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Abstract: Cancer is a multifactorial disease with increasing incidence. There are more than 100 differ-
ent cancer types, defined by location, cell of origin, and genomic alterations that influence oncogenesis
and therapeutic response. This heterogeneity between tumors of different patients and also the het-
erogeneity within the same patient’s tumor pose an enormous challenge to cancer treatment. In this
review, we explore tumor heterogeneity on the longitudinal and the latitudinal axis, reviewing cur-
rent and future approaches to study this heterogeneity and their potential to support oncologists in
tailoring a patient’s treatment regimen. We highlight how the ideal of precision oncology is reaching
far beyond the knowledge of genetic variants to inform clinical practice and discuss the technologies
and strategies already available to improve our understanding and management of heterogeneity in
cancer treatment. We will focus on integrating multi-omics technologies with suitable in vitro models
and their proficiency in mimicking endogenous tumor heterogeneity.

Keywords: intra-tumor heterogeneity; multi-omics technology; cancer models; patient-derived
organoids; personalized oncology

1. Introduction

Despite all advancements in research and clinical practice, cancer remains a life-
threatening disease with increasing incidence. Based on a prognosis by the WHO in 2018,
cancer incidence is expected to double to about 37 million new cancer cases by 2040 [1].

Effective disease management is critical to cancer treatment. Current cancer treatments
have made enormous progress from the first cytotoxic agents aiming at replicating cells via
targeted therapies selectively aiming at genomic aberrant pathways like cetuximab for the
treatment of advanced colorectal cancer to immuno-targeted drugs like ipilimumab for the
treatment of malignant melanoma [2,3].

Despite the progress in medical oncology, most cancers are still treated by surgical
resection of the tumors if accessible [4]. Pivotal to subsequent adjuvant or neo-adjuvant
chemotherapy is the application of strict guideline protocols (S3 guidelines in Europe).
These protocols are based on studies of large patient cohorts with similar cancers. This
approach has led to a significant increase in progression-free (PFS) and overall survival
(OAS) of patients, yet a majority of patients does not fully benefit from the administered
treatment regimen [5]. The reason for therapeutic regimens falling short in those patients is
the fact that every cancer comes with an individual, virtually unique genetic landscape [6].
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Until it will become possible to faithfully predict the individual outcome of a specific
treatment, oncologists and patients alike experience painful uncertainty regarding therapy
success at the start and course of treatment. Even worse, both parties know that even when
the tumor does not regress, the dire side effects of treatment will still impact the patient’s
quality of life.

It is the aim of precision oncology to overcome this dilemma. Understanding the
interplay between the unique characteristics of a patient’s tumor and the medical treatment
and how it can be tailored to the individual properties of the tumor is a major focus in
translational cancer research. Today, cancer precision medicine mostly aims at matching
specific tumor mutations with drugs targeting aberrant oncogenic pathways to provide
individualized treatment options relying on small organic compounds and/or mono-
clonal antibodies [7]. While most cancers harbor multiple oncogenic mutations, preclinical
and clinical data support the idea that many cancers are sensitive to inhibition of single
oncogenes, a concept referred to as ‘oncogene addiction’ [8].

This mutation-driven approach to cancer precision medicine is also applied to pre-
therapeutic cohort stratification, which has subsequently led to the concept of conditional
approvals, i.e., certain, targeted cancer therapeutics are only approved for patients with a
defined set of specific mutations.

The precedent of a targeted cancer therapeutic with conditional approval is the anti-
epidermal growth factor receptor (EGFR) antibody cetuximab (Erbitux®). In colorectal
cancer (CRC), examination of molecular alterations indicated that mutations in KRAS,
which is downstream from EGFR in the RAS-MEK-ERK signaling pathway, interfered
with this therapy [9,10]. Cetuximab is therefore only relevant for RAS wildtype tumors.
Following the success of cetuximab, other small molecules, biosimilar and monoclonal
antibodies were investigated and successfully applied in the clinic. Today, our arsenal of
targeted drugs in oncology comprises 84 approved agents [11].

Yet, cancer is far from being conquered, reflected by the fact that cancer is the sec-
ond leading cause of death worldwide accounting for an estimated 9.6 million deaths in
2018 [12]. In addition, it becomes more and more evident that the genetic approach to
cancer precision medicine alone is not sufficient to predict individual treatment response.
This is mainly due to intra-tumor heterogeneity, which is currently not sufficiently taken
into consideration.

