helvetica

Supporting Information

Redirection of the Transcription Factor SP1 to AT Rich Binding Sites by a Synthetic Adaptor Molecule

Mathias Bolz, Ute Scheffer, Elisabeth Kalden, and Michael W. Göbel*© 2021 The Authors. Helvetica Chimica Acta published by Wiley-VHCA AG. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Redirection of the Transcription Factor SP1 to AT Rich Binding Sites by a Synthetic Adaptor Molecule

Mathias Bolz, Ute Scheffer, Elisabeth Kalden and Michael W. Göbel*

Dr. M. Bolz, Dr. U. Scheffer, E. Kalden, Prof. Dr. M. W. Göbel* Institute for Organic Chemistry and Chemical Biology
Goethe Universität Frankfurt
Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
E-mail: m.goebel@chemie.uni-frankfurt.de

Table of contents:

General S1
Liquid phase synthesis of polyamide 24 S2
Synthesis of linker 21 S8
Solid phase synthesis of polyamide 39. S10
Synthesis of adaptors 1 and 2 S13
References. S16
NMR spectra S17

General

Oxygen and water sensitive reactions were conducted under argon. Column chromatography: silica gel, $60 \AA$ A pore size, 0.04-0.063 mm particle size (Macherey-Nagel). Melting points (uncorrected): MPM-H2 Schorpp Gerätetechnik. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H} N \mathrm{NR}$) and carbon nuclear magnetic resonance spectra ($\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ were recorded with Bruker AV $250\left({ }^{1} \mathrm{H}: 250 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 62.9 \mathrm{MHz}\right)$, Bruker AV $300\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 75.5 \mathrm{MHz}\right)$ or Bruker AV $500\left({ }^{1} \mathrm{H}: 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 125.8 \mathrm{MHz}\right)$ spectrometers. Chemical shifts for protons are reported in parts per million (δ scale) and internally referenced to the proton resonances of the solvent ($\mathrm{CDCl}_{3}: \delta 7.26, \mathrm{~d}_{6}$-DMSO: $\delta 2.50$). Chemical shifts for carbon are reported in parts per million (δ scale) and referenced to the carbon resonances of the solvent (CDCl_{3} : δ 77.16, d_{6}-DMSO: $\delta 39.52$). Data are represented as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{bs}=$ broad singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e t, ~ m=m u l t i p l e t, ~ d d=$ double doublet), coupling constants in Hz, and integration. Mass spectra: ESI-MS spectra were obtained on a Fisons VG Plattform II, LCESI spectra on a Surveyor MSQ instrument (ThermoFisher). HRMS spectra were recorded on a MALDI LTQ Orbitrap mass spectrometer (ThermoFisher). Mass spectra of oligonucleotides and conjugates (ESI/TOF): micrOTOF-Q II (Bruker) with Agilent 1200 Series HPLC and MultoKrom 5-C18 column. The concentrations of oligonucleotides was determined on a NanoDrop 2000c spectrometer (ThermoFisher).

Liquid phase synthesis of polyamide 24

Scheme S1. a) $\mathrm{NaOH}, \mathrm{MeOH}, 79 \%$; b) DMAP, $\mathrm{MeOH}, 85 \%$; c) methyl 4-aminobutanoate hydrochloride, DIPEA, DCM, 95 \%; d) DMAP, MeOH, 89 \%; e) 7, H2, Pd/C, EtOAc, then 5, HOBt, DIC, DIPEA, DMF, 79%; f) $\mathrm{NaOH}, \mathrm{MeOH}, 86 \%$; g) 9, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, EtOAc, then 8, DIPEA, DCM, 81\%; h) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{Boc}_{2} \mathrm{O}$, $\mathrm{MeOH}, 100 \%$; i) 10, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}$, then 8, DIPEA, DCM, 86%; j) 15, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, EtOAc, then 8, DIPEA, DCM, 79\%; k) 14, $\mathrm{AcCl}, \mathrm{MeOH}$, then 12, HBTU, DIPEA, DMF, 85%; I) $\mathrm{LiOH}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 85 \%$; m) 16, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{Boc}_{2} \mathrm{O}, \mathrm{MeOH}$, then TFA, DCM, then 8, DIPEA, DCM, 71\%; n) $\mathrm{NaOH}, \mathrm{EtOH}, 89 \% ;$ o) 20 + 21, DIC, HOBt, DIPEA, DMF, 80\%; p) 22, H2, Pd/C, DMF, then 18, HBTU, DIPEA, 62\%; q) TFA, DCM, 100%. Synthesis of linker 21 see below.

1-Methyl-1H-pyrrole-2-carboxylic acid 5 (RN: 6973-60-0)

Compound 4 ($3.20 \mathrm{~g}, 14.1 \mathrm{mmol}, 1.0 \mathrm{eq}$) was suspended in $\mathrm{MeOH}(9.5 \mathrm{~mL}) .2 \mathrm{M} \mathrm{NaOH}$ (35 mL , $70 \mathrm{mmol}, 5.0 \mathrm{eq}$) was added, and the mixture was stirred for 23 h at room temperature (rt). The resulting solution was acidified with 1 M HCl , and filtrated. The filtrate was extracted with EtOAc and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to obtain 5 as a brown solid ($1.44 \mathrm{~g}, 11.5 \mathrm{mmol}, 79 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=12.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.03$ (t, J=2.0 Hz, 1H, C ${ }^{5}-\mathrm{H}$), 6.78 (dd, $J=3.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{3}-\mathrm{H}$), $6.05\left(\mathrm{dd}, J=3.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{4}-\mathrm{H}\right), 3.83$ (s, 3H, N-CH3) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=162.0(\mathrm{C}=\mathrm{O}), 129.8\left(\mathrm{C}^{5}\right), 122.5\left(\mathrm{C}^{2}\right), 117.3\left(\mathrm{C}^{3}\right)$, $107.3\left(\mathrm{C}^{4}\right)$, $36.3\left(\mathrm{~N}^{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.

