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Abstract 

Background:  To assess the potential of radiomic features to quantify components of blood in intraaortic vessels to 
non-invasively predict moderate-to-severe anemia in non-contrast enhanced CT scans.

Methods:  One hundred patients (median age, 69 years; range, 19–94 years) who received CT scans of the thora-
columbar spine and blood-testing for hemoglobin and hematocrit levels ± 24 h between 08/2018 and 11/2019 were 
retrospectively included. Intraaortic blood was segmented using a spherical volume of interest of 1 cm diameter with 
consecutive radiomic analysis applying PyRadiomics software. Feature selection was performed applying analysis of 
correlation and collinearity. The final feature set was obtained to differentiate moderate-to-severe anemia. Random 
forest machine learning was applied and predictive performance was assessed. A decision-tree was obtained to pro-
pose a cut-off value of CT Hounsfield units (HU).

Results:  High correlation with hemoglobin and hematocrit levels was shown for first-order radiomic features 
(p < 0.001 to p = 0.032). The top 3 features showed high correlation to hemoglobin values (p) and minimal collin-
earity (r) to the top ranked feature Median (p < 0.001), Energy (p = 0.002, r = 0.387), Minimum (p = 0.032, r = 0.437). 
Median (p < 0.001) and Minimum (p = 0.003) differed in moderate-to-severe anemia compared to non-anemic 
state. Median yielded superiority to the combination of Median and Minimum (p(AUC) = 0.015, p(precision) = 0.017, 
p(accuracy) = 0.612) in the predictive performance employing random forest analysis. A Median HU value ≤ 36.5 indi-
cated moderate-to-severe anemia (accuracy = 0.90, precision = 0.80).

Conclusions:  First-order radiomic features correlate with hemoglobin levels and may be feasible for the prediction of 
moderate-to-severe anemia. High dimensional radiomic features did not aid augmenting the data in our exemplary 
use case of intraluminal blood component assessment.

Trial registration Retrospectively registered.
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Background
Radiomics is a term coined for computational quanti-
tative imaging analysis and has been shown to aid in 
clinical decision making [1]. Radiomics extracts a large 
number of quantitative data from medical images that 
can provide surrogate information on biochemical and 
pathophysiological processes [2, 3]. The technique has 
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been successfully applied to evaluate tumor character-
istics non-invasively [4]. While several studies showed 
the benefits of radiomics in solid tissue and predomi-
nantly cancer research [5–7], its potential to assess 
flowing structures and moving tissues using static 
acquisition protocols has not yet been investigated.

Acute and chronic blood loss might not only be sur-
rogates of yet undiagnosed diseased which require fur-
ther workup but also might be considered as an illness 
itself which requires hemostasis management [8, 9]. In 
emergency patients with acute blood loss, fast assess-
ment of a multitude of blood components, for example 
hemoglobin and hematocrit levels is essential [10, 11]. 
In 2002, the World Health Organization has attributed 
anemia as one of the most relevant risk factors lead-
ing to high mortality and morbidity [12, 13]. During 
hospitalization, phlebotomy is the current standard of 
screening for a load of blood components [14]. Blood 
samples are usually easily obtained, but the proce-
dure can be time consuming in some cases [15]. Non-
invasive screening of blood components in a clinically 
indicated CT may yield the potential to assess specific 
blood components in order to focus invasive testing on 
pre-filtered components and patients to reduce work-
load and costs of laboratory analyses [16].

Computed tomography (CT) is a commonly used 
imaging modality in hospitalized patients and provides 
non-invasive assessment of tissue morphology. Previous 
studies have suggested that simple attenuation meas-
urements in CT scans correlate with hemoglobin and 
hematocrit levels and may be useful in predicting anemia 
[17–19]. Foster et  al. analyzed regions of interest of the 
left ventricular cavity, aorta and interventricular septum 
and concluded that the visualization of the interventricu-
lar septum in unenhanced CT scans suggests anemia 
[18]. In their study from 2001, Collins et  al. examined 
regions of interest placed within the lumen of the aorta 
and inferior vena cava. The authors found a significant 
correlation between patients’ hemoglobin measurements 
and aortic ROI values, in particular simple attenuation 
measurements [19].

