uhlenbeck approach. The cluster expansion is written as [131, 132, 133]

p(T, µ) = T
∞∑
k=1

bk(T ) [g φ(T ;m)λ]k = T
∞∑
k=1

bk(T ) zk. (IV.8)

Here z ≡ g φ(T ;m)λ is the absolute activity, which can be considered as the

density of the ideal gas with Boltzmann statistics at a given T -µ pair, and bk(T )

are the cluster integrals, i.e. the coefficients of the Mayer’s cluster expansion in

fugacities (see, e.g., Chapter 10 in Ref. [132]). Function φ(T ;m) is expressed via

the modified Bessel function K2,

φ(T ;m) =
m2 T

2π2
K2

(m
T

)
, (IV.9)

where we assumed the relativistic dispersion relation ε(k) =
√
m2 + k2 .

In the Grand Canonical Ensemble where T and µ are the thermodynamic

variable, the pressure of the EV model is given in terms of the transcendental

equation pev(T, µ) = pid(T, µ− v pev). Cluster expansion of the EV model pressure

around the ideal gas pressure pid(T, µ) yields

pev(T, µ) = pid(T, µ− v pev)

= pid(T, µ)− nid(T, µ) v pev(T, µ) + . . .

= T g φ(T ;m)λ− T v [g φ(T ;m)]2 λ2 +O(λ3), (IV.10)
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where g is the internal degeneracy factor (for nucleons gN = 4). Note, that the

effects of quantum statistics were neglected in the final line in Eq. (IV.10). Here

and in further subsections only the behavior of the 2nd cluster or virial coefficients

is analyzed, therefore, the expansion in Eq. (IV.10) is written only up to the 2nd

order.

Comparison of Eqs. (IV.10) and (IV.8) yields

bev
2 = −v = −aev

2 . (IV.11)

Thus, the 2nd cluster integral is straightforwardly connected to the excluded

volume parameter v.

IV.2 Beth-Uhlenbeck approach

IV.2.1 Formalism

Interactions in a thermodynamic quantum system can be described by both

the virial (IV.3) and the cluster (IV.8) expansions. In the case of only elastic

interactions which do not create bound states, the 2nd cluster integral can be

expressed by the generalized BU formula [134, 135, 136](1)

b2(T ) = [g φ(T ;m)]−2 T

2π3

∫ ∞
2m

dε ε2 K2(ε/T )
∑
Q

gQ
dδQ(ε)

dε
. (IV.12)

Here the integration is carried over all values of the invariant mass ε of two particle

system in the center-of-mass frame. The summation is done over all relevant

channels of all two-particle states which have a set of quantum numbers Q. The

specific definition of Q depends on a particular system studied (see below). δQ(ε) is

the corresponding scattering phase shift for channel Q. In the equation (IV.12) the

relativistic dispersion relation ε(k) =
√
m2 + k2 between energy and momentum

is assumed.

Furthermore, a system of interacting nucleons is considered. For nucleon-

nucleon scattering, the corresponding set of quantum numbers is Q = (T, S, L, J):

isospin T = 0, 1; spin S = 0, 1; orbital momentum L; total angular momentum J ,

which takes the values |L− S| < J < (L+ S). The value of the orbital momentum

(1)The contribution of quantum statistics to b2(T ) of ideal gas is found to be negligible for the

applications considered in the present paper and is neglected for simplicity.
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L determines the symmetry of the coordinate part of the two-nucleon wave function

with respect to the exchange of the coordinates of two nucleons: the coordinate

part is symmetric for even values of L, while it is antisymmetric for odd values

of L. The total two-nucleon wave function is antisymmetric with respect to

the exchange of their indices. Hence, L is odd valued if the spin-isospin part is

symmetric, and is even valued otherwise. For the nucleon system, the summation

in (IV.12) is done over all possible (T, S, L, J) values that are consistent with the

above restrictions.

For the hard-sphere scattering potential (IV.6), the scattering phase-shifts can

be calculated analytically by [137]

δhc
L (ε) = arctan

[
jL(2rc q)

nL(2rc q)

]
. (IV.13)

Here q ≡ q(ε) is the momentum of a particle in the c.m. frame, jL and nL are

spherical Bessel functions. Assuming the relativistic dispersion relation, q(ε) reads

as q(ε) = 1
2

√
ε2 − (2mN)2 . This yields the following expression for the 2nd cluster

integral of the nucleon system with a hard-core interaction

bNN2 (T ) = [gN φ(T ;mN)]−2 T

2π3

∫ ∞
2mN

dε ε2 K2(ε/T )

×
∑
T=0,1

∑
S=0,1

∑
L

L+S∑
J=|L−S|

(2T + 1) (2 J + 1)
dδhc

L (ε)

dε
. (IV.14)

After integrating by parts one obtains

bNN2 (T ) = [gN φ(T ;mN)]−2 1

2π3

∫ ∞
2mN

dε ε2 K1(ε/T )

×
∑
T=0,1

∑
S=0,1

∑
L

L+S∑
J=|L−S|

(2T + 1) (2 J + 1) δhc
L (ε). (IV.15)

As follows from Eq. (IV.11), the BU approach with hard-core interaction (BU-HC)

approach predicts a temperature dependence of the excluded volume parameter

as vNN(T ) = −bNN2 (T ), already on the level of the 2nd order virial expansion.

All possible nucleon-nucleon combinations, i.e. proton-proton, proton-neutron,

and neutron-neutron scatterings, contribute to the bNN2 . These contributions to

the 2nd cluster integral bpp2 can be calculated separately, e.g., for a pure proton

system. The proton-proton contribution coincides with the bnn2 coefficient of the
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pure neutron system due to isospin symmetry. The specific value of the isospin

quantum number is fixed T = 1, and bpp2 = bnn2 reads

bpp2 (T ) = [(gN/2)φ(T ;mN)]−2 1

2π3

∫ ∞
2mN

dε ε2 K1(ε/T )
∑
S=0,1

∑
L

L+S∑
J=|L−S|

(2 J + 1) δhc
L (ε).

(IV.16)

It is also useful to estimate relativistic effects by considering the original

non-relativistic BU formula [138],

bNN,nr
2 (T ) = [gN φ

nr(T ;mN)]−2 (2mN)2

2π3

√
πT

4mN

exp

(
−2mN

T

) ∫ ∞
0

dε exp(−ε/T )

×
∑
T=0,1

∑
S=0,1

∑
L

L+S∑
J=|L−S|

(2T + 1) (2 J + 1) δhc
L (ε), (IV.17)

where

φnr(T ;m) =

(
mT

2π

)3/2

exp
(
−m
T

)
. (IV.18)

A comparison of the non-relativistic BU-HC result (IV.17) with the classical

result (IV.7) provides an important cross check. At high temperatures, the

quantum effects in the BU-HC model become unimportant, hence, the results of

(IV.17) and (IV.7) coincide.

IV.2.2 Calculation results

Figure IV.1 depicts the temperature dependence of the nucleon-nucleon excluded

volume parameter vNN , calculated using Eq. (IV.15) for the nucleon hard-core

radius of rc = 0.3 fm. The temperature dependencies of the contribution NN

systems are depicted as well: proton-proton eigenvolume vpp ,and of proton-neutron

eigenvolume vpn = 2 vNN − vpp. The classical result (IV.7) is depicted by the solid

horizontal line. In the numerical evaluation of Eq. (IV.15) the terms with L > 10

are disregarded. It was numerically checked that the higher order terms give a

negligible contribution to bNN
2 for temperatures up to T = 300 MeV(2).

(2)The figures presented consider rather high temperatures. These temperatures are presented

to illustrate a connection between different model formulations. In reality, hadrons are not

expected to be the dominant constituents of the strongly interacting matter at T > 200 MeV.



CHAPTER IV. REPULSIVE INTERACTIONS BETWEEN BARYONS IN A
HADRON GAS 49

50 100 150 200 250 300

T (MeV)

0

1

2

3

4

5

6

b
( f

m
3
)

p + n

p + p

N + N
classical, rc = 0.3 fm

Figure IV.1: The temperature dependence of the nucleon-nucleon excluded volume

parameter vNN (solid green line), the proton-proton excluded volume parameter

vpp (dashed yellow line), and the proton-neutron excluded volume parameter

vpn ≡ 2 vNN − vpp (dot-dashed blue line), as calculated within the relativistic Beth-

Uhlenbeck approach for a hard-core potential with the nucleon hard-core radius

of rc = 0.3 fm. The dashed horizontal line shows the prediction of the classical

EV model (IV.7) with the same value of rc = 0.3 fm.

The Figure IV.1 suggests that the classical EV model [Eq. (IV.10)] underes-

timates the value of the nucleon-nucleon excluded volume parameter by large

factors of 3-4, at temperatures T = 100 − 200 MeV. This temperature range

is rather typical for the phenomenological applications of the EV model in the

context of heavy-ion collisions and (Lattice) QCD equation of state. A strong

increase of vNN at low temperatures correlates with an increase of the thermal

wavelength λdB.

This result is quite remarkable: the hard-core radii of hadrons are often used

as an input into the classical EV-HRG model to describe the repulsive interactions

between hadrons at high densities (see e.g. Refs. [115, 139, 140, 22, 141, 142,

143, 144, 145, 116, 146, 147]). A value rc = 0.3 fm is sometimes taken based on

the properties of microscopical nucleon-nucleon scatterings [141, 143]. The large

discrepancy between the classical EV model and the BU approach suggests that

the former can only be considered as a simplified effective approach when used



50 IV.2. BETH-UHLENBECK APPROACH

in hadronic physics applications. This means that the parameter aev
2 of the EV

model should not be connected to the values of the hard-core radii via Eq. (IV.7).

Note that similar concerns were presented before, based on BU calculations for

spinless particles [136, 148]. More accurate analyses shall also take into account

interaction-channel dependent hard-core radii [136, 149].

The classical EV model result [Eq. (IV.10)] is only valid when both, quantum

mechanical and relativistic effects, can be neglected. The non-relativistic BU-

HC formula (IV.17) is expected to coincide with the classical result (IV.10)

at high temperatures. This was proven for spinless particles with hard-core

interactions [136, 148]. A numerical check for spin-1/2 nucleons is presented

in Figure IV.2, the temperature dependence of the nucleon-nucleon excluded

volume parameter vNN , as calculated in the non-relativistic (solid blue line) and

relativistic (dash-dotted red line) BU-HC approach, for rc = 0.3 fm, is shown

on a logarithmic temperature scale, in the range T = 101 − 106 MeV. Note, in

the present work, the difference between the relativistic and non-relativistic BU

approaches appears only in the dispersion relation between energy and momentum.

At very high temperatures, T ∼ 105 MeV, the excluded volume parameter of

the non-relativistic BU formula approaches the classical limit (dashed line) from

above, as expected. These huge temperatures, however, can not be related to any

practical applications since nucleons are expected to already melt into partons

there.

The behavior of vNN(T ) in the relativistic and in the non-relativistic BU-HC

approaches are similar. The relativistic approach yields systematically smaller

values of vNN(T ). The limiting value of relativistic vNN(T ) is slightly below the

classical limit. Note that a relativistic formulation of the hard-core interaction

problem is not fully consistent, since the concept of hard-core interactions is

inconsistent with causality. However, at the temperature range of interest for

hadronic physics applications is not affected that strongly by relativistic effects.

Therefore, the treatment of the hard-core repulsion between nucleons within the

relativistic BU-HC approach is considered satisfactory.

Scattering phase shifts can also be employed to study the non-equilibrium

properties of interacting hadrons [150]. Hence, one can study in a similar fashion

the differences between the classical and quantum mechanical hard-core repulsion

mechanisms, such as the scattering cross section and transport coefficients.
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Figure IV.2: The temperature dependence of the nucleon-nucleon excluded

volume parameter vNN calculated using the non-relativistic (solid blue line) and

relativistic (dash-dotted red line) dispersion relations in the Beth-Uhlenbeck

approach for hard core interaction potential, shown on the logarithmic temperature

scale. Nucleon hard-core radius of rc = 0.3 fm is assumed. The dashed horizontal

line shows the prediction of the classical EV model (IV.7) with the same value of

rc = 0.3 fm.

IV.2.3 Other estimates and the role of attraction

The present approach can be compared to other estimates of the 2nd virial

coefficient for nucleons. The 2nd virial coefficient should not be only associated

with a hard-core interaction potential and is not identified exclusively with an

eigenvolume parameter. Therefore, we use the notation aNN2 instead of vNN

for this comparison. The comparison illustrates the relevance of the hard-core

repulsion for the thermodynamics of a nucleon gas.

For the hard-core repulsion, the empirical values of the nucleon hard-core

radius rc are considered in the range rc = 0.25 − 0.30 fm, as suggested by the

analysis of NN -scattering phase shift data [151]. The corresponding BU result

is depicted in Fig. IV.3 by the blue band. Decreasing rc from 0.3 fm to 0.25 fm

results in about 30% decrease of aNN2 (T ) at a given temperature.

