Chemistry-A European Journal

Supporting Information

Selective One-Pot Syntheses of Mixed Silicon-Germanium Heteroadamantane Clusters

Benedikt Köstler, Michael Bolte, Hans-Wolfram Lerner, and Matthias Wagner*

1. Experimental Details and Characterization Data S2
2. Plots of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{29} \mathrm{Si} /{ }^{1} \mathrm{H}$ HMBC NMR spectra S14
3. UV/Vis absorption spectra S21
4. Single-crystal X-ray analysis of [0], [1], and [2] S23
5. References S31

1. Experimental Details and Characterization Data

1.1 General Considerations. All reactions were carried out under an inert-gas atmosphere (dry argon or nitrogen) using standard Schlenk or glove-box techniques. Commercially available starting materials were used as received. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried over CaH_{2} and freshly distilled prior to use; $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was stored over molecular sieve ($3 \AA$). NMR spectra were recorded on a Bruker Avance III HD 500 spectrometer equipped with a Prodigy BBO 500 S1 probe. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were referenced against (residual) solvent signals $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$: $5.32 \mathrm{ppm} / 53.84 \mathrm{ppm} ;{ }^{[1]} \mathrm{s}=$ singlet). ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were calibrated against external $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}\left(\delta\left({ }^{29} \mathrm{Si}\right)=0\right)$; whenever present, $\mathrm{SiCl}_{4}\left(\delta\left({ }^{29} \mathrm{Si}\right)=-18.9 \mathrm{ppm}\right)$ was used as internal standard. Elemental analyses were performed at the microanalytical laboratory Pascher, Remagen, Germany. UV/Vis absorption spectra were recorded at room temperature using a Varian Cary 60 Scan UV/Vis spectrophotometer.
1.2 Formal considerations regarding the formation of heteroadamantanes [0], [1], and [2] from $\mathrm{Me}_{2} \mathrm{GeCl}_{2}, \mathrm{Si}_{2} \mathrm{Cl}_{6}$, and $[\mathbf{n B u} \mathbf{N}] \mathrm{Cl}$

Figure S1. Balanced reaction equations and formal atom and electron count for the formation of heteroadamantanes [0], [1], and [2] from $\mathrm{Me}_{2} \mathrm{GeCl}_{2}, \mathrm{Si}_{2} \mathrm{Cl}_{6}$, and Cl^{-}.

For a better understanding of the formation of the heteroadamantanes [0], [1], and [2], the following considerations regarding the atom and electron balance are helpful, but are explicitly not meant to be a mechanistic proposal: The Cl^{-}-induced disproportionation of $\mathrm{Si}_{2} \mathrm{Cl}_{6}$ releases the transient silanide $\left[\mathrm{SiCl}_{3}\right]^{-}$together with the byproduct $\mathrm{SiCl}_{4} .4\left[\mathrm{SiCl}_{3}\right]^{-}$anions can formally abstract $4 \mathrm{Cl}^{+}$cations from $1 \mathrm{SiCl}_{4}$ molecule, generating $1\left[\mathrm{Si}^{4-}\right.$ tetraanion and $4 \mathrm{SiCl}_{4}$ molecules. Accordingly, $16 \mathrm{Si}_{2} \mathrm{Cl}_{6}$ and $16 \mathrm{Cl}^{-}$ions are required to generate $4\left[\mathrm{Si}^{4-}\right.$ anions (and $28 \mathrm{SiCl}_{4}$ as byproducts).

In the case of [0], each of these 4 [Si] $^{4-}$ anions is formally incorporated in the heteroadamantane core via 3 nucleophilic substitution reactions on $\mathrm{Me}_{2} \mathrm{GeCl}_{2}$ and 1 nucleophilic substitution reaction on SiCl_{4}, which is present in large supply. In summary, $6 \mathrm{Me}_{2} \mathrm{GeCl}_{2}, 4 \mathrm{SiCl}_{4}$, and 4 $[\mathrm{Si}]^{4-}$ anions are consumed in the formation of 1 molecule of [0]; the total number of $16 \mathrm{Cl}^{-}$ ions released renders the overall reaction catalytic in Cl^{-}.

In the cases of [1] or [2], the formal processes remain the same, apart from the fact that 1 or 2 SiCl_{4} molecule(s) are incorporated instead of 1 or $2 \mathrm{Me}_{2} \mathrm{GeCl}_{2}$ molecule(s).

Note: The compound numbers $[\mathbf{X}]$ refer to the number X of SiCl_{2} vertices that are incorporated instead of GeMe_{2} vertices (ideal number of the latter: 6 in [0]).

