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Deciphering ion transport and ATPase coupling
in the intersubunit tunnel of KdpFABC

Jakob M. Silberberg® ®, Robin A. Corey?®, Lisa Hielkema® 3, Charlott Stock® >, Phillip J. Stansfeld® 4%,
Cristina Paulino® 3™ & Inga Hanelt® ™

KdpFABC, a high-affinity K+ pump, combines the ion channel KdpA and the P-type ATPase
KdpB to secure survival at KT limitation. Here, we apply a combination of cryo-EM, bio-
chemical assays, and MD simulations to illuminate the mechanisms underlying transport and
the coupling to ATP hydrolysis. We show that ions are transported via an intersubunit tunnel
through KdpA and KdpB. At the subunit interface, the tunnel is constricted by a phenylala-
nine, which, by polarized cation-n stacking, controls KT entry into the canonical substrate
binding site (CBS) of KdpB. Within the CBS, ATPase coupling is mediated by the charge
distribution between an aspartate and a lysine. Interestingly, individual elements of the ion
translocation mechanism of KdpFABC identified here are conserved among a wide variety of
P-type ATPases from different families. This leads us to the hypothesis that KdpB might
represent an early descendant of a common ancestor of cation pumps.
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ARTICLE

dpFABC (K*-dependent P-type ATPase) is a KT pump

that is responsible for high-affinity electrogenic KT uptake

into prokaryotes at very low extracellular KT
concentrations! 3. The heterotetrameric complex combines a
P-type ATPase (KdpB) with a channel-like subunit (KdpA) from
the superfamily of K+ transporters (SKT)*°. These subunits are
augmented by KdpF, a single transmembrane (TM) helix which
stabilizes the complex®, and KdpC, which has been suggested to
influence substrate affinity’, although its exact function remains
elusive. Its chimeric architecture makes KdpFABC unique among
K+ transporters, and ensures the active transport of Kt with an
apparent affinity of 2 uM and with high substrate specificity>3-10,
To fulfill this physiological role, both KdpA and KdpB seem to
diverge substantially from other members of their families.

The channel-like subunit KdpA consists of four nonidentical,
covalently linked membrane-pore-membrane (MPM) motifs,
referred to as domains 1-4 (D1-D4), which are arranged in a
pseudo-four-fold symmetrical pore. An additional transmem-
brane helix each is fused at the N and C terminus. KdpA, like
other members of the SKT, contains a selectivity filter (SF) that is
less conserved than the canonical TVGYG motif of Kt channels.
This has been proposed to reduce the number of K* binding sites
and suggests a lower ion selectivity!"12. However, unlike the SKT
members TrkH and KtrB, ion transport by KdpFABC was shown
to be highly selective for Kt over Nat, and ATPase activation by
ammonium or Rb* was only possible upon mutation of the
KdpA SF region®!0. Furthermore, the gating region of the ion
channels KtrB and TrkH is not conserved in KdpA. In the latter,
the intramembrane loop in D3M2 is much less polar and the
highly conserved arginine is not present in D4M213.

KdpB is a 7-TM P-type ATPase. Like all other P-type ATPases,
KdpB alternates between outward- and inward-open conforma-
tions in the so-called Post-Albers cycle, which features states E1
and E2, and the phosphorylated intermediates E1-P and E2-
PI415 These states are characterized by large rearrangements of
the cytosolic domains (N—nucleotide binding, P—phosphoryla-
tion, and A—actuator) of KdpB, which are responsible for
nucleotide binding and hydrolysis!21¢17. Dephosphorylation is
mediated by a TGES motif in the A domain, which is widely
conserved among cation P-type ATPases!8-20. A unique feature
of the TGES motif of KdpB is that it is subject to an inhibitory
serine phosphorylation (Escherichia coli (Ec)KdpBsjsz). This
phosphorylation has been shown to prevent excessive KT uptake
when external K+ is high, indicating that it limits uptake by
KdpFABC to conditions where it is physiologically necessary!®21.
Furthermore, KdpB is the smallest known P-type ATPase??, and
was long assumed to be unable to transport substrates itself.
Instead, it was suggested to solely provide the energy for ion
translocation through the channel-like subunit KdpA23. However,
the spatial separation of the subunits purported to be responsible
for ATP hydrolysis and ion transport posed a conundrum as to
how the two processes are coupled.

Several recent structural studies of ECKdpFABC have provided
possible explanations of how the unique structural features of
both KdpA and KdpB effect Kt transport. The first X-ray
structure of KdpFABC solved in an E1 state led to the identifi-
cation of an aqueous tunnel within the complex, running along
the membrane plane and extending from the SF in KdpA to the
P-type ATPase canonical substrate binding site (CBS) in KdpB!®.
Initially, the coupling helix model was proposed, in which the
presence of KT ions in the SF of KdpA is communicated to KdpB
via a Grotthuss (also known as a proton wire) mechanism run-
ning through the intersubunit tunnel'®. KdpB hydrolyzes ATP,
undergoes a conformational change, and pulls open the intra-
membrane gate in the channel subunit via a coupling helix,

thereby enabling K+ flux through KdpA. The periplasmically
oriented KdpC could function as external gate.

For this model to work, a salt bridge between KdpB and KdpA
is required to pull on the coupling helix. This salt bridge has,
however, been shown to be dispensable, as it was broken in a
subsequent cryo-EM structure of KdpFABC in an E2 statel”. In
this structure, virtually no conformational changes in KdpA and
KdpC were observed when compared to the E1 state. Instead, the
intersubunit tunnel was restricted at the KdpA-KdpB interface,
while a new half-channel in KdpB from the CBS to the cytosol
opened. This is accomplished by a significant reorientation of the
positively charged KdpBysgs in the CBS and the surrounding TM
helices. Finally, a cryo-EM map of KdpFABC in an El state
contained several nonprotein densities within the intersubunit
tunnel, which were suggested to be KT ions.

Based on these structural insights, the intersubunit tunnel
translocation model was suggested!”: in the E1 state, extracellular K
T ions are forwarded from the SF in KdpA through the intersubunit
tunnel to the CBS in KdpB, where they trigger ATP hydrolysis and
phosphorylation of the catalytic KdpBps¢;. The ensuing E1-P/E2-P
transition is associated with a reorientation of KdpBgsgs, which
pushes K™ out of the CBS and simultaneously acts as a built-in
counterion to stabilize the E2/El transition. Recent cryo-EM
structures extend the model by suggesting a displacement of the ion
from the CBS into an adjacent low-affinity site in the E2-P state,
from where ion release into the cytoplasm is favored!2.

Here, we decipher the molecular basis of the transport pathway
of KdpFABC by addressing how K+ ions are forwarded through
the tunnel, how they bind to the CBS, and the mechanisms by
which ATP hydrolysis and the subsequent E1-P/E2-P transition
are triggered. We present two cryo-EM structures of KdpFABC in
an E1-ATP state, loaded with KT and Rb* ions, respectively,
allowing a more unambiguous assignment of ion positions in the
complex. Further, we characterize the dynamics of ion coordi-
nation and translocation through the intersubunit tunnel by
molecular dynamics (MD) simulations. Finally, we combine
biochemical and MD approaches to identify three conserved
residues responsible for ATPase coupling, ion propagation
through the intersubunit tunnel into the CBS, and regulation of
the rate-limiting step of turnover, providing the foundation for
K+ transport by KdpFABC.

