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DEUTSCHE ZUSAMMENFASSUNG - GERMAN

SUMMARY

Die Dissertation ist in englischer Sprache verfasst und basiert auf mehreren Publikatio-

nen. Der Inhalt der sechs Manuskripte ist im Englischen in einer Übersicht eingebettet, ihr

individueller Inhalt zusammengefasst und der Gesamtrahmen beschrieben. Eine kurze

deutsche Zusammenfassung zum Rahmen und den Zielen der Dissertation findet sich im

Folgenden.

Traditionelles Design von Computersystemen für visuelle Anwendungen beinhaltet im Regel-

fall eine gründliche Betrachtung der Zusammenhänge zwischen der zu lösenden Aufgabe,

der auszuwählenden mathematischen Operatoren und schlussendlich der Evaluierungskri-

terien, die für das System und dessen Nutzer relevant sind. Beispielsweise in einer Anwen-

dung zur Objekterkennung unter wechselhaften Lichtbedingungen könnte das System dann

so gestaltet werden, dass seine Bausteine unabhängig, also invariant, von der Belichtung

sind. Dies führt dazu, dass das Resultat des Systems unverändert bleibt. Allerdings wach-

sen im modernen digitalen Zeitalter auch die Anforderungen an die flexible Nutzbarkeit von

Computersystemen für visuelle Anwendungen. Mit steigenden Anforderungen wächst somit

auch die erwartete Komplexität, wenn immer schwerere und allgemeinere Aufgaben gelöst

werden sollen. Es wird dann davon ausgegangen, dass das ehemals oft noch anschauliche

Design des Systems infolge der immer steigenden Anzahl an Variablen der realen Welt

unerreichbar wird. Eine stetig wachsende Anzahl modernen Anwendungen setzt deshalb

auf maschinelles Lernen. Gerade durch das kürzlich popularisierte und erfolgreiche "deep

learning" wird dieses wiederum mittlerweile als Synonym für das Trainieren von tiefen neu-

ronalen Netzen benutzt. Obwohl "deep learning" zunächst nur auf ein Lernverfahren hin-

deutet, dass sich allgemein durch mehrere hintereinander folgende Berechnungen charak-

terisieren lässt, impliziert es mittlerweile eine spezielle Form des Lernens. Letzteres wird

in englischer Sprache als "end-to-end" bezeichnet und umfasst einen Prozess der automa-

tisch aus Daten lernt und jede einzelne Schicht eines neuronalen Netzes automatisch "von
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einem Ende des Systems zum anderen" durch Fortpflanzung von Fehlern aktualisiert. Das

sich daraus ergebende Versprechen ist, dass der Nutzer oder System Designer sich nicht

um einzelne Schritte kümmern muss, sondern es hinreichend ist einen großen Datensatz zu

sammeln und ein entsprechend tiefes neuronales Netz darauf zu trainieren. Als Konsequenz

dieser vielversprechenden Entwicklung resultierte nicht nur ein scheinbarer gedanklicher

Paradigmenwechsel von detailliertem Modellieren des Systems hin zu einem größeren Fokus

auf die Erstellung umfangreicher Datensätze, sondern gleichzeitig auch eine beobachtbare

Welle an vorstellbaren visuellen Anwendungen, die ausschließlich auf dem Prinzip des "deep

learnings" basieren.

In der Praxis sind die notwendigen Arbeitsschritte für ein erfolgreiches maschinelles Lern-

system weitaus komplexer, als typischerweise in der deep learning Erfolgsgeschichte präsen-

tiert. Diese Dissertation beschäftigt sich damit, die teils nur implizierten oder unterschla-

genen Aspekte zu ermitteln, die ungenannten Annahmen hervorzuheben und letztendlich

Methoden vorzustellen, die sich mit unmittelbaren Schwächen befassen. Diese aktuellen

Defizite lassen sich aus Sicht des Autors darauf zurückführen, dass die Arbeitsschritte im

deep learning tendenziell entkoppelt werden und der Erfolg ausschließlich daran gemessen

wird, wie akkurat sich ein entwickeltes neuronales Netz in einem definierten statischen

Benchmark-Test verhält. Statt aus Sicht des Gesamtsystems und der damit verbundenen

Anwendungen Lösungen zu finden, werden einzelne Komponenten mit Hinblick auf die ver-

fügbaren Daten, die Wahl der neuronalen Netzarchitektur, des exakten Lernalgorithmus und

dessen Parametern, sowie der Evaluierung und Validierung des fertig trainierten neuronalen

Netzes, in Isolation betrachtet und entwickelt. Folglich wurden in dieser Dissertation drei

Kernthematiken ermittelt, die ursprünglich in älterer Literatur diskutiert wurden, jedoch im

aktuellen Kontext der deep learning Literatur ein erneute Betrachtung erfordern. Spezifisch

handelt es sich dabei um drei zuerst unabhängige Aspekte, die allerdings im Gesamtrahmen

eines durch maschinelles Lernen gestützten Systems verknüpft und erforderlich sind:

• Wahl und Flexibilität der neuronalen Netzarchitektur: Im Wesentlichen besteht

eine tiefe neuronale Netzarchitektur aus mehreren Schichten, die jeweils mit einer

Wahl von mathematischen Operation und Anzahl an Parametern assoziiert ist. Über-

wiegend werden in der Literatur vorgeschlagene Architekturen, die sich als empirisch

erfolgreich herausgestellt haben, für eine Vielzahl von Anwendungen ohne Änderun-

gen übernommen. Die daraus entstehende Problematik ist, dass diese Architekturen

weniger universell sind, als oft gewünscht, und einmal gewählt standardmäßig nicht

mehr geändert werden. In Folge sind nicht nur bessere Ergebnisse erzielbar, wenn

man die Aufgabe und die konkreten Daten in sein Design miteinbezieht, sondern weit-

erhin wenn man die Architektur im Laufe der Zeit modifiziert und erweitert.
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• Erkennen unbekannter Daten und Unterdrückung falscher Ausgaben: Davon un-

abhängig ob eine neuronale Netzarchitektur in seinen Bausteinen wie oben genannt

statisch oder dynamisch ist, ist seine Vorhersage und korrekte Anwendung limitiert auf

die Menge der Daten die für das Training im Lernverfahren benutzt wurden. Eine alt-

bekannte Herausforderung für neuronale Netze ist hierbei dass eine Ausgabe auf un-

bekannten Daten nicht nur selbstverständlich falsch ist, sondern dass diese mit hoher

Wahrscheinlichkeit einem bereits bekannten Konzept zugeordnet wird. Als Beispiel

klassifiziert ein neuronales Netz das trainiert wurde um Autos von LKWs zu unterschei-

den, das bisher unbekannte Konzept eines Zuges mit hoher Sicherheit entsprechend

als Auto oder LKW, statt wie vielleicht erwartet auszugeben dass der Inhalt unbekan-

nter Natur ist. Dies hat zur Folge dass deep learning-Systeme zwar hervorragende

Ergebnisse bei statischen Benchmark Testsets liefern, jedoch in praktischen Anwen-

dung generell wenig vertrauenswürdig sind.

• Kontinuierliches Lernen ohne "katastrophales Vergessen" älterer Informationen:

Wenn man das obere Beispiel von Autos, LKWs und Zügen aufgreift, so zeigt sich direkt

eine weitere Komplikation in der Verwendung neuronaler Netze. Die Schwierigkeit

besteht hierbei im späteren Hinzufügen neuer Klassen z.B. Zügen und deren Un-

terteilungen zu einem wie im letzten Absatz beschriebenen bestehenden neuronalen

Netz, welches beispielsweise schon LKWs und Autos erkennen kann. Verfolgt man dies

intuitiv und präsentiert dem neuronalen Netz jetzt z.B. Bilder von verschiedenen Zü-

gen, so müssen wir leider nach dem zusätzlichen Training feststellen, dass jetzt zwar

Züge erkennt werden, die im Vorfeld gelernten Autos und LKWs nun aber leider auch

als Züge erkannt werden. Dieses Phänomen nennt man "katastrophales Vergessen".

Es ist eine Konsequenz dessen dass basierend auf den aktuell vorliegenden Daten die

Parameter des neuronalen Netzes überschrieben werden. Das neuronale Netz muss

also ständig daran erinnert werden, was es eigentlich schon gelernt hat um dieses

Wissen nicht abrupt wieder zu verlieren.

Zusammenfassend stellt sich also die Frage, wie man ein angemessenes neuronales Netz

auswählt für eine spezifische Aufgabenstellung, wie man innerhalb dieser Anwendung er-

kennt was zur Aufgabenstellung gehört und welche Daten noch neue Konzepte enthalten

oder eventuell sogar zu einer anderen Aufgabe gehören, und schlussendlich wie man im

Laufe der Zeit das neuronale Netz mit neuen Inhalten erweitert. Aus Sicht der Erforschung

einzelner Mechanismen könnte man also versuchen, jede einzelne dieser Fragen gesondert

zu behandeln. Im Rahmen dieser Dissertation und aus Sicht der Systeme stellte sich allerd-

ings schnell heraus, dass eine ganzheitliche Sichtweise nicht nur Synergien hervorhebt,

sondern die Entwicklung von einheitlichen Mechanismen erlaubt, die offenstehende Fra-
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gen umfassend behandeln. Der zentrale Punkt dieser Dissertation ist es also auf den ex-

istierenden Stärken aufzubauen, aber auch oben genannte Schwächen zu identifizieren,

diese in Ihren Abhängigkeiten tiefer zu verstehen und eine gemeinsame Lösung zu finden.

Entsprechend ist die Struktur der Dissertation orientiert an den obigen drei Fragestellun-

gen. Kapitel 1 befasst sich somit mit der Wahl und Erweiterbarkeit der neuronalen Netzar-

chitektur, welche zunächst an populärer Bildklassifizierung verdeutlicht wird, gefolgt von

einer konkreten Anwendung in Defekterkennung an Betonbrücken. Kapitel 2 beschäftigt

sich mit den komplementären Fragen zur Erkennung von für das neuronale Netz unbekan-

nten Konzepten und dem darauf folgenden kontinuierlichem Lernen. Kapitel 3 fasst let-

ztlich die einzeln entwickelten Aspekte zusammen, betont ihre Wichtigkeit im Rahmen einer

umfassenden Literaturrecherche, und verknüpft separat gewonnene Erkenntnisse zu einem

gemeinsamen Zusammenhang. Der letztendlich präsentierte umfassende Ansatz ist somit

der Beitrag der Disseration zum Fortschritt für das maschinelle Lernen gestützt durch neu-

ronale Netze, in dem eine gemeinsame Lösung für kontinuerliches Lernen, Wahl der neu-

ronalen Architektur und robuste Anwendung mit automatischer Erkennung unbekannter

Daten vorgeschlagen wird.

Im Nachfolgenden wird ein allgemeiner kurzer Überblick über die einzelnen Manuskripte,

deren Fragestellung und dem geleisteten Beitrag gelistet. Die Titel wurden im englischen

Original belassen, jedoch Namen der Kapitel für eine bessere Übersicht zusätzlich sinngemäß

übersetzt. Für weitere Details und eine tiefere wissenschaftliche Ausführung wird auf den

englischen Hauptteil der Dissertation verwiesen.

Kapitel 1: Designing Dynamic Deep Neural Network Architectures through Meta-Learning and

Representational Capacity Expansion (Design dynamischer tiefer neuronaler Netz Architekturen

mit Hilfe des Meta-lernens und Kapazitätserweiterung in Bezug auf gelernte Repräsentationen

der Daten)

• Building effective deep neural network architectures one feature at a time:

Neuronale Netze werden oft genutzt um anhand der Daten einer Aufgabenstellung

abstrakte Repräsentationen zu lernen. Im praktischen maschinellen Lernen nutzt ein

Ingenieur typischerweise für diesen Zweck vorgefertigte Architekturen. Solch eine

neuronale Netzarchitektur ist aus mehreren Blöcken oder Schichte zusammengesetzt,

wobei jede einzelne Schicht mit einer Wahl bezüglich seiner "Breite" verknüpft ist. Für

eine feste Gesamtzahl an Schichten, spiegelt diese Breite in simplifizierter Form die

Komplexität wieder. Ist diese zu niedrig, sehen wir uns mit der Gefahr konfrontiert,

dass die notwendige Kombination aus Repräsentationen, um die Aufgabenstellung

zu lösen, nicht gelernt werden kann. Ist diese zu hoch, so ist das Trainingsverfahren
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langsam und das zusätzliche Risiko besteht, dass Datenpunkte auswendig gelernt wer-

den und somit keinen allgemeinen Nutzen liefern. Der konventionell beschriebene

Weg der Literatur ist deshalb sehr große neuronale Netze zu trainieren, und darauf-

folgend unnütze Repräsentationen, die nicht zur Aufgabe beitragen, wieder zu entfer-

nen. In diesem Artikel wird eine umgekehrte Herangehensweise vorgeschlagen. Es

wird empirisch gezeigt dass mit einem sehr kleinen neuronalen Netz begonnen werden

kann, um dieses dann adaptiv wachsen zu lassen, um die notwendige Komplexität für

die spezifische Aufgabenstellung zu erreichen. Die vorgestellte Methode erleichtert

dem Anwender das Ermitteln der neuronalen Netz Schichtbreite. Im Rahmen der Va-

lidierung der Experimente wird somit ein Teil der Fragestellung zur Auswahl einer

passenden neuronalen Netzarchitektur adressiert.

• Rethinking Layer-wise Feature Amounts in Convolutional Neural Network Archi-

tectures:

In praktischen Anwendungen von tiefen neuronalen Netzen ist eine Faustregel aus der

Vielzahl an Experimenten entstanden. Diese Faustregel dient als Leitfaden in Bezug

auf das Design von neuronalen Netzen, die hauptsächlich auf mathematischen Fal-

tungen basieren. In solch einem Netz werden mehrere Faltungen in Reihe geschaltet,

wobei der Gestalter des Netzes sowohl die Anzahl an Faltungen in Reihe, als auch die

Anzahl der parallel geschalteten Berechnungen in jeder Schicht der Hierarchie bes-

timmen muss. Die ungeschriebene Regel besagt hier, dass die Anzahl der parallelen

Berechnungen mit der Tiefe des Netzes ansteigen sollte. Dies ist inspiriert von der Hy-

pothese, dass ein neuronales Netz zunehmend aufgabenspezifische Repräsentationen

in tieferen Schichten lernt. Im Umkehrschluss wird davon ausgegangen dass weniger

Operationen in niedrigen Schichten benötigt werden, da spekuliert wird, dass diese

sehr elementare Merkmale lernen, so wie Kanten oder Farben in visuellen Systemen,

und somit generell nutzbar für eine Vielzahl von erdenkbaren Aufgaben sind. Der

vorgestellte Artikel hinterfragt diese Hypothese und insbesondere die daraus resul-

tierende Faustregel, indem für populäre Datensätze zur Bildklassifizierung die Anzahl

der maximal erlaubten lernbaren Repräsentationen in verschiedenen Schichten der

neuronalen Architektur untersucht wird. Aus den spezifischen Experimenten geht

hervor, dass ein umgekehrtes Phänomen zur beschriebenen Faustregel empirisch zu

bevorzugen ist. In Bezug auf die überspannenden Aspekte des maschinellen Lernens

werden letztendlich somit Bedenken zum aktuell überwiegenden Vorgehen geäußert,

identische neuronale Netzdesigns für verschiedenartige Aufgaben zu benutzen.
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• Meta-learning convolutional neural architectures for multi-target concrete defect

classification with the concrete defect bridge image dataset:

Ein Datensatz für die Erkennung und Klassifizierung von Betondefekten in ziviler

Brückeninfrastruktur wird vorgestellt. Wohingegen vorherige Datensätze einen Schw-

erpunkt auf Risse als Hauptgefahr setzen, erweitert der eingeführte Datensatz dies

um Materialzertrümmerung (engl. spallation), Kalziumablagerungen (engl. calcium

leeching), offen liegende Bewehrungsstäbe (engl. exposed reinforcement bar) und

Korrosion. Diese Kategorien können alle gleichzeitig in einem Bild vorkommen. Die

daraus resultierende Aufgabenstellung der Klassifizierung gemeinsam vorkommender

Defekte wird aus Sicht tiefer neuronaler Netze untersucht. Es wird beobachtet dass

Vorschläge für neuronale Netzarchitektur aus vorangegangener Literatur in Evalua-

tionsexperimenten mit dem eingeführten Datensatz nicht vergleichbare Vorteile wie

in den Originalexperimenten zeigen. Im Kontrast hierzu bietet das Metalernen von

neuronalen Netzen, das heißt das Lernen der Bausteine der Architektur und deren

Komposition selbst mit Hilfe eines zusätzlichen Lernmechanismus, der die Struktur

für eine spezifische Aufgabe optimiert, eine bessere Lösung bezüglich der Genauigkeit

und verringerten Größe der neuronalen Architektur. Im Rahmen der einzelnen As-

pekte des maschinellen Lernens wird bekräftigt, dass ein solides neuronales Netzde-

sign ein explizites Hinzuziehen der Aufgabenstellung und ihrer Daten erfordert. Es

sollte also nicht allgemein davon ausgegangen werden, dass ein einzelnes statisches

Design ausreicht, um verschiedene Aufgaben zu lösen.

Kapitel 2: Enabling Open Set Recognition and Continual Learning in Deep Neural Network Ar-

chitectures (Erkennung offener Mengen und Befähigung zum kontinuierlichen Lernen in tiefen

neuronalen Netzen)

• Unified Probabilistic Deep Continual Learning through Generative Replay and Open

Set Recognition:

Eine wohlbekannte Herausforderung für tiefe neuronale Netze ist es ungesehene un-

bekannte Eingaben von den Trainingsdaten zu unterschieden und die aktuelle Un-

fähigkeit zum kontinuierlichen Lernen zu überwinden. Ohne zusätzlichen Mecha-

nismen weist ein tiefes neuronales Netz ein unbekanntes Beispiel einem gelernten

Konzept mit hoher Wahrscheinlichkeit zu. Sollte man dieses Unwissen lösen wollen,

indem man die Parameter anhand neuer Beispiele aktualisiert, so überschreiben diese

wiederum älteres Wissen. In diesem Artikel wird argumentiert, dass diese Schwie-

rigkeiten verbunden sind und gemeinsam mit einem einzelnen vorgestellten Mecha-

nismus für tiefe generative neuronale Netze angegangen werden können. Solch ein
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generatives neuronales Netz lernt explizit eine Kodierung der Wahrscheinlichkeits-

verteilung der observierten Daten. Zuerst werden Eingabedaten in einzelne Faktoren

zerlegt, bevor diese dann rekombiniert werden, um Daten zu erzeugen. Im vorgeschla-

genen Verfahren wird gezeigt, dass durch Messen der Distanz zu diesen generativen

Faktoren der Trainingsdaten eine Lösung gefunden werden kann, um sowohl kon-

tinuierliches Lernen, als auch Erkennung von unbekannten Beispielen zu ermöglichen.

Um bereits gelernte Daten nicht zu vergessen, können ähnliche Datenpunkte zur ur-

sprünglichen Datenmenge mit Hilfe der generativen Faktoren erzeugt werden und

dem neuronalen Netz zur Bekräftigung nochmals präsentiert werden. Gleichzeitig

kann eine falsche Ausgabe für unbekannte Daten verhindert werden, indem diese

als unbekannt durch große Distanzen zu bereits bekannten Faktoren erkannt wer-

den. Der Artikel betont das notwendige Zusammenspiel verschiedener Aspekte des

maschinellen Lernens, insbesondere die Abhängigkeit zwischen robusten Ausgaben

und kontinuierlichem Lernen.

• Open Set Recognition Through Deep Neural Network Uncertainty: Does

Out-of-Distribution Detection Require Generative Classifiers?:

Der Schwerpunkt des Artikels liegt auf der Auswirkung der Wahl des neuronalen

Netzes und der Wahl der Metrik auf die Fragestellung ob neue unbekannte Daten-

punkte als solche erkannt werden können oder mit bekannten Konzepten verwech-

selt werden. Es werden Experimente durchgeführt um simple Heuristiken, basierend

auf Schwellenwerten einer Klassifizierungsausgabe, mit gemessenen Distanzen im

Raum der gelernten Repräsentationen zu vergleichen. Die Untersuchung ist erweit-

ert durch optionale Schätzung von Unsicherheit, d.h. die gemessene Intensität der

Schwankung in der Ausgabe, wenn Berechnungen mit einer zufällig ausgewählten

Zahl an Repräsentationen wiederholt wird. Die experimentelle Analyse ist weiter-

hin gekoppelt an die Wahl des neuronalen Netztyps im Sinne der zugrunde liegen-

den statistischen Modellierung. Im Wesentlichen werden diskriminative Modelle mit

ihrem generativen Gegenstück gegenübergestellt. Im Kontext neuronaler Netze geben

erstere eine simple Ausgabe einer Klasse nach Eingabe ein Beispiels aus, letztere

berücksichtigen hingegen weiterhin die Frage wie die Datenpunkte entstanden sind.

Als Resultat der Experimente übertrifft der vorgeschlagene Ansatz, der den Genera-

tionsprozess berücksichtigt und Ähnlichkeit neuer Beispiele anhand von Distanzen

zur gesehenen Verteilung der Trainingsdaten beurteilt, standard neuronale Netzk-

lassifizierung in Hinblick auf Erkennung von unbekannten Daten. Aus Perspektive

des allgemeinen Vorgehens im maschinellen Lernen verstärkt diese Arbeit somit die
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Notwendigkeit eines Systemansatzes und zeigt auf, dass eine robuste Anwendung in-

härent gekoppelt an die Wahl des neuronalen Netzmodells ist.

Kapitel 3: Consolidating Viewpoints: Designing Neural Networks for Continual, Active Learn-

ing in an Open World (Zusammenführen der Blickwinkel: Design von neuronalen Netzen für

kontinuierliches, aktives Lernen in einer offenen Welt).

• A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten

Lessons and the Bridge to Active and Open World Learning:

Der Artikel präsentiert die übergreifende Perspektive, dass verschiedene individuell

behandelte Aspekte des neuronalen Netz spezifischen maschinellen Lernens gemein-

sam betrachtet werden müssen. Er vertritt die Position, dass typischerweise separierte

Elemente synergistisch sind und untermauert dies durch einen breiter gefächerten Lit-

eraturüberblick. Das zentrale Thema ist dabei eine Brücke zu bilden, zwischen den

Herausforderungen des kontinuierlichen Lernens mit neuronalen Netzen, des Prob-

lems gelernte Konzepte von beliebigen Datenbeispielen für eine robuste Anwendung

zu unterscheiden und die essenzielle Frage welche Daten für das Training benutzt wer-

den sollten. Ein gemeinsames konzeptionelles Gerüst für diese Aspekte wird mit Hilfe

der zuvor eingeführten generativen neuronalen Netze vorgestellt. Weil diese Modelle

es erlauben, die Verteilung der Trainingsdaten zu approximieren, kann ein einzelner

Kernmechanismus vorgestellt werden, um die beschriebenen drei Herausforderun-

gen zu überwinden. Empirische Resultate zeigen, dass dieser Mechanismus einzelne

Techniken, die ausschließlich für eine Fragestellung vorgeschlagen wurden, in der

individuellen Problemstellung verbessert und gleichzeitig einen gemeinsamen über-

greifenden Rahmen bietet. Dies wird demonstriert durch experimentelle Verbesserung

der Genauigkeit in kontinuierlich lernenden neuronalen Netzen zur Bildklassifizierung,

verbesserte Genauigkeit wenn Trainingsdaten vom Netz selbst ausgewählt werden

oder wenn die Reihenfolge der Aufgaben vom neuronalen Netz selbst bestimmt wird,

sowie deutlich verminderter Abfall der Genauigkeit und somit robustere Anwendung

wenn korrupte Daten eingeführt werden. Der Artikel baut somit auf die Erkenntnisse

vorangegangener Literatur und den vorherigen Artikeln der Dissertation auf und vere-

int diese. Er stellt die Notwendigkeit einer Systemperspektive heraus und demonstri-

ert deren Vorteile aus Perspektive tiefer neuronaler Netze.
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THESIS SYNOPSIS

Preamble: Models, Feature Engineering and Data-driven

Approaches

Many of the traditional computer vision works build systems through inclusion of explicit

invariant operators that guarantee an unchanging output under change of the condition to

which they are invariant to. A popular choice for an outdoor computer vision application

could be the inclusion of a photometric invariant that separates shape from illumination

(Schmid and Mohr, 1997; Narasimhan et al., 2003), in order to make sure that an algo-

rithmic prediction remains the same even when the lighting conditions vary. A similarly

common choice could be invariance to scale, for applications where an object to be recog-

nized appears at perceived different sizes due to varied distance to the camera. Ideally, a

computer vision system is thus desired to produce a correct unaltered output in indepen-

dence of any such nuisance variation that we do not explicitly care about, see Chin and

Dyer (1986); Besl and Jain (1985); Mundy and Zisserman (1992); Mumford et al. (1994)

for surveys. Often the specific application does not require full invariance or a mathemat-

ical expression for a full invariant is not trivially constructable. Quasi-invariance can then

suffice to form hypotheses. Such quasi-invariance serves as an approximation with respect

to full invariance, where the output now remains constant only for a specific, yet practically

sufficient range of transformations, see Binford and Levitt (1993) for an overview. Based on

this perspective, coupled with a view that is cohesive with rigorous engineering principles,

performance characterization (Petkovic, 1989; Haralick, 1992) then conducts analyses of al-

gorithms’ behavior under conceivable perturbation models (Ramesh and Haralick, 1992a,b),

see Thacker et al. (2008) overview and best practices.

However, applications have emerged where an ever increasing amount of variations in ac-

quired data has led to an expected increasing necessity for larger complexity. If we take

for instance all the possible variations of environmental conditions coupled with the gen-

erally unconstrained design of man-made objects composed of materials such as plastic, it
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is assumed that these factors of variations can no longer be fully specified in an upfront

system design. In an age where data has become a commodity, the advent of deep learning

(DL), or rather resurgence popularized by the empirical successes on large scale computer

vision tasks (LeCun et al., 1998; Krizhevsky et al., 2012; Everingham et al., 2014; Rus-

sakovsky et al., 2015), has thus shifted the focus to data-driven approaches. Initially, this

has yielded works that attempt to combine or partially include the above perspectives with

the design of data-driven pipelines to various degrees. For example, Girshick et al. (2014)

employed traditional modules with illumination and scale invariants through inclusion of

selective search preprocessing (Uijlings et al., 2013) as an initial step to further process-

ing with neural networks. He et al. (2014) included spatial scale pyramids in deep neural

networks. Analogously, scattering convolutional neural networks (Bruna and Mallat, 2013)

employ a first layer of scattering wavelets (Mallat, 2012), that feature specific group invari-

ants to e.g. rotation. These are just a few of the technical examples that combine expert

designed modules with purely data-driven techniques. Nevertheless, the presumption that

the respective invariance can simply be learned if enough data featuring the corresponding

variation is available seems to have taken over lately and diffused into every conceivable

application. In particular with deep neural networks, it is generally believed that a large

amount of parameters provides enough representational power to express even the most

complex concepts, leading to a task’s solution if we simply allow these hidden variables to

be learned through repeated iterative updates on enough acquired data. Whereas hand-

writing recognition has traditionally been pursued through the construction of an explicit

adaptive likelihood model that takes into account expert knowledge on locations and de-

formations along splines of digits (Hinton et al., 1992), it is therefore now perceived as a

solved challenge by training deep neural networks on ample amounts of annotated data

(LeCun et al., 1998). Object detection that probabilistically factors in the physics of image

formation, geometry, illumination and sensors (Tsin et al., 2001) has largely been replaced

by end-to-end learnable pipelines (Girshick et al., 2014; Ren et al., 2017). Texture recog-

nition, customarily addressed with expert constructed three dimensional assemblies of so

called textons (Leung and Malik, 2001), has similarly been superseded by the DL approach

(Cimpoi et al., 2015; Andrearczyk and Whelan, 2016). The purely data-driven approach is

now favored in areas such as crack defect recognition (Shi et al., 2016; Kim et al., 2018;

da Silva and de Lucena, 2018; Mundt et al., 2019a), where accounting for the fractal ge-

ometry was predominant in previous applications (Maaruf et al., 1993; Cao and Ren, 2006;

Farhidzadeh et al., 2013). Claims even go as far as deep neural networks being able to

acquire physical intuition by observing physical processes such as towers toppling due to

their assembly, the blocks’ mass and gravity (Lerer et al., 2016), something traditionally
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described through elaborate generative factors in conjunction with e.g. graphics renderers

to obtain the respective visual manifestations (Battaglia et al., 2013).

As the accomplishments of deep learning are typically perpetuated by their success on lim-

ited static benchmark datasets, see e.g. Tsotsos et al. (2019) on a discussion on the effect

of dataset statistics and their potential mismatch with common traditional computer vision

assumptions, this development is not perceived equally amicably by everyone. It has at the

same time sparked an increasing amount of controversy, centered around the often cam-

paigned superiority and advocated dominance of these heavily data relying techniques over

traditional approaches. Several public debates were initiated, with the intent to voice valid

concerns and critique about the limitations of respective viewpoints (Marcus and Bengio,

2019; Marcus and Lange, 2020). Although designed to connect and fuel the way forward,

respective mindsets are however often presented as opposing one another and almost ma-

liciously interpreted as nefarious denunciation or dismissal of other views. The central dis-

pute seems to narrowly revolve around an asserted lack of interpretability of deep learning

versus the attributed intolerable amount of human investment into engineering an expert

system (Marcus, 2018; O’Mahony et al., 2019). This discussion can be further contextu-

alized with respect to the chronicle of DARPA and Launchbury (2017) on the three waves

of AI as the distinction between 1: descriptions through hand-crafted knowledge and 2:

categorization through statistical learning. The core question is then how to proceed to

the next stage 3: explanations through contextual adaptation. Just as many deep learn-

ing works assign a negative connotation to the term "hand-crafting", so do modern expert

systems imply that deep learning approaches are inherently incomprehensible. In the sub-

jective view of this thesis’ author, such arguments can be attributed to the overloading of

historically grown technical terms, the attached premises and the ambiguity in the terms’

community specific use. Whereas ideally scientific communication should always keep facts

in a grounded perspective, promoting a specific angle can be accompanied with a certain

amount of in-transparency, perceived as over-claiming or even as advocacy of a technique

as a "universal solvent" (Marcus, 2018). The resulting technical polymorphisms can thus

serve as red herrings, that form the basis for a distorted narrative and are easily subject to

misunderstandings and dispute.

One such polymorphism lies in the use and associated expectation of the concept of a model

and the corresponding adoption in deep learning. It is clear that the notion of a model his-

torically seems to refer to an expert designed, frequently fully parametric, system (DARPA

and Launchbury, 2017). This can be rooted in causal generative factors and physics-based

probabilistic approaches (Lipton, 2016; Marcus, 2018) or simply refer to computational

pipelines where the task specification and context is taken into account (Petkovic, 1989;
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Haralick, 1992; Ramesh and Haralick, 1992a,b; Thacker et al., 2008). Even though the

computational pipeline may be deep, i.e. comprised of multiple subsequent operations,

there is an anticipation of human interpretable behaviour of the model and a resulting ro-

bustness in design. Whereas deep learning is generally described as "computational models

that are composed of multiple processing layers to learn representations of data with multi-

ple levels of abstraction" (LeCun et al., 2015), the term however is regularly used to imply

the assembly of large amounts of layers in opaque neural networks, also referred to as the

model. As such, the wide-spread imputation is that the modern deep learning landscape is

riddled with such black boxes. They are presumed to work extremely well in practice and to

require significantly less expertise, as they rely on only few key mechanisms, such as train-

ing neural networks through backpropagation of errors (Rumelhart et al., 1986). The lack

of human interpretability is either tolerated in favour of empirically improved benchmark

results or post-hoc justified through visualization and introspection techniques (Bach et al.,

2015; Simonyan et al., 2014; Erhan et al., 2009; Olah et al., 2018; Montavon et al., 2018).

So do these neural network models generally overcome the design efforts of traditional mod-

els and does this always come at the expense of interpretability?

Reality is rarely as straightforward as this painted simple picture and answering the question

turns out to be far from trivial. In the process of writing this thesis’ manuscripts, the realiza-

tion quickly surfaced that techniques from traditional modelling that are attributed to lack

"large scale" are not necessarily mutually exclusive with data-driven approaches. Conversely,

deep learning is significantly more laborious for novel tasks than typically portrayed in the

world of benchmarks, with many of the failure modes and modelling assumptions hidden

or shifted to other aspects. Inspired by this mindset and the previously learned lessons from

past literature, this thesis has set out to walk initial steps on a path towards understandable

and interpretable deep neural network, potentially hybrid, models. At the time of writing

this thesis this road is without doubt long, as the question of bottom-up assembly of hybrids

and solving the essentially impossible to objectively define question of what constitutes deep

neural network interpretability remain largely open. That is, a great amount of long-term

research is still involved for the fundamental questions of whether a neural network needs

to resemble human decision making (Ridgeway et al., 1998), whether causal structure in

the data needs to be uncovered (Athey and Imbens, 2016), whether linear models can be

attributed with interpretability (Lou et al., 2013) or whether each operation at every level

of architecture compositionality requires grounding in intuitive theories of physics and psy-

chology (Lake et al., 2017). Yet, the existence of many hidden assumptions in the machine

learning workflow, that are frequently oversimplified or overlooked, also leaves room for a

complementary perspective. Instead of trying to explicitly fuse traditional computer vision
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Figure 1: Core machine learning workflow in the spirit of Google Cloud (2020) illustrations.
The accompanying articulated questions have been included to highlight the level of intri-
cate detail that is involved in a revolution of the supposedly simple cycle.

techniques into deep learning systems, we can attempt to bring the common use of deep

neural networks closer to that of traditional models. The main driving factor of this thesis is

thus to shine light into DL assumptions, associated failure modes, and lift them to a certain

extent to advance the current ways in which ML models can be exploited. The necessity for

the latter has stemmed from the requirements of an accompanied real-world application of

concrete infrastructure defect detection, that traditionally is not addressed through the use

of machine learning due to safety prerequisites and lack of large scale datasets for machine

learning.

To provide further detail, figure 1 shows a typical machine learning cycle on the basis of

the illustrations of Google Cloud (2020). It is composed of seven steps that are supposed

to pave the way towards any ML application, potentially by using correspondingly designed

and standardized cloud software platforms. As soon as the task’s suitability for machine

learning has been determined, the cycle starts with preparation of the data, coding of the

ML model and its training. This could be as easy as labelling the data with the desired

human labels, loading an ML architecture description from the literature and employing an

off-the-shelf stochastic gradient descent optimization algorithm. Once this is complete, the

model can be saved and deployed and a dedicated test set for evaluation can be used to

determine the model’s empirical performance in order to decide whether it improves in a

desirable direction towards satisfying previously set goals. The procedure is then iterated.
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This is the promise and pitfall of modern deep learning: choose a model, plug in the data

and iterate through further additions of data and model training.

Unfortunately this simplified view hides the many assumptions that are required to traverse

the cycle. Some of the intricate details and questions are specified at each stage of the

process in the figure. These encompass aspects reaching from data acquisition, required

data amounts, neural network design, size and training hyper-parameters, all the way down

to questions of when a trained DL model can be deemed successful, when it is expected to

break down and how the model can be updated continuously without restarting the cycle

from scratch at every iteration. To provide a more detailed account of the assumptions

that go into a DL system that have not vanished, but have merely been shifted to other

aspects that are similarly laborious to traditional model pipelines, a few examples are given

in the following: ever since the proposal of convolutional neural network (CNN) LeNet

(LeCun et al., 1998) and the success of Alexnet (Krizhevsky et al., 2012), almost every year

has sprouted a new state-of-the-art architecture, involving networks in networks (Lin et al.,

2014), deeper architectures (Simonyan and Zisserman, 2015), inclusion of skip-connections

(He et al., 2016), architecture width vs. depth trade-offs (Zagoruyko and Komodakis, 2016)

or dense connectivity patterns across all layers of the deep hierarchy (Huang et al., 2017).

Similar architecture attempts have been made by improving activation and pooling functions

(Goodfellow et al., 2013; Lee et al., 2015), replacing pooling with learnable convolutions

(Springenberg et al., 2015) and normalizing activations through data mini-batch statistics

(Ioffe and Szegedy, 2015). Efforts to improve stability and speed of training have been

made through the proposal of adaptive optimization steps (Kingma and Ba, 2015), dropout

regularization (Srivastava et al., 2014), intricate learning rate scheduling (Zagoruyko and

Komodakis, 2016; Loshchilov and Hutter, 2017) and the proposal of weight initialization

schemes (Glorot and Bengio, 2010; He et al., 2015).

In practice, when faced with a novel application, many of the above techniques and proposed

architectures do not live up to their promise and do not show the same improvements that

were conveyed in the original works’ benchmark analyses (Hendrycks and Dietterich, 2019;

Mundt et al., 2019a). When the trained and deployed ML model encounters data that devi-

ates statistically from the observed training distribution the resulting prediction is generally

erratic (Matan et al., 1990; Szegedy et al., 2014). When the ML model is trained contin-

uously without repeatedly exhibiting previously seen data instances, it is bound to catas-

trophically forget all acquired information (McCloskey and Cohen, 1989; Ratcliff, 1990;

French, 1992). To give a practical real-world example, suppose that we wish to train a

neural network to distinguish different animals. We start by showing it images of dogs and

cats and rapidly obtain a desired accuracy. Unfortunately, if shown images of other unseen
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animals such as horses or owls, the neural network will now tell us that these animals are

dogs and cats with an unreasonably high likelihood. Even more disastrously, if we now wish

to update our neural network continuously to also learn about owls and horses, we need

to constantly remind it of dogs and cats, as otherwise this pattern will occur in reverse and

the latter suddenly become synonymous with our newly introduced animals. Surely, in the

real world we don’t want our vision system to immediately forget everything it has learned

when we inject pieces of new information, and we certainly do not want our systems to fail

at the sight of anything it hasn’t previously seen.

Consequently, this thesis presents an attempt at shedding insights into, alleviating and miti-

gating these former aspects. The remainder of the thesis addresses individual open questions

of the ML system workflow on dataset construction, neural network architecture selection,

continual deep neural network learning, recognizing unknown examples and preventing

overconfident false predictions with deep neural networks. Conclusively, these questions

are then fused into a common larger perspective. A detailed synopsis and the specific con-

tributions of this thesis are described in subsequent sections.

Deep Learning Design Challenges and the Convergence of

Complementary Threads

The necessity to consider the entire machine learning workflow in this thesis originated from

an associated practical application concerned with locating and classifying defect anoma-

lies in concrete civil infrastructure. The open questions surrounding the machine learning

workflow, as articulated in the preamble, have emerged due to the perception of a persisting

disconnect between the seemingly rapid progress that is claimed in the current DL bench-

marking landscape and the transfer and usefulness of such designs for practical systems. As

will be argued extensively in the forthcoming thesis’ manuscripts, this is assumed to be a

result of the predominance of simple closed world benchmarks as a direct proxy for made

advances in the field. Here, the closed world refers to the practice of constructing a limited

dataset, separating a certain percentage as a dedicated test set, and hence judging an al-

gorithm’s or system’s progress based on empirical performance curves within this context.

Whereas many advances have certainly been achieved, the observation that such evaluation

protocols are overly simplified and often unrepresentative of true application desiderata had

to be made again and again throughout the course of this thesis. As such, a solid proportion

of developed DL indeed seems to fit the assertion of being limited to black box data driven

solutions that lack intuitive understanding and transfer to uncharted domains.

23



Without delving into full detail at this point, assume for an instant the later investigated task

of detecting cracks on concrete material surfaces. The traditional computer vision approach

would generate hypotheses on the existence of a crack based on e.g. their unique frac-

tal like geometry, that is in stark contrast to the homogeneity of man-made edges (Maaruf

et al., 1993; Cao and Ren, 2006; Farhidzadeh et al., 2013). A respective computer vision

model could then be further robustified through the use of illumination invariant operator

techniques to assure that the output remains consistent independent of global illumination

and lighting directional changes, based on e.g. ratio computation between individual color

channels (Funt and Finlayson, 1995; Nayar and Bolle, 1996; Nagao and Grimson, 1998). In

deep neural network (DNN) based data-driven approaches, we do not know if such criteria

are explicitly encoded and thus cannot derive similar behavioural guarantees. If we present

a previously unseen image that contains a different non-fractal man-made edge, this might

as well be considered as a crack due to differences in color, changes in illumination or any

other unprecedented change in the environment. This is because we typically have little

control over the exact invariants and the form of the features encoded in DNNs, outside

of attempting to include as much as possible variety in the constructed dataset. In fact,

various research has shown that it is still largely unclear how DNNs represent concepts and

arrive at their predictions. Geirhos et al. (2019) have shown that DNNs appear to give more

weight to textures in decision making in comparison to geometry. Ilyas et al. (2019) found

that adversarial perturbations, i.e. adding minute and imperceivable noise to an image that

typically leads to a complete system breakdown (Szegedy et al., 2014), can be sufficient

in training a DL model. Lapuschkin et al. (2019) have investigated the possibility of DNNs

exploiting so called "clever hans predictors", that is arriving at a prediction by memorizing

something unique in an image, such as a photographer’s signature in the corner of images

taken of horses in the majority of the constructed dataset.

This argument can in principle be taken ad absurdum, as shown in a quote from a recent

paper titled "Why do deep convolutional networks generalize so poorly to small image trans-

formations?" by Azulay and Weiss (2019): "we show that the convolutional architecture

does not give invariance since architectures ignore the classical sampling theorem, and data

augmentation does not give invariance because the CNNs learn to be invariant to transfor-

mations only for images that are very similar to typical images from the training set.” and

similar contemplations by Kayhan and van Gemert (2020): "we show that CNNs can and

will exploit the absolute spatial location by learning filters that respond exclusively to partic-

ular absolute locations by exploiting image boundary effects". In the same spirit, Hendrycks

and Dietterich (2019) have demonstrated the lack of robustness of DNNs to a variety of

conceivable common image perturbations and corruptions on a large empirical scale. These

latter insights are a direct consequence of the closed world assumption, that is the idea
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that evaluation needs to be conducted exclusively in a constrained environment, with the

later expectation that architecture settings and features deduced from a specific dataset will

somehow generalize and transfer to new other data distributions, domains and applications

(Yosinski et al., 2014; Oquab et al., 2014), see e.g. Pan and Yang (2010); Weiss et al. (2016)

for surveys on the prevalent assumption of DNN architecture and feature transferability. In

practice however the discrepancy between closed world design and evaluation, and real

open world application and usefulness forms the basis for a cascade of imperative to solve

challenges.

It is undeniable that many of the recently developed deep neural network architectures have

come with significant improvements across many computer vision benchmarks (LeCun et al.,

1998; Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; He et al., 2016; Zagoruyko

and Komodakis, 2016; Huang et al., 2017). However, these benchmarks have been inves-

tigated for at least a decade and the question of how suitable the static architectures are

for other datasets and whether similar benefits can be observed remains open. Much more

importantly, when moving from the typically investigated object classification benchmarks

to tasks concerning for instance textures, it can initially be unclear if commonly developed

assumptions on architecture design hold, or respectively how to design a solid architecture.

Suppose that an initial neural architecture design, typically consisting of multiple layers,

their precise mathematical operation and an allocated amount of learnable parameters,

has been found and it is expected to perform well in practice. We are now immediately

confronted with the next challenge in the cascade: there is no obvious indication of when

our trained model is going to fail. To worsen this, a neural network is well known to predict

falsely for unseen unknown data (Matan et al., 1990). To put this into perspective, say

our above defect classification algorithm distinguishes the anomaly into cracks or exposed

reinforcement bars. If a novel input image contains a third, currently unknown anomaly

such as corrosion stains, then this is not only bound to be attributed to one of the former two

categories, the neural network will additionally do so with considerable confidence. This

is the contrast between the closed and the open world. Recognizing the latter to prevent

nonsensical outputs is known as open set recognition.

Let’s take our thought experiment a little further and assume that there now exists a suit-

able architecture and a way to protect it from nonsensical outputs by identifying scenarios

on which it cannot perform well yet. Using a devised mechanism and the supervision of a

human, we now employ our system in practice and set aside any data for which we have

identified a failure mode. Naturally, our goal is now to improve our system and further op-

timize our neural network to find remedies for the unseen scenarios and include previously

unconsidered concepts, such as the additional corrosion stain in our concrete defect appli-
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cation. Naively, we just include these examples into the next step of our stochastic gradient

descent based backpropagation optimization algorithm and unfortunately now find that the

DNN performs great on the new data, but seems to have forgotten what we have previously

concentrated on. This well-known phenomenon is referred to as catastrophic interference

(McCloskey and Cohen, 1989; Ratcliff, 1990), a result of the combination of greedy unidi-

rectional parameter updates coupled with the entangled nature of the dense neural network

representations (French, 1992). It seems that we have to restart our process from scratch,

start over by identifying a suitable architecture, as it is static in nature and doesn’t allow

for changes on the fly, train on the entire data set once more, and ultimately again identify

what concepts are known and which are not.

Among many of the other questions compiled in figure 1, these issues have been identified

many decades ago and had to be rediscovered and their persistence validated in the context

of DNNs. Although the previous paragraphs may evoke a rather critical perspective, the

intent of this thesis is not to dwell on these shortcomings, but rather build on the myriad

of deep learning accomplishments. Accordingly, the above three essential challenges of

how to design neural network architectures for a novel task, such that they can also be

trained continuously as well as recognize unseen unknown data to provide a signal for

their intrinsic limitations in data-derived predictions, are the subject of the investigations

in the remainder of this thesis. When viewed in isolation of the preceding preamble and

introduction, each of the open questions could initially appear as worthwhile of being the

focus of individual segregated works. However, they are all part of the same process of

devising credible machine learning systems. This is reflected in the thesis structure and

the corresponding manuscripts, where multiple threads of the ML workflow have originally

been loosely coupled and pursued in parallel. A gradual fusion of the strands has then

ultimately led to the proposition of an integrated perspective.

The outline, in perspective of the overall machine learning workflow of figure 1, is presented

in figure 2. Out of the six central iterative development stages, four key phases are involved

to various degrees: preparation of data, designing the ML model, training, and prediction

and evaluation. The aspects of deployment and management of versions have been omitted

from the diagram, as the thesis has not further investigated questions such as how to effec-

tively store ML models, how to compress representations, speed up computation or how to

practically version individual models.
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Figure 2: Key components of the machine learning workflow that have been examined in
this thesis. The two phases of model deployment and versioning, as presented in figure
1, have not been investigated further and are thus ommited from this diagram. Chapter 1
focuses largely on the question of how to find and evolve suitable deep neural network archi-
tectures, whereas chapter 2 concentrates on how to enable these architectures to learn con-
tinually and identify unseen unknown examples. Chapter 3 conjoins the individual works
and presents a consolidated viewpoint, its embedding in the larger ML literature landscape,
a corresponding deep neural network based framework and empirical validation. Authored
manuscripts have been assigned to the phase of the workflow cycle that they can best be
attributed to. However, note that many of the at the time investigated challenges and ques-
tions are heavily interlaced, particularly when viewing them in retrospect of chapter 3.

Consequently, chapter 1 is concerned with the design of ML models and covers works where

progressive growth of architecture parameters to find a suitable representational capacity

for a task is suggested (Mundt et al., 2017), the feature distribution across the deep neu-

ral network hierarchy is examined (Mundt et al., 2018b), and reinforcement learning based

neural architecture search in comparison with static literature proposed DNNs is empirically

investigated in the context of a proposed concrete defect detection and classification dataset

(Mundt et al., 2019a).

Chapter 2 is concerned with open set recognition and its indispensability for continual learn-

ing. First a continual learning capable deep neural network is presented, that leverages an

open set recognition mechanism to identify the already known concepts and uses a gener-

ative model to rehearse previously seen data to avoid catastrophic forgetting (Mundt et al.,

2020b). In a concurrent work, the proposed open set recognition scheme is empirically val-
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idated and the effect of model choice and deep neural network uncertainty approximations

for recognition of unknowns is investigated (Mundt et al., 2019b). Lastly, the empirical

usefulness of the developed approaches (Mundt et al., 2019b, 2020b) is demonstrated for

the concrete defect detection use case proposed in Mundt et al. (2019a). This constitutes

the only section of the thesis that has not yet been condensed into a separate publicly ac-

cessible manuscript and contains contents from technical reports (Mundt et al., 2018c,a) of

the accompanying European Union’s Horizon project "AEROBI" (AErial RObotics system for

in-depth Bidge Inspection, grant No. 687384).

Chapter 3 culminates in a position on why neural network architecture choice, data se-

lection, continual learning and open set recognition are interconnected and should not be

viewed in isolation. It merges the threads pursued in the thesis and places them into the

overarching context. This position is manifested in an extensive literature review of the

current deep learning and earlier machine learning landscape. A generic framework is pre-

sented to highlight how the identification of learned data distribution boundaries, as gauged

by the learned embedding, serves as a common anchor for continual learning rehearsal of

known data, identification of suitable data for future inclusion through active queries, and

recognition of previously unseen unknown data instances. A respective realization of this

framework in deep generative neural networks as an extension of earlier proposed work

(Mundt et al., 2019b, 2020a) is introduced and subsequently empirically validated.

In retrospect of the works presented in this thesis, many of the at the time selected questions

and hypotheses are inherently intertwined. It is difficult to precisely ascribe them to a

single element in the machine learning system development and accounting for the overall

implications of the made choices. For example, this thesis’ proposed method to identify

unseen unknown data greatly benefits from specific DNN model choices, which can in turn

involve distinct training procedures, that can then be further modified to solve the challenge

of continuous updates. This further outlines the fundamental necessity of an overarching

frame of reference that takes into account the entire system design process from beginning

to end. The next section presents a detailed summary of the particular scientific hypothesis

that have been investigated and the notable technical contributions that have been made.

Investigated Specific Hypotheses and Detailed Scientific

Contributions

Following figure 2’s train of thought and the respectively outlined structure, the superordi-

nate chapters of the thesis have been titled: Chapter 1: Designing Dynamic Deep Neural Net-
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work Architectures through Meta-Learning and Representational Capacity Expansion, Chapter

2: Enabling Open Set Recognition and Continual Learning in Deep Neural Network Architec-

tures and Chapter 3: Consolidating Viewpoints: Designing Neural Networks for Continual,

Active Learning in an Open World. A more elaborate scientific synopsis of the manuscripts

that comprise each chapter, their investigated hypotheses and contributions are given in the

ensuing text segments. In addition to this technically more detailed summary, the individual

articles are then further preceded by general abstracts, both as a mean for the reader to re-

call the remaining thesis’ structure and to reinforce the overarching perspective as presented

in the synopsis.

Dynamic Deep Neural Network Architectures through Meta-Learning

and Representational Capacity Expansion

Chapter 1 essentially covers the question of how to exploit neural network architecture

designs and adapt them to be suitable for application to tasks for which they have not

originally been designed or validated.

The first question in a sequence of examinations has been to what extent typical neural

networks are parametrized appropriately, assuming that the designed order and type of op-

erations in the hierarchy, i.e. the neural network layers, are desirable. A corresponding

manuscript Building effective deep neural network architectures one feature at a time (Mundt

et al., 2017) (technical report arXiv:1705.06778) has thus been motivated from a typically

occurring mismatch between a neural network’s specified representational capacity, that is

the maximum amount of features a designer dedicates to each layer in the hierarchy, and the

actual effective representational capacity that is put to use in the training process (Good-

fellow et al., 2016). Predominantly, this imbalance is resolved post-hoc by employing an

over-parametrized model that gets heavily regularized (Srivastava et al., 2014; Ioffe and

Szegedy, 2015) to avoid overfitting and later pruning and compressing redundant or obso-

lete parameters (Hinton et al., 2014; Han et al., 2015, 2016; Kang et al., 2016; Shrikumar

et al., 2016; Alvarez and Salzmann, 2016; Hao et al., 2017; Rodriguez et al., 2017; Han

et al., 2017). This is not only problematic because it is inefficient, but also because it in-

herently lacks mechanisms to dynamically adapt architectures that go beyond repeatedly

training abundant amounts of parameters and then removing the unused parts.

In the suggested work (Mundt et al., 2017), inspiration is thus taken from the inverse per-

spective of neurogenesis (Ash, 1989; Gross, 2000; Vadodaria and Jessberger, 2014), the

bottom-up alternative that suggests to grow the amount of parameters as required during

learning. For this, the core assumption is that there exists an inherent regularization effect

29



of stochastic gradient descent that leads to unused features not adapting from their state at

initialization. As such, the key hypotheses that is then formed is that a structural change in

a feature with respect to its state at initialization is an indicator of feature importance. A

non-changing feature is hypothesized to be either due to: the initialization being a perfect

solution that does not require any prospective alteration to solve the task, or alternatively a

variety of complexly interacting effects such as too high representational capacity, the nature

of the cost function, explicitly imposed or implicit regularization or the type of optimization

algorithm resulting in a feature not being updated and thus effectively being obsolete. As

the former is highly unlikely in very high dimensions, the work has proposed a novel algo-

rithm to add extra features to a dynamically growing neural network as long as structural

change is identified among all features of a layer. This algorithm relies on an introduced

measure that captures a feature’s self-resemblance over time. It makes use of a normalized

cross-correlation between feature weight tensors at their initial time step of initialization

and the eventually changed tensor at any other point in time of training. With the aid of L2-

norms, the normalized cross-correlation metric is constructed such that the self-resemblance

is invariant to translation or rescaling. This effectively discounts changes observed in the

weight tensors that are a sole result of e.g. subtraction of fixed regularization terms when

gradients have vanished. Based on deep neural networks introduced in previous litera-

ture (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; He et al., 2016; Zagoruyko

and Komodakis, 2016), multiple architecture skeleton designs are taken and the proposed

expansion algorithm experimentally validated on popular image classification datasets by

progressively growing the representational capacity from a bare minimum of one feature at

initialization (LeCun et al., 1998; Krizhevsky, 2009; Russakovsky et al., 2015). The evolved

architectures are found to empirically outperform the literature baselines on these datasets

either in terms of rivalling accuracy with significantly less parameters, or with respect to im-

proved accuracy at the expense of additional parameter allocation. Although quite intuitive,

this further highlights the necessity of flexible architectures that scale with task complexity

instead of static task-agnostic neural network designs.

One emerging observation from the experiments on adaptively growing neural network rep-

resentational capacity is that the distribution of feature amounts across layers does not seem

to resemble the typical design patterns of the literature. Whereas evolved architectures sys-

tematically allocate the majority of their representational capacity to early operations in the

hierarchy, the previously prevalent design increases the number of features with increasing

depth of the neural network architecture, often simply by doubling the amount multiple

times (Simonyan et al., 2014; He et al., 2016; Zagoruyko and Komodakis, 2016). LeCun

et al. (2015) summarizes the rationale for the latter convolutional neural network composi-

tion as drawing inspiration from simple and primitive cells in the brain (Hubel and Wiesel,
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1962) and being reminiscent of the the visual cortex’ structure (Felleman and Van Essen,

1991; Cadieu et al., 2014). As such, it could be argued that lower layers require little ca-

pacity because they are hypothesized to encode generically usable features such as edge or

color filters, and in turn the deeper layers in the hierarchy necessitating a rich encoding

complexity to derive concept specific complex abstractions. In a consecutive work entitled

Rethinking Layer-wise Feature Amounts in Convolutional Neural Network Architectures (Mundt

et al., 2018b) (NeurIPS critiquing and correcting trends in machine learning workshop) the

previously predominant assumption on capacity allocation and respectively hypothesized

rule of thumb of deep neural network feature distribution is thus challenged. This is done

by defining a simple three-parameter univariate skew normal distribution to parametrize the

family of neural networks with respect to their distribution of feature amounts across layers.

The result of the empirical characterization across popular image classification benchmark

datasets (LeCun et al., 1998; Krizhevsky, 2009; Clanuwat et al., 2018) is that an almost in-

verse pattern to the prevalent design assumption is found to be consistently preferable. Hy-

pothetically this could be due to previous underspecification of low-level primitive features

or over-parametrization of high-level abstractions leading to high degrees of memorization.

Ultimately, whether or not the actual features in the hierarchy truly correspond to primitive

and abstract features, the work points out the necessity for more thorough future analysis

of proposed architectures. Rather than assuming that a designed neural network is suitable

across many tasks on the basis of inspiration and intuition from previous experiments, a

deeper analysis on the network and task specific information flow is required.

Although the previously described capacity expansion technique and the analysed network

feature topologies show empirical potential, there are two central limitations without fur-

ther modifications. First, it is not immediately apparent how to extend the architecture

expansion to also determine the amount of required layers, or at an even more profound

level, how to select the mathematical operation itself. Second, there are currently no guar-

antees for the expansion procedure’s success, as a respective grounding in theory remains

open. A concurrently emergent trend of meta-learning, that is learning to learn, comes

with the promise of solving these challenges. In the context of neural network architec-

tures, meta-learning can be associated with neural architecture search (Baker et al., 2016;

Real et al., 2017; Zoph and Le, 2017), where a learning algorithm is used to discover suit-

able neural network designs that subsequently learn the task itself. This is often framed as a

reinforcement learning problem, where the validation accuracy of a trained architecture cor-

responds to the reward to be maximized and the combination of individual layer operations

constitutes the search space (Baker et al., 2016; Zoph and Le, 2017). Whereas the earlier

capacity expansion technique has initially found use beyond the standard computer vision

benchmarks in practical application to concrete defect detection (Mundt et al., 2018d), the
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ability of meta-learning to derive entire neural architectures has thus been favoured in prac-

tice later. A corresponding dataset for this concrete defect detection and classification task,

together with an investigation of suitable neural architectures has been published in the

work titled Meta-learning convolutional neural architectures for multi-target concrete defect

classification with the concrete defect bridge image dataset (Mundt et al., 2019a) (CVPR). In

essence, the work’s contributions are three-fold. The first contribution is the established

high-resolution dataset, which is not only significant because it adds to the corpus of avail-

able texture (Dana et al., 1999; Sharan et al., 2009; Hayman et al., 2004; Bell et al., 2015)

and object (Everingham et al., 2014; Russakovsky et al., 2015) benchmarks, but also be-

cause it expands upon previously limited domain-specific data advances (Shi et al., 2016;

Yang et al., 2017). Based on previous concrete defect detection datasets (Shi et al., 2016;

Yang et al., 2017), prior machine learning applications are typically constrained to crack

versus non-crack classification (Li et al., 2018; da Silva and de Lucena, 2018; Kim et al.,

2018). In contrast, the introduced COncrete DEfect BRidge IMage (CODEBRIM) dataset fea-

tures high-resolution images that display multiple defect categories with frequent overlaps.

The resulting application is thus a substantially more challenging multi-class and multi-

target task. From a civil engineering perspective, this is imperative because the taxonomy

of defects and their severity, judged e.g. by the co-occurrence of multiple defects and the

interplay of particular defect classes, plays a significant role with respect to a structure’s

integrity (Koch et al., 2015). Second, on the basis of the CODEBRIM dataset, an investiga-

tion of best-practice static neural network architectures (Krizhevsky et al., 2012; Simonyan

and Zisserman, 2015; Andrearczyk and Whelan, 2016; Zagoruyko and Komodakis, 2016;

Huang et al., 2017) together with a thorough examination of hyper-parameter selection,

i.e. the correlation between the trained model’s accuracy and image size, stochastic gradi-

ent descent mini-batch size, learning rate, is conducted. This includes an examination of

transfer learning from commonly exploited datasets such as the object centered ImageNet

(Russakovsky et al., 2015) or texture focused "materials in natural context" (MINC) (Bell

et al., 2015) database. Due to their astonishingly large amount of images in the millions,

such pre-training is frequently speculated to be advantageous for applications where scarcer

data amounts are available. Perhaps not surprisingly, recall the introduction’s statements

on the closed-world assumption, this form of feature transfer is empirically observed to be

futile. Analogously, claimed performance advantages of one static literature neural network

baseline over the other are not mirrored in the CODEBRIM scenario. Consequently, the ef-

ficacy of two meta-learning architecture search procedures (Baker et al., 2016; Pham et al.,

2018) is studied for CODEBRIM. For this purpose, two variants, Meta-QNN (Baker et al.,

2016) and ENAS (efficient neural architecture search) (Pham et al., 2018), are adapted.