1.3 Synthesis of [0]

[0]

A solution of $[n \mathrm{Bu} 4 \mathrm{~N}] \mathrm{Cl}(0.320 \mathrm{~g}, 1.15 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{GeCl}_{2}(1.000 \mathrm{~g}, 5.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ was prepared in an 100 mL Schott glass bottle in the glove box. Neat $\mathrm{Si}_{2} \mathrm{Cl}_{6}(6.200 \mathrm{~g}$, 23.05 mmol) was added at room temperature. The bottle was closed and stored in the glove box for 4 h . The screw cap was removed and all volatiles were slowly evaporated overnight to obtain a colorless, solid residue.*) An ampoule was charged with this solid and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The ampoule was flame-sealed under reduced pressure and heated to $60^{\circ} \mathrm{C}$ for 6 d to guarantee complete conversion. During this time, colorless, needle-shaped crystals of [0] grew from the reaction solution. The ampoule was opened in the glove box, the crystals were isolated by filtration, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 0.5 \mathrm{~mL})$. Yield of single-crystalline [0]: 300 mg ($0.24 \mathrm{mmol}, 25 \%$). All volatiles were removed from the combined filtrates under reduced pressure, and the colorless, sticky residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 0.5 \mathrm{~mL})$ to obtain a microcrystalline second fraction of [0] ($232 \mathrm{mg}, 0.18 \mathrm{mmol}, 19 \%$) that was of comparable purity to the first crop (NMR spectroscopic control). Overall yield of [0]: 532 mg (0.42 mmol , 44\%).
*) Note: At this stage, the formation of [1] and [2] (see below) was proven by NMR spectroscopy, whereas no [0] was detected.

Heteroadamantane [0] was characterized by single crystal X-ray diffraction (triclinic, $P-1$), NMR spectroscopy, elemental analysis, and UV/Vis spectroscopy.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0 . 2} \mathbf{~ M H z , ~ C D} \mathbf{D}_{2} \mathbf{C l}_{2}$, 298 K): $\delta=0.91 \mathrm{ppm}\left(\mathrm{s}, 36 \mathrm{H} ; \mathrm{GeMe}_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}, 298 \mathbf{K}$): $\delta=2.6 \mathrm{ppm}\left(\mathrm{GeMe}_{2}\right)$.
${ }^{29} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{9 9 . 4} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{2 9 8} \mathbf{K}\right): \delta=16.2\left(\mathrm{SiCl}_{3}\right),-83.4 \mathrm{ppm}\left(\mathrm{Si}-\mathrm{SiCl}_{3}\right)$.

Elemental analysis: Calculated for $\mathrm{C}_{12} \mathrm{H}_{36} \mathrm{Cl}_{12} \mathrm{Ge}_{6} \mathrm{Si}_{8}$ (1266.28): C 11.38; H 2.87. Found: C 11.93; H 2.85.

UV/vis (cyclohexane): $\lambda_{\max }(\varepsilon)=205\left(1.0 \times 10^{5}\right), 234 \mathrm{~nm}\left(1.3 \times 10^{5} \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)$; $\lambda_{\text {onset }}=$ $285 \mathrm{~nm} ; \mathrm{E}_{\mathrm{G}}{ }^{\mathrm{opt}}=4.35 \mathrm{eV}$ (see Table S2 and Figure S16).

The synthesis of [0] was also performed with the formally required ideal stoichiometry of $6 \mathrm{Me}_{2} \mathrm{GeCl}_{2}: 16 \mathrm{Si}_{2} \mathrm{Cl}_{6}:$ cat. [$\left.n \mathrm{Bu} \mathrm{H}_{4} \mathrm{~N}\right] \mathrm{Cl}$ (cf. Figure S 1): $\mathrm{Me}_{2} \mathrm{GeCl}_{2}(0.500 \mathrm{~g}, 2.88 \mathrm{mmol}), \mathrm{Si}_{2} \mathrm{Cl}_{6}$ ($2.090 \mathrm{~g}, 7.77 \mathrm{mmol}$), [$n \mathrm{Bu} 4 \mathrm{~N}] \mathrm{Cl}(0.216 \mathrm{~g}, 0.78 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. We reproducibly obtained lower yields of only $\approx 20 \%$.

Note: Evaporation of all volatiles prior to heating is a crucial step for the successful synthesis of [0], as became obvious from the following test reaction: An NMR tube was charged with the optimal 6:24:1.2-mixture of $\mathrm{Si}_{2} \mathrm{Cl}_{6}, \mathrm{Me}_{2} \mathrm{GeCl}_{2}$, and $\left[n \mathrm{Bu} \mathrm{u}_{4} \mathrm{~N}\right] \mathrm{Cl}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and flame-sealed under reduced pressure. After heating to $60^{\circ} \mathrm{C}$ for 3.5 d , no heteroadamantane [0] was formed, as proven by NMR spectroscopy.