2. Intra-Tumor Heterogeneity—The Challenge of Treating “Many Cancers in One”

The biology of cancer is complex and not yet fully understood. During malignant
transformation tumors may acquire increasingly aggressive features and over time increase
their metastatic potential and propensity to gain treatment resistance [13,14]. These hall-
mark features develop by clonal evolution which is fueled by the complex interplay of
cancer cells and their microenvironment [15]. This unique composition of any given tumor
is one of the biggest clinical challenges in modern oncology [16,17].

At the time of diagnosis, the tumor usually has passed millions to billions of aber-
rant cell divisions that frequently lead to genetic instability and genomic and epigenetic
heterogeneity [18]. The path of malignant transformation from benign hyperplasia (non-
cancerous) to malignant (cancerous) may follow different routes of clonal evolution [19].
The later the tumor has been diagnosed the higher degree of intra-tumoral diversity is
expected [13]. Heterogeneity happens latitudinally between tumors from different patients
(inter-patient heterogeneity) and longitudinally in the tumor (and metastases) of the same
patient (intra-patient heterogeneity) [20]. A well-described example for heterogeneity is
the hepato-cellular carcinoma (HCC) with a high degree of longitudinal heterogeneity be-
tween patients as well as latitudinal heterogeneity within the same tumor of an individual
patient [21].

An emerging field is the immunogenic heterogeneity, which is common in liver tu-
mors but not limited to this tumor entity [22,23]. Tumors from different patients show a
different degree of immune cell infiltration and immune cell composition [23]. Immuno-
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logically “hot” tumors present high levels of T cell infiltration [24]. In consequence, these
tumors are more susceptible to immune-checkpoint inhibitor treatment as compared to
immunologically “cold” tumors [24]. This immunogenic heterogeneity impacts treatment
outcome. There are multiple studies ongoing which aim to define a consensus classification
for molecular (immune) subclasses [22,25].

Intra-patient heterogeneity or intra-tumor heterogeneity (ITH) has been proven for
solid tumors and usually refers to genetic changes within cell subpopulations that form the
tumor mass after multiple cell divisions and proliferation during tumor growth [26–29].
Thus, solid tumors can be described as heterogeneous neoplasms comprised of different
types of cells. A representative solid tumor is composed of malignant cells, communized
with mesenchymal cells, endovascular cells, and immune cells creating the tumor microen-
vironment [30].

ITH is the result of rather complex events and context, related to different causes and
different outcome patterns. There are different types of ITH: morpho-histological [31,32],
clonal [15] and nonclonal ITH [33–35].

Morpho-histological ITH is represented by different morphological structures, is
related to different levels of differentiation and/or correlates with different molecular alter-
ations, which was shown in lung adenocarcinomas where the mutant allele frequencies
were higher in solid areas of the same tumor [36]. In breast cancer for example, morpholog-
ical ITH was found to be associated with epithelial–mesenchymal transition (EMT) and
stemness of cancer cells [32].

Nonclonal ITH derives from microenvironment interaction which makes the clinical
approach challenging [31]. The tumor microenvironment is in constant chemical and
physical interaction with the actual tumor. These interactions vary between the different
areas of the primary tumor. Further, these interactions may not only fuel heterogeneity
amongst the tumor cells, but also the stroma can become increasingly heterogeneous [33].
Besides paracrine signaling of cancer and stroma cells, the interaction with the different
types of collagen within the stroma may impact therapy success [34,35].

Clonal ITH derives from genomic instability [37]. Different individual tumors of the
same entity may undergo very different paths of clonal evolution, which was shown in
liver cancer [38]. ITH is the basis for the selection of the fittest clones, a key step in clonal
evolution [15].

Following the development of new analytic technologies, recent data support the
clonal evolution model as the main theoretical basis of tumor heterogeneity [19,39].

A recent study from Yang et al. in patients with glioblastoma (GBM) provides a good
understanding of intra-tumor heterogeneity and its impact on disease progression and
recurrence. Regions from within the tumor were sequenced as well as blood-derived
circulating tumor DNA from patients with primary and recurrent GBM [40]. They ob-
served high intra-tumor heterogeneity at the levels of both somatic gene mutations and
chromosomal copy numbers. In total, they analyzed over 1000 genes that are involved in
tumorigenesis and cancer progression [40].