The former is based on tabular Q-learning (Watkins and Dayan, 1992), the latter is based
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on policy gradients (Sutton et al., 1999) and an additional long short-term memory (LSTM)

neural network (Hochreiter and Schmidhuber, 1997) that learns the policy. The search

space is extended to involve spatial pyramidal pooling (He et al., 2014), both to find scale

quasi-invariant neural architectures, as well as enabling processing of varying input sizes

as a result of an adaptive mapping from flexible input dimensionality to fixed size output

vectors. Most of the best-practice literature baseline architectures, even those claimed to

be specifically designed towards texture based problems (Andrearczyk and Whelan, 2016),

cannot compare with the meta-learned architectures. For the specific application, the latter

contain significantly less parameters, generally fewer layers, while rivalling or outperform-

ing human designed counterparts in terms of accuracy. The design of the common search

space across the Meta-QNN and ENAS methods further allows for a direct comparison of

the two methods. For the specified task both methods yield comparable architectures. This

is intriguing in foresight of future application to deep continual learning as the ENAS pro-

cedure already continuously shares partially learned features throughout the course of its

architecture search, whereas Meta-QNN treats each suggested architecture as a blank slate.

Just like in the other two manuscripts that are accumulated in this thesis chapter, the last

work again highlights that the machine learning workflow requires an all-encompassing

view that transcends the ubiquitous narrative of conveniently using a deep neural network

as an advisable out-of-the-box solution for any task. The successive chapters further sub-

stantiate this perspective.

Enabling Open Set Recognition and Continual Learning in Deep Neural

Network Architectures

Chapter 2 covers a related question of how to exploit neural network architectures in prac-

tice. Rather than pursuing the former chapter’s question of how to adequately construct a

neural architecture or adapt its capacity to obtain the desired accuracy on a new task, this

chapter addresses the suitability of DNNs from a different angle. It is the perspective of

enabling deep neural networks to overcome their closed set training and enable a continu-

ous learning process. In other words, how can we protect DNNs from the persisting threat

of overly confident false predictions on unseen unknown data instances that are distinct

from the observed training distribution (Matan et al., 1990; Scheirer et al., 2013; Bendale

and Boult, 2016; Nalisnick et al., 2019; Ovadia et al., 2019) and alleviate the catastrophic

forgetting hazard when such data is consecutively trained (McCloskey and Cohen, 1989;

Ratcliff, 1990)? As both of these phenomena are deeply rooted in the workhorse of mod-

ern deep learning, i.e. backpropagation based stochastic gradient descent in conjunction
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with densely entangled hierarchical representations (French, 1992), these aspects are thus

inherently tied to the design of DNNs. In essence, this forms a double-edged sword with

the dilemma of whether to abandon the prevalent deep learning representations in favor

of traditional computer vision models at the potential cost of expressivity, think of deep

learning’s capacity to capture the complex real-world interaction of multiple overlapping

defect classes of the earlier introduced CODEBRIM dataset, or being confronted with the

above limitations. Whereas both paths are certainly worthy of pursuit, this thesis naturally

focuses on overcoming the latter. However, in contrast to most of the to this day preva-

lent literature, see Boult et al. (2019) for a review on deep open set recognition and Parisi

et al. (2019) for a review on deep continual learning, the works presented in this chapter

do not attempt to address the DNN open set and continual learning problems individually.

This stems from an early realization that identification of the boundary between the known

data population and samples from unknown distributions naturally grants the means to pre-

cisely protect acquired information. Hence it seemed natural to attempt to find a solution

that merges open set recognition and continual learning from the start, especially since the

prevention of overconfident false predictions would emerge as a limitation for robust appli-

cation in continually trained neural networks anyway. Instead of following recent trends to

find situational techniques that can demonstrate alleviated catastrophic forgetting in terms

of accuracy on specific benchmarks, see Kemker et al. (2018); Farquhar and Gal (2018);

Parisi et al. (2019); Lesort et al. (2019); Pfülb and Gepperth (2019); De Lange et al. (2019)

for overviews of the catastrophic forgetting centric perspective, the goal has therefore di-

rectly been broadened to encapsulate learning and application beyond the closed world.

The backbone of this chapter is formed by two interconnected works. The first work, Uni-

fied Probabilistic Deep Continual Learning through Generative Replay and Open Set Recogni-

tion (Mundt et al., 2020b) (under review, preprint arXiv:1905.12019), introduces a nat-

ural mechanism for open set recognition in deep neural networks, that is shared across

both works, and proposes its principled role in mitigating catastrophic forgetting in con-

tinual learning. The second work, Open Set Recognition Through Deep Neural Network Un-

certainty: Does Out-of-Distribution Detection Require Generative Classifiers? (Mundt et al.,

2019b) (ICCV, first workshop on statistical deep learning for computer vision), compares

and contrasts the empirical efficacy of the suggested open set recognition mechanism in

relation to model choices and imaginable alternative techniques for recognition of unseen

unknown data, such as commonly applied heuristics or approximations of uncertainty in

deep neural networks. Although this latter work has eventually wound up being published

first, it is chronologically anteceded.
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Correspondingly, Unified Probabilistic Deep Continual Learning through Generative Replay

and Open Set Recognition (Mundt et al., 2020b) introduces a single deep model for contin-

ual learning that is naturally capable of open set recognition. The work draws its inspiration

from two streams of prior work, one on extreme value theory (EVT) based meta-recognition

to identify unseen unknown data (Scheirer et al., 2013, 2014), and the other on diminishing

catastrophic interference in DNNs by rehearsing already learned concepts with the help of a

deep generative model (Robins, 1995; Shin et al., 2017). Here, extreme value theory based

meta-recognition for open set recognition is formally defined as limiting the risk of examples

that are outside of a union of balls of a particular radius that include all training examples

in some feature space (Scheirer et al., 2013, 2014). Accordingly, a distributional fit with

respect to the observed extreme distances of the occupied feature space can be employed to

formalize an outlier likelihood. This outlier likelihood is then large for individual instances

for which the distance in this feature space does not meet the probabilistic expectation.

This idea has been transferred to use with deep neural network classifiers by Bendale and

Boult (2016). They have formulated the OpenMax algorithm, which fits a per-class Weibull

distribution on the basis of distances in a deep neural network’s penultimate layer’s feature

space and subsequently lowers the output confidence for novel instances whose distance

surpasses the acquired distribution’s heavy tail. Although shown to be empirically prefer-

able to rather simple heuristics, the approach in this form nevertheless comes with a major

limitation: there is little control over the type of information encoded in the penultimate

layer of a deep neural network classifier. Most importantly, crucial information that de-

scribes the full data distribution is purposefully discarded if it doesn’t aid in minimizing the

formulated classification loss surrogate. This is in addition to the general open questions

concerning the encoded patterns’ nature, i.e. the encoded patterns could simply resemble

noise (Ilyas et al., 2019) and thus not be beneficial to distinguish the desired human taxon-

omy of concepts. In the spirit of these former works, the key contribution of this chapter’s

first work is an EVT based meta-recognition variant that is rooted in the actual data dis-

tribution and its generative factors. For this purpose, a deep generative neural network

model that captures the joint data and label distribution in a latent space is constructed

and the EVT meta-recognition procedure respectively adapted to rely on the generative

factors of variation. This is enabled through auto-encoding of variational Bayes (Kingma

and Welling, 2013), which seeks to match the data’s approximate posterior with a specified

prior distribution through a probabilistic neural network encoder, and simultaneously trains

a probabilistic decoder to produce a distribution over possible data values based on the en-

coded generative factors. To ensure that the generative factors are clustered according to a

supervised signal, a linear separability objective for label attribution is added to the latent

space. Besides now attempting to encapsulate all representations that characterize the data
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distribution and thus the open set recognition yielding empirically impressive results, the

identification of the known generative factors and regions of the latent space has an addi-

tional inherent advantage. It clarifies the essential question of how to robustly sample from

the prior in semi-supervised variational auto-encoders (VAE) (Kingma et al., 2014) in order

to generate instances that correspond to the original data and hence use them for rehearsal

in continual learning. This is because identification of known high-density latent space re-

gions conveniently circumvents the dispute around the unavoidable mismatch between the

specified prior and the actually optimized approximate posterior distribution. In reality, the

latter is never desired to actually fully resemble the prior, at least if the specified prior is

very simplistic such as a unit Gaussian distribution (Tomczak and Welling, 2018; Bauer and

Mnih, 2019), as this would collapse any innately present and captured structure in the data

(Hoffman and Johnson, 2016; Burgess et al., 2017; Mathieu et al., 2018, 2019). In fact,

the proposed open set recognition procedure identifies the boundaries of this so called ag-

gregate posterior and allows to sample and generate data that veritably resembles actually

observed instances, without excessive interpolation or ambiguity. For continual learning,

the generated data can then serve to protect previously acquired information from being

catastrophically forgotten. Not only is the requirement of training separate neural network

classifiers and generative models thus lifted, in contrast to e.g. Shin et al. (2017) who al-

ways train additional generative adversarial networks (GAN) (Goodfellow et al., 2014), but

resulting continual learning accuracy is substantially improved on several visual (LeCun

et al., 1998; Krizhevsky, 2009; Xiao et al., 2017) and audio (Becker et al., 2018) bench-

marks. The capacity for deep continual learning is thus provided, all while being able to

identify unseen unknown data and prevent a subsequent misprediction in robust applica-

tion. The proposed unified framework is ultimately shown to scale to high-resolution color

images (Nilsback and Zisserman, 2006), by adopting further literature advances on auto

regressively modelling the dependency between pixels in an image (van den Oord et al.,

2016; Larsen et al., 2016; Chen et al., 2017; Gulrajani et al., 2017) and adversarial VAE

training mechanisms (Ulyanov et al., 2018; Huang et al., 2018).

The second work in this chapter continues this thread with further quantification and em-

pirical assessment of open set recognition. In Open Set Recognition Through Deep Neural Net-

work Uncertainty: Does Out-of-Distribution Detection Require Generative Classifiers? (Mundt

et al., 2019b) it is investigated to what extent a generative classifier, and thus an explicit

approximation of the data distribution, is required for successful open set recognition. Con-

sequently three model choices are contrasted: a conventional deep neural network blackbox

classifier, a variational discriminative classifier and a deep variational Bayesian generative

model. For each model choice two further aspects are explored, the contrast between the

outlier detection criterion hinging on a predictive heuristic such as predictive entropy and
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the multiple realizations of the EVT based meta-recognition method. In dependence on the

exact model choice, the latter corresponds to the proposed open set recognition variants of

Bendale and Boult (2015) and Mundt et al. (2020b). For each combination of model vari-

ant and metric, a further examination with respect to uncertainty approximations in deep

neural networks is conducted with respect to their role in recognition of unseen unknown

data. The corresponding implementation to gauge uncertainty is based on the arguments

of Gal and Ghahramani (2015), who suggest that employing a Dropout operation (Srivas-

tava et al., 2014) at each layer and conducting stochastic forward passes at the prediction

stage can be viewed as a variational approximation. The respectively termed Monte-Carlo

Dropout is argued to treat the model weights as a random variable that is marginalized.

Given that individual weights are set to either zero or one with a certain probability in

Dropout, the assumed distribution is then a Bernoulli distribution. The obtained results

across multiple datasets (LeCun et al., 1998; Krizhevsky, 2009; Netzer et al., 2011; Xiao

et al., 2017; Clanuwat et al., 2018; Becker et al., 2018) indicate that a pure discriminative

model is insufficient to address the open set challenge, independently of whether uncer-

tainty is accounted for or not. The deep neural network uncertainty is further empirically

observed to be inadequate for recognition of unknown data in combination with prediction

values. This may be due to the lacking approximation quality of Monte-Carlo Dropout or a

deeper limitation of unseen unknown data not being expressible by Bayes rule, as argued ex-

tensively in Boult et al. (2019). In conjunction with the previously summarized manuscript,

this work further highlights the requirement to consider the complete data distribution be-

yond features that only aid in a classification objective, even if the latter initially seems to

appear as the exclusive goal.

The chapter is concluded with the only section in this thesis that is not comprised of a sep-

arate publicly available manuscript. It does however contain non-verbatim elements of the

results presented in technical reports AEROBI - D3.3 Deliverable: Cognitive Vision System

V2 (Mundt et al., 2018c) and AEROBI - D3.6 Deliverable: Online Learning (Mundt et al.,

2018a) of the European Union’s Horizon 2020 "AEROBI" project under grant agreement

No. 687384. The section demonstrates the advantages of the historically later developed

techniques of this chapter on the earlier introduced CODEBRIM dataset. Hence, qualita-

tive illustrations are shown for semantic segmentation with simultaneous application of the

proposed open set recognition techniques to practical concrete defect detection.
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Consolidating Viewpoints: Designing Neural Networks for Continual,

Active Learning in an Open World

The third and last manuscript based chapter of the thesis provides the final overarching

perspective and widens the established viewpoint even further. In its essence, the respec-

tive work A Wholistic View of Continual Learning with Deep Neural Networks (Mundt et al.,

2020a) (under review, preprint arXiv:2009.01797) puts forward an extensive position and

arguments for the necessity of such a consolidated view. It highlights the connections be-

tween neural architecture choices, continual learning and open set recognition. It extends

the framework of Mundt et al. (2020b) to additionally encompass the challenges of active

data and task selection in continuous learning processes, i.e. ordering and choosing data

instances for consecutive training steps to maximize the expected performance gain.

In order to adequately portray the explored synergies, the work first starts by recalling litera-

ture definitions of continual learning and related paradigms, summarizing recent static and

continual benchmark evaluation practices and critiquing their limited value due to a mis-

match with the practical desiderata of transferable and robust real-world application. To

embed this into a grander frame of reference, a large scale review of the typically isolated

advances in deep continual learning, active learning and learning in an open world is con-

tributed. For each of these fields in the literature, individual techniques are grouped into a

taxonomy of methods. This taxonomy serves the essential purpose of highlighting shortcom-

ings. The latter are pointed out to have been identified rather early in more mature machine

learning literature, but seem to be frequently overlooked or forgotten in a resurgence of re-

spective methodology in deep neural network learning. Consequently, these are grouped

into five insights from past literature, that have rather provocatively been termed forgotten

lessons. The precise content of these forgotten lessons revolves around: 1. the repeatedly

disregarded closed world assumption and the fact that discriminative neural networks are

almost guaranteed to falsely and overconfidently predict outside of their closed world; 2. the

misleading premise that neural network uncertainty heuristics serve as a principled mean

to identify the open set and query novel data without being susceptible to meaningless or

uninformative outliers; 3. the somewhat naive assumption that explicit designation of what

should constitute novel data solves the challenge through calibration methods; 4. the gen-

erally neglected importance and relevance of data and task order in continual learning and

learning curricula in general; 5. the inherent role of architecture and parameter growth in

the move from the small data regime to ever increasing amounts of information in contrast

to the generally assumed static neural network nature. In the manuscript, each of these

findings is corroborated in detail and tied to the preceding literature review.
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The second half of the article then focuses on the natural interface and interconnections

between these statements and their respective open challenges. The mechanism to identify

the learned distribution boundaries is identified as the common denominator among the

previously seemingly distinct questions. In a deep neural network implementation this can

equate to the earlier proposed approximate posterior based boundaries in the latent space

of a deep variational generative neural network as practically gauged through the use of ex-

treme value theory (Mundt et al., 2019b, 2020b). Based on this single unified standpoint,

several algorithmic variations to address specific goals are formulated. On the one hand,

recognition of the open set can be adopted in analogy to the previously presented works to

protect the neural network from generating ambiguous examples for continual learning and

discard nonsensical overconfident predictions. On the other hand, knowledge of the bound-

ary between known and unknown can be further extended to use cases in two additional

directions. Rather than just rejecting nonsensical overconfident predictions, the measure of

outlier likelihood can be used to rank-order novel data instances. They can correspondingly

be grouped into instances that are expected to yield little future improvement, i.e. redun-

dant samples with high likelihood of being inliers of the seen distribution, instances that are

expected to provide additional task-relevant information, i.e. samples that show some rela-

tion and moderate statistical deviation with respect to already seen data, and instances that

are prone to yielding little task improvement, i.e. new inputs that are complete statistical

outliers due to consisting of uninformative noise or featuring other extraneous content. This

can be used for robust active learning or the construction of an intuitive curriculum of tasks

and data, where difficulty is measured according to overlap with the already observed data

distribution. On the flip side of the same coin, already seen data instances can be picked

according to their distance distribution to the known latent space boundary. As a proxy to

sampling from the actual data distribution, the posterior approximation can thus be used

to retain subsets of the original data that more accurately reflect the real data distribution

than a simple uniform sub-sampling would. This can be used for robust continual learning,

as a drop-in rehearsal replacement or in addition to previously proposed generative replay.

Finally, all these algorithmic variants with a common core are empirically evaluated, both

from the isolated perspective in comparison with active and continual learning methods

proposed in the literature on closed world fixed-order benchmarks, as well as in situations

where the closed world assumption is partially lifted through inclusion of corrupted and

perturbed data instances and where task order can be selected freely. The proposed unified

perspective and its realization in deep neural networks is not only shown to outperform

other methods in their original environment, it is also shown to have a significant edge over

these methods when unexpected data can be encountered.
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The article ends with a proposition on a refined definition of continual deep learning that

includes the innate challenges of data selection, architecture modification and learning ro-

bustly in an open world. One conceivable suggestion for a more comprehensive and system

oriented design and evaluation strategy is presented in the outlook. In its core, this sugges-

tion coincides with the voiced concerns and requirement of considering the entire machine

learning workflow, from data to architecture specifics and training to evaluation, as pre-

sented in the synopsis of this thesis.
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General Article Abstracts: Reinforcing

the Synopsis

The foregoing thesis synopsis has given a detailed view into the individual technical topics of

the upcoming thesis’ articles and their larger machine learning context. In order to facilitate

navigation for the reader, the previously detailed specific scientific contributions of each

work are summarized once more from a general perspective. These abstracts are intended

to reinforce the investigated topics and recall the overarching view.

Chapter 1: Designing Dynamic Deep Neural Network Architectures through Meta-Learning and

Representational Capacity Expansion

• Building effective deep neural network architectures one feature at a time:

Neural networks are often used to automatically learn some abstract representations

to solve a task given data. In practical machine learning, an engineer typically uses

a pre-made architecture for this purpose. Such a neural architecture is composed

of multiple building blocks called layers, where each individual building block comes

with a choice of width. In simplified terms and for a fixed amount of layers, this width

mirrors the learnable complexity. If too little, we are faced with the threat of not being

able to learn the necessary combination of representations required to solve a task.

If too large, the training is slow and the additional danger is a pure memorization of

every data point with little practical value. The conventional literature approach is

thus to train a very large neural network and consecutively discard representations

that do not contribute much to the task at hand. In the proposed work a reverse

approach is shown to be empirically successful, where a very small neural network

is used at the start and the width is increased adaptively during training to increase

the neural network’s complexity. To the extent that the experimental validation holds,

this addresses the high-level machine learning workflow question of how to select a

suitable neural network for a new task, as the proposed method will aid the engineer

in automatically determining the required layer widths.
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• Rethinking Layer-wise Feature Amounts in Convolutional Neural Network Archi-

tectures:

In practical use of deep neural networks a rule of thumb seems to have emerged as a

result of successful experiments. This rule of thumb serves as a guideline to the ma-

chine learning engineer with respect to the design of convolutional neural network

architectures. In the latter, multiple mathematical convolution operations are exe-

cuted in sequence, and the engineer has to decide both on the number of sequential

operations, as well as the number of operations that are computed in parallel at the

same level of the hierarchy. The respectively evolved unwritten rule is to increase

the number of parallel computations as the pipeline’s depth increases, inspired by the

hypothesis that the neural network learns increasingly task specific features at deeper

levels. Conversely, as the first operations in the sequence are speculated to learn very

basic features such as edges or colors in computer vision, it is hypothesized that a

lesser amount is required, as they can be shared across various imaginable tasks. For

a selection of popular computer vision image classification datasets, the article ques-

tions this hypothesizes and analyzes this rule of thumb by modifying the maximum

number of learnable features at various levels of the neural network hierarchy. In

the experiments, a reverse phenomenon to the above described design pattern can

be observed. Regarding the overarching machine learning workflow, this thus raises

concerns with respect to the practice of using the same neural network design across

various tasks.

• Meta-learning convolutional neural architectures for multi-target concrete defect

classification with the concrete defect bridge image dataset:

A dataset for detection and classification of concrete defects in civil bridge infras-

tructure is introduced. Whereas previous datasets concentrate on cracks as the key

threat, the proposed work provides an extension by also including spallation, calcium

leeching, exposed reinforcement bar and corrosion stain defects. These can all oc-

cur simultaneously within a captured image. The resulting task of classifying these

co-occurring defects into their categories is investigated from a perspective of deep

neural networks. For this introduced application, it is observed that neural network

architecture designs of previous literature do not provide similar benefits as discov-

ered in original experiments on popular image classification benchmarks. In contrast,

meta-learned neural architectures, that is neural networks whose building block com-

position is learned with the aid of an additional learning mechanism that optimizes the

neural network’s structure for the particular task, are found to be favorable in terms

of final task performance and smaller neural network size. In context of the machine
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learning workflow, this reinforces the point that neural network design needs to take

into account the particular task at hand and it should not be assumed that a single

static design suffices across various applications.

Chapter 2: Enabling Open Set Recognition and Continual Learning in Deep Neural Network

Architectures

• Unified Probabilistic Deep Continual Learning through Generative Replay and Open

Set Recognition:

A well-known challenge of deep neural networks is their current inability to learn con-

tinuously and to distinguish unknown input from what has been presented to the net-

work during training. Without additional mechanisms, a neural network will attribute

a new unknown example to any of the old concepts with high confidence. Trying to

solve this by updating the network exclusively on new examples will simply overwrite

these older concepts. In the work it is argued that these challenges are intertwined

and can be commonly addressed with a single proposed mechanism in deep genera-

tive neural networks. Such a generative neural network attempts to explicitly encode

the data distribution of the observed data population. It first decomposes inputs into

individual factors, that are then taken together to recompose and generate data. In

the article it is shown how measuring distances to these generative factors that de-

scribe the already seen data can serve as a solution towards both continuous learning

and recognition of unknown examples. To avoid forgetting of previously seen data,

generation can be used to rehearse data that lies close to past inputs and thus rein-

force older concepts. At the same time, a false prediction for entirely unknown inputs

can be prevented when a large dissimilarity to the already seen data distribution is

noticed. The work highlights the interplay of different aspects of the machine learning

workflow, such as continuous learning and robust predictions being interdependent,

and provides first steps towards a common solution.

• Open Set Recognition Through Deep Neural Network Uncertainty: Does

Out-of-Distribution Detection Require Generative Classifiers?:

This article focuses on the effect of neural network choice and selection of metric to

determine whether a newly seen data point belongs to known concepts or is presently

unknown. The work conducts experiments that investigate how simple threshold

heuristics on a neural network’s classification output perform in contrast to measur-

ing distances in its learned feature space. This investigation is augmented with an

optional assessment of uncertainty, that is the intensity of fluctuations in the output
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when computation is repeated with random deactivation of some of the learned fea-

tures. The experimental analysis is coupled to the choice of neural network type in

terms of the underlying statistical modelling. In essence, discriminative models are

compared to their generative counterparts. In the context of deep neural networks,

the generally used former variant simply predicts a class given a data sample, whereas

the latter also explicitly considers the question of how the data was generated. As a

result of the experiments, the proposed approach that takes into account the data for-

mation process and measures data similarity according to distance to the seen data

distribution outperforms simple classifiers in detection of unknown examples. From

a perspective of the overall machine learning workflow, this reinforces how robust

application is inherently tied to the choice of machine learning model.

Chapter 3: Consolidating Viewpoints: Designing Neural Networks for Continual, Active Learn-

ing in an Open World.

• A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten

Lessons and the Bridge to Active and Open World Learning:

The article presents a comprehensive perspective of how various aspects of the neural

network based machine learning workflow need to be treated together. It presents the

position that typically separately treated elements are synergistic, based on a broader

review of the literature and insights from older works. The central theme is a bridge

between the challenges faced when neural networks need to learn continuously, when

asked to separate known learned concepts from arbitrary data input for robust pre-

diction, and the essential question of what data to include for training. A common

framework is suggested based on previously developed generative neural networks.

Because these models allow to approximate the distribution of the seen data pop-

ulation, a single key mechanism is used to derive algorithmic variants to overcome

the previously formulated three-fold challenge. The results show that the introduced

framework improves upon previous techniques that are tailored towards only one of

the challenges, while providing a common frame of reference. This is demonstrated

in experiments to increase accuracy in continual learning image classification, im-

prove accuracy when selecting limited amounts of data for training, select which task

to learn next and how to diminish performance degradation when data is corrupted.

The article thus builds upon the insights from various former works and ties them

together, advocates the necessity of a systems perspective and demonstrates its utility

in experiments from a deep neural network perspective.
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Chapter 1

DESIGNING DYNAMIC DEEP NEURAL

NETWORK ARCHITECTURES THROUGH

META-LEARNING AND REPRESENTATIONAL

CAPACITY EXPANSION
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ABSTRACT

Successful training of convolutional neural networks is often associated with suffi-
ciently deep architectures composed of high amounts of features. These networks
typically rely on a variety of regularization and pruning techniques to converge
to less redundant states. We introduce a novel bottom-up approach to expand
representations in fixed-depth architectures. These architectures start from just a
single feature per layer and greedily increase width of individual layers to attain
effective representational capacities needed for a specific task. While network
growth can rely on a family of metrics, we propose a computationally efficient
version based on feature time evolution and demonstrate its potency in determin-
ing feature importance and a networks’ effective capacity. We demonstrate how
automatically expanded architectures converge to similar topologies that benefit
from lesser amount of parameters or improved accuracy and exhibit systematic
correspondence in representational complexity with the specified task. In contrast
to conventional design patterns with a typical monotonic increase in the amount of
features with increased depth, we observe that CNNs perform better when there is
more learnable parameters in intermediate, with falloffs to earlier and later layers.

1 INTRODUCTION

Estimating and consequently adequately setting representational capacity in deep neural networks
for any given task has been a long standing challenge. Fundamental understanding still seems to be
insufficient to rapidly decide on suitable network sizes and architecture topologies. While widely
adopted convolutional neural networks (CNNs) such as proposed by Krizhevsky et al. (2012); Si-
monyan & Zisserman (2015); He et al. (2016); Zagoruyko & Komodakis (2016) demonstrate high
accuracies on a variety of problems, the memory footprint and computational complexity vary.
An increasing amount of recent work is already providing valuable insights and proposing new
methodology to address these points. For instance, the authors of Baker et al. (2016) propose a
reinforcement learning based meta-learning approach to have an agent select potential CNN layers
in a greedy, yet iterative fashion. Other suggested architecture selection algorithms draw their inspi-
ration from evolutionary synthesis concepts (Shafiee et al., 2016; Real et al., 2017). Although the
former methods are capable of evolving architectures that rival those crafted by human design, it is
currently only achievable at the cost of navigating large search spaces and hence excessive computa-
tion and time. As a trade-off in present deep neural network design processes it thus seems plausible
to consider layer types or depth of a network to be selected by an experienced engineer based on
prior knowledge and former research. A variety of techniques therefore focus on improving already
well established architectures. Procedures ranging from distillation of one network’s knowledge into
another (Hinton et al., 2014), compressing and encoding learned representations Han et al. (2016),
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pruning alongside potential retraining of networks (Han et al., 2015; 2017; Shrikumar et al., 2016;
Hao et al., 2017) and the employment of different regularization terms during training (He et al.,
2015; Kang et al., 2016; Rodriguez et al., 2017; Alvarez & Salzmann, 2016), are just a fraction of
recent efforts in pursuit of reducing representational complexity while attempting to retain accuracy.
Underlying mechanisms rely on a multitude of criteria such as activation magnitudes (Shrikumar
et al., 2016) and small weight values (Han et al., 2015) that are used as pruning metrics for either
single neurons or complete feature maps, in addition to further combination with regularization and
penalty terms.

Common to these approaches is the necessity of training networks with large parameter quantities
for maximum representational capacity to full convergence and the lack of early identification of
insufficient capacity. In contrast, this work proposes a bottom-up approach with the following con-
tributions:

• We introduce a computationally efficient, intuitive metric to evaluate feature importance at
any point of training a neural network. The measure is based on feature time evolution,
specifically the normalized cross-correlation of each feature with its initialization state.

• We propose a bottom-up greedy algorithm to automatically expand fixed-depth networks
that start with one feature per layer until adequate representational capacity is reached. We
base addition of features on our newly introduced metric due to its computationally efficient
nature, while in principle a family of similarly constructed metrics is imaginable.

• We revisit popular CNN architectures and compare them to automatically expanded net-
works. We show how our architectures systematically scale in terms of complexity of
different datasets and either maintain their reference accuracy at reduced amount of param-
eters or achieve better results through increased network capacity.

• We provide insights on how evolved network topologies differ from their reference counter-
parts where conventional design commonly increases the amount of features monotonically
with increasing network depth. We observe that expanded architectures exhibit increased
feature counts at early to intermediate layers and then proceed to decrease in complexity.

2 BUILDING NEURAL NETWORKS BOTTOM-UP FEATURE BY FEATURE

While the choice and size of deep neural network model indicate the representational capacity
and thus determine which functions can be learned to improve training accuracy, training of neural
networks is further complicated by the complex interplay of choice of optimization algorithm and
model regularization. Together, these factors define define the effective capacity. This makes train-
ing of deep neural networks particularly challenging. One practical way of addressing this challenge
is to boost model sizes at the cost of increased memory and computation times and then applying
strong regularization to avoid over-fitting and minimize generalization error. However, this approach
seems unnecessarily cumbersome and relies on the assumption that optimization difficulties are not
encountered. We draw inspiration from this challenge and propose a bottom-up approach to increase
capacity in neural networks along with a new metric to gauge the effective capacity in the training
of (deep) neural networks with stochastic gradient descent (SGD) algorithms.

2.1 NORMALIZED WEIGHT-TENSOR CROSS-CORRELATION AS A MEASURE FOR NEURAL
NETWORK EFFECTIVE CAPACITY

In SGD the objective function J (Θ) is commonly equipped with a penalty on the parametersR (Θ),
yielding a regularized objective function:

Ĵ (Θ) = J (Θ) + αR (Θ) . (1)

Here, α weights the contribution of the penalty. The regularization term R (Θ) is typically chosen
as a L2-norm, coined weight-decay, to decrease model capacity or a L1-norm to enforce sparsity.
Methods like dropout (Srivastava et al., 2014) and batch normalization (Ioffe & Szegedy, 2015) are
typically employed as further implicit regularizers.
In principle, our rationale is inspired by earlier works of Hao et al. (2017) who measure a complete
feature’s importance by taking the L1-norm of the corresponding weight tensor instead of operating
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on individual weight values. In the same spirit we assign a single importance value to each feature
based on its values. However we do not use the weight magnitude directly and instead base our
metric on the following hypothesis: While a feature’s absolute magnitude or relative change between
two subsequent points in time might not be adequate measures for direct importance, the relative
amount of change a feature experiences with respect to its original state provides an indicator for
how many times and how much a feature is changed when presented with data. Intuitively we
suggest that features that experience high structural changes must play a more vital role than any
feature that is initialized and does not deviate from its original states’ structure. There are two
potential reasons why a feature that has randomly been initialized does not change in structure: The
first being that its form is already initialized so well that it does not need to be altered and can serve
either as is or after some scalar rescaling or shift in order to contribute. The second possibility is that
too high representational capacity, the nature of the cost function, too large regularization or the type
of optimization algorithm prohibit the feature from being learned, ultimately rendering it obsolete.
As deep neural networks are commonly initialized from using a distribution over high-dimensional
space the first possibility seems unlikely (Goodfellow et al., 2016).
As one way of measuring the effective capacity at a given state of learning, we propose to monitor
the time evolution of the normalized cross-correlation for all weights with respect to their state
at initialization. For a convolutional neural network composed of layers l = 1, 2, . . . , L − 1 and
complementary weight-tensors Wl

f ljlklf l+1 with spatial dimensions jl × kl defining a mapping
from an input feature-space f l = 1, 2, ...F l onto the output feature space f l+1 = 1, 2, ...F l+1 that
serves as input to the next layer, we define the following metric:

clf l+1,t = 1−
∑

f l,jl,kl

[(
Wl

f ljlklf l+1,t0
− W̄l

f l+1,t0

)
◦
(
Wl

f ljlklf l+1,t − W̄l
f l+1,t

)]

∥∥∥Wl
f ljlkl,t0

∥∥∥
2,f l+1

·
∥∥∥Wl

f ljlkl,t

∥∥∥
2,f l+1

(2)

which is a measure of self-resemblance. In this equation, Wl
f ljlklf l+1,t is the state of a layer’s

weight-tensor at time t or the initial state after initialization t0. W̄l
f l+1,t is the mean taken over

spatial and input feature dimensions. ◦ depicts the Hadamard product that we use in an extended
fashion from matrices to tensors where each dimension is multiplied in an element-wise fashion
analogously. Similarly the terms in the denominator are defined as the L2-norm of the weight-tensor
taken over said dimensions and thus resulting in a scalar value. Above equation can be defined in an
analogous way for multi-layer perceptrons by omitting spatial dimensions.
The metric is easily interpretable as no structural changes of features lead to a value of zero and
importance approaches unity the more a feature is deviating in structure. The usage of normalized
cross-correlation with the L2-norm in the denominator has the advantage of having an inherent in-
variance to effects such as translations or rescaling of weights stemming from various regularization
contributions. Therefore the contribution of the sum-term in equation 1 does not change the value
of the metric if the gradient term vanishes. This is in contrast to the measure proposed by Hao
et al. (2017), as absolute weight magnitudes are affected by rescaling and make it more difficult to
interpret the metric in an absolute way and find corresponding thresholds.

2.2 BOTTOM-UP CONSTRUCTION OF NEURAL NETWORK REPRESENTATIONAL CAPACITY

We propose a new method to converge to architectures that encapsulate necessary task complexity
without the necessity of training huge networks in the first place. Starting with one feature in each
layer, we expand our architecture as long as the effective capacity as estimated through our metric
is not met and all features experience structural change. In contrast to methods such as Baker et al.
(2016); Shafiee et al. (2016); Real et al. (2017) we do not consider flexible depth and treat the amount
of layers in a network as a prior based on the belief of hierarchical composition of the underlying
factors. Our method, shown in algorithm 1, can be summarized as follows:

1. For a given network arrangement in terms of function type, depth and a set of hyper-
parameters: initialize each layer with one feature and proceed with (mini-batch) SGD.

2. After each update step evaluate equation 2 independently per layer and increase feature
dimensionality by Fexp (one or higher if a complexity prior exists) if all currently present
features in respective layer are differing from their initial state by more than a constant ε.

3. Re-initialize all parameters if architecture has expanded.
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Algorithm 1 Greedy architecture feature expansion algorithm

Require: Set hyper-parameters: learning rate λ0, mini-batch size, maximum epoch tend, . . .
Require: Set expansion parameters: ε = 10−6, Fexp = 1 (or higher)

1: Initialize parameters: t = 1, F l = 1∀ l = 1, 2, . . . L− 1, Θ , reset = false
2: while t ≤ tend do
3: for mini-batches in training set do
4: reset← false
5: Compute gradient and perform update step
6: for l = 1 to L− 1 do
7: for i = f l+1 to F l+1 do
8: Update cli,t according to equation 2

}
in parallel.

9: end for
10: if max(clt) < 1− ε then
11: F l+1 ← F l+1 + Fexp

12: reset← true
13: end if
14: end for
15: if reset == true then
16: Re-initialize parameters Θ, t = 0, λ = λ0, . . .
17: end if
18: end for
19: t← t+ 1
20: end while

The constant ε is a numerical stability parameter that we set to a small value such as 10−6, but
could in principle as well be used as a constraint. We have decided to include the re-initialization
in step 3 (lines 15 − 17) to avoid the pitfalls of falling into local minima1. Despite this sounding
like a major detriment to our method, we show that networks nevertheless rapidly converge to a
stable architectural solution that comes at less than perchance expected computational overhead and
at the benefit of avoiding training of too large architectures. Naturally at least one form of explicit or
implicit regularization has to be present in the learning process in order to prevent infinite expansion
of the architecture. We would like to emphasize that we have chosen the metric defined in equation
2 as a basis for the decision of when to expand an architecture, but in principle a family of similarly
constructed metrics is imaginable. We have chosen this particular metric because it does not directly
depend on gradient or higher-order term calculation and only requires multiplication of weights
with themselves. Thus, a major advantage is that computation of equation 2 can be parallelized
completely and therefore executed at less cost than a regular forward pass through the network.

3 REVISITING POPULAR ARCHITECTURES WITH ARCHITECTURE EXPANSION

We revisit some of the most established architectures ”GFCNN” (Goodfellow et al., 2013) ”VGG-A
& E” (Simonyan & Zisserman, 2015) and ”Wide Residual Network: WRN” (Zagoruyko & Ko-
modakis, 2016) (see appendix for architectural details) with batch normalization (Ioffe & Szegedy,
2015). We compare the number of learnable parameters and achieved accuracies with those obtained
through expanded architectures that started from a single feature in each layer. For each architecture
we include all-convolutional variants (Springenberg et al., 2015) that are similar to WRNs (minus
the skip-connections), where all pooling layers are replaced by convolutions with larger stride. All
fully-connected layers are furthermore replaced by a single convolution (affine, no activation func-
tion) that maps directly onto the space of classes. Even though the value of more complex type of
sub-sampling functions has already empirically been demonstrated (Lee et al., 2015), the amount of
features of the replaced layers has been constrained to match in dimensionality with the preceding
convolution layer. We would thus like to further extend and analyze the role of layers involving
sub-sampling by decoupling the dimensionality of these larger stride convolutional layers.

1We have empirically observed promising results even without re-initialization, but deeper analysis of sta-
bility (e.g. expansion speed vs. training rate), initialization of new features during training (according to chosen
scheme or aligned with already learned representations?) is required.
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Figure 1: Pruning of complete features for the GFCNN architecture trained on MNIST (top panel)
and CIFAR100 (bottom panel). Top row shows sorted feature importance values for every layer
according to three different metrics at the end of training. Bottom row illustrates accuracy loss when
removing feature by feature in ascending order of feature importance.

We consider these architectures as some of the best CNN architectures as each of them has been cho-
sen and tuned carefully according to extensive amounts of hyper-parameter search. As we would like
to demonstrate how representational capacity in our automatically constructed networks scales with
increasing task difficulty, we perform experiments on the MNIST (LeCun et al., 1998), CIFAR10
& 100 (Krizhevsky, 2009) datasets that intuitively represent little to high classification challenge.
We also show some preliminary experiments on the ImageNet (Russakovsky et al., 2015) dataset
with ”Alexnet” (Krizhevsky et al., 2012) to conceptually show that the algorithm is applicable to
large scale challenges. All training is closely inspired by the procedure specified in Zagoruyko &
Komodakis (2016) with the main difference of avoiding heavy preprocessing. We preprocess all
data using only trainset mean and standard deviation (see appendix for exact training parameters).
Although we are in principle able to achieve higher results with different sets of hyper-parameters
and preprocessing methods, we limit ourselves to this training methodology to provide a compre-
hensive comparison and avoid masking of our contribution. We train all architectures five times on
each dataset using a Intel i7-6800K CPU (data loading) and a single NVIDIA Titan-X GPU. Code
has been written in both Torch7 (Collobert et al., 2011) and PyTorch (http://pytorch.org/) and will
be made publicly available.

3.1 THE TOP-DOWN PERSPECTIVE: FEATURE IMPORTANCE FOR PRUNING

We first provide a brief example for the use of equation 2 through the lens of pruning to demonstrate
that our metric adequately measures feature importance. We evaluate the contribution of the features
by pruning the weight-tensor feature by feature in ascending order of feature importance values and
re-evaluating the remaining architecture. We compare our normalized cross-correlation metric 2 to
the L1 weight norm metric introduced by Hao et al. (2017) and ranked mean activations evaluated
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over an entire epoch. In figure 1 we show the pruning of a trained GFCNN, expecting that such
a network will be too large for the easier MNIST and too small for the difficult CIFAR100 task.
For all three metrics pruning any feature from the architecture trained on CIFAR100 immediately
results in loss of accuracy, whereas the architecture trained on MNIST can be pruned to a smaller
set of parameters by greedily dropping the next feature with the currently lowest feature importance
value. We notice how all three metrics perform comparably. However, in contrast to the other two
metrics, our normalized cross-correlation captures whether a feature is important on absolute scale.
For MNIST the curve is very close to zero, whereas the metric is close to unity for all CIFAR100
features. Ultimately this is the reason our metric, in the way formulated in equation 2, is used for
the algorithm presented in 1 as it doesn’t require a difficult process to determine individual layer
threshold values. Nevertheless it is imaginable that similar metrics based on other tied quantities
(gradients, activations) can be formulated in analogous fashion.
As our main contribution lies in the bottom-up widening of architectures we do not go into more de-
tailed analysis and comparison of pruning strategies. We also remark that in contrast to a bottom-up
approach to finding suitable architectures, pruning seems less desirable. It requires convergent train-
ing of a huge architectures with lots of regularization before complexity can be introduced, pruning
is not capable of adding complexity if representational capacity is lacking, pruning percentages are
difficult to interpret and compare (i.e. pruning percentage is 0 if the architecture is adequate), a
majority of parameters are pruned only in the last ”fully-connected” layers (Han et al., 2015), and
pruning strategies as suggested by Han et al. (2015; 2017); Shrikumar et al. (2016); Hao et al. (2017)
tend to require many cross-validation with consecutive fine-tuning steps. We thus continue with the
bottom-up perspective of expanding architectures from low to high representational capacity.

3.2 THE BOTTOM-UP PERSPECTIVE: EXPANDING ARCHITECTURES

We use the described training procedure in conjunction with algorithm 1 to expand representational
complexity by adding features to architectures that started with just one feature per layer with the
following additional settings:

Architecture expansion settings and considerations: Our initial experiments added one feature
at a time, but large speed-ups can be introduced by means of adding stacks of features. Initially,
we avoided suppression of late re-initialization to analyze the possibility that rarely encountered
worst-case behavior of restarting on an almost completely trained architecture provides any benefit.
After some experimentation our final report used a stability parameter ending the network expansion
if half of the training has been stable (no further change in architecture) and added Fexp = 8 and
Fexp = 16 features per expansion step for MNIST and CIFAR10 & 100 experiments respectively.

We show an exemplary architecture expansion of the GFCNN architecture’s layers for MNIST and
CIFAR100 datasets in figure 2 and the evolution of the overall amount of parameters for five different
experiments. We observe that layers expand independently at different points in time and more
features are allocated for CIFAR100 than for MNIST. When comparing the five different runs we
can identify that all architectures converge to a similar amount of network parameters, however
at different points in time. A good example to see this behavior is the solid (green) curve in the
MNIST example, where the architecture at first seems to converge to a state with lower amount
of parameters and after some epochs of stability starts to expand (and re-initialize) again until it
ultimately converges similarly to the other experiments.
We continue to report results obtained for the different datasets and architectures in table 1. The
table illustrates the mean and standard deviation values for error, total amount of parameters and the
mean overall time taken for five runs of algorithm 1 (deviation can be fairly large due to the behavior
observed in 2). We make the following observations:

• Without any prior on layer widths, expanding architectures converge to states with at least
similar accuracies to the reference at reduced amount of parameters, or better accuracies
by allocating more representational capacity.

• For each architecture type there is a clear trend in network capacity that is increasing with
dataset complexity from MNIST to CIFAR10 to CIFAR100 2.

2For the WRN CIFAR100 architecture the ∗ signifies hardware memory limitations due to the arrangement
of architecture topology and thus expansion is limited. This is because increased amount of early-layer features
requires more memory in contrast to late layers, which is particularly intense for the coupled WRN architecture.
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Figure 2: Exemplary GFCNN network expansion on MNIST and CIFAR100. Top panel shows one
architecture’s individual layer expansion; bottom panel shows the evolution of total parameters for
five runs. It is observable how different experiments converge to similar network capacity on slightly
different time-scales and how network capacity systematically varies with complexity of the dataset.

Table 1: Mean error and standard deviation and number of parameters (in millions) for architectures
trained five times using the original reference and automatically expanded architectures respectively.
For MNIST no data augmentation is applied. We use minor augmentation (flips, translations) for
CIFAR10 & 100. All-convolutional (all-conv) versions have been evaluated for each architecture
(except WRN where convolutions are stacked already). The * indicates hardware limitation.

GFCNN VGG-A VGG-E WRN-28-10

type original expanded original expanded original expanded original expanded

M
N

IS
T standard

error [%] 0.487 0.528±0.03 0.359 0.394±0.05 0.386 0.388±0.03 overfit 0.392±0.05

params [M] 4.26 1.61±0.31 13.70 3.35±0.45 20.57 6.49±0.89 36.48 4.83±0.57

time [h] 0.29 0.90±0.32 0.59 5.35±1.95 0.48 9.8±3.02 2.47 2.91±0.28

all-conv
error [%] 0.535 0.552±0.03 0.510 0.502±0.04 0.523 0.528±0.04

params [M] 3.71 2.19±0.55 10.69 3.79±0.57 21.46 6.02±0.73

time [h] 0.39 1.68±1.05 0.64 3.06±0.97 0.52 6.58±2.81

C
IF

A
R

10
+ standard

error [%] 11.32 11.03±0.19 7.18 6.73±0.05 7.51 5.64±0.11 4.04 3.95±0.12

params [M] 4.26 4.01±0.62 13.70 8.54±1.51 20.57 27.41±4.09 36.48 25.30±1.62

time [h] 0.81 1.40±0.22 1.61 3.95±0.59 1.32 16.32±5.39 8.22 21.18±2.12

all-conv
error [%] 8.78 8.13±0.11 6.71 6.56±0.18 7.46 5.42±0.11

params 3.71 10.62±1.91 10.69 8.05±1.57 21.46 44.98±7.31

time [h] 1.19 3.38±0.76 1.74 5.24±1.11 1.54 26.46±9.77

C
IF

A
R

10
0+ standard

error [%] 34.91 34.23±0.29 25.01 25.17±0.34 29.43 25.06±0.55 18.51 18.44∗

params [M] 4.26 6.82±1.08 13.70 8.48±1.40 20.57 28.41±2.26 36.48 27.75∗

time [h] 0.81 1.83±0.56 1.61 3.83±0.47 1.32 16.67±2.89 8.22 13.9∗

all-conv
error [%] 29.83 28.34±0.43 24.30 23.95±0.28 31.94 24.87±0.16

params [M] 3.71 21.40±3.71 10.69 10.84±2.41 21.46 44.59±4.49

time [h] 1.19 4.72±1.15 1.74 5.38±1.46 1.54 22.76±3.94

• Even though we have introduced re-intialization of the architecture the time taken by algo-
rithm 1 is much less than one would invest when doing a manual, grid- or random-search.

• Shallow GFCNN architectures are able to gain accuracy by increasing layer width, although
there seems to be a natural limit to what width alone can do. This is in agreement with
observations pointed out in other works such as Ba & Caurana (2014); Urban et al. (2017).

• The large reference VGG-E (lower accuracy than VGG-A on CIFAR) and WRN-28-10
(complete overfit on MNIST) seem to run into optimization difficulties for these datasets.
However, expanded alternate architecture clearly perform significantly better.
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Figure 3: Mean and standard deviation of topologies as evolved from the expansion algorithm for
a VGG-E and VGG-E all-convolutional architecture run five times on MNIST, CIFAR10 and CI-
FAR100 datasets respectively. Top panels show the reference architecture, whereas bottom shows
automatically expanded architecture alternatives. Expanded architectures vary in capacity with
dataset complexity and topologically differ from their reference counterparts.

In general we observe that these benefits are due to unconventional, yet always coinciding, network
topology of our expanded architectures. These topologies suggest that there is more to CNNs than
simply following the rule of thumb of increasing the number of features with increasing architec-
tural depth. Before proceeding with more detail on these alternate architecture topologies, we want
to again emphasize that we do not report experiments containing extended methodology such as
excessive preprocessing, data augmentation, the oscillating learning rates proposed in Loshchilov
& Hutter (2017) or better sets of hyper-parameters for reasons of clarity, even though accuracies
rivaling state-of-the-art performances can be achieved in this way.

3.3 ALTERNATE FORMATION OF DEEP NEURAL NETWORK TOPOLOGIES

Almost all popular convolutional neural network architectures follow a design pattern of monoton-
ically increasing feature amount with increasing network depth (LeCun et al., 1998; Goodfellow
et al., 2013; Simonyan & Zisserman, 2015; Springenberg et al., 2015; He et al., 2016; Zagoruyko
& Komodakis, 2016; Loshchilov & Hutter, 2017; Urban et al., 2017). For the results presented in
table 1 all automatically expanded network topologies present alternatives to this pattern. In fig-
ure 3, we illustrate exemplary mean topologies for a VGG-E and VGG-E all-convolutional network
as constructed by our expansion algorithm in five runs on the three datasets. Apart from noticing
the systematic variations in representational capacity with dataset difficulty, we furthermore find
topological convergence with small deviations from one training to another. We observe the high-
est feature dimensionality in early to intermediate layers with generally decreasing dimensionality
towards the end of the network differing from conventional CNN design patterns. Even if the ex-
panded architectures sometimes do not deviate much from the reference parameter count, accuracy
seems to be improved through this topological re-arrangement. For architectures where pooling
has been replaced with larger stride convolutions we also observe that dimensionality of layers
with sub-sampling changes independently of the prior and following convolutional layers suggest-
ing that highly-complex sub-sampling operations are learned. This an extension to the proposed
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all-convolutional variant of Springenberg et al. (2015), where introduced additional convolutional
layers were constrained to match the dimensionality of the previously present pooling operations.
If we view the deep neural network as being able to represent any function that is limited rather by
concepts of continuity and boundedness instead of a specific form of parameters, we can view the
minimization of the cost function as learning a functional mapping instead of merely adopting a set
of parameters (Goodfellow et al., 2016). We hypothesize that evolved network topologies contain-
ing higher feature amount in early to intermediate layers generally follow a process of first mapping
into higher dimensional space to effectively separate the data into many clusters. The network can
then more readily aggregate specific sets of features to form clusters distinguishing the class subsets.
Empirically this behavior finds confirmation in all our evolved network topologies that are visual-
ized in the appendix. Similar formation of topologies, restricted by the dimensionality constraint of
the identity mappings, can be found in the trained residual networks.
While He et al. (2015) has shown that deep VGG-like architectures do not perform well, an interest-
ing question for future research could be whether plainly stacked architectures can perform similarly
to residual networks if the arrangement of feature dimensionality is differing from the conventional
design of monotonic increase with depth.

3.4 AN OUTLOOK TO IMAGENET

We show two first experiments on the ImageNet dataset using an all-convolutional Alexnet to show
that our methodology can readily be applied to large scale. The results for the two runs can be found
in table 2 and corresponding expanded architectures are visualized in the appendix. We observe that
the experiments seem to follow the general pattern and again observe that topological rearrangement
of the architecture yields substantial benefits. In the future we would like to extend experimentation
to more promising ImageNet architectures such as deep VGG and residual networks. However,
these architectures already require 4-8 GPUs and large amounts of time in their baseline evaluation,
which is why we presently are not capable of evaluating these architectures and keep this section at
a very brief proof of concept level.

Table 2: Two experiments with all-convolutional Alexnet on the large scale Imagenet dataset com-
paring the reference implementation with our expanded architecture.

Alexnet - 1 Alexnet - 2

top-1 error top-5 error params time top-1 error top-5 error params time
original 43.73 % 20.11 % 35.24 M 27.99 h 43.73 % 20.11 % 35.24 M 27.99 h
expanded 37.84 % 15.88 % 34.76 M 134.21 h 38.47 % 16.33 % 32.98 M 118.73 h

4 CONCLUSION

In this work we have introduced a novel bottom-up algorithm to start neural network architectures
with one feature per layer and widen them until a task depending suitable representational capacity
is achieved. For the use in this framework we have presented one potential computationally efficient
and intuitive metric to gauge feature importance. The proposed algorithm is capable of expand-
ing architectures that provide either reduced amount of parameters or improved accuracies through
higher amount of representations. This advantage seems to be gained through alternative network
topologies with respect to commonly applied designs in current literature. Instead of increasing the
amount of features monotonically with increasing depth of the network, we empirically observe that
expanded neural network topologies have high amount of representations in early to intermediate
layers.
Future work could include a re-evaluation of plainly stacked deep architectures with new insights
on network topologies. We have furthermore started to replace the currently present re-initialization
step in the proposed expansion algorithm by keeping learned filters. In principle this approach looks
promising but does need further systematic analysis of new feature initialization with respect to the
already learned feature subset and accompanied investigation of orthogonality to avoid falling into
local minima.
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A APPENDIX

A.1 DATASETS

• MNIST (LeCun et al., 1998): 50000 train images of hand-drawn digits of spatial size 28×
28 belonging to one of 10 equally sampled classes.

• CIFAR10 & 100 (Krizhevsky, 2009): 50000 natural train images of spatial size 32 × 32
each containing one object belonging to one of 10/100 equally sampled classes.

• ImageNet (Russakovsky et al., 2015): Approximately 1.2 million training images of objects
belonging to one of 1000 classes. Classes are not equally sampled with 732-1300 images
per class. Dataset contains 50 000 validation images, 50 per class. Scale of objects and size
of images varies.

A.2 TRAINING HYPER-PARAMETERS

All training is closely inspired by the procedure specified in Zagoruyko & Komodakis (2016) with
the main difference of avoiding heavy preprocessing. Independent of dataset, we preprocess all
data using only trainset mean and standard deviation. All training has been conducted using cross-
entropy as a loss function and weight initialization following the normal distribution as proposed by
He et al. (2015). All architectures are trained with batch-normalization with a constant of 1 · 10−3,
a batch-size of 128, a L2 weight-decay of 5 · 10−4, a momentum of 0.9 and nesterov momentum.

Small datasets: We use initial learning rates of 0.1 and 0.005 for the CIFAR and MNIST datasets
respectively. We have rescaled MNIST images to 32× 32 (CIFAR size) and repeat the image across
color channels in order to use architectures without modifications. CIFAR10 & 100 are trained
for 200 epochs and the learning rate is scheduled to be reduced by a factor of 5 every multiple of
60 epochs. MNIST is trained for 60 epochs and learning rate is reduced by factor of 5 once after
30 epochs. We augment the CIFAR10 & 100 training by introducing horizontal flips and small
translations of up to 4 pixels during training. No data augmentation has been applied to the MNIST
dataset.

ImageNet: We use the single-crop technique where we rescale the image such that the shorter side
is equal to 224 and take a centered crop of spatial size 224 × 224. In contrast to Krizhevsky et al.
(2012) we limit preprocessing to subtraction and divison of trainset mean and standard deviation
and do not include local response normalization layers. We randomly augment training data with
random horizontal flips. We set an initial learning rate of 0.1 and follow the learning rate schedule
proposed in Krizhevsky et al. (2012) that drops the learning rate by a factor of 0.1 every 30 epochs
and train for a total of 74 epochs.

The amount of epochs for the expansion of architectures is larger due to the re-initialization. For
these architectures the mentioned amount of epochs corresponds to training during stable conditions,
i.e. no further expansion. The procedure is thus equivalent to training the converged architecture
from scratch.

A.3 ARCHITECTURES

GFCNN (Goodfellow et al., 2013) Three convolution layer network with larger filters (followed by
two fully-connected layers, but without ”maxout”. The exact sequence of operations is:

1. Convolution 1: 8 × 8 × 128 with padding = 4 → batch-normalization → ReLU →
max-pooling 4× 4 with stride = 2.

2. Convolution 2: 8 × 8 × 198 with padding = 3 → batch-normalization → ReLU →
max-pooling 4× 4 with stride = 2.

3. Convolution 3: 5 × 5 × 198 with padding = 3 → batch-normalization → ReLU →
max-pooling 2× 2 with stride = 2.

4. Fully-connected 1: 4× 4× 198→ 512→ batch-normalization→ ReLU.
5. Fully-connected 2: 512→ classes.

Represents the family of rather shallow ”deep” networks.
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VGG (Simonyan & Zisserman, 2015) ”VGG-A” (8 convolutions) and ”VGG-E” (16 convolu-
tions) networks. Both architectures include three fully-connected layers. We set the number
of features in the MLP to 512 features per layer instead of 4096 because the last convolu-
tional layer of these architecture already produces outputs of spatial size 1× 1 (in contrast
to 7× 7 on ImageNet) on small datasets. Batch normalization is used before the activation
functions. Examples of stacking convolutions that do not alter spatial dimensionality to
create deeper architectures.

WRN (Zagoruyko & Komodakis, 2016) Wide Residual Network architecture: We use a depth of
28 convolutional layers (each block completely coupled, no bottlenecks) and a width-factor
of 10 as reference. When we expand these networks this implies an inherent coupling of
layer blocks due to dimensional consistency constraints with outputs from identity map-
pings.

Alexnet (Krizhevsky et al., 2012) We use the all convolutional variant where we replace the first
fully-connected large 6 × 6 × 256 → 4096 layer with a convolution of corresponding
spatial filter size and 256 filters and drop all further fully-connected layers. The rationale
behind this decision is that previous experiments, our own pruning experiments and those
of Hao et al. (2017); Han et al. (2015), indicate that original fully-connected layers are
largely obsolete.

A.4 AUTOMATICALLY EXPANDED ARCHITECTURE TOPOLOGIES

In addition to figure 3 we show mean evolved topologies including standard deviation for all archi-
tectures and datasets reported in table 1 and 2. In figure 4 and 5 all shallow and VGG-A architectures
and their respective all-convolutional variants are shown. Figure 6 shows the constructed wide resid-
ual 28 layer network architectures where blocks of layers are coupled due to the identity mappings.
Figure 7 shows the two expanded Alexnet architectures as trained on ImageNet.
As explained in the main section we see that all evolved architectures feature topologies with large
dimensionality in early to intermediate layers instead of in the highest layers of the architecture as
usually present in conventional CNN design. For architectures where pooling has been replaced with
larger stride convolutions we also observe that dimensionality of layers with sub-sampling changes
independently of the prior and following convolutional layers suggesting that highly-complex pool-
ing operations are learned. This an extension to the proposed all-convolutional variant of Springen-
berg et al. (2015), where introduced additional convolutional layers were constrained to match the
dimensionality of the previously present pooling operations.
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Figure 4: Mean and standard deviation of topologies as evolved from the expansion algorithm for
the shallow networks run five times on MNIST, CIFAR10 and CIFAR100 datasets respectively.
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Abstract

We characterize convolutional neural networks with respect to the relative amount
of features per layer. Using a skew normal distribution as a parametrized framework,
we investigate the common assumption of monotonously increasing feature-counts
with higher layers of architecture designs. Our evaluation on models with VGG-
type layers on the MNIST, Fashion-MNIST and CIFAR-10 image classification
benchmarks provides evidence that motivates rethinking of our common assump-
tion: architectures that favor larger early layers seem to yield better accuracy.

1 Introduction and motivation

Deep learning practices that are empirically confirmed to be valuable often turn into rules of thumb
to be used by the community. One such rule of thumb is the historically grown custom of increasing
the number of features (for convolutions synonymous with kernel or filter) with increasing depth
of a convolutional neural network (CNN). Perpetuated by perhaps the simplicity and large success
of the VGG architecture [1], more recent work such as residual networks [2] or densely connected
networks [3] still follow this design principle. While such works achieve progress through modifying
connectivity structure, changing the task or depth of the network, we, the machine learning community,
tend to leave the principle of stacking 3 × 3 convolutions with monotonously increasing feature
amounts per layer untouched. For other advances in tasks such as semantic image segmentation [4, 5],
the encoder strictly follows this pattern and on top mirrors the pattern in the decoder. Even though
some work, such as the "network in network" architecture [6], deviates and explores alternatives in
design, many architectures [2–5] seem to inherit the simple VGG-style of keeping or doubling the
amount of features from one layer to another. Apart from the empirically demonstrated effectiveness,
a core assumption can be hypothesized as follows: lower layers of CNNs learn more primitive features
whereas higher layers learn more abstract features. Thus, our assumption could be to increase the
amount of learnable features in higher layers to in turn provide enough representational capacity for a
rich encoding.

In this work we propose a simple three-parameter univariate skew normal distribution to parametrize
a family of neural networks. By changing the distribution’s parameters, we shift a constant amount
of features and map them to architectures with monotonously decreasing, increasing and normally
distributed feature amounts per layer. While the exact choice of distribution is of empirical nature,
a three-dimensional mathematical description allows for an intuitive model characterization. We
train 200 model variants by conducting a grid-search on the distribution’s parameters on three
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Figure 1: Three examples of skew normal PDFs (solid line), integrated layer bins and mapped amount
of features. All three architectures have the same amount of overall features. Architectures with
PDF parameters as depicted in the right panel most resemble traditional CNN designs. Architectures
parametrized by the mid and specifically the left panel are not commonly found in the literature.

popular image classification datasets: MNIST [7], CIFAR-10 [8], Fashion-MNIST [9]. We show
that the commonly picked subset of monotonously increasing feature amounts per layer seems to be
outperformed in terms of accuracy by architectures that favor larger early layers. We hope to inspire
to rethink our CNN design intuition and to stimulate further analysis for future models.