Methyl 1-methyl-4-nitro-1 H-imidazole-2-carboxylate 7 (RN: 169770-25-6)

Compound $6(4.00 \mathrm{~g}, 14.7 \mathrm{mmol}, 1.0 \mathrm{eq})$ and DMAP ($90 \mathrm{mg}, 7.3 \mathrm{mmol}, 0.05 \mathrm{eq}$) were suspended in $\mathrm{MeOH}(28 \mathrm{~mL})$ and stirred for 8 h at rt . The suspension was filtered, and the crude product 7 was washed with MeOH . The filtrate was evaporated, and residue was suspended in MeOH . The mixture was filtered to obtain further 7 as a colorless solid. Yield: $2.32 \mathrm{~g}, 12.5 \mathrm{mmol}, 85 \% \mathrm{R}_{f}=0.38$ (cyclohexane/EtOAc 1:2). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.86(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=158.7,146.1,134.8,124.6,53.1,37.2 \mathrm{ppm}$. MS (ESI): m/z calcd. for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$ 186.1; found 186.2. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 186.05093$; found 186.05090.

Methyl 4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)butanoate 9 (RN: 491647-49-5)

Compound 8 ($1.50 \mathrm{~g}, 5.56 \mathrm{mmol}, 1.0 \mathrm{eq}$) and methyl 4 -aminobutanoate hydrochloride (940 mg , $6.13 \mathrm{mmol}, 1.1 \mathrm{eq}$) were suspended in dry DCM (10 mL) and DIPEA ($1.9 \mathrm{~mL}, 8.3 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added. The resulting solution was stirred for 27 h at rt . Subsequently the solvent was removed and the crude product was purified by column chromatography (cyclohexane/EtOAc 1:1). 9 was obtained as a colorless solid ($1.42 \mathrm{~g}, 5.39 \mathrm{mmol}, 95 \%$). $\mathrm{R}_{f}=0.30$ (cyclohexane/EtOAc 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=8.40(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.58$ (s, 3H), $3.20(q, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=173.1,159.9,133.8,127.9,126.4,107.3,51.3,37.9,37.4,30.7,24.4 \mathrm{ppm}$. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 270.10845 ; found 270.10854 .

Methyl 1-methyl-4-nitro-1 H-pyrrole-2-carboxylate 10 (RN: 13138-76-6)

Compound 8 (2.00 g 7.38 mmol) was suspended in MeOH (15 mL). DMAP ($90 \mathrm{mg}, 0.74 \mathrm{mmol}$) was added and the mixture was stirred for 2 h . The suspension was filtered, and the residue of 10 was washed with methanol. The filtrate was evaporated. The residue was resuspended in methanol and filtered to obtain additional 10 as a colorless solid ($1.21 \mathrm{~g}, 6.57 \mathrm{mmol}, 89 \%$). Mp. $119-120^{\circ} \mathrm{C}$ (Ref. $\left.120-122^{\circ} \mathrm{C}\right) .{ }^{[1]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=8.28\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{5}-\mathrm{H}\right), 7.32(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}^{3}-\mathrm{H}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=159.9$, 134.2, 129.5, 122.7, 111.6, 51.9, 37.5 ppm.

Pyrrole-imidazole dimer 11

Compound $7(1.00 \mathrm{~g}, 5.40 \mathrm{mmol}, 1.0 \mathrm{eq})$ was suspended in dry EtOAc (20 mL) and Pd/C ($100 \mathrm{mg}, 10 \%$ on active charcoal) was added. The suspension was stirred in a H_{2}-atmosphere for 2 h . The mixture was filtered through celite and the solvent was removed under reduced pressure.
Compound 5 ($810 \mathrm{mg}, 6.48 \mathrm{~mol}, 1.2 \mathrm{eq}$), HOBt ($1.00 \mathrm{mg}, 6.48 \mathrm{mmol}, 1.2 \mathrm{eq}, 12 \% \mathrm{H}_{2} \mathrm{O}$) and DIC $(1.36 \mathrm{~mL}, 10.8 \mathrm{mmol}, 2.0 \mathrm{eq})$ were dissolved in dry DMF $(10 \mathrm{~mL})$. The mixture was stirred for 3 h at rt . Subsequently the solution was filtered, and the filtrate was added to the freshly prepared amine. After the addition of DIPEA ($1.84 \mathrm{~mL}, 10.8 \mathrm{mmol}, 2.0 \mathrm{eq}$) the solution was heated to $60^{\circ} \mathrm{C}$ for 3 h . Thereafter
it was stirred for 16 h at RT and for 5 h at $60^{\circ} \mathrm{C}$. Afterwards the solution was added to a mixture of $\mathrm{H}_{2} \mathrm{O} /$ sat. $\mathrm{NaHCO}_{3}(4: 1)$ and then extracted with DCM. The combined organic layers were dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (cyclohexane/EtOAc 1:4). 11 was obtained as a colorless solid (1.12 g , $4.27 \mathrm{mmol}, 79 \%) . \mathrm{R}_{f}=0.55$ (cyclohexane /EtOAc $\left.1: 4\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=10.58(\mathrm{~s}, 1 \mathrm{H})$, $7.67(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=4.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=4.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (s, 3H), 3.88 (s, 3H), 3.81 (s, 3H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=159.0,158.7,137.9,130.7$, 128.9, 124.4, 115.3, 114.0, 107.0, 51.7, 36.5, 35.4 ppm. MS (ESI): m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 263.1; found 263.1. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 263.11387; found 263.11403.