Another example revealing substantial ITH in a solid tumor is a recent study by
Schumacher et al. using multi-region sampling of colorectal cancer. They generated
five patient-derived three-dimensional (PD3D) “sibling” in vitro cultures from a single
colorectal tumor and modelled consequences of ITH on tumor cell growth and drug
response [41]. The heterogeneity of tumor tissues and PD3D sibling cultures was further
evaluated at DNA and mRNA levels. Using cancer panel-sequencing, common mutations
were detected (KRASG12D, PIK3CAH1047R, and TP53C242F) in the tumor tissue-of-origin
and the separate sibling cultures [41]. They found an additional homozygous SMAD4R361H

mutation in two out of the five regions which might be responsible for different drug
responses of the different cultures. Not only did drug responses of sibling cultures show
up to a 30-fold difference, but also substantial heterogeneity in mRNA expression of
target genes of ERK/MAPK, PI3K and mTOR signaling pathways was observed [41].
Such investigations are crucial for the acceptance of testing patient-derived models as
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they aim to understand the heterogeneity of tumors in the clinical context. This will offer
easy access to molecular “toolboxes” in translational oncology to learn how to overcome
treatment resistance.

The impact of ITH on drug resistance and targeted therapy strategies has been demon-
strated using multiple-site profiling in solid tumors and is regarded as a paradigm shift in
cancer care [42]. In contrast, only a limited number of studies addressed ITH in non-solid
tumors [43–46]. Wogsland et al. studied intra- and inter-tumor heterogeneity of follicular
lymphoma (FL), a B-cell malignancy, by using mass cytometry to obtain deep profiling of
cell subsets [43]. This study allowed the identification of biologically relevant features in-
cluding tumor heterogeneity and loss of non-malignant B-cell subsets. Additional proteins
with a high variability among lymphoma cells have been identified in the same tumor [43].

In a proof-of-concept study, Araf et al. performed a combination of whole-exome and
targeted deep sequencing of spatially and temporally separated biopsies from patients
with follicular lymphoma [44]. Their results suggest that the analyzed tumors consisted of
multiple subclones. Different tumor subpopulations dynamically circulated in the plasma
with increasing heterogeneity during malignant transformation. Yet, their data did not
show an association between increasing genetic ITH and therapy success [44]. Nevertheless,
these results warrant further studies about ITH in liquid tumors to understand its relevance
in the clinic.

In summary, ITH has been identified as being causal for the often-observed failure
of current tumor therapies, especially in solid tumors. In addition, ITH might limit the
reproducibility in clinical cancer research and precise diagnostic evaluation of tumors [47].
Therefore, ITH is a major challenge of cancer treatment which needs to be considered in
precision cancer medicine.

3. Integration of Intra-Tumor Heterogeneity into Multi-Layered Personalized
Cancer Therapy

Regardless of the tumor evolution that is causing ITH, the existence of multiple distinc-
tive cell populations in the same tumor has strong clinical implications [48]. The diagnosis
of primary and metastatic tumors is typically based on a single biopsy representing only a
snapshot of ongoing tumor evolution and may be compromised by ITH [49]. The studies
described above show that a sole biopsy does not accurately capture the tumor’s genetic
and phenotypic heterogeneity [28,46]. Therefore, multimodal strategies have to be taken
into account to ensure patients receive effective and targeted therapy. In addition, it is
necessary to develop new tools to study heterogeneity, and to identify new biomarkers of
tumor heterogeneity. Further, besides focusing on clonal heterogeneity, nonclonal pheno-
typic heterogeneity should be taken into consideration, i.e., the fact that some cells respond
to broad, environmental perturbations and drug treatments by conversion to many other
cell states, including stem-like, resistant cell phenotypes [50]. Finally, suitable models are
needed that also take the effect of the tumor microenvironment into account.

3.1. Current Approaches to Analyze ITH from Tumor Samples

Still, most efforts of molecular tumor boards predominantly focus on genomic se-
quence information to diagnose patients, to predict the individual risk of developing cancer,
and to assess whether specific treatments are suitable (i.e., likely to be successful) [7]. The
concept of ITH is only rarely covered in these boards.

