Image protocol quality - well-documented image protocols (for example, contrast, slice thickness, energy, etc.) and/or usage of public image protocols allow reproducibility/replicability
✓ protocols well documented
public protocol used
none
Multiple segmentations - possible actions are: segmentation by different physicians/algorithms/software, perturbing segmentations by (random) noise, segmentation at different breathing cycles. Analyse feature robustness to segmentation variabilities
yes
○ no
Phantom study on all scanners - detect inter-scanner differences and vendor-dependent features. Analyse feature robustness to these sources of variability
○ yes
no
Imaging at multiple time points - collect images of individuals at additional time points. Analyse feature robustness to temporal variabilities (for example, organ movement, organ expansion/shrinkage)
○ yes
no
Feature reduction or adjustment for multiple testing - decreases the risk of overfitting. Overfitting is inevitable if the number of features exceeds the number of samples. Consider feature robustness when selecting features
Either measure is implemented
Neither measure is implemented
Multivariable analysis with non radiomics features (for example, EGFR mutation) - is expected to provide a more holistic model. Permits correlating/inferencing between radiomics and non radiomics features
○ yes
no
Detect and discuss biological correlates - demonstration of phenotypic differences (possibly associated with underlying gene-protein expression patterns) deepens understanding of radiomics and biology
yes
○ no
Cut-off analyses - determine risk groups by either the median, a previously published cut-off or report a continuous risk variable. Reduces the risk of reporting overly optimistic results
yes
○ no

https://www.radiomics.world/rqs

19.5.2021 RQS - Radiomics.world

Discrimination statistics - report discrimination statistics (for example, C-statistic, ROC curve, AUC) and their statistical significance (for example, p-values, confidence intervals). One can also apply resampling method (for example, bootstrapping, cross-validation)
a discrimination statistic and its statistical significance are reported
a resampling method technique is also applied
none
Calibration statistics - report calibration statistics (for example, Calibration-in-the-large/slope, calibration plots) and their statistical significance (for example, P-values, confidence intervals). One can also apply resampling method (for example, bootstrapping, cross-validation)
a calibration statistic and its statistical significance are reported
a resampling method technique is applied
none
Prospective study registered in a trial database - provides the highest level of evidence supporting the clinical validity and usefulness of the radiomics biomarker
○ yes
no
Validation - the validation is performed without retraining and without adaptation of the cut-off value, provides crucial information with regard to credible clinical performance
☐ No validation
validation is based on a dataset from the same institute
validation is based on a dataset from another institute
validation is based on two datasets from two distinct institutes
the study validates a previously published signature
validation is based on three or more datasets from distinct institutes
Comparison to 'gold standard' - assess the extent to which the model agrees with/is superior to the current 'gold standard' method (for example, TNM-staging for survival prediction). This comparison shows the added value of radiomics
yes
○ no
Potential clinical utility - report on the current and potential application of the model in a clinical setting (for example, decision curve analysis).
yes
○ no
Cost-effectiveness analysis - report on the cost-effectiveness of the clinical application (for example, QALYs generated)
○ yes
no

Open science and data - make code and data publicly available. Open science facilitates knowledge transfer and reproducibility of the study

19.5.2021 RQS - Radiomics.world

scans are open source
region of interest segmentations are open source
the code is open sourced
radiomics features are calculated on a set of representative ROIs and the calculated features and representative ROIs are open source

Total score **16** (44.44%)

https://www.radiomics.world/rqs 3/3