2 Parametrizing distribution of features across layers

For the purpose of parametrization and characterization of common and uncommon CNN design, we
have chosen the probability density function (PDF) of the univariate three parameter skew normal
distribution. We use three parameters in order to be able to generate curves with varying location of
the maximum peak with different sharpness, as defined by the location (mean) ξ and scale (variance)
ω respectively. We also require the shape (skew) α to adjust the slope in positive or negative direction.
This results in the following PDF:

1

2π

2

ω
√
2π
e−

(x−ξ)2
2ω2

1

2
[1 + erf(

αx−ξω√
2

)] (1)

Here, erf(x) is the error function. To apply this PDF to CNNs, we specify the number of layers
and overall features, e.g. the total number of features in a 16 layered 3× 3 convolutional VGG-D
architecture. We then use trapezoidal integration to calculate one integrated value per layer. The
resulting discretized distribution is scaled by the overall number of features. Using this process we
can generate a family of architectures while keeping the number of layers and overall amount of
features constant. We visualize three examples of the PDF, the integrated discretized layer bins, as
well as the amount of features per layer in figure 1. The figure shows three examples, corresponding to
architectures with maximum amount of features in the first, middle and last layers. The latter, depicted
in the right panel, is an example that is similar to the original design of the VGG-D architecture.

3 Characterization of VGG filter distributions

Generated grid of architectures: We generate a set of architectures using previously described
process by creating a discretized grid of ξ, ω, α values. Specifically we let ξ be in the interval [1, 16],
in steps of 1, to generate 16 layer VGG-D like architectures with different feature maximum locations.
We vary the scale ω in the interval [0.5, 5.5] in steps of 0.5 and the shape α in the interval [−40, 40]
in steps of 4. That is, we keep the network’s functional sequence (including pooling and activation
functions and last two fully-connected layers) the same as the original VGG-D architecture and only
redistribute the features across different layers. Not all combinations of ξ, ω, α are considered "valid"
as the resulting integral would violate the assumption of keeping the amount of features constant. We
thus only take into account combinations that do not lower the total amount of features by more than
5%. These parameters result in 203 architectures trained on each dataset.

2

64



2 4 6 8 10 12 14 16 2.5
3.0

3.54.04.55.05.56.0
40
30
20
10
0
10
20
30
40

CIFAR-10;  Min params: 13381901, Max params: 30592235

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

A
cc

ur
ac

y 
[%

]

2 4 6 8 10 12 14 16 2.5
3.0

3.54.04.55.05.56.0
40
30
20
10
0
10
20
30
40

Fashion-MNIST;  Min params: 13381901, Max params: 30592235

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

A
cc

ur
ac

y 
[%

]

2 4 6 8 10 12 14 16 2.5
3.0

3.54.04.55.05.56.0
40
30
20
10
0
10
20
30
40

MNIST;  Min params: 13381901, Max params: 30592235

99.30

99.35

99.40

99.45

99.50

99.55

99.60

99.65

99.70

A
cc

ur
ac

y 
[%

]

Figure 2: Validation accuracy (in color) of 16-layer VGG-type architectures parametrized through
combinations of parameters ξ, ω, α of a univariate skew normal distribution. While all models have
approximately the same amount of features, total parameter amounts can vary as indicated by marker
size. The accuracy range has been cut-off at the bottom for better visual perception.

Training hyper-parameters: We train all networks for 150 epochs for CIFAR-10, and 30 epochs
for MNIST and Fashion-MNIST using the weight initialization of He et al [10]. To make sure that all
networks are able to train to convergence, we include batch-normalization with a value of 10−4 [11]
and cycle the learning rate with warm restarts [12]. We start with an initial learning rate of 10−2 and
continuously lower it to 10−5 with a restart cycle of 10 epochs, that is then doubled after each restart.
To be consistent with evaluation in the literature, we train using a batch size of 128, a weight-decay
of 5 · 10−4 and apply horizontal flip and four pixel random translation data augmentation to the
CIFAR-10 data. MNIST and Fashion-MNIST images are resized to 32× 32 to allow for the use of
the same architectures. No further data pre-processing or augmentation is applied.

Results: The validation accuracy for trained architectures parametrized by ξ, ω, α is shown in
figure 2. We remind the reader that all architectures approximately have the same amount of overall
features. Depending on the precise distribution of features the representational capacity can vary.
The total amount of parameters is therefore also encoded by marker sizes. Note that for the majority
of architectures there is minor variation, with exception of the edge cases where a large amount
of features is attributed in the very last two fully-connected layers, where the overall amount of
parameters is then smaller. In all three examples, most clearly for CIFAR-10 due to larger accuracy
variation, we observe the following trends:

• The accuracy rises with lower ξ value, i.e. architectures that favor larger amounts of features
in early layers seem to achieve better accuracy.

• The accuracy rises with higher ω value. This is because low scale values lead to tails of the
distribution that map to very little overall amount of features, e.g. only 2 features in a layer.
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Figure 3: Validation accuracy per epoch of 16-layer VGG-type architectures parametrized through
combinations of parameters ξ, ω, α of a univariate skew normal distribution. The best architectures
per ξ are visualized to demonstrate the trend that lower values of ξ are correlated with higher accuracy.

For small or large values of ξ, we also observe a constraint of α to a positive or negative range
respectively, to make sure that the overall amount of features stays approximately constant. The
changing number of total parameters at constant feature amount highlights a different (mal)practice in
CNN design, where we generally design amounts of unique features independently of spatial kernel
dimensions or questioning the effects on overall parameter count. To emphasize the differences in
accuracy, we visualize the best CIFAR-10 architecture per ξ in figure 3. The tendency of rising
accuracy with lower ξ is in contrast with our common assumption of increasing, or even doubling
the amount of features as we progress deeper into the CNN layers. We remark that all models
converge after 150 epochs. However, the hyper-parameters are selected based on original VGG
architectures (i.e. large ξ) and not tuned to best fit presented small ξ variants. Additional experiments
with 10 VGG-type layers confirm described trends. Due to space constraints we include these results
with the open-source code for this work: https://github.com/MrtnMndt/Rethinking_CNN_
Layerwise_Feature_Amounts.

After analysis of the results presented in figure 3, we note that the middle range of ξ is difficult
to parametrize due to a non constant total number of features for many distribution parameter
configurations. In hindsight, one idea could thus be to use a distribution with constant probability
mass as the parameters change. One such distribution for further experimentation could be the Beta
distribution, with layers binned to equally sized intervals in the [0, 1] range.

4 Conclusion

We have parametrized CNN architectures with respect to their relative amounts of features per layer
using a skew normal distribution. Although further investigation with larger datasets is necessary,
our experiments indicate that our historically grown assumption of increasing layer-wise feature
counts with increasing network depth is challenged by architectures that favor large early layers.
While it isn’t emphasized in the original work, architectures generated through the recent trend of
reinforcement learning based search seem to be in favor of this trend [13]. It will thus be interesting
to extend our examination to models with skip connections to see if a similar conclusion hold. A
remaining crucial open question is the reason behind the observed pattern. Is it simply that using too
few features in initial layers acts as a bottleneck, making it harder for the remaining layers to retrieve
the information about the image that is necessary for classification? Or is there a deeper reason? We
motivate to rethink this design principle and more thoroughly analyse future CNN designs.
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Abstract

Recognition of defects in concrete infrastructure, espe-
cially in bridges, is a costly and time consuming crucial first
step in the assessment of the structural integrity. Large vari-
ation in appearance of the concrete material, changing illu-
mination and weather conditions, a variety of possible sur-
face markings as well as the possibility for different types of
defects to overlap, make it a challenging real-world task. In
this work we introduce the novel COncrete DEfect BRidge
IMage dataset (CODEBRIM) for multi-target classification
of five commonly appearing concrete defects. We investi-
gate and compare two reinforcement learning based meta-
learning approaches, MetaQNN and efficient neural archi-
tecture search, to find suitable convolutional neural network
architectures for this challenging multi-class multi-target
task. We show that learned architectures have fewer overall
parameters in addition to yielding better multi-target accu-
racy in comparison to popular neural architectures from the
literature evaluated in the context of our application.

1. Introduction
To assess a concrete bridge’s structural safety, it is de-

sirable to determine the level of degradation by accurately
recognizing all defect types. Defects tend to be small with
respect to bridge elements and often occur simultaneously
with overlap of defect categories. Although one could
imagine treating each defect category independently, over-
lapping defects are more severe with respect to the struc-
tural safety. The requirement to recognize these multi-class
multi-target defects forms the basis for a challenging real-
world task that is further complicated by a variety of envi-
ronmental factors. Concrete, as a composite material, has
a wide range of variation in surface reflectance, roughness,
color and, in some cases, applied surface coatings. Chang-
ing lighting conditions, weather dependent wetness of the

* work conducted while at Frankfurt Institute for Advanced Studies

surface and a diverse set of safety irrelevant surface alter-
ations like small holes, markings, stains or graffiti, add to
the factors of variation. This necessitates computer vision
techniques that are capable of addressing such rich appear-
ance spaces.

Deep learning techniques in conjunction with labelled
datasets have turned out to be ideal candidates for recog-
nition tasks of similar complexity. Especially convolu-
tional neural networks (CNNs) [21, 32, 1, 37, 16] have been
shown to excel at object and material recognition bench-
marks [29, 10, 35, 3]. Unfortunately, defect recognition in
concrete bridges is largely yet to benefit from deep learning
approaches. Due to the necessity of expert knowledge in the
annotation process along with tedious image acquisition,
the task is traditionally focused on cracks with algorithms
based on domain specific modelling or manual inspection
by a human. Recently, datasets [31, 36, 26] and correspond-
ing deep learning applications [36, 23, 18, 8] have presented
significant efforts towards data-driven approaches in this
domain. Their work focuses on cracks as only a subset of
structurally relevant defects and concentrates on CNNs pro-
posed in the object recognition literature, that might not be
the best choice for material defect recognition.

In this work we address two crucial open aspects of con-
crete defect recognition: the establishment of a labelled
multi-target dataset with overlapping defect categories for
use in machine learning and the design of deep neural net-
works that are tailored to the task. For this purpose we in-
troduce our novel COncrete DEfect BRidge IMage (CODE-
BRIM) dataset and employ meta-learning of CNN archi-
tectures specific to multi-class multi-target defect classifi-
cation. CODEBRIM features six mutually non-exclusive
classes: crack, spallation, efflorescence, exposed bars, cor-
rosion (stains) and non-defective background. Our images
were acquired at high-resolution, partially using an un-
manned aerial vehicle (UAV) to gain close-range access,
and feature varying scale and context. We evaluate a va-
riety of best-practice CNN architectures [21, 32, 1, 37, 16]
in the literature on the CODEBRIM’s multi-target defect
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recognition task. We show that meta-learned neural archi-
tectures achieve equivalent or better accuracies, while be-
ing more parameter efficient, by investigating and compar-
ing two reinforcement learning neural architecture search
approaches: MetaQNN [2] and ”efficient neural architec-
ture search” (ENAS) [27]. The CODEBRIM dataset is pub-
licly available at: https://doi.org/10.5281/zenodo.2620293
. We also make the code for training the CNN baselines
and both meta-learning techniques available open-source at:
https://github.com/MrtnMndt/meta-learning-CODEBRIM .
To summarize our contributions:

• We introduce a novel high-resolution multi-class
multi-target dataset featuring images of defects in con-
text of concrete bridges.

• We evaluate and compare best-practice CNN architec-
tures for the task of multi-target defect classification.

• We adapt and contrast two reinforcement learning
based architecture search methods, MetaQNN and
ENAS, on our multi-target scenario. We show how re-
sulting meta-learned architectures from both methods
improve the presented task in terms of higher accuracy
and lower model parameter count.

2. Prior and related work
Datasets. Image classification and object detection
benchmarks predominantly focus on the single-target sce-
nario. Popular examples are the ImageNet [29], Pascal
VOC [10] or the scene understanding SUN dataset [35],
where the task is to assign a specific class to an image, area
or pixel. Much of the recent computer vision deep learning
research is built upon improvements based on these pub-
licly available datasets. The ”materials in context” database
(MINC) [3] followed in spirit and has created a dataset for
material and texture related recognition tasks. To a large
degree MINC has extended previous datasets and applica-
tions built upon prior work of the (CUReT) database [9],
the FMD dataset [30] and KTH-TIPS [11, 5]. With respect
to defects in concrete structures, or bridges in particular,
openly available datasets remain scarce. Depending on the
defect type that needs to be recognized, our task combines
texture anomalies such as efflorescence or cracks with ob-
jects such as exposed reinforcement bars. Domain specific
dataset contributions were very recently proposed with the
”CrackForest” dataset [31], the CSSC database [36] and
SDNET2018 [26]. However, as all of the former works fea-
ture a single-target and in fact single-class task, we have
decided to extend existing work with the multi-class multi-
target CODEBRIM dataset.

Defect (crack) recognition. Koch et al. [20] provide a
comprehensive review on the state of computer vision in

concrete defect detection and open aspects. In summary,
the majority of approaches follow task specific modelling.
Data-driven applications are still the exception and are yet
to be leveraged fully. Recent works [23, 8, 18] show appli-
cation to crack versus non-crack classification using images
with little clutter and lack of structural context. An addi-
tional defect class of spalling is considered by the authors of
[36]. Similar to other works, they focus on the single-target
scenario and evaluation of well-known CNN baselines from
prior object recognition literature. We extend their work
by meta-learning more task specific neural architectures for
more defect categories and overlapping defects.

Convolutional neural networks. A broader review of
deep learning, its history and neural architecture innova-
tions is given by LeCun et al. [22]. We recall some CNN
architectures that serve as baselines and give a frame of ref-
erence for architectures produced by meta-learning on our
task. Alexnet [21] had a large success on the ImageNet
[29] challenge that was later followed by a set of deeper
architectures commonly referred to as VGG [32]. Texture-
CNN [1] is an adapted version of the Alexnet design that
includes an energy-based adaptive feature pooling and FV-
CNN [7] augments VGG with Fisher Vector pooling for tex-
ture classification. Recent works address information flow
in deeper networks by adding skip connections with resid-
ual networks [14], wide residual networks (WRN) [37] and
densely connected networks (DenseNet) [16].

Meta-learning neural architectures. Although deep
neural networks empirically work well in many practical
applications, networks have initially been designed for dif-
ferent tasks. A recent trend to bypass the human design
intuition is to treat neural architectures themselves from
a meta-learning perspective and conduct a black-box op-
timization on top of the training of weights to find suit-
able task-specific architecture designs. Several works in
the literature have posed architecture meta-learning from
a variety of perspectives based on reinforcement learning
(RL) controllers [2, 38, 27, 4], differentiable methods [24]
or evolutionary strategies [28]. In our work, we evaluate
and adapt two RL based approaches to multi-target defect
classification: MetaQNN [2] and ”efficient neural architec-
ture search” (ENAS) [27]. We pick these two approaches as
they share underlying principles of training RL controllers.
This allows us to pick a common reward metric determined
by proposed CNN candidate accuracies. The main differ-
ences lie in the RL agents’ nature: MetaQNN employs Q-
Learning to learn to suggest increasingly accurate CNNs,
whereas ENAS uses policy gradients [34] to train an auto-
regressive recurrent neural network that samples individual
layers based on previous input.
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(a) Top row from left to right: 1.) exposed bars, spallation, cracks (hard to see) 2.) hairline crack with efflorescence 3.) efflorescence
4.) defect-free concrete. Bottom row from left to right: 1.) large spalled area with exposed bars and corrosion 2.) crack with graffiti 3.)
corrosion stain, minor onset efflorescence 4.) defect-free concrete with dirt and markings.

(b) From left to right: 1.) spalled area with exposed bar, advanced corrosion and efflorescence 2.) exposed corroded bar 3.) larger crack
4.) partially exposed corroded bars, cracks 5.) hairline crack 6.) heavy spallation, exposed bars, corrosion 7.) wet/damp crack with
efflorescence on the top 8.) efflorescence 9.) spalled area 10.) hairline crack with efflorescence.

Figure 1: Dataset examples. Top figure: full high-resolution images. Images heavily down-sampled for view in pdf. Bottom
figure: Image patches cropped from annotated bounding boxes (not corresponding to top images). Images resized for view
in pdf but with original aspect ratio.

3. The CODEBRIM dataset

The acquisition of the COncrete DEfect BRidge IMage:
CODEBRIM dataset was driven by the need for a more
diverse set of the often overlapping defect classes in con-
trast to previous crack focused work [31, 36, 26]. In par-
ticular, deep learning application to a real-world inspec-
tion scenario requires sampling of real-world context due
to the many factors of variation in visual defect appearance.
Our dataset is composed of five common defect categories:
crack, spallation, exposed reinforcement bar, efflorescence
(calcium leaching), corrosion (stains), found in 30 unique
bridges (disregarding bridges that did not have defects).
The bridges were chosen according to varying overall de-
terioration, defect extent, severity and surface appearance

(e.g. roughness and color). Images were taken under chang-
ing weather conditions to include wet/stained surfaces with
multiple cameras at varying scales. As most defects tend to
be very small one crucial requirement was the acquisition
at high-resolution. Considering that large parts of bridges
are not accessible for a human, a subset of our dataset was
acquired by UAV. We continue with the requirements and
rationale behind the camera choices, the annotation process
that led to the dataset and finally give a summary of impor-
tant dataset properties.

3.1. Image acquisition and camera choice

Image acquisition and camera choices were motivated by
typical concrete cracks in bridges having widths as small
as 0.3mm [20]. Resolving such defects on a pixel level
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Figure 2: Top panel: distribution of annotated bounding box
sizes for defects. Bottom panel: distribution of sizes for
sampled non-overlapping background bounding boxes.

imposes a strong constraint on the distance and resolution
at which the images are acquired. In a naive calculation
for a conventional consumer-grade camera with an example
chip of size 23.50 × 15.60mm and maximum resolution
6000 × 4000, this translates to around 0.1mm per pixel at
a focal length of 50mm and a distance of roughly 1.5m
(assuming a pinhole camera model and viewing axis per-
pendicular to the surface). Based on this requirement our
dataset was gathered with four different cameras at high res-
olution and large focal lengths under varying distance and
angles. In addition, to homogeneously illuminate the darker
bridge areas, we made use of diffused flash. Exact camera
models and corresponding detailed parameters can be found
in the supplementary material.

3.2. Dataset properties

We employed a multi-stage annotation process by first
curating acquired images, annotating bounding boxes per
defect and sequentially labelling each class separately. The
rationale and exact annotation process is outlined in the sup-
plementary material. The acquisition and annotation pro-
cess resulted in a dataset with the following properties:

• 1590 high-resolution images with defects in context of

30 unique bridges, acquired at different scales and res-
olutions.

• 5354 annotated defect bounding boxes (largely
with overlapping defects) and 2506 generated non-
overlapping background bounding boxes.

• Defect numbers for the following classes: crack -
2507, spallation - 1898, efflorescence - 833, exposed
bars - 1507 and corrosion stain - 1559.

Examples of images and extracted patches from bound-
ing boxes featuring a variety of overlapping and non-
overlapping defects can be seen in figure 1a and 1b respec-
tively. We point out that in contrast to most object and tex-
ture based benchmarks, the majority of our dataset has more
than one class occurring at once. We show a corresponding
histogram for the number of defect classes per individual
bounding box annotation in the supplementary material.

Apart from the multi-target nature making our dataset
more challenging than single-class recognition, the task is
difficult because of large variations in aspect ratio, scale
and resolution of the different defects and their bounding
boxes. This is true especially at a scene level, considering
that cracks can be very fine and elongated, whereas spalled
areas can vary almost arbitrarily. To illustrate these varia-
tions we visualize the distributions of defect bounding box
sizes and the sampled background bounding box sizes in
figure 2. Further details about distributions of image sizes,
bounding box size distributions per category (with overlaps
due to the multi-target nature) and distribution of aspect ra-
tios per defect can be found in the supplementary material.

4. Meta-learning convolutional neural net-
works for multi-target defect classification

We use meta-learning to discover models tailored
to multi-target defect classification on the CODEBRIM
dataset. In order to find a suitable set of hyper-parameters
for the meta-learning search space and training of neu-
ral architectures we start with the T-CNN [1] and VGG-A
[32] baselines and investigate the influence of learning rate,
batch size and patch size. For this we separate the dataset
into train and validation splits and set aside a final test set
for evaluation. We then adapt the MetaQNN [2] and ENAS
[27] architecture meta-learning approaches and contrast the
obtained results with the following set of CNN architectures
proposed in the literature: Alexnet [21], T-CNN [1], VGG-
A and VGG-D [32], wide residual network (WRN) [37]
and densely connected convolutional networks (DenseNet)
[16]. We want to point out that even though bounding box
annotations are present in our dataset, we do not evaluate
any bounding box detection algorithms because our goal
at this stage is the establishment of the already challeng-
ing multi-target classification task. We have also evaluated
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Multi-target accuracy [%] depending on learning rate schedule: max to min

Architecture Batch size
[
10−1, 10−5

] [
5 · 10−2, 5 · 10−4

] [
10−2, 10−5

]

best val bv-test bv-train best val bv-test bv-train best val bv-test bv-train

T-CNN

16 64.62 69.51 80.27 63.67 65.71 83.38 64.30 67.93 93.91
32 64.78 66.19 87.66 63.36 68.72 94.49 62.84 66.35 96.22
64 63.36 70.14 95.21 63.52 67.93 98.10 62.26 66.82 95.85
128 63.67 67.45 98.31 63.36 66.82 98.63 60.53 65.08 94.47

VGG-A

16 60.22 62.08 75.74 63.67 68.24 94.78 64.93 70.45 98.29
32 63.05 67.77 93.88 63.05 66.35 94.27 65.40 69.51 97.01
64 63.36 69.66 98.00 63.37 70.45 90.64 59.90 63.82 97.01
128 63.20 61.29 92.99 63.52 68.07 98.55 58.80 61.29 92.99

Table 1: Grid-search conducted on different batch sizes and different learning rate schedules for the T-CNN and VGG-A
models. The multi-target best validation accuracy (best val) is shown together with each model’s accuracy on the test set at
the point in time of achieving the best validation accuracy (bv-test). The analogous training accuracy (bv-train) is shown to
demonstrate that models do not under-fit. These validation accuracies have been used to determine training hyper-parameters.

transfer-learning from the ImageNet and MINC datasets, al-
beit without improvements and therefore report these exper-
iments in the supplementary material.

4.1. Dataset training, validation and test splits

We have randomly chosen 150 unique defect examples
per class for validation and test sets respectively. To avoid
over-fitting due to very similar context, we make sure that
we always include all annotated bounding boxes from one
image in one part of the dataset split only. An alternative
way to split the dataset is to separate train, validation and
test sets according to unique bridges. However, it is infea-
sible to balance such a split with respect to equal amount of
occurrences per defect due to individual bridges not featur-
ing defect classes uniformly (particularly with class over-
laps) and thus makes an unbiased training and reporting of
average losses or accuracies difficult. Nevertheless, to in-
vestigate the importance of over-fitting global properties,
we investigate and further discuss the challenges of such
splits in the supplementary material.

4.2. Training procedure

The challenging multi-class multi-target nature of our
dataset makes the following measures necessary:

1. Multi-class multi-target. For a precise estimate of a
model’s performance in a multi-target scenario, a clas-
sification is considered as correct if, and only if, all
the targets are predicted correctly. To adapt all neural
networks for this scenario we use a Sigmoid function
for every class in conjunction with the binary cross
entropy loss function. When we calculate classifica-
tion accuracies we binarize the Sigmoid output with a
threshold of 0.5. Note that this could be treated as a
hyper-parameter to potentially obtain better results.

2. Variations in scale and resolution. We address the
variation in scale and resolution of bounding boxes
by following the common literature approach based on
previous datasets such as ImageNet [29] and the mod-
els presented in [21, 32, 37, 16]. Here, the smaller side
of the extracted patch is rescaled to a pre-determined
patch size and random quadratic crops of patch size are
taken to extract fixed size images during training.

3. Train set imbalance. We balance the training dataset
by virtually replicating the under-represented class ex-
amples such that the overall defect number per class is
on the same scale to make sure defect classes are sam-
pled equally during training. Note that test and valida-
tion sets are balanced by design.

The reason for adopting step two is to allow for a direct
comparison with CNNs proposed in prior literature without
making modifications to their architectures. We do not use
individual class accuracies as a performance metric as it is
difficult to compare models that don’t capture overlaps ad-
equately. Nevertheless we provide an example table with
multi-target versus per-class accuracy of later shown CNN
literature baselines in the supplementary material.

4.2.1 Common hyper-parameters

We conduct an initial grid-search to find a suitable com-
mon set of hyper-parameters for CNNs (meta-learned or
not) trained with stochastic gradient descent based on the
T-CNN [1] and VGG-A [32] architectures. For this we
use learning rate schedules with warm restarts (SGDWR)
according to the work of [25]. The grid search features
three cycles with ranges inspired by previous work [25,
27]:

[
10−1, 10−5

]
,
[
5 · 10−2, 5 · 10−4

]
and

[
10−2, 10−5

]
,

11200

73



a warm restart cycle length of 10 epochs that is doubled af-
ter every restart, and four different batch sizes: 128, 64, 32
and 16. All networks are trained for four warm restart cy-
cles and thus 150 overall epochs after which we have no-
ticed convergence. Other hyper-parameters are a momen-
tum value of 0.9, a batch-normalization [17] value of 10−4

to accelerate training and a dropout rate [33] of 0.5 in the
penultimate classification layer. Weights are initialized ac-
cording to the Kaiming-normal distribution [13].

We determine a suitable set of hyper-parameters using
cross-validation, that is according to the best validation ac-
curacy during the entire training. We then report the test
accuracy based on this model. We show the multi-target ac-
curacy’s dependency on learning rate and batch size for the
two CNN architectures in table 1. We notice that the gen-
eral trend is in favor of lower batch sizes and a learning rate
schedule in the range of

[
10−2, 10−5

]
. While the evalu-

ated best validation model’s test accuracy generally follows
a similar trend, the best test accuracies aren’t always cor-
related with a higher validation accuracy, showing a light
distribution mismatch between the splits. We further note
that the absolute best test accuracy doesn’t necessarily co-
incide with the point of training at which the model achieves
the best validation accuracy. In general, the models seem to
have a marginally higher accuracy for the test split. The
table also shows that validation and test sets are reasonably
different from the train set, on which all investigated models
achieve an over-fit.

After determining a suitable set of hyper-parameters,
a batch size of 16 and a learning rate cycle between[
10−2, 10−5

]
, we have proceeded with the selection of

patch sizes determined through an additional experiment
based on best multi-target validation accuracy. We again
emphasize that we do not pick hyper-parameters based on
test accuracy, even if a model with lower validation accu-
racy has a better test score.

4.2.2 Selection of patch size

Whereas most CNN architectures proposed in the literature
are designed for patch sizes of 224× 224, we also evaluate
a range of different patch sizes by modifying the number
of parameters in the T-CNN model’s first fully-connected
layer according to the last convolution’s spatial output reso-
lution (we do not modify the outgoing feature amounts). In
figure 3 we show the multi-target best validation and corre-
sponding test accuracies for different patch and batch sizes.
The perceivable trend is that models trained on patch sizes
smaller than 224 yield less accuracy, whereas the validation
accuracy seems to plateau or feature an upwards trend for
larger patch sizes. The corresponding test accuracies mirror
this trend. We leave the evaluation of even larger patch sizes
for future work. For the remainder of this work, we continue
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Figure 3: T-CNN multi-target validation accuracy (top
panel) and best validation model’s multi-target test accuracy
(bottom panel) in dependence on patch size.

to use a patch size of 224. Although larger patch sizes seem
promising they prevent a direct comparison and contrasting
of meta-learning approaches with neural network models
proposed in the literature without making modifications to
their architectures.

4.2.3 Meta-learning specific parameters

We design the reward for both MetaQNN and ENAS to fit
our multi-target scenario by setting it to the multi-target val-
idation accuracy. We re-iterate that using a per-class accu-
racy as a metric and particularly to design an RL reward,
could lead to controllers being biased towards naively rais-
ing the reward by generating models that predict (the eas-
iest) subsets of classes correctly without considering the
multi-target overlap properly. We try to set the method spe-
cific hyper-parameters of the two meta-learning methods as
similar as possible to allow for a direct comparison. We
therefore train all child CNN models using the SGDWR
schedules and SGD hyper-parameters specified earlier.

MetaQNN: We employ an ǫ-greedy schedule for the Q-
learning approach. We train an overall amount of 200 ar-
chitectures and start with a full exploration phase of 100 ar-
chitectures for ǫ = 1.0. We continue with 10 architectures
for ǫ values of 0.9 to 0.3 in steps of 0.1 and finish with 15
architectures for ǫ values of 0.2 and 0.1. Our search space
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is designed to allow neural architectures with at least 3 and
a maximum of 10 convolutional layers. We include choices
for quadratic filters in the sizes of 3, 5, 7, 9, 11 with possible
number of features per layer of 32, 64, 128, 256. We use a
Q-learning rate of 0.1, a discount-factor of 1.0 and an initial
Q-value of 0.15. The latter is motivated by a 15% valida-
tion accuracy early-stopping criterion at the end of the first
SGDWR cycle. In analogy to [2], if an architecture doesn’t
pass this threshold, it is discarded and a new one is sampled
and trained.

Apart from the different reward design, we also make
several extensions to the MetaQNN [2]: We cover down-
sampling with an option for convolution stride s = 2 for fil-
ter sizes larger than 5. Convolutional layers are further fol-
lowed by an adaptive pooling stage using spatial-pyramidal
pooling (SPP) [12] of allowed scales 3, 4, 5 and the possi-
bility to pick a hidden fully-connected layer with size 32, 64
or 128 before adding the final classification stage. All lay-
ers are followed by batch-normalization and a ReLU non-
linearity to accelerate training. We also include the pos-
sibility to add ResNet-like skip connections between two
padded 3×3 convolutions that do not change spatial dimen-
sionality. If the number of convolutional output features is
the same the skip connection is a simple addition, whereas
an extra parallel convolution (that isn’t counted as an addi-
tional layer) is added if the amount of output features needs
to change. We make these extensions to provide a fairer
comparison to the architecture search of ENAS, that by de-
sign contains batch-normalization, adaptive pooling and the
possibility of adding skip-connections.

ENAS: In contrast to MetaQNN where the number of lay-
ers of each architecture is flexible, network depth in ENAS
is pre-determined by the specification of number of nodes
in the directed acyclic graph (DAG). Each node defines a
possible set of feature operations that the RNN controller
samples at each step together with connection patterns. In
the process of the search, the same DAG is used to generate
architectures with candidates sharing weights through shar-
ing of feature operations. We choose to let the search evolve
through alternate training of the CNNs’ shared weights on
the CODEBRIM train set and the RNN controller’s weights
on the validation set, where the controller samples one ar-
chitecture per mini-batch. We design the DAG such that
each architecture has 7 convolutional layers and 1 classi-
fication layer that is followed by a Sigmoid function. We
choose this depth to have a direct comparison to the average
depth of MetaQNN architectures. The allowed feature op-
erations are convolutions with square filters of size 3 and 5,
corresponding depth-wise separable convolutions [6], max-
pooling and average-pooling with kernel size 3 × 3. Each
layer is followed by batch-normalization and a ReLU non-
linearity. Because ENAS uses shared weights in the search,
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Figure 4: Evolution of the moving average reward defined
as the multi-target validation accuracy of architectures pro-
posed through meta-learning. The top panel additionally
shows individual architecture accuracies for the MetaQNN
in color. ENAS in the bottom panel has shared model
weights during training and thus requires a final end-to-end
re-training step for final validation accuracies of individual
architectures.

a final re-training step of proposed architectures is neces-
sary. We use a feature amount of 64 during the search for
all layers and use a DenseNet growth-pattern [16] of k = 2
in the final training consistent with the work of Pham et al.
[27]. The total number of search epochs is 310 (5 SGDWR
cycles) after which we have experienced convergence of the
controller. The RNN controller consists of an LSTM [15]
with two hidden-layers of 64 features that is trained with a
learning rate of 10−3 using ADAM [19].

4.3. Results and discussion

We demonstrate the effectiveness of neural architecture
search with MetaQNN and ENAS for multi-target concrete
defect classification on the CODEBRIM dataset. We show
respective moving average rewards based on a window size
of 20 architectures in figure 4. Individual architecture ac-
curacies for MetaQNN are shown in color for each step
in the top panel. We observe that after the initial explo-
ration phase, the Q-learner starts to exploit and architec-
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Architecture Multi-target accuracy [%] Params [M] Layers

best val bv-test

Alexnet 63.05 66.98 57.02 8
T-CNN 64.30 67.93 58.60 8
VGG-A 64.93 70.45 128.79 11
VGG-D 64.00 70.61 134.28 16
WRN-28-4 52.51 57.19 5.84 28
Densenet-121 65.56 70.77 11.50 121

ENAS-1 65.47 70.78 3.41 8
ENAS-2 64.53 68.91 2.71 8
ENAS-3 64.38 68.75 1.70 8
MetaQNN-1 66.02 68.56 4.53 6
MetaQNN-2 65.20 67.45 1.22 8
MetaQNN-3 64.93 72.19 2.88 7

Table 2: Comparison of popular CNNs from the literature
with the top three architectures of MetaQNN and ENAS
in terms of best multi-target validation accuracy (best val),
best validation model’s test accuracies (bv-test), overall
amount of parameters (Params) in million and amount of
trainable layers. For WRN we use a width factor of 4 and a
growth rate of k = 32 for DenseNet.

tures improve in multi-target validation accuracy. In the
bottom panel of the figure we show corresponding rewards
for the shared-weight ENAS DAG. We observe that both
methods learn to suggest architectures with improved accu-
racy over time. We remind the reader that in contrast to the
MetaQNN, a final re-training step of the top architectures is
needed for ENAS to obtain the task’s final accuracy values.

The multi-target validation and test accuracies, again re-
ported at the point in time of best validation, the number of
overall architecture parameters and layers for the top three
MetaQNN and ENAS architectures can be found in table 2.
We also evaluate and provide these values for popular CNN
baselines: Alexnet [21], VGG [32], Texture-CNN [1], wide
residual networks (WRN) [37] and densely connected net-
works (DenseNet) [16]. We see that the Texture-CNN vari-
ant of Alexnet slightly outperforms the latter. The connec-
tivity pattern of the DenseNet architecture also boosts the
performance in contrast to the VGG models. Lastly, we note
that we were only able to achieve heavy over-fitting with
WRN configurations (even with other hyper-parameters and
other configurations such as WRN-28-10 or WRN-40).

The accuracies obtained by all of our meta-learned archi-
tectures, independently of the underlying algorithm, outper-
form most baseline CNNs and feature at least similar perfor-
mance in comparison to DenseNet. Moreover, they feature
much fewer parameters with fewer overall layers and are
thus more efficient than their computationally heavy coun-
terparts. Our best meta-learned models have validation ac-
curacies as high as 66%, while the test accuracies go up to
72% with total amount of parameters less than 5 million.
In contrast to literature CNN baselines these architectures

are thus more tailored to our specific task and its multi-
target nature. Interestingly, previously obtained improve-
ments from one literature CNN baseline to another on Ima-
geNet, such as Alexnet 81.8% to VGG-D 92.8% top-5 ac-
curacies, do not show similar improvements when evaluated
on our task. This underlines the need for diverse datasets in
evaluation of architectural advances and demonstrates how
architectures that were hand-designed, even with incredi-
ble care and effort, for one dataset such as ImageNet may
nonetheless be inferior to meta-learned neural networks.

Between the two search strategies we do not ob-
serve a significant difference in performances. We be-
lieve this is due to previously mentioned modifications to
MetaQNN, mainly the addition of skip-connections and
batch-normalization that make proposed architectures more
similar to those of ENAS. We point the reader to the sup-
plementary material for exact definitions of meta-learned
architectures. There, we also include a set of image patches
that are commonly classified as correct for all targets, im-
ages where only part of the overlapping defect classes is
predicted and completely misclassified examples.

5. Conclusion
We introduce a novel multi-class multi-target dataset

called CODEBRIM for the task of concrete defect recog-
nition. In contrast to previous work that focuses largely
on cracks, we classify five commonly occurring and struc-
turally relevant defects through deep learning. Instead of
limiting our evaluation to common CNN models from the
literature, we adapt and compare two recent meta-learning
approaches to identify suitable task-specific neural archi-
tectures. Through extension of the MetaQNN, we observe
that the two meta-learning techniques yield comparable
architectures. We show that these architectures feature
fewer parameters, fewer layers and are more accurate
than their human designed counterparts on our presented
multi-target classification task. Our best meta-learned
models achieve multi-target test accuracies as high as
72%. Our work creates prospects for future work such as
multi-class multi-target concrete defect detection, semantic
segmentation and system applications like UAV based
real-time inspection of concrete structures.
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A. Content overview

The supplementary material contains further details for ma-
terial presented in the main body.

We start with an extended description of the CODE-
BRIM dataset in section B. Here, we provide the specific
settings for the employed cameras for dataset image acqui-
sition. In addition to the histogram presented in the main
body that shows number of different defects per bounding
box, we further provide a histogram with amount of bound-
ing box annotations per image. Additional material reveals
specifics of the main body’s figure depicting the large vari-
ations in distribution of bounding boxes by illustrating the
individual nuances of this distribution per defect class. The
supplementary dataset material is concluded with a brief
discussion on background patch generation.

In supplementary section C we provide a brief discus-
sion on why multi-target accuracy is a better reward met-
ric than naive single-class accuracies and show what multi-
target accuracies would translate to in terms of a naive av-
erage single-class accuracy. We give detailed descriptions
and graphs of the six meta-learned architectures for the top
three models obtained through MetaQNN and ENAS. Al-
though it isn’t an immediate extension to the main body, but
rather additional content, we provide a compact section on
transfer learning with experiments conducted with models
pre-trained on the ImageNet and MINC datasets. We have
decided to move these experiments to the the supplemen-
tary material for the interested reader as they do not show
any improvements over the content presented in the main
body. We conclude the supplementary material with exam-
ples for images that are commonly classified correctly as
well as showing some typical false multi-target classifica-
tions to give the reader a better qualitative understanding of
the dataset complexity and challenges.

* work conducted while at Frankfurt Institute for Advanced Studies

B. CODEBRIM dataset

B.1. Delamination as a defect class

Some of the CODEBRIM dataset features images that
have a defect that is typically referred to as delimation. It
is a stage where areas start to detach from the surface. De-
lamination can thus be recognized by a depth offset of a
layer from the main surface body. However, in images ac-
quired by a single camera, especially if the images were
acquired using a camera view direction that is orthogonal to
the surface, these boundaries are often visually not distin-
guishable from cracks. Without further information, even
a civil engineering expert faces major difficulty in such a
distinction between these categories. We have thus decided
to label eventual occurrences of delamination together with
the crack category.

B.2. Cameras

We show the four cameras used for acquisition of dataset
images in table 1. All chosen cameras have a resolution
above Full-HD, with the highest resolution going up to
6000 × 4000 pixels. For two cameras we have used a
lens with varying focal length, whereas two cameras had
a lens with fixed focal length of 50 and 55mm respec-
tively. We have further systematically varied aperture in
conjunction with the use of diffused flash modules to homo-
geneously illuminate dark bridge areas, while also adjust-
ing for changing global illumination (avoiding heavy over
or under-exposure). A different very crucial aspect was the
employed exposure time. Pictures acquired by UAV were
generally captured with a much shorter exposure time to
avoid blurring of the image due to out of focus acquisition
or inherent vibration and movement of the UAV. One of our
cameras, Sony α-6000 has thus exclusively been used in the
context of UAV based image acquisition with an exposure
time of 1/1000 seconds.

We show how the CODEBRIM dataset is practically

1
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Camera Resolution [pixels] Exposure [s] f [mm] F-value [f/] ISO Flash
Canon IXUS 870 IS 2592× 1944 flexible 5− 20 2.8− 5.8 100− 800 none
Panasonic DMC-FZ72 4608× 3456 1/250 4− 42 5.6 400 built-in
Nikon D5200 6000× 4000 1/200 55 11.0 200 built-in
Sony α-6000 6000× 3376 1/1000 50 2.0− 5.6 50− 400 HVL-F43M

Table 1: Description of cameras, including resolution, exposure time in fraction of a second, focal length f in mm, the
aperture or F-value in terms of focal length, ISO speed rating and information on potentially used flash.
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Figure 1: Distribution of image resolutions. Smaller and
larger side refer to the image’s larger and smaller dimen-
sion.
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Figure 2: Histogram of number of simultaneously occurring
defect classes per annotated bounding box.

comprised of the varying resolutions resulting from use
with different cameras and settings in figure 1. We can ob-
serve that the aspect ratio is almost constant with changes
in absolute resolution and that the large majority of images
has been acquired at very high resolutions.

B.3. Annotation process

After curating acquired images by excluding the major-
ity of images that do not have defects, we employed a multi-
stage annotation process to create a multi-class multi-target
classification dataset using the annotation tool LabelImg [2]
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Figure 3: Distribution of number of bounding box annota-
tions per image.

in consultation with civil engineering experts:

1. We first annotated bounding boxes for areas containing
defects in the Pascal format [1].

2. Each individual bounding box was analyzed with re-
spect to one defect class and a corresponding label was
set if the defect is present.

3. After finishing the entire set of bounding boxes for one
class, we repeated step 2 for the remaining classes and
arrived at a multi-class multi-target annotation.

4. In the last stage, we sampled bounding boxes contain-
ing background (concrete without defects as well as
non-concrete) according to absolute count, aspect ra-
tios and size of annotated defect bounding boxes.

The reason for staging the process is that we found the an-
notation process to be less error prone if annotators had to
concentrate on the presence of one defect at a time.

B.4. Further dataset statistics

We show additional information and statistics of the
dataset. In figure 2 we show a histogram that demonstrates
how one bounding box annotation typically contains more
than one defect class at a time. In figure 3 the comple-
mentary histogram of the number of annotated bounding
boxes per image can be found. Here, we can further observe

80



0 1000 2000 3000 4000 5000 6000
Larger Side

0

1000

2000

3000

4000

Sm
al

le
r S

id
e

Crack bounding box sizes

0 1000 2000 3000 4000 5000 6000
Larger Side

0

1000

2000

3000

4000

Sm
al

le
r S

id
e

Spallation bounding box sizes

0 1000 2000 3000 4000 5000 6000
Larger Side

0

1000

2000

3000

4000

Sm
al

le
r S

id
e

Efflorescence bounding box sizes

0 1000 2000 3000 4000 5000 6000
Larger Side

0

1000

2000

3000

4000

Sm
al

le
r S

id
e

Exposed bar bounding box sizes

0 1000 2000 3000 4000 5000 6000
Larger Side

0

1000

2000

3000

4000

Sm
al

le
r S

id
e

Corrosion stain bounding box sizes

Figure 4: Individual distributions of annotated bounding box sizes for each of the 5 defect classes.
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Figure 5: Individual distributions of number of bounding box annotations for different aspect ratios for each of the 5 defect
classes.

that our choice of bridges led to image acquisition scenar-
ios where one acquired image generally contains multiple
different defect locations. While this is not impacting our
classification task, we believe it is a crucial precursor for
future extensions to a realistic semantic segmentation sce-
nario.

In addition to the distribution of the annotated bounding
box sizes for background and for all the defects combined
as shown in the main body, the reader might be interested in
the specific distribution per defect class. In figure 4 the cor-
responding distribution of annotated bounding boxes per-
class is shown. Similarly, figure 5 contrasts the aspect ra-
tio distributions for the individual defects. It is to be noted
that these per-class distributions are not mutually exclusive
because of multi-target overlap in the bounding box anno-

tations. All individual classes have a similarly distributed
bounding box size per defect including a long tail towards
large resolutions. A major difference for individual classes
can be found at high resolutions between the crack and ef-
florescence classes and the spallation, exposed bar and cor-
rosion stain classes. The latter sometimes span an entire
image. While this of course depends on the acquisition dis-
tance, we point out that in images acquired at a similar dis-
tance spalled and corroded areas including bar exposition
are larger on average.

B.5. Random generation of background bounding
boxes

We emphasize that the CODEBRIM dataset has many
factors that add to the complexity. Acquired images have
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large variations depending on the target geometry, types of
defects and their overlapping behavior, the camera pose rel-
ative to the photographed surface (particularly if captured
by UAV), as well as global scene properties such as illumi-
nation. From a machine learning classification dataset point
of view it is thus interesting to capture this complexity in
the generation of image patches for the background class.

We therefore devote this supplementary section to pro-
vide further details to the reader on generation of back-
ground bounding boxes. Before administering the final
dataset, the last dataset creation step of sampling areas con-
taining background has been validated. Specifically, we
have checked whether the distribution of sizes (shown in
the main body) as well as the distribution of sampled ar-
eas’ aspect ratios approximately follow those of the human
annotated defects. In figure 6 we show the aspect ratios
for the annotated defects together with the sampled bound-
ing box aspect ratios for background. Whereas the overall
count for background is less than the integrated total amount
of defects (number of background samples roughly corre-
sponds to occurrence of each individual defect class), the
distribution of aspect ratios is confirmed to have the same
trend. We have further made sure that none of the back-
ground bounding boxes have any overlap with bounding
boxes annotated for defects and that bounding boxes for
background are evenly distributed among images. In sum-
mary, this methodology captures the complexity of surface
variations, target geometry, global illumination and makes
sure that image patch resolution and sizes reflect those of
defect annotations.

C. Deep convolutional neural networks for
multi-target defect classification

C.1. Per-class and multi-target CNN accuracies

As mentioned in the main body of this work, most im-
age classification tasks focus on the single target scenario
and an easy pitfall would be to treat our task in a similar

fashion. This would imply reporting classification accura-
cies independently per class and not treating the task in the
multi-target fashion. We remind the reader that this would
not represent the real-world scenario appropriately, where
one is interested in the severity of the degradation of the
inspected concrete structure. This severity is magnified if
two or more different defect classes are mutually occurring
and overlapping. Nevertheless, one idea could be to de-
sign the reward for the meta-learning algorithms based on
such individual class accuracies or the corresponding av-
erage. We report the validation accuracy per class (back-
ground and five defects) and their respective average for the
CNN literature baselines, together with the multi-target best
validation accuracy and the corresponding test accuracy in
table 2. Note that we do this only for the sake of com-
pleteness as this thought could occur to other researchers
and to show researchers the relationship between accuracy
values. Initially, a multi-target accuracy of 65% might not
look like a large value, but it practically translates to around
90% classification accuracy had each class been treated in-
dependently in our task. Apart from the above stated ob-
vious argument of resemblance to real-world application,
the table further indicates why the multi-target accuracy is
a better metric to employ in meta-learning reward design.
Although each of the baseline models learns to recognize
individual defects in the image with high precision, they
are not equally competent at recognizing all the defects to-
gether in the multi-target scenario. The individual class ac-
curacies do not have clear trends as they fluctuate individ-
ually, are difficult to interpret from one model to the next
and do not intuitively correlate with multi-target values. It
is thus a bad idea to base evaluation and model comparison
on single-target values and then later report multi-target ac-
curacies as the former does not linearly correlate with the
latter. We have noticed that rewards designed on the aver-
age per-class instead of multi-target accuracies lead to mod-
els that learn to predict only a subset of classes correctly and
neglect overlaps as there is no reward for higher recognition
rate of these overlaps.

C.2. Meta learned architecture definitions

We show the detailed configurations of the top three
MetaQNN and ENAS neural architectures for which accu-
racies are shown in the main body.

Table 3 shows the definitions for the top three meta-
learned models from MetaQNN on our task. Each convo-
lutional layer is expressed through quadratic filter size and
number of filters, followed by an optional specification of
padding or stride. If a skip connection/convolution has been
added it is added as an additional operation on the same
level and we specify the layer to which it skips to. The SPP
layer is characterized by the number of scales at which it
pools its feature input. As an example, scales = 4 indicates
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Architecture Accuracy [%]

mt best val mt bv-test bv-bg bv-cr bv-sp bv-ef bv-eb bv-cs bv-avg

Alexnet 63.05 66.98 89.30 89.30 89.93 90.72 93.71 88.05 90.16
T-CNN 64.30 67.93 90.09 87.89 89.62 88.99 94.49 87.57 89.77
VGG-A 64.93 70.45 91.35 90.25 89.93 90.56 93.55 86.47 90.35
VGG-D 64.00 70.61 90.72 91.82 89.93 89.30 93.71 87.42 90.48
WRN-28-4 52.51 57.19 87.89 84.11 85.53 84.43 89.15 80.34 85.24
DenseNet-121 65.56 70.77 91.51 89.62 87.75 89.10 94.49 87.73 90.03

Table 2: Best validation model’s accuracies for each individual class (bg - background, cr - crack, sp - spallation, ef -
efflorescence, eb - exposed bars, cs - corrosion stain) and their average (avg) shown together with the multi-target accuracy
(mt best val) and the corresponding multi-target test accuracy (mt bv-test).

Layer type MetaQNN-1 MetaQNN-2 MetaQNN-3
conv 1 9× 9 - 256, s = 2 5× 5 - 128 3× 3 - 128, p = 1; 1× 1 - 128 (skip to 3)
conv 2 3× 3 - 32, p = 1 7× 7 - 32, s = 2 3× 3 - 128, p = 1
conv 3 5× 5 - 256 3× 3 - 256, p = 1; 1× 1 - 256 (skip to 5) 9× 9 - 128, s = 2
conv 4 7× 7 - 256, s = 2 3× 3 - 256, p = 1 3× 3 - 256, p = 1; 1× 1 - 256 (skip to SPP)
conv 5 3× 3 - 32 3× 3 - 256, p = 1
conv 6 9× 9 - 128, s = 2

SPP scales = 4 scales = 3 scales = 4
FC 1 128 128 64
classifier linear - 6, sigmoid linear - 6, sigmoid linear - 6, sigmoid

Table 3: Top three neural architectures of MetaQNN for our task. Convolutional layers (conv) are parametrized by a quadratic
filter size followed by the amount of filters. p and s represent padding and stride respectively. If no padding or stride is
specified then p = 0 and s = 1. Skip connections are an additional operation at a layer, with the layer where the connection
is attached to specified in brackets. A spatial pyramidal pooling (SPP) layer connects the convolutional feature extractor part
to the classifier. Every convolutional and FC layer are followed by a batch-normalization and a ReLU and each model ends
with a linear transformation with a Sigmoid function for multi-target classification.

four adaptive pooling operations such that the output width
times height corresponds to 1 × 1, 2 × 2, . . . 4 × 4. The
fully-connected (FC) layer is defined by the number of fea-
ture outputs it produces. All convolutional and FC layers
are followed by a batch-normalization and a ReLU layer.

Figure 7 shows graphical representations of the top three
neural models of ENAS for our task. All of the ENAS archi-
tectures have seven convolutional layers followed by a lin-
ear transformation as defined prior to the search. We have
chosen a visual representation instead of a table because
the neural architectures (acyclic graphs) contain many skip
connections that are easier to perceive this way. All convo-
lutions have quadratic filter size and a base amount of 64
features that is doubled after the second and forth layer as
defined by a DenseNet growth strategy with k = 2.

C.3. Transferring ImageNet and MINC features

We investigate transfer learning with features pre-trained
on the ImageNet and MINC datasets for a variety of neu-

Transfer learning
Architecture Source Accuracy [%]

best val bv-test

Alexnet ImageNet 60.53 62.87
VGG-A ImageNet 60.22 66.35
VGG-D ImageNet 56.13 65.56
Densenet-121 ImageNet 54.71 57.66
Alexnet MINC 60.06 66.50
VGG-D MINC 61.47 67.14

Table 4: Multi-target best validation and best validation
model’s test accuracy for fine-tuned CNNs with convolu-
tional feature transfer from models pre-trained on the MINC
and ImageNet datasets.
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ral architectures by using pre-trained weights provided by
corresponding original authors. We fine-tune these mod-
els by keeping the convolutional features constant and only
training the classification stage for 70 epochs with a cycled
learning rate and other hyper-parameters as specified in the
main body. Best multi-target validation and associated test
values are reported in table 4. Although the pre-trained net-
works initially train much faster, we observe that transfer-
ring features from the unrelated ImageNet and MINC tasks
does not help, it in fact hinders the multi-target defect classi-
fication task. We postulate that this could be due to a variety
of factors like the task being too unrelated with respect to
the combination of object and texture recognition demanded
by our task. This observation matches previous work inves-
tigating transfer learning of object related features to texture
recognition problems. In such a scenario, the authors of [3]
find the need to evaluate feature importance and selectively
integrate only a subset of relevant ImageNet object features
to yield performance benefits for texture recognition and
prevent performance degradation. We further hypothesize
another possibility that the multi-target property of the task
could require a different abstraction of features from those
already present in the convolutional feature encoder of the
pre-trained models. Further investigation of transfer learn-
ing should thus consider an approach that doesn’t include all
pre-trained features, selects a subset of pre-trained weights
or employs different fine-tuning strategies.

C.4. Classification examples

In addition to the accuracy values reported in the main
body, we show qualitative example multi-target classifica-
tions as predicted by our trained MetaQNN-1 model. We
do this to give the reader a more comprehensive qualita-
tive understanding of the complexity and challenges of our
multi-target dataset. In order to better outline these chal-
lenges, we separate these examples into the following three
categories:

1. Correct multi-target classification examples where all
labels are predicted correctly.

2. False multi-target classification examples where at
least one present defect class is recognized correctly,
but one or more defect classes is missed or falsely pre-
dicted in addition.

3. False multi-target classification examples where none
of the present defect classes is recognized correctly.

Corresponding images, together with ground-truth labels
and the model’s predictions are illustrated in the respective
parts of figure 8. The few shown examples were picked to
show the variety of different defect types and their combi-
nations. Overall, the images show the challenging nature of

the multi-target task. Whereas the majority of multi-target
predictions are correct, the trained models face a number
of different factors that make classification difficult. Par-
ticularly, partially visible defect classes, amount of overlap,
variations in the surface, different exposure and illumina-
tion can lead to the model making false multi-target predic-
tions, where only a subset of targets is predicted correctly.

C.5. Alternative dataset splits

Architecture Multi-target accuracy [%] Params [M] Layers

val test

Alexnet 63.50 62.94 57.02 8
T-CNN 63.87 63.00 58.60 8
VGG-A 65.33 61.93 128.79 11
VGG-D 63.76 62.50 134.28 16
WRN-28-4 59.75 55.56 5.84 28
Densenet-121 66.54 65.93 11.50 121

ENAS-1 67.71 66.31 3.41 8
ENAS-2 66.50 64.37 2.71 8
ENAS-3 65.66 65.81 1.70 8
MetaQNN-1 66.70 65.91 4.53 6
MetaQNN-2 65.25 64.82 1.22 8
MetaQNN-3 70.95 67.56 2.88 7

Table 5: Evaluation in analogy to table 2 of the main body,
but on alternative dataset splits based on a per-bridge sepa-
ration.

The final dataset presented in the main portion of the pa-
per has been chosen to contain a random set of 150 unique
defect examples per class for validation and test sets respec-
tively. To avoid over-fitting we have further added the con-
straint that all crops stemming from bounding boxes from
one image must be contained in only one of the dataset
splits. The rationale behind this choice is to ensure a non-
overlapping balanced test and validation set in order to
avoid biased training that favors certain classes and report
skewed loss and accuracy metrics.

A different alternative way of conducting such a valida-
tion and test split is to split the data based on unique bridges.
Such an approach however features multiple challenges that
make it infeasible to apply in practice. In particular, not
every bridge has the same amount of defects and not ev-
ery bridge has the same amount of defects per class. Typ-
ically also defects of varying severity and overlap are fea-
tured (e.g. some have more early-stage cracks than exposed
bars). The main challenges thus are:

1. Only a certain combination of unique bridges can yield
an even approximately balanced dataset split in terms
of class presence.

2. Creation of class-balanced splits relies on either ex-
cluding some of the highly occurring defects or leaving
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Figure 7: Top three neural architectures of ENAS for our task. Convolutions (conv) are denoted with quadratic filter size and
a post-fix ”S” for depth-wise separability. MaxPool and AvgPool are max and average pooling stages with 3 × 3 windows.
ENAS uses a pre-determined amount of features per convolutional layer during the search and during final training uses a
growth strategy of k = 2 similar to DenseNets. The amount of features per convolution is 64, doubled by the growth strategy
after layers 2 and 4. The graph is acyclic and all connections between layers are indicated by directed arrows.

the dataset split only approximately balanced. The lat-
ter could result in training a model that favors a partic-
ular class and skewed average metrics being reported.

The former can result in omitting particularly chal-
lenging or easy instances from the validation or test
set and accordingly distorting the interpretation of the
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(a) Correct multi-target classification examples from the validation set. From left to right: 1.) exposed bar, corrosion, spalling. 2.)
spallation, exposed bars, corrosion and cracks. 3.) crack. 4.) efflorescence 5.) spallation and corrosion. 6.) spallation with exposed bars.

(b) False multi-target classification examples from the validation set where at least one present defect class is recognized correctly. From
left to right: 1.) corrosion (predicted corrosion and efflorescence). 2.) corrosion (predicted corrosion, spallation and exposed bar). 3.) crack
(predicted crack and efflorescence). 4.) spallation, exposed bar, corrosion (predicted spallation and corrosion). 5.) spallation, exposed bar,
corrosion (predicted crack and corrosion). 6.) efflorescence (predicted efflorescence and crack).

(c) False multi-target classification examples from the validation set where none of the present defect categories is recognized correctly.
From left to right: 1.) efflorescence (predicted background). 2.) crack (predicted background). 3.) exposed bar with corrosion (predicted
background). 4.) efflorescence (predicted background). 5.) corrosion (predicted spallation). 6.) exposed bar (predicted crack).

Figure 8: Multi-target classification examples from the validation set using the trained MetaQNN-1 model.

model’s accuracy.

3. Even when balancing the classes approximately by
choosing complementary bridges, the severity of de-
fects is not necessarily well sampled or balanced.

On the other hand, a bridge-based dataset split provides
more insights with respect to over-fitting concrete prop-
erties such as surface roughness, color, context or, given
that images at different bridges were acquired at different
points in time with variations in global scene conditions.
We therefore nevertheless investigate an alternative bridge-
based dataset split that is based on three bridges for valida-
tion and test set respectively. The bridges have been chosen
such that the resulting splits are approximately balanced in
terms of class occurrence, albeit with the crack category be-
ing more present and the efflorescence class being under-
sampled. The resulting accuracies should thus be consid-
ered with caution in direct comparison to the main paper.

Using this alternate dataset split we retrain all neural
architectures presented in the main paper. We note that
we have not repeated the previous hyper-parameter grid-
search and simply use the previously obtained best set of
hyper-parameters. In analogy, the meta-learning architec-
ture search algorithms have not been used to sample new
architectures specific to this dataset variant. The obtained
final validation and test accuracies are reported in table 5.
We re-iterate, that although we have coined the splits val-
idation and test set, the sets can be used interchangeably
here as no hyper-parameter tuning has been conducted on
the validation set.

Obtained accuracies are similar to the experimental results
presented in the paper’s main body. We can observe that
meta-learned architectures are not in exact previous order,
e.g. MetaQNN3 outperforms MetaQNN1. However, meta-
learned architectures still outperform the baselines and pre-
vious conclusions therefore hold. Due to the previously pre-
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sented challenges in creation of an unbiased bridge-based
dataset we therefore believe our dataset splits presented in
the main body to be more meaningful to assess the models’
generalization capabilities.
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Unified Probabilistic Deep Continual Learning
through Generative Replay and Open Set

Recognition
Martin Mundt, Sagnik Majumder, Iuliia Pliushch, Yong Won Hong, and Visvanathan Ramesh

Abstract—We introduce a probabilistic approach to unify open set recognition with the prevention of catastrophic forgetting in deep
continual learning, based on variational Bayesian inference. Our single model combines a joint probabilistic encoder with a generative
model and a linear classifier that get shared across sequentially arriving tasks. In order to successfully distinguish unseen unknown data
from trained known tasks, we propose to bound the class specific approximate posterior by fitting regions of high density on the basis of
correctly classified data points. These bounds are further used to significantly alleviate catastrophic forgetting by avoiding samples from
low density areas in generative replay. Our approach requires neither storing of old, nor upfront knowledge of future data, and is
empirically validated on visual and audio tasks in class incremental, as well as cross-dataset scenarios across modalities.

Index Terms—Continual Deep Learning, Catastrophic Forgetting, Open Set Recognition, Variational Inference, Deep Generative Models.

F

1 INTRODUCTION

MODERN machine learning systems are typically trained
in a closed world setting according to an isolated

learning paradigm. They take on the assumption that data
is available at all times and data inputs encountered during
application of the learned model come from the same
statistical population as the training data. However, the real
world requires dealing with sequentially arriving tasks and
data coming from potentially yet unknown sources. A neural
network that is trained exclusively on such newly arriving
data will overwrite its representations and thus forget knowl-
edge of past tasks, an early identified phenomenon coined
catastrophic forgetting [1]. Moreover, when confronting
the learned model with unseen concepts, overconfident
misclassification is inevitable [2].