By extracting a variety of mineable image features, 
radiomics can provide additional, higher dimensional 
data that can be employed to improve decision support. 
Current radiomic research promotes the impression that 
radiomic features are potentially applicable to augment 
data in a variety of diseases [1]. However, the potential of 
radiomic features to assess the intraluminal blood com-
partment to predict specific components has not yet been 
sufficiently evaluated. Since prior studies have investi-
gated the validity of simple attenuation measurements 
in CT scans for the prediction of blood levels, the aim of 
this study was to assess the predictability of hemoglobin 

and hematocrit levels using high dimensional radiomic 
features in non-contrast enhanced CT scans.

Methods
Patient selection
The local Ethics committee approved this retrospec-
tive study (project number: 20–689, Goethe University 
Frankfurt am Main, Germany) and waived informed 
written consent.

A total of 181 consecutive patients (female, 54; male, 
46; age, 69 (19–94) years) who underwent non-contrast 
dual-energy CT imaging of the thoracolumbar spine 
between 08/2018 and 11/2019 were screened for study 
inclusion. Inclusion criteria were (I) > 18  years of age, 
(II) thoracolumbar region, (III) 1 mm 90 kV series, (IV) 
hemoglobin and hematocrit values ± 24  h CT exami-
nation. Exclusion criteria were (I) different acquisition 
protocol, (II) signs of active bleeding, (III) imaging arti-
facts. All clinical data were obtained in clinical routine. 
100 patients met the criteria and were evaluated. Figure 1 
shows the flowchart of patient inclusion. Table 1 depicts 
patient characteristics.

CT acquisition protocol
Examinations were performed using a third-generation, 
dual-source, dual-energy CT system (Somatom Force; 
Siemens Healthineers, Forchheim, Germany). The 
non-contrast acquisition protocol operated the X-ray 
tubes at different kilovoltage settings (tube A, 90kVp, 
260.9 ± 88mAs, reference 300mAs; tube B, Sn150kVp 
[0.64 mm tin filter], 157.8 ± 41.9mAs, reference 188mAs). 
The dual-energy protocol (rotation time, 0.5  s; pitch, 
0.6; collimation, 2 × 192 × 0.6) included automatic 

Adult patients undergoing thoracolumbar DECT 
scans of the spine from 08/2018 to 11/2019 

n = 181 cases

Final study cohort

n = 100 cases

Exclusion criteria  

Imaging artifacts n = 5 

Different acquisition protocol n = 17 

Missing hemoglobin or 
hematocrit values ± 24h DECT 
image acquisition

n = 59 

Fig. 1  CLAIM flowchart of patient inclusion into the study. CLAIM, 
Checklist for Artificial Intelligence in Medical Imaging; DECT, 
dual-energy computed tomography
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attenuation-based tube current modulation (CARE Dose 
4D; Siemens Healthineers) with a mean volume CT dose 
index of 12.2 ± 3.8 mGy and a mean dose-length product 
of 507.4 ± 255.8 mGy × cm.

Image reconstruction
We applied the 90kVp images as they are reconstructed 
using isotropic voxels in clinical routine (axial, sec-
tion thickness 1  mm and increment of 1  mm) with a 
dedicated dual-energy medium-soft convolution kernel 
(Qr40, advanced model-based iterative reconstruction 
[ADMIRE] level of 3). For the consecutive quantitative 
analysis, the image stack was extracted in Digital Imaging 
and Communications in Medicine (DICOM) format.

Table 1  Patients characteristics and baseline demographics

If not state otherwise, the numbers depict absolute numbers

CT, computed tomography; h, hours; y, years
* Data in round parenthesis are min/max values (interquartile range)
** Data in round parenthesis are standard deviation and ± 95% confidence 
interval

Parameters Value

Patients 100

Female 54

Male 46

Median age (y)* 69 (19–94)

Maximum time (h) between blood test / CT 
scan

 ± 24

Mean hemoglobin [mg/dL]** 11.82 (2.39, 12.29, 11.35)

Mean hematocrit [%]** 34.80 (6.72, 36.14, 33.47)