Results
Structures of K*- and Rb*-loaded KdpFABC in an E1.ATP
state. In various cryo-EM structures of KdpFABC, nonprotein
densities have been observed along the intersubunit tunnel.
Although the densities could not be unambiguously assigned,
they were suggested to represent Kt ions or water
molecules!21%17, Due to its higher atomic number, Rb* (Z = 37)
scatters electrons more strongly than Kt (Z =19) by an expected
factor of 2.524726, We set out to exploit this as a strategy to assign
substrate jons with more confidence. To this end, we determined
cryo-EM structures of the complex loaded with K+ and Rb™,
both arrested in an E1-ATP state. In the K*-loaded sample, we
used the mutation KdpBpsgyn, which precludes ATP hydrolysis,
to stall the complex in the El state. To incorporate RbT, we
employed variant KdpFAG,3,pBs1624C, in which a central glycine
(KdpAgas,) of the KdpA SF is mutated to allow passage of Rb*°.
K jons co-purified in the intersubunit tunnel of the variant were
exchanged for Rb* by applying turnover conditions. Here, the
KdpBg;624 mutation prevented the inhibitory phosphorylation in
the A domain, enabling turnover.

In both samples, the complex was trapped by the addition of
the nonhydrolysable ATP analog AMPPCP prior to cryo-EM
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Fig. 1 Intersubunit tunnel in the K+-loaded E1-ATP structure of KdpFABC. a Structural model of E1-ATP KdpFABp307nC in ribbon representation. The
following color code is retained for all following figures unless otherwise specified: KdpA: green, KdpC: purple, KdpF: cyan, KdpB: TMD sand, N domain: red,
P domain: blue, and A domain: yellow. Here, the KdpA pore entrance at the SF and intersubunit tunnel leading to the CBS are visualized as a pink surface. b
Radius of the intersubunit tunnel along its length, from below the KdpA SF to the KdpB CBS. The tunnel is wide enough to accommodate K+ (r=1.4 A,
dashed line) along nearly its entire length, with a significant constriction immediately before the CBS. ¢ Top view of the constriction in the intersubunit

tunnel, which is mediated mainly by KdpBg;3; as it protrudes into the tunnel.

sample preparation. The structures were determined at a global
resolution of 3.1 and 3.2 A in the K*- and Rb*-loaded samples,
respectively, with higher local resolution in the transmembrane
region. Both structures are nearly identical and adopt an E1.ATP
conformation (Fig. 1la, Supplementary Figs. 1-6, Supplementary
Table 1). The nucleotide AMPPCP is coordinated between the N
and P domains, reflecting the common catalytic ATP binding
mode of P-type ATPases?’ (Supplementary Fig. 6b, c). This state
shows an outward-open half-channel that reaches from the KdpA
SF to the CBS in KdpB (Fig. 1a). The tunnel is sufficiently wide to
accommodate either K+ or Rb™ ions along its entire length.
There is a constriction point at the SF in KdpA, where KT is
dehydrated, and a second constriction immediately before the
CBS (Fig. 1b, Supplementary Fig. 6d). This constriction is mainly
formed by a single residue, namely KdpBr,3, (Fig. 1c).

Cardiolipin aids the E1-P/E2-P transition in KdpFABC. In
both structures, we identify two cardiolipin (CL) molecules bound
to KdpFABC (Fig. 2a, Supplementary Fig. 6e, Supplementary
Fig. 7a, b). The assignment as cardiolipin in these positions is
strongly supported by coarse-grained MD simulations showing
preferred CL binding (Fig. 2b, Supplementary Fig. 7c). CL
binding at the KdpA-KdpB interface (CL1) is principally coor-
dinated by two basic residues (KdpAg,7s and KdpBges:), a glycine
residue, a polar residue and an aromatic residue (KdpAgsas,
KdpApszs, KdpAwa,gs) making it a typical high-affinity E. coli CL
binding site?8, CL1 appears to be of integral structural impor-
tance, as evidenced by the loss of KdpFABC in vivo when the
binding site is mutated (Fig. 2c, Supplementary Fig. 7e). One
hydrophobic chain of CL1 reaches towards the intersubunit
tunnel, lying immediately opposite KdpBgys, (Supplementary
Fig. 7d). Since CL specifically stimulates the ATPase activity of

KdpFABC, it may support the transition to the E2 conformation,
as previously proposed!? (Fig. 2d).

Ions are transported through the intersubunit tunnel. Both
cryo-EM structures feature multiple distinct nonprotein densities
filling the entire length of the outward-open half-channel, from the
SF in KdpA to the CBS in KdpB (Fig. 3a). The individual positions
in both structures closely overlap (Fig. 3a, Supplementary Fig. 9a).
Compared to our previous E1 cryo-EM structure 6HRA, a higher
number of densities is observed within the K -loaded tunnel, which
we attribute to the increased KT concentration used for sample
preparation (50 mM vs. 1 mM) and the improved resolution of the
transmembrane domain!’ (Supplementary Fig. 8a). Potential
coordinating residues were identified for the majority of these
positions (Supplementary Figs. 8b, 9b, Supplementary Table 2), and
the tunnel is wide enough to accommodate additional waters for
solvation. Together, these factors already support the assignment of
the additional densities as ions.

Notably, the K*-loaded structure features densities in the S1,
S3, and S4 positions of the SF of KdpA, although the S4 site was
previously suggested to be lost in KdpFABC!? (Supplementary
Fig. 8c). The nonprotein density in the S1 site is absent in the Rb
T-loaded structure, probably because the mutation KdpAg3:p
changes the SF geometry (Supplementary Fig. 9¢). The loss of a
coordination site in the SF might also explain the reduced affinity
of KdpFAg3,pBC for KT compared to wild-type KdpFABC!O.