Major advances in the concept of tumor heterogeneity have come with the implemen-
tation of high-throughput genomic sequencing technologies. These allow the profiling of
chromosomal and point mutations of neoplasms, with genomic data being most commonly
used for molecular cancer diagnostics for rational clinical decision making [32].

However, intra-tumoral heterogeneity results from much more complex interplay
on different levels. Genetic, epigenetic, and protein modifications are determining the
phenotype of a given tumor. Plasticity allows for adaption in response to environmental
factors by modulation of cellular properties [51]. These complexities are very well put into
conceptual context by Brock and Huang [52]. Recent studies showed that only about 10%
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of cancer patients benefit from genomic sequencing of their tumor [53]. This argues the
use of a single technology for decision making but suggests a multi-omics approach to
provide deeper integration of precision oncology into the clinic in order to pave the way
for tailored therapy schedules for the benefit of patients and doctors alike.

3.1.1. Genomic Approaches to ITH and Precision Oncology

Today, precision oncology is based on the assumption that tumor treatment is more
effective when selecting a target-specific therapy that matches the genetic or epigenetic
changes observed in a single tumor of a cancer patient [13].

Since the genomic revolution more than 30 years ago, array-based and sequencing
approaches have been used extensively to identify and characterize the molecular events
underlying cancer development and progression [54]. Today, many of these learnings are
widely used for diagnostics. Large multinational consortia like “The Cancer Genome Atlas”
(TCGA) initiative provide datasets of individual tumors and tissues from thousands of
patients from a wide array of cancers providing insights into the complexity of cancer [55].
It was found that mutations within the same tumor differ enormously in their allelic
frequencies [56]. Based on the grouping of allelic frequencies, an estimate of the genetically
different “clones” of cancer cells can be made for each tumor [56].

The presence of multiple clones within the same tumor sparked an ongoing discus-
sion about the need of multi-regional sampling to discover ITH in tumors. Surprisingly,
Zhang et al. concluded that complete assessment of ITH complexity may not require
sampling in multiple regions [57]. They showed for lung adenocarcinoma that a single
biopsy may be sufficient to capture the majority of mutations if ultra-deep sequencing is
performed [57]. This is in stark contrast to other studies like the one by Gerlinger et al. [58].
Multiregional sequencing on samples obtained from primary renal carcinomas and asso-
ciated metastatic sites demonstrated substantial ITH, with several mutations in certain
cancer genes being restricted to separated tumor domains [58]. These studies suggest that
a single biopsy may not be suitable for the identification of all cancer gene mutations of a
tumor, thus providing an incomplete view of potential targets for cancer therapy [13,58,59].

Surprisingly, several clinical trials driven by genomics have been resulting in positive
response rates of only 5–10% [53]. Among those studies, the most successful study was
the WINTHER trial (NCT01856296). During the six-year study, patients were stratified to
different treatments based on DNA-sequencing from fresh biopsy-derived tissue (arm A;
236 gene panel) vs. RNA expression analysis (arm B; comparing tumor to normal). Based
on the sequencing results, treatment recommendations were made by a multi-national
“clinical management committee” with subsequent monitoring of the applied therapy by
oncologists. Treatment scores were calculated for each patient based on an array of clinical
parameters. Within the patient cohort included in the study, stable disease (≥6 months)
and partial or complete response was 26.2% (arm A: 23.2%; arm B: 31.6%) compared to
previous treatment regimen progression-free survival of 22.4% [60]. The most important
predictor of successful treatment was actually fewer previous therapies, while genomic
and transcriptomic profiling could only marginally improve treatment recommendations
and patient outcome [61].

While genomic analysis is invaluable for our current understanding of cancer and the
development of better therapies, sequencing alone is not sufficient for tailored therapies.
These molecular snapshots cannot answer clinically relevant questions: does a specific
alteration occur in all cells or just in a small part of the tumor? How many regions of a
tumor should be sequenced to get a representative result? In addition, the presence or
absence of a specific mutation is not always sufficient to predict the effect of a targeted
therapy. This is well documented in colorectal cancer, where RAS mutations are used to
estimate the potential success of anti-EGFR treatment [62]. While anti-EGFR competitors
like cetuximab or panitumumab correspond with a longer overall survival of patients with
RAS wild-type, not all RAS wild-type patients benefit from upstream RAS inhibition due
to the tissue context [63–68]. Patients with right hemi colic cancers do not benefit from
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anti-EGFR therapy irrespective of RAS status [69]. Current guidelines take such spatial
heterogeneity into account, and therefore suggest the use of cetuximab or panitumumab
only for patients with RAS wild-type and left-sided colon cancer [70,71].

