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Dopamine in Fear Extinction
Ximena I. Salinas-Hernández and Sevil Duvarci*

Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany

The ability to extinguish fear memories when threats are no longer present is critical
for adaptive behavior. Fear extinction represents a new learning process that eventually
leads to the formation of extinction memories. Understanding the neural basis of fear
extinction has considerable clinical significance as deficits in extinction learning are
the hallmark of human anxiety disorders. In recent years, the dopamine (DA) system
has emerged as one of the key regulators of fear extinction. In this review article, we
highlight recent advances that have demonstrated the crucial role DA plays in mediating
different phases of fear extinction. Emerging concepts and outstanding questions for
future research are also discussed.
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INTRODUCTION

Learning to associate stimuli and situations with danger or safety is critical for survival and
adaptive behavior. In the laboratory, these forms of learning are typically studied using Pavlovian
fear conditioning and extinction. Fear conditioning is an example of associative learning in which
an initially neutral stimulus such as a tone (conditioned stimulus, CS) comes to elicit fear responses
after being paired in time with an aversive outcome such as a foot shock (unconditioned stimulus,
US). Once the CS-US association is learned, subsequently repeated presentations of the CS in the
absence of the aversive US result in a gradual decrease in conditioned fear responses, a process
known as fear extinction. In the last decades, fear extinction has attracted much interest in part
because deficits in extinction learning are thought to underlie human anxiety disorders, such
as post-traumatic stress disorder (PTSD) and phobias (Graham and Milad, 2011; Pitman et al.,
2012; Craske et al., 2017), and thus, understanding the neural basis of fear extinction has high
clinical significance. Decades of research has revealed that a distributed network of brain structures
including mainly the amygdala and the medial prefrontal cortex (mPFC) mediates the acquisition
and consolidation of fear extinction memories (Pape and Pare, 2010; Sotres-Bayon and Quirk,
2010; Maren et al., 2013; Duvarci and Pare, 2014; Tovote et al., 2015).

In recent years, the dopamine (DA) system has also emerged as an important mediator
of fear extinction. DA is a neurotransmitter critically involved in a wide range of functions
including reward learning, motivation, motor control, and cognitive functioning. DA neurons
that are mainly located in the ventral tegmental area (VTA) and substantia nigra (SN) in
the midbrain. DA receptors are metabotropic receptors that can be classified into two
main types with the DA D1-type receptors (Gs-coupled) comprised of D1 and D5 and the
DA D2-type receptors (Gi-coupled) comprised of D2, D3, and D4 subtypes (Missale et al.,
1998). Systemic administration of DA precursor L-DOPA or D1-type receptor agonists before
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or right after extinction enhances acquisition and retention
of fear extinction, respectively (Haaker et al., 2013; Abraham
et al., 2016; Whittle et al., 2016), indicating the involvement
of DA during both acquisition and consolidation of extinction
memories. In particular, DA neurons located in the VTA,
through their projections to the structures involved in fear
extinction such as the amygdala andmPFC, are implicated in fear
extinction. In this review, we highlight recent findings that have
revealed the role DA plays in mediating different phases of fear
extinction.We focus the discussion on the extinction of cued fear
conditioning in rodents where recent progress has been made.
We begin by discussing how fear extinction learning is initiated
and driven by the activity of VTA DA neurons. We also discuss
the emerging concept that fear extinction may be an appetitive
learning process mediated by the brain’s reward circuitry. We
next focus on howDA regulates the acquisition and expression of
fear extinction in the amygdala. We consider the possible targets
in the amygdala microcircuitry that DA can act on to mediate
fear extinction. Finally, we discuss the role of DA in the mPFC in
mediating the consolidation of extinction memories.