The present BU-HC approach only accounts for the short range repulsive

hard-core interactions in the second virial coefficient. However, at an intermediate
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Figure IV.3: The temperature dependence of the second virial coefficient a2(T )

of nucleon-nucleon interaction, calculated within different approaches. The calcu-

lations within the relativistic Beth-Uhlenbeck approach for the system of nucleons

with a hard-core interaction are depicted by the blue band, which results from the

variation of the nucleon hard-core radius in the range 0.25 < rc < 0.30 fm. The

calculations of Ref. [152] within the S-matrix formalism, employing the empirical

phase shifts of NN -scattering, are depicted by the yellow line with a band. The

red line depicts the second virial coefficient of nucleon-nucleon interaction in the

quantum van der Waals model of nuclear matter [153]. Lattice QCD results for

the 2nd virial coefficient of “baryon-baryon interaction” [118], obtained from sim-

ulations at an imaginary baryochemical potential, are depicted by black symbols

with error bars.

distance range, the nucleon-nucleon interactions are also attractive. Attractive

interactions give sizable negative contributions to aNN2 . Especially at low temper-

atures, T < 20 MeV, calculations [154] based on empirical phase shift data do

suggest that attractive interactions give the dominant contribution to aNN2 . Thus,

the large positive contribution of the hard-core repulsion at low temperatures,

as seen in Figs. IV.1-IV.3, is compensated by a similarly large, but negative

contribution from the attraction.

A simple model which takes into account both attractive and repulsive inter-
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actions between nucleons is the Quantum van der Waals (QvdW) model [153].

The QvdW model takes into account the effects of quantum Fermi statistics

which are important for the description of the nuclear matter in the region of

small temperatures and large baryon densities. In the QvdW the repulsive and

attractive interactions between nucleons are characterized by the temperature

independent vdW parameters b and a, respectively. A fit to the nuclear ground

state properties at T = 0 yields values of b = 3.42 fm3 and a = 329 MeV fm3 for

nucleons [153]. The second virial coefficient in this QvdW model is expressed as(3)

a2(T ) = b− a/T . The temperature dependence of aNN2 (T ) in the QvdW model

is depicted in Fig. IV.3, red line. aNN2 is negative at small temperatures, crosses

zero at T = a/b ' 96 MeV, and increases monotonically at larger temperatures.

This sign change of aNN2 (T ) is expected for any system of interacting particles

with short-range repulsion and intermediate range attraction. At the same time,

the continued increase of aNN2 (T ) in the high temperature region in the QvdW

model appears to be different from the results of the BU-HC formalism. This

occurs because of the large temperature independent value of the excluded-volume

parameter b in the QvdW model. Assuming b = 16πr3
c/3 one finds rc ∼= 0.59 fm.

This is essentially larger than rc = 0.2− 0.3 fm for the BU-HC results presented

in Fig. IV.3.

Empirical details of nucleon-nucleon microscopical interactions can be consid-

ered in the second virial coefficient via the S-matrix approach. This will allow

employing the empirically known phase shifts of NN -scattering. Recently it was

done in Ref. [152] for intermediate temperature range 100 < T < 165 MeV. The

result of these calculations is depicted by the yellow band in Fig. IV.3. The width

of the band is a result of the uncertainties in the contributions of the inelastic NN

channels to aNN2 (T ). The S-matrix result for a2 of Ref. [152] is slightly suppressed

as compared to our BU calculation. This is expected, the S-matrix calculation

takes into account both the attraction and repulsion between the nucleons to

aNN2 (T ). The overestimation of aNN2 by the BU-HC calculation is apparent, as in

by design only the repulsive hard-core interactions between nucleons are consid-

ered. The difference between the present calculation and the S-matrix calculation

of Ref. [152] is reduced at higher temperatures: this reflects the fact that the

short-range repulsive interactions dominate at higher temperatures.

To make the comparison complete, the imaginary-µB lattice QCD calculations

(3)Again, here the small ideal Fermi gas contribution to a2(T ) is neglected.
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of the partial pressure of QCD in the baryon number |B| = 2 sector [118] are also

shown in Fig. IV.3 by black circles. A purely hadronic description, reasonable at

moderate temperatures, yields partial pressure proportional to an “average” second

virial coefficient aBB2 for baryon-baryon interactions. The lattice estimations for

aNN2 at T < 160 MeV provide rather large error bars. The lattice results lie below

the results of the BU calculations.

The above analysis of Fig. IV.3 rc = 0.25 fm is a reasonable estimate for the

BU-HC calculation for aNN2 in the crossover temperature region, T ∼ 150 MeV.

The BU-HC approach overestimates aNN2 at smaller temperatures due to the

missing attractive interactions. Therefore, modifications of the BU-HC approach

are desirable for applications at these temperatures.

IV.3 Estimating the hadron repulsion from the

lattice QCD data

The BU-HC formalism discussed above can come into use to model the repulsive

interactions between baryons in the HRG model. Here the approach of Ref. [155]

is followed, so an extension of the ideal HRG model with repulsive interactions

only between pairs of baryons and between pairs of antibaryons is employed.

Hence, the system consists of three independent subsystems: non-interacting

mesons, interacting baryons, and interacting antibaryons. Thus, the total pressure

can be split into three contributions p = PM + PB + PB̄. Additionally, it is

assumed that at vanishing baryon density the 2nd virial coefficient, vBB(T ), which

characterizes the baryon-baryon interactions, is the same for all (anti-)baryon

pairs at a given temperature. The nucleon-nucleon values, vNN(T ), are assumed

for all baryon-baryon and antibaryon-antibaryon pairs, i.e. vBB(T ) ≡ vNN(T ).

This simplifying assumption of similar repulsive core for different baryon pairs

is supported by lattice QCD simulations [156]. This model does not take into

account the role of high thermal pressure on all hadron volumes [157, 158], hence,

probably overestimates the repulsive effects at high temperatures.

The partial pressure of the baryonic and antibaryonic subsystems in the BU-HC

approach is expressed as

PBU
B (T, µB) = T φB(T )λB − T vBB(T ) [φB(T )λB]2, (IV.19a)

PBU
B̄ (T, µB) = T φB(T )λ−1

B − T vBB(T ) [φB(T )λ−1
B ]2, (IV.19b)
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where λB = exp(µB/T ) and

φB(T ) =
∑
i∈B

∫
dmρi(m)

dim
2 T

2π2
K2

(m
T

)
(IV.20)

is the baryonic spectrum, di is the degeneracy- and ρi is a properly normalized

mass- distributions for hadron type i, and where the sum goes over all baryons in

the system. We include all baryon states, which are listed as “confirmed” in the

Particle Data Tables [159]. The non-zero widths of the resonances are assumed to

have Breit-Wigner shapes and are taken into account in the function ρi, following

Refs. [160, 161].

The model given by Eq. (IV.19) is titled BU-HRG. The baryonic pressures

(IV.19a) and (IV.19b) contain only quadratic interaction terms, which are propor-

tional to the 2nd cluster integral. At large enough values of temperature and/or

fugacity, the baryonic pressure becomes negative due to the negative sign of the

quadratic term. Thus, this pure BU approach is expected to break down at some

point, when the higher order terms of the cluster expansion become significant. in

the scope of the previous results, it is instructive to consider the EV-HRG model

with an effective temperature dependent excluded volume parameter. The partial

pressure of baryons and of antibaryons in such a model reads(4)

P ev
B (T, µB) = T φB(T )λB exp

(
− vBB(T )P ev

B (T, µB)

T

)
, (IV.21a)

P ev
B̄ (T, µB) = T φB(T )λ−1

B exp

(
− vBB(T )P ev

B̄
(T, µB)

T

)
. (IV.21b)

The pressure of the EV-HRG model suggested in (IV.21) is consistent with the

BU approach (IV.19) up to the second order of the cluster expansion. However,

the EV-HRG model also contains nonzero higher order coefficients in the cluster

expansion. Hence, the large differences between the two models may indicate that

the second order cluster expansion is not applicable any longer.

The temperature dependence of the baryon susceptibilities at µB = 0 of the

n-th order χBn is defined as

χBn =
∂n(p/T 4)

∂(µB/T )n

∣∣∣∣
µB=0

. (IV.22)

These higher-order susceptibilities are important measures of how the systems

respond to changes in the µB/T values and are especially sensitive to the various

(4)The Fermi statistics effects are small in the considered temperature region and at µB = 0.
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Figure IV.4: The temperature dependence of (a) χB2 and (b) χB4 /χ
B
2 net baryon

number susceptibilities at µB = 0, as calculated within the I-HRG model (dashed

black lines), the BU-HRG model (red bands), and the EV-HRG model (blue

bands) with the temperature dependent baryon excluded volume parameter, using

for all (anti)baryons the Beth-Uhlenbeck value for nucleons. The bands result

from the variation of the nucleon hard-core radius in the range rc ' 0.25− 0.3 fm.

The lattice QCD results of the Wuppertal-Budapest [162, 163] and HotQCD [164,

165] collaborations are shown by the full and open symbols, respectively. Solid

lines correspond to the EV-HRG model with vBB = 1 fm3.

baryon-baryon interactions. In Figure IV.3 the effects of the repulsive hard-core

interactions between baryons are considered for these observables: the BU-HC
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calculations of vNN(T ) for nucleons with rc = 0.25− 0.3 fm, are used for vBB(T )

in Eqs. (IV.21a) and (IV.21b).

The resulting χB2 (T ) and χB4 (T )/χB2 (T ) are depicted in Fig. IV.4. The red

bands correspond to the BU-HRG model (IV.19a,IV.19b), the blue bands depict

the EV-HRG model (IV.21a,IV.21b), and the ideal HRG model results are shown

by the dashed lines. The lattice QCD results of the Wuppertal-Budapest [162, 163]

and HotQCD [164, 165] collaborations are shown by the full and open symbols,

respectively. At lower temperatures, T . 110 MeV, the effect of the repulsive

interactions on χB2 (T ) and χB4 (T )/χB2 (T ) is negligible since the system pressure is

low enough there. This is in spite of the strong increase of the excluded-volume

parameter in the BU-HC approach at low temperatures. The effect is small

because of an exponential decrease of the density of baryons, which renders the

influence of baryonic interactions negligible at low temperatures and µB = 0.

Repulsive baryon-baryon interactions suppress baryon susceptibilities at higher

temperatures, compared to the ideal HRG result. At moderate temperatures,

T . 150 MeV for χB2 , and T . 130 MeV for χB4 /χ
B
2 , this suppression is described

nearly identically in BU-HRG and EV-HRG models. The total densities of baryons

and of antibaryons at µB = 0 increase strongly as the temperature is increased.

Higher terms of the cluster expansion become significant at higher temperatures.

That can be noted already by the presence of large differences between the BU-

HRG and the EV-HRG models at T & 160 MeV. Figure IV.4 suggests that χB2 is

negative at T & 190 MeV in the BU-HRG model. By definition, χB2 characterizes

the width of the fluctuations of the net baryon number. The negative values of χB2
in the BU-HRG model signal the breakdown of the second order virial expansion

at high temperatures.

In contrast, the EV-HRG model predicts a reasonable behavior of the baryon

number susceptibilities even at higher temperatures. The EV-HRG calculations

with vBB(T ) = vNN(T ) calculated within BU-HC approach for rc = 0.25 fm give

an overall satisfactory description of the lattice data up to T ' 175− 180 MeV.

The deviations of the ideal HRG model from lattice QCD data for the baryon

susceptibilities in the vicinity and even above the pseudocritical temperature can

be understood in terms of the repulsive baryonic interactions. This conclusion

was reported previously in Refs. [155, 166, 152].

Calculations of χB2 and χB4 /χ
B
2 within the EV-HRG model with a constant

temperature independent value vNN = 1 fm3, motivated by the aNN2 estimates
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in Fig. IV.3, are depicted in Fig. IV.4 (solid lines). This further improvement of

the description of the lattice data in the crossover region by the EV-HRG model

with vNN = 1 fm3 provides effectively a good approximation of the quantum

description of baryon-baryon interactions in the crossover temperature region.

Thus, this model can be used for the interpretation of the lattice QCD data;

the model is also quite reasonable for the thermal analysis of baryon-related

observables in heavy-ion collision experiments. Note that the value vNN = 1 fm3

was also suggested in the recent analysis of the lattice QCD data at imaginary

baryochemical potential [118].