Existing continual learning literature predominantly con-
centrates its efforts on finding mechanisms to alleviate
catastrophic forgetting [3] and the term continual learning
is not necessarily used in a wider sense. Specifically, the
aforementioned crucial system component to distinguish
seen from unseen unknown data, both as a guarantee for
robust application and to avoid the requirement of explicit
task labels for prediction, is generally missing. A naive
conditioning on unseen unknown data through inclusion
of a ”background” class is infeasible as by definition we do
not have access to it a priori. Commonly applied thresholding
of prediction values is veritably insufficient as resulting
large confidences cannot be prevented [2]. Arguably this also
includes variational methods [4], [5], [6], [7] to gauge neural
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network uncertainty, since the closed world assumption also
holds true for Bayesian methods [8]. Recently, Bendale et
al. [9] have proposed extreme value theory (EVT) based
meta-recognition to address open set detection on the basis
of softmax predictions in conventional feed-forward deep
neural networks. Inspired by this work, we propose a
probabilistic approach to unify open set recognition and the
prevention of catastrophic forgetting in continual learning of
a single deep model. Our specific contributions are:

• We introduce a single model for continual learning
that combines a joint probabilistic encoder with a
generative model and a linear classifier. This architec-
ture enables a natural formulation to address open
set recognition on the basis of EVT bounds to the
class conditional approximate posterior in variational
Bayesian inference.

• Apart from using EVT for detection of unseen un-
known data, we show that generated samples from
areas of low probability density under the aggregate
posterior can be excluded in generative replay for
continual learning. This leads to significantly reduced
catastrophic forgetting without storing real data.

• Empirically, we show that our model can incremen-
tally learn the classes of two image and one audio
dataset, as well as cross-dataset scenarios across
modalities, while being able to successfully distin-
guish various unseen datasets from data belonging to
known tasks.

• Finally, we demonstrate how our proposed frame-
work can be extended and readily profits from recent
advances in deep generative modelling, such as
autoregression [10], [11], [12] and introspection [13],
[14]. This is then empirically validated by scaling to
high resolution color images in further experiments.

The remainder of the paper follows the structure of
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these listed contributions. We start section two by formally
describing continual learning and open set recognition in the
context of deep supervised learning, followed by a respective
review of recent literature. Section three provides a step by
step introduction of our probabilistic framework to unify
open set recognition with the prevention of catastrophic
forgetting in continual learning. Section four proceeds with
an experimental evaluation and analysis, which is then
revisited and extended in section five under the consideration
of recent auxiliary generative modelling advances. The sixth
and final section concludes the paper.

2 BACKGROUND AND RELATED WORK

2.1 Continual Learning

In isolated supervised machine learning the core assumption
is the presence of i.i.d. data at all times and training

is conducted using a dataset D ≡
{(
x(n), y(n)

)}N
n=1

,

consisting of N pairs of data instances x(n) and
their corresponding labels y(n) ∈ {1 . . . C} for C
classes. In contrast, in continual learning task data

Dt ≡
{(
x
(n)
t , y

(n)
t

)}Nt
n=1

with t = 1, . . . , T arrives
sequentially for T disjoint datasets, each with number of
classes Ct. It is assumed that only the data of the current
task is available. Different methods in the literature have
been identified to prevent a model from forgetting past
knowledge, either explicitly, through regularization or
freezing of weights, or implicitly, through rehearsal of
data by sampling retained subsets or sampling from a
generative memory. A recent review of many continual
learning methods is provided by Parisi et al. [3]. Here, we
present a brief summary of particular related works.

Regularization and Weight Freezing: Regularization
methods such as synaptic intelligence (SI) [15] or elastic
weight consolidation (EWC) [16] explicitly constrain the
weights during continual learning to avoid drifting too far
away from previous tasks’ solutions. In a related picture,
learning without forgetting [17] uses knowledge distillation
[18] to regularize the end-to-end functional. Further methods
employ dynamically expandable neural networks [19] or
progressive networks [20], that expand the capacity while
freezing or regularizing existing representations.

Rehearsal: These methods store and rehearse data from
distributions belonging to old tasks or generate samples
in pseudo-rehearsal [21]. The central component of the
former is thus the selection of significant instances. For
methods such as iCarl [22] it is therefore common to resort
to auxiliary techniques such as a nearest-mean classifier
[23] or coresets [24]. Inspired by complementary learning
systems theory [25], dual-model approaches sample data
from a separate generative memory. In GeppNet [26] an
additional long-short term memory [27] is used for storage,
whereas generative replay [28] samples form a separately
trained generative adversarial network (GAN) [29].

Bayesian Methods: As detailed in Variational Generative
Replay (VGR) [6], Bayesian methods provide natural

capability for continual learning by making use of the
learned distribution. Existing works nevertheless fall into
the above two categories: a prior-based approach using the
former task’s approximate posterior as the new task’s prior
[30] or estimating the likelihood of former data through
generative replay or other forms of rehearsal [6], [7].

Evaluation Assumptions and Multiple Model Heads:
The success of many of these techniques can be attributed
mainly to the considered evaluation scenario. With the
exception of VGR [6], all above techniques train a separate
classifier per task and thus either require explicit storage of
task labels, or assume the presence of a task oracle during
evaluation. This multi-head classifier scenario prevents
”cross-talk” between classifier units by not sharing them,
which would otherwise rapidly decay the accuracy as newly
introduced classes directly confuse existing concepts. While
the latter is acceptable to assess catastrophic forgetting, it
also signifies a major limitation in practical application. Even
though VGR [6] uses a single classifier, they train a separate
generative model per task to avoid catastrophic forgetting of
the generator.

Our approach builds upon these previous works by
proposing a single model with single classifier head with a
natural mechanism for open set recognition and improved
generative replay from a Bayesian perspective.

2.2 Out-of-distribution and Open Set Recognition

The above mentioned literature focuses their continual
learning efforts predominantly on addressing catastrophic
forgetting. Corresponding evaluation is thus conducted in a
closed world setting, where instances that do not belong to
the observed data distribution are not encountered. In reality,
this is not guaranteed as users could provide arbitrary input
or unknowingly present the system with novel inputs that
deviate substantially from previously seen instances. Our
models thus need the ability to identify unseen examples in
an open world and categorize them as either belonging to the
already known set of classes or as presently being unknown.
We briefly recall the formal definition of open set recognition
presented in Scheirer et al. [31] and corresponding follow-up
literature [8], [9], [32], [33]: For any recognition function f over
an input space X , the open space O is defined as O ⊂= X − SK ,
where SK is a union of balls of radius ro including all of the
training examples for known classes x ∈ K. The goal in open
set recognition is to learn this function f using the training
data of known classes, i.e. minimizing the empirical risk
Rε (expected loss E[L(. . .)]), while simultaneously limiting
the open space risk RO(f) =

∫
O fK(x)dx/

∫
SK fK(x)dx.

Minimizing the latter requires the ability to detect novelty
with respect to the empirically observed distribution.

We provide a small overview of approaches that can
be regarded as related to solving open set recognition in
deep neural networks. A more comprehensive and general
overview of recent methods is provided in the review by
Boult et al. [8].

Bayesian Uncertainty and Deep Generative Models:
Bayesian neural network models [34] could be believed
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to intrinsically be able to reject statistical outliers through
model uncertainty [6]. In inference with deep neural
networks, it has been suggested that the use of stochastic
forward passes with Monte-Carlo Dropout [35] provides a
suitable approximation. However, repeating the argument
of Boult et al. [8], this is generally insufficient as uncertain
inputs are not necessarily unknown and unknowns do
not necessarily have to appear as uncertain. In the context
of deep generative models that are trained with various
variational approximations, it is particularly well known
that relying solely on deep uncertainty quantification to
distinguish unseen data is unsatisfactory [36], [37].

Calibration: The aim of these works is to seperate a known
and unknown input through prediction confidence, often
by fine-tuning or re-training an already existing model. In
ODIN [38] this is addressed through perturbations and
temperature scaling, while Lee et al. [39] use a separately
trained GAN to generate out-of-distribution samples
from low probability densities and explicitly reduce their
confidence through inclusion of an additional loss term.
Similarly the objectosphere loss [40] defines an objective that
explicitly aims to maximize entropy for upfront available
unknown inputs.

Extreme Value Theory: One approach to open set recognition
in deep neural networks is through extreme-value theory
(EVT) based meta-recognition [9], [32], i.e. without re-training
or modifying loss functions by assuming upfront presence of
unknown data. The goal here is to bound the open space on
the basis of already seen data instances. Scheirer et al. [32]
have introduced the notion of a compact abating probability,
a probabilistic model where the recognition function’s
probability decreases monotonically with increasing distance
to known training points. They have identified the Weibull
distribution as a suitable candidate to satisfy the latter when
modelling the extreme prediction values. Bendale et al. [9]
have extended this to the use with deep neural networks.
They empirically observe that the penultimate layer of a
deep neural network can be used as the underlying feature
space for open set recognition. On the basis of extreme
values to this layer’s average activation values, the authors
devise a procedure to revise a deep neural network’s softmax
prediction values. The proposed OpenMax algorithm thus
aims to mitigate the issue of predicted scores summing to
unity and unseen unknown data instances can in principle
be assigned zero probability across all known classes.

Our work extends these approaches by moving away
from potentially non-calibrated predictive values or empiri-
cally chosen deep neural network feature spaces. We instead
propose to use EVT to bound the approximate posterior. In
contrast to predictive values such as reconstruction losses,
where differences in reconstructed images do not necessarily
have to reflect the outcome with respect to our task’s target,
we thus directly operate on the underlying (lower-bound
to the) data distribution, and the generative factors. This
additionally allows us to constrain generative replay to
distribution inliers, which further alleviates catastrophic
forgetting in continual learning. While we can still leverage
variational inference to gauge model uncertainty, the need to
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Fig. 1: Joint continual learning model consisting of a
shared probabilistic encoder qθ(z|x), probabilistic decoder
pφ(x, z) and probabilistic classifier pξ(y,z). For open set
recognition and generative replay with outlier rejection, EVT
based bounds on the basis of the approximate posterior are
established.

rely on classifier entropy or confidence, that are known to be
overconfident and can never be calibrated for all unknown
inputs, is circumvented.

3 UNIFYING OPEN SET RECOGNITION WITH THE
PREVENTION OF CATASTROPHIC FORGETTING IN
CONTINUAL LEARNING

We consider the continual learning scenario with awareness
of an open world from a perspective of variational inference
in deep generative models [5]. Our model consists of a
shared encoder with variational parameters θ, decoder and
linear classifier with respective parameters φ and ξ. The
joint probabilistic encoder learns an encoding to a latent
variable z, over which a unit Gaussian prior is placed.
Using variational inference, the encoder’s purpose is to
approximate the true posterior to both pφ(x, z) and pξ(y,z).
The probabilistic decoder pφ(x|z) and probabilistic linear
classifier pξ(y|z) then return the conditional probability
density of the input x and target y under the respective
generative model given a sample z from the approximate
posterior qθ(z|x). This yields a generative model p(x,y, z),
for which we assume a factorization and generative process
of the form p(x,y, z) = p(x|z)p(y|z)p(z). For variational
inference with this model, the sum over all elements in
the dataset n ∈ D of the following loss thus needs to be
optimized:

L
(
x(n),y(n);θ,φ, ξ

)
= −βKL(qθ(z|x(n)) || p(z))

+ Eqθ(z|x(n))

[
log pφ(x(n)|z) + log pξ(y

(n)|z)
] (1)

This model can be seen as a variant of β-VAE [41], where in
addition to approximating the data distribution the model
learns to incorporate the class structure into the latent
space. It forms the basis for continual learning with open
set recognition and respective improvements to generative
replay, which will be discussed in subsequent sections. An
illustration of the model is shown in figure 1 and the
corresponding full derivation of equation 1, the lower-bound
to the joint distribution p(x,y) is supplied in the appendix.
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(a) 4-classes (b) 6-classes (c) 8-classes (d) 10-classes

Fig. 2: (a) 2-D latent space visualization for continually learned MNIST.

3.1 Learning Continually through Generative Replay

Without further constraints, one could continually train
above model by sequentially accumulating and optimizing
equation 1 over all currently present tasks t = 1, . . . , T :

LUBt (x,y;θ,φ, ξ) =
1

t

t∑

τ=1

1

Nτ

Nτ∑

n=1

L
(
x(n)
τ ,y(n)

τ ;θ,φ, ξ
)

(2)
Being based on the accumulation of real data, this equation
provides an upper-bound to achievable performance in
continual learning. However, this form of continued training
is generally infeasible if only the most recent task’s data is
assumed to be available. Making use of the generative nature
of our model, we follow previous works [6], [7] and estimate
the likelihood of former data through generative replay:

Lt (x,y;θ,φ, ξ) =
1

2

1

Nt

Nt∑

n=1

L
(
x
(n)
t ,y

(n)
t ;θ,φ, ξ

)

+
1

2

1

N ′t

N ′t∑

n=1

L
(
x
′(n)
t ,y

′(n)
t ;θ,φ, ξ

) (3)

where,

x′t ∼ pφ,t−1(x|z); y′t ∼ pξ,t−1(y|z) and z ∼ p(z) (4)

Here, x′t is a sample from the generative model with its
corresponding label y′t obtained from the classifier. N ′t is
the number of total data instances of all previously seen
tasks or alternatively a hyper-parameter. This way the
expectation of the log-likelihood for all previously seen
tasks is estimated and the dataset at any point in time

D̃t ≡
{

(x̃
(n)
t , ỹ

(n)
t )

}Ñt
n=1

= {(xt ∪ x′t, yt ∪ y′t)} is a combina-
tion of generations from seen past data distributions and the
current task’s real data.

3.2 Linear Classifier Expansion and the Role of β

In contrast to prior works based on multiple models, our
approach of using equation 3 to continually train a single
model has two implications. With every encounter of an
additional class: 1. a new classifier unit and corresponding
weights need to be added. 2: the latent encoding needs
to adjust to accommodate the additional class under the
constraint of the classifier requirement of linear separability.

The first implication can be addressed by expanding
the existing classifier weight tensor and only initializing
the newly added weights. If the distribution from which
the newly added weights are drawn is independent of the
number of classes and only depends on the input dimension-
ality, such as the initialization scheme proposed by He et al.
[42], the initialization scheme remains constant throughout
training. While the addition itself will temporarily confuse
existing units, this should make sure that newly added
parameters are on the same scale as existing weights and
thus trained in practice. Note that in principle, during
the optimization of a task the weight distribution could
shift significantly from its initial state. However, we do
not encounter this potential issue in empirical experiments.
Nevertheless, we point out that this currently under-explored
topic requires separate future investigation in the context of
model expansion.

For the second implication, the β term of equation 1 is
crucial. Here, the role of beta is to control the capacity of
the information bottleneck and regulate the effective latent
encoding overlap [43], which can best be summarized with a
direct quote from the recent work of Mathieu et al. [44]: ”The
overlap factor is perhaps best understood by considering extremes:
too little, and the latents effectively become a lookup table; too
much, and the data and latents do not convey information about
each other. In either case, meaningfulness of the latent encodings is
lost.” (p. 4). This can be seen as under- or over-regularization
by the prior of what is typically referred to as the aggregate
posterior [45]:

qθ,t(z) = EpD̃t (x̃) [qθ,t(z|x̃)] ≈ 1

Ñt

Ñt∑

n=1

qθ,t(z|x̃(n)) (5)

As an extension of this argument to our model, the necessity
of linear class separation given z requires a suitable level
of encoding overlap. This forms the basis for our open set
recognition and respective improved generative replay for
continual learning, which will be discussed in the following
paragraphs. Example two-dimensional latent encodings for
a continually trained MNIST [46] model with appropriate β
are shown in figure 2. Here, we can see that the classes are
cleanly separated in latent space, as enforced by the linear
classification objective, and new classes can be accommo-
dated continually. Further discussion on the choice of β can
be found in the supplementary material.
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(a) MNIST: 28× 28 resolution classified as c = 0 (top left), c = 3 (top right), c = 5 (bottom left) and c = 9 (bottom right). Images
were generated from the two-dimensional latent space visualized in figure 2.

(b) Flowers: 256 × 256 resolution classified as ”sunflower” (top row) and ”daisy” (bottom row). Images generated from a 60
dimensional latent space of deep wide residual models trained with introspection, as detailed in later experimental sections.

Fig. 3: Generated images x ∼ pφ,t(x|z) with z ∼ p(z) and their corresponding class c obtained from the classifier pξ,t(y|z)
together with their open set outlier percentage. Image quality degradation and class ambiguity can be observed with
increasing outlier likelihood. Flower images have been compressed for side-by-side view.

3.3 Open Set Recognition and Generative Replay with
Statistical Outlier Rejection

Trained naively in above fashion, our model would suffer
from accumulated errors with each successive iteration of
generative replay, similar to current literature approaches.
The main challenge is that high density areas under the
prior p(z) are not necessarily reflected in the structure of
the aggregate posterior qθ,t(z) [47]. Thus, generated data
from low density regions of the latter does not generally
correspond to encountered data instances. Conversely, data
instances that fall into high density regions under the prior
should not generally be considered as statistical inliers with
respect to the observed data distribution.

Ideally, this challenge would be solved by modifying
equations 1 and 2 by replacing the Gaussian prior in
the KL-divergence with qθ,t(z) and respectively sampling
z ∼ qθ,t−1(z) for generative replay in equations 3 and 4.
Even though using the aggregate posterior as the prior is the
objective in multiple recent works, it can be challenging in
high dimensions, lead to over-fitting and often comes at the
expense of additional hyper-parameters [47], [48], [49]. To
avoid finding an explicit representation for the multi-modal
qθ,t(z), we leverage our model’s class disentanglement and
draw inspiration from the EVT based OpenMax approach

[9] in deep neural networks. However, instead of using
knowledge about extreme distance values in penultimate
layer activations to modify a Softmax prediction’s confidence,
we propose to apply EVT on the basis of the class conditional
aggregate posterior. In this view, any sample can be regarded
as statistically outlying if its distance to the classes’ latent
means is extreme with respect to what has been observed
for the majority of correctly predicted data instances, i.e. the
sample falls into a region of low density under the aggregate
posterior and is less likely to belong to pD̃(x̃).

For convenience, let us introduce the indices of all
correctly classified data instances at the end of task t as
m = 1, . . . , M̃t. To construct a statistical meta-recognition
model, we first obtain each class’ mean latent vector for all
correctly predicted seen data instances:

z̄c,t =
1

|M̃c,t|
∑

m∈M̃c,t

E
qθ,t(z|x̃(m)

t )
[z] (6)

and define the respective set of latent distances as:

∆c,t ≡
{
fd
(
z̄c,t,Eqθ,t(z|x̃(m)

t )
[z]
)}

m∈M̃c,t

(7)

Here, fd signifies a choice of distance metric. We proceed
to model this set of distances with a per class heavy-tail
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Weibull distribution ρc,t = (τc,t, κc,t, λc,t) on ∆c,t for a
given tail-size η. As these distances are based on the class
conditional approximate posterior, we can thus bound the
latent space regions of high density. The tightness of the
bounds is characterized through η, that can be seen as a
prior belief with respect to the outlier quantity assumed to
be inherently present in the data distribution. The choice of
fd determines the nature and dimensionality of the obtained
distance distribution. For our experiments, we find that
the cosine distance and thus a univariate Weibull distance
distribution per class seems to be sufficient.

Using the cumulative distribution function of this Weibull
model ρt we can now estimate any sample’s outlier proba-
bility:

ωρ,t(z) = min

(
1− exp

(
−|fd (z̄t, z)− τ t|

λt

)κt)
(8)

where the minimum returns the smallest outlier probability
across all classes. If this outlier probability is larger than a
prior rejection probability Ωt, the instance can be considered
as unknown as it is far away from all known classes. For
a novel data instance, the outlier probability can be based
on computation of the probabilistic encoder z ∼ qθ,t(z|x)
and a false overconfident classifier prediction avoided. Anal-
ogously, for the generative model, equation 8 can be used
with z ∼ p(z) and the probabilistic decoder only calculated
for samples that are considered to be statistically inlying.
This way, we can constrain the naive generative replay of
equation 4 to the aggregate posterior, while avoiding the need
to sample z ∼ qθ,t(z) directly. Although this may sound
detrimental to our method, it comes with the advantage of
scalability to high dimensions. We further argue that the
computational overhead for generative replay, both from
sampling from the prior z ∼ p(z) in large parallelized
batches and computation of equation 8, is negligible in
contrast to the much more computationally heavy deep
probabilistic decoder or even the linear classifier, as the latter
only need to be calculated for accepted samples. To give a
visual illustration, we show examples of generated MNIST
[46] and larger resolution flower images [50] together with
their outlier percentage in figure 3.

4 EXPERIMENTS AND ANALYSIS

Similar to recent literature [3], [6], [15], [16], [28], we con-
sider the incremental MNIST [46] dataset, where classes
arrive in groups of two, and corresponding versions of the
FashionMNIST [51] and AudioMNIST dataset [52]. For the
latter we follow the authors’ procedure of converting the
audio recordings into spectrograms. In addition to this class
incremental setting, we also evaluate cross-dataset scenarios,
where datasets are sequentially added with all of their classes
and the model has to learn across modalities.

For a common frame of reference, we base both encoder
and decoder architectures on 14-layer wide residual
networks with a latent dimensionality of 60 [11], [12],
[53], [54]. For the generative replay with statistical outlier
rejection, we use an aggressive rejection rate of Ωt = 0.01
and dynamically set tail-sizes to 5% of seen examples
per class. To avoid over-fitting, we add noise sampled
from N (0, 0.25) to each input. This is preferable to weight

regularization as it doesn’t entail unrecoverable units
that are needed to encode later tasks. We thus refer to
our proposed model as Open-set Classifying Denoising
Variational Auto-Encoder (OCDVAE), for which we have
found a value of β = 0.1 to consistently work well, see
discussion in the appendix. An important practical aspect
is that we include normalizing terms into our previously
introduced loss functions in order to have a set-up that is
agnostic to dataset properties such as image resolution or
task complexity that manifests in minimum required latent
dimensionality. Specifically, we normalize the reconstruction
loss by the spatial data dimension, i.e. dividing it by the
number of pixels, and the KL divergence by the latent
dimensionality. This way, we do not need to find a different
value for beta if the latent dimensionality is altered or
alternatively scaling the reconstruction loss’ magnitude if
the input size is increased. We empirically compare the
following methods:

Dual Model: separate generative and discriminative
variational models in analogy to the deep generative replay
of Shin et al. [28].
EWC: elastic weight consolidation [16] for a purely
discriminative model.
OCDVAE (ours): our proposed joint model with posterior
based open set recognition and resulting statistical outlier
rejection in generative replay.
CDVAE: the naive approach of generating from the prior
distribution in our joint model. We include these results to
highlight the effect of aggregate posterior to prior mismatch.
ISO: isolated learning, where all data is always present.
UB: upper-bound on achievable model performance by
sequentially accumulating all data, given by equation 2.
LB: lower-bound on model performance when only the
current task’s data is available. No additional mechanism is
in place and full catastrophic forgetting occurs.

Our evaluation metrics are inspired by previously pro-
posed continual learning measures [55], [56]. In addition
to overall accuracy αt,all, these metrics monitor forgetting
by computing a base accuracy αt,base for the initial task
at increment t, while also gauging the amount of new
knowledge that can be encoded by monitoring the accuracy
for the most recent increment αt,new. We evaluate the quality
of the generative models through classification accuracy as
it depends on generated replay and a direct evaluation of
pixel-wise reconstruction losses is not necessarily coupled
to classification accuracy or retention thereof. However, we
provide a detailed analysis of reconstruction losses for all
tasks, as well as KL divergences for all experiments in the
supplementary material.

To provide a fair comparison of achievable accuracy, all
above approaches are trained to converge on each task using
the Adam optimizer [57]. We repeat all experiments five times
to assess statistical consistency. The full hyper-parameter
specification can be found in the supplementary material.
There, we also provide the quantitative continual learning
results for all experiments with a 2-hidden layer and 400
unit multi-layer perceptron [56], as the WRN architecture
could be argued to be excessively large for simpler datasets
such as MNIST, in particular with the parameters of the
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Fig. 4: Trained FashionMNIST OCDVAE evaluated on unknown datasets. All metrics are averaged over 100 approximate
posterior samples per data point. (Left) Classifier entropy values are insufficient to separate most of unknown from the
known task’s test data. (Center) Reconstruction loss allows for a partial distinction. (Right) Our posterior based open set
recognition considers the large majority of unknown data as statistical outliers across a wide range of rejection priors Ωt.

TABLE 1: Results for continual learning across datasets
averaged over 5 runs, baselines and the reference isolated
learning scenario for FashionMNIST (F) → MNIST (M) →
AudioMNIST (A) and the reverse order. αT indicates the
respective accuracy at the end of the last increment T = 3.

Cross-dataset αT (%) (T=3)

base new all

F-
M

-A

CDVAE ISO 94.95
CDVAE UB 89.10 97.88 95.00
CDVAE LB 00.00 98.12 22.70
EWC 22.85 ± 0.294 93.31 ± 0.138 43.42 ± 0.063

Dual Model 81.89 ± 0.104 96.78 ± 0.067 91.75 ± 0.064

CDVAE 57.70 ± 4.480 96.73 ± 0.235 81.10 ± 1.769

OCDVAE 80.11 ± 2.922 97.63 ± 0.042 91.13 ± 1.045

A
-M

-F

CDVAE ISO 94.95
CDVAE UB 97.17 89.16 94.91
CDVAE LB 00.00 89.72 34.51
EWC 3.420 ± 0.026 87.54 ± 0.214 45.42 ± 0.731

Dual Model 66.82 ± 0.337 89.15 ± 0.050 87.70 ± 0.102

CDVAE 79.74 ± 2.431 88.50 ± 0.126 89.46 ± 0.600

OCDVAE 94.53 ± 0.283 89.53 ± 0.367 94.06 ± 0.156

network being on a similar scale as the dataset itself. Note
that all drawn conclusions remain the same independent
of the architecture used and the main difference is a mild
degradation in performance as an expected consequence of
the less complex architecture. All models were trained on a
single GTX 1080 GPU.

4.1 Learning Across Datasets in an Open World

Achieved accuracies for continual learning across datasets are
summarized in table 1. In general the upper-bound values are
almost identical to isolated learning. Similarly, the new task’s
metrics are negligibly close, as the WRN architecture ensures
enough capacity to encode new knowledge. In contrast to
EWC that is universally unable to maintain knowledge in a
single-head classifier, as also previously observed by [3], [56],
approaches based on generative replay are able to partially
retain information. Yet they accumulate errors due to samples

generated from low density regions. This is noticeable for
both the dual model approach, with a separate VAE and
discriminative model, and more heavily so for the naive
CDVAE, where the structure of qθ,t(z) is further affected by
the discriminator. However, our proposed OCDVAE model
overcomes this issue to a considerable degree, rivalling and
improving upon the separately trained models.

Apart from these classification accuracies, we also quanti-
tatively analyze the models’ ability to distinguish unknown
tasks’ data from data belonging to known tasks. Here, the
challenge is to consider all unseen test data of already trained
tasks as inlying, while successfully identifying 100 % of
unknown datasets as outliers. For this purpose, we evaluate
models after training on one dataset on its respective test set,
the remaining tasks’ datasets and additionally the KMNIST
[58], SVHN [59] and CIFAR [60] datasets.

We compare and contrast three criteria that could be
used for open set recognition: classifier predictive entropy,
reconstruction loss and our proposed latent based EVT
approach. We approximate the expectation with 100 vari-
ational samples from the approximate posterior per data
point, i.e. marginalising the latent variable z with Monte
Carlo samples from qθ(z|x). Figure 4 shows the three
criteria and respective percentage of the total dataset being
considered as outlying for the OCDVAE model trained on
FashionMNIST. In consistence with [36], we can observe that
use of reconstruction loss can sometimes distinguish between
the known tasks’ test data and unknown datasets, but results
in failure for others. In the case of classifier predictive entropy,
depending on the exact choice of entropy threshold, generally
only a partial separation can be achieved. Furthermore, both
of these criteria pose the additional challenge of results being
highly dependent on the choice of the precise cut-off value.
In contrast, the test data from the known tasks is regarded
as inlying across a wide range of rejection priors Ωt and the
majority of other datasets is consistently regarded as outlying
by our proposed open set mechanism.

We provide quantitative outlier detection accuracies in
table 2. Here, a 5% validation split is used to determine
the respective value at which 95% of the validation data is
considered as inlying before using these priors to determine
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TABLE 2: Test accuracies and outlier detection values of the joint OCDVAE and dual model (VAE and separate deep classifier,
denoted as ”CL + VAE”) approaches when considering 95 % of known tasks’ validation data is inlying. Percentage of
detected outliers is reported based on classifier predictive entropy, reconstruction loss and our posterior based EVT approach,
averaged over 100 z ∼ qθ(z|x) samples per data-point respectively. Note that larger values are better, except for the test
data of the trained dataset, where ideally 0% should be considered as outlying.

Outlier detection at 95% validation inliers (%) MNIST Fashion Audio KMNIST CIFAR10 CIFAR100 SVHN
Trained Model Test acc. Criterion

Fa
sh

io
nM

N
IS

T Dual, 90.48 Class entropy 74.71 5.461 69.65 77.85 24.91 28.76 36.64
CL + Reconstruction 5.535 5.340 64.10 31.33 99.50 98.41 97.24
VAE Latent EVT 96.22 5.138 93.00 91.51 71.82 72.08 73.85

Joint, 90.92 Class Entropy 66.91 5.145 61.86 56.14 43.98 46.59 37.85
OCDVAE Reconstruction 0.601 5.483 63.00 28.69 99.67 98.91 98.56

Latent EVT 96.23 5.216 94.76 96.07 96.15 95.94 96.84

M
N

IS
T

Dual, 99.40 Class entropy 4.160 90.43 97.53 95.29 98.54 98.63 95.51
CL + Reconstruction 5.522 99.98 99.97 99.98 99.99 99.96 99.98
VAE Latent EVT 4.362 99.41 99.80 99.86 99.95 99.97 99.52

Joint, 99.53 Class entropy 3.948 95.15 98.55 95.49 99.47 99.34 97.98
OCDVAE Reconstruction 5.083 99.50 99.98 99.91 99.97 99.99 99.98

Latent EVT 4.361 99.78 99.67 99.73 99.96 99.93 99.70

A
ud

io
M

N
IS

T Dual, 98.53 Class entropy 97.63 57.64 5.066 95.53 66.49 65.25 54.91
CL + Reconstruction 6.235 46.32 4.433 98.73 98.63 98.63 97.45
VAE Latent EVT 99.82 78.74 5.038 99.47 93.44 92.76 88.73

Joint, 98.57 Class entropy 99.23 89.33 5.731 99.15 92.31 91.06 85.77
OCDVAE Reconstruction 0.614 38.50 3.966 36.05 98.62 98.54 96.99

Latent EVT 99.91 99.53 5.089 99.81 100.0 99.99 99.98

outlier counts for the known tasks’ test set as well as other
datasets. We provide this evaluation for both our joint model,
as well as separate discriminative and generative models.
While MNIST seems to be an easy to identify dataset for all
approaches, we can make two major observations:

1) The latent based EVT approach outperforms the
other criteria, particularly for the OCDVAE where a
near perfect open set detection can be achieved.

2) Even though we can apply EVT to purely discrimi-
native models, the joint OCDVAE model consistently
exhibits more accurate outlier detection. We hypothe-
size that this is due to the joint model also optimizing
a variational lower bound to the data distribution
p(x) in addition to taking into account labels.

We provide figures similar to figure 4 for all models reported
in table 2 in the supplementary material.

Naively one might at this point be tempted to argue that
the trained weights of the individual deep neural network
encoder layers are still deterministic and the failure of
predictive entropy as a measure for unseen unknown data
could thus primarily be attributed to uncertainty not being
expressed adequately. Placing a distribution on the weights
would then be expected to resolve this issue. Although it
has previously been argued that this is not the case [8], we
further repeat all of our quantitative open set experiments
by treating the model weights as the random variable being
marginalised through the use of MC-Dropout [35]. Whereas
some improvements upon the presented results of this sec-
tion are noticeable, they are overall negligible with respect to
observed patterns, the two major observations formulated in
above list, and drawn conclusions. The corresponding table

TABLE 3: Results for class incremental continual learning
approaches averaged over 5 runs, baselines and the reference
isolated learning scenario for the three datasets. αT indicates
the respective accuracy at the end of the last increment T = 5.

Class-incremental αT (%) (T=5)

base new all

Fa
sh

io
nM

N
IS

T CDVAE ISO 89.54
CDVAE UB 92.20 97.50 89.24
CDVAE LB 00.00 99.80 19.97
EWC 00.17 ± 0.076 99.60 ± 0.023 20.06 ± 0.059

Dual Model 94.26 ± 0.192 93.55 ± 0.708 63.21 ± 1.957

CDVAE 39.51 ± 7.173 96.92 ± 0.774 58.82 ± 2.521

OCDVAE 60.63 ± 12.16 96.51 ± 0.707 69.88 ± 1.712

M
N

IS
T

CDVAE ISO 99.45
CDVAE UB 99.57 99.10 99.29
CDVAE LB 00.00 99.85 20.16
EWC 00.45 ± 0.059 99.58 ± 0.052 20.26 ± 0.027

Dual Model 97.31 ± 0.489 98.59 ± 0.106 96.64 ± 0.079

CDVAE 19.86 ± 7.396 99.00 ± 0.100 64.34 ± 4.903

OCDVAE 92.35 ± 4.485 99.06 ± 0.171 93.24 ± 3.742

A
ud

io
M

N
IS

T CDVAE ISO 97.75
CDVAE UB 98.42 98.67 97.87
CDVAE LB 00.00 100.0 20.02
EWC 00.11 ± 0.007 99.41 ± 0.207 19.98 ± 0.032

Dual Model 61.58 ± 0.747 89.41 ± 0.691 47.42 ± 1.447

CDVAE 59.36 ± 7.147 84.93 ± 6.297 81.49 ± 1.944

OCDVAE 79.73 ± 4.070 89.52 ± 6.586 87.72 ± 1.594

containing the quantitative Monte-Carlo Dropout results
have accordingly been moved to the supplementary material.
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(a) 4 classes (b) 6 classes

(c) 8 classes (d) 10 classes

Fig. 5: AudioMNIST confusion matrices for the incrementally
learned OCDVAE model. When adding classes two and three
the model experiences difficulty in classification, however
is able to overcome this challenge by exhibiting backward
transfer when later learning classes four and five. Similarly,
classes four and five are then retrospectively improved
through the addition of classes six and seven. It is also
observable how forgetting of the initial classes is limited.

4.2 Learning Classes Incrementally

We show results in analogy to table 1 for the class incremental
scenario in table 3. With the exception of MNIST, where
the dual model approach fares well, a similar pattern as
before can be observed and our proposed OCDVAE approach
significantly outperforms all other methods. Interestingly, as
a result of using a single model across tasks, we observe
backward transfer in some experiments. We dedicate the
next subsection to this desirable phenomenon and tie its
forthcoming discussion to potential limitations of regulariza-
tion based continual learning methods.

4.3 Backward Transfer and the Limits of Regularization

The existing tasks’ representations are typically exploited in
the acquisition of a new task’s information in continual learn-
ing, transfer learning and all other scenarios that formulate
some kind of incremental learning problem. However, the
concept of backward transfer is generally less deliberated.
It describes the reverse phenomenon where introduction of
a new task leads to learning of representations that retro-
spectively improve former tasks. We observe this behavior
in multiple of our experiments, whose detailed numerical ac-
count together with examples of all generated images for all
increments t = 1, . . . , 5 can be found in the supplementary
material. For the purpose of the following discussion, it is
sufficient to single out one particularly noteworthy example
of backward transfer. Figure 5 highlights the occurrence of
retrospective improvement for class-incremental learning
with our OCDVAE model on the AudioMNIST dataset, as
quantitatively presented in the tables of the supplementary

Fig. 6: Latent space visualization for OCDVAE with a
two-dimensional latent space trained on FashionMNIST.
In addition to the learned classes, embedded data points
for unseen unknown classes belonging to AudioMNIST
and CIFAR10 are shown. The latter can be observed to be
separable by their distance to trained concepts.

material. Here, the addition of two new classes (four and five)
at the end of the second increment leads to an improvement
in the classification performance on class two, as illustrated
by the confusion matrices. Analogously, subsequent inclusion
of the additional classes six and seven enhances the classes
of the second task increment, even if none of the former
tasks’ real data is present any longer. We point out that this is
continual learning desideratum can only emerge from having
a single model with a single classification head and alleviated
catastrophic forgetting through mechanisms different from
heavy regularization. By definition, obtaining retrospective
improvement through regularization is unlikely, if not
entirely unachievable. This is because continual learning
through regularization encourages the model to reproduce
solutions for previous tasks by maintaining the parameters
or upholding a specific prediction, e.g. through knowledge
distillation [17], [61], [62], [63]. The focus therefore lies
on avoiding model deterioration, without the possibility
of surpassing previously reached performance. Although
cases were backward transfer may not always be necessary
are conceivable, e.g. if a task’s performance requirements
are already met from the start, this inability for retroactive
correction can be one major drawback of regularization
methods.

At this point, we emphasize that the goal of this question
is not to altogether question the merit of prior works
that have made use of regularization techniques. Instead,
we would simply like to raise awareness that there exist
contexts in which regularization techniques might be helpful
and on the contrary, settings, where use of regularization
may be in direct opposition to the desired goals. Apart
from task sequences where backward transfer can be of
essence, another context in which current continual learning
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regularization methods may be antagonistic is the objective
of open set recognition. In particular, we posit that com-
monly employed regularization techniques and the ability
to recognize the open set are interdependent. To specify
this statement, figure 6 shows another visualization of
a trained model’s two-dimensional latent embedding for
FashionMNIST, similar to the MNIST visualization of figure
2. However, here we have also included the probabilistic
encoder’s mapping of previously unseen unknown classes
from the AudioMNIST and CIFAR10 datasets. On the one
hand, it is observable how the corresponding latent values
have large distance to the clusters belonging to the learned
classes, painting an intuitive two-dimensional picture for the
earlier demonstrated success of our framework in open set
recognition in high-dimensional latent spaces. On the other
hand, the large majority of the unseen unknown data points
fall into a central cluster. If we now desire to incorporate
these currently unseen unknown classes by including them
into the next continual learning task, this single cluster of
unseen unknowns will need to be divided in order for the
individual classes to be discriminable. In analogy to the
visualized rearrangement of the latent space over time in
figure 2, the aggregate posterior thus need to be given
the flexibility to experience ample change. If despite of
this requirement a regularization approach regularizes the
current aggregate posterior qθ,t(z), e.g. by replacing the
Gaussian prior with the former tasks’ aggregate posterior
KL(qθ,t(z|x(n)) || qθ,t−1(z)) in equation 1 such as proposed
in the variational continual learning (VCL) [30], this may
not be possible. A similar argument provides the rationale
behind the earlier empirically demonstrated failure of EWC,
where restrictions on updates to the probabilistic encoder’s
parameters hinder the disambiguation of new classes or
conversely discount the solution for previous tasks.

Before we continue to showcase ways in which our pro-
posed framework can naturally be scaled to high-resolution
color images, we would like to give credit to related works
that have purposely not been included in our experimental
comparison for an entirely different reason. These approaches
are naturally synergistic reporting them separately in a
standalone quantitative comparison could mislead the reader.
They primarily belong to the category of exemplar/core
set rehearsal. Prominent examples are iCarl [22], gradient
episodic memory [55], FearNet [64], Variational Continual
Learning [30] or CLEAR [65]. The retention and rehearsal
of real data can always be a valid strategy to address the
challenge of continual learning, if memory is of little concern.
The problem is then re-framed to the discovery of suitable
data subset selection schemes. The latter can naturally
be integrated into our proposed framework by devising
mechanisms to select data subsets which best approximate
the aggregate posterior of the entire dataset.

5 IMPROVING THE GENERATIVE MODEL: SCALING
THROUGH AUTOREGRESSION AND INTROSPECTION

At the time of their initial introduction, it was notorious that
variational autoencoders produce blurry examples and were
associated with an inability to scale to more complex high-
resolution color images. This is in contrast to their prominent
generative counterparts, the generative adversarial network

TABLE 4: PixelVAE based continual learning approaches
averaged over 5 runs in analogy to tables 1 and 3.

Class-incremental αT (%) (T=5)

base new all

Fa
sh

io
n Dual Pix Model 60.04 ± 5.151 98.85 ± 0.141 72.41 ± 2.941

PixCDVAE 47.83 ± 13.41 97.91 ± 0.596 63.05 ± 1.826

PixOCDVAE 74.45 ± 2.889 98.63 ± 0.176 80.85 ± 0.721

M
N

IS
T Dual Pix Model 98.04 ± 1.397 97.31 ± 0.575 96.52 ± 0.658

PixCDVAE 56.53 ± 4.032 96.77 ± 0.337 83.61 ± 0.927

PixOCDVAE 97.44 ± 0.785 98.63 ± 0.430 96.84 ± 0.346

A
ud

io Dual Pix Model 64.60 ± 8.739 98.18 ± 0.885 75.50 ± 3.032

PixCDVAE 29.94 ± 18.47 97.00 ± 0.520 63.44 ± 5.252

PixOCDVAE 75.25 ± 10.18 99.43 ± 0.495 90.23 ± 1.139

Cross-dataset αT (%) (T=3)

base new all

F-
M

-A Dual Pix Model 82.88 ± 0.116 97.23 ± 0.212 92.16 ± 0.061

PixCDVAE 56.44 ± 1.831 97.50 ± 0.184 80.76 ± 0.842

PixOCDVAE 81.84 ± 0.212 97.75 ± 0.169 91.76 ± 0.212

A
-M

-F Dual Pix Model 71.58 ± 2.536 88.76 ± 0.255 88.61 ± 0.547

PixCDVAE 49.38 ± 2.256 88.54 ± 0.042 82.18 ± 0.672

PixOCDVAE 91.90 ± 0.282 89.91 ± 0.177 93.82 ± 0.354

[29]. Although this stigma perhaps still holds until today,
there has been many successful recent efforts to address this
challenge. In what is supposed to constitute a final outlook
for our work, we thus empirically investigate the choice of
generative model and optionally improve the probabilistic
decoding with the help of two promising research direc-
tions: autoregression [10], [11], [12] and introspection [13],
[14]. The commonality between these approaches is their
aim to overcome the limitations of independent pixel-wise
reconstructions. We will briefly summarize these generative
extensions, empirically show their advantage by revisiting
our previous experiments, before continuing to demonstrate
our framework’s efficacy on high resolution color images.

5.1 Improvements through Autoregressive Decoding
In essence, autoregressive models improve the probabilis-
tic decoder by introducing a spatial conditioning of each
scalar output value on the previous ones, in addition to
conditioning on the latent variable:

p(x|z) =
∏

i

p(xi|x1, . . . , xi−1, z) (9)

In an image, generation thus needs to proceed pixel by
pixel and is commonly referred to as PixelVAE [11]. This
conditioning is generally achieved by providing the input
to the decoder during training, i.e. including a skip path
that bypasses the probabilistic encoding. A concurrent
introduction of autoregressive VAEs has thus coined this
model ”lossy” [12]. This is because local information can
now be modelled without access to the latent variable and
only the global information will be encoded in z.

We repeat our previously shown continual learning
experiments with three additional appended autoregressive
decoder layers, each with a kernel size of 7 × 7 and 60
channels, following the experimental set-up of the original
PixelVAE. We also follow the authors’ recommendation to
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train the decoder using a 256-way Softmax and treating
the reconstruction as classification in practice. Results cor-
responding to tables 1 and 3 for these pixel models are
shown in table 4. While we can observe that the introduction
of the autoregressive decoder generally further alleviates
catastrophic forgetting, it does significantly more so for our
proposed approach.

5.2 Introspection and Adversarial Training
Although the earlier shown accuracies of generative replay
with autoregression are assuring, autoregressive sampling
comes with a major caveat. When attempting to operate on
larger data, the computational complexity of the pixel by
pixel data creation procedure grows in direct proportion
to the input dimensionality. With increasing input size, the
repeated calculation of the autoregressive decoder layers can
thus rapidly render the generation required for optimization
of equation 3 practically infeasible. A promising alternative
perspective towards autoencoding beyond pixel similarities
is to leverage the insights obtained from GANs. To this
matter, Larsen et al. [66] have proposed a hybrid model
called VAEGAN. Here, the crucial idea is to append a GAN
style adversarial discriminator to the variational autoencoder.
This yields a model that promises to overcome a conventional
GAN’s mode collapse issues, as the VAE is responsible for the
rich encoding, while letting the added discriminator judge
the decoder’s output based on perceptual criteria rather
than individual pixel values. The more recent IntroVAE [13]
and adversarial encoder generator networks [14] have subse-
quently come to the realization that this doesn’t necessarily
require the auxiliary real-fake discriminator, as the VAE itself
already provides strong means for discrimination, namely its
probabilistic encoder. We leverage this idea of introspection
for our framework, as it doesn’t require any architectural
or structural changes beyond an additional term in the loss
function.

For sake of brevity we denote the probabilistic encoder
through their parameters φ and decoder θ in the following
equations. Training our model with introspection is then
equivalent to adding the following two terms to our previ-
ously formulated loss function:

LIntroCDV AE Enc =

LCDV AE − β [m−KL(θ(φ(z)) || p(z))]
+ (10)

and

LIntroCDV AE Dec = LRec − βKL(θ(φ(z)) || p(z)) (11)

Here, LCDV AE corresponds to the full loss of equa-
tion 1 and LRec corresponds to the reconstruction loss
portion: Eqθ(z|x(n))[log pφ(x(n)|z)]. In above equations, we
have followed the original authors proposal to include a
positive margin m, with [·] denoting max(0, ·). This hinge
loss formulation serves the purpose of empirically limiting
the encoder’s reward to avoid a too massive gap in a
min-max game of above competing KL terms. Aside from
the regular loss that encourages the encoder to match the
approximate posterior to the prior for real data, the encoder
is now further driven to maximize the deviation from the
posterior to the prior for generated images. Conversely, the
decoder is encouraged to ”fool” the encoder into producing

a posterior distribution that matches the prior for these
generated images. The optimization is conducted jointly. In
comparison with a traditional VAE, this can thus be seen as
training in an adversarial like manner, without necessitating
additional discriminative models. As such, introspection
fits naturally into our proposed framework and no further
changes are required.

Before we proceed with demonstrating the empirical
value, we note that the original authors of IntroVAE have
introduced additional weighting terms in front of the recon-
struction loss, in order to drastically lower its magnitude,
and the added KL divergence. We have observed that the
former is simply due to lack of normalization with respect
to input width and height and hence the reconstruction loss
growing proportionally with the spatial input size, whereas
the KL divergence typically does not reflect this behavior
for a fixed-size latent space. Given that we have included
this normalization in our practical experimentation, we have
found this additional hyper-parameter to be unnecessary.
The other hyper-parameter to weight the added adversarial
KL divergence term is essentially equivalent to the already
introduced beta, alas without our motivation in earlier
sections, but simply as a heuristic to not overpower the
reconstruction loss.

5.3 Incrementally Learning High Resolution Flowers

In this section, we empirically demonstrate the efficacy of
generative modelling advances for high resolution natural
data and respective improvements by using our proposed
open set aware approach. For this purpose, we continual
learn five types of flowers, in analogy to the experiment
conducted in the recent Lifelong GAN [63]. Whereas the
latter makes use of lower resolutions, we let the resolution
remain at 256× 256 pixels to demonstrate application of our
approach to high-resolution. Apart from the high resolution,
this scenario is interesting for two further reasons: the dataset
contains less than 100 images per class and the classes are in-
troduced one by one in continual training. This introduction
of a single class makes a multi-head approach unrealisable,
and thus a large portion of previously proposed approaches
based on task labels and regularization, infeasible. The small-
sample scenario also underlines that deep generative models
can be trained without massive amounts of data. Due to
the larger resolution we employ a deeper variant of our
previously used 14-layer WRN architecture. In addition to
the three convolution blocks that comprise a total of 12
layers, three further blocks are added, resulting in a 26 layer
architecture that down-samples the input by an extra factor
of eight across the added stages. This way, the encoded
spatial dimensionality that precedes the 60 dimensional
latent space is the same for WRN-14 experiments on 32× 32
resolution and this section’s experiments based on a WRN-26
and 256× 256 resolution. We use a batch size of 32 and let
all other hyper-parameters remain the same as described
for previous experiments. The only exception is the amount
of epochs, which we increase to 2000 per task in order to
reach a significant amount of update iterations as a result
of the small dataset size. In analogy to previous sections
we report results as the average over multiple runs, with
the exception of the autoregressive models. As the latter
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had to be trained on multiple NVIDIA V100 GPUs over the
course of three weeks for a single experiment, we report
a single run. We did not repeat this experiment as below
results are believed to sufficiently demonstrate limitations
and are notably surpassed by the computationally favorable
introspection model.

5.3.1 Denoising and the choice of perturbation
In the previous continual learning experiments, the intro-
duced denoising acted as one way to avoid over-fitting, akin
to the use of data augmentation. However, the choice of noise
distribution can have an additional, very different purpose.
Recall that in a wider sense, ”denoising” refers to the
concept of introducing an arbitrarily sampled perturbation
that is added to the input, but needs to be discounted
in reconstruction with respect to the original unperturbed
data instance. This perturbation doesn’t necessarily need
to take on the earlier introduced pixel-wise noise from
a Gaussian or Uniform distribution to alter each pixel
independently. If our primarily interest lies in maintaining
the discriminative performance of our model and less so
on the visual quality of the generated data, we can take
advantage of the perturbation distribution as means to
encode our prior knowledge of common generative pitfalls.
For example, in our specific context, it is well known that a
traditional VAE without further advances commonly fails to
generate non-blurry, crisp images. However, we can include
and work around this belief by letting the denoising assume
the form of deblurring, e.g. by stochastically adding a variety
of Gaussian blurs to subsets of inputs. Even though the
decoder is ultimately still encouraged to remove this blur
and reconstruct the original clean image, the encoder is now
inherently required to learn how to manage blurry input. It is
encouraged to build up a natural invariance to our choice of
perturbation. In the context of maintaining a classifier with
generative replay, to an extend it should then no longer be a
strict requirement to replay locally detailed crisp images, as
long as the information required for discrimination is present.

5.3.2 Results and discussion
Figure 7 shows the quantitative accuracy of the evaluated
methods and the continual learning upper and lower-bound.
As usual, the lower-bound corresponds to predicting just
the present class correctly and full catastrophic forgetting
occurring for all previously seen concepts. The upper-bound
shows an expected gradual decay with increased amount of
classes. For all introduced model variants, we can observe
significant improvement over baseline versions (dashed lines)
with the introduction of our open set method (solid lines). As
expected, the plain OCDVAE model is further substantially
outperformed by the introspective model. The latter closely
mirrors the upper-bound performance and starts to deviate
only after multiple repetitions of generative replay. Although
the open set aware generation also generally enhances the
autoregressive baseline, the autoregressive PixOCDVAE,
perhaps to the readers surprise, fares comparably much
worse than the OCDVAE or IntroOCDVAE counterparts. We
can observe the empirical rationale for this in a qualitative
illustration of select generated samples for each continual
learning step, provided in figure 8. For the PixOCDVAE
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Fig. 7: Continual learning accuracies for flowers at 256× 256
resolution to demonstrate how generative modelling ad-
vances enable scaling of our framework. Pairs of colored lines
show respective improvements of our proposed aggregate
posterior constrained generative replay (solid lines) over the
open set unaware baselines (dashed lines). Whereas every
model surpasses the lower-bound and thus to an extent
alleviates catastrophic forgetting, our proposed framework
in conjunction with introspection clearly beats the other
contestants and approaches the upper-bound achievable
accuracy. An accompanying qualitative illustration of gener-
ated images is provided in figure 8.

we can see that the initial task’s generative replay is locally
consistent, which is reflected in the quantitative accuracy
values for the first tasks being almost indistinguishable from
the other models. However, starting from the second cycle
of generative replay, the conditioning of equation 9 seems
to lose long-term correlations and an increasing amount of
the image is filled with noise with each further step. In a
visual comparison between IntroVAE and IntroOCDVAE, we
again observe that ambiguous interpolations rapidly take
over without constraining generative replay to aggregate
posterior inliers, recall figure 4.

For OCDVAE, we observe that all images are blurry
from the start. Even though the classes are distinguishable,
this blur is amplified over time. The respectively very high
accuracy of fig 7 can be attributed to the deblurring objective,
where the encoder’s hypothesized blur invariance largely
compensates the model’s inability to generate detailed exam-
ples. As a result, the accuracy gap between OCDVAE and
IntroOCDVAE is rather small, despite what we as humans
would perhaps initially expect from the visually less pleasing
images. Correspondingly, when the deblurring is removed,
we observe major drops in the final OCDVAE accuracy of
up to 15%, with negligible degradation of reported values
for the highly detailed introspection images. As a final
remark, we note that Lifelong GAN [63] and MeRGAN [62]
have conducted similar experiments on the flower dataset.
We did not explicitly include results for the latter for two
reasons. First, at this stage, it should be clear that an ”either
or” comparison is deceptive, as VAEs and GANs can go
hand in hand to benefit each other. Second, these works
have conducted experiments at a lower resolution and we
were simply unable to reach accuracies at higher resolution
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Fig. 8: Generated 256× 256 flower images for various continually trained models. Images have been selected to provide
a qualitative intuition behind the quantiative results of figure 7. The unmodified OCDVAE appears to suffer from the
limitations of a traditional VAE and generates blurry images, although performs remarkably well in terms of quantitative
classification. Its open set unaware counterpart CDVAE deteriorates similarly to earlier experiments due to the generation
of ambiguous samples from low density areas outside the aggregate posterior. PixOCDVAE is initially competitive but
rapidly loses long-range correlations of the autoregressive conditioning, resulting in increasingly noisy images. Introspection
significantly increases the image detail, albeit still degrades considerable due to ambiguous interpolations. This is again
resolved by combining introspection with our proposed posterior based EVT approach, where image quality is retained
across multiple generative replay steps. Images have been compressed for a side-by-side view.
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that would do the method justice, without resorting to
substantial hyperparameter and architecture tuning. We
have thus decided in favor of showing higher resolution
experiments in contrast to a comparison on more heavily
down-sampled images. Depending on the precise setup,
MeRGAN and Lifelong GAN have been reported to result
in final accuracies between 60% and 85% respectively [63],
values that are generally similar to the ones reported in 7.
However, note that the former achieves this accuracy by
keeping a complete model copy at all times, whereas the
latter makes use of auxiliary data and augmentation. This
is in addition to both of these works requiring a separately
trained deep discriminative model to solve the classification
task. Neither of them considers the challenge of open set
recognition, where the uniqueness of our work lies, and
treats the problem in a closed world. With this in mind,
we encourage future replay based continual learning to
further explore generative modelling advances and their
hybrid combinations, while keeping in mind that continual
learning goes beyond subjective visual generation quality
and measuring catastrophic forgetting.

6 CONCLUSION

We have proposed a probabilistic approach to unify the
prevention of catastrophic forgetting with open set recog-
nition based on variational inference in continual learning.
Using a single model that combines a shared probabilistic
encoder with a generative model and an expanding linear
classifier, we have introduced EVT based bounds to the
approximate posterior. The derived open set recognition
and corresponding generative replay with statistical outlier
rejection have been shown to achieve compelling results
in both task incremental as well as cross-dataset continual
learning across image and audio modalities, while being able
to distinguish seen from unseen data. Our approach readily
benefits from recent generative modelling techniques, which
has been empirically demonstrated in the context of high
resolution flower images. We expect future work to explore
more natural synergies with further generative modelling
advances and investigate a range of practical applications.
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APPENDIX

The supplementary material provides further details for
the material presented in the main body. Specifically, the
structure is as follows:

A. Derivation of our model and loss in equation 1 of the
main body.

B. Extended discussion, qualitative and quantitative
examples for the role of β.

C. Full specification of training procedure and hyper-
parameters, including exact architecture definitions.

D. Additional visualization of open set detection for all
quantitatively evaluated models considered in table 2
of the main body.

E. Continual learning results with a multi-layer percep-
tron (MLP).

F. Full continual learning results for all task increments
of the MNIST, FashionMNIST and AudioMNIST main
body experiments, including all reconstruction losses
and KL divergences.

G. Visualization of generative replay examples for
MNIST, FashionMNIST and AudioMNIST.

A. LOSS DERIVATION

As mentioned in the main body of the paper, in supervised
continual learning we are confronted with a dataset D ≡{(
x(n), y(n)

)}N

n=1
, consisting of N pairs of data instances

x(n) and their corresponding labels y(n) ∈ {1 . . . C} for C
classes. We consider a problem scenario similar to the one
introduced in ”Auto-Encoding Variational Bayes” [1], i.e. we
assume that there exists a data generation process responsible
for the creation of the labelled data given some random latent
variable z. For simplicity, we follow the authors’ derivation
for our model with the additional inclusion of data labels,
but without the β term that is present in the main body.

Ideally we would like to maximize p(x, y) =∫
p(z)p(x, y|z)dz, where the integral and the true posterior

density

p(z|x, y) =
p(x, y|z)p(z)

p(x, y)
(1)

are intractable. We thus follow the standard practice of
using variational Bayesian inference and introducing an

approximation to the posterior q(z), for which we will
specify the exact form later. Making use of the properties
of logarithms and applying above Bayes rule, we can now
write:

log p(x, y) =

∫
q(z)[log p(x, y|z) + log p(z)

− log p(z|x, y) + log q(z)− log q(z)]dz,
(2)

as the left-hand side is independent of z and
∫
q(z)dz = 1.

Using the definition of the Kullback-Leibler divergence (KLD)
KL(q || p) = −

∫
q(x) log(p(x)/q(x)) we can rewrite this as:

log p(x, y)−KL(q(z) || p(z|x, y)) =

Eq(z) [log p(x, y|z)]−KL(q(z) || p(z))
(3)

Here, the right hand side forms a variational lower-bound
to the joint distribution p(x, y) as the KLD between approx-
imate and true posterior on the left hand side is strictly
positive.

At this point we make two choices that deviate from
prior works that made use of labelled data in the context
of generative models for semi-supervised learning [2]. We
assume a factorization of the generative process of the form
p(x,y, z) = p(x|z)p(y|z)p(z) and introduce a dependency
of q(z) on x, but not explicitly on y, i.e. q(z|x). In contrast
to class-conditional generation, this dependency essentially
assumes that all information about the label can be captured
by the latent z and there is thus no additional benefit in
explicitly providing the label when estimating the data
likelihood p(x|z). This is crucial as our probabilistic encoder
should be able to predict labels without requiring it as input
to our model, i.e. q(z|x) instead of the intuitive choice of
q(z|x, y). However, we would like the label to nevertheless
be directly inferable from the latent z. In order for the latter
to be achievable, we require the corresponding classifier that
learns to predict p(y|z) to be linear in nature. This guarantees
linear separability of the classes in latent space, which can in
turn then be used to for open set recognition and generation
of specific classes as shown in the main body.

B. FURTHER DISCUSSION ON THE ROLE OF β

In the main body the role of the β term [3] in our model’s loss
function is pointed out. Here, we delve into further detail
with qualitative and quantitative examples to support the
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(a) β 1.0 (b) β 0.5 (c) β 0.1 (d) β 0.05

Fig. 1: 2-D MNIST latent space visualization with different β values for the used WRN architecture.

arguments. To facilitate the discussion, we repeat equation 1
of the main body:

L
(
x(n),y(n);θ,φ, ξ

)
= −βKL(qθ(z|x(n)) || p(z))

+ Eqθ(z|x(n))

[
log pφ(x(n)|z) + log pξ(y

(n)|z)
] (4)

The β term weights the strength of the regularization by the
prior through the KL divergence. Selection of this strength is
necessary to control the information bottleneck of the latent
space and regulate the effective latent encoding overlap.
To repeat the main body, and previous arguments by [4]
and [5]: too large β values (typically >> 1) will result in a
collapse of any structure present in the aggregate posterior.
Too small β values (typically << 1) lead to the latent space
being a lookup table. In either case, there is no meaningful
information between the latents. This is particularly relevant
to our objective of linear class separability, that requires for-
mation of an aggregate latent encoding that is disentangled
with respect to the different classes. To visualize this, we
have trained multiple models with different β values on the
MNIST dataset, in an isolated fashion with all data present
at all times to focus on the effect of β. The corresponding
aggregate encodings at the end of training are shown in
figure 1. Here, we can empirically observe above points. With
a beta of one and larger, the aggregate posterior’s structure
starts to collapse and the aggregate encoding converges to a
Normal distribution. While this minimizes the distributional
mismatch with respect to the prior, the separability of classes
is also lost and an accurate classification cannot be achieved.
On the other hand, if the beta value gets ever smaller
there is insufficient regularization present and the aggregate
posterior no longer follows a Normal distribution. The latter
does not only render sampling for generative replay difficult,
it also challenges the assumption of distances to each class’
latent mean being Weibull distributed, as the latter can
essentially be seen as a skewed Normal.