3.1.2. Proteomic Approaches

During the last few decades, not only have sequencing technologies advanced sig-
nificantly, but other technologies such as proteome and metabolome analyses have also
become more suitable for a deeper characterization of tumor cells and their functional
abnormalities [72,73].

Transcriptomics capture the quantity of the immediate product of a cell’s genome at a
given timepoint. It is a snapshot of the genomic expression at a certain time, or the change
thereof over time or under different conditions [74]. In contrast, proteomics dissect the
cellular protein composition, the result of gene translation [75]. Initial large-scale studies of
cellular proteomes showed a relatively low correlation between protein expression levels
and corresponding mRNA expression levels [64].

As on the genomic level, protein function is mediated and altered by multiple mecha-
nisms. Posttranslational modifications of proteins (e.g., phosphorylation) are often required
for their activity or signaling. Folding and posttranslational processing of proteins is a
prerequisite for the formation of multi-protein complexes, which in turn are necessary
to act as molecular machines, performing almost all cellular functions. To add another
layer of complexity, the cellular location of a specific protein often determines whether
the protein is active or inactive, or if a protein complex is successfully formed. In cancer
proteomics, the TCGA Consortium represents the first large-scale effort to profile the tumor
proteome [76]. However, the analysis was performed using reverse phase protein arrays,
and was therefore limited to the targeted analysis of a few hundred proteins.

Despite the complexity, proteomic approaches have led to the identification of specific
biomarkers in ovarian cancer [65] and identification of molecular subgroups in breast
cancer [66]. Proteomic data used in precision oncology has helped to correctly predict
drug sensitivity and resistance [67,68]. Cancer proteomics can therefore be seen as comple-
menting the traditional immunohistochemical classification of tumor types, such as the
characterization of estrogen receptor expression in breast cancers [77,78].

3.1.3. Metabolomic Approaches

Metabolites are the products of cellular processes, which in turn are driven by proteins,
mostly enzymes. Therefore, changes in metabolites mirror changes in the activity of
enzymes and proteins and may pose as ideal biomarkers [79]. Due to their accessibility,
many metabolomic analyses are performed on plasma or serum samples from patients
used in diagnosis without requiring an invasive intervention to obtain tumor tissue [80,81].
Yet, this analysis of individual levels of metabolites makes it difficult to determine universal
levels and individual changes for a particular tumor entity. Currently, only few studies have
been conducted, and validation is pending [82]. Among the few examples of a clinically
relevant metabolomic approach is the use of metabolites for the identification of altered
carbohydrates in acute myeloid leukemia [83], as well as unsaturated free fatty acids in
colorectal cancer [84].

Given the limitation of current knowledge on metabolomics in cancer in general,
we are still far away from understanding how it may contribute to a better understand-
ing of ITH from measuring metabolomic changes in peripheral blood and how this is
representative for the complexity of the tumor tissue.

Nevertheless, with the rise of genomic medicine and in-depth characterization of the
individual tumor mutation landscape, a better understanding of tumor complexity and
ITH suggest that the ‘precision medicine’ paradigm of cancer therapy requires multi-modal
treatment to be personalized to the individual patient.
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3.2. Suitable In Vitro Strategies for Modeling Intra-Tumor Heterogeneity

Utilizing cancer models may complement or even supplement the approaches de-
scribed above. ITH, the cellular interactions and the tumor’s molecular alterations could
be investigated in cancer models derived from patients’ samples to study the underlying
mechanisms and/or learn how ITH may direct clinical decision making.

Cancer models are naturally existing or artificially induced systems that share charac-
teristics with human cancers [85]. Experimental systems for the study of human cancer
include genetically engineered mouse models (GEMMs) [86–89], two-dimensional (2D)
cell lines [90], patient-derived organoids (PDO) [91–95], and patient-derived xenografts
(PDX) [95,96] to study biochemical or genetic pathways and pathology of cancer. These
in vivo and in vitro cancer models have been invaluable for our current understanding of
cancer development and progression, as well as for therapy development. Further, these
models are moving into focus regarding their potential use in cancer precision and/or
personalized medicine [97,98].