V
A unified approach for
QCD matter: Chiral
Mean Field model

In the previous chapters, the aspects of confined QCD matter were discussed with

a main focus on the post freeze-out stages of heavy ion collisions. However, at

high energy densities QCD matter appears in a deconfined state where free quarks

are the dominant degrees of freedom and hadrons are suppressed. This chapter

presents a unified approach for the QCD matter, the CMF model. The CMF model

includes many aspects of QCD phenomenology, together with the HRG description

and EV interactions discussed before, and allows for a self-consistent description

of the hadron-quark transition, thus being applicable for the whole QCD phase

diagram. Here, the CMF model is described in detail with all underlying equations

and degrees of freedom. The quark sector of the CMF model is tuned to describe

the µB = 0 thermodynamics data of lattice QCD. The resulting lines of constant

physical variables as well as the baryon number susceptibilities are studied in some

detail in the temperature/chemical potential plane. The CMF model predicts

three consecutive transitions, the nuclear first-order liquid-vapor phase transition,

chiral symmetry restoration, and the cross-over transition to a quark matter phase.

All three phenomena are crossover for most of the T − µB-plane. The deviations

from the free ideal hadron gas baseline at µB = 0 and T ≈ 100− 200 MeV can be

attributed to remnants of the liquid-vapor first order phase transition in nuclear

matter. The chiral crossing transition determines the baryon fluctuations at much
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higher µB ≈ 1.5 GeV. At high baryon densities, µB ≈ 2.4 GeV, the behavior of

fluctuations is controlled by a cross-over to quark matter. The CMF model is

applied to model stable neutron stars by solving the Tolman–Oppenheimer–Volkoff

equation. The CMF predictions for the NSs masses, and radii are found to be

in agreement with modern astrophysical constraints. The calculated values of

NSs tidal deformabilities agree well with the values obtained from the analysis of

gravitational waves emitted from binary neutron star mergers.

This chapter is based on the research performed by the author of this thesis

and published in Refs.[2, 4, 5, 6, 8].

V.1 Chiral Mean Field model

The Chiral SU(3)-flavor parity-doublet Polyakov-loop quark-hadron mean-field

model (or the CMF model) describes the thermodynamics of strongly interacting

matter in different regimes. The CMF model allows to calculate the equation of

state (EOS) of QCD matter at a wide range of temperatures and densities, as well

as the transition from the hadronic to free quark regime. It incorporates major

concepts of QCD phenomenology: chiral interactions in the baryon octet [167],

the full PDG hadron list [93], excluded volume repulsive interactions among

all hadrons [128, 168], baryon parity doubling [169], and quarks coupled to an

effective Polyakov loop Potential (similar to the Polyakov Nambu Jona-Lasinio

model [170]).

The main component of the CMF model is the three flavor chiral Lagrangian

for strange hadronic matter first introduced in [167]. The Lagrangian LSU(3)f

consists of the following parts:

LSU(3)f = LB + Usc + Uvec (V.1)

here LB describes the scalar and vector mean field interactions between the ground

state octet baryons and their parity partners:

LB =
∑
b

(B̄bi∂/Bb) +
∑
b

(
B̄bm

∗
bBb

)
+

∑
b

(
B̄bγµ(gωbω

µ + gρbρ
µ + gφbφ

µ)Bb

)
, (V.2)

where the index b runs through all ground-state baryons, p, n, Λ, Σ+,0,−, Ξ0,−, and

their respective parity partners, N(1535)+,0, Λ(1405), Σ(1750)+,0,−, Ξ(1950)0,−.
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Usc describes the potential of the scalar σ and ζ fields, and Uvec is the potential of

the vector ω, ρ, and φ fields.
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Figure V.1: Masses of baryon octet and their parity partners as functions of T at

µB = 0, note smooth appearance of mass degeneracy at high T between ground

state baryons and their respective parity partners.

The effective masses of the ground state octet baryons and their parity partners

(assuming isospin symmetry) read [171]:

m∗b± =

√[
(g

(1)
σb σ + g

(1)
ζb ζ)2 + (m0 + nsms)2

]
± g

(2)
σb σ , (V.3)

where the various coupling constants g
(∗)
∗b are determined by vacuum masses and

by nuclear matter properties, the SU(3) breaking mass term that generates an

explicit mass corresponding to the strangeness ns of the baryon is included. This

approach describes parity doubling in the baryon octet implying a mass splitting

between the baryon parity partners which is assumed to be generated by the

scalar mesonic fields σ and ζ [169, 172, 48, 173].

The chiral field dynamics are determined self consistently by the scalar meson

interaction potentials, driving the spontaneous breaking of the chiral symmetry:

Usc = V0 −
1

2
k0I2 + k1I

2
2 − k2I4 + k6I6

+ k4 ln
σ2ζ

σ2
0ζ0

+ Usb, (V.4)
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with

I2 = (σ2 + ζ2) , I4 = −(σ4/2 + ζ4),

I6 = (σ6 + 4 ζ6) (V.5)

where V0 is fixed by demanding that the pressure vanishes in the vacuum. In

addition, an explicit symmetry breaking term is introduced in the scalar potential:

Usb = m2
πfπσ +

(√
2m2

kfk −
1√
2
m2
πfπ

)
ζ (V.6)

The mean field vector repulsion is mediated by the fields: ω for repulsion at

finite baryon densities, the ρ for repulsion at finite isospin densities, and the φ for

repulsion when finite strangeness density is generated. The vector fields depend

on the respective conserved charge densities and are controlled by the potential

Uvec

Uvec = −1

2

(
m2
ωω

2 +m2
ρρ

2 +m2
φφ

2
)

− g4

(
ω4 + 6β2ω

2ρ2 + ρ4 +
1

2
φ4

(
Zφ
Zω

)2

+ 3
(
ρ2 + ω2

)(Zφ
Zω

)
φ2

)
(V.7)

Finally the remaining mesonic and non-interacting hadronic degrees of freedom

are included in a form of Hadron Resonance Gas as a thermal heat bath according

to their vacuum masses.

Altogether, the baryonic interactions allow for a reasonable description of

nuclear matter properties. The coupling constants of the hadronic sector and

the parameters of the effective potential for these fields (see [171] for details) are

chosen such that the properties of nuclear matter are reproduced: ground state

density n0 ≈ 0.16 fm−3, the binding energy per nucleon is E0/B ≈ −15.2 MeV,

asymmetry energy S0 ≈ 31.9 MeV, and compressibility K0 ≈ 267 MeV. All fixed

parameters and coupling constants used in the CMF model are summarized in

table V.1.

The quark degrees of freedom are introduced as in the Polyakov-loop-extended

Nambu Jona-Lasinio (PNJL) model [170], where their thermal contribution is

directly coupled to the Polyakov Loop order parameter Φ [5], the quark thermal
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mπ 138 MeV gqσ -1 gρp,n ±4.55

mK 498 MeV gsζ -1 gρΛ 0

mω 783 MeV g
(1)
σN -9.45 gρΣ± ±3.63

mρ 761 MeV g
(1)
σΛ -7.62 gρΞ± ±1.816

mφ 1019 MeV g
(1)
σΣ -5.83 gφN 0

m0q 253 MeV g
(1)
σΞ -4.89 gφΛ -3.34

δmq 56 MeV g
(2)
σB 3.21 gφΣ -3.34

ms 130 MeV g
(1)
ζN -0.899 gφΞ -6.69

fπ 93 MeV g
(1)
ζΛ -3.49 k0 2422 MeV2

fK 122 MeV g
(1)
ζΣ -6.02 k1 4.818

m0 759 MeV g
(1)
ζΞ -7.35 k2 -23.3

T0 180 MeV g
(2)
ζB 0 k4 764 MeV4

a0 3.51 gωN 5.45 k6 10−4 MeV−2

a1 -11.67 gωΛ 6 β2 1500

a2 9.33 gωΣ 8.175 Zφ 2.239

b3 -0.53 gωΞ 4.905 Zω 1.322

Table V.1: List of default parameters and coupling constants of the CMF model.

contribution reads as:

Ωq = − V T
∑
qi∈Q

dqi
(2π)3

∫
d3k

1

Nc

ln
(

1 + 3Φe−(E∗
qi
−µ∗qi)/T

+ 3Φ̄e−2(E∗
qi
−µ∗qi)/T + e−3(E∗

qi
−µ∗qi)/T

)
, (V.8)

where the index qi runs through u, d, s flavors. The anti-quark contribution can

be obtained by replacing µ∗qi → −µ∗qi , and Φ ↔ Φ̄. The Polyakov-loop order

parameter Φ effectively describes the gluon contribution to the thermodynamic

potential and is controlled by the temperature-dependent potential [5]:

UPol(Φ,Φ, T ) = −1

2
a(T )ΦΦ (V.9)

+b(T ) ln
[
1− 6ΦΦ + 4(Φ3 + Φ

3
)− 3(ΦΦ)2

]
,

a(T ) = a0T
4 + a1T0T

3 + a2T
2
0 T

2,

b(T ) = b3T
4
0

The dynamical quark masses m∗q of the light and strange quarks are also
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determined by the σ- and ζ- fields, with the exception of a fixed mass term m0q,

which can be understood as the contribution of the gluon condensate to the quark

mass:

m∗u,d = −gu,dσσ + δmu, d+m0u,d ,

m∗s = −gsζζ + δms +m0q . (V.10)

The full grand canonical potential of the CMF model can be expressed as

follows:

Ω = Ωq + Ωq̄ + Ωh + Ωh̄ − (Usc + Uvec + UPol) (V.11)

Ωh and Ωh̄ are the contributions from the hadrons which are the octet and the

parity partners according to LB and the rest of the hadron list is incorporated

in a form of a hadron resonance gas. Usc is the mean field interaction potential

of the scalar mean fields σ and ζ, and Uvec of the repulsive vector mean fields ω,

ρ, and φ. UPol describe an effective gluon potential contribution as a part of the

PNJL description.
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Figure V.2: Contribution to the total pressure separately from quarks+gluons and

from hadrons as functions of temperature T at µB = 0. The suppression of quarks

at low temperatures is provided due to the values of Polyakov loop parameter Φ

and Φ̄, hadrons at high T are suppressed by excluded volume interactions.
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The transition between the quark and hadronic degrees of freedom is controlled

by two mechanisms (1):

1. As the Polyakov loop order parameter becomes finite, free quarks can appear.

2. Hadrons are suppressed in the deconfined phase due to the excluded volume

interactions.

The suppression of hadrons at high energy densities is maintained by their excluded-

volume hard core interactions [128, 171]. Due to the assumption of finite size, the

hadrons are attributed an explicit volume term. This volume term then introduces

an effective chemical potential µeff
j :

µeff
j = µ∗j − vj P (V.12)

for each hadronic particle specie j. Here, P is the total pressure of the system

and the vj are the EV parameters for the different particle species. The quarks in

the CMF model are always assumed to be point-like.

As soon as quarks contribute to the pressure P , they reduce the hadronic

density ρi by lowering their chemical potential:

ρi =
ρid
i (T, µ∗i − vi P )

1 +
∑

jεHRG

vjρid
j (T, µ∗j − vj P )

, (V.13)

where i refers to all possible contributions from baryons, mesons as well as quarks.

In its default version, the CMF model predicts two first order phase transitions

for isospin symmetric matter. The nuclear liquid-vapor phase transition mimics the

transition from dilute gas of nucleons to the dense nuclear matter, this transition

is located at µB ≈ mN with critical temperature TCP ≈ 17 MeV. At higher

densities, the CMF model exhibits a first order phase transition due to the chiral

symmetry restoration among baryon parity partners [171, 175] with rather low

critical temperature TCP ≈ 17 MeV. The transition occurs due to the rapid drop

in the chiral condensates σ and ζ so the mass gap between parity partners is

reduced.

(1)Note in an earlier version of the CMF model which does not include the chiral partners of

the baryons, the deconfinement phase transition is moderated by an additional Φ term in the

effective mass of the fermions [174]. Here the point-like hadrons are suppressed by an explicitly

µB dependent term in the Polyakov Loop potential.
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Figure V.3: Trace anomaly I at µB = 0 as a function of temperature T . Compari-

son between model predictions and LQCD results [177, 24].

The CMF model can be applied to study neutron stars without changing its

parameters. In this case, electric charge neutrality and β-equilibrium are imposed,

so the conditions of the neutron star interior are fulfilled. To model the NS

crust, which presumably consists of mostly neutron-rich nuclei and clusters in

equilibrium, additional input is needed. That is done by matching the classical

crust-EOS [176] to the CMF-EOS at nB ≈ 0.05 fm−3, such that below this density

the matter is described by the crust EOS.

V.2 Constraining the CMF model to the lat-

tice data

To introduce the constraints on the CMF model parameters from lattice QCD at

high temperature and zero net baryon density the QCD trace anomaly I, “the

interaction measure”, can be used as a reference:

I

T 4
=
ε− 3P

T 4
. (V.14)

Trace anomaly I is assumed to depict the appearance of quark degrees of freedom.

