SUPPLEMENTARY MATERIAL

Journal: Applied Microbiology and Biotechnology

Capture of carbon dioxide and hydrogen by engineered *Escherichia coli*: hydrogen-dependent CO₂ reduction to formate

Felix Leo¹, Fabian M. Schwarz¹, Kai Schuchmann¹, Volker Müller^{1*}

¹Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany

*Corresponding author: Volker Müller, phone +496979829507, fax +496979829306, mail: vmueller@bio.uni-frankfurt.de

Figure S1. Gel filtration of the purified HDCR complex. 616 μ g Ni²⁺-NTA purified HDCR produced in *E. coli* BL21(DE3) $\Delta iscR$ were separated on a Superose 6 10/300 GL prepacked gelfiltration column under anoxic conditions. The majority of HDCR activity was found in the void volume revealing a molecular mass >5 MDa. The artificial electron acceptor methylviologen was used to detect the catalytic subunits. H₂:methylviologen-oxidoreductase activity (triangles) and formate:methylviologen-oxidoreductase activity (squares) was mainly measured in the void volume.

Figure S2. Effect of potassium bicarbonate on formate formation by recombinant *E. coli* BL21(DE3) \triangle *iscR* whole cells with H₂ + CO₂ as substrate. Resting cells of recombinant *E. coli* JM109(DE3) (5 mg/ml) were incubated with H₂ + CO₂ (80:20%, 1 × 10⁵ Pa overpressure) without KHCO₃ (squares) and 250 mM KHCO₃ (triangles).

Figure S3. pH profile of hydrogen-dependent carbon dioxide reduction by whole cells of *E. coli* BL21(DE3) \triangle *iscR* producing HDCR. Shown is the pH profile for the specific formate production at the given pH using cells of *E. coli* BL21 DE3 \triangle *iscR* (5mg/ml) incubated with H₂ + CO₂ (80:20%, 1 × 10⁵ Pa overpressure). 100% of the activity correspond to 0.39 mmol g_{CDW}⁻¹ h⁻¹. All data points are mean ± SD, N = 2.