As pointed out in the main body, it is important to note
that the losses are normalized with respect to spatial image
and latent dimensionality. The value of β should thus also
be seen as a normalized quantity. While the relative effect
of increasing or decreasing beta stays the same, the absolute
value of β can be subject to any normalization.

We provide corresponding quantitative examples for the
models trained with different β with 2-D latent spaces and
60-D latent spaces in tables 1 and 2 respectively. In both cases,

TABLE 1: Losses obtained for different β values for MNIST
using the WRN architecture with 2-D latent space. Training
conducted in isolated fashion to quantitatively showcase
the role of β. Un-normalized values in nats are reported in
brackets for reference purposes.

In nats per dimension (nats in brackets)

2-D latent Beta KLD Recon loss Class Loss Accuracy [%]

train 1.0 1.039 (2.078) 0.237 (185.8) 0.539 (5.39) 79.87
test 1.030 (2.060) 0.235 (184.3) 0.596 (5.96) 78.30

train 0.5 1.406 (2.812) 0.230 (180.4) 0.221 (2.21) 93.88
test 1.382 (2.764) 0.228 (178.8) 0.305 (3.05) 92.07

train 0.1 2.055 (4.110) 0.214 (167.8) 0.042 (0.42) 99.68
test 2.071 (4.142) 0.212 (166.3) 0.116 (1.16) 98.73

train 0.05 2.395 (4.790) 0.208 (163.1) 0.025 (0.25) 99.83
test 2.382 (4.764) 0.206 (161.6) 0.159 (1.59) 98.79

TABLE 2: Losses obtained for different β values for MNIST
using the WRN architecture with 60-D latent space. Training
conducted in isolated fashion to quantitatively showcase
the role of β. Un-normalized values in nats are reported in
brackets for reference purposes.

In nats per dimension (nats in brackets)

60-D latent Beta KLD Recon loss Class Loss Accuracy [%]

train 1.0 0.108 (6.480) 0.184 (144.3) 0.0110 (0.110) 99.71
test 0.110 (6.600) 0.181 (142.0) 0.0457 (0.457) 99.03

train 0.5 0.151 (9.060) 0.162 (127.1) 0.0052 (0.052) 99.87
test 0.156 (9.360) 0.159 (124.7) 0.0451 (0.451) 99.14

train 0.1 0.346 (20.76) 0.124 (97.22) 0.0022 (0.022) 99.95
test 0.342 (20.52) 0.126 (98.79) 0.0286 (0.286) 99.38

train 0.05 0.476 (28.56) 0.115 (90.16) 0.0018 (0.018) 99.95
test 0.471 (28.26) 0.118 (92.53) 0.0311 (0.311) 99.34

we observe that decreasing the value of beta below one is
necessary to improve classification accuracy, as well as the
overall variational lower bound. Taking the 60 dimensional
case as a specific example, we can also observe that reducing
the beta value too far and decreasing it from e.g. 0.1 to
0.05 leads to deterioration of the variational lower bound,
from 119.596 to 121.101 natural units, while the classification
accuracy by itself does not improve further.

C. TRAINING HYPER-PARAMETERS AND ARCHITEC-
TURE DEFINITIONS

We provide a full specification of hyper-parameters, model ar-
chitectures and the training procedure used in the main body.
We base our encoder and decoder architecture on 14-layer
wide residual networks [6], [7] with a latent dimensionality
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of 60 to demonstrate scalability to high-dimensions and as
used in lossy auto-encoders [8], [9]. These architectures are
shown in detail in tables 3 and 4. Hidden layers include
batch-normalization [10] with a value of 10−5 and use ReLU
activations. For a common frame of reference, all methods’
share the same underlying WRN architecture, including the
separate classifiers and generative models of the dual model
approaches. Experiments with a simpler MLP architecture
can be found in section E of the supplementary material.
For the higher resolution 256 × 256 flower images, we
have used a deeper 26 layer WRN version, in analogy to
previous works [8], [9]. Here, the last encoder, and first
decoder blocks are repeated an extra three times, resulting
in an additional three stages of down- and up-sampling
by factor two. The encoder’s spatial output dimensionality
is thus equivalent to the 14-layer architecture applied to
the eight times lower resolution images of the simpler
datasets. For the autoregressive addition to our joint model,
we set the number of output channels of the decoder to
60 and append three additional pixel decoder layers, each
with a kernel size of 7 × 7 and 60 channels. Whereas we
report reconstruction log-likelihoods in nats, these models
are practically formulated as a classification problem with
a 256-way softmax. The corresponding loss is in bits per
dimension. We have converted these values to have a better
comparison, but in order to do so we need to sample from
the pixel decoder’s multinomial distribution to calculate a
binary cross-entropy on reconstructed images. We further
note that all losses are normalized with respect to spatial and
latent dimensions, as mentioned in the main body.

We use hyper-parameters consistent with the literature [8],
[9]. Accordingly, all models are optimized using stochastic
gradient descent with a mini-batch size of 128 and Adam
[11] with a learning rate of 0.001 and first and second
momenta equal to 0.9 and 0.999. For MNIST, FashionMNIST
and AudioMNIST no data augmentation or preprocessing is
applied. For the flower experiments, images are stochastically
flipped horizontally with a 50 % chance and the batch size is
reduced to 32. We initialize all weights according to [12].

All class incremental models are trained for 120 epochs
per task on MNIST and FashionMNIST and 150 epochs
on AudioMNIST. Complementary incremental cross-dataset
models are trained for 200 epochs per task on data resized
to 32 × 32. While our proposed model exhibits forward
transfer due to weight sharing and need not necessarily be
trained for the entire amount of epochs for each subsequent
task, this guarantees convergence and a fair comparison of
results with respect to achievable accuracy of other methods.
Isolated models are trained for 200 and 300 epochs until
convergence respectively. Due to the much smaller dataset
size, architectures are trained for 2000 epochs on the flower
images, in order to obtain a similar amount of update steps.
For the generative replay with statistical outlier rejection, we
use an aggressive rejection rate of Ωt = 0.01 (with analogous
results with 0.05) and dynamically set tail-sizes to 5% of seen
examples per class. As mentioned in the main body, the used
open set distance measure is the cosine distance.

For EWC, the number of Fisher samples is fixed to the
total number of data points from all the previously seen tasks.
A suitable Fisher multiplier value λ has been determined by
conducting a grid search over a set of five values: 50, 100,

TABLE 3: 14-layer WRN encoder with a widen factor of 10.
Convolutional layers (conv) are parametrized by a quadratic
filter size followed by the amount of filters. p and s represent
zero padding and stride respectively. If no padding or stride
is specified then p = 0 and s = 1. Skip connections are an
additional operation at a layer, with the layer to be skipped
specified in brackets. Every convolutional layer is followed
by batch-normalization and a ReLU activation function. The
probabilistic encoder ends on fully-connected layers for µ
and σ that depend on the chosen latent space dimensionality
and the data’s spatial size.

Layer type WRN encoder
Layer 1 conv 3× 3 - 48, p = 1

Block 1

conv 3× 3 - 160, p = 1; conv 1× 1 - 160 (skip next layer)
conv 3× 3 - 160, p = 1
conv 3× 3 - 160, p = 1; shortcut (skip next layer)
conv 3× 3 - 160, p = 1

Block 2

conv 3× 3 - 320, s = 2, p = 1; conv 1× 1 - 320, s = 2 (skip next layer)
conv 3× 3 - 320, p = 1
conv 3× 3 - 320, p = 1; shortcut (skip next layer)
conv 3× 3 - 320, p = 1

Block 3

conv 3× 3 - 640, s = 2, p = 1; conv 1× 1 - 640, s = 2 (skip next layer)
conv 3× 3 - 640, p = 1
conv 3× 3 - 640, p = 1; shortcut (skip next layer)
conv 3× 3 - 640, p = 1

TABLE 4: 14-layer WRN decoder with a widen factor
of 10. Pw and Ph refer to the input’s spatial dimension.
Convolutional (conv) and transposed convolutional (conv t)
layers are parametrized by a quadratic filter size followed
by the amount of filters. p and s represent zero padding
and stride respectively. If no padding or stride is specified
then p = 0 and s = 1. Skip connections are an additional
operation at a layer, with the layer to be skipped specified in
brackets. Every convolutional and fully-connected (FC) layer
are followed by batch-normalization and a ReLU activation
function. The model ends on a Sigmoid function.

Layer type WRN decoder
Layer 1 FC 640× bPw/4c × bPh/4c

Block 1

conv t 3× 3 - 320, p = 1; conv t 1× 1 - 320 (skip next layer)
conv 3× 3 - 320, p = 1
conv 3× 3 - 320, p = 1; shortcut (skip next layer)
conv 3× 3 - 320, p = 1
upsample × 2

Block 2

conv t 3× 3 - 160, p = 1; conv t 1× 1 - 160 (skip next layer)
conv 3× 3 - 160, p = 1
conv 3× 3 - 160, p = 1; shortcut (skip next layer)
conv 3× 3 - 160, p = 1
upsample × 2

Block 3

conv t 3× 3 - 48, p = 1; conv t 1× 1 - 48 (skip next layer)
conv 3× 3 - 48, p = 1
conv 3× 3 - 48, p = 1; shortcut (skip next layer)
conv 3× 3 - 48, p = 1

Layer 2 conv 3× 3 - 3, p = 1

500, 1000 and 5000 on held-out validation data for the first
two tasks in sequence. We observe exploding gradients if λ is
too high. However, a very small λ leads to excessive drift in
the weight distribution across subsequent tasks that further
results in catastrophic interference. Empirically, λ = 500 in
the class-incremental scenario and λ = 1000 in the cross-
dataset setting seem to provide the best balance.
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D. ADDITIONAL OPEN SET RECOGNITION VISUAL-
IZATION

As we point out in section 4 of the main paper, our
posterior based open set recognition considers almost all
of the unknown datasets as statistical outliers, while at the
same time regarding unseen test data from the originally
trained tasks as distribution inliers across a wide range of
rejection priors. In addition to the outlier rejection curves
for FashionMNIST and the quantitative results presented
in the main body, we also show the full outlier rejection
curves for the remaining datasets, as well as all dual model
approaches in figures 2, 3 and 4. These figures visually
support the quantitative findings described in the main
body and respective conclusions. In summary, the joint
OCDVAE performs better at open set recognition in direct
comparison to the dual model setting, particularly when
using the EVT based criterion. Apart from the MNIST dataset,
where reconstruction loss can be a sufficient metric for open
set detection, the latent based approach also exhibits less
dependency on the outlier rejection prior and consistently
improves the ability to discern unknown data.

Monte Carlo Dropout
In this subsection we provide additional quantitative re-
sults for open set recognition with Monte-Carlo Dropout
(MCD) in order to assess the effectiveness of approximating
a distribution on the weights to estimate uncertainty, in
addition to the experiments of the main body where the latent
variable is marginalised. We have therefore re-trained all of
the models reported in table ?? with a Dropout probability
of 0.2 in each layer. We then conduct 50 stochastic forward
passes through the entire model for prediction. The obtained
open set recognition results are reported in 5. Although
MCD boosts the outlier detection accuracy, particularly
for criteria such as predictive entropy, the insights of the
main body still hold. In summary, the joint model generally
outperforms a purely discriminative model in terms of open
set recognition, independently of the used metric, and our
proposed aggregate posterior based EVT approach of the
OCDVAE yields an almost perfect separation of known and
unseen unknown data. Interestingly, this has already been
achieved in the experiments of the main body. Resorting
to the repeated model calculation of MCD thus seems to
come without enough of an advantage to warrant the added
computational complexity in the context of posterior based
open set recognition.
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Fig. 2: Dual model and OCDVAE trained on FashionMNIST
evaluated on unseen datasets. Pairs of panels show the
contrast between the approaches. Left panels correspond to
the dual model, right panels show the joint OCDVAE model.
(a+b) The classifier entropy values by itself are insufficient to
separate most of unknown from the known task’s test data.
(c+d) Reconstruction loss allows for a partial distinction.
(e+f) Our posterior-based open set recognition considers the
large majority of unknown data as statistical outliers across
a wide range of rejection priors Ωt, significantly more so in
the OCDVAE model. All metrics are reported as the mean
over 100 approximate posterior samples per data point.
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Fig. 3: Dual model and OCDVAE trained on AudioMNIST
evaluated on unseen datasets. Pairs of panels show the
contrast between the approaches. Left panels correspond to
the dual model, right panels show the joint OCDVAE model.
(a+b) The classifier entropy values by itself are insufficient to
separate most of unknown from the known task’s test data.
(c+d) Reconstruction loss allows for a partial distinction.
(e+f) Our posterior-based open set recognition considers the
large majority of unknown data as statistical outliers across
a wide range of rejection priors Ωt, significantly more so in
the OCDVAE model. All metrics are reported as the mean
over 100 approximate posterior samples per data point.
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Fig. 4: Dual model and OCDVAE trained on MNIST evalu-
ated on unseen datasets. Pairs of panels show the contrast
between the approaches. Left panels correspond to the dual
model, right panels show the joint OCDVAE model. (a+b)
The classifier entropy values by itself can achieve a partial
separation between unknown and the known task’s test data.
(c+d) Reconstruction loss allows for distinction if the cut-
off is chosen correctly. (e+f) Our posterior-based open set
recognition considers the large majority of unknown data as
statistical outliers across a wide range of rejection priors Ωt.
All metrics are reported as the mean over 100 approximate
posterior samples per data point. While the OCDVAE shows
improvement upon the dual model approach, particularly
if using classifier entropies for OSR, both models trained
on MNIST perform well in OSR. In direct contrast with
models trained on Fashion- or AudioMNIST and respective
figures 2 and 3, this shows that evaluation on MNIST alone
is generally insufficient.
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TABLE 5: Test accuracies and outlier detection values of the joint OCDVAE and dual model (VAE and separate deep
classifier) approaches when considering 95 % of known tasks’ validation data is inlying. Percentage of detected outliers is
reported based on classifier predictive entropy, reconstruction loss and our posterior based EVT approach, averaged over 50
Monte Carlo dropout samples, with pdropout = 0.2 for each layer, per data-point respectively. Note that larger values are
better, except for the test data of the trained dataset, where ideally 0% should be considered as outlying.

Outlier detection at 95% validation inliers (%) MNIST Fashion Audio KMNIST CIFAR10 CIFAR100 SVHN
Trained Model Test acc. Criterion

Fa
sh

io
nM

N
IS

T Dual, 90.58 Class entropy 75.50 5.366 70.78 74.41 49.42 49.17 38.84
CL + Reconstruction 55.45 5.048 59.99 99.83 99.35 99.35 99.62
VAE Latent EVT 77.03 4.920 55.48 70.23 58.73 57.06 44.54

Joint, 91.50 Class Entropy 85.05 4.740 67.90 78.04 63.89 66.11 59.42
OCDVAE Reconstruction 1.227 5.422 85.85 39.76 99.94 99.72 99.99

Latent EVT 95.83 4.516 94.56 96.04 96.81 96.66 96.28

M
N

IS
T

Dual, 99.41 Class entropy 4.276 91.88 96.50 96.65 95.84 97.37 98.58
CL + Reconstruction 4.829 99.99 100.0 99.90 100.0 100.0 100.0
VAE Latent EVT 4.088 87.84 98.06 95.79 97.34 98.30 95.74

Joint, 99.54 Class entropy 4.801 97.63 99.38 98.01 99.16 99.39 98.90
OCDVAE Reconstruction 5.264 99.98 100.0 100.0 100.0 100.0 100.0

Latent EVT 4.978 99.99 100.0 99.94 99.96 99.95 99.68

A
ud

io
M

N
IS

T Dual, 98.76 Class entropy 99.97 61.26 4.996 96.77 63.78 65.76 59.38
CL + Reconstruction 7.334 52.37 5.100 98.19 99.97 99.90 99.96
VAE Latent EVT 92.74 67.18 5.073 90.41 90.56 90.97 89.58

Joint, 98.85 Class entropy 99.39 89.50 5.333 99.16 94.66 95.12 97.13
OCDVAE Reconstruction 15.81 53.83 4.837 41.89 99.90 99.82 99.95

Latent EVT 99.50 99.27 5.136 99.75 99.71 99.59 99.91

TABLE 6: Results for continual learning across datasets averaged over 5 runs, baselines and the reference isolated learning
scenario for FashionMNIST (F) → MNIST (M) → AudioMNIST (A) and the reverse order. αT indicates the respective
accuracy at the end of the last increment T = 3.

Cross-dataset αT (%) (T=3)

base new all
MLP WRN MLP WRN MLP WRN

F-
M

-A

CDVAE ISO 93.86 94.95
CDVAE UB 89.75 89.10 97.28 97.88 93.94 95.00
CDVAE LB 00.00 00.00 97.38 98.12 22.51 22.70
EWC 42.10 ± 1.880 22.85 ± 0.294 31.33 ± 2.037 93.31 ± 0.138 46.04 ± 1.195 43.42 ± 0.063

Dual Model 81.12 ± 0.341 81.89 ± 0.104 97.15 ± 0.320 96.78 ± 0.067 91.03 ± 0.096 91.75 ± 0.064

CDVAE 74.23 ± 0.587 57.70 ± 4.480 97.04 ± 0.105 96.73 ± 0.235 85.55 ± 0.234 81.10 ± 1.769

OCDVAE 79.01 ± 0.591 80.11 ± 2.922 97.34 ± 0.152 97.63 ± 0.042 89.87 ± 0.262 91.13 ± 1.045

A
-M

-F

CDVAE ISO 93.67 94.95
CDVAE UB 96.97 97.17 89.34 89.16 93.75 94.91
CDVAE LB 00.00 00.00 89.81 89.72 34.55 34.51
EWC 7.178 ± 2.432 3.420 ± 0.026 73.83 ± 2.873 87.54 ± 0.214 46.37 ± 1.908 45.42 ± 0.731

Dual Model 51.70 ± 2.611 66.82 ± 0.337 89.53 ± 0.093 89.15 ± 0.050 83.95 ± 0.644 87.70 ± 0.102

CDVAE 65.38 ± 2.501 79.74 ± 2.431 89.30 ± 0.116 88.50 ± 0.126 86.19 ± 0.584 89.46 ± 0.600

OCDVAE 81.65 ± 1.414 94.53 ± 0.283 89.31 ± 0.109 89.53 ± 0.367 90.08 ± 0.471 94.06 ± 0.156
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TABLE 7: Results for class incremental continual learning approaches averaged over 5 runs, baselines and the reference
isolated learning scenario for the three datasets. αT indicates the respective accuracy at the end of the last increment T = 5.

Class-incremental αT (%) (T=5)

base new all
MLP WRN MLP WRN MLP WRN

Fa
sh

io
nM

N
IS

T CDVAE ISO 87.68 89.54
CDVAE UB 91.10 92.20 96.75 97.50 87.35 89.24
CDVAE LB 00.00 00.00 99.75 99.80 19.95 19.97
EWC 21.79 ± 2.610 00.17 ± 0.076 96.80 ± 0.873 99.60 ± 0.023 24.48 ± 2.862 20.06 ± 0.059

Dual Model 91.64 ± 1.233 94.26 ± 0.192 97.18 ± 0.171 93.55 ± 0.708 68.49 ± 2.110 63.21 ± 1.957

CDVAE 49.71 ± 1.363 39.51 ± 7.173 97.84 ± 0.375 96.92 ± 0.774 62.72 ± 1.379 58.82 ± 2.521

OCDVAE 56.67 ± 2.279 60.63 ± 12.16 97.89 ± 0.332 96.51 ± 0.707 66.14 ± 0.497 69.88 ± 1.712

M
N

IS
T

CDVAE ISO 98.87 99.45
CDVAE UB 99.57 99.57 98.04 99.10 98.84 99.29
CDVAE LB 00.00 00.00 99.75 99.85 19.92 20.16
EWC 24.08 ± 0.487 00.45 ± 0.059 96.70 ± 2.039 99.58 ± 0.052 26.46 ± 2.351 20.26 ± 0.027

Dual Model 92.63 ± 1.609 97.31 ± 0.489 98.48 ± 0.145 98.59 ± 0.106 89.74 ± 0.726 96.64 ± 0.079

CDVAE 34.48 ± 9.512 19.86 ± 7.396 98.84 ± 0.228 99.00 ± 0.100 60.88 ± 3.308 64.34 ± 4.903

OCDVAE 82.54 ± 2.26 92.35 ± 4.485 98.89 ± 0.151 99.06 ± 0.171 87.31 ± 1.224 93.24 ± 3.742

A
ud

io
M

N
IS

T CDVAE ISO 96.33 97.75
CDVAE UB 99.08 98.42 98.25 98.67 96.43 97.87
CDVAE LB 00.00 00.00 99.92 100.0 20.03 20.02
EWC 17.51 ± 3.380 00.11 ± 0.007 85.25 ± 4.209 99.41 ± 0.207 20.48 ± 1.727 19.98 ± 0.032

Dual Model 53.60 ± 0.586 61.58 ± 0.747 97.22 ± 0.559 89.41 ± 0.691 48.42 ± 2.808 47.42 ± 1.447

CDVAE 20.76 ± 5.521 59.36 ± 7.147 89.21 ± 0.402 84.93 ± 6.297 69.76 ± 1.369 81.49 ± 1.944

OCDVAE 56.68 ± 5.059 79.73 ± 4.070 89.35 ± 0.244 89.52 ± 6.586 81.84 ± 1.438 87.72 ± 1.594
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E. MLP BASED CONTINUAL LEARNING

For comparably simple datasets such as MNIST, it could be
argued that optimizing a deep WRN decoder for generative
replay is more expensive than simply storing the entire
original MNIST dataset for continued classifier training.
In the main body we have used this WRN architecture to
provide a common frame of reference across all experiments.
To nevertheless demonstrate that such a complex network
is not essential for continual learning of simple datasets, we
repeat all MNIST, FashionMNIST and AudioMNIST with a
shallow MLP architecture of limited representational capacity.
To allow for a direct comparison with the WRN based results,
we use the same latent dimensionality of 60 and similarly let
all the other hyper-parameters remain the same. However,
we replace the deep encoder and decoder with two fully-
connected hidden layers of 400 units [13]. The corresponding
quantitative results for cross-dataset and class incremental
learning are reported in tables 6 and 7 respectively. The
assuring main observation is that the MLP models fare only
marginally worse, with the biggest difference to the WRN
being perceivable on the audio dataset. However, the relative
ranking of individual methods remains the same in almost
all cases and the general insight and conclusions of the
main body prevail. The only exception is the use of EWC in
conjunction with the shallow MLP. With a lambda value of
500, we find EWC in an MLP to work significantly better than
in application to the deep counterpart, in particular in initial
task increments. Although the approach still faces difficulty
with a growing single-head classifier, see the discussion in
section 4 of the main body, and is still by far the worst in a
global comparison, it no longer directly mirrors the lower
bound accuracy. We hypothesize that this is due to a more
informative and accurate estimate of important parameters
in the presence of only two layers with significantly less
units.

F. DETAILED RESULTS FOR THE MNIST, FASHION-
MNIST AND AUDIOMNIST EXPERIMENTS

In the main body we have reported three metrics for
our continual learning experiments based on classification
accuracy: the base task’s accuracy over time αt,base, the
new task’s accuracy αt,new and the overall accuracy at
any point in time αt,all. This is an appropriate measure
to evaluate the quality of the generative model over time
given that the employed mechanism to avoid catastrophic
interference in continual learning is generative replay. On
the one hand, if catastrophic interference occurs in the
decoder the sampled data will no longer resemble the
instances of the observed data distribution. This will in turn
degrade the encoder during continued training and thus the
classification accuracy. On the other hand, this proxy measure
for the generation quality avoids the common pitfalls of
pixel-wise reconstruction metrics. The information necessary
to maintain respective knowledge of the data distribution
through the variational approximation in the probabilistic
encoder does not necessarily rely on correctly reconstructing
data’s local information. To take an example, if a model
were to reconstruct all images perfectly but with some
degree of spatial translation or rotation, then the negative
log likelihood (NLL) would arguable be worse than that of a

model which reconstructs local details correctly on a pixel
level for a fraction of the image. As this could be details in
e.g. the background or other class unspecific areas, training
on corresponding generations does not have to prevent loss
of encoder knowledge with respect to the classification task.

As such, a similar argument can be conjured for the KL
divergence. On the one hand, monitoring the KL divergence
as a regularization term by itself over the course of continual
learning is meaningless without regarding the data’s NLL.
On the other hand, for our OCDVAE model the exact value
of the KL divergence does not immediately reflect the quality
of the generated data. This is because we do not sample
merely from the prior, but as explained in the main body
employ a rejection mechanism to draw samples that belong
to the aggregate posterior.

Nevertheless, for the purpose of completeness and in
addition to the results provided in the experimental section
of the main body, we provide the reconstruction losses and
KL divergences for all applicable models in this supplemen-
tary material section. Analogous to the three metrics for
classification accuracy of base, new and all tasks, we define
the respective reconstruction losses γt,base, γt,new and γt,all.
The KL divergence KLt always measures the deviation from
the prior p(z) at any point in time, as the prior remains the
same throughout continual training. Following the above
discussion, we argue that these values should be regarded
with caution and should not be interpreted separately.

Full Cross Dataset Results

We show the full cross dataset results in table 8 in extension to
table 1 in the main body. An analogous table for the presented
autoregressive models can be found in table 9. Similar to the
accuracy values, we can observe that the mismatch between
aggregate posterior and prior as expressed through the KL
divergence is greater in a naive joint model (naive CDVAE)
in comparison to a dual model approach with separate
generative and discriminative models. Our proposed OCD-
VAE model, with respective rejection sampling scheme that
takes into account the structure of the aggregate posterior,
alleviates this to a large degree. The reconstruction losses
of both the dual model and the joint OCDVAE approach
show only negligible deviation with respect to the achievable
upper bound and only limited catastrophic interference of
the decoder occurs. However, we can also observe that
by itself these quantities are not indicative of maintaining
encoder knowledge with respect to representations required
for classification. This is particularly visible in the tables’
second experiment, where we first train Audio data and
then proceed with the two image datasets. Here, the KL
divergence and reconstruction loss are both better for the
dual model, whereas a much higher accuracy over time is
maintained in the OCDVAE model. Naturally, this is because
a significant mismatch between aggregate posterior and
prior is also present in a purely unsupervised generative
model and naively sampling from the prior will result in
generated instances that do not resemble those present
in the observed data distribution. While weaker in effect,
this is similar to the naive CDVAE approach. Without the
presence of the linear discriminator on the latents in the
purely unsupervised generative model, there is however no
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straightforward mechanism to disentangle the latent space
according to classes. Our proposed open set approach and the
resulting constraint to samples from the aggregate posterior
as presented in the OCDVAE is thus not trivially applicable.

Full Class Incremental Results

In addition to reconstruction losses and KL divergences,
we also report the detailed full set of intermediate results
for the five task steps of the class incremental scenario. We
thus extend table 3 in the main body with results for all
task increments t = 1, . . . , 5 and a complete list of losses
in tables 10, 11 and 12 for the three datasets respectively.
The corresponding results for autoregressive models are
presented in tables 13, 14 and 15.

Once more, we can observe the increased effect of error
accumulation due to unconstrained generative sampling
from the prior in comparison to the open set counterpart
that limits sampling to the aggregate posterior. The statistical
deviations across experiment repetitions in the base and the
overall classification accuracies are higher and are generally
decreased by the open set models. For example, in table
10 the MNIST base and overall accuracy deviations of a
naive CDVAE are higher than the respective values for
OCDVAE starting already from the second task increment.
Correspondingly, the accuracy values themselves experience
larger decline for CDVAE than for OCDVAE with progressive
increments. This difference is not as pronounced at the end
of the first task increment because the models haven’t been
trained on any of their own generated data yet. Successful
literature approaches such as the variational generative
replay proposed by [14] thus avoid repeated learning based
on previous generated examples and simply store and retain
a separate generative model for each task. The strength of
our model is that, instead of storing a trained model for each
task increment, we are able to continually keep training our
joint model with data generated for all previously seen tasks
by filtering out ambiguous samples from low density areas
of the posterior. Similar trends can also be observed for the
respective pixel models.

We also see that regularization approaches such as EWC
already fail at the first increment. In contrast to the success
that has been reported in prior literature [13], [15], this
is due to the use of a single classification head. This is
intuitive because introduction of new units, as described
in the main body, directly confuses the existing classification.
Regularization approaches by definition are challenged in
this scenario because the weights are not allowed to drift too
far away from previous values. For emphasis we repeat that
however this scenario is much more practical and realistic
than a multi-head scenario with a separate classifier per task.
While regularization approaches are largely successful in the
latter setting, it is not only restricted to the closed world,
but further requires an oracle at prediction stage to chose
the correct classification head. In contrast, our proposed
approach requires no knowledge of task labels for prediction
and is robust in an open world.

With respect to KL divergences and reconstruction losses
we can make two observations. First, the arguments of the
previous section hold and by itself the small relative improve-
ments between models should be interpreted with caution as

they do not directly translate to maintaining continual learn-
ing accuracy. Second, we can also observe that reconstruction
losses at every increment for all γt,all and respective negative
log likelihoods for only the new task γt,new are harder to
interpret than the accuracy counterpart. While the latter is
normalized between zero and unity, the reconstruction loss
of different tasks is expected to fluctuate largely according
to the task’s images’ reconstruction complexity. To give a
concrete example, it is rather straightforward to come to
the conclusion that a model suffers from limited capacity or
lack of complexity if a single newly arriving class cannot be
classified well. In the case of reconstruction it is common to
observe either a large decrease in negative log likelihood for
the newly arriving class, or a big increase depending on the
specific introduced class. As such, these values are naturally
comparable between models, but are challenging to interpret
across time steps without also analyzing the underlying
nature of the introduced class. The exception is formed
by the base task’s reconstruction loss γt,base. In analogy
to base classification accuracy, this quantity still measures
the amount of catastrophic forgetting across time. However,
in all tables we can observe that catastrophic forgetting of
the decoder as measured by the base reconstruction loss
is almost imperceivable. As this is not at all reflected in
the respective accuracy over time, it further underlines our
previous arguments that reconstruction loss is not necessarily
the best metric to monitor in the presented continual learning
scenario.

G. GENERATIVE REPLAY EXAMPLES WITH CDVAE
AND OCDVAE
In this section we provide visualization of data instances that
are produced during generative replay at the end of each
task increment. In particular, we qualitative illustrate the
effect of constraining sampling to the aggregate posterior in
contrast to naively sampling from the prior without statistical
outlier rejection for low density regions. Figures 5, 6 and
7 illustrate generated images for MNIST, FashionMNIST
and AudioMNIST respectively. For both a naive CDVAE as
well as the autoregressive PixCDVAE we observe significant
confusion with respect to classes. As the generative model
needs to learn how to replay old tasks’ data based on its
own former generations, ambiguity and blurry interpolations
accumulate and are rapidly amplified. This is not the case
for OCDVAE and PixOCDVAE, where the generative model
is capable of maintaining higher visual fidelity throughout
continual training and misclassification is scarce.
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TABLE 8: Results for incremental cross-dataset continual learning approaches averaged over 5 runs, baselines and the
reference isolated learning scenario for FashionMNIST (F) → MNIST (M) → AudioMNIST (A) and the reverse order.
Extension of table 1 in the main body. Here, in addition to the accuracy αT , γT and KLT also indicate the respective NLL
reconstruction metrics and corresponding KL divergences at the end of the last increment T = 3.

Cross-dataset αT (%) γT (nats) KLT (nats)

base new all base new all all

F-
M

-A

CDVAE ISO 94.95 269.6 24.97
CDVAE UB 89.10 97.88 95.00 311.2 434.3 269.7 25.20
CDVAE LB 00.00 98.12 22.70 689.7 341.0 511.7 98.74
EWC 22.85 ± 0.294 93.31 ± 0.138 43.42 ± 0.063

Dual Model 81.89 ± 0.104 96.78 ± 0.067 91.75 ± 0.064 320.0 ± 1.275 431.1 ± 1.474 273.7 ± 1.174 12.80 ± 0.060

CDVAE 57.70 ± 4.480 96.73 ± 0.235 81.10 ± 1.769 360.9 ± 20.15 432.1 ± 0.231 296.4 ± 7.966 44.29 ± 4.047

OCDVAE 80.11 ± 2.922 97.63 ± 0.042 91.13 ± 1.045 345.1 ± 7.446 430.7 ± 0.600 280.2 ± 1.069 25.42 ± 1.876

A
-M

-F

CDVAE ISO 94.95 269.6 24.97
CDVAE UB 97.17 89.16 94.91 428.8 311.9 268.2 23.91
CDVAE LB 00.00 89.72 34.51 506.6 311.0 351.1 34.13
EWC 3.420 ± 0.026 87.54 ± 0.214 45.42 ± 0.731

Dual Model 66.82 ± 0.337 89.15 ± 0.050 87.70 ± 0.102 447.3 ± 6.700 308.5 ± 0.599 270.9 ± 1.299 12.89 ± 0.109

CDVAE 79.74 ± 2.431 88.50 ± 0.126 89.46 ± 0.600 448.6 ± 5.187 315.1 ± 1.305 281.6 ± 3.205 33.38 ± 0.898

OCDVAE 94.53 ± 0.283 89.53 ± 0.367 94.06 ± 0.156 433.4 ± 0.424 311.6 ± 0.353 271.2 ± 0.424 23.16 ± 0.121

TABLE 9: Results for PixelVAE based cross-dataset continual learning approaches averaged over 5 runs in analogy to table 8.
Extension of table 4 in the main body. Here, in addition to the accuracy αT , γT and KLT also indicate the respective NLL
reconstruction metrics and corresponding KL divergences at the end of the last increment T = 3.

Cross-dataset αT (%) γT (nats) KLT (nats)

base new all base new all all

F-
M

-A Dual Pix Model 82.88 ± 0.116 97.23 ± 0.212 92.16 ± 0.061 288.5 ± 0.723 437.7 ± 0.404 251.6 ± 0.231 9.025 ± 1.378

PixCDVAE 56.44 ± 1.831 97.50 ± 0.184 80.76 ± 0.842 289.8 ± 1.283 438.1 ± 0.990 252.6 ± 1.424 29.99 ± 0.629

PixOCDVAE 81.84 ± 0.212 97.75 ± 0.169 91.76 ± 0.212 288.8 ± 0.141 437.1 ± 0.725 251.8 ± 0.636 21.07 ± 0.248

A
-M

-F Dual Pix Model 71.58 ± 2.536 88.76 ± 0.255 88.61 ± 0.547 445.8 ± 1.601 290.4 ± 0.603 255.0 ± 0.533 9.164 ± 1.312

PixCDVAE 49.38 ± 2.256 88.54 ± 0.042 82.18 ± 0.672 441.4 ± 0.495 287.0 ± 0.212 252.5 ± 0.201 30.60 ± 1.556

PixOCDVAE 91.90 ± 0.282 89.91 ± 0.177 93.82 ± 0.354 438.5 ± 1.626 289.4 ± 0.356 251.3 ± 0.354 20.35 ± 0.424
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TABLE 10: Results for class incremental continual learning approaches averaged over 5 runs, baselines and the reference
isolated learning scenario for MNIST at the end of every task increment. Extension of table 3 in the main body. Here, in
addition to the accuracy αt, γt and KLt also indicate the respective NLL reconstruction metrics and corresponding KL
divergences at the end of every task increment t.

MNIST t CDVAE ISO CDVAE UB CDVAE LB EWC Dual Model CDVAE OCDVAE

αbase,t

1 100.0 100.0 99.88 ± 0.010 99.98 ± 0.023 99.97 ± 0.029 99.98 ± 0.018

2 99.82 00.00 00.61 ± 0.057 99.77 ± 0.032 97.28 ± 3.184 99.30 ± 0.100

3 99.80 00.00 00.17 ± 0.045 99.51 ± 0.094 87.66 ± 8.765 96.69 ± 2.173

(%) 4 99.85 00.00 00.49 ± 0.017 98.90 ± 0.207 54.70 ± 22.84 94.71 ± 1.792

5 99.57 00.00 00.45 ± 0.059 97.31 ± 0.489 19.86 ± 7.396 92.53 ± 4.485

αnew,t

1 100.0 100.0 99.88 ± 0.010 99.98 ± 0.023 99.97 ± 0.029 99.98 ± 0.018

2 99.80 99.85 99.70 ± 0.013 99.81 ± 0.062 99.75 ± 0.127 99.80 ± 0.126

3 99.67 99.94 99.94 ± 0.002 99.48 ± 0.294 99.63 ± 0.172 99.61 ± 0.055

(%) 4 99.49 100.0 99.87 ± 0.015 99.46 ± 0.315 99.05 ± 0.470 99.15 ± 0.032

5 99.10 99.86 99.58 ± 0.052 98.59 ± 0.106 99.00 ± 0.100 99.06 ± 0.171

αall,t

1 100.0 100.0 99.88 ± 0.010 99.98 ± 0.023 99.97 ± 0.029 99.98 ± 0.018

2 99.81 49.92 50.16 ± 0.029 99.79 ± 0.049 98.54 ± 1.638 99.55 ± 0.036

3 99.72 31.35 33.42 ± 0.027 99.32 ± 0.057 95.01 ± 3.162 98.46 ± 0.903

(%) 4 99.50 24.82 25.36 ± 0.025 98.56 ± 0.021 81.50 ± 9.369 97.06 ± 1.069

5 99.45 99.29 20.16 20.26 ± 0.027 96.64 ± 0.079 64.34 ± 4.903 93.24 ± 3.742

γbase,t

1 63.18 62.08 62.17 ± 0.979 64.34 ± 2.054 62.53 ± 1.166

2 62.85 126.8 63.69 ± 0.576 74.41 ± 10.89 65.68 ± 1.166

3 63.36 160.4 67.34 ± 0.445 81.89 ± 10.09 69.29 ± 1.541

(nats) 4 64.25 126.9 70.41 ± 0.436 90.62 ± 10.08 71.69 ± 1.379

5 64.99 123.2 75.08 ± 0.623 101.6 ± 8.347 77.16 ± 1.104

γnew,t

1 63.18 62.08 62.17 ± 0.979 64.34 ± 2.054 62.53 ± 1.166

2 88.75 87.93 88.03 ± 0.664 89.91 ± 0.107 89.64 ± 3.709

3 82.53 87.22 83.46 ± 0.992 87.65 ± 0.530 85.37 ± 1.725

(nats) 4 72.68 74.61 73.23 ± 0.280 79.49 ± 0.489 74.75 ± 0.777

5 85.88 92.00 89.32 ± 0.626 93.55 ± 0.391 89.68 ± 0.618

γall,t

1 63.18 62.08 62.17 ± 0.979 64.34 ± 2.054 62.53 ± 1.166

2 75.97 107.3 75.64 ± 0.600 82.02 ± 5.488 76.62 ± 1.695

3 79.58 172.3 81.24 ± 0.262 89.88 ± 3.172 82.95 ± 1.878

(nats) 4 79.72 203.1 82.92 ± 0.489 95.83 ± 2.747 85.30 ± 1.524

5 78.12 81.97 163.7 88.29 ± 0.363 107.6 ± 1.724 92.92 ± 2.283

KLall,t

1 12.55 13.08 11.81 ± 0.123 13.00 ± 0.897 13.68 ± 0.785

2 18.50 25.84 16.15 ± 0.149 20.20 ± 1.188 18.01 ± 0.154

3 20.16 24.28 16.46 ± 0.122 24.24 ± 1.974 20.02 ± 0.161

(nats) 4 20.48 26.32 16.09 ± 0.177 27.01 ± 1.851 20.26 ± 0.186

5 22.12 21.02 24.87 16.13 ± 0.225 30.61 ± 1.240 21.02 ± 0.717
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TABLE 11: Results for class incremental continual learning approaches averaged over 5 runs, baselines and the reference
isolated learning scenario for FashionMNIST at the end of every task increment. Extension of table 3 in the main body. Here,
in addition to the accuracy αt, γt and KLt also indicate the respective NLL reconstruction metrics and corresponding KL
divergences at the end of every task increment t.

Fashion t CDVAE ISO CDVAE UB CDVAE LB EWC Dual Model CDVAE OCDVAE

αbase,t

1 99.65 99.60 99.17 ± 0.037 99.58 ± 0.062 99.55 ± 0.035 99.59 ± 0.082

2 96.70 00.00 02.40 ± 0.122 94.50 ± 0.389 92.02 ± 1.175 92.36 ± 2.092

3 95.95 00.00 01.63 ± 0.032 94.88 ± 0.432 79.26 ± 4.170 83.90 ± 2.310

(%) 4 91.35 00.00 00.33 ± 0.097 82.25 ± 4.782 50.16 ± 6.658 64.70 ± 2.580

5 92.20 00.00 00.17 ± 0.076 94.26 ± 0.192 39.51 ± 7.173 60.63 ± 12.16

αnew,t

1 99.65 99.60 99.17 ± 0.037 99.58 ± 0.062 99.55 ± 0.035 99.59 ± 0.082

2 95.55 97.95 96.09 ± 0.260 89.31 ± 0.311 90.98 ± 0.626 92.64 ± 2.302

3 93.35 99.95 99.92 ± 0.012 86.06 ± 2.801 90.26 ± 1.435 83.40 ± 3.089

(%) 4 84.75 99.90 99.95 ± 0.060 73.63 ± 3.861 85.65 ± 2.127 84.18 ± 2.715

5 97.50 99.80 99.60 ± 0.023 93.55 ± 0.708 96.92 ± 0.774 96.51 ± 0.707

αall,t

1 99.65 99.60 99.17 ± 0.037 99.58 ± 0.062 99.55 ± 0.035 99.59 ± 0.082

2 95.75 48.97 49.28 ± 0.242 91.91 ± 0.043 91.83 ± 0.730 92.31 ± 1.163

3 93.02 33.33 34.34 ± 0.009 79.98 ± 0.634 83.35 ± 1.597 86.93 ± 0.870

(%) 4 87.51 25.00 25.21 ± 0.100 64.37 ± 0.707 64.66 ± 3.204 76.05 ± 1.391

5 89.54 89.24 19.97 20.06 ± 0.059 63.21 ± 1.957 58.82 ± 2.521 69.88 ± 1.712

γbase,t

1 209.7 209.8 207.7 ± 1.558 208.9 ± 1.213 209.7 ± 3.655

2 207.4 240.7 209.0 ± 0.731 212.7 ± 0.579 212.1 ± 0.937

3 207.6 258.7 213.0 ± 1.854 219.5 ± 1.376 216.9 ± 1.208

(nats) 4 207.7 243.6 213.6 ± 0.509 223.8 ± 0.837 217.1 ± 0.979

5 208.4 306.5 217.7 ± 1.510 232.8 ± 5.048 222.8 ± 1.632

γnew,t

1 209.7 209.8 207.7 ± 1.558 208.9 ± 1.213 209.7 ± 3.655

2 241.1 240.2 238.7 ± 0.081 241.8 ± 0.502 241.9 ± 0.960

3 213.6 211.8 211.6 ± 0.543 215.4 ± 0.501 213.0 ± 0.635

(nats) 4 220.5 219.7 219.5 ± 0.216 223.6 ± 0.381 220.9 ± 0.522

5 246.2 242.0 242.8 ± 0.898 248.8 ± 0.398 244.0 ± 0.646

γall,t

1 209.7 209.8 207.7 ± 1.558 208.9 ± 1.213 209.7 ± 3.655

2 224.2 240.4 223.8 ± 0.402 226.6 ± 2.31 226.9 ± 0.918

3 220.7 246.1 221.9 ± 0.648 227.2 ± 0.606 224.9 ± 0.642

(nats) 4 220.4 238.7 225.1 ± 3.629 230.4 ± 0.524 226.1 ± 0.560

5 224.8 226.2 275.1 230.5 ± 1.543 242.2 ± 0.754 234.6 ± 0.823

KLall,t

1 12.17 12.20 9.710 ± 0.345 13.21 ± 0.635 13.28 ± 0.644

2 16.54 17.47 10.65 ± 0.101 17.60 ± 0.755 15.56 ± 0.696

3 18.84 19.34 11.34 ± 0.057 21.25 ± 0.872 17.35 ± 0.307

(nats) 4 20.06 17.31 10.96 ± 0.106 25.21 ± 0.929 19.81 ± 0.462

5 23.27 20.27 21.61 11.45 ± 0.228 26.68 ± 0.859 20.47 ± 0.742
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TABLE 12: Results for class incremental continual learning approaches averaged over 5 runs, baselines and the reference
isolated learning scenario for AudioMNIST at the end of every task increment. Extension of table 3 in the main body. Here,
in addition to the accuracy αt, γt and KLt also indicate the respective NLL reconstruction metrics and corresponding KL
divergences at the end of every task increment t.

Audio t CDVAE ISO CDVAE UB CDVAE LB EWC Dual Model CDVAE OCDVAE

αbase,t

1 99.99 100.0 100.0 ± 0.000 100.0 ± 0.000 99.21 ± 0.568 99.95 ± 0.035

2 99.92 00.00 00.16 ± 0.040 93.08 ± 5.854 98.98 ± 0.766 98.61 ± 0.490

3 100.0 00.00 00.29 ± 0.029 83.25 ± 6.844 92.44 ± 1.306 95.12 ± 2.248

(%) 4 99.92 00.00 00.31 ± 0.015 72.02 ± 0.677 76.43 ± 4.715 86.37 ± 5.63

5 98.42 00.00 00.11 ± 0.007 61.57 ± 0.747 59.36 ± 7.147 79.73 ± 4.070

αnew,t

1 99.99 100.0 100.0 ± 0.000 100.0 ± 0.000 99.21 ± 0.568 99.95 ± 0.035

2 99.75 100.0 99.78 ± 0.019 86.25 ± 8.956 91.82 ± 4.577 89.23 ± 7.384

3 98.92 99.58 99.25 ± 0.054 95.16 ± 1.490 95.20 ± 1.495 94.43 ± 3.030

(%) 4 97.33 98.67 97.03 ± 0.019 62.52 ± 4.022 53.02 ± 6.132 72.22 ± 8.493

5 98.67 100.0 99.41 ± 0.207 89.41 ± 0.691 84.93 ± 6.297 89.52 ± 6.586

αall,t

1 99.99 100.0 100.0 ± 0.000 100.0 ± 0.000 99.21 ± 0.568 99.95 ± 0.035

2 99.83 50.00 50.16 ± 0.119 89.67 ± 1.763 93.84 ± 2.558 93.93 ± 3.756

3 99.56 33.19 33.28 ± 0.022 78.24 ± 3.315 94.26 ± 1.669 95.70 ± 1.524

(%) 4 98.60 24.58 24.50 ± 0.017 60.43 ± 4.209 77.90 ± 4.210 85.59 ± 3.930

5 97.75 97.87 20.02 19.98 ± 0.032 47.42 ± 1.447 81.49 ± 1.944 87.72 ± 1.594

γbase,t

1 433.7 423.2 422.3 ± 0.573 435.2 ± 15.69 424.2 ± 2.511

2 422.5 439.4 426.6 ± 2.840 423.9 ± 0.517 425.2 ± 1.402

3 420.7 429.2 425.0 ± 0.339 422.7 ± 0.690 423.8 ± 1.148

(nats) 4 419.9 428.5 425.4 ± 0.081 422.8 ± 0.367 423.5 ± 0.937

5 418.4 432.9 425.2 ± 0.244 422.7 ± 0.182 423.5 ± 0.586

γnew,t

1 433.7 423.2 422.3 ± 0.573 435.2 ± 15.69 424.2 ± 2.511

2 381.2 384.1 381.3 ± 2.039 382.5 ± 1.355 385.3 ± 12.56

3 435.9 436.7 436.8 ± 0.188 436.3 ± 0.639 436.9 ± 0.688

(nats) 4 485.9 487.1 486.5 ± 0.432 486.7 ± 0.385 486.5 ± 0.701

5 421.3 425.2 422.4 ± 0.784 423.9 ± 0.681 422.9 ± 0.537

γall,t

1 433.7 423.2 422.3 ± 0.573 435.2 ± 15.69 424.2 ± 2.511

2 401.9 411.8 404.0 ± 2.407 403.2 ± 0.831 403.5 ± 1.274

3 412.1 418.9 414.4 ± 0.385 413.6 ± 0.410 413.8 ± 0.573

(nats) 4 430.3 438.4 433.9 ± 0.374 432.4 ± 0.436 432.6 ± 0.862

5 429.7 427.2 440.4 432.7 ± 0.385 431.4 ± 0.255 430.9 ± 0.541

KLall,t

1 11.65 11.20 4.639 ± 0.107 11.78 ± 1.478 11.16 ± 0.713

2 11.78 13.61 5.135 ± 0.127 15.13 ± 1.128 14.06 ± 1.140

3 13.40 17.09 5.427 ± 0.105 18.18 ± 1.140 13.61 ± 0.901

(nats) 4 13.61 14.41 5.243 ± 0.135 22.93 ± 1.134 17.58 ± 1.102

5 17.89 15.15 14.52 5.470 ± 0.055 22.96 ± 0.912 18.52 ± 1.131

118



14

(a) CDVAE 2 classes (b) CDVAE 4 classes (c) CDVAE 6 classes (d) CDVAE 8 classes

(e) OCDVAE 2 classes (f) OCDVAE 4 classes (g) OCDVAE 6 classes (h) OCDVAE 8 classes

(i) PixCDVAE 2 classes (j) PixCDVAE 4 classes (k) PixCDVAE 6 classes (l) PixCDVAE 8 classes

(m) PixOCDVAE 2 classes (n) PixOCDVAE 4 classes (o) PixOCDVAE 6 classes (p) PixOCDVAE 8 classes

Fig. 5: Generated images for continually learned incremental MNIST at the end of task increments for CDVAE (a-d),
OCDVAE (e-h), PixCDVAE (i-l) and PixOCDVAE (m-p). Each individual grid is sorted according to the class label that is
predicted by the classifier.
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(a) CDVAE 2 classes (b) CDVAE 4 classes (c) CDVAE 6 classes (d) CDVAE 8 classes

(e) OCDVAE 2 classes (f) OCDVAE 4 classes (g) OCDVAE 6 classes (h) OCDVAE 8 classes

(i) PixCDVAE 2 classes (j) PixCDVAE 4 classes (k) PixCDVAE 6 classes (l) PixCDVAE 8 classes

(m) PixOCDVAE 2 classes (n) PixOCDVAE 4 classes (o) PixOCDVAE 6 classes (p) PixOCDVAE 8 classes

Fig. 6: Generated images for continually learned incremental FashionMNIST at the end of task increments for CDVAE (a-d),
OCDVAE (e-h), PixCDVAE (i-l) and PixOCDVAE (m-p). Each individual grid is sorted according to the class label that is
predicted by the classifier.
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(a) CDVAE 2 classes (b) CDVAE 4 classes (c) CDVAE 6 classes (d) CDVAE 8 classes

(e) OCDVAE 2 classes (f) OCDVAE 4 classes (g) OCDVAE 6 classes (h) OCDVAE 8 classes

(i) PixCDVAE 2 classes (j) PixCDVAE 4 classes (k) PixCDVAE 6 classes (l) PixCDVAE 8 classes

(m) PixOCDVAE 2 classes (n) PixOCDVAE 4 classes (o) PixOCDVAE 6 classes (p) PixOCDVAE 8 classes

Fig. 7: Generated images for continually learned incremental AudioMNIST at the end of task increments for CDVAE (a-d),
OCDVAE (e-h), PixCDVAE (i-l) and PixOCDVAE (m-p). Each individual grid is sorted according to the class label that is
predicted by the classifier.
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TABLE 13: Results for PixelVAE based class incremental
continual learning approaches averaged over 5 runs, base-
lines and the reference isolated learning scenario for MNIST
at the end of every task increment in analogy to table 10.
Extension of table 4 in the main body. Here, in addition to
the accuracy αt, γt and KLt also indicate the respective NLL
reconstruction metrics and corresponding KL divergences at
the end of every task increment t.

MNIST t Dual Pix Model PixCDVAE PixOCDVAE

αbase,t

1 99.97 ± 0.002 99.97 ± 0.026 99.86 ± 0.084

2 99.54 ± 0.285 96.90 ± 2.907 99.64 ± 0.095

3 99.16 ± 0.611 90.12 ± 5.846 98.88 ± 0.491

(%) 4 98.33 ± 1.119 76.84 ± 9.095 98.11 ± 0.797

5 98.04 ± 1.397 56.53 ± 4.032 97.44 ± 0.785

αnew,t

1 99.97 ± 0.002 99.97 ± 0.026 99.86 ± 0.084

2 99.71 ± 0.122 99.74 ± 0.052 99.82 ± 0.027

3 99.41 ± 0.084 99.22 ± 0.082 99.56 ± 0.092

(%) 4 98.61 ± 0.312 97.84 ± 0.180 98.80 ± 0.292

5 97.31 ± 0.575 96.77 ± 0.337 98.63 ± 0.430

αall,t

1 99.97 ± 0.002 99.97 ± 0.026 99.86 ± 0.084

2 99.60 ± 0.142 98.37 ± 1.448 99.69 ± 0.051

3 98.93 ± 0.291 96.14 ± 1.836 99.20 ± 0.057

(%) 4 98.22 ± 0.560 91.25 ± 0.992 98.13 ± 0.281

5 96.52 ± 0.658 83.61 ± 0.927 96.84 ± 0.346

γbase,t

1 90.52 ± 0.263 100.0 ± 1.572 99.77 ± 2.768

2 91.27 ± 0.789 100.4 ± 1.964 101.2 ± 3.601

3 91.92 ± 0.991 100.3 ± 4.562 101.1 ± 4.014

(nats) 4 91.75 ± 1.136 102.7 ± 7.134 101.0 ± 4.573

5 92.05 ± 1.212 102.4 ± 6.195 100.5 ± 4.942

γnew,t

1 90.52 ± 0.263 100.0 ± 1.572 99.77 ± 2.768

2 115.8 ± 0.805 125.7 ± 2.413 124.6 ± 3.822

3 107.7 ± 0.600 118.3 ± 3.523 116.5 ± 2.219

(nats) 4 100.9 ± 0.659 107.1 ± 5.316 102.3 ± 1.844

5 113.4 ± 0.820 118.2 ± 1.572 113.3 ± 0.755

γall,t

1 90.52 ± 0.263 100.0 ± 1.572 99.77 ± 2.768

2 102.9 ± 0.408 111.9 ± 2.627 112.7 ± 3.300

3 104.8 ± 1.114 114.9 ± 4.590 114.6 ± 4.788

(nats) 4 103.9 ± 0.759 114.3 ± 3.963 112.1 ± 2.150

5 106.1 ± 0.868 118.7 ± 5.320 111.9 ± 2.663

KLall,t

1 1.410 ± 0.181 5.629 ± 3.749 5.635 ± 3.739

2 3.177 ± 0.702 9.238 ± 0.674 7.495 ± 0.738

3 4.923 ± 1.085 12.13 ± 0.977 10.17 ± 1.528

(nats) 4 5.603 ± 1.250 14.32 ± 1.040 11.66 ± 1.004

5 9.296 ± 1.346 16.37 ± 0.970 12.49 ± 0.551

TABLE 14: Results for PixelVAE based class incremen-
tal continual learning approaches averaged over 5 runs,
baselines and the reference isolated learning scenario for
FashionMNIST at the end of every task increment in analogy
to table 11. Extension of table 4 in the main body. Here, in
addition to the accuracy αt, γt and KLt also indicate the
respective NLL reconstruction metrics and corresponding
KL divergences at the end of every task increment t.

Fashion t Dual Pix Model PixCDVAE PixOCDVAE

αbase,t

1 99.57 ± 0.091 99.58 ± 0.076 99.54 ± 0.079

2 82.40 ± 6.688 90.06 ± 1.782 88.60 ± 1.998

3 78.55 ± 3.964 83.70 ± 3.571 87.66 ± 0.375

(%) 4 54.69 ± 3.853 50.23 ± 7.004 68.31 ± 3.308

5 60.04 ± 5.151 47.83 ± 13.41 74.45 ± 2.889

αnew,t

1 99.57 ± 0.091 99.58 ± 0.076 99.54 ± 0.079

2 97.73 ± 1.113 96.47 ± 0.596 97.31 ± 0.475

3 99.09 ± 0.367 97.33 ± 0.725 96.88 ± 1.156

(%) 4 97.55 ± 0.588 96.12 ± 0.675 95.47 ± 1.332

5 98.85 ± 0.141 97.91 ± 0.596 98.63 ± 0.176

αall,t

1 99.57 ± 0.091 99.58 ± 0.076 99.54 ± 0.079

2 86.22 ± 3.704 92.93 ± 0.160 92.17 ± 1.425

3 76.77 ± 4.378 84.07 ± 1.069 87.30 ± 0.322

(%) 4 62.93 ± 3.738 64.42 ± 1.837 76.36 ± 1.267

5 72.41 ± 2.941 63.05 ± 1.826 80.85 ± 0.721

γbase,t

1 267.8 ± 1.246 230.8 ± 3.024 232.0 ± 2.159

2 273.6 ± 0.631 232.5 ± 1.582 231.8 ± 0.416

3 274.0 ± 0.552 235.6 ± 2.784 231.6 ± 0.832

(nats) 4 273.7 ± 0.504 236.4 ± 3.157 231.4 ± 2.550

5 274.1 ± 0.349 241.1 ± 1.747 234.1 ± 1.498

γnew,t

1 267.8 ± 1.246 230.8 ± 3.024 232.0 ± 2.159

2 313.4 ± 1.006 275.8 ± 1.888 275.3 ± 1.473

3 269.1 ± 0.616 268.3 ± 3.852 262.9 ± 1.893

(nats) 4 282.4 ± 0.321 259.1 ± 1.305 259.6 ± 2.050

5 305.8 ± 0.286 283.2 ± 2.150 283.5 ± 2.458

γall,t

1 267.8 ± 1.246 230.8 ± 3.024 232.0 ± 2.159

2 293.8 ± 0.349 254.3 ± 1.513 255.8 ± 0.436

3 285.7 ± 0.510 261.5 ± 2.970 259.1 ± 0.929

(nats) 4 284.9 ± 0.703 263.2 ± 2.259 259.5 ± 3.218

5 289.5 ± 0.396 271.7 ± 2.117 267.2 ± 0.586

KLall,t

1 3.610 ± 0.856 7.164 ± 0.759 7.809 ± 1.255

2 6.247 ± 0.710 13.79 ± 0.282 12.23 ± 0.287

3 7.811 ± 0.799 18.26 ± 0.818 15.36 ± 0.530

(nats) 4 8.982 ± 0.812 21.75 ± 0.561 18.31 ± 0.333

5 9.781 ± 1.068 22.14 ± 0.377 17.93 ± 0.360
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TABLE 15: Results for PixelVAE based class incremental con-
tinual learning approaches averaged over 5 runs, baselines
and the reference isolated learning scenario for AudioMNIST
at the end of every task increment in analogy to table 12.
Extension of table 4 in the main body. Here, in addition to
the accuracy αt, γt and KLt also indicate the respective NLL
reconstruction metrics and corresponding KL divergences at
the end of every task increment t.