Fig. 2  Representative images of the measurement technique. Axial (a), sagittal (b) and coronal (c) plane with 3D-volume rendering (d) of a 
standard volume of interest (VOI) placement is shown in a patient with a hemoglobin and hematocrit level of 7.2 g/dL and 22.4%, respectively. 
A spherical VOI with 1 cm in diameter was placed within the lumen of the thoracoabdominal aorta as described in detail in the materials and 
methods section
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Radiomic analysis
The 3D Slicer software platform (http://​slicer.​org, version 
4.9.0) was applied to visualize and process the DICOM 
image stack [2, 20]. For segmentation, a radiologist 
(SM) with two years of experience manually defined a 
spheric volume of interest (VOI, 1.0  cm diameter) cen-
trically in the aorta of the thoracolumbar region, spar-
ing the aortic wall and visual artifacts (Fig. 2). Based on 
the findings of Collins et  al. [19], we chose a small sec-
tion of the intraaortic lumen for measurement to imi-
tate a virtual blood sample. All VOIs were reviewed by 
a second radiologist (SB, two years of experience). Both 
radiologists were blinded to the laboratory results. Prior 
to feature extraction we did not perform further image 
manipulation as the Imaging Biomarker Standardization 
(IBSI) does currently not cover image preprocessing and 
we did perform our analysis on isotropic 1 mm × 1 mm 
voxels [21]. The open-source package PyRadiomics was 
used as extension within 3D Slicer to extract the radi-
omic features [2, 20, 22]. We extracted all standard fea-
tures from seven feature classes: First Order Statistics, 

Shape-based, Gray Level Co-occurrence Matrix (GLCM), 
Gray Level Run Length Matrix (GLRLM), Gray Level Size 
Zone Matrix (GLSZM), Gray Level Dependence Matrix 
(GLDM), Neighbouring Gray Tone Difference Matrix 
(NGTDM), obtaining 105 features / VOI (http://​pyrad​
iomics.​readt​hedocs.​io) [22]. PyRadiomics was operated 
using the default settings (bin width 25, enforced sym-
metrical GLCM, http://​pyrad​iomics.​readt​hedocs.​io) [22, 
23]. As we used a spherical 1 cm VOI for segmentation, 
shape features were excluded for analysis, obtaining 93 
features, further referred to as “all features” for statisti-
cal analysis. To assess the methodological quality of our 
study, we used the Radiomic Quality Score (Additional 
file 1).

Statistical analysis and machine learning
We performed radiomic feature reduction and selection 
to match hemoglobin [g/dL] and hematocrit [%] values. 
Correlation analysis of all features was performed against 
hemoglobin and hematocrit values [24]. We ranked the 
features according to the obtained p-value of the cor-
relation analysis. The lower the p-value, the higher the 
ranking. Next, we used inter-correlation analysis of the 
features which showed significant correlation for both 
hemoglobin and hematocrit levels to test for collinear-
ity [1]. Features with a collinearity of r < 0.5 were selected 
for further analysis. Next, we analyzed the obtained radi-
omic features set to differentiate moderate-to-severe 
anemic state. Moderate-to-severe anemia is defined by 
a cut-off value of hemoglobin ≤ 10–11  g/dL depend-
ing on age and gender [25–28]. For our primarily meth-
odologically driven study we aimed to choose a uniform 
definition of moderate-to-severe anemia and therefore 
defined a cut-off value of hemoglobin ≤ 10  g/dL for our 
cohort as previously proposed. We built two machine 
learning models based on random forest (RF) algorithms 
to predict moderate-to-severe anemia. The predictive 
power was assessed by receiver operating characteris-
tics (ROC) curves with Monte Carlo cross-validation 
with 100 random splits. Each run randomly drew 70% of 
the samples for training and tested the model with the 
remaining independent 30% of the data. We obtained 
the area under the curve (AUC), precision and accuracy. 
To analyze the variation of predictive power we applied 
a two-tailed student’s t test of the cross-validated meas-
urements. Machine learning algorithms and visualization 
of the decision tree were conducted in Python 3.7 using 
the open-source scikit-learn 0.21.3 packages Random-
ForestClassifier (n_estimators = 100, max_depth = 1/(2) 
for one/(two) feature(s)) for RF analysis with prior nor-
malization of features employing StandardScaler (https://​
scikit-​learn.​org/) and DecisionTreeClassifier with crite-
rion = gini and max_depth equivalent to the RF-analysis 

Table 2  Top 20 radiomic features with highest variable 
importance based on measurement of correlations with 
hemoglobin and hematocrit values

Measurement of correlation of all radiomic features with hemoglobin 
and hematocrit levels obtained ± 24 h to the acquisition of the computed 
tomography images. Measurement of probability used for hypothesis testing is 
depicted as p-value. Significant values are labeled in bold font. Top 20 features 
are shown, sorted according to the hematocrit p-value and with the matching 
hemoglobin p-value