When comparing the individual nonprotein densities in both
structures low-pass filtered to the same resolution, the densities
in the KdpA SF S3 site and the KdpB CBS are increased ca. two-
fold in intensity in the presence of Rb* (Fig. 3b-d), close to the
expected factor of 2.524-26. This suggests that the densities at
both the beginning and the end of the intersubunit tunnel indeed
correspond to ions, not waters, and, consequently, that the
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Fig. 2 Cardiolipin in KdpFABC. a Two identified cardiolipin (CL) molecules (gray) bound to KdpFABC. A hydrocarbon tail of CL1 (dark gray) extends into
the complex at the KdpA/KdpB interface. b Pooled CL contact probabilities of selected residues, from five representative structures in various E1 and E2
conformations (5SMRW, 6HRA, 6HRB, 7BGY, and 7NNL), measured as proportion of frames in a coarse-grained MD simulation the CL and the respective
residue are in contact, i.e., within a 0.6 nm cutoff distance. The concentration of CL in the membrane (10%) is shown as a dotted line, indicating a very high
accumulation of CL interactions at these residues. Data points represent the average and error bars the standard deviation from 25 independent
simulations (5 each per structure). ¢ Anti-His Western Blot of whole-cell samples of E. coli LB2003 cells carrying KdpFABC variants, detecting His-tagged
KdpC. The simultaneous knockout of residues coordinating CL1 in KdpFAgr2784Bres1aC abolishes protein production, showing the structural importance of
CL binding for complex stability. This result was reproducible in a biological duplicate. d CL-dependent ATPase activity of KdpFABC. Rising CL conc.
(0-250 uM) stimulate ATPase activity up to two fold, while additions of PE, PG, and PC do not change the ATPase activity of KdpFABC. Increased ATPase
activity indicates an acceleration of the rate-limiting E1/E2 transition. Data points represent the average and error bars the standard deviation from a
technical triplicate.
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Fig. 3 lons traverse the intersubunit tunnel. a Potential ions in KT~ and RbT-loaded E1-ATP KdpFABC within the intersubunit tunnel, from the KdpA SF
(right) to the KdpB CBS (left). Based on the high ion concentrations in each sample, densities were assigned as Kt and Rb* ions, respectively. K+
visualized in purple, Rbt in turquoise. b, € Comparison of densities in the CBS and in SF position S3, respectively, between the K- and Rb*-loaded maps
when low-pass filtered to 3.2 A and displayed at the same contour level (c). Densities in the Rb*-loaded structure (turquoise) are stronger than in the K
+-loaded structure (purple), suggesting that they correspond to ions and that Rbt is integrated into the complex. Contour levels are indicated in the top
right corner of each panel. d Quantification of the effect of Rb™ substitution in the CBS and SF S3. Densities were low-pass filtered to 3.2 A, normalized to
the K*-loaded structure for each position, and indicate a ca. two-fold signal increase in the Rb*-loaded structure in both positions. For the full, non-
normalized comparison of all ion densities, see Supplementary Fig. 9d.
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Fig. 4 Occupancy and energetics of K™ ions in the intersubunit tunnel in MD simulations. a Comparison of K* positions from cryo-EM (gray) and at the
endpoint of a short atomistic MD relaxation (purple). The ions rearrange slightly but remain in the intersubunit tunnel, indicating its viability for
translocation. A new ion position is taken up adjacent to the CBS. b APBS coordination energy profile for K+ along the length of the intersubunit tunnel.
Coordination is optimal at the KdpA SF, where ions are fully dehydrated by the protein, and immediately before the KdpB CBS, where they are bound by
KdpBpsgs. €, d New coordination sites around KdpBg,3, observed in atomistic MD simulations. During the progression towards the CBS, ions are likely
coordinated by cation-r interactions on both faces of KdpBg,3,. Coordination in the PBS (¢) is strong, with coordination supported by KdpBpsgs.

Coordination in the DBS (d) is transient.

tunnel constitutes the ion translocation pathway. The effect is
not as evident for ions in the middle of the intersubunit tunnel
(Supplementary Fig. 9d), probably due to more dynamic and
nonspecific ion coordination at these sites compared to the
KdpA SF and KdpB CBS. Alternatively, these densities could
represent waters in the intersubunit tunnel, as proposed
recently!2, although waters are not typically seen in EM at the
obtained resolutions?®. An unequivocal assignment of ions
would require anomalous dispersion data from an X-ray
diffraction approach.

The viability of ion translocation through the intersubunit
tunnel was further probed by atomistic MD simulations of K
F-loaded KdpFABC. The data revealed that the ions rearranged
slightly during a short 20 ns MD relaxation, but are otherwise well
coordinated in the tunnel (Fig. 4a). The simulations also showed
that, in addition to direct protein contacts, water molecules form
solvation shells around the K* ions in the tunnel (Supplementary
Fig. 10a). An analysis of the coordination energy for KT along the
tunnel by Adaptive Poisson-Boltzmann Solver (APBS) analysis was
used as an approximate framework to compare ion positions in the
tunnel, and indicated a favorable energy profile along the entire
length, with notable energy minima in the KdpA SF, where KV is
fully dehydrated by the protein, and, interestingly, at the end of the
intersubunit tunnel, just before the KdpB CBS (Fig. 4b, Supple-
mentary Fig. 10b, c). Notably, this new ion position was taken up
immediately, where K+ is primarily coordinated by KdpBpsgs. In
addition, KdpBg,3, aids ion coordination, either by direct cation-mn
stacking or by CH-m interaction with KdpBy,s,, which in turn
coordinates the ion with its backbone carbonyl (Fig. 4c, Supple-
mentary Fig. 10d). Since this position is located on the proximal
side of KdpBr,3, with respect to the CBS, we termed it the
proximal binding site (PBS). When the five ions closest to the CBS
were deleted, simulations revealed a rapid progression of two ions
from KdpA towards the CBS (Video 1). The first ion moves quickly
past the constriction formed by KdpBg,;, to the described energy
minimum, coordinated by KdpBpsgs and the proximal phenyla-
lanine face (PBS, Fig. 4c). Subsequently, the second ion moves
along the intersubunit tunnel in a similar fashion, until being
coordinated by cation-m stacking at the face of KdpBg,3, distal to
the CBS (distal binding site, DBS, Fig. 4d). These simulations not
only support the translocation of ions through the intersubunit
tunnel, but also suggest that ion propagation is supported by a pull-
on mechanism mediated by the KdpBpsg; energy well in the PBS at
the end of the tunnel.

Moreover, the ion positions taken up in the MD simulations
suggest that cation-n interactions with KdpBp,s, play an
important role in the progression of ions towards the CBS. Since
the coordination in the PBS is energetically similar to that
observed in the KdpA SF, an external force is likely required to
push the ion onward into the CBS for transport, as is the case in
the SF. The MD simulations used a point-charge force field, thus
this process could not be fully resolved3?. However, we postulate
that the second ion found in the MD simulations, coordinated at
the DBS, repels the first ion from the PBS, pushing it forward
towards the CBS for subsequent transport. This could occur
either through perturbation of the polarity of the phenylalanine
n-electron clouds or simply through charge-charge repulsion,
comparable to the proposed Coulomb knockon in the SFs of K+
channels31:32,

Three residues mediate ion progression and ATPase coupling.
To further elucidate the proposed role of KdpBg,3, in ion trans-
location, we mutated the residue to an isoleucine, which has a
bulky side chain that fills the tunnel similarly to KdpBg,3,, but is
unable to coordinate KT via cation-m stacking. The KdpFABE3,1C
variant showed a similar K*-coupled ATPase activity as the wild
type, but with an ~80% reduced transport rate (Fig. 5a—c). Ato-
mistic MD simulations showed that the mutation does not greatly
affect ion progression towards KdpB, attracted by the KdpBpsgs
energy well, and PBS and CBS can be populated. However, the
DBS adjacent to KdpBg,3,; is lost, and ion binding at this site is no
longer observed (Fig. 5d). The loss of ion coordination, together
with the reduced transport rate, supports our hypothesis that the
DBS next to KdpBg,;3, is required for the efficient forwarding of a
K+ ion from the PBS to the CBS.