Audio t Dual Pix Model PixCDVAE PixOCDVAE

αbase,t

1 100.0 ± 0.000 99.71 ± 0.218 99.27 ± 0.410

2 99.52 ± 0.273 97.86 ± 0.799 97.88 ± 2.478

3 93.15 ± 3.062 81.38 ± 5.433 95.82 ± 3.602

(%) 4 81.55 ± 8.468 50.58 ± 14.60 91.56 ± 5.640

5 64.60 ± 8.739 29.94 ± 18.47 75.25 ± 10.18

αnew,t

1 100.0 ± 0.000 99.71 ± 0.218 99.27 ± 0.410

2 99.71 ± 0.043 99.78 ± 0.128 99.81 ± 0.189

3 98.23 ± 1.092 98.41 ± 0.507 99.30 ± 0.550

(%) 4 95.31 ± 0.868 94.30 ± 0.914 97.87 ± 0.293

5 98.18 ± 0.885 97.00 ± 0.520 99.43 ± 0.495

αall,t

1 100.0 ± 0.000 99.71 ± 0.218 99.27 ± 0.410

2 99.50 ± 0.157 98.64 ± 0.875 99.67 ± 0.033

3 95.37 ± 1.750 90.10 ± 1.431 97.77 ± 1.017

(%) 4 86.97 ± 2.797 75.55 ± 3.891 95.41 ± 1.345

5 75.50 ± 3.032 63.44 ± 5.252 90.23 ± 1.139

γbase,t

1 434.2 ± 1.068 432.6 ± 0.321 433.8 ± 0.370

2 434.4 ± 1.082 432.5 ± 0.551 433.5 ± 1.464

3 434.6 ± 0.785 432.9 ± 0.723 433.1 ± 1.269

(nats) 4 434.2 ± 1.209 433.0 ± 0.781 433.0 ± 1.283

5 435.1 ± 1.915 431.4 ± 0.666 432.3 ± 0.189

γnew,t

1 434.2 ± 1.068 432.6 ± 0.321 433.8 ± 0.370

2 390.4 ± 0.694 389.4 ± 0.208 389.4 ± 1.304

3 444.7 ± 0.545 442.7 ± 0.513 442.4 ± 0.275

(nats) 4 497.4 ± 0.740 494.4 ± 0.700 494.8 ± 0.386

5 431.9 ± 1.032 428.0 ± 0.851 429.7 ± 1.223

γall,t

1 435.2 ± 15.69 432.6 ± 0.321 433.8 ± 0.370

2 412.4 ± 0.871 410.9 ± 0.351 411.5 ± 1.406

3 423.3 ± 0.618 421.0 ± 1.026 421.9 ± 0.661

(nats) 4 441.6 ± 0.420 439.8 ± 0.833 439.8 ± 0.718

5 440.3 ± 1.297 436.9 ± 0.751 437.7 ± 0.432

KLall,t

1 4.361 ± 0.671 9.293 ± 0.943 11.87 ± 1.504

2 5.130 ± 0.636 14.00 ± 0.748 12.40 ± 0.719

3 5.399 ± 0.724 20.28 ± 0.774 14.41 ± 0.461

(nats) 4 5.817 ± 1.038 24.91 ± 0.845 16.00 ± 0.505

5 6.031 ± 0.832 27.14 ± 1.139 17.45 ± 0.835
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Abstract

We present an analysis of predictive uncertainty based
out-of-distribution detection for different approaches to es-
timate various models’ epistemic uncertainty and contrast it
with extreme value theory based open set recognition. While
the former alone does not seem to be enough to overcome
this challenge, we demonstrate that uncertainty goes hand
in hand with the latter method. This seems to be particularly
reflected in a generative model approach, where we show
that posterior based open set recognition outperforms dis-
criminative models and predictive uncertainty based outlier
rejection, raising the question of whether classifiers need to
be generative in order to know what they have not seen.

1. Introduction

A particular challenge of modern deep learning based
computer vision systems is a neural network’s tendency to
produce outputs with high confidence when presented with
task unrelated data. Early works have identified this issue
and have shown that methods employing forms of thresh-
olding a neural network’s softmax confidence are generally
not enough for rejection of unknown inputs [15]. Recently,
deep learning methods for approximate Bayesian inference
[12, 5, 10, 5], such as deep latent variable models [12] or
Monte Carlo dropout (MCD) [5], have opened the pathway
to capturing neural network uncertainty. Access to these un-
certainties comes with the promise of allowing to separate
what a model is truly confident about through output vari-
ability. However, misclassification is not prevented and in a
Bayesian approach uncertain inputs are not necesssarily un-
known and vice versa unknowns do not necessarily appear
as uncertain [3]. This has recently been observed on a large
empirical scale [19] and figure 1 illustrates this challenge.
Here we show the prediction confidence and entropy of two
deep residual neural networks [7, 23] trained on FashionM-
NIST [22] as obtained through a standard feed-forward pass
and variational inference using 50 MCD samples. Neither

(a) Standard deep neural network classifier

(b) Approximate variational inference with average over 50 Monte
Carlo dropout stochastic forward passes

Figure 1: Classification confidence and entropy for deep
neural network classifiers with and without approximate
variational inference. Models have been trained on Fashion-
MNIST and are evaluated on out-of-distribution datasets.

of the approaches is able to avoid over-confident predictions
on previously unseen datasets, even if MCD fares much bet-
ter in separating the distributions.

A different thread for open-set recognition in deep neu-
ral networks is through extreme-value theory (EVT) based
meta-recognition [21, 2]. When applied to a neural net-
work’s penultimate feature representation, it has originally
been shown to improve out-of-distribution (OOD) detection
in contrast to simply relying on a neural network’s output
values. We have recently extended this approach by adapt-
ing EVT to each class’ approximate posterior in a latent
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variable model for continual learning [16]. However, EVT
based open set recognition and capturing epistemic uncer-
tainty need not be seen as separate approaches. In this work
we thus empirically demonstrate that:

1. combining the benefit of capturing a model’s uncer-
tainty with EVT based open set recognition outper-
forms out-of-distribution detection using prediction
uncertainty on a variety of classification tasks.

2. moving to a generative model, which in addition to the
label distribution p(y) also approximates the data dis-
tribution p(x), results in similar prediction entropy but
further improves the latent based EVT approach.

2. Variational open set neural networks
We consider three different models for which we investi-

gate open set detection based on both prediction uncertainty
as well as the EVT based approach. The simplest model is a
standard deep neural network classifier. Such a model how-
ever doesn’t capture epistemic uncertainty. We thus con-
sider variational Bayesian inference with neural networks
consisting of an encoder with variational parameters θ and
a linear classifier pξ(y|z) that gives the probability density
of target y given a sample z from the approximate poste-
rior qθ(z|x). We optionally also consider the addition of
a probabilistic decoder pφ(x|z) that returns the probability
density of x under the generative model. With the added de-
coder we thus learn a joint generative model p(x, y, z) =
p(y|z)p(x|z)p(z). These models are trained by optimizing
the following variational evidence lower-bound:

L (θ,φ, ξ) = Eqθ(z|x) [log pφ(x|z) + log pξ(y|z)]
− βKL(qθ(z|x) || p(z))]

(1)

Here β is an additional parameter that weighs the contribu-
tion of the Kullback-Leibler divergence between approxi-
mate posterior qθ(z|x) and prior p(z) as suggested by the
authors of β-Variational Autoencoder [8]. We can summa-
rize the considered models as follows:

1. Standard discriminative neural network classifier that
maximizes log pθ(y|x) (not described by equation 1).

2. Variational discriminative classifier with graph x →
z → y. Maximizes the lower-bound to p(y) as given
by equation 1 without the φ dependent (blue) term.

3. Variational generative model as described by equa-
tion 1 with generative process p(x, y, z) =
p(y|z)p(x|z)p(z). In addition to p(y), also jointly
maximizes the variational lower-bound to p(x).

Following a variational formulation, the second and third
model have natural means to capture epistemic uncertainty,

Algorithm 1 Open set recognition calibration for deep
variational neural networks. A Weibull model fit of tail-
size η is conducted to bound the per class approximate pos-
terior. Per class c Weibull models ρc with their respective
shift τc, shape κc and scale λc parameters are returned.

Require: Trained encoder qθ(z|x) and classifier pξ(y|z)
Require: Classifier probabilities pξ(y|z) and samples

from the approximate posterior z(x(i)) ∼ qθ(z|x(i))
for each training dataset example x(i)

Require: For each class c, let S(i)
c = z(x

′(i)
c ) for each

correctly classified training example x
′(i)
c

1: for c = 1 . . . C do
2: Get per class latent mean S̄c = mean(S(i)

c )
3: Weibull model ρc = Fit Weibull

(
||Sc − S̄c||, η

)

4: Return means S̄ and Weibull models ρ

Algorithm 2 Open set probability estimation for un-
known inputs. Data points are considered statistical out-
liers if a Weibull model’s cumulative distribution function’s
(CDF) probability value exceeds a task specific prior Ωt.

Require: Trained encoder qθ(z|x)
Require: Per class latent mean S̄c and Weibull model ρc,

each with parameters (τc, κc, λc)
For a novel input example x̂ sample z ∼ qθ(z|x̂)

2: Compute distances to S̄c: dc = ||S̄c − z||
for c = 1 . . . C do

4: Weibull CDF ωc(dc) = 1− exp
(
− ||dc−τc||

λc

)κc

Reject input if ωc(dc) > Ωt for any class c.

i.e. uncertainty that could be lowered by training on more
data. Drawing multiple samples z ∼ qθ(z|x) from the ap-
proximate posterior yields a distribution over the models’
outputs as specified by the expectation in 1. For all above
approaches we can additionally place a prior distribution
over the models’ weights to find a distribution qθ(W ) for
the weights posterior. This can be achieved by performing a
dropout operation [20] at every weight layer and conducting
approximate variational inference through multiple stochas-
tic forward passes during evaluation. We do not consider
variational autoencoders [12] that only maximize the varia-
tional lower-bound to p(x) (i.e. equation 1 without the blue
term), as these models have been shown to be incapable of
separating seen from unseen data in previous literature [17].

2.1. Open set meta-recognition

For a standard deep neural network classifier we follow
the EVT based approach based on the features of the penul-
timate layer [2]. To bound the open-space risk of our varia-
tional models we follow the adaptation of this method to op-
erate on the latent space and thus on the basis of the approx-
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imate posterior in Bayesian inference [16]. In the Bayesian
interpretation we obtain a Weibull distribution fit on the dis-
tances from the approximate posterior z(x) ∼ qθ(z|x) of
each correctly classified training example. This leads to a
bound on the regions of posterior high density as the tail of
the Weibull distribution limits the amount of allowed low
density space around these regions. Given such an estimate
of the regions where the posterior has high density and the
model can thus be trusted to make an informed decision, a
novel unseen input example can be rejected according to the
statistical outlier probability given the Weibull cumulative
distribution function (CDF) between the unseen example’s
posterior samples and their distances to the high density re-
gions. The corresponding procedures to obtain the Weibull
fits and estimate an unseen data-point’s outlier probability
are outlined in algorithms 1 and 2.

3. Experiments and results
We base our encoder and optional decoder architecture

on 14-layer wide residual networks [7, 23], in the varia-
tional cases with a latent dimensionality of 60. The clas-
sifier always consists of a single linear layer. We optimize
all models using a mini-batch size of 128 and Adam [11]
with a learning rate of 0.001, batch normalization [9] with
a value of 10−5, ReLU activations and weight initialization
according to He et. al [6]. For each convolution we in-
clude a dropout layer with a rate of 0.2 that we can use for
MCD. We train all our model variants for 150 epochs un-
til full convergence on three datasets: FashionMNIST [22],
MNIST [14] and SVHN [18]. We do not apply any prepro-
cessing or data augmentation. For the EVT based outlier
rejection we fit Weibull models with a tail-size set to 5% of
training data examples per class. The used distance mea-
sure is the cosine distance. After training we evaluate out
of distribution detection on the other two datasets and ad-
ditionaly the KMNIST [4], CIFAR10 and 100 [13] and the
non-image based AudioMNIST [1] datasets. For the latter
we follow the authors’ steps to convert the audio data into
spectrograms. To make this cross-dataset evaluation pos-
sible, we repeat all gray-scale datasets to a three channel
representations and resize all images to 32× 32.

3.1. Results and discussion

We show outlier rejection curves using both prediction
uncertainty as well as EVT based OOD recognition for the
three network types trained on FashionMNIST in figure 2.
Rejection rates for the variational approaches were com-
puted using 100 approximate posterior samples to capture
epistemic uncertainty. When looking at the prediction en-
tropy, we can observe that a standard deep neural network
classifier predicts over-confidently for all OOD data. While
the EVT based approach alleviates this to a certain extent,
the challenge of OOD detection still largely persists. Mov-

(a) Standard discriminative classifier p(y|x)

(b) Variational Bayes classifier p(y|z)

(c) Variational Bayes joint generative model p(x,y, z)

Figure 2: The three different models trained on FashionM-
NIST and evaluated on unseen datasets. For each model a
pair of outlier rejection curves is shown. Left panels depict
outlier rejection based on prediction entropy, whereas right
panels show the EVT based open set recognition across the
range of statistical outlier rejection priors Ωt.

ing to one of the variational models increases the entropy
of OOD datasets, although not to the point where a sepa-
ration from statistically inlying data is possible. Here, the
EVT approach fares much better in achieving such separa-
tion. Nevertheless, this separation is only consistent across
a wide range of rejection priors with the inclusion of the
joint generative model. This is particularly important since
this rejection prior has to be determined based on the orig-
inal inlying validation data, as we can assume no access to
OOD data upfront. Notice how this choice impacts rejection
rates of the joint generative model to a much lesser extent.
In addition we show the variational models of figure 2 pan-
els (b) and (c) in figure 3 with 50 Monte Carlo dropout
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Outlier detection at 95% trained dataset inliers (%) FashionMNIST MNIST KMNIST CIFAR10 CIFAR100 SVHN AudioMNIST
Trained Model variant Test acc. Entropy Latent Entropy Latent Entropy Latent Entropy Latent Entropy Latent Entropy Latent Entropy Latent

Fashion standard discriminative 93.36 4.903 4.852 38.36 63.29 48.82 76.97 23.75 38.78 25.27 40.23 18.21 30.65 51.28 77.96
MNIST variational discriminative 93.73 4.911 4.826 50.51 67.42 72.23 84.51 43.64 47.13 45.39 47.87 28.79 32.06 74.03 87.20

variational generative 93.57 4.878 4.992 54.58 91.13 56.31 88.34 48.69 92.96 53.03 93.36 38.87 88.82 55.87 92.23

variational discriminative - MCD 93.70 4.864 4.887 91.99 95.24 83.84 88.95 79.27 81.84 72.24 76.86 48.24 58.73 97.01 97.56
variational generative - MCD 93.68 4.899 4.908 84.32 95.05 67.24 88.37 68.40 97.16 68.07 97.51 49.98 94.51 75.59 95.11

MNIST standard discriminative 99.43 88.04 90.71 4.968 4.873 85.25 85.40 91.06 87.62 92.39 88.47 86.85 85.59 93.88 93.40
variational discriminative 99.57 97.55 99.86 4.890 4.871 95.18 99.53 99.76 99.98 99.69 99.97 94.37 97.70 98.61 99.65
variational generative 99.53 95.12 96.60 4.888 4.954 97.15 98.97 98.60 99.81 98.64 99.65 96.53 96.29 99.65 99.98

variational discriminative - MCD 99.55 99.56 99.93 4.879 4.932 98.82 99.66 99.96 99.98 99.95 99.99 98.32 98.97 99.86 99.90
variational generative - MCD 99.56 98.61 99.18 4.841 4.873 96.81 99.75 99.73 99.82 99.89 99.89 97.47 98.42 98.95 99.15

SVHN standard discriminative 97.34 69.67 71.99 18.61 23.48 65.07 74.93 73.96 83.00 72.43 80.34 4.861 4.924 62.75 67.98
variational discriminative 97.59 75.76 81.00 21.17 24.93 77.14 91.89 82.29 88.68 80.48 88.38 4.879 4.980 72.86 89.36
variational generative 97.68 75.20 99.13 30.10 70.68 82.88 98.48 81.63 95.14 80.79 93.49 4.893 4.927 72.41 95.26

variational discriminative - MCD 97.57 84.97 89.71 95.27 94.97 84.48 90.26 85.86 94.94 85.78 93.46 4.962 4.922 81.66 88.61
variational generative - MCD 97.58 83.73 93.53 100.0 100.0 98.32 97.57 82.16 93.03 80.40 92.77 4.893 4.910 88.16 94.53

Table 1: Test accuracies and outlier detection values of the three different network types described in section 2 when con-
sidering 95% of training validation data is inlying. Additional values are provided with Monte Carlo dropout (MCD). The
variational approaches are reported with 100 z ∼ qθ(z|x) samples and the optional additional 50 MCD samples.

(a) Variational Bayes classifier p(y|z)

(b) Variational Bayes joint generative model p(y|z)p(x|z)

Figure 3: Pair of outlier rejection curves based on predic-
tion entropy (left) and approximate posterior based statisti-
cal outlier rejection (right) in analogy to figure 2. Here, pan-
els (a) and (b) correspond to panels (b) and (c) in figure 2
with additional variational Monte Carlo dropout inference.

samples. We have observed no substantial further benefits
with more samples. Although this sampling can be com-
putationally prohibitively expensive, we have included this
comparison to give a better impression of how distributions
on a neural network’s weights can aid in capturing uncer-
tainty. In fact, we can observe that in both cases the predic-
tion entropy is further increased, albeit still suffers from the

same challenge as outlined before. On the other hand, the
EVT based approach profits similarly from MCD with the
generative model still outperforming all other methods and
achieving nearly perfect OOD detection.
We have quantified these results in table 1, where we report
the network test accuracy as well as the outlier rejection rate
with rejection priors and entropy thresholds determined ac-
cording to categorizing 95 % of the trained dataset’s vali-
dation data as inlying. For all values we can observe that
capturing epistemic uncertainty with variational Bayes ap-
proaches improves upon a standard neural network classi-
fier both slightly in test accuracy as well as in OOD detec-
tion. This improvement is further apparent when using the
EVT approach that outperforms OOD detection with pre-
diction uncertainty in all cases. Lastly, the joint generative
model is apparent to improve the EVT based OOD detec-
tion as the posterior now also explicitly captures informa-
tion about the data distribution p(x).

4. Conclusion
We have provided an analysis of prediction uncertainty

and EVT based out-of-distribution detection approaches for
different model types and ways to estimate a model’s epis-
temic uncertainty. While further larger scale evaluation is
necessary, our results allow for two observations. First,
whereas OOD detection is difficult based on prediction
values even when epistemic uncertainty is captured, EVT
based open set recognition based on a latent model’s ap-
proximate posterior can offer a solution to a large degree.
Second, we might require generative models for open set
detection in classification, even if previous work has shown
that generative approaches that only model the data distribu-
tion seem to fail to distinguish unseen from seen data [17].
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Real-world Application of Developed Techniques to Concrete

Defect Detection

This section includes qualitative illustrations and practical demonstrations of the developed

techniques to concrete defect detection in context of the proposed CODEBRIM dataset, sec-

tion 1.3. The majority of the displayed results have been reported in technical deliverable

reports (Mundt et al., 2018c,a) of the the associated European Union’s Horizon 2020 "AER-

OBI" project under grant agreement No. 687384. It is the only thesis section that has not

yet been transcribed to a publicly available manuscript. At its center, the section serves

the purpose of putting this chapter’s works into the investigated real-world application per-

spective and provide further intuition in addition to the previously conducted quantitative

experiments.

2.3.1 Semantic Segmentation

The first qualitative demonstration is the extension of developed classification models to-

wards the aim of semantic segmentation. Recall that the CODEBRIM dataset has been an-

notated by humans in a coarse manner, i.e. locations of a defect have been annotated and

their corresponding classes labelled. As argued in the respective publication, this has been

motivated from a detailed annotation procedure, where each and every individual pixel of

an image is semantically labelled, being excessively time consuming on very high-resolution

images. At the same time, the quantitative classification experiments that contrast the ac-

curacy versus cropped bounding box patch size trade-off have shown that sub-sampling to

lower-resolutions can result in heavy performance decrease. However, in practice such a

detailed prediction of a defect might be required for a civil engineer to asses the extent of

the damage and rate its severity for a structure’s integrity (Koch et al., 2015). The natural

question is then how we can obtain such a full semantic segmentation with our deep neural

network, without explicitly having to train the network on detailed ground-truths.

To our advantage, the entire model trained for classification can be treated as the filter of

a convolution in the spirit of Bell et al. (2015). As the model has been trained on much

smaller patches than the full-resolution images, i.e. the bounding box contents, this resem-

bles a sliding window where the model predicts classes based on local regions. To give a

practical example, a conventional AlexNet model trained on 224x224 image patches is com-

puted 6000 times horizontally on an image of width 6000, assuming padding to preserve

the spatial dimensionality. This is multiplied by the number of times the model has to also

be applied to the vertical dimension of the image, resulting in an overall very large amount
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of model forward passes. Although computationally heavy, in practice this can be made

computationally significantly less complex than the initial intuition suggests. Given that the

convolutional computation on each local patch is independent of the other image regions, a

large amount of image regions can be processed in parallel on modern graphics processing

units, subject to the limits of the specifically used device. The latter can be seen in com-

plete analogy to the fully parallelized mini-batch computation of independent images in the

training procedure. In the particular examples shown in the following, with a conventional

consumer NVIDIA GTX 2080 and depending on the exact neural network architecture, this

practically reduces the computation time from a scale between minutes to hours, to a range

of seconds.

Two qualitative examples are shown in figures 2.1 and 2.2. They contain an original image

and five confidence maps, each with the likelihood of a pixel corresponding to one of the

five defect types: crack, spalling, efflorescence, exposed bars and corrosion stain. Note that

these cannot simply be merged into one prediction, as the task is inherently multi-target,

i.e. different defect types can appear and overlap in the same image. This is particularly rel-

evant for defects such as cracks and efflorescence, where the latter’s calcium deposit often

settles around damp cracks, or spallation leading to partially exposed bars that can corrode

over time. A co-occurrence of defects thus generally coincides with increased defect sever-

ity. Figure 2.1 shows an image where a respective heavy defect spans almost the entire

view. On the one hand, we can observe that the sliding window deep network predictions

generally correctly and confidently identifies the exposed bars and the regions where they

are corroded. On the other hand, there seems to be confusion with respect to various pixels

being attributed to cracks and the spalled area being equated to the bars, although techni-

cally almost the entire image shows a missing cover material. Similar observations can be

made in figure 2.2, where a corrosion stain is correctly picked up. At the same time, one of

the detected defects is further misclassified, i.e. the corrosion stain is also falsely attributed

to spalling and the exposition of a small bar, and dirt markings are confused for cracks and

efflorescence.

While the classification model thus seems to be able to handle images at completely dif-

ferent scales, largely due to the inclusion of spatial pyramidal pooling induced quasi scale

invariance, its use for semantic segmentation is somewhat limited due to an overestimation

of defects and partial attribution to false categories. In principle a quantitative evalua-

tion would be necessary to effectively assess whether the above technique satisfies practical

desiderata. Apart from a lack of detailed pixel-wise ground-truths, the quantitative eval-

uation in this form has not been pursued further for two additional reasons. First, in the

AEROBI project the limitation of smoothed deep learning predictions that lack local detail
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has been addressed through algorithmic fusion with a principled traditional computer vision

algorithm based on topological pits to identify cracks in materials Mundt et al. (2018c,d).

This also significantly lessens the threat of data population based erratic predictions of the

crack category by using the statistics of the instance. This content is not included here, as

it is out of scope of the thesis’ main matter and because it is not the leading contribution of

the author. Second, the observed intermingling of individual defect classes can to an extent

be lifted by moving away from a purely discriminative perspective and moving to the ear-

lier introduced view of learning generative factors. In consequence, this can then also be

used to flag untrustworthy predictions for an image based on a mismatch of an individual

instance’s statistics in comparison with the encoded data population. Both of these aspects

are qualitatively shown in the subsequent subsection.
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(a) Original image (b) Crack

(c) Spalling (d) Efflorescence

(e) Exposed Bars (f) Corrosion Stain

Figure 2.1: Example for semantic segmentation through sliding window prediction of a deep
neural network trained for image patch classification. Maps show the confidence of a pixel
being attributed to each defect class. Figure originally appeared in Mundt et al. (2018c).
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(a) Original image (b) Crack

(c) Spalling (d) Efflorescence

(e) Exposed Bars (f) Corrosion Stain

Figure 2.2: Example for semantic segmentation through sliding window prediction of a deep
neural network trained for image patch classification. Maps show the confidence of a pixel
being attributed to each defect class. Figure originally appeared in Mundt et al. (2018c).
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Figure 2.3: Illustration of the extended CODEBRIM pipeline for prediction of defect classes.
The convolutional feature extractor and spatial pyramidal pooling correspond to the meta-
learned architecture elements found in Mundt et al. (2019a). The decoder that is typically
included in training to ensure encoding of the data distribution is not needed for generative
factor based classification and is therefore not shown for simplicity. Figure adapted from
Mundt et al. (2018a).

2.3.2 Variational Bayesian Meta-learned Architectures and Recognition

of Statistically Deviating Open Set Images

The previous works in this chapter have introduced variational Bayes motivated deep gen-

erative model variants with open set recognition capacity (Mundt et al., 2019b, 2020b).

These were not originally included in the purely discriminative meta-learned models of

Mundt et al. (2019a). It is thus interesting to see how respectively obtained insights im-

prove the just demonstrated semantic segmentation real world application. This is done

by simply re-training the meta-learned architectures of the CODEBRIM dataset to include

encoding of variational Bayes. The original prediction pipeline that includes a meta-learned

neural network encoder, followed by a meta-learned spatial pyramidal pooling and classifier

is thus adapted to also approximate the posterior distribution and minimizing its Kullback-

Leibler divergence (KLD) with respect to a specified Gaussian prior. Note that the previ-

ously found architectures are simply extended and re-trained with a fixed 60-dimensional

latent space, rather than conducting a novel architecture search that also attempts to find

a suitable dimensionality for the latent factors. Such an architecture search that includes

auto-encoding of variational Bayes is still a largely open research question. This is because

the reinforcement learning reward can no longer consist solely of the architecture’s classifi-

cation accuracy, but would also involve additional terms such as reconstruction losses and

the minimization of the KLD. The latter is problematic as it is a natural antagonist, i.e. a

regularizer, that needs to be balanced with data likelihood and classification terms, even if

encoder and decoder architectures are trivially coupled to mirror one another. Following

the earlier made arguments about maintaining a desired mismatch between approximate
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(a) Original image

(b) Crack: baseline (c) Crack: variational

Figure 2.4: Example for semantic segmentation through sliding window prediction of a
deep neural network trained for image patch classification. The confidence maps for a pixel
being attributed to each defect class are qualitatively contrasted for the conventional purely
discriminative and the variational Bayesian generative model.

or aggregate posterior and prior, naively including a reinforcement reward signal to sim-

ply minimize the KLD can thus quickly lead to a collapse of the model, as any encoder

can simply learn to project anything into a Gaussian distribution and discard the inherent

structure of the data. The corresponding pipeline for prediction is visually summarized in

figure 2.3, where the convolutional encoder and spatial pyramid correspond to the original

meta-learned elements.

A respective qualitative improvement of the obtained segmentation in comparison to the

former purely discriminative model, that does not explicitly care about the data distribu-

tion, is shown in figures 2.4 and 2.5. In the first example we can observe that a previously

missed crack is now estimated considerably more accurately, alas without overcoming the

inherent limitation of the patch based sliding window technique naturally overestimating

the extent of the defect. In the second example we can see that the explicit encoding of the
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(a) Original image (b) Exposed bar: baseline (c) Exposed bar: variational

(d) Corrosion: baseline (e) Corrosion: variational

Figure 2.5: Example for semantic segmentation through sliding window prediction of a
deep neural network trained for image patch classification. The confidence maps for a
pixel being attributed to each defect class are qualitatively contrasted for the conventional
purely discriminative and the variational Bayesian generative model. The latter can be a
remedy in further distinction of largely overlapping classes (top), but still regularly contains
misclassification (bottom).

generative factors seems to aid in further separating the individual classes. Although the

red graffiti present in the image is still largely misclassified as a corrosion stain, the latter

seems to no longer be innately tied to the presence of an exposed bar. This can be intu-

itively understood when looking at the encoded latent space distribution. The respective 60

dimensional Gaussian mean and standard deviation vectors, aggregated and averaged over

the encoding of the entire train dataset, are visualized in figure 2.6. Here, the distribution

for some classes such as crack and efflorescence is immediately distinguishable. In contrast,
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Figure 2.6: 60-dimensional Gaussian mean and standard deviation encodings averaged over
the entire CODEBRIM training dataset. It is observable how some defect categories are
clearly separable, whereas others have strong distributional overlap and distinction is based
on nuances in particular modes. Figure taken from Mundt et al. (2018a).

the heavily interconnected classes of exposed bar, spalling and corrosion stain share many

of the distribution’s modes and deviate only lightly in particular dimensions.

Once again the generative model’s latent space can now be used to construct extreme value

theory based probabilistic meta-models to detect distribution outliers. Figure 2.7 shows an

untangled illustration of the euclidean distance distribution to the just illustrated average

latent class vectors for the popular ImageNet dataset (Russakovsky et al., 2015) and the in-

dividual CODEBRIM data instances for which the model has been trained. Based on much

larger distances and discrepancy to the learned data distribution, the unseen unknown Im-

ageNet classes are clearly discernible from the observed CODEBRIM data instances.

Naturally, this is a somewhat contrived example as it is perhaps not expected that a model

employed for concrete infrastructure defect detection suddenly encounters images of e.g.

the myriad of different dog categories comprising the ImageNet dataset. However, note that

the figure is shown to further corroborate the quantitative intuition behind the method and

recall that experiments of earlier work (Mundt et al., 2019b, 2020b) have shown that simple

predictive heuristics would catastrophically fail, even on such a presumably trivial scenario.

In practice, the mechanism can of course be applied to more meaningful data. Figures 2.8,

2.9 and 2.10 show three examples where the utility and necessity of the open set recognition

is more natural. These examples have deliberately been picked to showcase prototypical use-

cases. The first one, figure 2.8, features the generally desired scenario. For the majority, the
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Figure 2.7: Per class euclidean distance distribution of processed CODEBRIM and ImageNet
data instances to the average encoded Gaussian distribution mean and standard devia-
tion vectors of a model trained on CODEBRIM. The unseen unknown ImageNet objects
are clearly distinguishable from the trained material defects. Figure appeared originally in
Mundt et al. (2018a).

presence of a crack is correctly predicted and the open set recognition algorithm labels every

region of the image as statistically similar to the data observed during training. The second

example, figure 2.9, shows an instance where assigning an outlier likelihood corresponds

to a partial remedy for robust prediction. It is the same image as previously shown in figure

2.1. A corrosion stain is correctly predicted and parts of the image are falsely identified

as containing efflorescence due to surface markings. As the corner of the image is slightly

blurred and significantly darker than the bright and homogeneously illuminated images of

the CODEBRIM dataset, the corresponding area is flagged as statistically deviating. This

could give a hypothetical explanation for the misprediction of efflorescence and crack at

the border of this region. Alas, the false predictions for exposed bar and spalling would be

similarly unaffected, see figure 2.1. This intuitively illustrates that not all false predictions

can naively be associated with statistical deviations with respect to the training set and
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(a) Original image (b) Crack segmentation (c) Open set outlier probability

Figure 2.8: Example of semantic segmentation with associated open set outlier probability.
A crack defect is predicted and the open set probability map suggests that every region
is statistically similar to the observed training distribution. Figure appeared originally in
Mundt et al. (2018a).

inherent model limitations inevitably persist. The last example is the most obvious, but

also crucial example that nevertheless needs to be intercepted. It is an instance where light

shining directly into the camera at time of capture led to heavy over-exposure of the image.

Although the presence of a crack is partially predicted correctly, there are also several other

regions that lack correct output. Independently of whether the prediction of this particular

instance is correct or not, prediction of such statistically completely deviating images, for

which the model cannot be expected to perform well, should be discarded or at least set

aside for human revision. Adoption of the proposed deep neural network models with open

set recognition capability could thus be one aspect towards improved interaction between

practical machine learning applications and human experts.
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(a) Original image (b) Corrosion segmentation

(c) Efflorescence segmentation (d) Open set outlier probability

Figure 2.9: Example of semantic segmentation with associated open set outlier probability.
Panels (b) and (c) correspond to the semantic segmentation shown in figure 2.1. The open
set probability shows large outlier likelihood for the badly illuminated and slightly blurred
image corner. This information is an indicator to flag the obtained false efflorescence seg-
mentation as untrustworthy, whereas the correctly identified corrosion stain segmentation
remains unaffected. Figure adapted from Mundt et al. (2018a).
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(a) Original image

(b) Crack segmentation (c) Open set outlier probability

Figure 2.10: Example of semantic segmentation with associated open set outlier probability.
In this scenario, the presence of a crack is identified correctly in some parts, although heavily
overestimated. However, the open set outlier probability flags the entire image as unseen
and statistically deviating, likely due to the heavy camera over-exposure. Figure appeared
originally in Mundt et al. (2018a).
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Chapter 3

CONSOLIDATING VIEWPOINTS: DESIGNING

NEURAL NETWORKS FOR CONTINUAL,

ACTIVE LEARNING IN AN OPEN WORLD
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Abstract

Current deep learning methods are regarded as favorable if they empirically perform well
on dedicated test sets. This mentality is seamlessly reflected in the resurfacing area of
continual learning, where consecutively arriving data is investigated. The core challenge
is framed as protecting previously acquired representations from being catastrophically
forgotten. However, comparison of individual methods is nevertheless performed in isolation
from the real world by monitoring accumulated benchmark test set performance. The
closed world assumption remains predominant, i.e. models are evaluated on data that
is guaranteed to originate from the same distribution as used for training. This poses
a massive challenge as neural networks are well known to provide overconfident false
predictions on unknown and corrupted instances. In this work we argue that notable lessons
from open set recognition, identifying unknown examples outside of the observed set, and
the adjacent field of active learning, querying data to maximize the expected performance
gain, are frequently overlooked in the deep learning era. Hence, we propose a consolidated
view to bridge continual learning, active learning and open set recognition in deep neural
networks. We empirically demonstrate resulting synergistic improvements when alleviating
catastrophic forgetting, querying data, selecting task orders, while exhibiting robust open
world application.

Keywords: Continual Deep Learning, Lifelong Machine Learning, Active Learning, Open
Set Recognition, Open World Learning
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1. Introduction

With the ongoing maturing of practical machine learning systems, the community has
found a resurfacing interest in continual learning (Thrun, 1996a,b). In contrast to the
broadly practised learning in isolation, where the algorithmic training phase of a system
is constrained to a single stage based on a previously collected i.i.d. dataset, continuous
learning entails a learning process that leverages data as it arrives over time. In spite of
this paradigm having found various application in many machine learning systems, for
a review see the recent book on lifelong machine learning by Chen and Liu (2017), the
advent of deep learning seems to have steered the focus of current research efforts towards a
phenomenon known as ”catastrophic interference” or alternatively ”catastrophic forgetting”
(McCloskey and Cohen, 1989; Ratcliff, 1990), as suggested by recent reviews (Farquhar and
Gal, 2018b; Parisi et al., 2019; De Lange et al., 2019; Lesort et al., 2020) and empirical
surveys of deep continual learning (De Lange et al., 2019; Lesort et al., 2019; Pfülb and
Gepperth, 2019). The latter is an effect particular to machine learning models that update
their parameters greedily according to the presented data population, such as a neural
network iteratively updating its weights with stochastic gradient estimates. When including
continuously arriving data that leads to any shift in the data distribution, the set of learned
representations is guided unidirectionally towards approximating any task’s solution on
the data instances the system is presently being exposed to. The natural consequence is
superseding former learned representations, resulting in an abrupt forgetting of previously
acquired information.

Whereas current works predominantly concentrate on alleviating such forgetting in
continual deep learning through the design of specialized mechanisms, we argue that there
is a growing risk towards a very different form of catastrophic forgetting, namely the danger
of forgetting the lessons learned from past literature. Notwithstanding the commendable
efforts towards preserving neural network representations in continuous training, such a
high focus is given on the practical requirements and trade-offs beyond metrics that only
capture catastrophic forgetting (Kemker et al., 2018), e.g. inclusion of memory footprint,
computational cost, cost of data storage, task sequence length and amount of training
iterations, . . . (Dı́az-Rodŕıguez et al., 2018; Farquhar and Gal, 2018b), that it could almost
be seen as misleading when most current systems break immediately if unseen unknown
data or minor corruptions are encountered during deployment (Matan et al., 1990; Boult
et al., 2019; Hendrycks and Dietterich, 2019). The seemingly omnipresent assumption of a
closed world, i.e. the belief that the model will always exclusively encounter data that stems
from the same data distribution as encountered during training, is highly unrealistic in the
real open world, where data can vary to extents that are impractical to capture into training
sets or users have the ability to give almost arbitrary input to systems for prediction. In
spite of the inevitable danger of neural networks generating entirely meaningless predictions
when encountering unseen unknown data instances, a well known fact that has been exposed
for multiple decades (Matan et al., 1990), current efforts towards benchmarking continual
learning conveniently circumvent this challenge. Select exceptions attempt to solve the tasks
of recognizing unseen and unknown examples, rejecting nonsensical predictions or setting
them aside for later use, typically summarized under the umbrella of open set recognition.
However, the majority of existing deep continual learning systems remain black boxes that
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unfortunately do not exhibit desirable robustness to respective miss-predictions on unknown
data, dataset outliers or commonly present image corruptions (Hendrycks and Dietterich,
2019).

Apart from current benchmarking practices still being constrained to the closed world,
another unfortunate trend is a lack of understanding for the nature of created continual
learning datasets. Both continual generative modelling, such as the works by Shin et al.
(2017); Achille et al. (2018); Farquhar and Gal (2018a); Nguyen et al. (2018); Wu et al.
(2018); Zhai et al. (2019), as well as the bulk of class incremental continuous learning works,
such as presented by Li and Hoiem (2016); Kirkpatrick et al. (2017); Rebuffi et al. (2017);
Lopez-Paz and Ranzato (2017); Kemker et al. (2018); Kemker and Kanan (2018); Xiang
et al. (2019), generally investigate sequentialized versions of time-tested visual classification
benchmarks such as MNIST (LeCun et al., 1998), CIFAR (Krizhevsky, 2009) or ImageNet
(Russakovsky et al., 2015), where individual classes are simply split into disjoint sets and
are shown in sequence. In favor of retaining comparability on a benchmark, questions
about the effect of task ordering or the impact of overlap between tasks are routinely
overlooked. Notably, lessons learned from the adjacent field of active machine learning,
a particular form of semi-supervised learning, do not seem to be integrated into modern
continual learning practice. In active learning the objective is to learn to incrementally find
the best approximation to a task’s solution under the challenge of letting the system itself
query what data to include next. As such, it can be seen as an antagonist to alleviating
catastrophic forgetting. Whereas current continual learning is occupied with maintaining the
information acquired in each step without endlessly accumulating all data, active learning
has focused on the complementary question of identifying suitable data for the inclusion
into an incrementally training system. Although early seminal works in active learning have
rapidly identified the challenges of robust application and pitfalls faced through the use
of heuristics (Roy and McCallum, 2001; Settles and Craven, 2008; Li and Guo, 2013), the
latter are nonetheless once again dominant in the era of deep learning (Beluch et al., 2018;
Geifman and El-Yaniv, 2019; Gal and Ghahramani, 2015; Srivastava et al., 2014) and the
challenges are faced anew.

In this work we make a first effort towards a principled and consolidated view of deep
continual learning, active learning and learning in the open world. We start by providing a
review of each topic in isolation and then proceed to identify previously learned lessons that
appear to receive less attention in modern deep learning. We will continue to argue that
these seemingly separate topics do not only benefit from the viewpoint of the other, but
should be regarded in conjunction. In this sense, we propose to extend current continual
learning practices towards a broader view of continual learning as an umbrella term that
naturally encompasses and builds upon prior active learning and open set recognition work.
Whereas the main purpose of this paper is not to introduce novel techniques or advocate
one specific method as a universal solution, we adapt and extend a recently proposed
approach based on variational Bayesian inference in neural networks (Mundt et al., 2019a,b)
to illustrate one potential choice towards a comprehensive framework. Importantly, it
serves as the basis of argumentation in an effort to illustrate the necessity of generative
modelling as a key component in deep learning systems. We highlight the importance of the
viewpoints developed in this paper with empirical demonstrations and outline implications
and promising directions for future research.
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2. Preamble: continual machine learning

It is likely that the idea of continual machine learning dates back to a similar period of
time to the surfacing of machine learning itself. There has been many attempts at defining
concepts such as continuous, lifelong or continual machine learning. Often these terms feature
negligible nuances and can generally be taken as synonyms. However it seems difficult, and
perhaps is not constructive, to attempt to pin-point the exact onset of when something
should be referred to as continual or lifelong learning. Instead, in this section, we will present
definitions and related paradigms that have come to enjoy great popularity in the machine
learning community. Some of these paradigms are already, or if not yet, should be considered
subsets of continual learning (CL) and as a standalone paradigm vary primarily in their
current evaluation protocols. We will briefly introduce each of these paradigms and then
proceed to summarize and identify characteristic differences with respect to the broader
term of modern continual learning.

The first widely circulated definition of lifelong machine learning (LML) originated in
the work proposed by Thrun (1996a,b). This definition is as follows:

Definition 1 Thrun (1996a,b) - Lifelong Machine Learning: The system has performed N
tasks. When faced with the (N+1)th task, it uses the knowledge gained from the N tasks to
help the (N+1)th task.

Here, the unmentioned quintessence is that the data of the first N tasks is generally
assumed to be no longer available at the time of learning about the N + 1th task, i.e.
observed data is not just endlessly accumulated and stored explicitly. While this definition
captures the basic idea behind continued learning, it is also ambiguous with respect to the
definition of task and knowledge. There has been many attempts to find a more concise
definition across the literature over the years. One of the more succinct, yet still decently
generic definitions followed in the work of Chen and Liu (2017):

Definition 2 Chen and Liu (2017) - Lifelong Machine Learning: Lifelong Machine Learning
is a continuous learning process. At any time point, the learner performed a sequence of
N learning tasks, T1, T2, . . . , TN . These tasks can be of the same type or different types and
from the same domain or different domains. When faced with the (N+1)th task TN+1 (which
is called the new or current task) with its data DN+1, the learner can leverage past knowledge
in the knowledge base (KB) to help learn TN+1. The objective of LML is usually to optimize
the performance on the new task TN+1, but it can optimize any task by treating the rest of the
tasks as previous tasks. KB maintains the knowledge learned and accumulated from learning
the previous task. After the completion of learning TN+1, KB is updated with the knowledge
(e.g. intermediate as well as the final results) gained from learning TN+1. The updating
can involve inconsistency checking, reasoning, and meta-mining of additional higher-level
knowledge.

The authors of this latter definition argue that this definition can be summarized into
three key characteristics: continuous learning; knowledge accumulation and maintenance
in the knowledge base (KB); the ability to use past knowledge to help future learning. In
contrast to the previous definition by Thrun (1996a,b), mainly the notion of a maintained
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1 Continuous learning

2

Knowledge accumulation
and maintenance in the
knowledge base (KB)

3
The ability to use past knowl-
edge to help future learning

4
The ability to dis-
cover new tasks

5
The ability to learn while

working or to learn on the job

Figure 1: The five main pillars of lifelong machine learning according to Chen and Liu
(2017). Note that the first three pillars were originally proposed and the last two added
recently in a second edition redefinition to emphasize new frontiers.

knowledge base is introduced. Here LML is now defined such that at any given point in time
performance can be optimized for any given task by treating all other tasks as previously
presented, irrespective of their original order. Whereas the original definition unidirectionally
optimized towards benefiting TN+1 and thus allowing for performance of previous tasks
to degrade over time, Chen and Liu (2017) explicitly formulate the preservation of all
accumulated information as a fundamental goal of LML. In a recent second iteration of this
definition, the authors have added two additional desiderata: the ability to discover new
tasks and the ability to learn while working. We have visualized these five essential pillars
of LML in figure 1.

Although acknowledged by the authors themselves, this extended definition still lacks
with respect to certain aspects:

• a coherent description of domain. This is currently not used unanimously in the
literature and often applied interchangeably with task.

• a formalization of knowledge or respective representation thereof in the KB. Typically
this is practically constrained to specific applications.
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• the essential question of evaluation practice, i.e. choosing, ordering and evaluating
the sequence of tasks. This generally requires a human in the loop and considered
evaluation scenarios can vary immensely between individual works.

There are many more encountered open questions with LML in practice, especially with
respect to modern machine learning algorithms based on deep learning. As the latter is
primarily based on the use of neural networks (NN), they will constitute the main focus
of this paper. While the presented arguments will often be of generic nature, this has
the advantage that the concept of a knowledge base and its maintenance collapses to the
question of managing the model’s learned representations. At the same time, this can make
the question of how to leverage prior information quite involved as representations in NNs
are densely entangled within layers, as well as distributed hierarchically across layers. Before
delving into a review of contemporary works, their merits and current limitations, we will
present various popular paradigms that are related to the former definitions. This will then
be followed by a brief summary on evaluation practices to highlight the nuances.

2.1 Related paradigms: subsets of continual learning

Over the course of machine learning development, various different paradigms and evaluation
practices have evolved. Throughout this paper, we will come to the already apparent
conclusion that CL should ideally be defined as a superset. We will make an attempt towards
such a definition at the end of this manuscript. For now, we start by introducing commonly
considered machine learning paradigms. As a word of caution, the following definitions
should be regarded as non-exhaustive. Even though we have made a considerable effort to
provide a comprehensive amount of references, the practical use of certain terminology in
particular may still vary largely from community to community. The following shall thus
reflect the common use in modern deep learning.

We begin with transfer learning as it can intuitively be regarded as the most related
concept. Originally, transfer learning has been proposed as converting a weak learner,
one that performs marginally better than random guessing, to one that produces stronger
hypotheses (Schapire, 1990). The corresponding formulation that is more specific to neural
networks is how the representations obtained by learning through backpropagation can be
”recycled” for new tasks (Pratt et al., 1991; Pratt, 1993). This challenge initially wasn’t
unanimously referred to as transfer learning, but often was referred to as boosting (Freund
and Schapire, 1997). A pre-deep learning survey (Pan and Yang, 2010) has summarized
efforts and formalized transfer learning in the way used today:

Definition 3 Transfer Learning (Pan and Yang, 2010): Given a source domain DS and
learning task TS, a target domain DT and learning task TT , transfer learning aims to help
improve the learning of the target predictive function fT () in DT using the knowledge in DS

and TS, where DS 6= DT , or TS 6= TT .

Here, Pan and Yang (2010) formalize the use of the terms domain and task in the context
of supervised transfer with datasets consisting of N data instances. They are defined by the
following quote: ”Given a specific domain, D = {X , p(x)}, a task consists of two components:
a label space Y and an objective predictive function f() (denoted by T = {Y, f()}), which is
not observed but can be learned from the training data, which consist of pairs {x(n), y(n)},
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where x(n) ∈ X and y(n) ∈ Y ” (Pan and Yang, 2010). The concept of a domain is therefore
defined as the pair of marginal data distribution p(x) and a corresponding feature space
X . As it is generally implied that XS 6= XT or respectively pS(x) 6= pT (x), an effortless
translation of transfer learning to unsupervised or reinforcement learning settings is possible.
Without further extensions, this definition of transfer learning is essentially a narrowed down
version of the primitive lifelong learning definition 1, with the nuance that there typically
only exist two tasks. It is similarly unidirectional in the sense that the source task is only
used to improve learning the new target.

Since then an almost unending amount of works has sprouted, initiated by works that
have started the investigation of transferability of deep neural network features beyond
low-level patterns (Oquab et al., 2014; Yosinski et al., 2014), i.e. the higher abstractions and
task-specific information believed to be encoded in deeper layers of the hierarchy. Weiss et al.
(2016) have provided a survey on recent advances. In this context of feature transferability,
a variant named multi-task learning (MTL) has emerged. Caruana (1997) summarizes the
goal of MTL succinctly: ”MTL improves generalization by leveraging the domain-specific
information contained in the training signals of related tasks”. Early works sometimes
referred to this as including ”hints” (Suddarth and Kergosien, 1990; Abu-Mostafa, 1990) to
improve learning. In contrast to transfer learning, generally multiple tasks are considered,
with the requirement of the model performing well on all of them. However, in the MTL
setting, tasks are all trained jointly and no sequence is assumed, corresponding to typical
isolated learning practice. In modern day deep nets, MTL thus culminates in the question
of how to exactly share the abundant amount of parameters in the architectural hierarchy,
see e.g. the overview provided by Ruder (2017) for variants of sharing architecture portions.

More recently, a very specific form of transfer or multi-task learning has evolved. Few-shot
Learning (Fei-Fei et al., 2006) developed due to the inability of deep learning techniques to
cope with small datasets and empirical risk optimization being unrealiable in small sample
regimes. Wang et al. (2020) summarized few-shot learning as a type of machine learning
problem, where the dataset only contains a limited number of examples with supervised
information for the target domain (and generally no constraints on the source domain). This
implies that few-shot learning also tackles the issue of rare cases, apart from computational
cost and the issue of data collection and labelling. When there is only one example with
a label, it is commonly referred to as one-shot learning (Fink, 2005; Fei-Fei et al., 2006).
Respectively, if no supervised example is provided, the scenario is referred to as zero-shot
learning (Lampert et al., 2009). These scenarios are typically regarded under the hood of
transfer learning with additional constraints on data availability.

Apart from concerns about reasonably sized datasets, a different concern is as old as the
quest for stochastic approximations itself, namely when to conduct updates. Already in the
work of Hebb (1949), online learning, i.e. incorporating information immediately as data
arrives as opposed to collecting batches before updating a model, was a natural requirement.
This question has been elemental in later formalization of frameworks for empirical risk
optimization (Tsypkin, 1971; Vapnik, 1982). Several works have elaborated on challenges
in online learning in NNs (Heskes and Kappen, 1993), more generally online learning and
stochastic approximations (Bottou, 1999; Saad, 1999) or specifically online gradient descent
(Zinkevich, 2003), the workhorse of modern optimization. Given the instance based update
nature, online learning in neural networks is inherently tied to the question of how to avoid
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catastrophic interference. It is thus not surprising that with the advent of DL immediate
attempts have been made to consider online learning in DNNs (Zhou et al., 2012), see a
recent survey by Sahoo et al. (2018), but the quest for online learning nevertheless still
revolves around the interaction between online desiderata and stochastic approximations, or
the stochastic gradient descent with backpropagation procedure in particular.

While each paradigm arose for a reason and comes with its own value, namely that of
providing better distinction to other works in concrete evaluation scenarios, it is important to
remember that the emerging taxonomy is full of nuances that are at times indistinguishable in
a more general framework. In consequence, evaluation protocols are central to any discussion.
We therefore proceed with details of common evaluation methods in deep continual learning
and then summarize the main differences to the paradigms introduced in this section for a
compact overview.

2.2 Continual learning evaluation

In contrast to isolated machine learning, where the evaluation scenario can often be defined
in a straightforward manner by employing performance or satisfying task metrics, continual
learning does not directly allow for such an approach. Given that the interest lies in
accumulation of information, there are many factors to consider in evaluation of corresponding
algorithms. In general it is important to monitor the currently introduced task, yet also
investigate semantic drift on previous tasks. One should consider the gain and the ability
to leverage representations from task to task in progressive experimentation, yet take note
of the task sequence that is crucial to the specific solution obtained. When introducing
more tasks, the transfer behavior should be carefully examined, yet interpretation should be
treated with caution as not all introduced tasks yield immediate benefits and thus a larger
amount of tasks needs to be brought in to the system.

Before continuing with the discussion of evaluation difficulties and metrics, let us take
a brief look at some currently employed evaluation methodology (Chen and Liu, 2017),
summarized visually in figure 2. It seems that such an evaluation protocol is still largely
inspired by the isolated machine learning practices. Whereas the notion of information
transfer and the sequence of tasks is considered and benchmarked against isolated learning
algorithms, such an approach to evaluating the value of continual learning algorithms
disregards the relevance of the task sequence (or permutation thereof), choice of tasks or
choice of data. Accordingly, recently developed experimental protocols in deep continual
learning (Farquhar and Gal, 2018b; Kemker et al., 2018; Parisi et al., 2019; De Lange
et al., 2019; Lesort et al., 2019; Pfülb and Gepperth, 2019; Lesort et al., 2020) seem to
mainly occupy themselves with evaluation procedures that are heavily inspired by decades
of benchmarking learning algorithms in isolation. As a reminder to the reader, we refer to
isolated learning as the practice of end-to-end training on a static dataset and evaluation on
its predefined test set, sans changes over time. As such, the majority of current empirical
examination equates continual learning benchmarks with the monitoring of catastrophic
forgetting in scenarios that are simple sequentialized versions of popular datasets, similarly to
the steps shown in figure 2. With few exceptions, this means that existing datasets are simply
split into t = 1, . . . , T sets, where each of these sets is referred to as one task. These task- or
time-stamped sets are then presented one by one to a deep learning system. Typically, each
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Previous
tasks

Run machine learning algo-
rithms on previous tasks one at

a time. Retain knowledge in KB.

New
task

Run machine learning al-
gorithms on new task.

Leverage knowledge in KB.

Baseline
algorithms

Run baseline algorithms: iso-
lated learning on only the new

task and other LML approaches.

Analyze
results

Compare the approach to other
lifelong learning approaches

and isolated learning schemes.

Figure 2: A widely used approach to evaluation of lifelong machine learning algorithms in
the literature (Chen and Liu, 2017).

step is assumed to consist of a disjoint set of classes or entire datasets, usually independently
of whether the probed task is of supervised, unsupervised or semi-supervised nature, see
figure 3 for an illustration. Respectively analyzed metrics (Kemker et al., 2018) are based
on this dataset sequentialization and routinely monitor e.g. the degradation of a first task’s
classification accuracy, the ability to encode new task increments, the overall development
of a chosen metric as tasks accumulate or various similar measures to gain an intuition for
generative models. It is obvious how this is inspired by isolated learning as these metrics
can simply be extracted from a conventional confusion matrix. For this reason, multiple
efforts have been made to emphasize the need for more diverse evaluation (Dı́az-Rodŕıguez
et al., 2018; Farquhar and Gal, 2018b). Alas the persisting focus on catastrophic forgetting
remains visible from the formulated criteria and questions that are deemed necessary to
compare methods (Dı́az-Rodŕıguez et al., 2018; Farquhar and Gal, 2018b):

• Memory consumption: amount of required memory.

• Amount of stored data: how much past data does the method need to retain explicitly?

• Task boundaries: does the method require clear task divisions?

• Prediction oracle: does the method require knowing the task label for prediction?
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Task 1 Task 2 Task 3

Figure 3: A typical continual learning scenario dividing common benchmark datasets
into a sequence of sub-tasks. Here, the digits one through six from the MNIST dataset
(LeCun et al., 1998) and the Wordnet ids ”n01443537”: goldfish, ”n01641577”: bullfrog,
”n01644900”: tailed frog, ”n01910747”: jellyfish, ”n09246464”: cliff, ”n02814860”: beacon
from the ImageNet dataset (Russakovsky et al., 2015). Common evaluation either follows the
filled dark arrows to incrementally learn one dataset or alternatively also switches dataset,
as denoted by the hollow light arrows.

• Amount of forgetting: how much information is retained as measured through proxy

metrics.

• Forward transfer: do older tasks accelerate learning of new concepts?

• Backward transfer: do new tasks benefit old tasks?

At this stage the reader might already notice that some of these listed items are very
particular to specific practices. For example, the idea that a prediction oracle would be
required in the first place in order to give task labels is an artefact of several works that
consider so called multi-head scenarios. The latter makes use of separate disconnected
classifiers per task to circumvent explicitly dealing with task prediction interdependence.
There exist recent reviews (De Lange et al., 2019) that base their entire evaluation on such
a scenario. Empirical surveys in the context of robotics (Lesort et al., 2019), generative
models (Lesort et al., 2020) follow similar trends and conduct a ”comprehensive application-
oriented study of catastrophic forgetting” (Pfülb and Gepperth, 2019). With catastrophic
forgetting being the sole focus, these works at best cover the first three of the five earlier
formulated continual learning pillars 1, if and only if they also conduct an analysis on how
specific tasks benefit each other. The recent critiques that formulated above questions
(Dı́az-Rodŕıguez et al., 2018; Farquhar and Gal, 2018b) therefore present valid attempts
to rid current evaluation from such practices that can be seen as inherently violating real
continual learning scenarios. Nevertheless, we argue that there is even larger factors at play
that transcend these arguments. Although transfer and the sequential nature is considered
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and benchmarked against isolated learning, crucial aspects such as the relevance of the task
order (or permutation thereof), choice of tasks, choice of data and particularly any form
of robustness in an open world and with respect to perturbations or attack scenarios are
disregarded altogether. Open research areas such as curriculum learning (Bengio et al.,
2009), i.e. benefiting from a data ordering of increasing complexity, open world learning
(Bendale and Boult, 2016), i.e. equipping the model with awareness of unseen unknown data,
and active learning, i.e. self-selecting data to query for the next step, try to address these
crucial elements. We argue that it is imperative to take these perspectives into account in
the evaluation of continual learning algorithms. Before proceeding to categorize individual
works and consequently making an attempt at connecting the paradigms, we give a brief
summary of the present evaluation differences.

• Transfer Learning: Leverage a source task’s representations to accelerate learning
or improve a current target task.
Difference to CL: unidirectional knowledge transfer between two tasks.

• Multi-task Learning: Exploit tasks relatedness by forming a joint hypothesis space.
Difference to CL: isolated learning with multiple tasks

• Online Learning: Retaining and improving a task where data arrives sequentially
and real-time constraints require online adaptation.
Difference to CL: typically continued learning of one task over time, however generally
applicable to any paradigm.

• Few-shot Learning: Transfer or multi-task learning in a small data regime.
Difference to CL: unidirectional transfer or isolation similar to transfer or multi-task
learning.

• Curriculum Learning: Finding a suitable curriculum that accelerates or improves
training by means of introducing schedules of increasing data instance difficulty or
data instance task specificity.
Difference to CL: isolated learning that prioritizes certain data instances

• Open World Learning: At any particular point in time the model needs to be able
to identify and reject unseen data belonging to unknown tasks. These could be set
aside and learned at a later stage.
Difference to CL: Current CL is typically evaluated in a closed world scenario.

• Active Learning: An iterative form of supervised learning, where the learner can
query a user to provide labels for a subset of unlabelled examples that are deemed to
yield the largest knowledge gain.
Difference to CL: data and sampling efficiency is rarely taken into account in CL on
predefined benchmarks.

3. An overview and review of three perspectives

We provide a review of the plethora of practices and historically grown methods in the
context of deep continual learning, active learning and open set recognition. What may at
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first seem like a tour de force review for the reader, is intended to first gain an overview
of the vast landscape and the deluge of options. This will aid in delving into details of
potential pitfalls and shortcomings, but also in highlighting synergies and the necessity
for a consolidated view in consecutive sections. As the latter is the primary focus of this
work we will limit our survey to concise summaries and will forgo lengthy elaborations on
methodological details that are not essential to a generic understanding.

3.1 Continual learning

As indicated in the introductory section, continual learning should ideally encompass a
variety of research questions. Whereas our next section will continue to argue that currently
considered scenarios are too reductive, resulting in potential difficulty to chose among existing
algorithmic options, we will stick to the typical categorization of existing deep continual
works into the three categories of regularization, rehearsal and architectural approaches,
in consistency with recent reviews (Parisi et al., 2019; De Lange et al., 2019; Lesort et al.,
2020). We note that a strict organization into these groups is not always possible and hence
also provide a forth category for works that combine multiple methods. In later sections we
will argue that this is not only advantageous, but conceivably a necessity.

3.1.1 Regularization:

Continual learning approaches based on regularization aim to strike a balance between
protecting already learned representations, while granting sufficient flexibility for new
information to be encoded. Intuitively, a meaningful balance should be attainable for tasks
with sufficient overlap in their high dimensional embeddings, i.e. if a considerable amount of
the learned representations are shareable. Existing approaches can be further subdivided
into regularization that explicitly protects parameters, which we refer to as structural, which
constrains changes on every level of a model architecture, or functional, that is preserving a
model’s output for seen tasks while ensuring full adaptability with respect to each individual
model stage that leads to the prediction.

Structural Inspired by the neuroscientific stability-plasticity dilemma (Hebb, 1949), suc-
cessful use of regularization of deep learning models for continual learning requires carefully
balancing the trade-off between overwriting acquired representations in favor of sensitivity to
new information and preservation of already existing formed patterns. Elastic Weight Con-
solidation (EWC) (Kirkpatrick et al., 2017) aims to achieve this balance by estimating each
parameter’s importance through the use of Fisher information and respectively discouraging
updates for parameters with greatest task specificity. Synaptic Intelligence (SI) (Zenke et al.,
2017) and Memory Aware Synapses (MAS) (Aljundi et al., 2018), where the biologically
inspired term synapse is used synonymously with parameter, follow a similar approach by
explicitly equipping each parameter with additional importance measures that keep track
of past improvements to the objective. Asymmetric Loss Approximation with Single-Side
Overestimation (ALASSO) (Park et al., 2019) can be seen as a direct extension to SI and
aims to mitigate its limitations by introducing an asymmetric loss approximation that is
motivated from empirical observations. Riemannian Walk (RWalk) has generalized EWC and
SI by taking into account both the Fisher information based importance, from a perspective
of computing distances in the induced Riemann manifold, and the optimization trajectory
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based importance score. Incremental Moment Matching (IMM) (Lee et al., 2017) approaches
structural regularization from a perspective of Bayesian approximations and matching the
moments of tasks’ posterior distributions. Uncertainty based Continual Learning (UCL)
(Ahn et al., 2019) makes use of Bayesian uncertainty estimates to adaptively regularize
weights online. Similarly, Uncertainty-guided Continual Bayesian Neural Networks (UCB)
(Ebrahimi et al., 2020) adapts the learning rate in dependence on the uncertainty defined in
the probability distribution of the weights.