1.4 Synthesis of [2]

[2]
A solution of $[n \mathrm{Bu} 4 \mathrm{~N}] \mathrm{Cl}(0.160 \mathrm{~g}, 0.58 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{GeCl}_{2}(0.500 \mathrm{~g}, 2.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was prepared in an 100 mL Schott glass bottle in the glove box. Neat $\mathrm{Si}_{2} \mathrm{Cl}_{6}(3.092 \mathrm{~g}$, 11.50 mmol) was added at room temperature. The bottle was closed and stored in the glove box for 13 d to allow slow crystallization of [2].*) The crystals were isolated by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ to obtain [2] as colorless crystals. Yield: $254 \mathrm{mg}(0.20 \mathrm{mmol}$, $28 \%)$.
*) Note: Already after about 3 d, crystals of [2] were visible in the reaction vessel. The crystallization time of 13 d is the empirically determined optimum in terms of the obtained yield of [2] vs. contamination with co-crystallized [1] (cf. synthesis of [1], Method B). [2] crystallizes first as the solubilities of the heteroadamantanes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ follow the qualitative trend [2] < [1] < [0].

Heteroadamantane [2] was characterized by single crystal X-ray diffraction (trigonal, $R-3: \mathrm{H}$), NMR spectroscopy, elemental analysis, and UV/Vis spectroscopy.
${ }^{1} \mathbf{H}$ NMR ($500.2 \mathrm{MHz}, \mathbf{C D}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta=1.03 \mathrm{ppm}\left(\mathrm{s}, 24 \mathrm{H} ; \mathrm{GeMe}_{2}\right)$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\left.\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}, 298 \mathrm{~K}\right): \delta=1.6 \mathrm{ppm}\left(\mathrm{GeMe}_{2}\right)$.
${ }^{29} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(99.4 \mathrm{MHz}, \mathbf{C D}_{2} \mathrm{Cl}_{2}\right.$, 298 K): $\delta=29.6\left(\mathrm{SiCl}_{2}\right), 11.9\left(\mathrm{SiCl}_{3}\right),-81.0 \mathrm{ppm}(\mathrm{Si}-$ SiCl_{3}).

Elemental analysis: Calculated for $\mathrm{C}_{8} \mathrm{H}_{24} \mathrm{Cl}_{16} \mathrm{Ge}_{4} \mathrm{Si}_{10}$ (1258.85): C 7.63; H 1.92. Found: C 7.15; H 1.80.

UV/vis (cyclohexane): see Table S2 and Figure S18.

Variation of the stoichiometry: The highest yields of [2] were obtained with the theoretically required stoichiometry of 6:24:1.2 $=4: 16: 0.8\left(\mathrm{Me}_{2} \mathrm{GeCl}_{2}: \mathrm{Si}_{2} \mathrm{Cl}_{6}:\left[n \mathrm{Bu} \mathrm{N}_{4}\right] \mathrm{Cl}\right.$; cf. Figure S 1$)$. When the reaction was performed according to the same protocol but with fewer equivalents of $\mathrm{Si}_{2} \mathrm{Cl}_{6} / \mathrm{Cl}^{-}$(6:8:0.8 or 6:12:1.2), none of the three heteroadamantanes, [2], [1], or [0], was formed (NMR spectroscopic control). More equivalents of $\mathrm{Si}_{2} \mathrm{Cl}_{6} / \mathrm{Cl}^{-}(6: 48: 2.4)$ resulted in a mixture of heteroadamantane [2] and [1] with a combined yield of only $\approx 10 \%$.

1.5 Synthesis of [0] by skeletal rearrangement of [2]

An ampoule was charged with [2] ($0.350 \mathrm{~g}, 0.28 \mathrm{mmol}$), [$n \mathrm{Bu} 4 \mathrm{~N}] \mathrm{Cl}(0.080 \mathrm{~g}, 0.28 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and flame-sealed under reduced pressure. After heating to $60^{\circ} \mathrm{C}$ for 4.5 d , the ampoule was opened, and all volatiles were removed under reduced pressure. The colorless, sticky residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ to obtain [0] as a colorless solid. Yield: 118 mg ($0.09 \mathrm{mmol}, 50 \%$).

Note: The reaction was also performed in a flame-sealed NMR tube $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ to identify the silicon-containing byproducts and to estimate the time required for the reaction on a preparative scale. According to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, [0] was the only methyl-containing product.

1.6 Synthesis of [1]

Method A: A solution of [2] ($0.200 \mathrm{~g}, 0.16 \mathrm{mmol}),[n \mathrm{Bu} 4 \mathrm{~N}] \mathrm{Cl}(0.044 \mathrm{~g}, 0.16 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was prepared in a Schlenk flask and stirred at room temperature for 6 d . All volatiles were removed under reduced pressure and the colorless solid residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ to obtain [1] as a colorless solid. Yield: $90 \mathrm{mg}(0.07 \mathrm{mmol}, 54 \%)$.
Note: The reaction was also performed in a flame-sealed NMR tube $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ to identify the silicon-containing byproducts and to estimate the time required for the reaction on a preparative scale. According to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, [1] was the only methyl-containing product.