The fact that the ATPase activity is undisturbed in
KdpFABE,3,C further suggests that cation binding to the PBS
is sufficient to trigger ATP hydrolysis. We postulate that the
neutralization of the negative charge of KdpBpsgs; by cation
binding could be the stimulus, as variant KdpFABpsg34C has
previously been shown to uncouple ATP hydrolysis from K+
and abolish K+ transport33. The lack of transport is likely based
on the loss of the energy well at the end of the intersubunit
tunnel, as MD simulations with KdpFABpsg32C showed that
ions are no longer effectively pulled past the constriction formed
by KdpBg,3, (Fig. 5d). To elucidate whether neutralization at the
PBS is in fact responsible for stimulating ATP hydrolysis, we
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Fig. 5 Activity and Kt occupancy in KdpFABC variants with mutations around the CBS. a ATPase activity of KdpFABC variants in the absence and
presence of KT and the P-type ATPase inhibitor orthovanadate (oV), normalized to K*-stimulated activity of wild-type (WT) KdpFABC. KdpFAB,3,,C
retains Kt-stimulated ATPase activity. The K+ mimic KdpBy,,gr uncouples ATP hydrolysis from K+, and increases resistance to orthovanadate. KdpBg;3,a
uncouples ATP hydrolysis from K+ and largely increases the activity, while maintaining orthovanadate inhibition. Data points represent the average and
error bars the standard deviation of measurements from technical replicates (-KCl | +KCI | +KCI +50 uM oV | +KCI +500 uM oV: WT n=10|11|9]0,
F2321n=3|3|3]0, L228R n=44]3]|3, F232A n=4]4|3|0) from at minimum biological triplicates (WT n=9, F232| n=3, L228R n=3, F232A
n=3). b, ¢ Transport activity of liposome-reconstituted KdpFABC variants. Decreasing ACMA fluorescence indicates K* transport. Initial slopes

were fitted linearly to obtain transport rates. Contrasting their ATPase activity, transport by KdpFABg»3,C and KdpFABE,3,4C is slower than that of WT
(reduced by 80 and 65%, respectively). KdpFAB5,srC showed no transport. Data points represent the average and error bars the standard deviation of
measurements from technical replicates (WT n=26, F232I n=9, F232A n=23) from at minimum biological triplicates (WT n=8, F232I =3, F232A
n=3).d Computed densities of K (mesh) in atomistic MD simulations of KdpFABC variants. In WT, ions can occupy three main sites: the DBS and PBS at
the KdpA/KdpB interface before and behind the constricting residue KdpBg,3,, and the CBS in KdpB. In KdpFABg»35C, ions can reach the PBS, coordinated
by KdpBpsgs, but the DBS is lost. No significant ion passage past KdpBg,3, was observed in KdpFABpsg3aC and KdpFAB| 2,8rC. Removing the steric
hindrance in KdpFABF,3,AC once again allows ion passage to the PBS, but the DBS remains lost. lon progression into the CBS in these simulations is
possible because KdpBgsge is set as uncharged.

placed a positively charged side chain into the PBS, mimicking K  neutralization of the PBS, as described above for KdpFABpsg3,C
* binding. The activity of KdpFAB,,5rC fully mirrored that of ~and KdpFABp,,3rC. A possible explanation could be an unspecific
KdpFABpsg34C: the ATPase activity level was similar to WT  protonation of KdpBpsgs via a continuous water wire along the
and uncoupled from K*, K+ transport was abolished, and in intersubunit tunnel, which is otherwise sterically blocked in the
MD simulations no ions passed KdpBg,3, (Fig. 5a, b, d). WT and KdpFABg,3,,C. Thus, in addition to being an element in
In addition to its role in ion coordination at the PBS and ion coordination and progression, KdpBg,s; may also fulfill a
forwarding of K+ to the CBS, KdpBp,s, appears to present a  gatekeeper role in KApFABC by preventing unspecific stimulation
significant steric constriction in the intersubunit tunnel, prevent- of ATP hydrolysis by K*-independent neutralization of KdpBpsgs.
ing ion transition to the PBS unless pulled by the negatively
charged KdpBpsg; (Fig. 5d). To probe this, we investigated the
impact of the KdpBy,s3,4 mutation where, unlike KdpBp,s,;, not  KdpBrzs; modulates the rate-limiting step in KdpFABC. In
only the possibility of cation-m interactions, but also steric addition to uncoupling ATP hydrolysis from K, KdpFABg»3,4C
hindrance is abolished. As seen for KdpBg,3,;, ions can reach the also shows a three- to four-fold increase in V., of ATP
CBS and PBS but do not occupy the DBS in the MD simulations ~ hydrolysis when compared to stimulated wild-type KdpFABC
(Fig. 5d). Moreover, simulations on the double mutant KdpBg,3,4, (Fig. 5a, Supplementary Fig. 11). By contrast, the K, value for
pss3a showed that ions can reach the CBS even in the absence of ATP is similar. Interestingly, the uncoupled variants
the KdpBpsgsa energy well when the steric hindrance is removed KdpFAB| 5,5rC and KdpFABpss3,C?? showed a V,,q, comparable
(Supplementary Fig. 10e). Functional assays of KdpFABp,3,,C, tO that of stimulated wild-type KdpFABC. This discrepancy
like KdpFABy,3,C, revealed a significantly reduced transport rate ~ between the uncoupled variants suggests that ATPase uncoupling
(Fig. 5b, c), supporting the importance of cation- interactions and deregulation are separate processes. The KdpFABpss;2C
and the DBS for efficient ion progression towards the CBS. variant was previously shown to have a decreased sensitivity to
Unexpectedly however, KdpFABy;3,,C showed a K*-uncoupled orthovanadate, which was interpreted as indicative of an accel-
and enhanced ATPase activity (Fig. 5a). The uncoupling suggests ~erated E2/E1 transition, as orthovanadate binds to the protein in
that ATP hydrolysis is stimulated by a K'-independent the post-hydrolysis E2 state and stalls turnover®®. Similarly, the
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Fig. 6 Molecular mechanism of ion progression in the CBS during the
KdpFABC transport cycle. a In the E1 ground state (Early E1), KdpBgsge is
protonated and KdpBpsgs deprotonated, forming the energy well at the end
of the intersubunit tunnel. b ATP binds and a first ion is rapidly pulled past
the constriction of KdpBg,3, into the PBS, coordinated by KdpBpsgs and
assisted by cation-r stacking with KdpBg,3> (ET-ATP transitory 1). ¢ When a
second ion reaches the DBS, = cloud polarization is perturbed, slightly
repelling the first ion forward towards the CBS (E1-ATP transitory 2).

d Upon a protonation switch between KdpBpsgs/ksss, the PBS ion moves
forward into the CBS, with coordination supported by KdpBksge (Late E1/E1-
P). The energy well in the PBS is lost by protonation of KdpBpsgs,
preventing the ion from being pulled back or a second ion from being pulled
forward from the DBS. e Upon E1-P/E2-P transition, the protonation
switches back to its ground state, with a conformational shift of the now
positively charged KdpBysge forcing the ion out of the CBS (5—E2-P/E2). In
the E2/E1 transition, KdpBgsge acts as a built-in counterion.

KdpB;,,sr mutation led to an increased resistance to inhibition
by orthovanadate (Fig. 5a). The proposed accelerated E2/EIl
transition could be explained by the lack of ions in the CBS in
these variants, which otherwise have to be displaced before the
return to the El state. By contrast, KdpBp,3,4 does not increase
the resistance to orthovanadate, suggesting that the mutation
must affect the catalytic cycle differently. We propose that the
increase in ATPase activity observed for KdpFABg,3,,C is based
on the acceleration of the rate-limiting step in KdpFABC turn-
over, the E1-P/E2-P transition®*, which is characterized by large
rearrangements of the A domain!?17. KdpBg,s, lies in TM3,
which is directly connected to the A domain (Supplementary
Fig. 12a). Therefore, the plasticity of the A domain could be
modulated by the large phenylalanine side chain, regulating the
E1-P/E2-P transition. Thus, in addition to its involvement in ion
coordination and gatekeeping the CBS, KdpBg,;, may modulate
the movement of the KdpB-A domain, in part regulating the rate-
limiting step of KdpFABC turnover.