Pyrrole-imidazole dimer 12 (RN: 537049-66-4)

Compound 11 ($246 \mathrm{mg}, 936 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was suspended in $\mathrm{MeOH}(10 \mathrm{~mL})$. A solution of NaOH ($44 \mathrm{mg}, 1.1 \mathrm{mmol} 1.2 \mathrm{eq}$) in 10 mL of water was added and the solution was boiled under reflux for 3 h . The solution was cooled to rt and extracted twice with dichloromethane. The aqueous phase was acidified with $37 \% \mathrm{HCl}$ until a colorless solid precipitated. The suspension was filtered and the precipitate of 12 was washed with water and dried in vacuum ($199 \mathrm{mg}, 86 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=$ $10.55(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=3.9,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$ (the COOH signal was not observable due to fast exchange). ${ }^{13} \mathrm{C}-$ NMR (75 MHz , DMSO- d_{6}) $\delta=160.1,158.7,137.5,131.7,128.9,124.5,114.9,114.0,107.0,36.5$, 35.5 ppm . MS (ESI): m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 249.1; found 249.2. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 249.09822; found 249.09863.

Pyrrole-pyrrole dimer 13 (RN: 746653-28-1)

Compound 9 ($400 \mathrm{mg}, 1.49 \mathrm{mmol}, 1.0 \mathrm{eq}$) was solved in EtOAc (10 mL) and $\mathrm{Pd} / \mathrm{C}(50 \mathrm{mg}, 10 \%$ on active charcoal) was added. The mixture was stirred in a H_{2} atmosphere for 18 h . The catalyst was removed by filtration through celite and the solvent was removed under reduced pressure. The residue was solved in DCM (10 mL) and $8(480 \mathrm{mg}, 1.78 \mathrm{mmol})$ as well as DIPEA ($500 \mu \mathrm{~L}, 3.00 \mathrm{mmol}$) was added. The solution was stirred for two days at r. The resulting suspension was filtered, and the residue was washed with DCM. 13 was obtained as a yellow solid ($470 \mathrm{mg}, 1.20 \mathrm{mmol}, 81 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta=10.23(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H})$, $3.18(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta=173.3,161.3,156.9,133.9,128.3,126.4,123.3,121.4,118.1,107.6,104.1,51.3,37.8,37.6$, 36.1, 30.9, 24.7 ppm. MS (ESI): m / z calcd. for $\left.\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{6}([\mathrm{M}-\mathrm{H}]]^{-}\right): 390.1$; found 390.1. HRMS (MALDI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 392.15646$; found 392.15498 .

Pyrrole-pyrrole dimer 14 (corresponding ethyl ester: RN: 940931-11-3)

Compound 13 ($2.00 \mathrm{~g}, 5.11 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{Boc}_{2} \mathrm{O}(2.23 \mathrm{~g}, 10.2 \mathrm{mmol}, 2.0 \mathrm{eq})$ and $\mathrm{Pd} / \mathrm{C}(200 \mathrm{mg}, 10 \%$ on active charcoal) were suspended in dry $\mathrm{MeOH}\left(40 \mathrm{~mL}\right.$) and stirred in a steel autoclave at $45^{\circ} \mathrm{C}$ and 45 bar H_{2}-pressure for 19 h . The catalyst was removed by filtration through celite. The solvent was evaporated under reduced pressure to obtain 14 as a colorless foam ($2.36 \mathrm{~g}, 100 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.81(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (s br, 1H), $6.85(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{q}, \mathrm{J}=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.70(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.2,161.4,158.4,152.9,122.9,122.8,122.3,122.1,117.8,117.0,104.2,103.8$, $78.3,51.3,37.7,36.1,35.9,30.8,28.2,24.7 \mathrm{ppm}$. MS (ESI): m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{6}([\mathrm{M}-\mathrm{H}]$) $): 460.2$; found 460.3. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 462.23471$; found 462.23335.

Pyrrole-pyrrole dimer 15 (RN: 69910-20-9)

Compound 10 ($4.38 \mathrm{~g}, 23.8 \mathrm{mmol}$) was suspended in EtOAc (100 mL) and $\mathrm{Pd} / \mathrm{C}(0.40 \mathrm{~g}, 10 \%$ on active charcoal) was added. The mixture was stirred in a H_{2}-atmosphere for 19.5 h . Pd / C was removed by filtration through celite, the solvent was evaporated under reduced pressure and the residue dried in vacuum. Afterwards the crude amine was dissolved in 40 mL of DCM and compound 8 (7.08 g , $26.1 \mathrm{mmol})$ followed by DIPEA ($6.0 \mathrm{~mL}, 35 \mathrm{mmol}$) were added. The solution was stirred for 4.5 h at rt . The precipitated yellow solid was filtered and washed with DCM to obtain 15 as a yellow solid (6.26 g , $20.4 \mathrm{mmol}, 86 \%) . \mathrm{Mp} .250^{\circ} \mathrm{C}$ (decomp.; ref. $262^{\circ} \mathrm{C}$). ${ }^{[1]}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta=10.26$ (s, $1 \mathrm{H}), 8.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=160.8,156.9,133.8$, 128.3, 126.1, 122.2, 120.9, 118.9, 108.3, 107.7, 51.1, 37.5, 36.3 ppm . MS (ESI): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 307.1$; found 307.1. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5}\left([\mathrm{M} \cdot]^{+}\right): 306.09587$; found 306.09606 .