A DOPAMINE PREDICTION ERROR
SIGNAL INITIATES FEAR EXTINCTION
LEARNING

Considerable evidence indicates that fear extinction represents
new learning rather than forgetting or erasure of the original
fear memory (Bouton et al., 2006; Myers and Davis, 2007).
During extinction, the animal learns the new association between
the presence of the CS and an unexpected safe outcome
(i.e., the absence of the expected aversive US). Classical theories
of associative learning postulate that learning is initiated by
prediction errors (PE) that signal the discrepancy between
expected and actual outcomes (Rescorla and Wagner, 1972) and
new learning happens when outcomes do not match predictions.
In fear extinction, the unexpected omission of the US induces a
PE signal that leads to an update in the prediction associated with
the CS so that it comes to be recognized as signaling safety. This
in turn leads to a decay of conditioned fear responses.

Because not receiving an expected aversive US may be
experienced as a rewarding event, the prediction error caused
by the US omission during extinction (extinction prediction
error, EPE) could be conceptualized as an appetitive or
reward-like prediction error. Thus, fear extinction may be
mediated by the reward learning system (Abraham et al.,
2014; Josselyn and Frankland, 2018; Kalisch et al., 2019). It
is well established that midbrain DA neurons encode reward
prediction error (RPE) signals to drive reward learning (Schultz,
2006). Consistently, recent studies demonstrate that a subset
of DA neurons, located in the VTA, is activated by the
omission of the aversive US during fear extinction, and this
increased DA neuron firing is indeed necessary to initiate
fear extinction learning (Luo et al., 2018; Salinas-Hernández
et al., 2018). Importantly, the timing of this DA signal fulfills
the requirements of a prediction error: (i) it is specific to
the time of the US omission; and (ii) it is observed during

the early, but not late, trials of extinction learning indicating
that it occurs specifically when the US omission is unexpected
(Salinas-Hernández et al., 2018). Interestingly, a more recent
study has further shown that although DA neurons located
in both the medial and the lateral VTA, but not the SN,
are activated by the omission of the US, particularly the
medial VTA DA neurons encode an EPE signal to drive fear
extinction. On the other hand, DA neurons that are found
in the lateral VTA signal salience but not EPE (Cai et al.,
2020). Together, these studies demonstrate that a PE signal
encoded by a subset of DA neurons in the medial VTA is
crucial to initiate and drive fear extinction learning (Figure 1A).
If the PE encoded during fear extinction is an RPE signal, it
is expected that the same DA neurons and DAergic circuits
mediate these two signals. In support of this hypothesis, a
recent study in fruit flies has shown that fear extinction is
driven by the same distinct population of DA neurons that
also mediates reward, but not fear, learning (Felsenberg et al.,
2018). Whether in mammals the same DA neurons encode
extinction and reward PE signals and whether these two distinct
signals share similar properties are important questions for
future research.