Discussion

By combining structural, biochemical, and MD simulation data,
we demonstrate how KT is translocated through KdpFABC.
Beyond confirming the previously proposed intersubunit tunnel
translocation model, our data allow us to propose a molecular
mechanism for ion propagation and ATPase coupling, particu-
larly involving residues KdpBpys;, KdpBpsgs, and KdpBgsgs
(Fig. 6). Notably, the here proposed model also explains pre-
viously reported functional effects of mutations in and around the
CBS (for details see Supplementary Fig. 13).

In the E1 state, a first KT ion is drawn past the constriction
formed by KdpBr,3, to the energy minimum at the PBS, gener-
ated largely by the negatively charged KdpBpsg; (Fig. 6a).
Coordination is aided in part by direct cation-m stacking to
KdpBg,3,, or by KdpBj,sy, which in turn is CH-nt stacked to
KdpBg,3,. The arrival of a second ion from the tunnel at the DBS
perturbs the polarization of the KdpBg,3, m-system and electro-
statically repels the ion in the PBS towards the CBS (Fig. 6b). We
propose that this induces a protonation switch between KdpBpsss
and KdpBgsgs, neutralizing both (Fig. 6c). This hypothesis is
supported by their predicted pKa values close to physiological pH
(pKa of KdpBysgs: 7.5; pKa of KdpBpsgs: 7.2), suggesting that
protonation swapping is energetically inexpensive. The proton
switching consequently allows the ion in the PBS to move for-
ward into the CBS without being pulled back by the energy well
(Fig. 6d). Coordination in the CBS is facilitated by deprotonated
KdpBksgs, as observed in previous E1 structures of
KdpFABC!%16, This forwarding of a KT ion by a protonation
switch mechanism is in good agreement with ion behavior in MD
simulations: in the doubly charged state, the ion binds strongly at
the PBS; when the protonation states are switched (doubly neutral
state), the ion is repelled forward into the CBS once a second ion
approaches the DBS (Supplementary Fig. 14a, b).

During the post-hydrolysis E1-P/E2-P transition, the proto-
nation states of KdpBpsgs/ksss likely revert back to their initial
states, such that the now positively charged lysine side chain
displaces the K* from the CBS, as previously proposed!” (Fig. 6e).
A lipid at the KdpA/KdpB interface might support the E1-P/E2-P
transition, as it was suggested to stabilize the E2 conformation!2.
We assign the lipid as CL (Fig. 2, Supplementary Fig. 7), and the
accelerated turnover in the presence of CL probably reflects the
effect on the rate-limiting step. Similar lipid-mediated effects have
been shown for other P-type ATPases3>36.

Recent structural observations in the E2 state suggest that
KdpBkssgs pushes the ion into an adjacent low-affinity site, from
where it is released through a previously observed inward-open
half-channel into the cytosol!>17. We tested this hypothesis using
MD simulations, and saw that ions were released from the CBS in
the E2 state via the proposed half-channel, but did not enter this
low-affinity release site (Supplementary Fig. 14c). Moreover, ions
placed in this site rapidly moved back towards the CBS, as shown
by KT distances to KdpBgsgs in the CBS (Supplementary
Fig. 14d). From there, they followed the same exit pathway as
before, indicating that the proposed low-affinity site likely does
not represent a KT binding site. In accordance with these
observations, the physiological necessity for such a low-affinity
site remains unclear, as ion release appears to be possible without
traversing it.

The duration of ion release from the CBS is variable, taking up
to 250 ns in simulations (Supplementary Fig. 14e). This may
explain the accelerated E2/E1 transition in KdpFABpsg;C and
KdpFABy,,5rC, in which ions do not reach the CBS and no
longer need to be displaced. During the E2/E1 transition,
KdpBksse acts as a built-in counterion, as previously suggested!”
(Fig. 6e). Alternating access is granted by a constriction at the
KdpA/KdpB interface in the E2 state, which prevents new ions
from entering the CBS before the return to the E1 conformation
(Supplementary Fig. 14f).

But at what point in the proposed transport cycle does ATP
hydrolysis occur? Our data suggest that hydrolysis is induced by
the binding of K to the PBS, which neutralizes KdpBpsg; and
leaves KdpBysgs at the CBS positively charged (Fig. 6b, c). This
trigger is possibly mediated through TM5 of KdpB, harboring
KdpBpsg; and KdpBysge, which directly connects to the P domain
(Supplementary Fig. 12b). Hence, to allow K+ transport to the
cytoplasm, the forwarding of the ion from the PBS to the CBS
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Table 1 KdpFABC variants used in this study.

Variant Mutation purpose Experiment

KdpFABC Wild type ATPase, transport, complementation
KdpFABp307nC Catalytically inactive variant, stalled in E1 state Cryo-EM, MD, complementation
KdpFAG2320Bs162AC Rb+-permissive mutation in SF, no inhibitory phosphorylation Cryo-EM

KdpFARr>784BC CL1-coordinating residue Complementation
KdpFABRrgs1AC CL1-coordinating residue Complementation
KdpFAgr>78aBres1aC CL1-coordinating residues Complementation

KdpFABE»32,C Coupling residue in intersubunit tunnel ATPase, transport, MD
KdpFABpsg3aC Coupling residue in CBS MD

KdpFAB|5,8:rC K+ mimic in PBS ATPase, transport, MD
KdpFABE23,AC Coupling residue in intersubunit tunnel ATPase, transport, MD
KdpFAqnerBC Affinity-reducing mutation in SF MD

KdpFABksgerC Coupling residue in CBS MD

KdpFABg2324,05834C Coupling residues in intersubunit tunnel and CBS MD

must be faster than the transition from E1-ATP to the inward-
open E2-P. This scenario is plausible, as the E1-P/E2-P transition
is the rate-limiting step of KdpFABC?*, regulated by residue
KdpBg,s,.

In fact, our data place a particular importance on residue
KdpBr,3,. It appears to have a three-fold role in KdpFABC
turnover: (1) it acts as a gatekeeper to prevent unspecific access to
the PBS and CBS from the intersubunit tunnel, thereby pre-
venting an uncoupling of ATP hydrolysis from Kt ; (2) it is
involved in ion coordination and progression via its m-electron
system; and (3) it regulates the rate-limiting step of KdpFABC,
the E1-P/E2-P transition. As such, KdpBpg,3, directly links ion
propagation and turnover. The elaborate coupling system may
explain the low transport rate of KdpFABC compared to other
P-type ATPases and the strict coupling of transport to ATP
hydrolysis3’. Accordingly, KdpBgys,, like KdpBpsss/ksss>os i
highly conserved among KdpB sequences from different species
(Supplementary Fig. 15).