Method B: A solution of $\left[n \mathrm{Bu}{ }_{4} \mathrm{~N}\right] \mathrm{Cl}(0.160 \mathrm{~g}, 0.58 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{GeCl}_{2}(0.500 \mathrm{~g}, 2.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was prepared in a 100 mL Schott glass bottle in the glove box. Neat $\mathrm{Si}_{2} \mathrm{Cl}_{6}$ $(3.092 \mathrm{~g}, 11.50 \mathrm{mmol})$ was added at room temperature. The bottle was closed and stored in the glove box for 20 d . During this time, colorless crystals grew from the reaction solution, which were isolated by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. According to ${ }^{1} \mathrm{H}$ NMR spectroscopy, the crystals consisted of a mixture of [1] and [2] (ratio $=63: 37$). Yield: 285 mg $(\approx 35 \%[1]+[2])$.

Note: The [1]/[2] mixture obtained can subsequently be quantitatively converted to [1] by treatment with $\left[n \mathrm{Bu} \mathrm{B}_{4} \mathrm{~N}\right] \mathrm{Cl}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}($ cf. Method A$)$.

Heteroadamantane [1] was characterized by single crystal X-ray diffraction (orthorhombic, $C m c 2_{1}$), NMR spectroscopy, and UV/Vis spectroscopy. Pairs of corresponding ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals were identified by ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ HSQC NMR spectroscopy and assigned the same color. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0 . 2} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$, $298 \mathbf{K}$): $\delta=1.00\left(\mathrm{~s}, 12 \mathrm{H} ; \mathrm{GeMe}_{2}\right.$), 0.94 ($\mathrm{s}, 12 \mathrm{H} ; \mathrm{GeMe}_{2}$), 0.93 ppm (s, $6 \mathrm{H} ; \mathrm{GeMe}_{2}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{2 9 8} \mathbf{K}\right): \delta=2.6\left(\mathrm{GeMe}_{2}\right), 2.2\left(\mathrm{GeMe}_{2}\right), 2.0 \mathrm{ppm}\left(\mathrm{GeMe}_{2}\right)$. ${ }^{\mathbf{2 9}} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{9 9 . 4} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}, \mathbf{2 9 8} \mathbf{K}\right): \delta=31.0\left(\mathrm{SiCl}_{2}\right), 16.2\left(\mathrm{SiCl}_{3}\right), 12.1\left(\mathrm{SiCl}_{3}\right),-80.7$ $\left(\mathrm{Si}_{\mathrm{SiCl}}^{3}\right.$), $-83.3 \mathrm{ppm}\left(\mathrm{Si}_{\mathrm{SiCl}}^{3}\right.$).

UV/vis (cyclohexane): see Table S2 and Figure S17.

1.7 Stepwise skeletal rearrangement of [2] via [1] to [0]

An NMR tube was charged with [2] ($0.010 \mathrm{~g}, 0.008 \mathrm{mmol}),\left[n \mathrm{Bu}{ }_{4} \mathrm{~N}\right] \mathrm{Cl}(0.002 \mathrm{~g}, 0.008 \mathrm{mmol})$, and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and flame-sealed under reduced pressure. Reaction progress was monitored by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{29} \mathrm{Si} /{ }^{1} \mathrm{H}$ HMBC NMR spectroscopy. Spectra were recorded after $5 \mathrm{~h}, 3 \mathrm{~d}$, and 6 d at room temperature and after subsequent heating to $60^{\circ} \mathrm{C}$ for 2 d . The spectra revealed the stepwise rearrangement of [2] via [1] to [0] (cf. Figure S2): After 5 h , the NMR spectra showed [1] as the main product with small amounts of unconsumed [2] still present. After 3 d , the conversion to [1] was complete with no [2] or [0] present. After 6 d , small amounts of [0] had formed, but [1] still remained by far the main component. Complete conversion to [0] was achieved by heating the sample to $60^{\circ} \mathrm{C}$ for 2 d (note that [0] was not converted further under these conditions).

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra recorded on the reaction mixture of [2] with 1 eq. of $\left[n \mathrm{Bu} \mathrm{a}_{4} \mathrm{~N}\right] \mathrm{Cl}$ after $5 \mathrm{~h}, 3 \mathrm{~d}$, and 6 d at room temperature and after subsequent heating of the sample to $60^{\circ} \mathrm{C}$ for 2 d . Reference spectra of [0] and [1] are shown for comparison.