Pyrrole-pyrrole-pyrrole trimer 16 (RN: 69910-21-0)

Compound 15 ($2.00 \mathrm{~g}, 6.53 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added to a suspension of $\mathrm{Pd} / \mathrm{C}(300 \mathrm{mg}, 10 \%$ on active charcoal) in EtOAc (40 mL). The suspension was stirred in a steel autoclave under H_{2} (40 bar) for 3 h at $45^{\circ} \mathrm{C}$ and Pd / C was removed by filtration through celite. The solvent was evaporated under reduced pressure and the residue dried in vacuum. Afterwards the crude amine was dissolved in DCM (10 mL) and added to a solution of compound $8(1.95 \mathrm{~g}, 7.18 \mathrm{mmol}, 1.1 \mathrm{eq})$ in DCM (30 mL). DIPEA (1.7 mL , $10 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and the solution was stirred for 22 h at rt . The precipitated yellow solid was filtered and washed with DCM to obtain 16 as a yellow solid ($2.21 \mathrm{~g}, 5.16 \mathrm{mmol}, 79 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta=10.29(\mathrm{~s}, 1 \mathrm{H}), 9.98(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (s, 3H), 3.86 (s, 3H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=160.8,158.4$, 157.0, 133.8, 128.3, 126.3, 122.9, 122.8, 121.5, 120.8, 118.8, 118.6, 108.4, 107.6, 104.6, 51.0, 37.5, 36.2, 36.2 ppm . $\mathrm{MS}(E S I): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{6} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 429.2$; found 429.0. HRMS (MALDI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{6} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 429.15171$; found 429.15153 .

Py-Im-Py-Py- $\boldsymbol{\gamma}$ OMe 17

$\mathrm{MeOH}(3 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{AcCl}(1 \mathrm{~mL})$ was added. The solution was stirred for 20 min at this temperature and compound $14(100 \mathrm{mg}, 217 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added. The mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$ and 60 min at rt . Afterwards the solvent was removed under reduced pressure. The hydrochloride, compound 12 ($65 \mathrm{mg}, 260 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$) and HBTU ($107 \mathrm{mg}, 282 \mathrm{~mol}$, $1.3 \mathrm{eq})$ were dissolved in DMF (5 mL). After that, DIPEA ($111 \mu \mathrm{~L}, 650 \mathrm{mmol}, 3.0 \mathrm{eq}$) was added and the mixture was stirred for 19 h at rt. Afterwards it was added to an aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in water (20%), extracted with DCM and dried over MgSO_{4}. The crude product was purified by column chromatography (cyclohexane/EtOAc/MeOH 2:9:1). 17 was obtained as a pale brown solid (109 mg , $184 \mu \mathrm{~mol}, 85 \%$). $\mathrm{R}_{f}=0.39$ (cyclohexane/ EtOAc $/ \mathrm{MeOH} 2: 9: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=10.24$ $(\mathrm{s}, 1 \mathrm{H}), 9.98(\mathrm{~s}, 1 \mathrm{H}), 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=3.8$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=173.2,161.3,158.8$ $158.4,155.8,136.2,134.1,128.9,124.6,123.1,122.9,122.0,121.2,118.5,117.9,114.5,113.8,107.0$, 105.1, 104.3, 51.3, 37.7, 36.5, 36.2, 36.0, 34.9, 30.8, 24.7 ppm . MS (ESI): m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{9} \mathrm{O}_{6}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 592.3$; found 592.3 HRMS (MALDI): m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{9} \mathrm{NaO}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 614.24460; found 614.24463.

Py-Im-Py-Py- $\boldsymbol{\gamma}$-OH 18

Compound 17 ($153 \mathrm{mg}, 259 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was suspended in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$. Subsequently, $\mathrm{LiOH}^{*} \mathrm{H}_{2} \mathrm{O}$ ($54.0 \mathrm{mg}, 1.29 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the solution was allowed to warm to rt over night The product was absorbed on silica and purified by column chromatography (DCM/MeOH 5:1). 18 was obtained as a colorless solid ($127 \mathrm{mg}, 221 \mu \mathrm{~mol}, 85 \%$). $\mathrm{R}_{f}=0.72$ (DCM/MeOH 5:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta=12.04(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 10.24(\mathrm{~s}, 1 \mathrm{H}), 9.97(\mathrm{~s}, 1 \mathrm{H}), 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (s, 1H), $7.28(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.88$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=3.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.18(q, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, DMSO $-d_{6}$) $\delta=174.3,161.3,158.8,158.4,155.8,136.2,134.1,128.9,124.6,123.2,123.0,122.0,121.2$, $118.5,117.9,114.5,113.8,107.0,104.7,104.3,37.9,36.4,36.2,36.0,34.9,31.1,24.8 \mathrm{ppm} . \mathrm{MS}$ (ESI): m / z calcd. for $\left.\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{9} \mathrm{O}_{6}([\mathrm{M}-\mathrm{H}]]^{-}\right): 576.2$; found 576.2. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{9} \mathrm{O}_{6}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 578.24701$; found 578.24758.