Functional Functional regularization approaches are generally inspired by ”knowledge
distillation” (Hinton et al., 2014), an approach originally proposed for model compression.
A distillation loss is introduced by storing the prediction of a data sample for future use
as a so called soft target. In learning without forgetting (LWF) (Li and Hoiem, 2016) for
class incremental continual learning, the soft targets for existing classes are calculated using
newly arriving data, even if these predictions might be nonsensical as the freshly added
classes do not get correctly predicted yet, in hopes of regularizing towards preserving the
output for old tasks. Encoder based lifelong learning (EBLL) (Rannen et al., 2017) applies
this concept to the unsupervised learning scenario by applying distillation to autoencoder
reconstructions. Knowledge distillation seems to rarely be employed in isolation, but as
will be apparent from the list of upcoming combined approaches is a popular technique in
conjunction with other mechanisms.

3.1.2 Rehearsal:

As the name implies, rehearsal techniques for continual learning aim to preserve encoded
information by replaying data from already seen tasks. Trivially, continual learning could be
solved by simply storing and replaying all seen data, albeit at usually intolerable memory
expense and growing computation time. Accordingly, a core aspect of rehearsal methods is
to find a suitable subset of data that best approximates the entire observed data distribution,
commonly referred to as selection of exemplars or construction of a core set. Alternatively, a
generative modelling approach can be used to generates instances from a learned latent repre-
sentation as an encoding of the observed data distribution. Most replay techniques indicate
their inspiration to be drawn from the complex biological interplay between hippocampus
and neocortex, wake + sleep cycles and dreaming in the brain.

Exemplar Rehearsal GeppNet (Gepperth and Karaoguz, 2016) explores the use of a dual-
memory system that implements various short and long-term memory storages that serve
to store newly arriving information or provide dedicated replay cycles of previously stored
data. Selective experience replay (SER) (Isele and Cosgun, 2018) concentrates on exemplar
selection techniques and investigates trade-offs between preferring surprising experiences over
rewarding ones, or maximizing distribution coverage. Gradient Episodic Memory (GEM)
(Lopez-Paz and Ranzato, 2017) extends the use of a memory that gets replayed episodically
with constraints on the gradients to be non-conflicting with updates for previous tasks. A
respective extension called Averaged Gradient Episodic Memory (A-GEM) has introduced
significant improvements on computational and memory cost for optimization under these
constraints. CLEAR (Rolnick et al., 2018) uses experience replay together with off-policy
learning to preserve old information and on-policy learning to learn new experiences in deep
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reinforcement learning. Bias Correction (BiC) (Wu et al., 2019) rehearses exemplars and
additionally corrects for biases in the classification layer.

Generative Generative replay is a specific version of rehearsal where the data to be
rehearsed consists entirely of instances sampled from a generative model. Rather than
making use of an episodic memory of previously seen data, generated samples of former
tasks are typically interleaved with the current task’s real data during training. The most
elementary version of this procedure was coined pseudo-rehearsal (Robins, 1995), where the
generative model is of simple nature. Here, binary patterns are sampled at random, their
target value or label computed given the current state of the classifier, and the classifier then
needs to maintain the discrimination on these patterns and learn new classes. Such pseudo-
rehearsal has then successfully been leveraged in brain-inspired dual-memory architectures
that use two distinct networks for acquisition and storage of information with generative
rehearsal to consolidate the memory. Two early examples include pseudo recurrent networks
(French, 1997) and coupling two reverberating neural networks (Ans and Rousset, 1997).
Deep Generative Replay (DGR) (Shin et al., 2017) have introduced a deep learning variant
of this practice, where the generative model is taken to be a separate generative adversarial
network (Goodfellow et al., 2014) that gets trained in alternation with a classification model.
Replay through Feedback (RfF) (van de Ven and Tolias, 2018) proposed generative replay
using a single model that handles both classification and generation through the aid of
feedback connections. Incremental learning using conditional adversarial networks (ILCAN)
(Xiang et al., 2019) follows a similar approach of using a single model, but additionally
changes the generative replay component to rehearse feature embeddings instead of aiming at
reconstructing original input data. Open-set Classifying Denoising Variational Auto-Encoder
(OCDVAE) (Mundt et al., 2019a) further introduces the first approach to naturally integrate
open set recognition with deep generative replay in a single architecture. This work will play
a vital role for the remainder of this paper and we will demonstrate how suggested ideas
can be extended to form one potential basis as means to broaden current continual learning
practices.

3.1.3 Architectural:

Architectural approaches attempt to alleviate catastrophic forgetting through modification
of the underlying architecture. It might at this point be baffling to the reader why such
modifications are listed distinctly from the works presented in previous subsections as they
are almost by definition complementary to any method presented so far, and in fact most
methods presented in this paper. For historical reasons, we will however stay consistent
with former categorization of deep continual learning algorithms (Parisi et al., 2019). The
importance of choice of architecture and the need for modifications over time will be another
element of our upcoming proposition on an expanded view of continual learning. We
will sub-categorize architectural approaches further into implicit and explicit architecture
modification, i.e. methods that use a fixed amount of maximum representational capacity
and methods which dynamically increase capacity in the process of continued training.

Fixed maximum representational capacity Approaches that use a static architecture
rely on task specific information routing through the architecture. An early example is a
technique coined activation sharpening towards semi-distributed representations (French,
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1992), where the essence is to tune and limit the amount of high neural network activations to
a maximum of k nodes, such that there is less activation overlap for different representations
and consequently less potential for interference of new examples. While fixed architecture
methods differ in the specifically employed technique to disambiguate the learned dense
representations, the common denominator is the assumption of an over-parametrized ar-
chitecture in order to warrant enough initial redundancy to permit overriding parameters
without incurring catastrophic interference. PathNet (Fernando et al., 2017) adopted this
notion to deep neural networks and used a genetic algorithm to determine pathways through
the network deemed particularly useful for a specific task in order to freeze them. Instead of
using a separate algorithmic layer to determine task specific network subsets, Piggyback
(Mallya et al., 2018) and hard attention to the task (HAT) (Serra et al., 2018) directly
learn binary masks and use them to gate information propagation through the network.
The UCB-P variant of the earlier introduced regularization approach Uncertainty-guided
Continual Bayesian Neural Networks (UCB) (Ebrahimi et al., 2020) confronts this challenge
from a Bayesian perspective. They use uncertainty to prune the model and identify binary
masks per task to index into the weights’ Gaussian mixture distributions.

Dynamic growth Dynamic growth approaches administer representational capacity much
more explicitly. The trivial solution would be to simply have one model per task and devise
a mechanism to select the appropriate path for an input. Alas, such an arrangement doesn’t
fully leverage information from one task to positively transfer to another or respectively
newly arriving information to aid already acquired tasks. First works in deep learning
however nearly follow this naive but also intuitive approach to simply train on a task and
consequently freeze all learned representations, such as demonstrated in Progressive Neural
Networks (PNN) (Rusu et al., 2016). The amount of weights is then increased for a new task,
with the twist that formerly learned representations laterally transmit their output to the new
tasks’ representations but not vice versa. Expert Gate (Aljundi et al., 2017) is comparable
and differs mainly in the introduction of a gating mechanism that automates the choice of a
suitable expert in an ensemble. Recent perhaps more practical approaches can be viewed as
once again drawing their inspiration from decades of biological findings and discussion on
neurogenesis. The latter refers to the process of creation and incorporation of new neurons
into the existing system, see the reviews by Aimone et al. (2014); Vadodaria and Jessberger
(2014). For the last two decades it has now been acknowledged that this process persist
beyond early stage human development and continues its function in adults (Gross, 2000).
The seminal work of dynamic node creation in neural networks (Ash, 1989), where additional
units are added whenever the loss plateaus, has thus found a renaissance in modern deep
learning. Neurogenesis deep learning to accomodate new classes (NDL) (Draelos et al., 2017)
and lifelong learning with Dynamically Expandable Networks (DEN) (Yoon et al., 2018)
have adapted this heuristic approach for use in continual deep learning. The former by
adding units whenever the reconstruction error of an autoencoder surpasses a predetermined
threshold in the spirit of Zhou et al. (2012), the latter based on an empirically found value of
the classification loss in supervised learning. Reinforced Continual Learning (RCL) (Xu and
Zhu, 2018) or Learn-to-Grow (Li et al., 2019a) further attempt to overcome the challenge of
finding suitable loss cut-offs and cast dynamic unit addition into a meta-learning framework
in order to separate the learning of the network structure and estimation of its parameters.
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3.1.4 Combined Approaches:

We list a number of, largely very recent works, that primarily advance the state of the
art on a set of benchmark datasets by blending techniques from the previous categories.
One of the most popularly cited works is iCarl (Rebuffi et al., 2017), which couples a
knowledge distillation based regularization approach with rehearsal of exemplars, assembled
through a greedy herding procedure (Welling, 2009). Variational Continual Learning (VCL)
(Nguyen et al., 2018) similarly fuses use of an episodic memory of exemplars with parameter
regularization, but from a perspective of approximate Bayesian inference. FearNet (Kemker
and Kanan, 2018) has later critiqued iCarl as a viable technique due to its heavy dependency
on quantity of data in order to be successful. They have therefore additionally incorporated
generative rehearsal to compensate the need to store large subsets of the original dataset.
Variational Generative Replay (VGR) (Farquhar and Gal, 2018a) can be seen as concurrent
to VCL, where instead of exemplar rehearsal generative replay is made use of. Memory replay
GAN (MRGAN) and Lifelong GAN (LLGAN) (Zhai et al., 2019) are recent complements to
these works and deviate in that they are based on GANs instead of variational inference in
pure autoencoders. Whereas MRGAN uses a functional regularization approach to align
the generator’s output, LLGAN further applies such distillation loss based regularization
across multiple places in the architecture to regularize encoders and discriminators. On the
architectural front, Variational Autoencoder with Shared Embeddings (VASE) (Achille et al.,
2018) adopts dynamic architecture growth in conjunction with generative replay. Their
proposal is to allocate additional representational capacity for new concepts, determined
through larger reconstruction loss in a variational autoencoder, however, is limited to
expanding the latent space and leaving the rest of the architecture static. Lifelong Learning
for Recurrent Neural Networks (LLRNN) (Sodhani et al., 2019) combines training of long
short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) with gradient episodic
memory based exemplar rehearsal and a capacity expansion approach named Net2Net
(Chen et al., 2016), which provides the means to transfer learned representations from an
architecture to a larger untrained one before continuing to train the latter. While some of
these works clearly exploit natural synergies, a generally desirable practice, we note that this
can sometimes come at the expense of detailed analysis and comprehensive understanding
of individual key ingredients and their necessity. While we agree that all approaches in this
subsection pursue commendable directions, we argue that considerable future analysis is
still required. We will discuss corresponding details and suggestions in later sections.

3.2 Active learning

Rather than focusing on the question of how to preserve representations in incremental
continual learning, the topic of active learning asks the reverse question of how to pick data
increments for future inclusion. Generally, this is cast into the framework of semi-supervised
learning. Here, it is assumed that the model is trained on labelled data XL = {x1

L, . . . ,x
n
L},

and a larger pool of unlabelled data XU exists. This is motivated from data acquisition
being relatively cheap in the modern world, as opposed to human intensive data labelling
that often requires highly skilled experts. The task of an active learner is thus to extract a set
of M data instances {x1

U , . . . ,x
m
U } from the pool of unlabelled data, such that a maximum

gain in performance on the inspected task is expected if a human in the loop provides the
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Labelled data
XL = {x1

L . . . xnL}
Y = {y1 . . . yn}

Train

Model

query M
instances

Unlabelled sub-
set {x1

U . . . xmU }

Annotate

New labels
{y1 . . . ym}

Add new
data to XL

(Human) Oracle

Unlabelled
pool or data
stream XU

repeat

Figure 4: Active learning cycle that repeatedly expands a labelled dataset by querying and
then annotating data instances from a larger unlabelled pool. The dashed arrow from the
latter to the training process indicates the common closed world active learning scenario,
where the presence of all data at all times is assumed. Respective works typically include
the entire unlabelled dataset into the training procedure by employing methods from semi-
supervised learning. Shaded parts of the diagram correspond to processes, whereas light
components represent objects.

additional labels {y1, . . . , ym} for further training. The underlying mechanism on which the
query is based is referred to as the acquisition function and forms the main pillar of active
learning research. We have visualized this active learning cycle in figure 4.

There is multiple conceivable evaluation variants to gauge the usefulness of active learning
acquisition function choices. They either explicitly assume the entirety of the unlabelled
data to be accessible and usable upfront, or contrarily the query being informed solely by
the available labelled data. Independently of the latter, the practical assessment of active
learning strategies is generally conducted in a closed world scenario, i.e. the entire pool
of unlabelled data is expected to stem from the same data distribution as the initially
labelled set and the oracle is assumed to be infallible. In a crucial distinction to continual
learning, evaluation of active learning however accumulates data and grows the labelled set,
focusing primarily on the cost reduction of labour intensive annotation. In consequence, an
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active learner is deemed successful if each data query provides significant benefit over simply
picking and labelling data at random.

”A probability analysis of the value of unlabelled data for classification problems” (Zhang
and Oles, 2000) provides an early analysis of the requirements for benefiting from semi-
supervised or active learning approaches. The authors consider two types of models: para-
metric p(x, y|W ) = p(x|W )p(y|x,W ) and semi-parametric: p(x, y|W ) = p(x)p(y|x,W ).
In the latter, the data probability p(x) is decoupled and can have an unknown (or non-
parametric) form independent of the weights W , as is common in most discriminative
models such as logistic regression or most neural networks. They argue that these models
are particularly suited for active learning, as opposed to parametric models such as Gaussian
mixtures being particularly suitable for semi-supervised learning. This is because they do
not need to rely on potentially inaccurate estimates of the entire data distribution when
only a fraction of the data is observable. However, we will see in the subsequent review that
both of these model types have been used to form different perspectives to address active
learning and come with their respective advantages.

As with the majority of techniques, early active learning methods have rapidly cross-
pollinated into applications with deep neural networks. However, due to the black-box
nature of deep non-linear neural networks, many of these approaches are based on simple
heuristics or approximations to uncertainty quantities that no longer have tractable closed-
form solutions. We will start with these heuristic approaches, as they are often trivial to
transfer to deep learning, and then continue to summarize more principled approaches, which
can turn out to be genuinely challenging in the context of deep learning.

3.2.1 Uncertainty Heuristics

One theoretically sound approach to querying useful data is based on entropy (Shannon,
1948) sampling and other information theoretic acquisition functions (MacKay, 1992). An
early approach based on training two neural networks to estimate query areas in binary
classification problems (Atlas et al., 1990) remarks that this is difficult for neural networks
as they are often overly confident in their outputs. This overconfidence is going to be one
of the main subjects of our next major section on learning in an open world. Interestingly,
while paid painstaking attention in early literature, this aspect seems to often be overlooked
in the era of deep learning. Simply using neural network prediction confidence, predictive
entropy or other derived heuristics (Lewis and Gale, 1994) are still practically employed in
comparisons today (Geifman and El-Yaniv, 2019). This is because many approaches have
been shown to empirically work well in specific contexts, although there is no guarantee for
them to succeed. Early works have shown uncertainty sampling based active learning for
logistic regression (Lewis and Gale, 1994) and neural networks (Seung et al., 1992; McCallum
and Nigam, 1998) based on ”query by committee”, an approach to estimate uncertainty by
using an ensemble of neural networks. This idea has later found a one-to-one translation to
deep ensembles for active learning (Beluch et al., 2018). Naturally, most black-box deep
neural networks are not equipped with mechanisms to gauge uncertainty properly outside of
using multiple parallel models. Bayesian active learning by disagreement (BALD) therefore
provides an attempt at avoiding the necessity of ensembles and instead uses Monte Carlo
Dropout (Gal and Ghahramani, 2015; Srivastava et al., 2014) to calculate points of high

18

164



A Wholistic View of Continual Learning with Deep Neural Networks

variance in the output (Gal et al., 2017). This has empirically been demonstrated to be
effective and has been extended in Bayesian Generative Active Learning (BGAL). Here,
BALD is used to query samples and then the labelled set is further augmented with generated
examples (Tran et al., 2019). Deep incremental learning with Neural Architecture Search
(iNAS) (Geifman and El-Yaniv, 2019) does not propose a new query mechanism and instead
provides an evaluation of above acquisition functions in the context of architecture selection.
They include the option of progressive architecture growth after each query, to illustrate
that small models generally fare better in a small data regime, whereas large models are
required when a certain degree of task complexity is reached. We will revisit this as an
imperative insight in our later discussions.

3.2.2 Version Space and Expected Error Reduction:

A theoretically more substantiated approach to basing the acquisition function on heuristics
is to query data that provably reduces the expected error. Clearly, this is beyond the current
understanding of deep neural networks, but has been shown to be feasible in the context
of parametric models such as Gaussian mixture models (Cohn et al., 1996) or naive Bayes
(Roy and McCallum, 2001). These works use the concept of a version space (Mitchell, 1982),
i.e. the consistent set of hypotheses that separate the data in the induced feature space. An
appropriate active learning strategy is to sequentially and monotonically reduce the size
of this version space. In models such as SVMs for binary classification this is intuitively
explained based on the margins (Tong and Koller, 2001), where new points are chosen
according to hyperplanes that maximize the restriction with respect to the set of possible
hyperplanes for correct classification. The latter was later extended to a multi-class SVM
based approach (Joshi et al., 2009), however still based on multiple binary classifiers. This
allowed for theoretical guarantees on sample complexity and necessary amount of queries
to be analyzed with respect to these binary classification problems with linear decision
boundary in the context of greedy active learning strategies (Dasgupta, 2005). Whereas
”learning active learning from data” (Konyushkova et al., 2017) provides a recent effort
to train a meta-learning based regressor to predict expected error reduction for binary
classification using random forests, the idea has not been adapted to deep neural networks
yet.

3.2.3 Representation based approaches:

Although version space reduction can come with provable guarantees, respective application
to deep neural networks is inconceivable before a mature theory of how their hypotheses
are formed has evolved. At the same time, Roy et al. (Roy and McCallum, 2001) have
pointed out that the earlier summarized uncertainty sampling, or estimates thereof through
ensembles, are generally insufficient. They argue that they are prone to querying outliers, as
a result of sampled instances being viewed in isolation and without regarding the underlying
density of the full data distribution. Similar conclusions were empirically observed in
the large scale empirical evaluation of active learning for text applications (Settles and
Craven, 2008). As a solution, the authors suggest a representation based information density
measure, and although heavy to compute, it implicitly takes into account the underlying data
distribution. This can be seen as an approach that is orthogonal to minimizing the version
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space, where now typically the distribution coverage on the entire dataset according to the
model representations is maximized instead of reducing the number of possible hypotheses.
The often necessary core assumption is thus the presence of the entire unlabelled pool of
data and its auxiliary use in optimization of the labelled set. We have attributed a third
category of active learning to approaches that follow this objective.

Active learning using pre-clustering (Nguyen and Smeulders, 2004) uses a k-medoids
algorithm in conjunction with a SVM or logistic regression to select data from the pre-
clustered embedding of the unlabelled pool. Similarly, SVM based core vector machines
(Tsang et al., 2005) use a set of minimum enclosing balls to create a core set that best
approximates the entire distribution. Li et al. estimate information density by using the
unlabelled data in a Gaussian process (Li and Guo, 2013). The idea in these works have
since been abstracted to deep neural networks. Sener and Savarese (2018) base their active
learning procedure on construction of core sets based on a k-medians algorithm. Shui et al.
(2020) achieve distribution coverage by matching distributions through minimization of
the Wasserstein distance in Autoencoders (WAAL). Variational adversarial active learning
(VAAL) (Sinha et al., 2019) approximates the data distribution by learning the latent space
in a variational autoencoder (Kingma and Ba, 2015) and simultaneously trains a latent
based adversarial network to discriminate between unlabelled and labelled data.

In complement to these works, various query-synthesizing methods have been proposed
(Zhu and Bento, 2017; Mahapatra et al., 2018; Mayer and Timofte, 2020). Here, the challenge
of active learning is tackled by using a deep generative model to generate informative queries.
Instead of querying from an unlabelled pool directly, generative adversarial active learning
(GAAL) (Zhu and Bento, 2017) and ”efficient active learning using conditional generative
adversarial network” (Efficient cGAN AL) (Mahapatra et al., 2018) both train GANs to
synthesize and label queries. The core assumption is the ability to adequately capture the
data distribution to generate meaningful instances. The usefulness of the generated samples
with respect to a classifier can then either be assessed through uncertainty heuristics or by
matching the synthesized data with samples from the pool and retrieving the most similar
instance. The latter has been demonstrated in Adversarial Sampling for Active Learning
(ASAL) (Mayer and Timofte, 2020).

In our later discussion, we will argue that the assumption of upfront presence of all data
should, and in fact can be lifted when a natural bridge to the other paradigms is constructed.
We proceed to conclude our review by delving into what will constitute the glue: learning in
an open world and open set recognition.

3.3 Open set recognition

The term open set recognition was formally coined only recently (Scheirer et al., 2013; Bendale
and Boult, 2015). However, its foundation and associated challenge in neural networks dates
back to at least several decades before, when discriminative neural networks were found to
yield overconfident mispredictions on unseen unknown data (Matan et al., 1990). To get an
intuitive understanding, let us briefly consider the types of data we can expect our model to
encounter. As soon as we move beyond the closed world benchmark scenario, we can no
longer expect our trained models to be tested exclusively on some held-out data from the
same distribution as observed during training. In the earlier introduced transfer learning
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parlance, for prediction, data can thus generally not be presumed to originate from the same
domain. We can now distinguish three types of possible inputs to our model (Scheirer et al.,
2013):

1. Knowns: examples belonging to the distribution from which the training set was
drawn. The model’s prediction is accurate and confident.

2. Known unknowns: unknown instances that a model cannot predict confidently.
Examples can optionally be labelled as not being affiliated with the set of known
concepts for explicit training of negatives. Prediction uncertainty can indicate a
model’s awareness of its limitation.

3. Unknown unknowns: unseen instances belonging to unexplored, unknown data
distributions or classes for which the prediction is generally overconfident and false.

The broader inspiration for this categorization is commonly attributed (Naylor, 2010; Scheirer
et al., 2013) to a notorious, machine learning unrelated, quote by Rumsfeld (2002): ”We
know that there are known knowns; these are things we think we know. We also know there
are known unknowns; that is to say we know there are some things that we do not know.
But there are also unknown unknowns; these are the ones we don’t know, we don’t know!”.
In the context of neural networks, known unknowns can be identified through gauging
model uncertainty or relying on derived related heuristics, in correspondence to many of
the methods employed in the active learning setting. However, as detailed in a recent
survey (Boult et al., 2019), separating the known data from the essentially indistinguishable
high-confidence mispredictions for unknown unknowns is far from trivial.

As any machine learning model is trained on a finite dataset, and the imaginable set of
unknown unknowns is infinite, we refer to the challenge of recognizing the latter as open
set recognition in analogy to prior works (Scheirer et al., 2013, 2014; Bendale and Boult,
2015, 2016; Boult et al., 2019). Formally, these works define the closed space as a union
of balls SK that enclose the entire training set XK , whereas the open space O constitutes
the remainder of the input or feature space: O ⊂= X − SK . Correspondingly, works that
provide attempts at addressing open set recognition aim to find the respective boundaries
between known and unknown spaces (Scheirer et al., 2013, 2014; Bendale and Boult, 2015;
Lee et al., 2018b; Mundt et al., 2019a,b; Yoshihashi et al., 2019). We will review these works
last in favor of historically preceding approaches based on explicit inclusion of negative
classes and rejection through anomalies in prediction patterns, even though the latter have
been argued to be insufficient for open set recognition (Matan et al., 1990; Scheirer et al.,
2013; Boult et al., 2019).

The above widespread categorization can technically be extended to encompass a fourth
category, by splitting the knowns into known knowns and the set of unknown knowns (Munro,
2020). We do not consider this further distinction as the existence of unknown knowns can
be condensed to either a wilfully ignorant false prediction, because we in fact know the
concept but choose to nevertheless treat it as unknown, or the more charitable alternative
in which our chosen machine learning model has an inherent inability to represent the
investigated concept and its structure altogether. We also note that there is other related
concepts, such as novelty detection (Bishop, 1994) or equipping classifiers with rejection
options. These are different in such that they are typically still evaluated in the close world
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and data is generally still expected to reside in a similar domain. The aim is to recognise
outliers of the distribution that are uninformative or represent a particularly interesting rare
event. Although these works can have considerable merit in their respective closed world
application context, we do not review them in favor of the more generic open set recognition,
where considered inputs are allowed to be of almost arbitrary nature. We further note that
we naturally cannot provide every example that has ever attempted open set recognition
through simple heuristics like using the output values to distinguish examples.

3.3.1 Prior Knowledge

A conceivably simple effort to address unknown unknowns is by assuming that the human
modeller has enough awareness about what forms of unknown inputs to expect during
deployment to directly incorporate this prior knowledge into the model. As inclusion of prior
knowledge into neural networks and other types of deep models turns out to be remarkably
complex, the natural analogue is to steer efforts towards dataset design. ”Inference with the
universum” (Weston et al., 2006) has accordingly proposed to embrace prior knowledge by
representing it through a collection of ”non-examples”, and hence letting the optimization
algorithm decide how to include the presented information into the model. Unfortunately,
this does not provide a general solution for open set recognition as upfront knowledge can
only ever truly cover the family of known unknowns. At best, a mere work-around for major
failure cases is therefore supplied, although without any associated guarantees for remaining
unknown unknowns. This lack of guarantees is further enforced by the necessity to rely on
machine learning algorithms extracting the information and composing abstractions from
the supplied ”non-example” data population.

Since then, the idea to include a ”background” concept has been adopted so widely across
applications, that singling out and thus giving preference to select works is difficult. Take as
an example large-scale datasets surrounding the task of material classification and semantic
segmentation. Because there is an abundance of material types, it has become the de-facto
standard to collapse any available imagery that is connected to less important materials or
where meager amounts of data are available into a single ”other” material (Cimpoi et al.,
2015; Bell et al., 2015). Not only is it impractical to gather data for every material variation,
but also unknown unknowns can feature other significant statistical deviations, due to e.g.
previously unencountered illumination, acquisition and sensor differences, superposition of
dirt and surface markings, or any type of perturbation and previously unencountered noise.
Imaginably, in real applications beyond a closed world, inclusion of an endless universe is
by definition infeasible. Nevertheless, multiple recent works follow this route and propose
mechanism to calibrate output confidences in deep models (Lee et al., 2018a), formulate a
discrepancy loss between knowns and known unknowns (Yu and Aizawa, 2019), or modify the
embedding to explicitly separate them, e.g. in semantic categorical and contrastive mapping
(SCM) (Feng et al., 2019) or the Objectosphere loss (Dhamija et al., 2018). Although these
approaches are not tantamount to a comprehensive solution, we note that they can still in
principle be sufficient for tasks in partially constrained environments that naturally limit
the world’s openness.
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3.3.2 Predictive Anomalies

From an unsuspecting angle, a model will consistently yield accurate predictions only
for observed data and produce highly uncertain output otherwise, yet still generalize
correctly to data that is from the same domain but has not been included in training. In
this view, determining a prediction threshold and obtaining an uncertainty estimate is
sufficient to recognize any form of unknowns. This can work surprisingly well in models
with thorough understanding of the decision boundary and its neighbourhood, such as
the Transduction Confidence Machine-k Nearest Neighbors (TCM-kNN) (Li and Wechsler,
2005). Even though it is well known that the entangled dense representations of neural
networks result in overconfident predictions on any data (Matan et al., 1990; Boult et al.,
2019), a variety of practical approaches nevertheless proposed to simply rely on a hinge
loss to reject during classification (Bartlett and Wegkamp, 2008) or even to take the
straightforward route and directly trust the softmax confidence (Hendrycks and Gimpel,
2017). As the quantitative outcome leaves room for improvement, multiple works have argued
that uncertainty estimation is required to corroborate the decision to gain awareness of the
unknown. In deep networks this could be achieved by assessing the variations of stochastic
forward passes through a neural network with dropout (Srivastava et al., 2014; Kendall
et al., 2017; Miller et al., 2018), as a variational Bayesian approximation to a distribution
on the weights (Gal and Ghahramani, 2015), or by empirically estimating the output’s
variability with respect to introduced perturbations, such as done in ODIN (outlier detection
in neural networks) (Liang et al., 2018), and by calibrating the prediction accordingly (Lee
et al., 2018a). In similar spirit, an often employed argument is that generative modelling is
required to obtain meaningful prediction values that allow to recognize out of distribution
samples. For this purpose, Lis et al. (2019) use image resynthesis and equate detection
of unknown concepts with identification of discrepancies in poorly reconstructed image
regions. Likewise, one-class novelty GAN (OCGAN) (Perera et al., 2019) generates examples
from sparsely populated latent space regions in order to use them in explicit training of a
binary out-of-distribution classifier. Although predictions and uncertainty from generative
models have been shown to improve outlier and adversarial attack detection in contrast
to purely discriminative models (Mundt et al., 2019a,b; Li et al., 2019b), there is strong
empirical evidence that this is still insufficient to provide a generic solution (Nalisnick et al.,
2019; Ovadia et al., 2019; Mundt et al., 2019a,b). It is clear that former reported cases of
success can be attributed to the specific constrained empirical studies and we illustrate some
remarkably simple failure cases of prediction confidence and entropy in figure 5, even when
uncertainty is assessed with Monte Carlo Dropout. This is to provide an intuitive picture of
the challenge of open set recognition with neural networks and to summarize and repeat the
findings of the much more detailed experiments presented in numerous prior works (Mundt
et al., 2019a,b; Nalisnick et al., 2019; Ovadia et al., 2019).

3.3.3 Meta-recognition

Rather than assuming that predictions are somehow calibrated for any data, a more rigorous
approach is to prevent overconfident misclassification by confining the model to the known
closed space and averting any prediction from little-known open areas in the first place.
Whereas it is evident how to achieve this when explicitly modelling the distribution, such as
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Encoder
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�̂� 

Network trained on fashion itemsNovel input image

It's a T-shirt with
95% confidence

Figure 5: Top panel: Qualitative illustration of the challenge of open set recognition. A
neural network that has been trained to discriminate fashion items misclassifies the unknown
concept of an owl and assigns it to the t-shirt class with very high confidence. Bottom panel:
A quantitative example of a deep wide residual neural network trained on the FashionMNIST
dataset, asked to classify unrelated unencountered digits and objects from the MNIST and
CIFAR10 datasets. Even though uncertainty is estimated using 50 Monte Carlo Dropout
passes, misclassified unseen data still overlaps significantly with the known dataset in
prediction confidence or entropy. Knowns and unknowns are largely indistinguishable. The
shown quantitative results are a reproduced subset of our previous work investigating the
limits of deep neural network uncertainty for open set recognition (Mundt et al., 2019b).

done in probabilistic mixture models, a straightforward approach is not typically applicable in
the often complex feature hierarchies of modern discriminative machine learning approaches.
A common technique is thus to resort to meta-recognition on top of the empirically emerged
features obtained through black-box optimization procedures. Scheirer et al. (2014) give an
intuitive example based on support vector machines. Here, the menace of erratic predictions
for unknown unknowns results from examples being projected close to the linear decision
boundary, while at the same time being mapped arbitrarily far away from the training data
along a different dimension. The authors therefore define a compact abating probability
(CAP) model, where the key idea is to make use of insights from extreme value theory
(EVT). The essential notion is to take into account inherently present extreme statistical
differences in the long tail of an extreme value distribution, here the Weibull distribution,
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and subsequently monotonously decrease a data point’s probability of belonging to the
observed closed set with increasing distance from the observed data population. In other
words, a prediction is discarded in sparsely populated areas, independently of a sample’s
proximity to the decision boundary. Bendale and Boult (2016) have extended this approach
to discriminative deep neural networks, where the above meta-recognition idea is transferred
to the network’s penultimate layer. They propose the OpenMax algorithm that lowers
softmax prediction probabilities with increasing distance from the average penultimate layer’s
activation values. A strongly related approach has been proposed in Lee et al. (2018b),
where the affinity of a data point to the known set is measured based on a Mahalanobis
distance in the feature space of the penultimate layer. More recent works have come to
the conclusion that although the latter approaches have a strong theoretical foundation
for open set recognition, they are still limited by activation values in discriminative neural
networks being optimized exclusively towards predicting a correct class (Yoshihashi et al.,
2019; Mundt et al., 2019a,b). In particular, the penultimate layer activation values do not
generally encode all the information about the data x that might be required for open set
recognition. ”Classification Reconstruction learning for Open-Set Recognition” (CROSR)
(Yoshihashi et al., 2019) has thus suggested to additionally append a generative model’s
latent variable z to the OpenMax classification procedure. Concurrently, open set classifiying
denoising variational autoencoders (OCDVAE) (Mundt et al., 2019a,b) translate the EVT
based meta-recognition to a variational Bayesian setting. Here, the open set recognition
is based directly on the approximate posterior in a deep generative model, which enables
a natural interpretation based directly on the underlying generative factors of the data
distribution p(x), instead of activation value heuristics. We believe that this approach offers
one potential framework to consolidate research in active learning, open set recognition and
continual learning. We will correspondingly revisit the underlying approach, detail specific
methods and introduce extensions in the next section.

4. Bridging perspectives: past insights and the challenge of evaluation

In the previous sections, we have kept up the tradition to treat continual machine learning,
active learning and open set recognition as three distinct challenges. For convenience we
provide a visual summary of the taxonomy in diagram 6. Distinctly categorized approaches
are rarely coupled and synergies exploited only in select works, such as the combined continual
learning approaches. More importantly, the intersection between the three machine learning
paradigms remains largely unexplored. Highlighting the necessity for unification of the latter
into a single viewpoint is the primary purpose of this work. The remainder of the paper will
now serve the purpose of revealing the natural interface. In fact, by identifying former lessons,
stressing shortcomings of prevailing evaluation practices and bridging seemingly forgotten
connections, we develop a wholistic view that simplifies the deluge of ongoing research
questions into a single intuitive framework. To better understand why this is imperative for
future progress, let us briefly recall the earlier mentioned predominant evaluation routines
and link insights from prior works to their current limitations.
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If we look back at figure 2 and the corresponding section’s discussion, we recall that
deep continual learning typically collapses its practical evaluation to measuring catastrophic
forgetting between task increments. These task increments belong to simple sequentialized
versions of existing benchmark datasets and a continual learning technique is deemed
successful if the model that is trained over time approaches the expected performance when
trained in isolation. In almost complete analogy, active learning evaluation revolves around
accuracy gains between query steps. In the majority of the aforementioned related works,
the focus is exclusively on whether a specific query mechanism surpasses another in terms
of quickly approaching the overall error achieved on a complete dataset. For empirical
benchmarking purposes, the model is simply trained in isolation on multiple selected subsets
of known data, where the difference between these subsets corresponds to the inclusion of
one active query.

Before we continue with the limitations of such evaluation protocols, we emphasize that
our intention at no point in this paper is to discredit and devalue the bulk of previously
proposed methods. However, we would argue that claimed advances of individual methods
are in grave danger from their constrained benchmark evaluation being non-indicative of the
actual machine learning progress on a larger scale. We believe a major contributing factor is
that key insights from past, often neural network unrelated, literature have surprisingly gone
unnoticed or have been written off in the era of deep learning. To attach a slightly provocative
connotation, we have termed these overlooked insights forgotten lessons. Although the term
”forgotten” certainly is an exaggeration with regard to the ML field as a whole, the absence
of derived practical implications is strongly manifested in deep learning evaluation schemes.

4.1 Forgotten lessons from past literature

Forgotten lesson 1: Machine learning models are by definition trained in a closed world,
but real-world deployment is not similarly confined. Discriminative neural networks yield
overconfident predictions on any sample.

Independently of whether additional metrics such as training speed-ups through rep-
resentation transfer, computational cost or memory consumption are taken into account,
currently considered experimentation features closed world train and test sets. This is
occasionally amplified by continual learning works assuming the presence of a task oracle
for testing or respectively the assumption of an infallible oracle to yield flawless data when
labelling active learning queries. As such, open issues concerning continual training of
a model or active learning queries in an open world are generally neglected. However,
real-world deployment almost always inhabits an open world. In the extreme case, the
model has to handle data from completely unknown type in previously unfamiliar con-
ditions, think outdoor environments or uncontrolled arbitrary user inputs in web-based
applications. Instead of the common overconfident misprediction that falsely attributes
this data to any known concept, a multiple decade old seemingly forgotten insight (Matan
et al., 1990), any machine learning model should at least be equipped with the ability
to identify unencountered scenarios and warn the practitioner. As a much milder, but
heavily realistic form of an open world, even commonly occurring corruptions are disre-
garded, think blur or camera noise in images. The menace of the latter has recently been
demonstrated in deep learning by Hendrycks and Dietterich (2019), where the authors
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empirically demonstrate that current deep neural networks not only exhibit severe instability
with respect to various simple perturbations, but advances in neural network architectures
are reflected in only diminutive changes in robustness. Whereas certainly this hazard is
universal to all machine learning research that is deployed in practice, continual and active
learning are particularly prone to the threat of corrupted and unknown data as their goal is
to accumulate knowledge from previously unseen sources already in the training process itself.

Forgotten lesson 2: Uncertainty is not predictive of the open set. Active learning
resides in an open world and common heuristics based query mechanism are susceptible to
meaningless or uninformative outliers.

Although early works have rapidly identified the fallacy that uncertainty sampling is
a meaningful strategy to query (Roy and McCallum, 2001; Settles and Craven, 2008) in
active learning or respectively detect unknown unknowns (Matan et al., 1990; Atlas et al.,
1990), the belief that uncertainty provides a generic solution seems to have resurged with
the advances of deep learning. This is apparent from the many approaches in our previous
literature review basing querying strategies or detection of unseen examples on heuristics
that rely on output variability or similar entropic quantities, see the branches labelled
with uncertainty and predictive anomalies in our literature review diagram 6. Indeed, the
challenge of accurate uncertainty quantification in deep learning is already genuinely difficult
and does provide advantages in contrast to less principled empirical thresholding. However,
paying homage to the detailed argumentation of the recent review by Boult et al. (2019),
any machine learning model is still trained in a closed world scenario, independently of
whether e.g. a Bayesian formalism is employed to obtain uncertainties. Predictions for y are
known to be overconfident, uncertainty is not calibrated for points outside of ptrain(x) and
the posterior is often unusable, regardless of how well it is approximated.
In other words, given any parameters φ and an unknown unseen input example x∗, we don’t
know if evaluating qφ(z|x∗) will produce something meaningful. This issue is by no means
exclusive to detecting unknown unknown examples, but comes with the same implications
for realistic active learning scenarios. Take for example a more realistic set-up beyond a
crafted benchmark where data is scarce and the investigated domain is demanding even for
experts. The earlier reviewed VAAL has considered such a scenario with medical imaging,
where correct oracle labelling and a noiseless image cannot always be expected. Sample
selection based on uncertainty does not protect the query from such noise and there is a
large chance that meaningless outliers are included into the system.

Forgotten lesson 3: Confidence or uncertainty calibration, as well as explicit opti-
mization of negative examples can never be sufficient to recognize the limitless amount of
unknown unknowns.

At a first look, one might believe that impressive successes where demonstrated with
approaches that extend the basic idea of ”inference with the universum” (Weston et al.,
2006). Explicitly using prior knowledge in terms of expectations on what form of inputs
can be anticipated, or respective inclusion of negative data that is believed to play a role in
deployment, are popularly exhibited by works that have identified and attempt to address
the first two lessons. The common presumption across all these works is the upfront presence
of a larger, possibly unlabelled, dataset that can explicitly be included into the optimization
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process. Just as supposed out-of-distribution examples are made use of to modify loss
functions and calibrate the output for detection of unknown unknowns (Bell et al., 2015; Lee
et al., 2018b; Yu and Aizawa, 2019; Dhamija et al., 2018; Feng et al., 2019), active learning
techniques often resort to conditioning their procedure on the entire data pool (Nguyen
and Smeulders, 2004; Sener and Savarese, 2018; Li and Guo, 2013; Shui et al., 2020; Sinha
et al., 2019), e.g. through clustering (Nguyen and Smeulders, 2004; Sener and Savarese,
2018) or fitting a generative model to the unseen data (Li and Guo, 2013; Shui et al., 2020).
Unfortunately, this impedes evaluation beyond a constrained closed set benchmark and more
realistic continual and active learning scenarios where data becomes available at different
times cannot be considered. In a sense the problem seems to be addressed from a reverse
perspective. Instead of acquiring explicit knowledge about the nature of the trained data
distribution, the challenge is sidestepped by reformulating it as an optimization problem that
attempts to find the boundary between known and an existing set of unseen data, which by
definition then does not consist of unknown unknowns. Thus, we receive no guarantees, as
the pool of unlabelled data at any point in time is limited and can never truly approximate
the unknown space.

Apart from this obvious argument that it is impossible to include all forms of variations
and exceptions upfront, else we could have just modelled and hand-crafted the entire system
from the start instead of falling back on purely data driven approaches, previous works have
also asserted that the particular form of representations of discriminative deep neural net-
works can further confound predictions. The early work of French (1992) has already pointed
out that a major complication of continually training neural networks is their distributed
representations and has subsequently investigated mechanism to obtain semi-distributed
representations with sharp activations that are concept specific. We argue that with the
onset of deep learning the challenge of distributed representations is further magnified due to
distribution across the layer hierarchy. First, consider as an example a neural network that
is trained to discriminate cars from aeroplanes, a scenario often assumed when incrementally
training the popular CIFAR10 dataset (Krizhevsky, 2009). As the neural network is not
explicitly encouraged to encode information about the data distribution, the obstacle of
predicting overconfidently on unseen data is further magnified by the ubiquitous option
for any classifier to differentiate a concept based on a combination of noise patterns, the
absence of a specific pattern, or background patterns altogether (Xiao et al., 2020). In the
car versus aeroplane scenario, depending on how well and diverse the dataset is constructed,
this could be as trivial as distinguishing the two classes by identifying the presence of some
feature that describes the sky. As neural networks have been demonstrated to rely heavily
on texture rather than object boundaries (Geirhos et al., 2019), this is not far fetched. In
fact, a prominent recent work on ”Unmasking Clever Hans” predictors (Lapuschkin et al.,
2019) has shown that the decision making of a discriminative deep neural network can be
based on entirely trivial features, such as a certain object always occurring at a specific
location in every image or almost imperceivable photography tags. ”Adversarial examples
are not bugs they are features” (Ilyas et al., 2019) takes this one step further and empirically
showcases how classes can be distinguishable solely based on noise patterns. In a trivial case
of our above car versus aeroplane example, presenting the trained model with images of
ships that feature the similarly blue background of the sea is then not surprisingly resulting
in overconfident misclassification. Using ships as a background class could initially solve this
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problem of attributing blue to aeroplanes. However, if a significant portion of our learned
features were indeed to be composed of noise, background and adversarial patterns, then we
would argue that overconfident mispredictions are impossible to overcome, as the extent of
data on which these features activate is inconceivable to any human modeller. We believe
this makes the approach to handle outlying and unknown unknown data through prior
knowledge even less feasible.

Forgotten lesson 4: Data and task ordering are essential. Although this forms the
quintessence of active learning it is yet untended to in continual learning.

It is well known that each dataset instance does not contribute equally to the overall
objective. This forms the foundation and rationale behind active learning. In general, when
conducting active learning queries, there is a trade-off between exploring the unknown space
and exploiting more of the already known to avoid misclassification (Joshi et al., 2009).
Alas, the implications of the latter statement are more nuanced and go beyond the simple
question of whether a certain subset spans the entire data distribution. As an example,
Joshi et al. (2009) found certain active learning strategies to benefit primarily from creating
a class imbalance, as more difficult classes might require a denser sampling than others.
Bengio et al. (2009) have similarly found that sorting data in a curriculum that introduces
classes into the training process according to their difficulty improves the obtained accuracy.
Recently, Hacohen et al. (2020) have empirically observed that deep neural networks seem to
build such a curriculum inherently during the training process. Consistently across multiple
architectures, they always learn the same examples first when given access to the entire
dataset, even though the mini-batch stochastic gradient descent shuffles the data differently
every time. Intuitively, this notion of learning according to some measure of complexity
seems only natural, as describing some inputs necessitates less complex and nuanced patterns
than others.

Even though there is significant empirical evidence that data selection and task order
plays a vital role for any learned algorithm, modern deep continual learning, to the authors’
astonishment, seem to pay little attention to a careful experimental design.

Out of the numerous works of the previous review, less than a handful of works consider
the question of task order at all. The rest remains in the comfort of benchmark datasets,
where the classes are split and introduced in sequence for continual learning according to
a class id that often just reflects an alphabetic ordering. However, there is no rigorous
investigation of the effect of task order. Two out of the four works that examine task
order (Serra et al., 2018; Isele and Cosgun, 2018) only randomize the order across multiple
experimental repetitions to obtain an average performance estimate. The other two (De
Lange et al., 2019; Javed and Shafait, 2018) follow this practice, but go even further and
make the statement that task ordering has minimal influence towards continual learning
methods. We will later demonstrate that this is obviously not the case, and can simply be
attributed to the experimentation being a narrow trial of five randomly obtained orderings
without any attached semantics. When selecting tasks from the overall pool of available data
according to their similarity or dissimilarity with the already observed data distribution, we
will observe a major divergence of obtained results.

Whether or not having access to all future tasks in order to select an ideal order is
unrealistic in real-world continual learning scenarios, we believe task ordering to be an
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imperative factor that should be considered when designing our benchmarks to further our
understanding. In particular, we note that a very common practice to reduce the computa-
tional cost of incrementally learning large scale datasets such as ImageNet (Russakovsky
et al., 2015) is to extract subsets (Rebuffi et al., 2017; Wu et al., 2019; De Lange et al., 2019;
Park et al., 2019). The main problematic here is that selecting e.g. 50 or a 100 from a larger
pool of 1000 classes heavily influences the achievable result and using random selection
mechanisms essentially renders works unreproducible.

Forgotten lesson 5: Parameter and architecture growth are not distinct methods to
address any particular challenge such as catastrophic forgetting. They are at the core of the
learning process.

We do not truly believe that the above lessons is forgotten, however, feel the need to
call attention to it because an entire branch of continual learning seems to treat parameter
addition and architecture growth as a separate solution. Our main goal for techniques
that modify architectures on the fly is to point out that these should be analysed with
particular caution. On the one hand, methods that use neural networks that are highly
over-parametrized can implicitly expand their effective representational capacity due to the
abundance of parameters when encountering new data. Investigated algorithms could thus
always implicitly be accompanied with some form of representational expansion, depending
purely on the initial choice of architecture. On the other hand, in active learning it has been
shown that training in small sample scenarios is not only computationally more efficient
with smaller neural networks but also yields more accurate estimates in these early stages
if less representational capacity is available (Geifman and El-Yaniv, 2019). Whereas the
latter statement might seem obvious to some reader, we note that this behaviour makes it
tremendously difficult to attribute gains of active learning or continual learning experiments
to a specific technique in contrast to innate advantages of the used architecture at any point
in time.

4.2 Open set recognition: the natural interface between continual and active
learning

As indicated in the previous sections, contemporary continual and active learning are prone
to an alarming amount of threats due to their development and evaluation inhabiting a
closed world. In this section we argue that awareness of an open world is not only required
to overcome the threat of designing a non-robust system, but provide the natural means to
merge techniques into a common perspective.

Recall that a majority of continual learning techniques alleviates the challenge of catas-
trophic inference by regularizing parameters for known tasks, rehearsing a subset of data
from known tasks or respectively generating it with a generative model. Independent of the
specific algorithm, a key concern is thus to identify exemplars, learn the generative factors
of our known tasks or determine the parameters that are responsible for the majority of
previously seen data. At the core, we need to thus find a good approximation of the known
data distribution. In active learning, our task is very much alike, although the underlying
question seems to be of reversed nature. Instead of protecting or sampling from the known
data distribution, a query is conducted with respect to yet unobserved distributions. In a
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Figure 7: Conceptual diagram to illustrate how extreme value theory based meta-recognition
in neural networks can serve as a common denominator to protect knowledge in continual
learning, conduct principled queries in active data selection, while having the capability to
reject or set aside unknown unknown data at any point in time. The leftmost figure of an
embedding showcases the threat of the open space, where any examples that are very far
away from known clusters always get falsely assigned to a known class and can be arbitrarily
close to the decision boundary. The mid panel shows how a Weibull distribution, which
models the extreme distance values to the mean of the correctly predicted trained data in a
heavy tail, can enclose the known space (suggested by the red circles in the embedding).
The corresponding cumulative distribution function in the right panel can be used to reject
or set aside outliers and balance active learning queries to sample diverse, yet meaningful
data (shaded red area). Alternatively either curves can be sampled inversely to select a
subset of inlying data to approximate the entire known distribution in continual learning
rehearsal (shaded blue area).

similar distinction to the continual learning mechanisms, query-acquiring active learning
methods pick samples that are estimated to yield the best model improvement, whereas
query-synthesizing methods attempt to tackle this challenge through generative modelling
by generating these most informative examples.

Interestingly, in open set recognition, the task is to precisely gauge the boundary between
the seen known data distribution and yet unseen unknown data. Although the original
motivation stems from a perspective of outlier detection and thus model robustness in
practical application in the presence of unknown unknowns, knowing this boundary also
gives us the means to restrict a continual learning technique to protect the already seen
knowns or respectively query active learning examples that are sufficiently statistically
different without the fear of selecting uninformative noise. We argue that in general this
forms the natural interface between active and continual learning.

We follow previously reviewed works that employ EVT based meta-recognition to identify
unknown unknowns and schematically illustrate our proposed unified framework in figure 7.
We will delve into the mathematical details of its realization in deep neural networks in the
next section. For now, consider a generic embedding as a result of some deep neural network
encoding. In the figure’s leftmost panel, we have visualized an example embedding for three
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classes, with their mean indicated by a star and a potential decision boundary by dashed
lines. In order to confine predictions to the known space, EVT based meta-recognition makes
use of data instances with extreme distance values to the average embedding of a class.
Typically, a Weibull distribution is used to model the distance distribution for the entire
dataset and capture samples that feature stronger deviation in a heavy tail. In the original
works that have proposed this model for open set recognition (Scheirer et al., 2013, 2014;
Bendale and Boult, 2015), the cumulative distribution function is then used to estimate
whether a new unseen example should be regarded as an unknown unknown, outlying data
point. In our own previous work (Mundt et al., 2019a), we have identified this technique
to also be fundamental in judging whether a randomly sampled latent vector is proximate
enough to the observed data such that it results in a clear output of a generated model.

We now close the circle and tie this method to retention of a core set for continual
learning, as well as a query mechanism for active learning, while retaining the method’s
innate ability to reject and set aside unknown unknowns. First, we postulate that the
Weibull distribution for each data point’s distance to the mean embedding equips us with
a tool to approximate the known distribution with a subset. Specifically, we can employ
inverse sampling from the Weibull probability density function to create a set of distance
values with an arbitrary prior on how much of the distribution’s tail should be disregarded,
i.e. how many outliers are already assumed to be inherently present in the original dataset.
Practically, we can then approximate the data distribution with a subset by selecting data
instances whose embedded value lies closest to the drawn sample. Alternatively, as indicated
in the diagram, we could discretize the distribution and sample a certain number of examples
from each bin. Conversely, for active learning, we are less interested in sampling from the
known distribution, but much more in the heavy tail. To our advantage, the long tail models
data that is statistically deviating, but can still be attributed to the distribution of interest.
We can thus balance exploitation with exploration. First and foremost, data instances for
which the outlier probability is unity are avoided altogether in order to prevent sampling
of uninformative noise or other corrupted data. Recall, that this is the primary pitfall of
uncertainty sampling. At the same time, we want to avoid samples that have a minute
probability of being an outlier, as these samples are too similar to previously observed
data and are therefore also uninformative due to redundancy. As such, we can constrain
our query to the center area of the cumulative distribution function (CDF), illustrated
by the shaded area under the CDF in the diagram. The rationale for this approach can
intuitively be understood by looking back at the theoretically grounded works of version
space maximization. We can implicitly reduce this space of possible hypothesis, even in
complex models such as neural networks, as we incrementally expand the radius of the ball
that encloses the closed space by sampling carefully along its boundary with each active
learning query. This way, we avoid the vast open space and the redundant highly dense
areas of known data, while making sure that previously unseen information is acquired.

Before we proceed with one imaginable realization of this unified framework in neural
network and its mathematical formalism, we note that there is two works that have previously
initiated a bridge between active learning and open set recognition, alas have not fully
built it yet. The recently introduced open world learning (Bendale and Boult, 2016) and
the concurrently named cumulative learning (Fei et al., 2016) advance the pure open set
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identification step by proposing to set aside the unknown unknowns and including them
into a later active learning cycle. Whereas these works made first steps towards formulating
learning in an open world, they however assume the presence of labels for the entire dataset
and the addition of classes itself is in the form of a fixed sequence that is injected by the
human. The system is limited as it does not self-select which classes or instances should be
learned next, nor does it protect its knowledge for continual learning, where the assumption
of availability of all data at all times is lifted. As a result, the empirical evaluation is simply
an investigation of the performance on the entire test set at each state of the growing known
training set. Finally, the suggested open world learning (Bendale and Boult, 2016) is based
on nearest mean classifiers based on simple SIFT features and is yet to be extended to the
context of modern deep neural networks.

5. Uniting perspectives with deep generative neural networks

How can we realize our proposed unified framework in a meaningful way in deep neural
networks? As emphasized by prior work (Yoshihashi et al., 2019; Mundt et al., 2019b),
identification and correlation of unseen data with average activation patterns of known
data is not necessarily sufficient in discriminative models, even when extreme values are
modelled to obtain closed space boundaries, see prior works (Mundt et al., 2019a,b) for
empirical verification. This is because a neural network based classifier is generally not
encouraged to aggregate the whole information describing the data, merely the features that
allow for class distinction. These features themselves, come with a variety of further pitfalls,
as summarized in the forgotten lessons. In our own previous work (Mundt et al., 2019a,b),
we have overcome this limitation by formulating the problem from a perspective of deep
generative models trained with variational Bayesian inference, i.e. variational autoencoders
(VAE) (Kingma and Welling, 2013). We will lean on this viewpoint, follow the notation of
prior works and extend it towards one potential solution to consolidate continual and active
learning through open set recognition.

The rationale to build upon VAEs is rather straightforward: the Bayesian formulation
lets us learn about the distribution of seen data p(x) by capturing it through latent
variables z. However, as p(x) =

∫
p(x, z)dz is untractable, we do this by optimizing a

lower-bound to the marginal distribution p(x), since the densities of the marginal and joint

distribution are related through Bayes rule p(z|x) = p(x,z)
p(x) . As we do not know our real

posterior p(z|x), we typically resort to variational inference and introduce a variational
approximation q(z|x) to the posterior. In a neural network, this approximation q(z|x) is
learned through the parameters of a probabilistic encoder, whereas a probabilistic decoder
is trained for the joint distribution p(x, z) = p(x|z)p(z) and thus forms the generative
component. This generative model can effortlessly be augmented to additionally discriminate
classes by including their label into the latent variable, e.g. by enforcing a linear class
separation on z. The corresponding factorization and generative process is then simply
p(x,y, z) = p(x|z)p(y|z)p(z) (Mundt et al., 2019a,b). Such formulation of a classifying
variational autoencoder comes with the main advantage that using latent variables z allows
us to base our decision regarding unknown unknowns on the underlying generative factors of
variation and whether an example is close to the high density regions of our approximated
data distribution.
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5.1 The boundary between known and unknown

The first step towards open world aware active and continual learning is to train the above
mentioned classifying variational autoencoder, followed by determining the boundary between
the open and closed spaces for the observed distribution with the help of EVT. For ease
of readability, we repeat the training and fitting procedure described in our previous work
(Mundt et al., 2019a,b). The model’s probabilistic encoder and decoder are trained jointly
by minimizing the divergence between the variational approximation qθ(z|x) and a chosen
prior p(z), typically N ∼ (0, I), and the conjunction of reconstruction loss and the linear
classification objective, parametrized through φ and ξ respectively. For a dataset consisting
of n = 1, . . . , N elements, the following lower bound to the joint distribution p(x, y) is thus
optimized:

L
(
x(n),y(n);θ,φ, ξ

)
=− βKL(qθ(z|x(n)) || p(z))

+ Eqθ(z|x(n))

[
log pφ(x(n)|z) + log pξ(y

(n)|z)
] (1)

At any point in time of training this model, there is a natural discrepancy between
the prior and the approximate posterior. The added β factor in above equation serves the
purpose of controlling this gap. Whereas one could believe this distributional mismatch to
be an undesired property, we recall the arguments conjectured in multiple previous works
(Hoffman and Johnson, 2016; Burgess et al., 2017; Mathieu et al., 2019). In essence, they state
that the overlap of the encoding needs to be reduced in order to avoid indistinguishability,
but at the same time prevent latent variables to consist of individual uncorrelated data
points that resemble a pure look-up table. In the intuitive picture of diagram 7, think of the
former as multiple classes collapsing and thus being inseparable, and the latter as the dense
clusters being scattered to allow differentiation of each and every single data point without
a strong encoding of correlations. Therefore, the actually captured encoding of the data
distribution should not simply be assumed to correspond to the prior, but rather corresponds
to an empirically determinable distribution referred to as the aggregate posterior:

qθ(z) = Ep(x) [qθ(z|x)] ≈ 1

N

N∑

n=1

qθ(z|x(n)) (2)

Using EVT to find the boundaries of this distribution now corresponds to identification of our
model’s closed space. For emphasis, we repeat that this is necessary because VAEs generally
assign non-zero density to any point in the latent space, the analogue of overconfident
classifier predictions (Nalisnick et al., 2019; Ovadia et al., 2019), and that this boundary is
not analogous to the extent of the prior because low density areas exist inside the prior as
well. Practically, an EVT based fit can be obtained by empirically accumulating the mean
latent variable for each class c for all correctly predicted known data points m = 1, . . . ,M :

z̄c =
1

|Mc|
∑

m∈M
Eqθ(z|x(m)) [z] (3)

and defining a respective set of latent distances as:

∆c ≡
{
fd

(
z̄c,Eqθ(z|x(m)

t )
[z]
)}

m∈Mc

(4)
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Here, fd represents a chosen distance function, which prior works have typically chosen to
be either euclidean or cosine distance (Scheirer et al., 2013, 2014; Bendale and Boult, 2015;
Mundt et al., 2019a). As this set represents the distances to the class conditional aggregate
posterior, we can fit a Weibull distribution with parameters ρc = (τc, κc, λc) on ∆c to model
the trustworthy regions of high density that represent the observed data distribution, where
the heavy-tail indicates a decaying reliability:

ωρ(z) =
κ

λ

( |fd (z̄, z)− τ |
λ

)κ−1
exp

(
−|fd (z̄, z)− τ |

λ

)κ
(5)

Here, τ defines the location, λ the scale and κ the shape of the distribution. We can now
make use of this distribution to pinpoint the observed data distribution, as a surrogate to
the otherwise highly complex aggregate posterior. We proceed to highlight its various use
cases in the following sections.

5.2 Approximate posterior based open set recognition

As described in previous works (Mundt et al., 2019a,b), the most direct use of the aggregate
posterior based Weibull parameters ρ is the identification, rejection or storage of unknown
data. Using the corresponding cumulative distribution function (CDF) to the probability
density function of equation 5, we can now estimate any data instance’s statistical outlier
probability for every known class:

Ωρc(z) = 1− exp

(
−|fd (z̄c, z)− τc|

λc

)κc
(6)

When we have observed multiple classes, we will typically take the minimum min (Ωρ)
of this equation across all known classes c and the respective mode’s parameters ρc. This
expresses the basic condition that a data point should be considered as a statistical anomaly
only if its outlier probability is large for each known class. A respective decision should thus
be based on the class where the smallest deviation to known data is observed. The more
dissimilar a sample is with respect to the observed data distribution as approximated by the
aggregate posterior, the more the outlier probability will approach unity. Irrespective of
whether a machine learning algorithm is developed for active learning, continual learning or
in fact any other paradigm, this robustness towards unknown unknown data is essential for
any practically deployed system that operates outside of extremely narrow conditions.