1.8 Attempts at the conversion of [0] to [1] by reaction of [0] with [$n \mathrm{Bu} 4 \mathrm{~N}] \mathrm{Cl}$ and either $\mathbf{S i C l}_{4}$ or $\mathbf{S i}_{2} \mathrm{Cl}_{6}$

With the aim of investigating the reverse reaction from [0] to [1] (or [2]) through formal replacement of GeMe_{2} by SiCl_{2} vertices, four test experiments were performed (Table S1, entries a-d). In each case, we used 10 mg of heteroadamantane [0] in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ in a flame-sealed NMR tube. In none of these cases, a reaction occurred, neither at room temperature nor after heating to $60^{\circ} \mathrm{C}$. It is noteworthy in this context that we also found it impossible to introduce a third SiCl_{2} vertex into [2] (and thereby generate a heteroadamantane "[3]") by treating [2] with a mixture of $\left[n \mathrm{Bu} u_{4} \mathrm{~N}\right] \mathrm{Cl}$ and $\mathrm{Si}_{2} \mathrm{Cl}_{6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Table S1, entry e).

Table S1. Treatment of [0] or [2] with $\left[n \mathrm{Bu}{ }_{4} \mathrm{~N}\right] \mathrm{Cl}$ and either SiCl_{4} or $\mathrm{Si}_{2} \mathrm{Cl}_{6}$ leads to no reaction.

entry	hetero- adamantane	$\left[n \mathrm{Bu} \mathrm{u}_{4}\right] \mathrm{Cl}$	SiCl_{4}	$\mathrm{Si}_{2} \mathrm{Cl}_{6}$	temperature	result
a	$[0]$	1 eq.	-	-	rt or $60^{\circ} \mathrm{C}$	no reaction
b	$[0]$	-	4 eq.	-	rt or $60^{\circ} \mathrm{C}$	no reaction
c	$[0]$	1 eq.	4 eq.	-	rt or $60^{\circ} \mathrm{C}$	no reaction
d	$[0]$	1 eq.	-	4 eq.	rt or $60^{\circ} \mathrm{C}$	no reaction
e	$[\mathbf{2}]$	1 eq.	-	4 eq.	rt or $60^{\circ} \mathrm{C}$	no reaction

2. Plots of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{29} \mathrm{Si} /{ }^{1} \mathrm{H}$ HMBC NMR spectra

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $[0]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500.2 \mathrm{MHz}\right)$.

Figure S4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[0]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125.8 \mathrm{MHz}\right)$.

Figure S5. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[0]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 99.4 \mathrm{MHz}\right)$.

Figure S6. ${ }^{29} \mathrm{Si} /{ }^{1} \mathrm{H}$ HMBC NMR spectrum of [0].

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $[2]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500.2 \mathrm{MHz}\right)$ containing traces of n-hexane (cf. Figure S8).

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[2]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125.8 \mathrm{MHz}\right)$; * n-hexane.

Figure S9. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[2]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 99.4 \mathrm{MHz}\right)$ containing SiCl_{4} as internal standard.

Figure S10. ${ }^{29} \mathrm{Si} /{ }^{1} \mathrm{H}$ HMBC NMR spectrum of [2].

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $[1]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500.2 \mathrm{MHz}\right.$) containing traces of n-hexane (cf. Figure S12).

[^0]Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[1]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125.8 \mathrm{MHz}\right)$; * n-hexane.

$$
\begin{aligned}
& \begin{array}{ll}
1 & m \\
\dot{\infty} & 0 \\
1 & 1 \\
1 & 1
\end{array}
\end{aligned}
$$

Figure S13. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[1]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 99.4 \mathrm{MHz}\right)$.

Figure S14. ${ }^{29}$ Si $/{ }^{1} \mathrm{H}$ HMBC NMR spectrum of [1] with cross peaks in very high resolution (left) and two perspectives of the 3D projection (top and bottom right).

Figure S15. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of [0] (top, blue), [1] (middle, green) and [2] (bottom, red; resonance at -18.9 ppm assignable to SiCl_{4}).

3. UV/Vis absorption spectra

Since the solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is not suitable for $\mathrm{UV} / \mathrm{Vis}$ measurements at wavelengths of $<230 \mathrm{~nm}$, measurements of [0], [1], and [2] were performed in cyclohexane.

Table S2. Photophysical data of the compounds [0], [1], and [2]. Measurements were performed in cyclohexane.

	$\lambda_{\max }[\mathrm{nm}]$ $\left(\varepsilon\left[\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right]\right)$	$\lambda_{\text {onset }}[\mathrm{nm}]^{[\mathrm{a]}}$	$\mathrm{E}_{\mathrm{G}}{ }^{\mathrm{opt}}[\mathrm{eV}]^{[\mathrm{b}]}$
$[\mathbf{0]}$	$234\left(1.3 \times 10^{5}\right)$ $205\left(1.0 \times 10^{5}\right)$	285	4.35
$[\mathbf{1}]$	$228\left(0.4 \times 10^{5}\right)$	280	4.43
$[\mathbf{2]}$		272	4.56

[a] Each onset wavelength ($\lambda_{\text {onset }}$) was determined by constructing a tangent on the point of inflection of the bathochromic slope of the most red-shifted absorption maximum. [b] Optical band gap $E_{G}{ }^{\text {opt }}=(1240 \mathrm{eV} \cdot \mathrm{nm}) / \lambda_{\text {onset }}$.