$\mathrm{O}_{2} \mathrm{~N}$-Py-Py-Py-Py-OMe 19 (RN: 134985-79-8)

Compound 16 ($200 \mathrm{mg}, 467 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$), $\mathrm{Boc}_{2} \mathrm{O}(204 \mathrm{mg}, 934 \mu \mathrm{~mol}, 2.0 \mathrm{eq})$ and $\mathrm{Pd} / \mathrm{C}(20 \mathrm{mg}, 10 \%$ on active charcoal) were suspended in $\mathrm{MeOH}(5 \mathrm{~mL})$, and stirred in a steel autoclave under 40 bar $\mathrm{H}_{2}-$ pressure for 18 h at $45^{\circ} \mathrm{C}$. The catalyst was removed by filtration through celite and solvent was evaporated. Afterwards DCM (3 mL) and TFA (2 mL) were added. The solution was stirred at room temperature for 30 min to remove the protecting group. The solvent was then evaporated. The TFA-salt was suspended in DCM (5 mL) and compound $8(254 \mathrm{mg}, 934 \mu \mathrm{~mol}, 2.0 \mathrm{eq})$ was added. Then DIPEA $(238 \mu \mathrm{~L}, 1.40 \mathrm{mmol}, 3.0 \mathrm{eq})$ was added and the resulting solution was stirred for 49 h at rt . The precipitated solid was filtered, washed with DCM, and dried in vacuum to obtain 19 as a pale yellow solid ($182 \mathrm{mg}, 331 \mu \mathrm{~mol}, 71 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta=10.30(\mathrm{~s}, 1 \mathrm{H}), 10.00(\mathrm{~s}, 1 \mathrm{H}), 9.94(\mathrm{~s}$, $1 \mathrm{H}), 8.16(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ $(\mathrm{s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=$ $161.0,158.6,158.5,157.1,133.9,128.4,126.4,123.1,123.1,122.7,122.3,121.5,120.9,118.8,118.8$, 118.7, 108.5, 107.6, 105.0, 104.7, 51.1, 37.6, 36.3, 36.3, 36.2 ppm. MS (ESI): m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{8} \mathrm{O}_{7}$ ([M-H] $]^{-}$: 549.2; found 549.2. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{7}$ ([M•]+): 550.19190; found 550.19124.

$\mathrm{O}_{2} \mathrm{~N}-\mathrm{Py}-\mathrm{Py}-\mathrm{Py}-\mathrm{Py}-\mathrm{OH} 20$ (RN: 134985-80-1)

Compound 19 ($104 \mathrm{mg}, 189 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) und $\mathrm{NaOH}(22.6 \mathrm{mg}, 567 \mu \mathrm{~mol}, 3.0 \mathrm{eq})$ were suspended in $\mathrm{EtOH}(1.32 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.95 \mathrm{~mL})$ and refluxed for 1 h . The solution was cooled to rt and acidified with conc. HCl . The precipitated solid was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried in vacuum. 20 was obtained as an orange solid ($90 \mathrm{mg}, 168 \mu \mathrm{~mol}, 89 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=12.15(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 10.30$ (s, 1H), $10.00(\mathrm{~s}, 1 \mathrm{H}), 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, DMSO-d $d_{6} \delta=162.0,158.5,158.4,156.9,133.8,128.3,126.3,123.0,122.7,122.6,122.2,121.4,120.3$, $119.5,118.7,118.6,108.4,107.6,104.8,104.5,37.5,36.2,36.2,36.1 \mathrm{ppm}$. MS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}_{7}\left([\mathrm{M}-\mathrm{H}]^{-}\right): 535.2$; found 535.1. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{NaO}_{7}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right)\right.$: 559.16602; found 559.16564.

$\mathrm{O}_{2} \mathrm{~N}$-Py-Py-Py-Py- β-linker-Boc 22

Compound 20 ($100 \mathrm{mg}, 186 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was dissolved in dry DMF (5 mL) and HOBt (28.5 mg , $186 \mu \mathrm{~mol}, 1 \mathrm{eq}$), linker 21 ($70.8 \mathrm{mg}, 223 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$) as well as DIPEA ($63.0 \mu \mathrm{l}, 223 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$) were added. Subsequently the solution was warmed to $60^{\circ} \mathrm{C}$ and DIC ($57.0 \mu \mathrm{l}, 371 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$) was added. The mixture was stirred for 3 h at $60^{\circ} \mathrm{C}$ and for 18.5 h at rt . After that, the solvent was evaporated under reduced pressure and the crude product was purified twice by column chromatography (1. DCM/MeOH 9:1 + $1 \% \mathrm{Et}_{3} \mathrm{~N}, 2$. DCM/MeOH 9:1 + $1 \% \mathrm{NH}_{3}$). 22 was obtained as a yellow foam (124 mg , $148 \mu \mathrm{~mol}, 80 \%) . \mathrm{R}_{f}=0.34\left(\mathrm{DCM} / \mathrm{MeOH} 9: 1+1 \% \mathrm{Et}_{3} \mathrm{~N}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=10.30(\mathrm{~s}$, $1 \mathrm{H}), 10.00(\mathrm{~s}, 1 \mathrm{H}), 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09 - 7-02 (m, 2H), $6.84(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, 3H), 3.80 (s, 3H), 3.06 (q, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.92 ($\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.39-2.24$ (m, 6H), 2.14 (s br, 3H), $1.59-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$ ppm (A signal of 2 protons around 3.4 ppm is masked by water). ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta=170.4,161.3,158.5,158.4,156.9,155.6,133.8,128.3,126.3,123.0$, $122.8,122.8,122.2,122.1,121.4,118.7,118.5,117.9,107.6,104.7,104.5,104.2,77.4,54.6,54.6$, $41.5,38.2,37.5,36.7,36.2,36.1,36.0,35.6,35.5,28.3,26.9,26.6 \mathrm{ppm}$. MS (ESI): m / z calcd. for $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{12} \mathrm{O}_{9}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 835.9$; found 835.7. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{12} \mathrm{O}_{9}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 835.42095; found 835.42168.