Features Hemoglobin
p-value

Hematocrit
p-value

firstorder-Median  < 0.001  < 0.001
firstorder-Mean  < 0.001  < 0.001
firstorder-RootMeanSquared  < 0.001  < 0.001
firstorder-TotalEnergy  < 0.001  < 0.001
firstorder-90Percentile  < 0.001  < 0.001
firstorder-10Percentile  < 0.001  < 0.001
firstorder-Maximum  < 0.001  < 0.001
firstorder-Energy 0.002 0.001
firstorder-Minimum 0.032 0.014
glszm-GrayLevelNonUniformity 0.052 0.023
glszm-LowGrayLevelZoneEmphasis 0.069 0.074

glcm-MaximumProbability 0.083 0.108

glrlm-ShortRunLowGrayLevelEmphasis 0.101 0.109

glszm-SmallAreaLowGrayLevelEmphasis 0.083 0.115

glcm-Idmn 0.118 0.128

ngtdm-Contrast 0.149 0.135

glszm-SmallAreaEmphasis 0.094 0.138

glrlm-LowGrayLevelRunEmphasis 0.124 0.141

glszm-SmallAreaHighGrayLevelEmphasis 0.162 0.149

gldm-LowGrayLevelEmphasis 0.133 0.15

http://slicer.org
http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io
https://scikit-learn.org/
https://scikit-learn.org/
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[29]. Further statistical analyses were performed using 
Prism 6.0 (GraphPad software) and JMP 14 (SAS, Cary, 
U.S.A.). The significance values were indicated as fol-
lowed: *p < 0.05; **p < 0.01; ***p < 0.001. The respective 
table and figure legends give detailed information about 
the statistical tests.

Results
From all radiomic features, 9 features revealed signifi-
cant correlation (p < 0.001–p = 0.032) to hemoglobin and 
hematocrit levels with Median (p < 0.001) as the high-
est ranked feature (Table  2). The features were found 
to be part of one feature class, the first-order statistics 
(Table  2). Grey Level Non Uniformity, a feature of the 

GLSZM feature class, showed correlation to hematocrit 
levels, but no significance to hemoglobin levels (Table 2). 
It was therefore excluded for further analysis.

The selected features showed a high degree of collin-
earity (Fig.  3a, Table  3). Energy (r = 0.387), Maximum 
(r = 0.411) and Minimum (r = 0.437) were found to be the 
least correlated features to Median (Table  3). As Maxi-
mum revealed collinearity with Energy (r = 0.568) it was 
excluded for further analysis. We therefore obtained the 
top 3 features to correlate with hemoglobin and hemato-
crit levels: Median (p < 0.001, Fig. 3b), Energy (p = 0.002, 
Fig. 3c) and Minimum (p = 0.032, Fig. 3d).

Radiomic analysis of intraaortic blood to differentiate 
a threshold of hemoglobin level of 10  mg/dL revealed 
significant difference in the radiomic features Median 

Fig. 3  Analysis of radiomic features that are significantly correlated with hemoglobin and hematocrit levels. The matrix of correlations of the 
selected radiomic features with highest correlation to the hemoglobin [g/dL] and hematocrit [%] levels obtained ± 24 h to computed tomography 
images are shown (a). Exemplary scatter plots of the correlation of hemoglobin values with the prioritized top 3 radiomic features are shown (b–d). 
All depicted features belong to the feature class of first-order statistics. 10P = 10 Percentile; 90P = 90 Percentile; Max = Maximum; Min = Minimum; 
RMS = Root Mean Squared; TE = Total Energy
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(p < 0.001, Fig.  4a) and Minimum (p = 0.003, Fig.  4b) 
whereas Energy did not reach the level of significance 
(p = 0.09, Fig. 4c) and was therefore excluded for the con-
secutive machine learning model development.

A random forest based, Monte Carlo cross-validated 
machine learning approach with 100 random splits was 
conducted applying either Median and Minimum fea-
tures (Fig.  5a, AUC 0.88 ± 0.07) or Median feature only 
(Fig.  5b, AUC 0.90 ± 0.06) for model building. Applica-
tion of the single radiomic feature Median was superior 
to its combination with the feature Minimum with regard 
to AUC and precision measurements whereas no differ-
ence was found with regard to model accuracy (Fig. 5c, 
accuracy p = 0.612, AUC p = 0.015, precision p = 0.017).