How and through which neural circuits this DA signal
initiates extinction learning and ultimately leads to the plasticity
underlying formation of extinction memories is currently
unknown. The first step in addressing these questions is
identifying the projection target of DA neurons that encode
the EPE signal. Since DA neurons projecting to the nucleus
accumbens (NAc), the main DA output region in the rodent
ventral striatum, form the canonical reward circuitry (Wise,
2002), NAc constitutes a good candidate to fulfill this role
(Figure 1A). Supporting this, an increase in DA release during
fear extinction has been observed in the NAc (Badrinarayan
et al., 2012) and the pharmacological blockade of DA receptors
in the NAc impairs fear extinction learning (Holtzman-Assif
et al., 2010). Furthermore, fear extinction learning in humans
is accompanied by a prediction error-like activation in the
ventral striatum (Raczka et al., 2011). However, in contrast
with these findings, inhibition of DA terminals in NAc at
the time of the US omission surprisingly does not affect
extinction learning, although it does impair consolidation of
extinction memory (Luo et al., 2018). Notably, single-unit
recordings demonstrate that a small subpopulation of DA
neurons mediate the EPE signal (Salinas-Hernández et al.,
2018). It is therefore possible that this subpopulation of
DA neurons projects to a specific and restricted subregion
of NAc that was not targeted by Luo et al. (2018). In
addition to NAc, other possible candidates include DA neurons
projecting to the amygdala and/or mPFC. However, at odds
with these possibilities, inhibition of DA terminals in the
amygdala or mPFC during EPE signaling does not impair
extinction learning (Luo et al., 2018). How a DA PE signal
initiates extinction learning and leads to the acquisition
and consolidation of extinction memories within the fear
extinction circuitry is one of the key questions towards
understanding the neural basis of fear extinction. Future
research determining the exact projection target of EPE encoding
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FIGURE 1 | Dopaminergic modulation of the neural circuitry underlying fear extinction. Schematic of the three major projections of the ventral tegmental area (VTA)
dopamine (DA) neurons likely involved in fear extinction are shown. BLA, basolateral amygdala; EPE, extinction prediction error; IL, infralimbic cortex; ITCs,
intercalated cell masses (dm: dorsomedial, vm: ventromedial); LC, locus coeruleus; NA, noradrenalin; NAc, nucleus accumbens. Question marks (?) indicate possible
DAergic projections mediating fear extinction. The involvement of these projections in extinction remains to be tested. (A) A subset of VTA DA neurons encodes an
EPE signal that is necessary to initiate fear extinction learning. The projection target of EPE encoding DA neurons is currently unknown. NAc constitutes an ideal
candidate however the exact subregion of NAc receiving the EPE signal remains to be determined. (B) Activation of DA receptors in the BLA mediates the acquisition
of fear extinction memories. However, the source of DA input to the amygdala during extinction has not directly been demonstrated. Whether VTA DA projections to
the BLA and also likely to dmITCs, are involved in fear extinction is an important outstanding question. (C) DA is crucial for the consolidation of extinction memories
in the IL. The source of DA input to IL during fear extinction has remained elusive, however, IL receives its main DA input from the VTA and IL-projecting VTA DA
neurons are thus plausible candidates. However, recent studies suggest that this DA projection is pro-aversive; and thus, DA released from other sources, such as
NA neurons located in the LC might be more likely to mediate fear extinction.

DA neurons will be an important step in addressing this
question (Figure 1A).

DOPAMINE IN THE AMYGDALA MEDIATES
THE ACQUISITION OF FEAR EXTINCTION
MEMORIES

The amygdala is a key structure underlying the acquisition
and expression of fear extinction memories. Specifically, two
subregions within the amygdala microcircuitry, the basolateral
amygdala (BLA) and the intercalated cell masses (ITCs) are
critically involved in fear extinction (Herry et al., 2010; Duvarci
and Pare, 2014). Much evidence indicates that the BLA,

consisting of the lateral and basal nuclei, is particularly required
for the acquisition of extinction memories (Herry et al., 2008;
Amano et al., 2011; Sierra-Mercado et al., 2011). A subpopulation
of BLA neurons termed ‘‘extinction neurons’’ increases their
firing to the CS during fear extinction, specifically late in the
extinction session right before the animals show a decrease
in conditioned fear responses (Herry et al., 2008; Amano
et al., 2011). Furthermore, considerable evidence implicates
GABAergic inhibition in the BLA during fear extinction. Both
strengthening and also weakening of GABAergic transmission
has been shown in the BLA during extinction (Marsicano et al.,
2002; Chhatwal et al., 2005; Heldt and Ressler, 2007; Sangha
et al., 2009; Kasugai et al., 2019), suggesting that particular
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subtypes of GABAergic interneurons are likely differentially
recruited during extinction (Duvarci and Pare, 2014;
Krabbe et al., 2018). However, the involvement of different
subtypes of BLA interneurons in extinction has remained elusive.
Importantly, GABAergic neurons are critical targets of DA in
the amygdala and DAergic signaling has been demonstrated to
suppress feedforward inhibition onto principal BLA neurons and
facilitate synaptic plasticity in the BLA through activation of both
D1 and D2 receptors (Bissière et al., 2003; Marowsky et al., 2005).
For more detailed information on how DA regulates activity in
the amygdala circuitry, the reader is referred to prior reviews
(Abraham et al., 2014; Lee et al., 2017). Pharmacological studies
show that blockade of both D1 and D2 receptors in the BLA
impairs fear extinction. Notably, DA receptor antagonism in the
BLA selectively affects the acquisition, but not consolidation,
of fear extinction memories (Hikind and Maroun, 2008; Shi
et al., 2017). Whether DA exerts its effects on fear extinction
in the BLA through regulation of GABAergic interneurons is a
critical question for further research. Furthermore, it will also
be important to determine whether and how DA controls the
activity of different subtypes of GABAergic interneurons in the
BLA during extinction.