Given the complexity and heterogeneity of cancer, a crucial question to be asked is
whether these models are feasible to capture and investigate ITH.

GEMMs are created by inducing specific mutations in oncogenes and/or tumor
suppressor genes and can be used to monitor tumorigenesis in vivo, but are limited by
species differences in oncogenic pathogenesis, the shorter lifespan of mice, and often by
the artificial simultaneous introduction of several oncogenic driver events [88,89].

Traditional 2D cell lines grow as monolayer, cultured on flat and rigid substrates [91].
They have the advantage that they have once been derived from a cancer patient and are
easier to manipulate in the laboratory, but they cannot completely replicate the environment
of the patient tumor. Even within the same cancer model, data between laboratories are
often irreproducible [99,100]. Nevertheless, cancer 2D cell lines have been used not only
for in vitro but also for in vivo experiments, for example to generate xenograft models by
subcutaneous injection of cancer cell lines into immunodeficient mice [101].

Patient-derived xenografts (PDX) are generated by implantation of cancerous tissue
from a patient’s tumor either under the skin (ectopic) or into the organ of tumor origin
(orthotopic) and are most commonly used for preclinical drug development [102–104].

Physiologically, cells grow in three dimensions (3D) to form discrete tissue and organ
structures [105,106]. PDO models, growing in 3D, have been shown to reliably recapitulate
the architecture of the donor tissue and to preserve its genomic background, therefore
providing a highly relevant physiological system [107]. With their optimal conditions for
cellular proliferation, differentiation, and responsiveness to chemo- and targeted therapeu-
tics, they recapitulate the functional tumor phenotype, including its ITH [41].

The impact of adding a third culture dimension on the cellular drug response has
been shown by Koch et al. [108]. They compared the response of 2D colorectal cancer
cell lines and 3D CRC cell line-derived spheroids to irradiation and chemotherapy [108].
3D CRC cell line cultures were more resistant to irradiation and chemotherapy, such as
5-FU and cisplatin, than their 2D counterparts [108]. This must be taken into account
when translating the results into clinical setting. Therefore, PDOs are increasingly used for
studying tumor biology and the effects of targeted therapies [109].

Schütte et al. investigated a colorectal cancer biobank comprising PDX models and
PDO models, which were treated with clinically relevant compounds [95]. They showed
that PDOs recapitulate many of the genetic and transcriptomic features of the donor
tumors whereas clonal discordances found at early passages were attributed to ITH [95].
Ben-David et al. showed that the genomic and transcriptomic heterogeneity of cell lines
impairs our ability to evaluate new therapeutics [110]. Their results support efforts to
systematically develop PDO models to reduce the reliance on poorly defined cell lines that
were established before the next generation sequencing era [110]. Further, Vlachogiannis
et al. showed that PDOs can recapitulate patient responses in the clinic and could therefore
be implemented as models for personalized oncology [111].
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An additional advantage of PDO cultures is that they can be used in high-throughput
drug screens. Such screens can be composed of multiple samples from the same tumor,
thereby taking ITH into account [41,94]. Figure 1 compares this approach with a PDX
approach aiming to test the same number of tumor samples and compounds to illustrate
the time- and cost-effectiveness of the organoid system.
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Nevertheless, PDO are an in vitro culture system, therefore lacking, for example, liver
or kidney clearance or liver pro-drug activation mechanism. Further, only the effect of the
drug on the tumor (i.e., tumor-derived organoid) itself can be assessed, omitting poten-
tial toxicity on other organs or indirect effects asserted on, e.g., vasculature or hormone
production in the pituitary gland. These aspects need to be taken into consideration for
experimental design.

It is known that the microenvironment with tumor-surrounding and infiltrating cells,
including fibroblasts and immune cells, have a major impact on drug response [112,113].
Another significant advantage of the organoid model system is the ability to study the
interaction of cancer organoids with other specific cell types that can be introduced into
a direct or indirect co-culture system. Indirect co-culture systems are based on the use
of cell conditioned media. They are simple to apply and are therefore often used for
in vitro experiments [114]. However, they are not suitable for investigating the effects of
cell contacts between cancer cells and stroma [115]. Direct co-culture models are a closer
representation of the in vivo scenario. Since the tumor microenvironment plays a critical
role in tumorigenesis, 3D co-culture systems are used, including not only cancer cells but
also stromal cells [115]. Cancer cells were localized in a defined area within a stromal cell
matrix to study the cytotoxic effect of anticancer drugs on both tumor and normal cells in
the same system [116].