Figure S16. Normalized UV/Vis absorption spectrum of [0] in comparison to pure cyclohexane (dashed line).

Figure S17. Normalized UV/Vis absorption spectrum of [1] in comparison to pure cyclohexane (dashed line).

Figure S18. Normalized UV/Vis absorption spectrum of [2] in comparison to pure cyclohexane (dashed line).

4. Single-crystal X-ray analysis of [0], [1], and [2]

Data for all structures were collected on a STOE IPDS II two-circle diffractometer with a Genix Microfocus tube with mirror optics using $\operatorname{Mo} K_{\alpha}$ radiation $(\lambda=0.71073 \AA)$. The data were scaled using the frame-scaling procedure in the X-AREA program system. ${ }^{[2]}$ The structures were solved by direct methods using the program $\operatorname{SHELXS}{ }^{[3]}$ and refined against F^{2} with full-matrix leastsquares techniques using the program $S H E L X L$. ${ }^{[3]}$

CCDC files CCDC 2091220 ([0]), CCDC 2091221 ([1]), and CCDC 2091222 ([2]) contain the supplementary crystallographic data for this paper and can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S19. Molecular structure of [0] $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the solid state. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule are omitted for clarity. For selected bond lengths $[\AA]$ and bond angles $\left[{ }^{\circ}\right]$ see Table S3.

In [0] $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, the heteroadamantane contains no symmetry element. The Cl and H atoms of the co-crystallized $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule are disordered over two sets of sites with site occupation factors of 0.542(8) for the major occupied sites.

Table S3. Ranges of selected bond lengths [\AA] and bond angles [${ }^{\circ}$] of [0] $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

bond length/ angle	minimal value	maximal value	average
$\mathrm{Ge}-\mathrm{Si}$	$\mathrm{Ge}(5)-\mathrm{Si}(4)=2.3915(13)$	$\mathrm{Ge}(1)-\mathrm{Si}(1)=2.3993(13)$	2.395
$\mathrm{Si}-\mathrm{Si}$	$\mathrm{Si}(1)-\mathrm{Si}(5)=2.3139(16)$	$\mathrm{Si}(2)-\mathrm{Si}(6)=2.3226(16)$	2.319
$\mathrm{Si}-\mathrm{Cl}$	$\mathrm{Si}(5)-\mathrm{Cl}(53)=2.031(2)$	$\mathrm{Si}(8)-\mathrm{Cl}(81)=2.055(2)$	2.042
$\mathrm{Ge}-\mathrm{C}$	$\mathrm{Ge}(3)-\mathrm{C}(32)=1.944(4)$	$\mathrm{Ge}(1)-\mathrm{C}(12)=1.968(5)$	1.958
$\mathrm{Ge}-\mathrm{Si}-\mathrm{Ge}$	$\mathrm{Ge}(1)-\mathrm{Si}(3)-\mathrm{Ge}(3)=108.82(5)$	$\mathrm{Ge}(5)-\mathrm{Si}(3)-\mathrm{Ge}(1)=113.94(5)$	111.63
$\mathrm{Si}-\mathrm{Si}-\mathrm{Ge}$	$\mathrm{Si}(1)-\mathrm{Ge}(2)-\mathrm{Si}(2)=103.86(4)$	$\mathrm{Si}(3)-\mathrm{Ge}(5)-\mathrm{Si}(4)=105.65(4)$	104.93

Figure S20. Molecular structure of [1] in the solid state. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. EY_{2} groups are either GeMe_{2} or SiCl_{2}. Selected bond lengths $[\AA]: \mathrm{Si}(1)-\mathrm{Si}(4)=2.317(4)(\mathrm{min}), \mathrm{Si}(2)-\mathrm{Si}(5)=2.342(4)(\max)$, 2.327 (average $\mathrm{Si}-\mathrm{Si}), \mathrm{Si}(4)-\mathrm{Cl}(43)=2.038(3)(\mathrm{min}), \mathrm{Si}(5)-\mathrm{Cl}(52)=2.046(3)(\mathrm{max}), 2.042$ (average $\mathrm{Si}-\mathrm{Cl})$. Symmetry transformation used to generate equivalent atoms: $(\mathrm{A})=(\mathrm{B})=(\mathrm{C})$: $-\mathrm{x}+1, \mathrm{y}, \mathrm{z}$.