While pharmacological studies indicate the important role
DA plays in the BLA during fear extinction, exactly how
DA modulates extinction-related neuronal activity is not well
understood. Research investigating reward learning in the BLA
may provide some clues. Indeed, recent studies demonstrate that
a genetically distinct and projection-defined subpopulation of
BLA neurons mediates reward learning (Namburi et al., 2015;
Kim et al., 2016). Intriguingly, supporting the hypothesis that fear
extinction is an appetitive learning process, ‘‘reward neurons’’
overlap with ‘‘extinction neurons’’ in the BLA and these two
types of neurons are functionally interchangeable (Zhang et al.,
2020), suggesting that reward learning and fear extinction are
indeed mediated by the same population of neurons in the BLA.
Thus, studies investigating the role of DA in BLA during reward
learning can provide valuable insights. In keeping with this, a
recent study showed that VTA DA terminals in the BLA are
activated during reward learning. Specifically, these terminals
are activated by rewards and also reward-predicting CSs (Lutas
et al., 2019). Whether VTA DA neurons projecting to BLA
are also activated by CSs following fear extinction and whether
DA input is critical for the CS responsiveness of ‘‘extinction
neurons’’ will be key questions to address for future studies
(Figure 1B).

As mentioned earlier, the second component of the amygdala
microcircuitry crucial for fear extinction is the intercalated
cell masses (ITCs), which are a network of interconnected
GABAergic cell groups located in the external and intermediate
capsules surrounding the BLA. Notably, the ITCs located within
the intermediate capsule are comprised of the dorsomedial
(dmITCs) and ventromedial (vmITCs) clusters where dmITCs
exert a unidirectional inhibitory control over vmITCs (Paré
et al., 2003; Ehrlich et al., 2009). Mounting evidence indicates
that particularly the vmITCs, located between the BLA and
the centromedial nucleus of the amygdala (CeM) are necessary
for acquisition and expression of fear extinction memories

(Jüngling et al., 2008; Likhtik et al., 2008; Amano et al., 2010;
Busti et al., 2011). CeM constitutes the main output station
of the amygdala necessary for fear expression (Ciocchi et al.,
2010); and hence, vmITCs are indeed in an ideal position to
suppress the expression of fear responses during fear extinction.
They receive excitatory input from BLA and send inhibitory
projections to CeM, and thus mediate feedforward inhibition
of CeM (Paré et al., 2003; Mańko et al., 2011; Gregoriou et al.,
2019). Anatomical studies show that D1 receptors are abundantly
expressed in the ITCs (Jacobsen et al., 2006), suggesting an
important role for DA in regulating the activity of these neurons.
D1 receptors are typically Gs-coupled receptors and when
activated they are expected to function in an excitatory fashion
(Missale et al., 1998). Interestingly, D1 receptor signaling is
unusual in ITCs, that is, DA through activation of D1 receptors
hyperpolarizes ITCs and thus inhibits these neurons (Marowsky
et al., 2005; Mańko et al., 2011). Furthermore, a recent study
shows that the ITCs within the vmITC cluster are likely
connected (Gregoriou et al., 2019; but also see Mańko et al.,
2011) and activation of D1 receptors inhibits these local
connections suggesting a general reduction in the output of
the vmITCs (Gregoriou et al., 2019). Together, these studies
indicate that dopamine inhibits the activity of ITCs and hence
reduces the output of these neurons. Dopamine is therefore
anticipated to reduce vmITC mediated feedforward inhibition
of CeM. Because vmITCs are expected to be excited during
extinction, whether DA plays a role in regulating the activity of
vmITCs to mediate fear extinction is questionable. One plausible
scenario is that DA might regulate the activity of vmITCs
indirectly by inhibiting dmITCs and thereby disinhibiting
vmITCs during extinction. According to this scenario, DA
neurons are expected to differentially innervate and modulate
these two distinct clusters of ITCs (Figure 1B). It will therefore
be important for future studies to investigate whether and how
DA input regulates the activity in distinct ITC clusters during
fear extinction.