5.3 Outlier and redundancy aware active queries

Equation 6 gives us the direct means to estimate a sample’s similarity with the already known
data. For active learning this almost directly translates to the informativeness of a query.
Small CDF values signify large similarity or overlap with already existing representations,
larger values indicate previously unobserved data. Naively, one would follow the earlier
strategies developed in uncertainty based active learning and simply query batches that
consist of the most outlying data points. However, this would neither grant protection from
exploring noisy, perturbed and uninformative data, nor balance it with exploitation to fester
partially known concepts. Our proposition is thus to query a variety of data that is well
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distributed across the center part of the CDF, i.e. data that surpasses an outlier probability
of e.g. 0.5 and at the same time is limited on the upper end by e.g. a value of 0.95. As
explained in the earlier introduction of the framework, this is tantamount to sampling on
the outer edge of the sphere that encloses the currently known closed space. Naturally, as a
repetition of the ultimate statement of the last subsection, if the employed active learner
is simultaneously deployed or used in application once it has finished learning, avoiding
predictions for unknown unknown data is imperative.

5.4 Core set selection for continual learning rehearsal

In contrast to active queries that need to select meaningful unknown data, in the currently
formulated continual learning paradigm the main goal is to protect the known knowledge while
learning a predetermined new task. We will question the role of the order prearrangement in
the next subsection. Here, we focus on open world aware techniques to preserve previously
acquired representations. Depending on available memory, the most successful approaches
either store and rehearse a small subset of exemplars or alternatively generate data for
former tasks with a generative model. In our previous work (Mundt et al., 2019a) we have
shown how we can use equation 6 to reject samples from the prior z ∼ p(z) that do not fall
into the obtained bounds of the aggregate posterior for generative rehearsal. The choice
for this sampling with rejection originated from the decision to employ the cosine distance,
which collapses the distance to a scalar. A different distance function, such as a euclidean
distance per dimension would allow to directly inversely sample a highly multi-modal Weibull
distribution, i.e. with one mode per dimension per class. Independently of the selected
distance metric, we can leverage inverse sampling for the construction of a small data subset.
Specifically, drawing at uniform from the inverse of the CDF in equation 6 is guaranteed to
yield samples that approximate the aggregate posterior:

fd(z̄, z) = Ω−1(p|τ ,λ,κ) = λ
(
− log (1− p) 1

κ

)
− τ (7)

The core set can now simply be obtained by picking the data points that are closest to the
obtained distance values, if the chosen distance metric collapses the distance to a scalar,
or directly to the latent vector, if the chosen distance metric preserves the dimensionality.
Note that we have chosen to inversely sample the CDF of equation 6 in favor of a more
compact equation. It should however be clear that equation 5 can alternately be sampled
equivalently. The advantage of such a core set selection procedure is that we always attempt
to approximate the underlying distribution, with the quality being defined by the desired
amount of exemplars, while excluding statistical anomalies by limiting outlier probability
values to e.g. p < 0.95. As anticipated, the latter plays the additional crucial role of robust
application when the system has finished learning and is deployed.

5.5 Class incremental curricula and task order

Continual learning methods are mostly evaluated in the context of class incremental learning.
The classes of a benchmark dataset are typically split into disjoint sets and introduced to
the learner in alphabetical or class index sequence. Due to the large computational effort
of training neural networks to convergence on long task sequences, several works choose to
evaluate on subsets of classes (Rebuffi et al., 2017; Wu et al., 2019; De Lange et al., 2019;
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Park et al., 2019). An important remaining question is thus how such evaluation affects
comparability and reproducibility, or more generally the role of task order. As mentioned
earlier, selecting a meaningful ordering is in most cases non-trivial. Large-scale dataset
such as ImageNet are often composed by scraping data from the internet, social media or
through uncontrolled acquisition that prioritizes as large as possible datasets. We as humans
thus lack the knowledge to build an intuitive learning curriculum when paired with our
lack of understanding of deep neural network representations. Consequently, scarcely any
works have attempted to address this challenge beyond a simple randomization of the class
order. Fortunately, we can provide at least a partial remedy to the seemingly arbitrary class
incremental evaluation setting. Although we do not have access to explicit data distributions
for any task, equation 6 allows us to assess the similarity of new tasks with the aggregate
posterior for known tasks. In the spirit of our earlier formulated active learning query, we
can start with any task t and proceed to select future tasks t ∈ T that feature the least
overlap with already encountered tasks (or most overlap, depending on what is desired):

tnext = arg max
t∈T

{
Ept(x)Ωρ

(
Eqθ(z|x) [z]

)}
(8)

To provide an example, if our objective was to incrementally expand a system to
recognize individual animal species, one assumption could be to accelerate training by always
including the species that is most similar to what has already been learned, as this could be
hypothesized to require only small representational updates. An alternative objective could
be to design a system that expands its knowledge in an attempt to cover and generalize
to an as large as possible variety of concepts. In this scenario, one could choose to always
include the next task with the smallest amount of overlap with existing tasks to maximize
learning of diverse representations.

We could now delve into a philosophical debate on when it is reasonable to assume
access to future tasks in continual learning to undergo above selection, and when the task
sequence is unavoidably dictated by other external factors. We refrain from this discussion
at this point and will instead focus on highlighting the large effect on performance when
the task order is chosen by above mechanism in the following empirical investigation. At
the very least, we hope that this will invoke a more careful and consistent evaluation on
existing benchmarks, instead of picking arbitrary data subsets, selecting different random
class orders and nevertheless attempting to compare results across methods.

6. Experimental verification and analysis

In this section we provide the empirical verification for the earlier introduced framework and
its specific realization in deep neural networks. For this purpose, we start with a quantitative
comparison of exemplar selection mechanisms to prevent catastrophic forgetting in continual
learning and querying strategies in active learning. Here, we will first show that the proposed
common EVT based foundation surpasses several conventionally employed techniques. We
then proceed to further highlight the method’s superiority in the open world. In contrast to
most methods that are developed with a unidirectional focus on improving a specific active
learning or continual learning benchmark, our framework has the critical advantage of not
breaking down in the presence of corruptions that commonly occur in practical application
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in the wild. To conclude the experimental section, we investigate the role of task order for
evaluation. We show that a task curriculum constructed through our framework consistently
results in considerable improvements.

We base our experiments on the MNIST (LeCun et al., 1998), CIFAR10 and 100 datasets
(Krizhevsky, 2009). Although these datasets could be regarded as fairly simple, they are
advocated as the predominant benchmarks in all of the presented continual learning works
and still present a significant challenge in this context. They are further sufficient to point
out major differences between methods, particularly with respect to robustness, showcasing
a disconnect with real application and realistic evaluation. We use a 14 layer wide residual
network (WRN) (Zagoruyko and Komodakis, 2016; He et al., 2016) encoder and decoder with
a widening factor of 10, rectified linear unit activations, weight initialization according to He
et al. (2015) and batch normalization (Ioffe and Szegedy, 2015) with ε = 10−5 at every layer,
to reflect popular state-of-the-art practice. To avoid finding elaborate learning rate schedules
or resorting to other excessive hyper-parameter tuning, we use the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.001 and a sufficiently high-dimensional latent space
of size 60 for all training. We use this common setting to corroborate our wholistic view
and describe further details for specific experiments in consecutive subsections.

6.1 Exemplar selection and core set extraction

Before we dive into a quantitative comparison of methods that aim to alleviate catastrophic
forgetting through the selection and maintenance of a core set, we need to address a potential
evaluation obstacle. In continual learning works, the typical evaluation relies on monitoring
the decay of a metric over time when training is conducted on new tasks and old tasks are
retained by continued training on a few select exemplars. However, there seemingly is no
common protocol of how these exemplars are interleaved. Apart from obvious factors such
as the amount of chosen exemplars, works such as variational continual learning (Nguyen
et al., 2018) use the exemplars only at the end of each task’s training cycle to fine-tune
and recover old tasks, whereas most other works (Rebuffi et al., 2017; Isele and Cosgun,
2018; Wu et al., 2019) simply concatenate exemplars with newly arriving data. Ultimately,
the different works make use of different methods for exemplar selection and attempt to
compare their effectiveness through the final metric, even though they are generally not
trivially comparable due to their distinct choices of the training procedure.

To highlight this argument we have trained the typical split MNIST and CIFAR10
scenarios, where classes are introduced sequentially in pairs of two and only the new
task’s data is available to an incrementally growing single head classifier. The old task is
approximated through a core set of size 2400 and 3000 respectively, i.e. we pick 240 and 300
exemplars per class that correspond to retention of 4% and 6% of the original data. We train
the model for 150 epochs per task to assure convergence and interleave exemplars selected
by our proposed EVT approach in three different manners: 1.) We conduct the predominant
naive concatenation of the core set with the new task’s data and continue training with
mini-batch gradient descent that samples data uniformly (unbalanced mini-batch sampling).
2.) We recognize that the former combination and sampling leads to a heavy imbalance as
the core set size is generally much smaller than the new task’s available data. We naively
correct this through weighted sampling that samples a mini-batch such that it consists in
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Figure 8: Influence of mini-batch sampling in continual learning with core sets on MNIST
and CIFAR10. The green squared line represents unbalanced sampling, the naive practice
of sampling mini-batches uniformly from the concatenated pool of the new task’s data
and the retained core set. The purple dotted line weights the sampling to oversample the
much smaller core set to balance the mini-batch equally. The latter is further corrected
with respect to classes in the pink starred line, where the sampling is adjusted to draw
mini-batches that are comprised of the same amount of instances per class independently
of their origin. We have repeated the experiments five times, illustrated by the shaded
regions ranging from the minimum to the maximum obtained values. We can observe that
such training details result in very significant performance differences beyond the statistical
deviations of a specific core set selection strategy. This imposes an additional challenge in
the evaluation of core sets for continual learning. Core sets have been selected with the
proposed EVT based method and consist of 240 and 300 exemplars per class for MNIST
and CIFAR10 respectively.

equal portions of former tasks’ exemplars and new task’s data, generally oversampling the
exemplars (balanced mini-batch sampling). 3.) We identify that the latter weighted balanced
sampling always results in an equal amount of exemplars and new data in a mini-batch,
independently of the number of classes that the core set or the new task increment are
comprised of. To correct for the number of classes, we further investigate class balanced
sampling, where each mini-batch is sampled such that each class is equally represented. To
give an example, if we have seen two tasks of two classes and proceed to learn the next task,
the core set with its four classes will be oversampled to constitute two thirds of a mini-batch
and the remaining third is made up of the two classes of the third task.

We show the obtained empirical continual learning accuracies in figure 8. With gaps of
over 5% it is evident that balancing mini-batches is essential. More so, it is clear that a
comparison of different core set works, just because they have used a similar core set size,
can result in an apples to pears comparison if other aspects such as the detailed training
procedure and mini-batch sampling are not taken into account. As our main focus is to
analyze the core set selection strategies and their limitations, we proceed to compare different
core set selection strategies in isolation from the precise continual learning setting. In analogy
to Bachem et al. (2015) and the ”reverse accuracy” evaluated in LLGAN (Zhai et al., 2019),
we first train the model on the entire dataset, then select core sets of different sizes, and
finally retrain the model exclusively on the core set to assess the approximation quality of
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Figure 9: Training accuracy on core sets constructed by different popular strategies. Results
for different core set sizes, characterized through their size k and the respective percentage
of the dataset, are illustrated in a box plot to show the median, first and third quartile
and minimum and maximum values obtained from five experimental repetitions. If viewed
without color, methods are displayed from left to right in order of the legend from top to
bottom.

our strategy. We repeat this entire procedure five times to gauge statistical consistency and
estimate deviations. Without a doubt, methods that select a core set that yields a better
approximation of the overall population and results in larger accuracies when trained in
isolation, also provide better means to alleviate catastrophic forgetting in continual learning.
We compare six different methods:

1. Random: select exemplars uniformly at random.

2. Greedy k-center: greedy k-center approximation (Gonzalez, 1985) for coreset se-
lection as used in Variational Continual Learning (Nguyen et al., 2018). In essence,
exemplars get picked one by one to obtain a cover of the distribution by maximizing
their distance in latent space to all existing data points in the core set.

3. Input k-means: k-means clustering with k being equal to the number of exemplars.
Raw data points get selected that are closest to each obtained mean. Suggested as an
alternative to greedy k-center in variational continual learning (Nguyen et al., 2018).

4. Latent k-means: analogous to above input based k-means, but with the difference
that the clustering is conducted on the lower dimensional latent embedding.

5. Latent herding: an adaptation of the herding procedure, used by Rebuffi et al.
(2017); Wu et al. (2019), to operate on the latent space instead of an arbitrary neural
network feature space. Herding greedily selects exemplars one by one such that each
exemplar addition best approximates the overall data’s mean embedding.

6. Latent EVT: our proposed EVT based inverse Weibull sampling introduced in
sections 4 and 5.

We show the obtained accuracies by training on differently sized core sets selected by the
above mechanisms in figure 9. As expected, random sampling features large variations, with
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Figure 10: Visualization of the aggregate posterior for a model with two-dimensional latent
space trained on the first four classes of the CIFAR10 dataset and 200 selected core set
exemplars. The left panel shows the greedy k-center approach, whereas the right panel
shows our proposed EVT based core set construction. Classes are color coded points and
the core set elements are illustrated through black crosses. A kernel density estimate of the
per class aggregate posterior (in color) and the corresponding distributional approximation
of the selected core set elements (dashed black) are added on each dimension. In contrast
to the greedy k-center approach that features large discrepancies, insignificant differences
are observable for our proposed method, painting an intuitive picture for our methods
quantitative success of figure 9.

the best attempts rivalling the other methods and in the worst case yielding substantially
worse results. The k-means methods both perform similarly, with the latent space version
operating on a lower-dimensional embedding showing minor improvements over the clustering
obtained on the original image data. The smaller the core set size, the worse these methods
seem to perform. This is not surprising and Bachem et al. (2015) have already argued that
k-means with well separated clusters with sufficiently different amount of data points per
cluster can be prone to inaccurately estimating multiple cluster centers in highly populated
areas versus none in more sparsely populated clusters. This is further amplified by k-means
generally necessitating a sub-sampled initialization to operate in high dimensions and at large
scale. As such, we also observe larger variations for these methods. Latent herding is subject
to much less overall variation and seems to initially do very well. However, in contrast to
the proposed latent based EVT procedure, we notice an increasing gap in accuracy with
larger core set sizes. Intuitively, we attribute this to herding picking increasingly redundant
samples due to the objective relying exclusively on the best mean approximation, which
does not simultaneously tend to diversity. Our latent based EVT approach that aims to
approximate the underlying distribution features by far the least deviation and consistently
outperforms all other methods.
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To provide a better intuition, we have re-trained the model with a two-dimensional
latent space to visualize the aggregate posterior and compare it with the selected core sets.
Figure 10 shows the latent embedding with the first four CIFAR10 classes. The colored
points correspond to the embedding of the entire set of data points and the respective curves
correspond to kernel density estimates of the aggregate posterior. The black crosses indicate
the points selected for a small core set of size 200, i.e. 50 per class. The left panel illustrates
the greedy k-center approach, whereas the right panel shows the EVT aggregate posterior
based approximation. Evidently, the approximation of the distribution is almost impeccable
for our proposed approach, with the greedy alternative leaving much to be desired. We
argue that this is due to the greedy k-center procedure optimizing for a cover based on
maximal distances, alas without explicitly replicating the density or taking into account
inherently present outliers and unrepresentative examples. While this might not be much of
an issue for the highly redundant clean MNIST dataset, the arbitrarily collected real world
data of the CIFAR10 dataset entails complete failure for the greedy k-center approach. In
fact, by introducing a few naturally occurring image corruptions, we will show that such
lack of robustness can be observed for all but our proposed method in a later section. Before
we dive into this aspect of robust application in the open world, we first proceed with a
quantitative analysis of the active learning perspective.

6.2 Active queries

In addition to the last section showing the advantages of our proposed framework for
the construction of core sets that approximate the aggregate posterior, we empirically
demonstrate the benefits when conducting EVT based queries for active learning. Recall that
active learning is challenging because we generally desire to query batches of informative data
at a time instead of querying, re-training and re-evaluating one by one. This is particularly
imperative for computationally expensive deep learning and adds a further constraint of not
only querying meaningful samples, but also making sure to query diversely without too much
redundancy between the queried examples. We consider this typical deep active learning
scenario for MNIST and CIFAR10, where we start with a random subset of 50 and 100 data
points respectively, train for 100 epochs to assure convergence and then make a query to
include 100 further data points. We then proceed to train the network with the additional
instances before repeatedly querying and training again. In a crucial distinction to the
majority of active learning works that only investigate the quality of the query by re-training
the entire model from scratch, we do not reset our weights in continued incremental training.
This implicitly introduces a stronger impact of ordering and further acknowledges that not
only labelling, but also training itself is expensive. Each experiment is repeated five times,
alas always with the same initial random subset to preserve comparability between individual
repetitions and across methods.

We investigate popular metrics and mechanisms on which current deep active learning is
based. The majority of these are techniques that attempt to take optimal action without
explicitly approximating the entire set of unknown data. To estimate and account for
uncertainty we make use of Monte Carlo Dropout (MCD) (Gal and Ghahramani, 2015)
where appropriate. Although we believe that there is an inherent limitation in earlier
introduced approaches that explicitly use the entire unlabelled pool for optimization, we
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also investigate the proposed technique to query based on a k-means core set extracted
from the unknown data (Nguyen and Smeulders, 2004; Sener and Savarese, 2018). Whereas
we certainly regard such methods as valuable in a closed world context, we note that
these methods are infeasible without prior knowledge outside of a constrained pool or for
sequentially arriving data subsets. As we will see in the next section, they feature little
robustness to nonsensical data that might be present in the pool, as the entire unlabelled
pool is included and assumed to be useful. The metrics and methods that we investigate are:

1. Random: sampling uniformly at random from the unlabelled pool.

2. Reconstruction loss: in our particular scenario, because our proposed framework
includes a generative model, we can query examples based on largest reconstruction
loss. This is typically unavailable in a purely discriminative neural network classifier.

3. K-means core set: use the entire unlabelled pool to base the query on an extracted
core set that is equivalent in size to the query amount. Nguyen et al. had suggested
such pre-clustering (Nguyen and Smeulders, 2004) and it was later used in deep active
learning with k-means as the core set algorithm (Sener and Savarese, 2018).

4. MCD - classification confidence: query based on lowest softmax confidence (Lewis
and Gale, 1994). As neural network classifiers are known to be overconfident, we
additionally gauge uncertainty with MCD as a suggested remedy by Gal et al. (2017).

5. MCD - classification entropy: query based on largest predictive entropy (MacKay,
1992). Similar to lowest confidence, we use uncertainty from MCD to obtain better
entropy estimates (Gal et al., 2017).

6. Latent EVT: our proposed EVT based approach that balances exploration with
exploitation by querying instances that distribute across outlier probabilities, but
limited by an upper rejection prior to avoid uninformative outliers.

We first note that we have included classification confidence and entropy with MCD
because omitting uncertainty estimates resulted in no improvement of the active learning
query upon simple random selection. This has previously been argued and corresponds to
the empirical observations made by Sinha et al. (2019). For our proposed EVT approach
we empirically distribute the query uniformly across examples that fall into the range of
0.5 to 0.95 outlier probability, as estimated by equation 6. Although it never occurred in
practice, we note that it would likely be preferential to extend this range to the lower end if
not enough samples in the pool were available in the mentioned range, rather than including
complete outliers. We will provide empirical evidence for this in the next section.

Figure 11 shows the quantitative results of our active learning experiments. On both
datasets, the k-means based core set is either similar or slightly worse than simply sampling
at random. This reflects our previous observations in the core set continual learning
section. On the contrary, the uncertainty based methods surpass random sampling. Using
largest reconstruction loss similar results can be accomplished, although at the additional
computational expense of calculating the decoding. However, all methods are significantly
outperformed by our proposed latent EVT method at all times. The respective rationale
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Figure 11: Active learning accuracy for different methods on the MNIST and CIFAR10
datasets. All experiments start with the same randomly sampled 50 and 100 dataset examples.
In each step, an additional 100 data instances are queried from the remaining unlabelled pool
and included for further continued training. Results show the average over five experiments,
with the shaded areas ranging from the minimum to the maximum obtained values.

behind this improvement is quite intuitive. Our strategy balances completely novel examples
with less novel examples that are still required to strengthen the existing learned features.
More importantly, it rejects uninformative outliers that are inherently present in the pool, a
threat that uncertainty based methods can be particularly prone to. This threat is magnified
with even less knowledge about the acquired dataset and even more unconstrained data
acquisition. The past two subsections have focused on showing our methods advantage
in the typical continual and active learning benchmark perspective in the closed world
scenario, devoid of any analysis with respect to robustness. In the next section we extend
this evaluation to analyze each individual methods’ behavior in the presence of corruptions.

6.3 Robustness to open world corruptions

Prior works that address open set recognition or in general application of machine learning
algorithms in an open world have argued that prediction on previously unseen unknown
classes results in inevitable misprediction (Scheirer et al., 2013, 2014; Bendale and Boult,
2015, 2016; Boult et al., 2019). For example, if a user is given the freedom to provide any
image input to a neural network based classifier, an arbitrarily chosen image’s prediction will
be indistinguishable from the typical training set output. We have previously empirically
demonstrated that the proposed EVT based approach overcomes this challenge, much in
contrast to relying on uncertainty based measures that fail to even distinguish the most
trivially disparate datasets such as visual and audio data (Mundt et al., 2019a,b). Although
this poses a serious threat to building a user’s trust, just imagine your own faith in a classifier
that assigns an image of a car the label of a t-shirt (recall the earlier figure 5), we can
naturally question if this scenario could simply be circumvented by including guidelines with
respect to the expected model input, i.e. ”this model has been trained on fashion-items, it is
not designed for other types of data”. The more sensible solution would be to have the model
reject unknown unknown data. Whether or not we consider the latter scenario as meaningful,
unknown unknown data is not necessarily always composed of completely dissimilar classes.
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A perhaps at least equivalently large threat is data that is statistically deviating for other
reasons: corruption and perturbation. In any real-world scenario, we can no longer assume
that our machine learning model is faced exclusively with the carefully curated data that
benchmarks are comprised off. Often a simple change in camera can dramatically skew
the statistics of the acquired image. In an almost endless list, low lighting conditions can
introduce various forms of noise, small jitter can cause blur, weather conditions change, the
condition of the object of interest correspondingly changes, . . .. The gullible solution would
again be to attempt to model all forms of corruptions and perturbations, but this simply
connects back to the infeasibility of the earlier introduced ”inference with the universum”
approach.

In a recent effort to benchmark the performance against 15 types of various corruptions,
Hendrycks and Dietterich (2019) have shown that none of the developed neural network
models feature any intrinsic robustness, even if they converge to more accurate solutions
on the initial benchmark. This was concluded from experiments where neural networks
are trained on the uncorrupted benchmark dataset and evaluated on the corrupted data.
We extend this evaluation by investigating the presence of a minor portion of corrupted
data in the training process, as can realistically be assumed for active or continual learning.
We examine whether common query strategies in active learning and core set construction
in continual learning are robust, or whether querying and including this unrepresentative
corrupted data into core sets leads to performance degradation in comparison with the clean
benchmark. We believe that this is critical for two reasons: 1.) The necessity to carefully
curate every single example in the unknown data pool can outweigh the active learning
human labelling effort and thus renders active learning ineffective in the first place. 2.) Data
cleaning itself is extremely challenging and it is often not immediately clear whether the
inclusion of a data instance is beneficial or is accompanied by side effects.

We make use of corruptions across four categories: noise, blur, weather and digital
corruptions, as introduced by Hendrycks and Dietterich (2019). These can further be
distinguished into 15 types: low-lighting Gaussian noise, electronic shot noise, bit error
impulse noise, speckle noise, Gaussian blur, defocus blur, glass blur, zoom blur, motion
blur, snow, fog, brightness, contrast, saturation and elastic deformations. Each corruption
is algorithmically generated with five discretized levels of severity, of which the first two
are at times barely discernible from a typical image by a human. We accordingly corrupt
7.5% of the data across these 75 corruptions. We add the additional constraint that each
image can only be corrupted once. Note that in principle some corruptions, such as noise
resulting from low lighting conditions and out of focus blurring, could occur simultaneously.
We have deliberately chosen this amount of corruption to, on the one hand be small enough
to not affect overall performance if trained on the entire dataset, on the other hand be
larger than the core set size or active learning query amounts used in previous sections.
Hypothetically, in the absolute worst case this could result in only corrupted images being
selected and the entire chosen set being much less representative of the complete dataset
than a selection of clean examples would be. We repeat the previous CIFAR10 experiments
under these conditions. For better visualization and quantification we do not show plots,
but have instead picked three evenly spaced points of figures 9 and 11.

We show the originally obtained results in direct comparison with the results obtained
under inclusion of the corrupted data in tables 1 and 2. From these quantitative results
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Table 1: Active learning with and without partial dataset corruption. Uncorrupted values
correspond to those visualized in figure 11.

Accuracy [%]: mean +difference to maximum

−difference to minimum

CIFAR10 queries, dataset size 8, 900 18, 1900 28, 2900
Dataset regular corrupted regular corrupted regular corrupted

Random 38.80+0.69

−1.75 38.97+1.03

−1.87 47.81+2.02

−3.93 47.91+2.13

−3.58 53.36+1.17

−2.34 53.53+1.13

−2.42

Reconstruction loss 41.14+2.06

−3.89 38.26+0.64

−1.89 50.70+0.69

−1.50 46.49+0.82

−2.13 55.22+1.37

−1.92 50.85+1.03

−1.57

K-means 38.34+1.46

−2.63 36.05+1.65

−2.53 45.08+1.50

−3.23 42.93+1.59

−3.65 50.52+0.94

−3.15 47.58+1.93

−3.39

MCD Entropy 40.05+1.15

−2.99 38.83+0.68

−1.03 47.96+2.91

−5.28 44.73+0.61

−1.02 53.72+2.35

−4.76 50.06+0.37

−0.75

MCD Confidence 40.67+0.87

−1.89 37.93+0.35

−0.81 49.40+2.86

−4.44 47.16+1.29

−3.22 54.51+1.15

−3.13 51.91+1.78

−2.67

Latent EVT 44.67+0.32

−0.63 43.79+0.74

−1.72 51.66+1.05

−1.69 51.12+0.38

−0.91 57.43+0.51

−1.09 56.83+0.41

−0.78

Table 2: Coreset selection and training with and without dataset corruption. Uncorrupted
values correspond to those visualized in figure 9.

Accuracy [%]: mean +difference to maximum

−difference to minimum

CIFAR10 coreset size 300 600 1500
Dataset regular corrupted regular corrupted regular corrupted

Random 31.23+3.94

−9.14 30.35+1.88

−5.92 39.52+3.61

−7.95 39.05+1.99

−5.89 51.43+3.33

−6.12 51.01+2.30

−4.49

Greedy k-center 22.82+3.05

−1.65 22.19+1.76

−3.37 29.33+1.50

−3.23 29.48+1.91

−5.11 42.41+1.97

−4.13 42.37+1.49

−2.44

Latent k-means 32.76+2.29

−3.35 29.00+2.12

−4.05 39.49+1.71

−4.17 35.71+1.69

−4.08 50.01+1.80

−3.28 48.52+2.59

−3.86

Image k-means 32.85+2.57

−3.76 30.74+1.43

−3.16 37.86+1.66

−3.98 36.38+0.90

−2.75 49.62+2.83

−8.09 48.23+1.78

−2.50

Latent herding 33.92+0.61

−1.45 33.81+0.82

−1.39 41.13+1.18

−2.29 40.77+1.34

−1.57 51.87+1.12

−1.85 51.06+2.43

−2.30

Latent EVT 34.16+1.10

−2.27 34.18+1.07

−2.55 41.78+1.34

−2.57 41.67+1.37

−2.53 53.35+1.48

−2.53 53.28+1.06

−2.17

it is evident that only two techniques are robust in active learning: random sampling and
our proposed EVT based approach. The logical explanation is that random sampling on
average will pick roughly 7.5% corrupted data, of which another 40% feature only minor
low severities. The small amount thus only has minor effect on the optimization. The EVT
based algorithm is similarly unaffected as it does not query statistical outliers in the first
place, or if it includes corrupted examples then only those with minor severity that are
statistically still largely similar to the uncorrupted data. All other methods are prone to the
corrupted outliers in one way or another. Classifier uncertainty and reconstruction loss tend
to pick very corrupted examples by definition, the k-means approach will have shifted centers
or falsely query from new clusters that are centered around corruptions of the unknown
pool. Looking at the quantitative accuracy values, we can in fact even conclude that all
these methods perform worse than a simple random query. The continual learning core set
construction picture is quite similar. Here, we can observe corruption robustness for random
sampling, latent herding and our proposed approach. Latent herding is robust to outliers
because it picks samples greedily one by one to best approximate the mean, which intuitively
involves picking the next best example that is close to the class mean and does not involve
outliers (potentially only in a minor fashion through a drifted mean if the outliers are not
embedded symmetrically around the class mean). However, the issue of including redundant
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Figure 12: Typically selected dataset examples in the core set construction using a greedy
k-center algorithm. Qualitative illustration is intended to provide intuition for a method’s
failure. The left panel shows how picked exemplars from an uncorrupted dataset are
unrepresentative of the average image, with unusual backgrounds, occlusion and scaling
issues. The right panel shows how the core set is comprised of many corrupted examples if a
small portion of the dataset is corrupted, a lack of robustness that many methods in tables
1 and 2 suffer from.

samples into the core set remains unaddressed, and our EVT based method nevertheless
outperforms all other approaches.

Interestingly, the greedy k-center approach also seems to be robust to the corruptions,
although it performs equally miserably to the uncorrupted scenario. Recall that this
algorithm greedily chooses the next data point for inclusion in a farthest-first traversal, by
maximizing the distance to all presently existing core set elements. In other words, outliers
are always queried as they by definition are farthest away. Only after a sufficiently large
cover is obtained will representative data be queried. Because such unrepresentative outliers
are already present in the uncorrupted data, the performance is consequently always low for
small core set sizes. To visually illustrate this statement we show a uniform sub-sample of
the acquired core set for the first four classes with and without corruption in figure 12. In
the left panel we can observe the core set being comprised of atypical aeroplanes with deep
green or black background, a captured overexposed sunset, partially occluded cars and birds
by bushes and fences or images where the animal is almost not discernible and comprises
only a fraction of the image. Arguably these do not represent good exemplars. In the right
panel, we can see that in the presence of corruption, the core set is comprised of noisy, blurry
and otherwise distorted images. Ultimately neither of these core sets are a particularly
good approximation of the dataset, intuitively explaining the abysmal performance of this
technique.
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6.4 Choosing the curriculum - the importance of task order

As detailed in the earlier introduction of our framework, we can apply our proposed EVT
based active learning strategy to the construction of a continual, class incremental learning
curriculum. In this context, a task’s outlier probability is synonymous with its dissimilarity to
already accumulated tasks. Conversely, a task that is deemed to be largely inlying has a large
representational overlap with existing knowledge, even though it might have been assigned
a distinct label. In the best case scenario, this implies that only fine-tuning is necessary
to sufficiently include a proximate task. In the worst case scenario, the representational
entanglement severely limits the discriminability. Unless a major addition or overhaul of the
learned representations ensues, this leads to confusion with existing concepts. In contrast,
most outlying tasks are hypothesized to be distinct enough to not interfere with previous
tasks, assuming the old task’s data is still available or a continual learning mechanism
prevents its catastrophic forgetting.

We investigate the importance of task order and whether the construction of a curriculum
beyond alphabetical class order provides substantial learning benefits. For this purpose we
consider four conceivable scenarios:

1. Class sequential ordering: learn the classes in order of their integer class label. For
many datasets this is in alphabetical order.

2. Random order: randomized class order.

3. Most outlying, dissimilar tasks first: determine the next class to add by evaluating
equation 8, i.e. pick the next class that is most outlying and dissimilar with respect to
the already seen classes.

4. Most inlying, similar tasks first: determine the next class to add by evaluating
equation 8, but with a minimum over task outlier probabilities to include the most
similar task in each increment.

Note that for all strategies we always start with the same first task for comparability.
To make sure that obtained results and found curricula are not just a result of sheer luck,
we repeat each experiment five times, report the average and the minimum and maximum
obtained accuracies at each step to gauge deviations. We conduct experiments on two
datasets: the CIFAR100 and the AudioMNIST (Becker et al., 2018) dataset. We follow
the typical continual incremental learning procedure of adding classes in pairs of two. We
chose the first dataset because it allows for the construction of a long task sequence. We
chose the latter because it represents a non-image dataset and previous work has observed
that some classes can provide strong retrospective improvement (Mundt et al., 2019a), an
early indicator that the class ordering should be investigated further. In order to show the
impact of task ordering, we provide an analysis, both, when independently evaluated from,
or coupled to specific techniques that alleviate continual learning catastrophic forgetting.
As such, we evaluate CIFAR100 in what is typically referred to as a continual learning
upper-bound, i.e. the maximum obtainable accuracy given a specific model choice and
training procedure in which the data of each task is simply accumulated with each subsequent
task. For the AudioMNIST we use generative replay to prevent catastrophic forgetting,
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Figure 13: Continual learning accuracy of learning classes in increments of two in dependence
on the choice of task order. Top panel shows the incremental upper-bound, i.e. a simple
accumulation of the real data, for the CIFAR100 dataset. The bottom panel shows obtained
performance on the AudioMNIST dataset with alleviated catastrophic forgetting through
generative replay. For each of the order selection mechanisms the experiment has been
repeated five times. The corresponding average together with the maximum and minimum
deviation are reported respectively.

where old tasks’ data is rehearsed based on the trained generative model. We do not make
use of any data augmentation.

The achieved accuracies at each task increment are shown in figure 13. We can observe
that for the CIFAR100 dataset, random sampling seems to yield a very similar accuracy
trajectory in comparison to sequentially learning the classes in order of their alphabetical
class id, resembling earlier observations (De Lange et al., 2019; Javed and Shafait, 2018).
However, in contrast to the conclusion that task order is negligible, we can observe that
our proposed framework’s selection schemes, that rank order the data according to their
similarity with the existing encoding, paint a dramatically different picture. Selecting the
most dissimilar task for inclusion consistently improves the accuracy by several percent,
even at the end of training. Conversely, including tasks that are very proximate to existing
concepts results in an all-time performance decrease. We hypothesize that this is due to
the classifier experiencing immediate confusion. Our initial classes consist of ”apples” and
”aquarium fish” and the query consensus across repeated experiments is to continue with
selecting the classes ”pears” and ”whale” or ”shark”. The opposite strategy that prioritizes
dissimilarity in the curriculum instead includes unrelated classes such as ”lawnmower”,
”mountain” or ”oak”. We believe that this allows the model to more rapidly acquire a
diverse set of representations.

We can draw almost analogous conclusions for continually learning the AudioMNIST
dataset with generative replay. Here, we additionally see that the conventional order of
learning the sounds from ”zero” to ”nine” is accompanied by a pattern of repeated retro-
spective improvement. The first task increment results in a larger accuracy drop, that is
rectified through backwards improvement of the next task increment. This pattern repeats
for the next two classes and its consistent strong emergence is only visible when learning
sequentially in order of class id. The accuracy at any time is again best for our proposed
measure of dissimilarity and worst when selecting according to task proximity. For the latter,
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in analogy to the earlier hypothesized confusion of the classifier, the generative model is
faced with difficulty to disambiguate the resembling classes and produce unambiguous output.

Our results indicate that using active learning techniques in continual learning can have
critical impact on the achieved performance. More so, the results provide an important signal
for reproducibility and significance of various conjured continual learning benchmarks. In a
world of benchmarking methods and regularly claiming advances when a method surpasses
another by 1-2 %, the observed absolute discrepancy between the different task orders for
CIFAR100 is as large as 10%. This is a substantial gap. Whereas we obviously believe that
there is value in analyzing and contrasting different techniques to alleviate catastrophic
forgetting on a common dataset, it is clear that there is still much we need to learn about
neural network training and evaluation that can only be discovered by moving away from
our current rigid benchmarks.

7. Conclusion: towards a wholistic definition of deep continual learning

We have presented a common viewpoint to naturally unite robust continual and active
learning in the presence of the unknown. For each aspect, we have conducted an empirical
investigation that demonstrated the benefits of the viewpoint’s realization in a variational
Bayesian deep neural network framework. Needless to say, each of our individually presented
experiments can be extended with multiple facets and several nuanced applications can
be derived and thoroughly investigated. At this point, we remark that we do not wish to
claim that our proposed method provides the generally best solution or selects optimal task
sequences. Although our framework clearly shows quantitative promise, our main goal is
to highlight the importance of the introduced consolidated viewpoint. In the ideal case,
we would encourage future works to adopt our framework or take a similarly wholistic
approach. At the very minimum, we would expect future works to rethink current practices
and question whether current benchmarks are a realistic reflection of our desiderata for
continual machine learning systems. As illustrated throughout the paper, this necessitates
stepping out of our closed world benchmark routines. In hopes of providing some guidelines
for the latter, we make an attempt at a revised continual learning definition and suggestions
towards more systematic assessment.

Definition 4 Continual Machine Learning - this work: The learner performs a sequence of
N continual learning tasks, T1, T2, . . . , TN , that are distinct from each other in terms of shifts in
the underlying data distribution. The latter can imply a change in objective, transitions between
different domains or inclusion of new modalities. At any point in time, the learner must be able
to robustly identify unseen unknown data instances and rank order them according to similarity
with existing tasks, in order to actively build a learning curriculum. If the system is desired to be
supervised, a human in the loop may group and label the set of identified unseen unknowns to explicitly
guide future learning. When faced with a selected (N+1)th task TN+1 (which is called the new or
current task) with its data DN+1, the learner should leverage its dictionary of representations to
accelerate learning of TN+1 (forward transfer), extend the dictionary with unique representations
obtained from the new task’s data (this can be completely new types of dictionary elements), while
simultaneously maintaining and improving the existing representational dictionary with respect to
former tasks (backward transfer).
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Figure 14: A suggestion for a more comprehensive, system oriented evaluation. In contrast
to the conventional continual learning pipeline, the system is extended with a (optionally
human in-the-loop) data querying mechanism and a measure of novelty that is used for
robust application in the open world and to select adequate ensuing optimization techniques.
These suggested additions to the conventional continual learning process are emphasized
through orange text and shading in the diagram. Rectangles represent objects and circles
correspond to processes. Dashed arrows indicate a process’ dependency on the model.

In comparison with former continual learning definitions, reiterated at the beginning of
this paper, the definition is now extended to include active data queries, the corresponding
importance of data choice and task order, in coherence with awareness of the open world.

7.1 Outlook: a suggestion for a more comprehensive, system oriented evaluation

We show one example of how a revised outline of a continual learning system that satisfies
the above definition could look like in figure 14. Again, this example can be realized with
our proposed specific EVT based framework, although several other implementations are
conceivable. The main idea of the system can be summarized as follows: After initial training
on some seeding data, ideally by finding a baseline architecture through architecture search
or through progressive architecture growth, a new task is queried through an inherent model
mechanism to optimize the effect of order and the queried data is consecutively labelled.
Alternatively, specific data can be introduced by a human in the loop, if it is desired that the
system is constrained to very specific tasks. The new data is then evaluated with respect to
existing tasks and associated with a measure of novelty. This measure of novelty serves the
dual purpose of introducing robustness into the system when applied in the wild, and at the
same time is used as the foundation to decide on how to proceed with further optimization. If
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the overlap with existing knowledge is very large, it is sufficient to conduct minor fine-tuning
steps. If there is a large amount of expected novelty, the optimization needs to proceed with
a mechanism to protect previously acquired tasks, typically through means of core set or
generative rehearsal. Because the amount of expected novelty is large, it is recommended
to then continue training with model expansion in order to ensure sufficient representa-
tional capacity is available to accommodate entirely new concepts. The cycle is then repeated.

In comparison with the classical continual learning evaluation pipeline, presented in the
beginning of this work in figure 2, we thus suggest to extend the system with essential robust
evaluation and active queries to address questions concerning the importance of input data
selection. As demonstrated, integration of these aspects can be achieved through prediction
of a statistical measure of novelty based on overlap with existing knowledge, e.g. with our
suggested posterior based EVT open set recognition approach. This measure of novelty serves
a natural triple purpose: 1.) Rejection or setting aside of unknown unknown data in robust
application. 2.) Querying data from an unlabelled pool in a suitable order that provides
large expected benefit to the model. 3.) If the data order is pre-imposed, e.g by a human or
a stream, the novelty metric can be used to dynamically switch the training procedure to
incorporate dissimilar novel data, while preserving prior representations through extensive
continual learning mechanisms that alleviate catastrophic forgetting, or to simply fine-tune
in the presence of sufficient overlap with previously seen data.

Even though the advantages of expanding the effective representational capacity during
training are clear, we have put the use of model expansion and progressive architecture
search in brackets. Although its use is theoretically and empirically desirable, we understand
that this ideal evaluation involves several challenges that can limit its practicality. It is clear
from previously discussed works that continuous model growing is advantageous, but we note
that heavily over-parametrized models have shown satisfactory results. We thus encourage
future research to first and foremost focus on the questions about benchmark construction,
data point selection, and the voiced concerns regarding robust application in the open world.
We would then expect future work to additionally include model expansion techniques.

We anticipate that this work leads to increased awareness of the dangers of our current
closed world practices and the necessity of expanding our views towards more realistic real-
world relevant evaluation. In doing so, we believe that further synergies between presently
separately treated machine learning paradigms will be exposed and can be exploited. This
should ultimately lead to improved, more robust and simpler machine learning systems.
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DISCUSSION AND OUTLOOK

Summary

The three main chapters of the thesis, comprised of six manuscripts and one section con-

taining a qualitative application demonstration, have seen the introduction of multiple tech-

niques that each in their own address various aspects of the machine learning workflow.

Broadly speaking, the first chapter has been focused on questions concerning selection of

adequate representational capacity in a deep neural network, its hierarchy of individual

operations and how to adapt an architecture over time for prospective continual learning.

Three works have proposed a mechanism to repeatedly expand the amount of neural net-

work features as required during training (Mundt et al., 2017), have empirically investi-

gated common design rule of thumbs for the neural network topology with respect to its

feature distribution across layers (Mundt et al., 2018b), and have explored neural archi-

tecture meta-learning in the context of a newly proposed dataset for the task of detecting

and classifying defects in concrete bridges (Mundt et al., 2019a). From a perspective of a

practical machine learning engineer, these works have called to attention that deep learn-

ing requires more than a simple "plug and play", that is taking a specific neural network

architecture and feeding it with some collected data will not inherently provide the de-

sired solution. Apart from raising awareness, the central contribution of the chapter has

thus been to develop and showcase ways of how these architectures can better be selected

or even constructed automatically given a specific task, with an application to real world

concrete defect classification.

The second chapter has proceeded to investigate complimentary questions of how to con-

tinuously train a neural network when the underlying distribution of the training data shifts

over time and correspondingly, how to detect data instances that are unlikely to originate

from the same distribution as the observed data population. The first two works in this chap-

ter have proposed a data distribution centered variant for extreme value theory based open

set recognition in deep neural networks. They have highlighted the interdependence of sta-
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tistical outlier recognition and the generative rehearsal of instances that are constrained to

resemble previously observed data (Mundt et al., 2020b). They have investigated the role of

model choice and deep uncertainty approximations for the recognition of unseen unknown

data (Mundt et al., 2019b). A final section has qualitatively corroborated the application of

the developed techniques to the earlier introduced concrete defect detection task, in order

to provide an additional practical application context. In essence, the central contribution

can be summarized in simplified terms. The works introduce and characterize a common

approach to address the well-known issue of a deep neural network forgetting what it has

previously learned when training is continued on very different concepts, and at the same

time overcome the long-standing challenge of a deep neural network producing completely

wrong predictions on unknown data. For the practical machine learning engineer, this im-

plies that there no longer needs to be a drastic restriction of what a user of a neural network

based machine learning system is allowed to show to the system. Examples that do not

belong to the trained task or deviate substantially from the training data will simply be

flagged as such, providing a strong indication for the user not to trust the system and set

these examples aside for a different form of processing. For instance, if a neural network

has been trained to distinguish dogs and cats, we no longer have to worry about the system

assigning a dog or cat label to images of owls or horses, and instead will be notified that

they belong to neither category. Once they are set aside, these images of owls and horses

can then be used for further training of the neural network to add two additional categories

to the classifier, without the necessity of continuously reminding it about dogs and cats.

The third and last chapter has concluded the thesis with a manuscript that provides the over-

all integrated perspective (Mundt et al., 2020a). The presented viewpoint is approached

from a conducted broader literature review and linked to prior lessons which have seem-

ingly been forgotten in the deep learning era. It has not only highlighted the synergies of a

consolidated view, but also extensively argued about the threats and pitfalls in the absence of

the latter. Based on the author’s earlier manuscripts and their respective insights, a unified

framework has been presented in order to condense questions regarding selection of data

instances to include for future continuous training steps, the role and importance of task

order, mitigation of catastrophic forgetting in continuous training and general robustness

when training and deploying deep neural networks in an unconstrained real world beyond

static benchmarks. This perspective has been empirically validated through multiple quan-

titative experiments in a framework’s realization in deep generative neural networks. These

experiments raise the machine learning practitioner’s awareness about the required systems

perspective in order to succeed beyond a particular type of benchmark, and have contributed

one practical realization towards a symbiosis of separately treated machine learning aspects

in a single deep neural network approach.
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Conclusively, the proposed methods and obtained insights can all be regarded as advances

towards more robust real-world applicability of deep neural networks. Even though there

are still many components that require substantially more grounded understanding, such as

the precise nature of the formed neural network representations in a multi-layer encoder or

the respective cascade of non-linear transformations that translate learned generative fac-

tors into actual data instances, the developed techniques fill some of the current gaps in pure

blackbox deep learning usage. As a consequence, various future directions are conceivable.

Some of them reside on the rather immediate time scale, whereas other imaginable paths

are likely to require significantly more time or the emergence of a disruptive breakthrough.

In the subsequent final thesis sections some of these prospects are briefly sketched. At first,

this includes natural and imminent extensions of the presented individual works and some

of their remaining challenges that still need to be resolved. This is then followed by the

author’s personal conjectures on potential advancement in a grander frame of reference.

Short-term Prospects

Each of the works presented in the thesis comes with its respective short-term outlook.

Here, these outlooks are first extended on a detailed level and then followed by the larger

overarching long-term research questions and open challenges. The sub-sequent paragraphs

thus roughly follow the outline of the thesis’ chapters, revisit their individual works and

suggest further interconnection and extensions.

The chronologically earliest introduced work of neural network capacity expansion (Mundt

et al., 2017) is accompanied by two major open challenges. The first one is an empiri-

cal investigation into the stability and practical reliability of the proposed technique. The

second one is the development or embedding into a grounded theory of the deep neural

network learning trajectory. Whereas the latter remains largely open and requires a poten-

tial deep dive into the complicated high dimensional loss landscapes, an examination of the

former aspect has already been initiated in a co-advised thesis of Wendland (2020). In the

respective analysis it becomes apparent that the success of the neural network expansion

technique is reliant on inherent stochastic gradient descent regularization mechanisms and

a decoupling of layers. Recall that the expansion itself is initiated whenever all features in

a layer are observed to change with respect to their random initialization. A safe use of

the technique with individually treated layers is thus enabled by techniques which ensure

a steady gradient’s magnitude in backpropagation. The expansion technique is then not

prone to limitless capacity increase as a result of experiencing undesired effects leading to

gradient explosion or vanishing. Two corresponding techniques: batch normalization (Ioffe
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and Szegedy, 2015) and layer specific weight initialization to preserve activation magni-

tudes across layers (He et al., 2015), have been identified as key requirements. Empirically,

as long as one of them is present, capacity expansion seems to be bounded and converge. In

the absence of both mechanisms the capacity expansion technique is observed to be unstable

and continue infinitely, which is simply due to lack of activation or gradient normalization

yielding erratic weight changes. This is demonstrated by removing activation normalization

according to batch statistics and employing weight initialization that does not normalize the

rectified linear unit activations, such as the initialization previously proposed by Glorot and

Bengio (2010). In consequence of this observation, the investigation is then extended to

the question of online capacity addition. The previously assumed requirement of complete

re-initialization of weights after an expansion step is thus lifted. Empirically, this seems to

be possible without any major drawbacks, although further investigation on how the newly

added capacity needs to formally be initialized remains open, i.e. the weight distribution

can in principle drift during training with respect to the initial distribution from which it

was drawn. The original work’s computational limitation of weight re-initialization after

expansion steps thus seems to be surmountable. One emerging central observation is that

an online procedure yields multiple different types of architectures with the same final ac-

curacy, even on rather simple and controlled tasks such as separating samples from multiple

uni-modal Gaussian distributions with clearly distinct means. This opens up prospective fu-

ture theoretical analysis with respect to the lottery ticket hypothesis (Frankle and Carbin,

2019), which articulates that the training effectiveness is similar to a lottery. Even if the

same distribution is chosen for weight initialization, the empirical effectiveness with re-

spect to training speed and amount of required parameters seems to be heavily reliant on

the exact combination of initialized weights. It is believed that such an effect is observed

in the investigated capacity expansion technique, where multiple points of convergence can

be seen with similar accuracy, yet consistently differing amount of overall parameters. This

further underlines the necessity of tying future work to recently developed theoretical ad-

vances.

Another natural short-term extension towards fully dynamic neural architectures is the com-

bination of the presented capacity expansion technique with the other investigated architec-

ture search methods (Mundt et al., 2019a). On the one hand, dynamic capacity expansion

of each individual layer can dramatically reduce the search time and search space complex-

ity of current architecture search techniques, which treat each combination of specific layer

choice and its exact parameter amount as a unique state. On the other hand, architecture

search allows to find a suitable hierarchy of operators, which can lift the current limitation

of dynamic capacity expansion techniques to operate solely on pre-determined architecture

depth. In this context, the perhaps most promising immediate future direction would be
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the application of either dynamic architecture search technique to generative models. In

the later works of the thesis (Mundt et al., 2019b, 2020b,a), the necessity for generative

deep modelling has clearly emerged. Even if a fully supervised task is desired, knowledge

of the training distribution seems to be a core component in identification of the open set and

continual learning rehearsal. However, straightforward application of presently known rein-

forcement learning architecture search techniques to deep generative models is infeasible.

Independently of whether a generative adversarial network or a variational autoencoder

based model is considered, this is due to the interplay of multiple competing loss terms

rendering the formulation of a simple reward signal problematic. As an example, in the

explored variational Bayesian approaches a classification accuracy or reconstruction loss is

typically regularized by a Kullback-Leibler divergence that encourages the encoded approx-

imate posterior to follow a prior distribution. In a simple attempt to combine the reward

through addition of individual loss terms, the architecture search procedure is bound to fail

as it can rapidly decrease only one term at the expense of the other. Given the number of

parameters of a deep neural network encoder, it is almost trivial to transform complex input

into the often used unit Gaussian prior at the cost of maintaining adequate structure of the

data’s correlation. Conversely, it is equally trivial to rapidly minimize a reconstruction loss

by simply creating a pure look-up table at the cost of deviation from the prior distribution.

At present, the lack of detailed understanding of the often occurring training instabilities

and the desired balance between this rate-distortion-perception tradeoff (Blau and Michaeli,

2019) need to be overcome first. In the co-advised thesis of Majumder (2018), reinforce-

ment learning based architecture search for variational generative models has been investi-

gated through attempts of loss modifications, alas with limited success. In today’s literature,

this problem is thus generally circumvented by basing the reward on a second model that

judges the generated architecture through a supervised proxy objective, i.e. scoring the

generated images according to a classifier (Gong et al., 2019), or by refraining from rein-

forcement learning and adopting techniques from evolutionary computing (Hajewski and

Oliveira, 2020).

From a complementary perspective, the above challenges and future possibilities can be

significantly strengthened by explicitly incorporating the specific observed data instances

into the conducted analysis. In the last work of the thesis (Mundt et al., 2020a), the impor-

tance of individual data instances and their ordered curriculum beyond random sampling

from the entire population is exemplified. Based on insights from recent works (Hacohen

and Weinshall, 2019; Hacohen et al., 2020), it is further speculated that a natural curricu-

lum is inherent to any stochastic gradient descent learning process. Even in a single task

across multiple different neural network architectures and fully randomized sampling, the

authors reckon that individual data instances are learned at a similar point in time of the
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training trajectory. It is imaginable that existence of such an inherent curriculum could be

correlated with traditional computer vision and human image difficulty metrics (Spain and

Perona, 2008; Pinto et al., 2008; Liu et al., 2011; Hoiem et al., 2012; Russakovsky et al.,

2013; Isola et al., 2014; Ionescu et al., 2016), following the intuition that easy to describe

data is learned first. This could not only be further analysed with respect to the weight

composition, e.g. Li et al. (2016); Wang et al. (2018) who observed that different neural

networks also converge to similar representations, but also with respect to information the-

oretic principles of analysis. A prominent example for the latter could be the information

flow throughout the training process and the respective theory on evolving information bot-

tlenecks and their manifestation in periods of learning in neural networks (Tishby and Za-

slavsky, 2015; Schwartz-Ziv and Tishby, 2017; Alemi et al., 2017; Saxe et al., 2018; Achille

et al., 2019). Such a theory hypothesizes the existence of multiple distinct training phases

that first attempt an initial data fit, followed by subsequent compression, before concluding

the stochastic gradient descent optimization with diffusion like behavior. It is then natu-

rally tied to questions about the architecture design, such as "do deep neural networks learn

shallow learnable examples first?" (Mangalam and Prabhu, 2019) or the question whether

residual deep neural networks behave like ensembles of more shallow architectures (Veit

et al., 2016). Although generally difficult to corroborate and analyse in practice due to the

lacking control of precise dataset composition, 3-D graphics simulators could serve as the

required tool to nevertheless investigate above hypotheses.

Lastly, an essential question is how to transfer the developed architecture adaptation, open

set and continual learning capabilities to scenarios with overall less human supervision.

The corresponding thesis models (Mundt et al., 2019b, 2020b,a) are in principle already

based on unsupervised learning techniques, however still require semi-supervision in pro-

viding class or dataset labels to form and identify clusters in the generative model’s latent

space. Plenty of recent works attempt to alleviate such supervision requirements and pro-

pose techniques for so called unsupervised disentanglement of generative factors. Works try

to distinguish individual generative factors through decomposition and modification of the

loss function (Higgins et al., 2017; Burgess et al., 2017; Mathieu et al., 2018) or by encoding

the factors into altogether separate dimensions (Achille et al., 2018). However, the amount

of required generative factors remains unclear, the amount of clusters that manifest in a

suitable latent space without external supervision for an arbitrary dataset is similarly diffi-

cult to determine, and the question how these disentangled factor are ultimately associated

with the way a human would address a task remains open. In the personal author’s view,

most of these questions cannot be adequately addressed without also regarding subsequent

human interaction with the machine learning system. A conjecture of the open challenges

of the latter is provided in the next and final thesis section.
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Long-term Open Challenges

Pursuing most of the above formulated prospects on dynamic architectures, pinpointing

failure modes of deep neural networks in robust application and continual adaptation, dis-

entangled representations, or unsupervised learning, is unavoidably linked to a higher-level

viewpoint and questions revolving around our desiderata as humans deploying machine

learning systems. Conclusively, and in summary of the thesis’ main message, it is not only a

question of how a specific deep learning algorithm can be advanced to improve run-times,

memory requirements or prediction accuracies. In contrast, depending on the precise ap-

plications, their potential safety or decision explainability prerequisites, the wanted human

machine interaction, a variety of increasingly philosophical questions become progressively

more relevant. To illustrate this from a perspective of the work in this thesis, let us re-

visit the final proposed integrated workflow (Mundt et al., 2020a). Whereas the necessity

to combine architecture modification with active data queries, equip the system with open

set recognition and continual learning capability, consider the importance of the training

dataset composition and presented order is made clear in one imaginable natural deep

framework, such a system is now subject to a variety of mechanism choices. Inasmuch

as the explicit statistical choices and proposed mechanisms of this thesis certainly present

one imaginable deep neural network system that advances the current blackbox state of the

art, a variety of other techniques towards the same system goal might also be sensible. The

underlying choices result in a myriad of conceivable combinations for a system’s assembly

and an ensuing multitude of required system comparisons beyond the validation of individ-

ual components in isolation on singled-out benchmarks. This is difficult because it requires

extensive effort and is thus tremendously challenging to compare on a purely empirical ba-

sis. On the one hand, it is impractical to construct many large scale systems that rely on

various combinations of suitable mechanisms. On the other hand, it is not necessarily suf-

ficiently scientifically conclusive to propose a working system, beyond an observation that

the engineering effort yields a system that currently has no competitor. It can thus be chal-

lenging to predict whether the built system pursues a generally promising direction. This

highlights the necessity of both increasing our understanding of the deep neural network

internals from a grounded theoretical perspective in addition to the currently dominating

engineering efforts, and the inclusion of a more general debate on fundamental machine

learning goals.

At the same time, our scientific community is currently facing the grand challenge of being

confronted with an every growing plethora of parallel research threads. As outlined mul-

tiple times throughout the thesis, often these threads are disconnected from each other:
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continual learning is separated from recognition of unknown data instances, neural ar-

chitectures are viewed as almost agnostic to the specifically pursued task, data is treated

from a perspective of fixed benchmark sets. Some of these threads continue to pursue the

direction of constantly increasing accuracies with growing dataset sizes, which has been

empirically demonstrated to scale (un)reasonably well with ever growing representational

capacity (Sun et al., 2017) or in empirical observations of a double-descent phenomenon in

deep learning, where the conventional wisdom of early stopping and the assumed bias vari-

ance trade-off (Nakkiran et al., 2020) no longer seems to apply. A central focus could thus

be to find the precise source of deep neural networks’ power on large datasets, or how to

leverage deep neural networks even when small amounts of (labelled) data are accessible.

Alternatively, works that try to decompose neural networks and impose disentanglement on

their representations can be advanced (Higgins et al., 2017; Burgess et al., 2017; Mathieu

et al., 2018; Achille et al., 2018). Plenty of other concurrent threads certainly exist. In ei-

ther way, their coexistence highlights that it is time to go beyond simple benchmarking, i.e.

building ever greater datasets and models for an abundant amount of different tasks, but to

consider the entire systems perspective in connection with desiderata outside of contrived

test set performance. Such a systems perspective could be explored through a symbiosis of

traditional modelling techniques and modern data-driven learning systems. If we were to

e.g. lift the constraint of hierarchically distributed and entangled representations in deep

neural networks without loss in representational complexity, many of the current challenges

such as catastrophic forgetting would be inherently simpler to solve.

In the end, however, we need to ask ourselves the question of what kind of advances to

our body of scientific knowledge we desire, how we as humans can explain what we have

crafted, why it fits our needs or whether we even need to explain every application in detail.

In deep neural networks it is often said that knowledge is transferred in continual or transfer

learning. Here, the word knowledge is tantamount to the learned representations. As such,

in deep catastrophic interference it is generally stated that knowledge is forgotten because

parameters are overwritten. We rarely seem to account for other forms of knowledge how-

ever: the question of how to include effective priors into deep learning, how our modelling

assumptions are transferred and propagated through time, how quickly we can produce

or reproduce a solution, how our design process evolves and our cultural knowledge is in-

corporated. We similarly seldomly seem to ask ourselves whether the "interpretability" or

"disentanglement" we so greatly seem to seek is what is actually desirable in the practical

world. Is a model consisting of purely linear operations interpretable (Lou et al., 2013)?

And if so, should we switch our efforts to mathematically more intuitive generative flow

models that impose functional invertability on every operation in a deep cascade at the cost

of massive compute (see Kobyzev et al. (2020) for a review of deep flow models)? Are we
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satisfied with deep hybrid models, that are in parts composed of traditional computer vision

mechanisms and allow the inclusion of controlled elements at some levels of the hierarchy

(Nushi and Horvitz, 2018; Shanahan et al., 2020; Gould et al., 2019)? We seem to hardly

ever question the datasets we compose. How much of deep learning’s success and failure

can be attributed to our own human and social biases in the constructed benchmarks and

the resulting undesired side effects? Traditional modelling of course suffers from similar

challenges, alas it can be more clear whether a specific bias has been included or when a

particular assumption is violated.

Ultimately, it may be that we have to balance the questions of "what can deep learning do for

us?" and "what can we do for deep learning?" in practice. This is to say, we shouldn’t pursue

deep learning in an application for the sake of applying deep learning, and on the contrary,

we should not immediately dismiss deep learning because certain aspects are not sufficiently

explored yet. In this thesis, deep neural networks have been leveraged because of their

immense representational power, yet advances have been made and challenges surpassed

to partially lift their blackbox nature with respect to architecture design and using statistical

modelling tools to enable continual learning and robust application. As is so often the case,

the key between purely data-driven power and rigorous modelling lies in an appropriate

balance. A balance which can only be achieved by constantly reminding oneself of the

overarching systems perspective, even if we can only progress through the exploration of

parts one step at a time. It is the author’s sincere hope that such a systems perspective will

enjoy an increased amount of adoption in future deep learning research.
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