The molecule of [1] is located on a mirror plane running through $\mathrm{E}(1), \mathrm{E}(4), \mathrm{Si}(1)$, and $\mathrm{Si}(2)$. The GeMe_{2} groups are disordered with SiCl_{2} and therefore labeled $\mathrm{EY}_{2} . \mathrm{GeMe}_{2}$ and SiCl_{2} groups that are located on the same site were refined with the same coordinates and displacement parameters (for $\mathrm{Ge} / \mathrm{Si}$ or C / Cl). The sum of site occupation factors (sof) of all GeMe_{2} groups was constrained to 5 . The site occupation factors of the GeMe_{2} groups refined to 0.931 (4) for $\mathrm{E}(1), 0.724$ (2) for $\mathrm{E}(2), 0.898(2)$ for $\mathrm{E}(3)$, and 0.824 (4) for $\mathrm{E}(4)$. The site occupation factors of the corresponding SiCl_{2} groups are $1-\mathrm{sof}\left(\mathrm{GeMe}_{2}\right)$. If the number of GeMe_{2} groups is changed from 5 to 4 or 6, the figures-of-merit become worse (Table S4).

The absolute structure could be determined (Flack-x-parameter -0.015(16)).

Figure S21. Molecular structure of [2] in the solid state. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. EY_{2} groups are either GeMe_{2} or SiCl_{2}. Selected bond lengths $[\AA]$: $\mathrm{Si}(2)-\mathrm{Si}(4)=2.320(2)(\mathrm{min}), \mathrm{Si}(1)-\mathrm{Si}(3)=2.3260(11)$ $(\max), 2.323$ (average $\mathrm{Si}-\mathrm{Si}), \mathrm{Si}(4)-\mathrm{Cl}(41)=2.0364(10)(\mathrm{min}), \mathrm{Si}(3)-\mathrm{Cl}(33)=2.0384(13)$ (max), 2.037 (average $\mathrm{Si}-\mathrm{Cl}$). Symmetry transformations used to generate equivalent atoms: $(\mathrm{A})=(\mathrm{C})=(\mathrm{D}):-\mathrm{y}+1, \mathrm{x}-\mathrm{y}, \mathrm{z},(\mathrm{B})=(\mathrm{E})=(\mathrm{F}):-\mathrm{x}+\mathrm{y}+1,-\mathrm{x}+1, \mathrm{z}$.

The molecule of [2] is located on a three-fold rotation axis running through $\operatorname{Si}(2)$ and $\operatorname{Si}(4)$. The GeMe_{2} groups are disordered with SiCl_{2} and therefore labeled $\mathrm{EY}_{2} . \mathrm{GeMe}_{2}$ and SiCl_{2} groups that are located on the same site were refined with the same coordinates and displacement parameters (for $\mathrm{Ge} / \mathrm{Si}$ or C / Cl). The sum of site occupation factors (sof) of all GeMe_{2} groups was constrained to 4 . The site occupation factors of the GeMe_{2} groups refined to $0.6676(8)$ for $\mathrm{E}(1)$ and $0.6657(8)$ for $\mathrm{E}(2)$. The site occupation factors of the corresponding SiCl_{2} groups are $1-\operatorname{sof}\left(\mathrm{GeMe}_{2}\right)$. If the number of GeMe_{2} groups is increased from 4 to 5 or 6 , the figures-of-merit become worse (Table S4).

The contribution of the solvent was suppressed using the SQUEEZE routine in PLATON. ${ }^{[4]}$

Table S4. Figures-of-merit of the crystal structures of [1] and [2] after refinement assuming 4,
5 , and $6 \mathrm{GeMe}_{2}$ (and correspondingly 2,1 , and $0 \mathrm{SiCl}_{2}$) groups in the backbone.

crystal structure	number of GeMe_{2} groups	$R 1$	$w R 2$	$\mathrm{e}(\max)$ $\left[\mathrm{e} \cdot \AA^{-3}\right]$	$\mathrm{e}(\mathrm{min})$ $\left[\mathrm{e} \cdot \AA^{-3}\right]$	GooF
[\mathbf{4}]{}	4	0.0597	0.1332	1.026	-1.002	1.238
	$\mathbf{5}$	$\mathbf{0 . 0 5 1 8}$	$\mathbf{0 . 1 1 3 8}$	$\mathbf{1 . 0 2 9}$	$\mathbf{- 0 . 8 0 3}$	$\mathbf{1 . 0 8 4}$
	6	0.0620	0.1420	1.312	-1.336	1.394
[\mathbf{2}]{}	$\mathbf{4}$	$\mathbf{0 . 0 4 6 6}$	$\mathbf{0 . 1 0 1 5}$	$\mathbf{0 . 6 9 3}$	$\mathbf{- 0 . 6 5 3}$	$\mathbf{1 . 2 5 9}$
	5	0.0640	0.1471	1.295	-1.161	1.922
	6	0.1070	0.2572	5.134	-1.965	3.545