DOPAMINE IN THE MEDIAL PREFRONTAL
CORTEX MEDIATES CONSOLIDATION OF
FEAR EXTINCTION MEMORIES

The mPFC, in particular the infra-limbic (IL) subregion of
mPFC, is crucial for the consolidation of fear extinction
memories (Sotres-Bayon and Quirk, 2010). Since dopaminergic
signaling enhances signal-to-noise ratios and modulates synaptic
plasticity in the mPFC (Seamans and Yang, 2004; Weele et al.,
2019), DA is expected to play a vital role in the formation of
extinction memories. Consistent with this, DA levels increase in
the mPFC during fear extinction and remain elevated following
extinction learning (Hugues et al., 2007). Conversely, selective
ablation of mPFC-projecting catecholaminergic neurons has
been found to impair retention of extinction (Morrow et al.,
1999; Fernandez Espejo, 2003). Supporting these earlier findings,
pharmacological studies have further revealed the role of
prefrontal DA receptors in fear extinction. Administration of a
D4 receptor antagonist in the IL following extinction impairs
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extinction retention the next day (Pfeiffer and Fendt, 2006). In
addition, studies investigating the role of D1 and D2 receptors
have found that inhibition of both D1 and D2 receptors in the IL
during extinction learning impairs retention of extinction while
acquisition remains intact (Hikind and Maroun, 2008; Mueller
et al., 2010). Together, these findings suggest that activation of
both D1- and D2-type receptors are required for consolidation,
but not acquisition, of fear extinction memories in the IL.

Long-lasting plastic changes in the activity of IL neurons
underlie extinction memories (Sotres-Bayon and Quirk, 2010).
However, how different DA receptors contribute to the
extinction-related changes in IL neurons is not yet well
understood. Studies combining pharmacological manipulations
with electrophysiology can provide some clues. Notably, IL
neurons exhibit increased firing to the CS during retention of
extinction (Milad and Quirk, 2002) and administration of a
D2 receptor antagonist in the IL has been shown to attenuate
these extinction-related CS responses (Mueller et al., 2010).
Furthermore, consolidation of extinction memories requires
NMDA receptor-dependent burst firing of IL neurons shortly
after extinction learning, that is, during the period whenmemory
consolidation takes place (Burgos-Robles et al., 2007). Since
activation of D1 receptors enhances neuronal excitability in the
mPFC (Seamans and Yang, 2004), activation of these receptors
may play a role in the increased burst firing of IL neurons
Investigating the effect of D1 receptor antagonists on the
extinction-related activity of IL neuronsmay define the exact role
these receptors play during fear extinction. In the mPFC, D1-
and D2-type receptors are expressed in both glutamatergic and
GABAergic neurons (Vincent et al., 1993; Gaspar et al., 1995;
Benes and Berretta, 2001). An important question is therefore
how DA modulates activity in the IL microcircuitry to mediate
consolidation of extinction memories. Future studies combining
DA receptor pharmacology with cell-type-specific recordings of
IL neuronal activity during extinction will be essential to address
this question.

In line with findings in rodents, a recent study in humans
shows that fMRI activity patterns observed in the vmPFC
(the human analog of the IL) during extinction learning are
reactivated shortly after extinction during memory consolidation
and the number of these reactivations predicts extinction
memory strength when tested the next day. Importantly, systemic
administration of L-DOPA enhances vmPFC reactivations in
parallel to improving extinction memory (Gerlicher et al., 2018)
suggesting a critical role of DA in this process. Whether the
vmPFC activity pattern reactivations in humans are related
to burst firing of IL neurons observed in rodents during the
consolidation of extinction memories and whether DA receptor
activation in the IL/vmPFC mediates these extinction-related
neuronal activity patterns in rodents and humans are open
questions for further research.