I effectively reflects the change of the number of degrees of freedom with an

increase of temperature [178]. The hadronic models are capable of reproducing
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lattice data on I for T . 150 MeV [171]. In this region, I reflects the increase of the

number of degrees of freedom due to the excitation of heavier resonances. However,

the subsequent peak in I and the following decrease is attributed to the appearance

of quarks and gluons and so to the reduction of degrees of freedom. With this

assumption, the free parameters of the present model, namely, parameters of the

quark sector, are tuned to reproduce the lattice data for the trace anomaly.

The LQCD trace anomaly permits to calculate all observable thermodynamic

quantities. An analysis of other Lattice data (chiral susceptibility) seem to

show that for chirally related observables there is a crossover transition with a

pseudo-critical temperature at T ≈ 156 MeV. The analysis of this data by a

phenomenological model suggests a half-hadron, half-quark composition in that

region [179].

The parameters of the CMF model’s quark sector needed to reproduce the trace

anomaly data from LQCD are found by a least mean squares fitting procedure for

the parameters of the Polyakov loop potential UPol(Φ, Φ̄, T ) and for the coupling

constants gqσ and gsζ of the quarks to the chiral condensates σ and ζ, respectively.

All in all this fixes 5 model parameters, T0, a1, a2, b3, gqσ = gsζ (we set gqσ and

gsζ to the same value). The quark parameter fitting is performed through a scan

over the parameter space on a 8× 6× 7× 6× 6 sized grid, minimizing the root

mean square deviation of the CMF model data on I/T 4 from the computed on

the lattice results. The resulting parameter values are presented in Table V.2. A

comparison of the CMF model to the lattice data is shown in Fig. V.3.

T0 (MeV) a1 a2 b3 gqσ = gsζ

180.0 -11.67 9.33 -0.53 -1.0

Table V.2: Best fit values of parameters extracted from a scan over the parameter

space.

The values in Table V.2 suggest couplings gqσ, gsζ of quarks to the chiral

fields of about 1/3 of the baryons, which one may expect from the additive quark

model. Larger values of quark couplings would significantly influence the size of

the peak in interaction measure I/T 4, as studied in Ref. [180]. In the case of large

values of gqσ, gsζ the strong interplay between the chiral symmetry restoration and

the deconfinement transition would result in too large values of the interaction

measure. The large peaks in the baryon number susceptibilities are in contrast to

the lattice data.
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Figure V.4: The temperature dependence of net baryon number susceptibility ratio

χB4 /χ
B
2 is shown as a function of temperature T . The red line depicts calculations

within the CMF model, blue and green color bands are the results of the lattice

QCD calculations from the Wuppertal-Budapest and the HotQCD collaborations,

respectively [162, 163, 164, 165].

Higher order baryon number susceptibilities χBn that are an LQCD measure of

the particle number fluctuations

χBn =
∂n(P/T 4)

(∂µB/T )n
, (V.15)

as well as the curvatures of various lines of constant physical quantities are also

interesting in the scope of LQCD data.

The behavior of the χB4 /χ
B
2 at µB = 0 is presented in this section, the study

for finite values of µB is presented in Sec. V.3. A comparison of the CMF model

with the available LQCD data for the χB4 /χ
B
2 is shown in Fig. V.4, indicating a

fair agreement of the CMF model with the lattice data.

Lattice QCD studies often explore regions of finite µB by using the Taylor

series expansion. The Taylor expansion in a series of T and µB up to O(µ4
B) was

used in [164] to calculate “lines of constant physics”: i.e. lines in the T −µB plane

where certain thermodynamic quantities like pressure, energy density, and entropy

density P, ε, s, are constant. The coefficients κf2 and κf4 (f ≡ P, ε, s) represent
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these contour lines in the T − µB plane using the following parametrization [164]:

Tf (µB) = T0

(
1− κf2

(
µB
T0

)2

− κf4
(
µB
T0

)4
)
. (V.16)

Here the coefficients κf2 and κf4 are calculated from Eqs. (V.17) and (V.19), see

Ref. [164] for details:

κf2 =
1

T0

f2(T0)
∂f0(T )
∂T

∣∣∣
(T0,0)

, (V.17)

κf4 =

1
2
(κf2)2 T 2

0
∂2f0(T )
∂T 2

∣∣∣
(T0,0)

− κf2
(
T0

∂f2(T )
∂T

∣∣∣
(T0,0)

− 2f2(T0)

)
+ f4(T0)

∂f0(T )
∂T

∣∣∣
(T0,0)

. (V.18)

Here

f2n(T ) =
1

(2n)!

∂2nf(T, µB)

∂ (µB/T )2n

∣∣∣∣
(T,0)

. (V.19)

The coefficients κf2 and κf4 are calculated in the CMF model for the pressure

P , the energy density ε, and the entropy density s as functions of the temperature

T . The CMF model predictions are in a reasonable agreement with recent LQCD

calculations [164]. The rather low values of κf2 and κf4 suggest also small curvatures

of the lines of constant physical observables in the temperature region studied

here. Effects of the finite chemical potential are small, therefore these lines are

almost horizontal in the T -µB plane. The coefficients for the entropy and energy

density indicate that κs2 < κε2, meaning a decrease of the entropy density along

the lines of constant energy density.

V.3 The CMF model phase diagram

Two order parameters, the chiral condensate σ and the Polyakov loop Φ, plus the

interacting baryon octet within the SU(3)-flavor σ-model permit four different

phases within the CMF model. These phases are characterized as:

• A dilute gas of interacting hadrons;

• A hadronic liquid – a dense hadronic phase, the transition from the hadron

gas to the hadronic liquid is the nuclear liquid-vapor phase transition. Quarks

start to appear in the hadronic liquid, but they are negligible;
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Figure V.5: Second κf2 (a) and fourth κf4 (b) coefficients of line of constant pressure

P , energy density ε and entropy density s versus temperature T . Explanation

and lattice data can be found at [164].

• A chirally restored phase, where the mass symmetry between the parity

partners is restored. Here the quark masses are decreased, hence quarks

give a sizable contribution to the thermodynamics;

• A quark matter phase, where baryonic density is carried by quark degrees

of freedom. The gluon contribution is modeled by the Polyakov loop poten-

tial [181] and 1
3
nq/nB = 1.
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Figure V.6: Ratios of the CMF baryon number susceptibilities χB
3 /χ

B
2 skewness

(a) and χB
4 /χ

B
2 kurtosis (b) in the baryon chemical potential - µB and temperature

- T plane. Note the 3 distinct critical regions, with their remnants reaching from

T = 0 up to T > 200 MeV. Note the absence of calculation results for skewness

at µB ≈ 0 and T < 100 MeV region.

The baryon number susceptibilities χBn , which can be calculated using Eq. V.15,

are proportional to the respective cumulants of the baryon number distribution.

Higher-order baryon number susceptibilities do increase in proportion to the

increasing power of the correlation length [182]. Such an increase in correlation
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Figure V.7: The normalized non-strange chiral condensate σ/σ0 (the sigma field)

(a), the quark fraction 1
3
nq/nB (b), and the value of Polyakov loop Φ (c) of the CMF

model in baryon chemical potential µB and temperature T plane. Note that the

rather fast change of the chiral condensate appears at moderate energy densities,

while deconfinement appears only at much higher energy densities/chemical

potentials.

length would be reflected in large values of the 2nd and higher-order susceptibilities

in the vicinity of a critical point and in the region of phase transition. Hence, these

quantities are useful indicators of critical behavior in the CMF model. Deviations

of χBn from the corresponding baselines indicate a transformation between different

phases, which is reflected usually in a non-monotonic behavior of these observables,

e.g. skewness χB3 /χ
B
2 and kurtosis χB4 /χ

B
2 .

The calculated skewness (χB3 /χ
B
2 ) and kurtosis (χB4 /χ

B
2 ) (Fig. V.6) in the CMF

model exhibit non-trivial structures in the T -µB phase diagram. The regions

of deviations from the baseline separate regions with quantitatively different

properties, which are often dubbed – “phases”. Note the sharp phase boundaries

indicate first order phase transitions, FOPT, these are only observable at quite

moderate temperatures T < 50 MeV. The hadron phase located at both low
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temperatures T and baryon chemical potential µB represents a dilute gas of

interacting hadrons. There, the fluctuation measures χB2 /χ
B
1 , χB3 /χ

B
2 , χB4 /χ

B
2 are

quite close to unity, consistent with the Skellam distribution baseline. The system

exhibits a FOPT to a dense hadronic liquid phase with a rising chemical potential

µB ≈ 1 GeV. Here, the fluctuations are reduced due to the repulsive interactions.

Quarks start to appear in moderation. The liquid phase exhibits an additional

FOPT at µB ≈ 1.5 GeV, and second order transition at µB ≈ 2.4 GeV, which

show up in the structure of the baryon number susceptibilities at these high µB.

The transition at µB ≈ 1.5 GeV is due to the restoration of chiral symmetry.

The transition at µB ≈ 2.4 GeV is due to the quark matter phase where the

baryonic density is mainly contributed by quarks. The non-monotonic behavior

of the fluctuation measures χB3 /χ
B
2 and χB4 /χ

B
2 reflect the transitions. In contrast

to the liquid-vapor transition, those two transitions do not change the Skellam

baseline. Hence, the fluctuation measures are rather small . 1 before and after

the “transition” .

The chiral critical point of the CMF model is located at a rather low tem-

perature T chCP ≈ 17 MeV. This value is close to the critical temperature of the

nuclear liquid-gas transition in the same model, the critical µCPB is remarkably

different, though: the appearance of the parity partners controls the dynamics

of the chiral fields: as the parity partners - in the CMF model - obey the same

repulsive interaction strength as the nucleons, the critical point appears at that

low temperature. This phenomenon has been observed in various mean field

models before.

The different phases shown in Fig. V.7 in the T − µB plane are related to

the chiral field σ and the quark fraction. The chiral field is close to its vacuum

value, σ = σ0, at the hadron gas region, here the quark fraction is close to zero, as

expected. Both observables deviate from their vacuum values at higher densities

and temperatures only.

The chiral field drops off more slowly at µB = 0 than seen in lattice QCD

calculations, where the chiral field rapidly drops around T = 155 MeV. The

reason for this discrepancy is due to the fact that in the present CMF model

the thermodynamics at these temperatures are strongly influenced by the many

hadronic states which are not coupled to the chiral fields here. Baryon resonances

like the ∆ or mesons like π are significantly abundant at these temperatures and

thus may significantly affect the values of chiral field. The coupling of the chiral
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Figure V.8: The CMF model results for the square of the isentropic speed of

sound c2
s =

(
∂p
∂ε

)
s/nB

, calculated along lines of constant total entropy density per

net baryon density s/nB = const, as from Eq. V.20.

field to the hadronic states beyond the baryon octet was studied in [183], it was

found that this scenario brings the chiral transition to lower temperatures.

The speed of sound is another important signature for the simulations of

the dynamics of heavy ion collisions and neutron star mergers. c2
s/nB

presents a

derivative c2
s/nB

= ∂P
∂ε

at constant S/A = s/nB entropy per baryon, that allows

to estimate the speed of propagation of sound-like excitations in non-dissipative

hydrodynamic evolution. The isentropic speed of sound can be calculated as [184]:

c2
s/nB

=
n2
B ∂T s− 2nB s ∂µBs+ s2 ∂µBnB

(ε+ P )
(
∂µBnB ∂T s− (∂TnB)2) (V.20)

The partial derivatives with respect to the chemical potential and to the tempera-

ture are performed at constant temperature and at constant chemical potential,

respectively. The calculated speed of sound shows three local minima which

correspond to the three locally softest points of the EoS. These three minima

correspond to phase boundaries, where the baryon number susceptibilities present

a non-monotonic behavior. Note, that the speed of sound reaches quite large

values, c2
s ≈ 0.7, in the higher density region of nuclear matter. This high speed

of sound results due to the strong repulsion between the baryons, before the onset

of deconfinement. Thereafter, the vector repulsion and baryon excluded volume
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cease, as such terms have not been predicted for the quarks [185, 186].

V.4 Taylor expansion at large densities and the

role of HRG particle list
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Figure V.9: Lines of constant pressure over nB − T plane, color indicates the

value of pressure P at the contour, baryon density nB is normalized to the nuclear

saturation density n0. The red dashed line indicates the line of µB/T = π, this

line lies in a proximity of abrupt tilt of constant pressure lines. The grey shaded

regions illustrate mixed regions produced by nuclear liquid-vapor and chiral phase

transitions. Black dots indicate critical endpoints.

The LQCD studies of the QCD phase diagram are mainly carried out via the

Taylor expansion in series of µB/T [187]. The current estimates of a radius of

convergence of the expansion suggest RµB/T ∼ 3 at T & 135 MeV [164, 188], which

limits the applicability of the lattice studies of matter at large baryon densities.