Py-Im-Py-Py- $\boldsymbol{\gamma}$-Py-Py-Py-Py- β-linker-Boc 23

Compound 22 ($50.0 \mathrm{mg}, 59.5 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) and $\mathrm{Pd} / \mathrm{C}(5 \mathrm{mg}, 10 \%$ on active charcoal) were suspended in DMF (2 mL) and stirred for 16 h under hydrogen
Compound 18 ($41.3 \mathrm{mg}, 71.9 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$) was dissolved in DMF (1.5 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. Then HBTU ($29.0 \mathrm{mg}, 77.4 \mu \mathrm{~mol}, 1.3 \mathrm{eq}$) and DIPEA ($20.0 \mu \mathrm{~L}, 119 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$) were added and stirred for 15 min . Afterwards, the solution was added to the freshly prepared amine and stirred for 4.5 h at rt. Thereafter, the suspension was filtered through celite and DCM (40 mL) was added followed by an aqueous solution of $\mathrm{NaHCO}_{3}(50 \%, 40 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with DCM. The combined organic layers were washed with brine and dried over MgSO_{4}. The solvent was removed, and the crude product purified twice by column chromatography (1. DCM/MeOH 9:1 w. 1\% Et ${ }_{3} \mathrm{~N}$ and 2. $\mathrm{DCM} / \mathrm{MeOH} 9: 1 \mathrm{w} .1 \% \mathrm{NH}_{3}$). Polyamide 23 was obtained as light brown solid ($50.0 \mathrm{mg}, 36.6 \mu \mathrm{~mol}, 62 \%$). $\mathrm{R}_{f}=0.28$ (DCM/MeOH 5:1 + $1 \% \mathrm{NH}_{3}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=$ $10.22(\mathrm{~s}, 1 \mathrm{H}), 9.97(\mathrm{~s}, 1 \mathrm{H}), 9.94(\mathrm{~s}, 1 \mathrm{H}), 9.92-9-86(\mathrm{~m}, 3 \mathrm{H}), 9.84(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ (t, J=5.6 Hz, 1H), $7.86(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7-22(\mathrm{~m}, 2 \mathrm{H})$, $7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (dd, $J=4.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.00-$ $6.97(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, \mathrm{J}=3.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, 3 H), 3.84 (s, 3H), 3.81 (s, 3H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{q}, ~ J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.06$ (q, J=6.7 Hz, 2H), 2.92 (q, J $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 8 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.36$ $(\mathrm{s}, 9 \mathrm{H}) \mathrm{ppm}$ (A signal of 2 protons around 3.4 ppm is masked by water). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ $\delta=170.4,169.3,161.3,161.2,158.8,158.5,158.5,158.5,158.4,155.8,155.6,136.2,134.1,128.9$, 124.6, 123.1, 123.0, 122.8, 122.8, 122.7, 122.2, 122.2, 122.2, 122.1, 122.0, 121.2, 118.5, 118.4, 118.2, $117.9,114.6,113.8,107.0,104.7,104.7,104.3,104.2,104.0,77.4,54.8,54.7,41.738 .3,38.2,36.8$, $36.4,36.2,36.1,36.0,36.0,35.6,35.5,34.9,33.3,28.3,27.1,26.8,25.7 \mathrm{ppm}$. MS (ESI): m/z calcd. for $\mathrm{C}_{66} \mathrm{H}_{86} \mathrm{~N}_{21} \mathrm{O}_{12}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 1364.7$; found 1364.7. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{66} \mathrm{H}_{86} \mathrm{~N}_{21} \mathrm{O}_{12}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 1364.6759; found 1364.2140.

Py-Im-Py-Py- γ-Py-Py-Py-Py- β-linker-NH 2 , polyamide 24

Compound 23 ($20 \mathrm{mg}, 16 \mu \mathrm{~mol}$) was dissolved in DCM/TFA ($1: 1,1 \mathrm{~mL}$) and stirred for 1.5 h at $0{ }^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the brown solid was dried. The crude product, obtained in quantitative yield, was used for the synthesis of adaptor 1 without further purification.
MS (ESI): $\quad \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{61} \mathrm{H}_{78} \mathrm{~N}_{21} \mathrm{O}_{10}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 1264.6; found 1264.6. m / z calcd. for $\mathrm{C}_{61} \mathrm{H}_{79} \mathrm{~N}_{21} \mathrm{O}_{10}\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right)$: 632.8; found 633.0.
HRMS (MALDI): $\quad m / z$ calcd. for $\mathrm{C}_{61} \mathrm{H}_{78} \mathrm{~N}_{21} \mathrm{O}_{10}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 1264.6235$; found 1264.4244.

Figure S1. rp-HPLC-chromatogram after purification of 24, using a linear gradient from 10 \% B to 70 \% B in 30 min. A: 0.1 \% TFA in $\mathrm{H}_{2} \mathrm{O}$; B: Acetonitrile.

Synthesis of linker 21

Scheme S2. a) $\mathrm{Boc}_{2} \mathrm{O}, 1,4$-dioxane, rt, 51%; b) Cbz- β-Ala-OH, HOBt, DIC, DIPEA, DMF, $60^{\circ} \mathrm{C}, 73 \%$; c) $\mathrm{H}_{2}(1 \mathrm{bar}), \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 96 \%$.

tert-Butyl 3-((3-aminopropyl)(methyl)amino)propylcarbamate 29 (RN: 87530-14-1)

Amine 28 ($15.0 \mathrm{~mL}, 92.8 \mathrm{mmol}, 4.1 \mathrm{eq}$) was dissolved in 1,4-dioxane (25 mL). Subsequently a solution of $\mathrm{Boc}_{2} \mathrm{O}(5.01 \mathrm{~g}, 22.9 \mathrm{mmol}, 1.0 \mathrm{eq})$ in 1,4-dioxane (25 mL) was added dropwise. The resulting solution was stirred for 20 h at rt and then evaporated. The residue was redissolved in water (40 mL) and extracted with DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The crude product was purified twice by column chromatography (1. DCM/MeOH 5:1 + 5% $\mathrm{Et}_{3} \mathrm{~N}$, 2. DCM/MeOH 2:1 + $5 \% \mathrm{NH}_{3}$) and 29 was obtained as a colorless oil ($2.88 \mathrm{~g}, 11.7 \mathrm{mmol}, 51 \%$). $\mathrm{R}_{f}=0.31\left(\mathrm{DCM} / \mathrm{MeOH} 2: 1+5 \% \mathrm{NH}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.37(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.76(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s} \mathrm{br}, 2 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 4 \mathrm{H})$, 1.43 (s, 9H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=156.3,79.0,56.4,55.8,42.2,40.6,40.0,30.8,28.6$, 27.1 ppm. MS (ESI): m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 246.2$; found 246.2. HRMS (MALDI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 246.21760 ; found 246.21791 .