Table S5. Crystal data and structure refinement for $[0] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Identification code	wa3079
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{38} \mathrm{Cl}_{14} \mathrm{Ge}_{6} \mathrm{Si}_{8}$
Formula weight	1350.99
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	$P-1$
Unit cell dimensions	$a=12.3759(6) \AA \quad \alpha=80.448(4)^{\circ}$.
	$b=12.4990(6) \AA \quad \beta=88.753(4)^{\circ}$.
	$c=16.3541(8) \AA \quad \gamma=85.722(4)^{\circ}$.
Volume	2487.6(2) \AA^{3}
Z	2
Density (calculated)	$1.804 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.536 \mathrm{~mm}^{-1}$
F(000)	1316
Crystal size	$0.210 \times 0.180 \times 0.060 \mathrm{~mm}^{3}$
Theta range for data collection	3.309 to 25.727°.
Index ranges	$-12<=\mathrm{h}<=15,-15<=\mathrm{k}<=15,-19<=\mathrm{l}<=19$
Reflections collected	34472
Independent reflections	$9286[R($ int $)=0.0716]$
Completeness to theta $=25.000^{\circ}$	99.7\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.350
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9286 / 0 / 389
Goodness-of-fit on F^{2}	1.018
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$R 1=0.0504, w R 2=0.1315$
R indices (all data)	$R 1=0.0627, w R 2=0.1415$
Largest diff. peak and hole	1.143 and $-0.951 \mathrm{e} \cdot \AA^{-3}$

Table S6. Crystal data and structure refinement for [1].

Identification code	wa2935
Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{30} \mathrm{Cl}_{14} \mathrm{Ge}_{5} \mathrm{Si}_{9}$
Formula weight	1262.40
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	Cmc 2_{1}
Unit cell dimensions	$a=18.6137(6) \AA \quad \alpha=90^{\circ}$.
	$b=19.6940(8) \AA \quad \beta=90^{\circ}$.
	$c=12.3165(5) \AA \quad \gamma=90^{\circ}$.
Volume	4515.0(3) \AA^{3}
Z	4
Density (calculated)	$1.857 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.369 \mathrm{~mm}^{-1}$
F(000)	2456
Crystal size	$0.190 \times 0.130 \times 0.040 \mathrm{~mm}^{3}$
Theta range for data collection	3.291 to 27.713°.
Index ranges	$-23<=\mathrm{h}<=24,-25<=\mathrm{k}<=25,-16<=1<=15$
Reflections collected	23976
Independent reflections	$5349[R($ int $)=0.0518]$
Completeness to theta $=25.000^{\circ}$	99.6\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.495
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5349 / 1/191
Goodness-of-fit on F^{2}	1.085
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$R 1=0.0430, w R 2=0.1065$
R indices (all data)	$R 1=0.0518, w R 2=0.1138$
Absolute structure parameter	-0.015 (15)
Largest diff. peak and hole	1.029 and $-0.803 \mathrm{e} \cdot \AA^{-3}$

Table S7. Crystal data and structure refinement for [2].

Identification code	wa2970
Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{24} \mathrm{Cl}_{16} \mathrm{Ge}_{4} \mathrm{Si}_{10}$
Formula weight	1258.73
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Trigonal
Space group	R-3:H
Unit cell dimensions	$a=17.3328(3) \AA$ A $\quad \alpha=90^{\circ}$.
	$b=17.3328(3) \AA \quad \beta=90^{\circ}$.
	$c=28.6818(7) \AA \quad \gamma=120^{\circ}$.
Volume	7462.3(3) \AA^{3}
Z	6
Density (calculated)	$1.681 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.504 \mathrm{~mm}^{-1}$
F(000)	3672
Crystal size	$0.180 \times 0.150 \times 0.120 \mathrm{~mm}^{3}$
Theta range for data collection	2.350 to 27.661°.
Index ranges	$-22<=\mathrm{h}<=22,-22<=\mathrm{k}<=22,-37<=1<=37$
Reflections collected	56306
Independent reflections	$3832[R(\mathrm{int})=0.0524]$
Completeness to theta $=25.000^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.745
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3832 / 1/117
Goodness-of-fit on F^{2}	1.260
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$	$R 1=0.0437, w R 2=0.1003$
R indices (all data)	$R 1=0.0466, w R 2=0.1015$
Largest diff. peak and hole	0.693 and $-0.653 \mathrm{e} \cdot \AA^{-3}$

5. References

[1] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179.
[2] Stoe \& Cie, X-AREA. Diffractometer control program system. Stoe \& Cie, Darmstadt, Germany, 2002.
[3] G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112-122.
[4] A. L. Spek, Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148-155.

[^0]: $\begin{array}{llllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20\end{array}$ $\delta(\mathrm{ppm})$