The CMF model allows studying physics also at much higher µB. On Fig. V.9

(left) the lines of constant pressure – the isobars – are presented across the nB −T
plane. Additionally, the µB/T = π line is plotted, which is a convergence radius

limitation that may arise due to the Roberge-Weiss [189] singularity at imaginary

values of chemical potential, µB/T = iπ. RµB/T ≈ π values have been suggested

by means of a cluster expansion model (CEM) analysis of LQCD data [188].
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Fig. V.9 (left) illustrates that up to µB/T ≈ π the pressure changes insignificantly

with isobars being virtually horizontal. In this region, the pressure is dominated

by particles and antiparticles almost on the same level and for T & 100 MeV

is dominated by mesons that do not carry baryon charge. For temperatures

T > 100 MeV the convergence region significantly widens due to the increasing

dominance of mesonic degrees of freedom which smears out the effects of finite µB.

At sufficiently large values of T the matter is mostly composed by quarks and

gluons with the latter not carrying the baryon charge. For quark-gluon matter, the

radius of convergence is expected to be limited by the Roberge-Weiss transition

although the answer may depend on the exact nature of this transition [190].

The presented behavior suggests that the Taylor expansion in µB/T in the region

µB ≈ 0 only allows to explore the matter where effects of finite baryon densities

are small and the pressure is dominated by mesons and gluons, the pressure of

particles that carry the baryon charge is on the same level as of antiparticles with

a negative baryon charge. At temperature T ≈ 150 MeV the expansion is reliable

up to nB . 2n0 and decreases for smaller temperatures. This finite region of

baryon density limits usage of the LQCD results and makes it inapplicable to low

energy heavy ion collisions and neutron star mergers. Therefore, hydrodynamical

simulations of such systems require the EoS produced by different means.

We also examine the role of mesonic and resonance degrees of freedom in

the hydrodynamic evolution of a hot, strongly interacting fireball. The relevance

of mesons and hadronic resonances in the expansion of the fireball created in

heavy ion collisions was pointed out a long time ago [191]. However, the role

of these thermally excited states in hot hadronic matter created in neutron star

mergers is still under investigation [4, 6]. Figure V.9 presents isentropes – the

lines of constant entropy per baryon S/A = const – which represent trajectories

in the nB-T plane of an ideal hydrodynamic expansion. The trajectories show

that an omission of mesons and baryonic resonances leads to an artificial increase

of temperature in the hydrodynamic evolution.

V.5 Application to heavy-ion collisions

The presented EoS is used as input for hydrodynamical simulations of both

heavy-ion collisions and neutron star mergers. To illustrate which regions of

the phase diagram can be reached in collisions at low and moderate collision
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Figure V.10: Isentropic trajectories, lines of constant entropy per baryon S/A,

calculated within the CMF model with the full particle list (solid) and only with

the stable baryons+quarks (dashed) where mesons and resonances are neglected.

Note the increase of temperature for the isentropes where mesons and resonances

are neglected.

energies, the stationary 1-dimensional Taub adiabat model is used [192, 191, 193].

The expansion is described at lines of constant entropy per baryon S/A = const

(isentropes). These lines depict the isentropic matter evolution of ideal fluid

dynamics at different collision energies.

The entropy is produced in the earliest stage of a heavy ion collision by the

violent shock compression [194]. During the system’s expansion, there is only a

moderate increase of entropy due to the rather small viscosity [195, 196], hence,

an isentropic expansion scenario is a reasonable approximation [197].

The expansion of the equilibrated matter then continues until the system

becomes so dilute that the chemical, as well as the kinetic freeze-out, occur and

the chemical composition is fixed.

The entropy per baryon (S/A) is calculated in the 1-dimensional stationary

scenario of central heavy ion collisions – the two colliding slabs of cold nuclear

matter [198, 191, 199, 200, 201, 202, 194] conserve the baryon number, energy and

momentum across the shock front in accord with the relativistic Rankine-Hugoniot

equation (Taub adiabat), RRHT, [192, 193]. Thus, the produced entropy is directly
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Figure V.11: Evolution of heavy-ion collisions in the high baryon density region of

the T−µB phase diagram for different collision energies. Black line – Taub adiabat

which describes the initial state of heavy ion collisions as an implicit function of
√
sNN . Colored lines – isentropic lines of constant entropy per baryon S/A at

different bombarding energies
√
sNN respectively. See Table V.3 for details.

√
sNN (GeV) Elab (GeV) S/A T (MeV) nB/n0

1
3
nq/nB

2.2 1.6 2.8 60.0 2.8 0.11

2.4 2.1 3.5 76.0 3.4 0.20

2.6 2.7 4.1 87.0 3.9 0.26

3.0 3.9 5.3 105.0 4.9 0.35

3.5 5.6 6.6 127.0 6.0 0.46

4.5 9.9 8.4 163.0 8.6 0.70

6.2 19.6 10.7 208.0 14.8 0.96

7.7 30.7 13.1 247.0 18.7 1.00

Table V.3: Initial state properties obtained from the one-dimensional stationary

case of the central heavy ion collision – Taub adiabat [192, 193]. The entropy

per baryon S/A, temperature T , the initial baryon density nB/n0 and the quark

fraction 1
3
nq/nB are presented for various colliding energies.

associated with the collision energy. The thermodynamic properties across the
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Figure V.12: Speed of sound at constant entropy per baryon c2
s (a) and quark

fraction (b) along the isentropes as functions of temperature T . Colored lines cor-

respond to different collision energies (initial entropy per baryon S/A), black solid

line correspond to the initial speed of sound and the quark fraction respectively.

Isentropes are the same as in Fig. V.11. See Table V.3 for details.

shock front are described by the RRHT-equation

(P0 + ε0) (P + ε0)n2 = (P0 + ε) (P + ε)n2
0 , (V.21)

where P0, ε0 and n0 correspond to the initial pressure, energy density, and baryon

density in the local rest frame of each of the two slabs. The two symmetric slabs
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consist of the nuclear matter in the ground state, P0 = 0, ε0/n0 −mN = −16

MeV and n0 = 0.16 fm−3. With any known relation P = P (ε, n), Eq. V.21 can

be solved. Furthermore, the collision energy is related to the created density as

follows:

γCM =
εn0

ε0n
, γCM =

√
1

2

(
1 +

Elab

mN

)
. (V.22)

Here, γCM is the Lorentz gamma factor in the center of mass frame of the heavy

ion collisions and Elab is the beam energy per nucleon in the laboratory frame

of a fixed target collision. This relation can be obtained from the full stopping

condition [191, 199, 200, 201, 202, 194, 203]. The initial state thermodynamics

(density, temperature and entropy) of the hot, dense participant matter is obtained

from Eqs. (V.21) and (V.22) as a function of the collision energy. The known

initial entropy yields the lines of constant entropy which give the trajectories of

the heavy ion collisions in the phase diagram.

The predicted isentropic expansion trajectories are shown in the T − µB plane

phase diagram in Fig. V.11.

Note that 1-dimensional stationary RRHT-adiabat scenario predicts a very

strong compression and heating already at intermediate bombarding energies.

The heavy ion participant system crosses the weak chiral transition predicted

by the present CMF model already at Elab ≈ 2 A GeV, i.e. at the GSI’s SIS18

accelerator facility. Here, the specific total entropy is predicted to reach S/A ≈ 3,

in accord with previous RMF-calculations [202] which also used the 1-D RRHT-

scenario. The T − µB values, T ≈ 70 MeV, µB ≈ 1.2 GeV, with net baryon

densities nB/n0 ≈ 3, reached here in heavy ion collisions, coincide with the T −µB
values reached in binary neutron star collisions, as recent general relativistic fully

3+1-dimensional hydrodynamical calculations have confirmed [204, 205] for the

gravitational wave event GW170817. At these temperatures and densities, T ≈ 70

MeV and nB/n0 ≈ 3, the RRHT model predicts that about 20% of the dense

matter is already transformed to deconfined quarks.

At Elab = 5.6 A GeV,
√
sNN = 3.5 A GeV roughly 40% of the CMF-matter is

in the quark state in the RRHT model – a prerequisite for hot quarkyonic matter.

Hence, this energy is of great interest: here the matter starts to be dominated by

quarks, rather than by in-medium baryons, at T > 100 MeV and µB & 1.5 GeV.

This is predicted by the present CMF model when using the 1-D RRHT ideal

hydrodynamics. This model predicts that the quarkyonic transition is crossed
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also at higher energies, using the isentropic expansion of the matter at specific

total entropy S/A > 6. Non-equilibrium viscous effects may increase the specific

entropy of the system. However, pre-freezeout radiation, e.g. of Kaons and other

hadrons with small scattering cross-sections which can escape early from the

semi-equilibrated baryon-rich, dense system can considerably lower the specific

entropy during the expansion. So an answer to the question of whether the local

entropy per baryon increases or decreases during the time evolution awaits more

detailed microscopic/macroscopic modeling.

Hence, heavy ion fixed target experiments of SIS at FAiR and SPS at CERN

as well as STAR BES program at RHIC probe temperatures from 50 < T < 280

MeV and chemical potentials from 500 < µB < 1700 MeV for the collision energy

range
√
sNN < 10 GeV considered here. In this region, the CMF model does not

show an additional phase transition, but the remnants of the nuclear liquid-vapor

transition at T ≈ 20 MeV. The chiral transition at larger chemical potentials can

influence the dynamical evolution, too. The present results suggest that heavy-ion

collisions mostly probe regions where the nuclear matter liquid-vapor critical point

dominates – hence, the observed baryon fluctuations are largely due to remnants

of the nuclear liquid-vapor phase transition. This had been suggested also in

previous works [206, 180, 155, 207]. The CP associated with the chiral symmetry

restoration in the CMF model lies at µB ≈ 1.5 GeV and T ≈ 17 MeV. This high

density region is, to the best of our knowledge, reachable only in the interiors of

neutron stars, NS, and in binary general relativistic NS mergers [208, 209, 205,

210, 4].

Fig. V.12 presents the square of the isentropic speed of sound, at fixed specific

entropy, c2
s and the quark fraction as functions of the temperature for the studied

collision energies, i.e. it shows how respective observable quantities evolve during

the cooling of the system while it expands. Those isentropic lines which belong

to
√
sNN > 4.5 GeV probe the softest point of the EoS, which is attributed to

the chiral symmetry restoration. At this energy region, there are strong local

maxima and minima of the speed of sound squared after which c2
s rapidly increases

during the expansion due to the decrease of the quark fraction, as a result of

the rapid appearance of baryons, the EoS stiffens quickly due to the hard-core

baryon-baryon repulsion. For collision energies
√
sNN < 4.5 GeV the initial state

is not dominated by quarks, hence, the system starts to expand at rather high

values of c2
s, which then monotonously decrease during the expansion, as a result
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of the diminishing repulsion between the baryons.

V.6 Application to neutron stars

The densities in a neutron star interior can exceed several times the nuclear matter

saturation density. At these high densities, the lack of detailed knowledge of the

equation of state and the appropriate microscopic degrees of freedom is similar as

in relativistic heavy ion collisions discussed above. The discussion of the role of

hyperonic, quarkyonic, and strange quark degrees of freedom at these NS densities

is ongoing.

The CMF model can be employed directly to describe neutron star matter.

Here we work without any changes to the coupling constants and parameters

used to describe the µB = 0 LQCD results. The temperatures isolated in neutron

star interiors are negligibly small, in comparison to what we observe in heavy

ion collisions and hot QCD scales. The calculations here are done in the limit

T = 0. In contrast to ordinary isospin symmetric nuclear matter, neutron star

matter is in β-equilibrium which preserves the total electric charge neutrality of

NS matter and locally ensures stability with respect to β-decay. As a consequence,

strangeness and hypercharges assume finite values. These constraints require the

presence of leptons.

In the case when two conserved charges are present, namely, electric and

baryonic, a phase transition is non-congruent [211, 212, 213] as a result of global

charge conservation. The CMF-model predicts only one, chiral phase transition

for matter in β-equilibrium. This transition is non-congruent and results only in

a moderate increase of baryon density between the two phases.

Figure V.13 depicts the CMF model predictions of the relative particle densities

of all different particle species present inside a CMF neutron star, at T = 0, as a

function of baryon chemical potential. One feature of the present CMF model is

the absence of baryon resonances (Deltas etc. and of hyperons) even though they

are included in the CMF model. Their total absence in the present CMF model

calculation at T = 0 is due to the very strong hard-core repulsion by the excluded

volume corrections.

The calculated EoS at T = 0 can be used as the input for the Tolman-

Oppenheimer-Volkoff (TOV) equation, which allows the relation between the mass

with the radius of any static, spherical, gravitationally bound object [214, 215],
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Figure V.13: Particle density ratios to the density of baryons ni/nB at T = 0, for

quarks a factor of 1/3 is used, presented as functions of baryon density nB. The

CMF-results are obtained for isospin symmetric matter (top) and in β-equilibrium

(bottom).

i.e. here a static neutron star, NS. The outer layers of a neutron star presumably

consist of mostly neutron rich nuclei and clusters in chemical and β- equilibrium.