Notably, all elements involved in ion progression and coupling,
individually or in combinations, have also been proposed for
other P-type ATPases. Cation-m coordination by phenylalanine
residues has been implicated in ion transport by the Nat/K-
ATPase and in the sarcoplasmic Ca?t pump SERCA. In the Nat/
K+-ATPase (P2C family), a phenylalanine is involved in the
dehydration of ions entering the CBS38. Like KdpBg,s,, this
residue lies in the TM helix connected to the A domain, and its
mutation to alanine resulted in an acceleration of the E1-P/E2-P
transition3%40, In SERCA (P2A family), a structurally equivalent
phenylalanine residue was suggested to be involved in stabilizing
the E2 conformation, favoring the E1-P/E2-P transition?!. In the
Zn?t ATPase ZntA (P1B family), metal binding and ATPase
coupling are facilitated by an aspartate/lysine pair in the CBS,
while a conserved tyrosine residue controls access to the CBS#2:43,
The lysine also acts as a built-in counterion in the E2 state,
enabling electrogenic transport without a counterion, as in
KdpFABC. A similar mechanism was shown for the HT ATPase
(P3A family), in which the CBS is formed by an arginine and
an aspartate, while an asparagine acts as an HT gatekeeper,
replacing the phenylalanine/tyrosine in KdpFABC and ZntA,
respectively*44>, This indicates that metal ATPases require the
aromatic residue for interaction with the ion. The HT/K+ ATPase
(P2C family) features a lysine in the CBS that is suggested to expel
the primary ion in the E2 state before counterion binding®, in
part reflecting the function proposed for KdpBxsge. Prevention of
counterion binding was also observed upon mutation of an
arginine into the corresponding position of the Naf/K*
ATPase?’. The fact that different elements identified in various
P-type ATPase families are all present in KdpB suggests that

it may be a close descendant of a common ancestor of
cation pumps.

In light of these similarities, it remains elusive why KdpFABC
includes an additional channel-like subunit in the transport
process. The SF of KdpA is likely crucial to the particularly high
substrate affinity and specificity. Due to its low sequence con-
servation to the classical TVGYG motif of tetrameric K™ chan-
nels, SF discrimination in KdpA was suggested to base on a
different mechanism!>16, Functional data already showed an
absolute selectivity of KdpFABC for K+, and, contrary to most K
T channels, wild-type KdpFABC even excludes RbT. Specific
mutations in the SF only allow the passage of Rb* and NH, T, and
under no circumstances is NaT permitted®!?. A question not
addressed here is how K ions so selectively pass the SF to reach
the intersubunit tunnel. Ion permeation in K+ channels with the
canonical TVGYG SFs is mediated by a Coulomb knock-on31-32,
Despite the significantly altered selectivity filter, we observe the
occupancy of three coordination sites (S1, S3, $4) in the SF, and
similarly optimal coordination moieties for K* binding in the
S2 site. While cryo-EM data do not allow to precisely quantify the
occupancies of bound ligands, the presence of densities at three
SE-binding sites, which are stably and simultaneously occupied in
our MD simulations, strongly suggests a mechanism for ion entry
into KdpFABC similar to that found in tetrameric KT channels. If
so, this might explain the high selectivity of KdpFABC when
compared to other SKT members, which showed fewer coordi-
nation sites*®4%, Compared to canonical KT channels and the
other SKT members, KdpFABC has a very low K,, for KT
transport of 2 uM8. The low K,,, essential for the function of
KdpFABC as a high-affinity KT transporter, could be enabled by
the energy minimum at the PBS in KdpB, which may augment
the energetics of the SF knock-on to grant efficient ion progres-
sion. Furthermore, KdpC could promote high-affinity K+ bind-
ing, as its sequence is related to P-subunits of other P-type
ATPases, which are involved in substrate binding’->?,

The data presented here verifies that ion transport in
KdpFABC occurs via the unique intersubunit tunnel through
KdpA and KdpB, and allows us to describe how ATP hydrolysis
and KT transport are coupled in the chimeric complex. Moreover,
we propose an intricate molecular system for the forwarding of
ions into the CBS for transport, with key elements conserved in
other P-type ATPases.

Methods

Cloning and protein production. Escherichia coli kdpFABC was brought into
expression vector pPBXC3H using FX cloning®!. Point mutations based on this
construct were generated by site-directed mutagenesis, creating different variants
listed in Table 1.

8 | (2021)12:5098 | https://doi.org/10.1038/s41467-021-25242-x | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

KdpFABC variants were produced in E. coli LB2003 cells (available from the
Hénelt group upon request) transformed with plasmids encoding the relevant
variant and grown in 6 or 121 KML with 100 pg/ml ampicillin. Cultures were
inoculated to ODgqq 0.1, induced with 0.002% L-arabinose at ODgqq 1.2, and
harvested one hour after induction. For functional studies, KdpFABC variants were
produced, purified, and characterized in parallel with wild-type KdpFABC to
ensure comparability of measurements.

KdpFABC purification. Purification of KdpFABC variants for structural studies
was performed as previously described for wild-type KdpFABC!. Purification of
KdpFABC variants for functional studies was performed identically, omitting the
final size exclusion chromatography step after anion exchange chromatography.

Cryo-EM sample and grid preparation. For the cryo-EM sample resulting in the
3.1 A structure in the E1-ATP state with K™, KdpFABp;p;nC was used. The
mutation KdpBpso7n prevents ATP hydrolysis and stalls the complex in the

E1 state®2. Purified protein was concentrated to 3.1 mg/ml, and supplemented with
50 mM KCI and 5mM AMPPCP to stabilize the complex in the EI-ATP con-
formation prior to grid preparation.

For the cryo-EM sample resulting in the 3.2 A structure in the E1-ATP state
with Rb*, KdpFAG2320Bs1624C was used. The mutation KdpAg,s,p in the KdpA
SF allows the passage of Rb+%10, while KdpBs,e; is the site of an inhibitory
phosphorylation that inhibits turnover!®2!. Purified protein was concentrated to
4 mg/ml, and supplemented with 100 mM RbCl and 1 mM ATP before incubation
for 5 min at room temperature to displace any remaining K in the complex with
Rb*. Turnover was stopped by the addition of 10 mM AMPPCP to stabilize the
complex in the E1-ATP conformation prior to grid preparation.

Holey-carbon cryo-EM grids (Quantifoil Au R1.2/1.3, 300 mesh) were twice
glow-discharged at 15mA for 45s. 2.8 ul of KdpFABC sample were applied to
grids, blotted for 2-6's in a VitroBot (Mark IV, ThermoFisher) at 4 °C and 100%
humidity, and subsequently plunge-frozen in liquid ethane and stored in liquid
nitrogen.

Cryo-EM data collection. Cryo-EM data were automatically collected using
SerialEM software>354 (Thermo Fisher Scientific) on a 200 keV Talos Arctica
microscope (Thermo Fisher Scientific) equipped with a post-column energy filter
(Gatan) in zero-loss mode with a 20 eV slit and a 100 uM aperture with a K2
Summit detector (Gatan). Images were recorded at a pixel size of 1.012 A (cali-
brated magnification of 49407x), a defocus range from —0.2 to —2.0 um, an
exposure time of 9s, a subframe exposure time of 150 ms (60 frames), and a total
electron exposure on the specimen level of about 52 electrons per A% Data col-
lection was optimized by restricting acquisition to regions displaying optimal
sample thickness using an in-house written script>, and the data quality monitored
by on-the-fly processing using FOCUS software®.

Cryo-EM data processing. The SBGrid>” software package tool was used to
manage the software packages.