We obtained a decision tree based on the radiomic 
feature Median (Fig.  5d). With a cutoff value of ≤ 36.5 
Hounsfield Units (HU) in an independent train/test set 
of patients drawn at random, we obtained a test accuracy 
of 0.90, precision of 0.80 and sensitivity of 0.7 to predict 
moderate-to-severe anemic state.

Discussion
In this study, we examined the potential of high dimen-
sional radiomic features to assess components of the 
moving blood compartment. We assumed that hemo-
globin and hematocrit may be the most promising and 

easily non-invasively accessible values and may aid pre-
dicting moderate-to-severe anemia. Examining 100 non-
enhanced CT scans, we demonstrated correlation of 
first-order radiomic features with hemoglobin and hema-
tocrit levels. We could obtain a cut-off value of ≤ 36.5 HU 
for Median to predict moderate-to-severe anemia with 
an accuracy of 0.90 and a precision of 0.80. We could 
show that higher dimensional radiomic features did not 
augment simple first order radiomic features. Based 
on our findings, we conclude that besides its benefit to 
evaluate solid tissue and tumor characteristics non-inva-
sively, the application of higher dimensional radiomic 
features to analyze flowing structures such as the blood 
system applying static CT images does not seem to be 
promising.

Our results regarding first order radiomic features are 
in accordance with previous studies investigating the 
potential of qualitative and quantitative measurements of 
CT density to differentiate between anemic and non-ane-
mic conditions [17–19, 27, 30, 31]. In a study from 2003, 
Foster et al. concluded that visualization of the interven-
tricular septum in unenhanced CT scans should suggest 
anemia [18]. In contrast to this subjective approach sug-
gested by Foster et al., Collins et al. described a quantita-
tive approach by demonstrating a significant correlation 
between patients’ hemoglobin measurements and aortic 
ROI values [19].

Table 3  Matrix of correlations of radiomic features with significant correlation with hemoglobin and hematocrit levels

Multivariate measurements of correlations of radiomic features that are significantly correlated with hemoglobin and hematocrit levels

Firstorder-
Median

firstorder-
Energy

firstorder-
TotalEnergy

firstorder-
Maximum

firstorder-
RootMeanSquared

firstorder-
90Percentile

firstorder-
Minimum

firstorder-
10Percentile

firstorder-
Mean

firstorder-
Median

1.000 0.387 0.971 0.411 0.977 0.891 0.437 0.869 0.993

firstorder-
Energy

0.387 1.000 0.422 0.568 0.427 0.431  − 0.139 0.253 0.388

firstorder-
TotalEn-
ergy

0.971 0.422 1.000 0.525 0.992 0.947 0.339 0.783 0.973

firstorder-
Maximum

0.411 0.568 0.525 1.000 0.541 0.646  − 0.273 0.116 0.422

firstorder-
Root-
MeanS-
quared

0.977 0.427 0.992 0.541 1.000 0.961 0.334 0.781 0.980

firstorder-
90Percen-
tile

0.891 0.431 0.947 0.646 0.961 1.000 0.186 0.598 0.894

firstorder-
Minimum

0.437  − 0.139 0.339  − 0.273  − 0.334 0.186 1.000 0.665 0.468

firstorder-
10Percen-
tile

0.869 0.253 0.783 0.116 0.781 0.598 0.665 1.000 0.887

firstorder-
Mean

0.993 0.388 0.973 0.422 0.980 0.894 0.468 0.887 1.000
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In a study of 102 patients undergoing thoracic CT 
scans, the authors obtained mean attenuation measure-
ments in the left ventricle which performed better than 
subjective reviewer analysis [27]. Another study revealed 
a correlation between mean attenuation values of the 
thoracic aorta and hemoglobin values [30]. Nevertheless, 
these studies did not include higher dimensional radi-
omic features, limiting their quantitative assessment to 
the mean value only [30].