Those nuclei are not yet included in the CMF model. Hence, another input for the

EoS of the NS crust is needed. Here, we use the classical crust-EoS [176] matched
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to the CMF-EoS at nB ≈ 0.05 fm−3.

Figure V.14 presents the results on the NS mass-radius relations obtained

by solving the TOV equation with the present CMF EoS, matched just to that

crust-EoS. The total fraction of the star’s mass which consists of light and strange

quarks is presented in color-code. The most massive stable solution of the TOV

equation contains only < 30% deconfined quarks, i.e. for lighter NS only a small

fraction of the star’s mass originates from deconfined quark matter. If the quark

fraction is increased above 30% the stars become unstable. The central density of

the stable stars can never exceed nB = 6n0, as shown in the lower part of Fig. V.14.

Here again, the maximum mass indicates the “last stable star”. The continuous

slow transition from NS matter to a sizable deconfined quark phase implies a

smooth appearance of quarks in the star structure. This does prohibit a strict

separation between a quark core and the hadronic interior of the star. This is

a CMF result due to the Polyakov loop implementation of the deconfinement

mechanism and no vector repulsion among quarks. The absence of quark repulsion

along with the smooth appearance of free quarks disfavors the “second family” of

neutron stars since in the quark phase EoS is soft and cannot support a strong

gravitational compression. Although LQCD data disfavors repulsive forces for

quarks, there is active discussion in the astrophysical community on the role of

the vector repulsion in the physics of neutron stars [216, 217, 218]. An approach

with density dependent quark vector coupling is developed in [219] where it is

argued that the repulsion arises from non-perturbative gluon exchange.

The Quarkyonic Matter-model yields similar to our results [220]. There the

deconfinement is realized by the appearance of the quarks from inside of the Fermi

sea while the hadrons reside exclusively on the surface shell in momentum space.

A similar approach to deconfinement was suggested in [221, 222], however, there

the produced mass-radius diagram differs from the CMF-model [2] due to the

different realization of the chiral interactions.

The response of a neutron star to non-spherical gravitational fields is reflected

in the tidal deformability coefficient λ [223], which depends strongly on the EoS.

During the inspiral phase of the binary neutron star merger, both neutron stars

experience tidal deformations induced by the other respective accompanying

neutron star partner. The tidal deformability λ is a measure of the induced

quadruple moment Qij in a response to the external tidal field Eij:

Qij = −λEij . (V.23)
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λ is directly proportional to the second Love number k2:

λ =
2

3
k2R

5 . (V.24)

For convenience, usually the dimensionless tidal deformability Λ is presented as:

Λ =
λ

M5
=

2

3
k2

(
R

M

)5

. (V.25)

Here, M and R are the mass and radius of the neutron star. A proper value of

Λ is important for the description of the inspiral stage during the merger of two

neutron stars.

Various estimates of Λ emerged after the detection of GW170817 by the LIGO

and the Virgo collaborations [224]. Ref. [225] argued that for a 1.4M� neutron

star the tidal deformability and star radius are constrained to Λ1.4M� > 120 and

R1.4M� < 13.6 km. It was concluded by means of a Bayesian analysis that for a

1.4M� star the deformability should be 375.5 < Λ1.4M� < 800 and the radius is at

12.00 < R1.4M� < 13.45 km, with respective 2σ confidence levels, see Ref. [226]. A

recent analysis by the LIGO and Virgo collaborations [227, 228] provides detailed

constraints, by using a Bayesian analysis based on the reproducing of the details

of the gravitational wave signal.
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Figure V.14: The CMF mass-radius diagram (a) for neutron stars is shown as

calculated within the CMF model. The CMF neutron star mass is shown as

a function of central density nc normalized to saturation density n0 (b). Color

indicate the fraction of the star coming from the quarks.
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Figure V.15: Tidal deformability Λ as function of NS mass (a) and radii (b). Blue

bands correspond to Λ constraints of NS with M = 1.4 Msun, and yellow bands –

constraints on the radius of NS with M = 1.4 Msun [226].
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VI
Repulsive properties of
hadrons in lattice QCD
data and neutron stars

In this chapter different scenarios of hadron hard-core interactions in the CMF

model are studied. Here the CMF model presented before is used with varied

excluded volume parameters of non-strange baryons, strange baryons, non-strange

mesons, and strange baryons. The values of the hadron excluded volume pa-

rameters are constrained by the available lattice QCD data for the second order

susceptibilities χ11
ij of baryon, electric, and strangeness charges, B, Q, and S.

It is found that χ11
ij are especially sensitive to the short-range repulsive inter-

actions of hyperons. Decreasing the hyperons size, as compared to the size of

the non-strange baryons, does improve significantly the agreement of the CMF

model results with the Lattice QCD data. The comparison with lattice QCD

data suggests that strange baryons, non-strange mesons, and strange mesons have

significantly smaller excluded volumes than non-strange baryons. The CMF model

with these modified hadron volumes allows for a mainly hadronic description of

the QCD susceptibilities significantly above the chiral pseudocritical temperature.

This improved CMF model which is based on the lattice QCD data has been

used to study the properties of both cold QCD matter and neutron star matter.

The phase structure in both cases is essentially unchanged. The hyperons sur-

vive deconfinement to higher densities than non-strange hadrons. The neutron

star maximal mass remains close to 2.1M� and the mass-radius diagram is only
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modified slightly due to the appearance of hyperons and is in agreement with

astrophysical observations.

This chapter is based on the research performed by the author of this thesis

and published in Ref.[9].

VI.1 Lattice data comparison

Important information about the phase structure at vanishing and finite baryon

densities can be extracted from the fluctuations and correlations of conserved

charges which are characterized by the susceptibilities [229], these quantities are

sensitive to the effective degrees of freedom and their interactions. The critical

regions of the QCD phase diagram are characterized by a non-monotonic behavior

of these susceptibilities [182]. However, the lattice results for vanishing chemical

potentials show a smooth transition between two baselines, a non-interacting ideal

Hadron Resonance Gas (HRG) and weakly interacting quark-gluon matter in the

region of temperatures between 100-250 MeV [177, 24]. From duality arguments

it should be possible to describe this transition, up to a certain point, in terms of

a strongly interacting gas of hadronic degrees of freedom. Such a study is usually

carried out by phenomenological models where the effective degrees of freedom

and their interactions are given as input.

Here we employ an effective hadron-quark model, the CMF model, which

already incorporates a smooth transition between hadrons and quarks. First,

different second order susceptibilities of conserved charges are calculated within

the CMF model and a comparison with available lattice data is presented. This

is done to highlight the importance of different repulsive interactions for non-

strange and strange baryons and mesons for the extracted susceptibilities. A

thermal model analysis of experimental hadron yields already provides indications

that flavor dependent interactions in the EV-HRG are important to describe the

transition region properly [117]. This idea was then further extended by a brief

analysis of LQCD on susceptibilities in Ref. [231]. The results indicated that

susceptibilities which involve the baryon B and strange S charges are sensitive

to the repulsive interactions amongst strange hadrons. Using the CMF model,

we can study how the LQCD data can be described by a proper modelling of the

repulsive short range interactions represented by the effective excluded volume

sizes of the hadrons.
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Figure VI.1: Second order susceptibilities χ11
ij as functions of temperature T for

various excluded volume parameters of strange baryons vBS. The predictions

of the CMF model, solid lines, are compared with available results of lattice

QCD calculations by the Wuppertal-Budapest collaboration [162] and HotQCD

collaborations [230], blue and green colorbands, respectively. The HRG results

are also presented by the black dashed lines. All susceptibilities related to the

baryon number and strangeness show a strong sensitivity to the hyperon EV. The

line which best fits to the lattice data is presented in bold for vBS = 1/4 fm3.

The conserved charge susceptibilities are related to the Taylor series expansion

in powers of baryon, electric, and strange chemical potentials, µB, µQ, and µS,

of the thermodynamic pressure of matter at vanishing chemical potentials [187].

The pressure expansion to finite chemical potentials takes the form:

P = P0 + T 4
∑
i,j,k

1

i!j!k!
χi,j,kB,Q,S

(µB
T

)i (µQ
T

)j (µS
T

)k
, (VI.1)

where P0 is the pressure at vanishing chemical potentials, and χi,j,kB,Q,S are the

conserved charge susceptibilities which are defined as:

χi,j,kB,Q,S =
∂i∂j∂kP (T, µB, µQ, µS)/T 4

∂ (µB/T )i ∂ (µQ/T )j ∂ (µS/T )k
. (VI.2)

We limit the study only to second order derivatives of the QCD pressure which
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already provides sufficient information to extract the hierarchy of EV sizes in the

baryonic, strange, and mesonic sectors of hadronic matter.

Throughout all the following results, it is assumed that the size of non-strange

baryons is fixed to the size of the nucleon vB = 1 fm3. This value is found to be

in agreement with the microscopical quantum nuclear interactions of nucleons

and is also supported by the analysis of LQCD data [1]. The value of vB = 1

fm3 corresponds to the proton radius as Rp = ( 3
16π
vB)1/3 ≈ 0.39 fm, the value is

in agreement with the values suggested by the analysis of NN-scattering phase

shift data [151]. In the first step, the sensitivity of the susceptibilities on the

strange baryon size is presented. The values of strange baryon sizes are varied as

vBS = 1, 1/2, 1/4, 1/8 fm3. The volume of mesons here are initially fixed to 1/8

fm3 as in Ref. [171, 5] and will be varied later.

The resulting second order susceptibilities are presented in Fig. VI.1. As

expected, the BB, SS, BS susceptibilities show a strong sensitivity to the size

of strange baryons in the temperature range 150 < T < 250 MeV, which can be

considered as the transition region between hadrons and quarks. A decrease of

the strange baryon size, to vBS = 1/4 fm3, allows a reasonable description of the

BB, SS, and BS susceptibilities.

The susceptibilities which involve the electric charge, however, show much less

sensitivity to the strange baryon volume. Since a large fraction of the electric

charge is carried by mesons, a change in the meson EV parameter should affect

the electric charge susceptibilities. To study the susceptibilities which involve

the electric charge, we vary the EV parameters for strange vMS and non-strange

vM mesons while vB = 1 fm3 and vBS = 1/4 fm3 are fixed as a result of the

comparison presented in Fig. VI.1. The results are presented in Fig. VI.2 where

four combinations of meson volumes are compared, vM = vMS = 1/8 fm3 as in

the default version of the CMF, vM = vMS = 1/4 fm3, vM = vMS = 1/2 fm3, and

vM = 1/2 fm3 vMS = 1/4 fm3. From these parameterizations the last one, which

assumes a larger volume for non-strange mesons, appears to describe the lattice

data best.

Consequently, the parameterization with vB = 1 fm3, vBS = 1/4 fm3, vM = 1/2

fm3, vMS = 1/4 fm3 provides a much improved agreement with LQCD data for the

second order BB, QQ, SS, BS, QS, susceptibilities. Only the BQ susceptibility

appears to be unaffected by all EV parameterizations studied above. Since the BQ

combination is sensitive to the baryon charge correlations we conjecture that the
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Figure VI.2: The same as Fig. VI.1, but for various excluded volume parameters

of mesons vM and strange mesons vMS. The line which best fits to the lattice data

is presented in bold for vM = 1/2 fm3 and vMS = 1/4 fm3. The EV parameter

of strange baryons is fixed to vBS = 1/4 fm3 as the best result from Fig. VI.1.

The predictions of the CMF model, solid lines, are compared with available

results of lattice QCD calculations by the Wuppertal-Budapest collaboration [162]

and HotQCD collaborations [230], blue and green colorbands, respectively. The

HRG results are also presented by the black dashed lines. The electric charge

susceptibilities show a particular strong dependence on the meson EV. Only the

baryon-electric charge correlation appears to be insensitive.

BQ susceptibility can be better described by a change of the EV parameters of the

∆- and N∗-baryons. This would require one or more additional parameters related

to the ∆ and N∗ repulsive interactions, supporting the scenario of a unique EV

parameter for every hadron, which are however, mainly unknown. Such a picture

seems reasonable and it would introduce a whole plethora of new parameters

which allows for the description of even higher orders of LQCD susceptibilities.
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VI.2 Consequences of the modified excluded

volumes

As discussed above, the introduction of species-dependent repulsive interactions

of hadron yields a good description of lattice QCD data, essentially up to an

arbitrary order. Such a procedure, however, poses the question what conclusions

can be drawn. Instead of trying to understand and justify every parameter, it is

more convenient to study the sensitivity of the CMF model predictions for the

high density matter on these parameters. In the following, we will discuss how

the modified EV parameters change the phase structure of the model and the

equation of state for dense nuclear and neutron star matter. Thus, the goal of

this section is to explain the consequences of the modified hyperon repulsion on

different relevant states of matter: iso-spin symmetric, heavy ion collisions (with

strangeness conservation) as well as net strange matter. All these forms of QCD

matter can be studied in different experimental and observational scenarios:

1. Iso-spin Symmetric matter : Here one assumes that up and down quarks (as

well as protons and neutrons) are equally abundant. This scenario is often

studied when one refers to the ’QCD-phase diagram’. In particular we will

assume that the strange chemical potential µS = 0 vanishes which can lead

to a finite net strangeness.