Cbz- β-linker-Boc 30 (RN: 2170549-22-9)

Cbz- β-alanine ($1.84 \mathrm{~g}, 8.25 \mathrm{mmol}, 1.1 \mathrm{eq}$), $\mathrm{HOBt}(1.27 \mathrm{~g}, 8.25 \mathrm{mmol}, 1.1 \mathrm{eq}$) and DIC ($2.3 \mathrm{~mL}, 15 \mathrm{mmol}$, 2.0 eq) were dissolved in dry DMF (15 mL). The mixture was stirred for 22 h at rt. Subsequently, a mixture of $29(1.84 \mathrm{~g}, 7.50 \mathrm{mmol}, 1.0 \mathrm{eq})$ and DIPEA ($2.6 \mathrm{~mL}, 15 \mathrm{mmol}, 2 \mathrm{eq}$) in DMF (3 mL) was added and the resulting solution was stirred for 24 h at rt. The resulting suspension was filtered and an aqueous solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL}, 20 \%)$ was added. The aqueous layer was extracted with DCM ($3 \mathrm{x}, 40 \mathrm{~mL}$) and the combined organic layers were dried over MgSO_{4}. The solvent was evaporated, and the crude product was purified by column chromatography ($\mathrm{EtOAc} / \mathrm{MeOH} 6: 1+1 \% \mathrm{Et}_{3} \mathrm{~N}$) to obtain 30 as a colorless oil ($2.70 \mathrm{~g}, 5.99 \mathrm{mmol}, 73 \%$). $\mathrm{R}_{f}=0.5$ ($\mathrm{EtOAc} / \mathrm{MeOH} 2: 1+1 \% \mathrm{Et}_{3} \mathrm{~N}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 5.59(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 5.17-4.96(\mathrm{~m}, 3 \mathrm{H}), 3.47(\mathrm{q}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.37-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.34(\mathrm{~m}, 6 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 4 \mathrm{H})$, $1.43(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.5,156.6,156.3,136.8,128.6,128.2,79.4,66.7$, 56.0, 55.6, 41.7, 39.0, 38.5, 37.5, 36.1, 28.6, 27.6, 25.9 ppm.

Linker 21

Compound 30 ($625 \mathrm{mg}, 1.39 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL}) . \mathrm{Pd} / \mathrm{C}(70 \mathrm{mg}, 10 \%$ on active charcoal) was added and the suspension was stirred for 18 h at rt under hydrogen. Thereafter, the suspension was filtrated over celite and the solvent was evaporated. Compound 21 was obtained as a colorless oil ($420 \mathrm{mg}, 1.33 \mathrm{mmol}, 96 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.86(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ $-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$ (the NH_{2} signal could not be observed due to a fast exchange with water). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=171.2$, $155.6,77.3,54.8,54.8,41.7,39.0,38.3,36.7,28.3,27.2,26.9 \mathrm{ppm}$ (an alkyl signal was covered by the solvent peak). $\mathrm{MS}(\mathrm{ESI}): m / z$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3}([\mathrm{M}+\mathrm{H}])^{+}=317.3$; found 317.3.

Solid phase synthesis of polyamide 39

a \downarrow

$b \square \begin{aligned} & \text { 31: } R=M e \\ & \rightarrow 32 \cdot R=H\end{aligned}$

33
33

7

5

10

37: $R=M e$
\rightarrow 38: $R=H$

Scheme S3. a) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{Boc}_{2} \mathrm{O}, \mathrm{MeOH}, 82$ \%; b) $\mathrm{NaOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 81 \%$; c) 7, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}$, then 33, HOBt, DIC, DIPEA, DMF, 77%; d) 34, H_{2}, Pd/C, EtOAc, then Boc-GABA-OH, HOBt, DIC, DIPEA, DMF, 53 \%; e) $\mathrm{KOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 76 \%$; f) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, EtOAc, then 5, HOBt, DIC, DIPEA, DMF, 89%; g) $\mathrm{NaOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 91 \%$.

Boc-Py-Py-OMe 31 (RN: 126092-97-5)

Compound 15 ($1.74 \mathrm{~g}, 5.68 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{Boc}_{2} \mathrm{O}(2.48 \mathrm{~g}, 11.4 \mathrm{mmol}, 2.0 \mathrm{eq})$ and Pd/C ($180 \mathrm{mg}, 10 \%$ on activated charcoal) were suspended in $\mathrm{MeOH}(10 \mathrm{~mL})$. The mixture was stirred for 18 h at $45^{\circ} \mathrm{C}$ and 40 bar H_{2}-pressure. The catalyst was removed by filtration through celite. The solvent was evaporated to obtain 31 as a colorless foam ($1,75 \mathrm{~g}, 4.65 \mathrm{mmol}, 82 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.85(\mathrm{~s}, 1 \mathrm{H})$, $9.10(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73$ (s, 3H), 1.45 (s, 9H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=160.8,158.4,152.9,123.0,122.6,122.4$, $120.7,118.5,117.2,108.4,103.8,78.3,51.0,36.2,36.0,28.2 \mathrm{ppm}$. MS (ESI): m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{5}$ ([M-H]): 375.2; found 375.2.