Since antibodies against immune checkpoint proteins/receptors have shown clear
clinical benefit for patients with advanced cancer, including melanoma, non-small cell
lung cancer (NSCLC), and mismatch repair deficient (dMMR) colorectal cancer, organoid
co-culture systems including immune cells are moving into the spotlight of current in vitro
application [117–126]. Dijkstra et al. established a co-culture system of autologous tumor
organoids and peripheral blood lymphocytes of patients to induce and analyze tumor-
specific T cell responses for mismatch repair deficient colorectal cancer and non-small cell
lung cancer in a personalized manner [118]. Klein et al. demonstrated the advantages of
co-culture systems of GBM organoids and human immune cells, to investigate not only
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immune–tumor interactions, but also to explore current and novel immunotherapies, such
as adoptive T cell transfer, immune checkpoint inhibitors, or oncolytic viruses [127].

Another promising technology for studying ITH is Organ-on-a-Chip (OoC), a culture
model to mimic complex and dynamic in vivo microenvironments [128]. An OoC is a
multi-channel 3D microfluidic biochip, which recapitulates the activity, mechanism, and
pathophysiological reaction of single-organ and multi-organ systems [129]. It is a useful
tool in controlling spatial arrangement of cell growth and fluids within micrometer-sized
channels, which may be used to increase the physiological relevance of tumor models [130].
OoC technology is expected to offer effective solutions to investigate the effects of drugs,
as well as the causes of diseases and personalized therapeutic treatments [131–133].

The development of a multi-organoid platform that consists of patient-specific tumor
organoids is currently in process. It is intended to offer the opportunity to test the efficiency
of drug therapies designed based on genetic profiling. Skardal et al. generated a circulatory
system with multiple tissue organoid sites by using microfluidic chip devices and used
them to visualize and track tumor progression and kinetics of metastasis formation to
distant site in vitro [132,133]. In combination with the even more complex body-on-a-chip
platform, these personalized on-a-chip systems will be improved even further [132,133].

This very promising technology offers great potential for in vivo tumor-like model
systems to enable personalized drug screenings before treating patients and monitoring of
organ systems in the OoC device for side effects at the same time. This new technology
is still in development but has the potential to improve cancer treatment outcomes and
patient care dramatically.

In summary, there are various suitable preclinical cancer models each with its own
limitations. Despite this, these models are an attractive alternative or addition and have
the potential to augment genetic and multi-omics approaches when considering ITH for
precision cancer medicine.

4. Outlook

Currently, in the minds of many, precision oncology is a genomics-only approach. To
efficiently assess ITH of tumors, it is essential to systematically integrate molecular patterns,
protein expression, and morphology into the broader context of all available clinical and
pathological information [134]. Another major aspect adding to the treatment conundrum
are those cancer cells that survive treatment. These cells already underwent cytotoxic stress
and were primed to resemble a stem-like cell state [135]. This pool of cells is commonly
causing recurrence [135–137]. As these stages are not connected by a precise consecutive
relationship, evidence suggests that even when preclinical and clinical responses concur,
tumor heterogeneity remains a severe obstacle for routine translation of preclinical data
into clinical practice [52].

The evaluation of the overall profile of gene expression, epigenetic alterations, and
various regulatory elements is likely to be performed soon in clinical practice along with
proteomic and metabolomic measurements [138,139]. The multi-omics knowledge bridges
the gap between underlying molecular changes and cell behavior and facilitates a deeper
understanding of disease development processes. As of today, a comprehensive multi-
omics analysis of all cancer patients is unfeasible. The generation of multi-layered omics
remains expensive and time consuming. The limited understanding of the biologic connec-
tions between the cells, their microenvironment, the tumor and the rest of the organism
make such data extremely difficult to interpret and put into context. The availability of
suitable tissue samples, high-quality biopsy material, and universal protocols to compare
the results from different clinical sites and patients is crucial for a reliable analysis of the
transcriptome, epigenome, proteome, and metabolome [140]. Steering away from the
mere analysis of RNA and DNA towards the collection of living samples is essential, as
analysis of nucleic acids requires fixation in buffers that inherently make the tissue sample
unusable for protein profiling, metabolite detection, and ultimately viable patient-derived
models [140].
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Careful evaluation of current studies will show if we can generate the necessary
comprehensive multi-omics data and convert it into meaningful and, thus, actionable
information that allows to better understand and predict tumor formation, progression,
development of resistance to treatment, and the risk of recurrence.