2. The EOS for Heavy Ion Collisions : This state of matter is close to iso-spin

symmetric matter, but obeys an additional constraint of zero net strangeness.

This type of matter is created in heavy ion collisions at various beam energies

where net strangeness is conserved.

3. Neutron star matter : Neutron stars are cold compact stellar objects which

are composed of QCD matter in β-equilibrium and in local charge neutrality.

There at low densities neutrons are much more abundant than protons and

strangeness is not conserved, i.e. µS = 0. The densities in the NS interiors

surpass several times nuclear saturation density. The description of such

matter is essential for the calculations of neutron star properties and stands

as a benchmark for QCD phenomenology for a region in the QCD phase

diagram which is not accessible by LQCD methods or heavy ion collisions.
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VI.2.1 Phase structure of Iso-spin Symmetric matter

The interactions in the CMF model provide a reasonable description of the nuclear

ground state properties, such as binding energy, compressibility, asymmetry energy,

and the slope parameter [5]. The changes of the EV parameters introduced in the

previous section do not allow hyperons to appear at below and slightly higher than

the nuclear saturation density. As shown in Fig. VI.3 the properties of the nuclear

ground state are not affected by the change of EV parameters. The figure shows

the energy per baryon ε/nB at T = 0 for isospin symmetric matter as function

of the order parameter, the chiral condensate σ/σ0. After a density of nB ≈ 0.5

fm−3 the parameterizations start to deviate for different values of the hyperon EV

parameter (at T = 0 mesons are not excited and the meson Bose condensation is

not included in our calculations). The non-monotonic behaviour of the energy

per baryon indicates the presence of a phase transition with a metastable state.

Note that even though a metastable state with a small energy barrier is created,

no absolutely stable state of matter can be generated by the appearance of the

hyperons.

The effect of the modified EV parameters on the phase structure is also

depicted in figure VI.4. Here we show the net baryon density nB as a function of

the baryon chemical potential µB for T = 0 and iso-spin symmetric matter. To

better illustrate the position of the first order transition, a Maxwell construction

between two coexisting phases was done. For the default version of the CMF,

a very weak chiral phase transition appears at µCB ≈ 1400 MeV, with a critical

endpoint at TCP ≈ 17 MeV. As the volume of the hyperons is decreased, this

transition gets slightly stronger, i.e., the latent heat and the jump in the density

are increased and at the same time the critical chemical potential is increased.

It was checked that the value of critical temperature (temperature of the chiral

critical point) is not significantly affected by the change of interaction parameters.

Thus, the general characteristics of the phase structure, i.e., a critical endpoint at

a very low temperature, are not changed.

The standard CMF parameterization, Refs. [168, 171, 5], yields matter at T = 0

(assuming µS = 0) which is only composed of nucleons and their parity partners.

Heavier hadrons as deltas and hyperons are suppressed by the interactions. This

is a result of the EV interactions in the CMF model: hadrons are suppressed

at higher densities as a result of their repulsive hard core interactions. The

quarks become the dominant degrees of freedom in the medium. The degree of
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Figure VI.3: Energy per baryon ε/nB as a function of the chiral condensate σ/σ0

for T = 0, isospin symmetric nuclear matter. Four different parameterizations

of the strange baryon excluded volume vBS = 1, 1/2, 1/4, 1/8 fm3 are presented.

While the nuclear ground-state properties are unchanged, a second minimum in

the energy per baryon located at smaller values of the chiral condensate, indicating

the chiral phase transition, is sensitive to the EV parameterization. This second

minimum signals a metastable state of chirally restored matter.

suppression depends on the repulsion coefficient, i.e. the EV parameter. The

higher the value of this parameter, the less of the hadrons will be present as the

pressure is increased. If the EV coefficient of the strange baryons is smaller than

the EV of the non-strange baryons, then the strange baryons will survive to higher

energy densities.

This allows for a distinct type of nuclear matter to emerge prior to the

transition to the quark matter. Hyperonic matter thus appears as an additional

phase between nuclear and quark matter. Hypermatter is a metastable state

which appears as an exotic strange form of matter [232, 233, 234, 235, 236, 237,

238].

Figure VI.5 shows the strangeness per baryon fS = −(nS/nB) as a function

of the baryon density for T = 0 iso-spin symmetric matter. The limit for fS is 3

as then the matter would be made up completely of strange quarks. A value of

fS = 1 would correspond to Λ matter where 1/3 of the baryon charge is carried

by the strange quarks.
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Figure VI.4: Baryon density nB as a function of baryon chemical potential µB

for T = 0 isospin symmetric nuclear matter for four different parameterizations

of strange baryon excluded volume vBS = 1, 1/2, 1/4, 1/8 fm3. Note that no

additional phase transition appears while the chiral transition is shifted to higher

values of baryon chemical potential.

The four values of the hyperonic volume are located within the purple band

which covers the possible range of fS for vBS = 1/8–1 fm3. The dashed lines

correspond to the fraction of fS which stems from the hyperons. Since in the

scenario with vBS = 1 fm3 all strangeness is carried by the s-quark, the blue

dashed line constantly stays at zero. As the EV of the strange hadrons is decreased,

the fraction of hyperonic matter is increased significantly. At the density around

nB ≈ 1.5–2 fm−3 The hyperons start to be suppressed, this is a result of EV

suppression when the free quarks create a significant contribution to the total

system pressure. At very high densities, nB ≈ 20 fm−3, strangeness fraction fS for

all parameterizations coincide, this is where the pure quark matter is produced

and all hadrons are completely suppressed. However, a super-rich strange state

fS > 1 is never produced by multistrange baryons and the strangeness fraction

increases continuously from 0 to 1 which is also the limit for a free gas with three

quark flavors.

As the meta-stable states observed in figure VI.3 appear for systems below

the critical temperature of TCP ≈ 17 MeV, states of hyperon rich matter may

survive here for an extended time. It is questionable whether such a cold and
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Figure VI.5: Strangeness fraction fS as a function of baryon density nB for T = 0

isospin symmetric nuclear matter. The band illustrates the range of values due

to varying the hyperon EV parameter in range vBS = 1/8–1 fm3. The hyperon

contribution to strangeness fraction is illustrated by dashed lines. Note, no

additional phase transition or a state of bound hyperon matter appear.

dense environment could be created in heavy ion collisions, however in neutron

stars and their mergers this scenario appears feasible.

VI.2.2 The EOS for Heavy Ion collisions

A direct confirmation of the equation of state at high density from heavy ion data

would require the space-time simulation of the collision, using the CMF model

as input. A first study in this direction was already done for low beam energies

using ideal fluid dynamics [239]. However, for heavy ion collisions it is essential

to also take into account the non-equilibrium aspects. Early studies extracted

an effective nuclear equation of state from the flow data [240]. This method can

not be directly be compared to the CMF finite temperature EoS. It is planned to

apply the proper treatment to take into account the interactions in relativistic

transport through the mean field description at finite temperatures, as shown

in [241, 242].

This work focuses on thermodynamic properties of the CMF model related

to heavy ion collisions. Effects of the different EV parameterizations may be
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Figure VI.6: Collision energy dependence of baryon-strangeness second order

susceptibility χ11
BS estimated in the CMF model along the chemical freeze-out

curve of Ref. [50] for zero net-strangeness isospin-symmetric matter.

observed in the late stages of heavy ion collisions and neutron stars. The change in

the repulsive properties leads to different thermodynamic properties of the system

at the chemical freeze-out which, potentially, can be measured through the final

particle yields. The chemical freeze-out conditions depend on the energy of the

nuclear collision, which allows experiments to probe various regions of the QCD

phase diagram experimentally. Since the bulk evolution, at any given beam energy,

is well characterized by the produced entropy per baryon, the mapping between

the collision energy and the expansion path through the phase diagram can be

done by the chemical composition of hadrons after the chemical freeze-out [18,

19, 20]. For simplicity, we use the so-called freeze-out line for our comparison.

Through the measured chemical composition of particles, this line provides a

mapping of the collision energy
√
sNN with temperature T and baryon chemical

potential µB at the chemical freeze-out. Here the chemical freeze-out curve from

Ref. [50] is used.

The strangeness-baryon cross susceptibility χ11
BS is particularly sensitive to the

strange hadron EV-parameter: we estimate the values of χ11
BS along the freeze-out

line for 4 different values of vBS. Figure VI.6 compares these resulting CMF-

susceptibilities χ11
BS with the well known ideal HRG results. As the chemical

freeze-out is assumed to occur when matter is quite dilute, moderate effects of
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the EV interactions are observed. (1)

The matter at the studied freeze-out scenario does not produce such significant

sensitivity to the EV parameters as the lattice QCD data. In addition, for a

meaningful comparison of measured susceptibilities with our model calculation,

some elaborate simulations, taking into account the effects of the finite size and

lifetime of the system, would be necessary. Thus we conclude that low baryon

densities offer for the LQCD data a good benchmark to probe hadronic interactions.

These interactions and the related phase structure should be tested with heavy

ion collisions in the high baryon density regime, e.g., at FAIR facility. In addition,

nuclear astrophysics offers an alternative venue through the study of neutron

star properties and binary neutron star mergers with their gravitational wave

signals [205, 245, 4].

VI.2.3 Neutron stars

Observations of neutron stars provide another way to probe the equation of state

of cold and dense nuclear matter and possibly deconfined quark matter. The

CMF model, in its default parameterization, gives a satisfactory description of the

properties of cold static non-rotating neutron stars. In particular, the mass-radius

relation M(R), and the tidal deformability Λ [5]. The mass-radius relation is

obtained by solving the Tolmann-Oppenheimer-Volkoff (TOV) equation [214, 215],

which uses the equation of state as input and provides the density and pressure

profiles of the NS. A solution of the TOV equation relates the central density to

the NS mass and radius. The densities in the NS’s interiors can reach several times

nuclear saturation density n0. This allows for the formation of quark cores in the

interior of the stars [246, 247, 248, 205, 220, 249, 250, 251]. These cases are not

yet observed. They could be tested in future by measurements of NS masses and

radii, e.g., with the NICER X-ray telescope [252, 253], and by the next generation

GW detectors [254, 255]. However, even in the hadronic part of the EOS the

chemical composition is not well known. The assumption of β-equilibrium implies

that the matter is dominated by neutrons at densities close to n0 and that the

(1)A more elaborate scenario for chemical freeze-out which implies two or more separate freeze-

out points for strange and non-strange particles finds that strange hadrons could freeze-out at

10-15 MeV higher temperatures than the light hadrons at the highest collision energies [243,

244, 114]. A strange freeze-out at these higher temperatures could provide stronger signals of

different EV interaction schemes.



CHAPTER VI. REPULSIVE PROPERTIES OF HADRONS IN LATTICE
QCD DATA AND NEUTRON STARS 101

10−3

10−2

10−1

100

n i
=n

B

Default CMF
vB = 1 fm3

vBS = 1 fm3

T = 0 in ˛-equilibrium

vB = 1 fm3

vBS = 1=2 fm3

10−2 10−1 100 101

nB (fm−3)

10−4

10−3

10−2

10−1

100

n i
=n

B

vB = 1 fm3

vBS = 1=4 fm3

10−1 100 101

nB (fm−3)

vB = 1 fm3

vBS = 1=8 fm3

e

d

u

s

n

p

Lambda

N(1535)0

N(1535)+

Lambda(1405)

Figure VI.7: Particle composition by the CMF model for T = 0 matter in

β-equilibrium. Particle number densities ni, over the baryon density nB are

presented as functions of baryon density, note an additional factor 1/3 for quarks

is used. Four plots correspond to four different parameterizations of strange

baryon excluded volume vBS = 1, 1/2, 1/4, 1/8 fm3. Electrons and baryons only

from the groundstate octet are presented by solid lines, quarks by dotted lines,

octet parity partners by dot-dashed lines.

charge of the small admixture of protons is compensated by the same number

of electrons (2). With increasing density, heavier hadrons should appear. The

implication of the hyperon appearance for the NS properties is actively discussed

as ”hyperon puzzle”, (for a review refer to Ref. [256]), which traces back to the

1960s [257].