Quantitative imaging data have been increasingly 
applied in the last years. Especially in cancer research, 
radiomics is a rapidly evolving research field [32, 33]. In 
contrast to results obtained from research of specific tis-
sues or tumor types, our data suggest that the application 
of high dimensional radiomic features may not yield diag-
nostic value assessing flowing structures, such as specific 
components of the intraaortic blood stream in static clin-
ical routine CT images. In our study, high dimensional 
radiomic features were inferior to simple first order 

statistic values to estimate hemoglobin or hematocrit val-
ues and they were not applicable to predict moderate-to-
severe anemia. However, first-order histogram features 
did significantly correlate with hemoglobin and hemato-
crit values with promising predictive power of therapeu-
tically relevant anemic state. Our results seem logical and 
reasonable as the “texture” of intravascular blood is not 
static but varies continuously with its flow, whereas first-
order values should not be affected by the variation of 
distribution of individual intraaortic voxels.

Potential problems at each step of the radiomics work-
flow including image acquisition, image reconstruction, 
segmentation and pre-processing have already been 
described in literature [34]. In their study from 2020, 
Fornacon-Wood et  al. argued that different acquisition 
protocols [35], image reconstruction algorithms, recon-
struction parameters (kernel) [36] and number of grey 
levels used to discretize histogram [37] affect feature 
values and feature reproducibility. Our study suggests 

Fig. 4  Radiomic features to decipher moderate-to-severe anemia. Box-Whisker Plots for the radiomic features median (a), minimum (b) and energy 
(c) versus hemoglobin levels are shown. Hemoglobin values were split according to the threshold of 10 g/dL to differentiate moderate-to-severe 
anemia [25–28]. Statistical analyses are depicted using two-tailed student’s t-test
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that these issues seem to be more relevant in moving 
and dynamic compartments as high dimensional radi-
omic features had no diagnostic power for the predic-
tion of hemoglobin and hematocrit levels. This raises 
the question whether most of the measured texture in a 
non-contrast-enhanced CT blood pool may be the effect 

of imaging artifacts due to the laminar flow of the blood 
system rather than true data of biological components.

Our study has limitations that warrant discussion. 
Analyzing retrospective data with continuous patient 
enrollment, we cannot rule out a selection bias. We had a 
moderate bias towards females and the older population 
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decision tree minimizes the measure of impurity by a bisection of the group of 100 patients into two groups, one with 21 patients and a second 
with 79. The so-called gini gain, i.e., the sum of gini values of the child nodes weighted by the number of their members, becomes optimal for a 
selection threshold 36.5 of the firstorder-Median
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and cannot rule out that a more balanced study popula-
tion might have altered the results. Depending on age 
and gender, moderate-to-severe anemia is defined by a 
cut-off value of hemoglobin ≤ 10–11  g/dL [25–28]. As 
previously described, we chose a uniform cut-off value of 
hemoglobin ≤ 10 g/dL for our primarily methodologically 
driven study but we cannot rule out that age, gender or 
pregnancy adjusted values might have altered the results. 
Our study design was limited to 100 patients and a bigger 
cohort might have been favorable. This bias might reduce 
generalizability of the results and the finally obtained cut-
off value of 36.5 HU to differentiate moderate-to-severe 
anemic state. We restricted the patient inclusion to one 
dual-energy CT scanner to exclude inter-scanner varia-
bility and to include only reconstructions with 1 mm iso-
tropic voxels, nevertheless, intra-scanner variability may 
have occurred. We used iterative reconstruction methods 
and cannot rule out an effect on radiomic metrics. We 
limited the region of VOI definition to the thoracolumbar 
region to have an adequate diameter of the aorta for VOI 
placement and to limit pulsation artifacts that might be 
present at the ascending thoracic aorta.

Conclusions
CT is a commonly applied imaging modality for a mul-
titude of diagnostic purposes and attenuation meas-
urements of various degrees of complexity are easily 
performed. We obtained simple histogram and high 
dimensional radiomic features and could demonstrate 
that histogram radiomic features enable an accurate 
differentiation of moderate-to-severe anaemic state and 
non-anemic state employing non-enhanced CT scans. 
We emphasize that our results are the first to show 
that high dimensional radiomic features are inferior to 
simple histogram features and do not yield additional 
information for the assessment of components of intra-
luminal blood in our use case to assess hemoglobin and 
hematocrit levels. Based on our findings, we conclude 
that higher dimensional radiomic features do not seem 
to be useful to predict components of flowing struc-
tures using static CT images, probably as high dimen-
sional radiomic features are based on texture analyses 
and “texture” of intravascular blood varies continu-
ously with its flow. The application of radiomics may be 
limited to the assessment of solid tissues and tumor 
characteristics.
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