While the studies summarized above highlight the crucial role
DA plays in extinction memories, the source of DA release in
the mPFC during fear extinction has not yet been identified.
Anatomical studies demonstrate that the mPFC-projecting DA
neurons are mainly located in the VTA (Lammel et al., 2008;
Beier et al., 2015). Yet, the activity patterns of mPFC-projecting

VTA DA neurons during consolidation and retrieval of
extinction memories have remained elusive (Figure 1C).
Interestingly, recent studies show that mPFC-projecting DA
neurons are involved in encoding aversive events (Lammel et al.,
2011, 2012; VanderWeele et al., 2018) and optogenetic activation
of VTA DA terminals in the mPFC biases behavior toward
aversion (Vander Weele et al., 2018). Further supporting the
aversive nature of this DA input, optogenetic inhibition of VTA
DA terminals in the IL enhances, rather than impairs, fear
extinction (Luo et al., 2018). Together, these studies suggest that
VTA DA input to mPFC is pro-aversive and therefore is unlikely
to play a role in fear extinction. This raises the question of
whether fear extinction is mediated by another source of DA
input to mPFC. Supporting this idea, recent studies show that
noradrenaline (NA) neurons located in the locus coeruleus (LC),
in addition to NA, also co-release DA in the mPFC (Devoto et al.,
2020). Furthermore, memory consolidation in the hippocampus
is regulated by DA released from the LC, but not VTA, neurons
(Kempadoo et al., 2016; Takeuchi et al., 2016). Therefore, the
source of DA release in mPFC during fear extinction could be
LC NA neurons (Figure 1C). Consistent with this possibility,
LC projections to mPFC are indeed critical for the consolidation
of extinction memories (Uematsu et al., 2017). Identifying the
source of DA release in IL during fear extinction is an important
outstanding question for further research.

CONCLUDING REMARKS

Considerable progress has beenmade towards understanding the
role DA plays in fear extinction. The studies reviewed above
provide insights into how DA mediates different phases of
extinction through its actions in the distinct components of the
neural circuitry underlying fear extinction. Themain conclusions
and outstanding questions permitted from these studies are
summarized in Figure 1. Overall, these findings highlight DA as
a key regulator of fear extinction. An important implication of
these findings is that enhancing DA signaling during extinction-
based exposure therapy can be utilized as a therapeutic strategy
in the treatment of anxiety disorders in humans. In line with
this, systemic application of L-DOPA following fear extinction
enhances extinction memories in humans (Haaker et al., 2013;
Gerlicher et al., 2018); however, this enhancement depends on
successful extinction learning (Gerlicher et al., 2019) indicating
a boundary condition for facilitating the consolidation of
extinction memories. Notably, in a genetic mouse strain with
deficient extinction, systemic L-DOPA administration before
extinction enhances extinction learning and memory (Whittle
et al., 2016). Whether pre-extinction administration of L-DOPA
can facilitate extinction learning in humans with deficient fear
extinction and resistance to exposure therapy will be essential to
investigate. Nevertheless, it is important to emphasize that DA
is also a crucial mediator of fear learning and memory as well as
aversive processing (Abraham et al., 2014; Lee et al., 2017; Likhtik
and Johansen, 2019;Weele et al., 2019; Verharen et al., 2020), and
hence systemic administration of pharmacological agents that
enhance DA signaling globally in the brain can influence aversive
processing and the strength of fear memories, as well. Caution
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is therefore required when systemically enhancing DA signaling.
The development of more specific therapeutic approaches in
the treatment of anxiety disorders would benefit from a deeper
circuit-level understanding of how DA regulates different phases
of fear extinction in distinct brain circuits.
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