Furthermore, in neutron star matter, d-quarks are favorable as compared to

u-quarks or protons due to their opposite electric charge. They are easier to

excite than neutrons. Even at nB ≈ 2n0 the free quarks make up only to 20%

(2)Note that we have checked that the inclusion of muons does not alter our results in any

significant way.
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of the baryonic charge. In the CMF model, the chemical composition of isospin

symmetric matter contains no free quarks for nB < 2n0, and free quarks make up

20% of the total baryon number only at nB ≈ 5n0.
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Figure VI.8: The ratio of charge neutral CMF matter pressure P at T = 0

in β-equilibrium, P , to the Stefan-Boltzmann pressure limit of a massless 3-

flavor gas of quarks, PSB. Lines correspond to the four different excluded volume

parameters of strange baryons used. The respective particle contents are illustrated

in Fig. VI.7. The yellow colorband illustrates parameterization [258] of three-loop

pQCD calculations for pressure of cold quark matter in β-equilibrium [259].

When the hyperon volumes are treated the same as the non-strange baryons,

i.e., vSB = vB, the hyperons in the CMF model are suppressed by both, their higher

masses and their EV interactions. Hence, they do not appear in neutron stars [5].

The same is true for any other higher mass baryons which are suppressed at

T = 0 by their repulsive excluded volume interactions. In this case, the hadronic

part of the NS is only composed of nucleons and their parity partners. The

early appearance of the parity partners, as opposed to, e.g., the Delta baryons

which have a smaller vacuum mass, is the parity doubling due to chiral symmetry

restoration. The effective masses of heavy parity partners of both N and Λ are

significantly decreased in chirally restored phase. While the masses of ∆s in the

current approach remain constant.

This scenario can significantly change as the EV-parameter of the hyperons is
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reduced: the chemical composition of neutron star matter is shown in Fig. VI.7

as a function of the baryon density. The non-strange baryon EV parameter

is fixed at vB = 1 fm3, while the EV parameter of strange baryons is varied,

vBS = 1, 1/2, 1/4, 1/8 fm3. Decreasing the hyperon repulsion allows Λ-baryons

and their parity partners Λ(1405) to populate NS matter, while heavier hyperons

are suppressed due to their higher mass. The threshold for the appearance of Λ

is nB ≈ 0.3 − 0.4 fm−3 (for all values of vBS except the largest). This is clearly

below the density of the chiral phase transition in the CMF model. The location

of the chiral transition is sensitive to vBS as well: for vBS = 1 fm3 and 1/2 fm3 the

transition is located at nB ≈ 0.6 fm−3. For vBS = 1/4 fm3 it is shifted to higher

density, nB ≈ 0.8 fm−3. The transition is located at nB ≈ 1 fm−3 for vBS = 1/8

fm3. At the chiral transition, the parity partner mass drops to the Λ-mass. Hence,

Λ(1405) contributes to the strangeness fraction similarly to the octet Λ-hyperon.

The reduced vBS-repulsion in strange baryon sector yields a significant hyperon

fraction of the total baryon density. If the repulsion among the strange particles

is 8 times smaller than among non-strange, as illustrated in Fig. VI.7 which shows

that for vBS = 1/8 fm3, the hyperons can survive up to extreme densities of

10 fm−3 and even more. At these densities quarks are the dominant degrees of

freedom. However this type of matter is distinct from the quark matter due to

the small admixture of the strange hadrons.

The appearance of the additional hyperon degrees of freedom leads to a

softening of the NS-matter EOS. This inevitably changes the properties of neutron

stars. To illustrate the change of the EOS due to vBS, Fig. VI.8 shows the pressure

P for the CMF calculations as a function of the baryon chemical potential µB as

compared to the results of pQCD calculations [259]. The additional degrees of

freedom at a given chemical potential yield additional pressure. For the values

vBS = 1/4, 1/8 fm3 a significant increase in P/PSB is observed. This is a result of

the sudden appearance and subsequent suppression of hyperons in the EOS. For

vBS = 1/8 fm3 the increase reaches the borders of the pQCD bands of confidence

suggesting that it can be considered as an absolute lower bound for vBS. However,

all parameterizations fit within the pQCD band and merge into one line at the

region of chemical potential µB > 3500 MeV where the pQCD bands become

narrow, there the baryon densities are extreme with nB > 20 fm3. At these values

of µB, as predicted by the CMF model, the matter is composed of free quarks only,

without the admixture of hadrons. At the lower values of the chemical potential
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the pQCD bands permit various scenarios of hadron-quark interactions as shown

by the CMF results.

These differences of the EOS due to the possible variation of vBS change the

properties of neutron stars: Fig. VI.9 depicts the mass-radius relations as calculated

from the Tollman-Oppenheimer-Volkov equation(3), for the EOS parameterizations

discussed above. The additional degrees of freedom results in a softening of

the EOS. This decreases the maximum mass of the NS families by 5%, from

Mmax ≈ 2.15M� to Mmax ≈ 2.05M�. The differences appear only in the highest

mass region because the hyperons modify the EOS. These high densities can be

reached only in the most massive stars. Mergers of neutron stars yield much

higher densities and high temperatures. Therefore, a study of the effects of the

hyperonic repulsion in simulations of neutron star mergers is needed. Another

worthwhile study could be the effect on neutron star cooling: an early study of

the CMF model in the context of parity doubling showed that the cooling curve

can be reasonably well described within this model. There, certain assumptions

on the role of the parity partners are made [261].

(3)The numerical solutions were obtained using the TOV solver of [260].
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Figure VI.9: The CMF mass-radius diagrams for four different excluded volume

parameters of strange baryons. The respective particle content is illustrated

in Fig. VI.7. Note that the appearance of numerous strange baryons only slightly

changes the mass-radius diagram, substantially affecting only the unstable branch

of the solutions.
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VII
Summary and Outlook

The results presented in this thesis are related to the following three topics: the

dynamics of the QCD matter in heavy ion collisions, QCD matter in compact

stars, and the phase structure of the QCD matter. Thus, this thesis is devoted

to the properties of the QCD matter under different conditions. The first half

of the thesis is dedicated to the QCD matter in the hadronic phase, and how

it reveals in the late evolution of heavy ion collisions. In the second part, a

phenomenological approach for QCD matter at a wide range of temperatures and

densities, the CMF model, is presented. The CMF model includes many aspects

of QCD phenomenology, which makes the model applicable simultaneously to

heavy ion collisions, neutron stars, and analysis of lattice QCD data.

As a first step, the hadronic observables like the K/π ratio and scaled variance

of negative charged particles are studied in hadronic models, the microscopic

transport UrQMD model, and the statistical thermal model. A non-monotonic

behavior of the studied observables is often used as the signature of a phase change

during heavy ion collisions. However, the experimentally measured values should

be considered with care, since dynamical contributions can significantly affect the

measured values. The effects of charge conservation, finite detector acceptance,

and centrality selection are estimated. A comparison with available experimental

data from NA61/SHINE and NA49 collaborations is done for K+/π+ ratio and

scaled variance of negatively charged particles ω− measured for p+p and A+A

collisions at SPS energy range. The used models are purely hadronic and do not

include transitions to other QCD phases, however, the predictions of the thermal
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model and UrQMD are strongly sensitive to the centrality selection and detector

acceptance. It is found that the non-monotonic behavior of ω− as a function of

the colliding system size is well reproduced by the UrQMD model, it is discovered

that the non-monotonicity is attributed to the centrality selection. The main

result from the study is that a centrality selection procedure in p+p reactions

should be incorporated to remove dynamical effects that significantly modify the

value of event-by-event particle number fluctuations.

A novel method to extract the temperature of kinetic freeze-out based on the

measured yields of the short-lived resonances such as ρ0 and K∗0 was presented. The

suggested method assumes that the system created in heavy ion collision evolves

between the chemical and kinetic freeze-outs as expanding hadron resonance gas

in partial chemical equilibrium. This method, contrary to conventional blast-wave

fits, does not require additional input such as the flow velocity profile and the

freeze-out hypersurface. In this sense, the PCE-HRG approach to extracting Tkin

is advantageous to the commonly adopted fits to the pT spectra. The ALICE data

on Pb–Pb collisions at the LHC yields was analysed with the PCE-HRG approach,

the analysis yields a moderate multiplicity dependence of Tch whereas the kinetic

freeze-out temperature drops from Tkin ' Tch ' 155 MeV in peripheral collisions

to Tkin ' 110 MeV in 0-20% most central collisions. This result is in qualitative

agreement with prior studies employing the blast-wave model fits. The presented

framework can be applied to lower collision energies and used to analyze other

sensitive probes of freeze-out dynamics, such as fluctuations and correlations of

identified hadron numbers.

These results indicate that the dynamics of the simplest phase of QCD, the

ideal Hadron Resonance Gas, in heavy ion collisions, can already produce non-

trivial observations. However, description of QCD matter requires efforts that

go much further than the non-interacting gas of hadrons. An analysis of lattice

QCD data hints at the importance of repulsive interactions among hadrons. The

strength of hadron repulsive interactions between nucleons/baryons, with quantum

effects taken into account, can be estimated by the Beth-Uhlenbeck (BU) approach.

In this thesis, the second virial coefficient, the excluded volume (EV) parameter,

is calculated within the BU formalism. Here, the hard-core two-particle scattering

potential with radii rc = 0.25− 0.3 fm between nucleons is assumed. It is found

that quantum effects cause the excluded volume parameter to be temperature-

dependent, contrary to classical van der Waals approach. The calculated BU
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second virial coefficient is in a fair agreement with S-matrix calculations based

on empirical phase shifts of nucleon scatterings. The calculated values of EV

parameter are used to describe the repulsive interactions among baryons in the

EV-HRG description of QCD matter. The predictions for net baryon number

susceptibilities are compared to lattice QCD calculations. It is found that this

modified Beth-Uhlenbeck approach describes fairly well the deviations of the lattice

QCD data from the ideal HRG model at T . 160 MeV. The excluded volume HRG

model with the temperature dependent baryonic eigenvolume, on the other hand,

extends the agreement with the lattice data for baryon number susceptibilities

even to temperatures beyond 160 MeV. It is found that the excluded volume

HRG model with a constant effective baryonic “excluded-volume” parameter

vBB = 1 fm3 provides a simple yet efficient description of the net effect of the

repulsive and attractive baryon-baryon interactions on the hadronic equation of

state in the crossover temperature region.

The remaining part of the present thesis presents an attempt to describe the

QCD matter in a unified approach appropriate at essentially all temperatures

and densities relevant for both heavy ion collisions and neutron star matter. This

was done utilizing the improved CMF model which, besides many other features,

describes lattice QCD data on thermodynamics of QCD matter at µB = 0. The

CMF model allows for a simultaneous description of many nuclear (astro-) physical

data, consistent with astrophysical observations as well as heavy ion collisions and

of compact stars. The CMF model is used to explore the phase diagram of QCD

matter at a wide range of T and µB. Three critical regions are found, which are

connected to the nuclear liquid-vapor phase transition, to the chiral symmetry

restoration, and to the quark matter. The model predicts two critical points,

first one associated with nuclear liquid-vapor phase transition, and one from

chiral symmetry restoration. The transition to quark matter is always a smooth

crossover. The region of phase diagram accessible to experiments of high energy

heavy-ions collisions is dominated by remnants of the nuclear liquid-vapor phase

transition. Other critical regions may be probed by the neutron star structure and

in binary neutron star mergers. Different scenarios of hard-core interactions in the

CMF model are studied. The sensitivity of the available lattice QCD data for the

second order susceptibilities χ11
ij of baryon, electric, and strangeness charges, B,

Q, and S, to the values of hadron excluded volume parameters is examined. It is

found that χ11
ij are especially sensitive to the short-range repulsive interactions of
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hyperons. Decreasing the hyperons size, as compared to the size of the non-strange

baryons, does improve significantly the agreement of the CMF model results with

the Lattice QCD data. The electric charge-dependent susceptibilities are sensitive

to the excluded volume of mesons. The predicted by CMF properties of neutron

stars, like the mass-radius relation, the chemical composition of the stars and the

tidal deformabilities are in good agreement with recent experimental observations.

The applicability of the CMF model to such a wide range of strongly interacting

systems is impressive. In this thesis, for the first time, a QCD-motivated EoS is

presented which precisely describes the thermodynamic observables for the whole

QCD phase diagram.

Overall, the results of the CMF model presented in this thesis pave a road to

bringing together heavy ion collisions with physics of neutron stars. QCD matter

described by the CMF model is, with slightly different chemical composition,

the same matter as the hot matter created in heavy ion collisions and as the

cold compressed matter contained in neutron star interiors and their mergers. In

the new era of gravitational wave astronomy, detections of neutron star mergers

provide a new way to study hot QCD matter with densities unavailable in heavy

ion collisions. The CMF model provides a rich spectrum of possibilities to compare

heavy ion collisions with neutron star mergers. The next and the most natural way

will be to utilize the equation of state of the CMF model in both hydrodynamic

simulations of relativistic nuclear collisions and general-relativistic mergers of

compact stars.
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