K*-loaded KdpFABp30;nC. A total of 5,831 dose-fractionated cryo-EM images were
recorded and subjected to motion-correction and dose-weighting of frames by
MotionCor2°8. The CTF parameters were estimated on the movie frames by
ctffind4.1.13°°. Bad images showing contamination, a defocus below —0.5 or above
—2.0 um, or a bad CTF estimation were discarded, resulting in 3,530 images used
for further analysis with the software package RELION 3.0.8%. First, crYOLO
1.3.16! was used to automatically pick 331,673 particles using a loose threshold.
Particle coordinates were imported in RELION 3.0.8%0, and the particles were
extracted with a box size of 240 pixels. False positives or particles belonging to low-
abundance classes were removed in several rounds of 2D classification, resulting in
249,092 particles. For 3D classification and refinement, the map of the previously
generated E1 conformation EMD-025717 was used as reference for the first round,
and the best output class was used in subsequent jobs in an iterative way. Particles
belonging to the best classes were selected, resulting in 160,776 particles.
Sequentially, several rounds of CTF refinement® were performed, using per-
particle CTF estimation. In the last refinement iteration, a mask excluding the
micelle was used and the refinement was continued until convergence (focused
refinement), yielding a final map for the E1-ATP state at a resolution of 3.5 A, and
3.1 A after post-processing and masking, sharpened using an isotropic b-factor of
—92 A2, No symmetry was imposed during 3D classification or refinement.

Rbt-loaded KdpFAc3:pBsi62aC. A total of 22,046 dose-fractionated cryo-EM
images were recorded and subjected to motion-correction and dose-weighting of
frames by MotionCor2°8. The CTF parameters were estimated on the movie frames
by ctffind4.1.13%%. Bad images showing contamination, a defocus below —0.5 or
above —2.0 um or a bad CTF estimation were discarded, resulting in 14,947 images
used for further analysis with the software package RELION 3.1.0%. First, crYOLO
1.3.1%1 was used to automatically pick 756,834 particles using a loose threshold.
Particle coordinates were imported in RELION 3.1.0%0, and the particles were
extracted with a box size of 240 pixels. False positives or particles belonging to low-
abundance classes were removed in several rounds of 2D classification, resulting in

469,824 particles. For 3D classification and refinement, the map of the previously
generated E1 conformation EMD-025717 was used as reference for the first round,
and the best output class was used in subsequent jobs in an iterative way. Particles
belonging to the best class were selected, resulting in 276,980 particles. Sequentially,
several rounds of CTF refinement®® were performed, using per-particle CTF esti-
mation, before subjecting the dataset to a round of focused 3D classification with
no image alignment, using a mask on the flexible AN domains of KdpB®2, which
resulted in a cleaned dataset of 196,682 particles. This dataset was subjected to
another round of CTF refinement. In the last refinement iteration, a mask
excluding the micelle was used and the refinement was continued until con-
vergence (focused refinement), yielding a final map at a resolution of 3.6 A before
masking and 3.2 A after masking, sharpened using an isotropic b-factor of

—130 A2, No symmetry was imposed during 3D classification or refinement.

For both datasets, local resolution estimates were calculated by RELION. All
resolutions were estimated using the 0.143 cutoff criterion® with gold-standard
Fourier shell correlation (FSC) between two independently refined half maps.
During post-processing, the approach of high-resolution noise substitution was
used to correct for convolution effects of real-space masking on the FSC curve®.

Model building and validation. The cryo-EM structure of KdpFABC in an El
conformation 6HRA!7 was split into the membrane domain: KdpA, KdpB (resi-
dues 1-88, 216-274, and 570-682,), KdpC, and KdpF, and the three cytosolic
domains of KdpB: KdpB-P (residues 275-314 and 451-569), KdpB-N (residues
315-450) and KdpB-A (residues 89-215). Initially, all fragments were docked into
the obtained cryo-EM map using UCSF Chimera®. The connections between the
four KdpB segments were modeled manually in Coot®. The initial model was then
subjected to an iterative process of real-space refinement using Phenix.real_spa-
ce_refinement with secondary structure restraints®’-%8, followed by manual
inspection and adjustments in Coot®. Rubidium ions, cardiolipins, and AMPPCP
were modeled into the cryo-EM maps. The final model was refined in real space
with Phenix.real_space_refinement with secondary structure restraints®”-%%. For
validation of the refinement, FSC (FSCq,,) between the refined model and the final
map was determined. To monitor the effects of potential over-fitting, random shifts
(up to 0.5 A) were introduced into the coordinates of the final model, followed by
refinement against the first unfiltered half-map. The FSC between this shaken-
refined model and the first half-map used during validation refinement is termed
FSCyoro and the FSC against the second half-map, which was not used at any point
during refinement, is termed FSCp.. The marginal gap between the curves
describing FSCrx and FSCpe indicate no over-fitting of the model. The geome-
tries of the atomic model was evaluated using MolProbity®.

Tunnel calculations. Pore calculations through the selectivity filter of the channel-
like subunit KdpA were performed using the software HOLE”C. For calculations,
the PDB of KdpA, without cofactors or other subunits and aligned with the
translocation pore parallel to the z-axis, was probed using a Conolly probe of
radius 0.9 A.

Radius calculations of the intersubunit tunnel were performed using CAVER
Analyst’!. Calculations were performed on PDB models without ions using a probe
radius of 0.9 A to allow estimation of constrictions in the tunnel. These settings
result in a set of unspecific tunnels, from which the relevant tunnel was selected via
comparison with previously calculated tunnels in 6HRA!7. The intersubunit tunnel
between KdpA and KdpB was visualized using HOLLOW with a probe radius of
1.1 A and a starting point immediately below the KdpA SF72.

lon density analysis. Identified densities in the intersubunit tunnel of the K-
loaded and the Rb*-loaded E1-ATP map presented here were low-pass filtered to a
resolution of 3.2 A. For these filtered maps, the ion densities in the CBS, the
intersubunit tunnel, and SF were quantified in Coot, by determining the mini-
mum sigma for these densities to be visualized. For global comparison of all
possible ion densities, these values were then normalized against the value obtained
for the S3 position in the K*-loaded map for each applied filter. For comparisons
of individual densities, values were normalized to the value obtained for the specific
ion in the K*-loaded map.

The expected scattering ratio of Rb/K was estimated as follow. A simplified
estimation is obtained by using the formula Z"4/3, which is independent of the
electron voltage?*-26, With Z =19 for K and 37 for Rb, the Rb/K ratio is 2.43. A
better approximation, valid for elements with Z < ~100 and taking into account the
relativistic speed of the electrons, which makes the ratio dependent on the
acceleration voltage, is described in Reimer and Kohl?*, formula 5.41. Using
beta = v/c = 0.7 for 200kV gives a Rb/K ratio of 2.59 (v is the speed of the
electrons, c is the speed of light). Based on these calculations, using an expected
factor of 2.5 seems appropriate.

ATPase assay. ATP hydrolysis by purified KdpFABC variants was observed by
malachite green ATPase assay’>. In brief, 2mM ATP, 1 mM KCl, and indicated
lipids or inhibitors were mixed to the respective conditions. Reactions were started
by the addition of 0.5-1.0 pg protein and carried out for 5 min at 37 °C. Lipid
stocks were prepared as previously described3®.

| (2021)12:5098 | https://doi.org/10.1038/s41467-021-25242-x | www.nature.com/naturecommunications 9


https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-0257
https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-0257
https://www.rcsb.org/structure/6HRA
https://www.rcsb.org/structure/6HRA
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Growth complementation assay. The growth complementation assays were
performed as previously described’#. In brief, E. coli LB2003, a strain lacking all
endogenous K+ uptake systems, was transformed with plasmids encoding His-
tagged KdpFABC variants. LB2003 transformed with empty vector pBAD18 or
plasmid pBXC3H-KdpFABp3p;nC, encoding for an inactive variant, served as
negative controls. Growth was monitored for 24 h at different K* concentrations
(1-115 mM, referred to as K1-K115). At K10 and below, the strain only grows
sufficiently if the produced protein complements the lacking K* transport systems.
Protein production was confirmed by SDS-PAGE and subsequent western blotting
analysis of a K30 sample after 24 h using an anti-His antibody from mouse
(dilution 1:3000, Sigma-Aldrich, cat.no. H1029) and secondary anti-mouse IgG-
HRP antibody produced in goat (dilution 1:20,000, Sigma-Aldrich, cat.no. A2554).