Beyond the generation of data and the potential use of sophisticated in vitro models,
the even more challenging task is to identify and select the most meaningful omics data
types to apply (limited primarily by time, cost and tissue availability) and in a second
step to establish best-practice approaches to integrate the different datasets to obtain a
comprehensive picture of the underlying biological processes (Figure 2). Very recent
publications evaluating omics-based strategies for guiding the clinical management of
difficult-to-treat tumors fuel hope to overcome the challenges of ITH [141]. In the long
run, applying multiple omics-technologies may have the same significance for deciphering
intra-tumor heterogeneity as the Rosetta stone had for learning how to read and interpret
ancient hieroglyphs.
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processes within a patient’s tumor. An appropriate combination of different omics technologies and
relevant tumor models allows a more comprehensive analysis of intra-tumor heterogeneity, relevant
to improve patient treatment. (PDX—patient-derived xenograft; GEMM—genetically engineered
mouse models; 2D—two-dimensional cell culture; 3D—three-dimensional cell culture).

One possible approach is based on existing knowledge of the specific molecular
pathways that are crucial to cancer development, progression, dissemination of metastases,
and treatment response. Another approach would be an agnostic one, which aims to
identify correlations across multiple data sets to determine altered molecules, analytes,
or pathways. The benefit of this approach is its ability to discover novel molecules and
pathways essential for the development and/or progression of disease.

In both cases, suitable cancer models are invaluable tools as they have the potential
to overcome the issue of limited tissue availability and can be manipulated to address
specific research questions, e.g., through manipulation of gene sequences and/or expres-
sion or comparison of untreated vs. treated cells and more. As highlighted in this review,
patient derived organoid models are of specific interest here, as they pose a very defined
experimental setup that can easily be adapted to explore ITH. Compared to mouse models
(GEMMs and PDX), PDOs are time- and cost-effective, represent a purely human system,
and are without the ethical implications of animal experiments while being more physio-
logically relevant than 2D cancer cell lines. PDO models are nevertheless no natural tumors
which can exists solitary outside of an organism. The delicate interaction between tumor
micro- and macroenviroment cannot be modeled in organoids without considerable effort.

While of course coming with the limitations of an in vitro system, PDOs are appropri-
ate and convenient models not only to investigate ITH but also to apply high-throughput
drug screenings to assess a tumor’s response to potential drug treatment, taking ITH into
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account. Just recently, a large consortium has shown the reliability of organoids as models
and has published a comprehensive atlas of human organoid proteomics [94].

PDOs further have the potential for real personalized cancer medicine in a time- and
cost-effective manner. Due to their ability to reflect the original tumor’s ITH and predict
its drug response, organoids derived from an individual patient’s tumor can be used to
screen for the drug treatment with the highest chance for positive treatment outcome, even
without the need for additional, costly omics analyses. The results can be directly used for
guiding clinical decision making to minimize the use of treatment regimen with high side-
effects but potentially little positive impact. This approach to personalized cancer therapy
is gaining increased attention and there are already efforts to make this a clinical reality, for
example, through companies offering such personalized PDO models and drug screens
as a service for patients and clinicians. For a wide clinical application, the establishment,
maintenance, and screening of such models will need to become highly standardized.
For increased clinical relevance, models will need to evolve further to recapitulate more
complex cellular interactions with the stroma and the immune system.

Cancer treatment significantly improved over the last decades, mainly due to an
enhanced understanding of the mechanisms leading to tumor formation and disease
progression which were often accelerated by technological advancements. Current trends
such as machine learning and artificial intelligence (AI) are on the horizon and show the
need to facilitate the system to improve drug response prediction in patients by transferring
information from cancer models [142]. If we hope to truly advance precision oncology, we
need a pan-optic view on all facets of cancer biology, and we need to go beyond genomics.
With the current technologies available, a personalized cancer drug response prediction
is possible, paving the way to personalized oncology. “The Future Is Here—It Is Just Not
Evenly Distributed” (William Gibson).
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