Reconstitution and ACMA-based liposome transport assay. Liposomes were
prepared from E. coli polar lipid extract. Five milligrams of dry lipids were
resuspended to 10 mg/ml in hot (55 °C) reconstitution buffer (15 mM Tris-HCI pH
7.5, 2mM MgCl,, 50 mM KCl), homogenized by sonication and subjected to three
freeze-thaw cycles. Liposomes were diluted to a concentration of 4 mg/ml in
reconstitution buffer, and extruded to a diameter of 400 nm. Extruded liposomes
were destabilized by titration of 10% Triton-X-100 to saturation. Detergent-
solubilized protein was added to destabilized liposomes at a mass ratio of 1:5 and
incubated at room temperature for 30 min. Detergent was removed by the gradual
addition of Bio-Beads™ SM-2 in 40 mg/ml wet weight intervals, with incubation
times between additions as follows: 15 min at room temperature, 15 min at 4 °C,
30 min at 4°C, 1h at 4 °C, and overnight at 4 °C. In the final detergent removal
step, 60 mg/ml Bio-Beads were added and incubated for 1h at 4 °C. The super-
natant was extracted, proteoliposomes pelleted by ultracentrifugation for 30 min at
80,000 x g, washed once in reconstitution buffer and pelleted again by ultra-
centrifugation for 30 min at 80,000 x g. Proteoliposomes were resuspended to a
final concentration of 5 mg/ml in reconstitution buffer for further experiments.

K translocation by reconstituted KdpFABC was tested by a modified ACMA-
based flux assay’°. Proteoliposomes were diluted to 1 mg/ml and supplemented
with 2 uM ACMA (Ex. 410 nm, Em. 480 nm) and 1 uM CCCP. Transport was
initialized by the addition of 0.2 mM ATP, and ended by the addition of 0.2 yM
valinomycin. Transport rates were obtained by linear fitting of the initial 50 s of
transport.

Molecular dynamics simulations
CGMD simulations. CG systems were built using the deposited coordinates for
PDBs 5SMRW, 6HRA, 6HRB, 7BGY, and 7NNL. Protein atoms were converted to
the CG Martini force field’®77, using the Martini 3.0.b.3.2 open beta’8. Additional
bonds of 500 k] mol~!nm~2 were applied between all protein backbone beads
within 1 nm. Proteins were built into membranes composed of 10% CL, 23%
POPG, and 67% POPE, using the insane protocol”?. CL parameters were used as
described in Corey et al., 202128, All systems were solvated with Martini waters and
Na* and Cl~ ions to a neutral charge and 150 mM. Systems were minimized using
the steepest descents method, followed by 1 ns equilibration with 5 fs time steps,
then by 100 ns equilibration with 20 fs time steps, before 5 x 4 us production
simulations using 20 fs time steps, all in the NPT ensemble with the V-rescale
thermostat and semi-isotropic Parrinello-Rahman pressure coupling®®-81.
Protein-lipid contact analyses were run on the final 3 ps of each trajectory,
where contact was set at an inter-residue minimum distance of 0.6 nm, and the
fraction of frames for which contact occurs plotted.

Atomistic MD simulations. For simulations of KdpFABC, the structural model of
7NNL was truncated by removing the KdpB soluble domains in the regions
KdpBy 1006196 and KdpBp3ps.155s. Positional restraints (1000 k] mol~! nm—2) were
applied to backbone atoms C, C,, and N to prevent shifts in the input structure.
Alternatively, simulations were built using the full-length KdpFABC in the E2 state
7BGY. Protein atoms were described using the CHARMM36 force field, and
inserted into a 67% POPE, 23% POPG, 10% CL lipid bilayer solvated with TIP3P
water and 150 mM K*+/Cl~ using CHARMM-GUI®2-84, For the majority of the
simulations, the protonation states of all side chains were set to default apart from
KdpBxsse, and KdpAgso, which had pKas of 7.5, and 9.1, respectively, based on
analysis with PropKa3.185, Additional systems were built in which KdpBpss; and
KdpBysgs were either both charged or both neutral, as well as a neutral KdpBgs7o
(Supplementary Fig. 14a, b).

Systems were energy minimized using the steepest descents method, and
subsequently equilibrated with positional restraints on heavy atoms for 100 ps in
the NPT ensemble at 310 K with the V-rescale thermostat and semi-isotropic
Parrinello-Rahman pressure coupling®%#!. For both stages, positional restraints of
1000 k] mol~! nm~2 were applied to the K* in the tunnel. Production simulations
were run in triplicate with 2 fs time steps for ca. 250 ns unless specified.

Ton density analyses were run using the VolMap tool of VMD®® with the default
settings, taken over 3 x 250 ns of simulation for each system.

All atomistic and CGMD simulations were run in Gromacs 2019%7.

APBS calculations. Adaptive Poisson-Boltzmann Solver (APBS) calculations®8
were performed for K* along the intersubunit tunnel. The first set of calculations

(Fig. 3b) were for K+ positions taken from a 20 ns MD relaxation simulation.
Note that positions from multiple MD snapshots were taken to provide max-
imum coverage of the tunnel (see Supplementary Fig. 10b for positions).
Alternatively, the input structural protein and ion coordinates from 7NNL were
used, following steepest descents energy minimization (Supplementary Fig. 10c).
For each Kt position, a system was built-in CHARMMS36 comprising KdpFABC
and the single K* ion at that position. The coordinates were then relaxed using
steepest descents energy minimization, and processed using PDB2PQR®?, setting
KdpAksss and KdpBgsy to neutral states. APBS values for K+ were determined,
assuming an ionic radius of 2.172 A. The default settings for APBS were used as
produced by the APBS webserver (https://server.poissonboltzmann.org/).

Sequence alignment. Conservation of sequences in KdpB across different species
was evaluated by sequence comparison using Clustal Omega”, with sequences
from previously published comparisons!® to ensure species diversity.

Figure preparation. Figures were prepared using UCSF Chimera®®, UCSF
ChimeraX®!, PyMOL, VMD?®, OriginPro 2016, and GraphPad Prism 8.

Data availability

The cryo-EM map and model of K*-loaded KdpFABp3o;nC E1-ATP were deposited in
the EMDB and wwPDB with accession codes EMD-12478 and 7NNL, respectively. The
cryo-EM map and model of Rb+-loaded KdpFA,3:0Bs1624C E1-ATP were deposited in
the EMDB and wwPDB with accession codes EMD-12482 and 7NNP, respectively.
Source data are provided with this paper for all functional data; the minimum dataset is
provided in a source data file. Further data supporting the findings in this manuscript are
available upon reasonable request. Source data are provided with this paper.
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