Boc-Py-Py-OH 32 (RN: 126092-98-6)

Compound 31 ($500 \mathrm{mg}, 1.33 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL}$, $20 \mathrm{mmol}, 15.0 \mathrm{eq}$) was added. The mixture was stirred for 4 h at rt and subsequently acidified with 1 M HCl . Afterwards the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over MgSO_{4}. The solvent was evaporated to obtain 32 as a brown solid (389 mg , $1.07 \mathrm{mmol}, 81 \%$). ${ }^{1 \mathrm{H}}$-NMR (500 MHz , DMSO- d_{6}) $\delta=12.13$ (s br, 1 H), $9.81(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 7.40$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.88(\mathrm{~s}, 1 \mathrm{H}), 6.85-6.78(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$ (the sample contained some EtOAc and the yield was corrected accordingly). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (126 MHz , DMSO$\left.d_{6}\right) \delta=162.0,158.4,152.9,122.7,122.7,122.4,120.3,119.5,117.1,108.4,103.8,78.3,36.1,36.1$, 28.2 ppm . MS (ESI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 363.2$; found 363.2 . HRMS (MALDI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{NaO}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 385.14824 ; found 385.14664 .

1-Methyl-4-nitro-1 H-pyrrole-2-carboxylic acid ($\mathrm{O}_{2} \mathrm{~N}-\mathrm{Py}-\mathrm{OH}$) 33 (RN: 13138-78-8)

Compound 8 ($2.52 \mathrm{~g}, 9.3 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in aqueous $\mathrm{KOH}(23 \mathrm{~mL}, 46 \mathrm{mmol}, 5.0 \mathrm{eq})$ and stirred for 2 h at rt . Subsequently, the mixture was acidified with 1 M HCl . The precipitate was filtered, washed with EtOAc and dried in vacuum. 33 was obtained as a colorless solid ($740 \mathrm{mg}, 2.41 \mathrm{mmol}$, $77 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=8.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ $(\mathrm{s}, 3 \mathrm{H}) \mathrm{ppm}$ (the COOH-signal was not observable due to a fast exchange). ${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}, \mathrm{DMSO}-$ $\left.d_{6}\right) \delta=161.9,133.7,127.5,109.4,39.5,37.3 \mathrm{ppm} . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / z$ calcd. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}-\mathrm{H}]^{-}\right): 169.0$; found 168.9.

$\mathrm{O}_{2} \mathrm{~N}$-Py-Im-OMe 34 (RN: 169770-26-7)

Compound 33 ($590 \mathrm{mg}, 3.47 \mathrm{~mol}, 1.1 \mathrm{eq}$), $\mathrm{HOBt}\left(530 \mathrm{mg}, 3.47 \mathrm{mmol}, 1.1 \mathrm{eq}, 12 \% \mathrm{H}_{2} \mathrm{O}\right.$) and DIC ($1.1 \mathrm{~mL}, 6.9 \mathrm{mmol}, 2.2 \mathrm{eq}$) were dissolved in dry DMF (5 mL) and stirred for 29 h at rt .
Compound 7 ($580 \mathrm{mg}, 3.20 \mathrm{mmol}$, 1 eq) was dissolved in EtOAc (10 mL) and $\mathrm{Pd} / \mathrm{C}(70 \mathrm{mg}, 10 \%$ on activated charcoal) was added. The suspension was stirred for 23 h at rt under hydrogen. Subsequently the catalyst was removed by filtration through celite and the solvent was evaporated. The residue was redissoved in dry DMF (4 mL) and the above mentioned mixture as well as DIPEA ($1.1 \mathrm{~mL}, 6.3 \mathrm{mmol}$, $2 \mathrm{eq})$ was added. The resulting solution was heated to $60^{\circ} \mathrm{C}$ and stirred for $3 \mathrm{~h}, 16 \mathrm{~h}$ at rt and further 3 h at $60^{\circ} \mathrm{C}$. Afterwards the solution was poured on ice water $(50 \mathrm{~mL})$ and the precipitate was collected. The crude product was purified by column chromatography and 34 was obtained as a colorless solid ($740 \mathrm{mg}, 2.41 \mathrm{mmol}, 77 \%$). $\mathrm{R}_{f}=0.45$ (cyclohexane/EtOAc $1: 3$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=$ $11.13(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, 3.82 (s, 3H) ppm.

Boc- $\boldsymbol{\gamma}$-Py-Im-OMe 35

Boc-GABA-OH ($538 \mathrm{mg}, 2.65 \mathrm{mmol}, 1.1 \mathrm{eq}$), HOBt ($407 \mathrm{mg}, 2.65 \mathrm{mmol}, 1.1 \mathrm{eq}, 12 \% \mathrm{H}_{2} \mathrm{O}$) and DIC $(820 \mu \mathrm{~L}, 5.30 \mathrm{mmol}, 2.2 \mathrm{eq})$ were dissolved in dry DMF (10 mL) and stirred for 26 h at rt .
Compound 34 ($740 \mathrm{mg}, 2.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{Pd} / \mathrm{C}(70 \mathrm{mg}, 10 \%$ on activated charcoal) were suspended in EtOAc (10 mL) and the mixture was stirred in a steel autoclave for 17 h at $40^{\circ} \mathrm{C}$ and 40 bar H_{2}-pressure. Subsequently, the catalyst was removed by filtration through celite and the solvent was evaporated. After that, the above-mentioned solution as well as DIPEA ($820 \mathrm{~mL}, 4.80 \mathrm{mmol}, 2.0 \mathrm{eq}$) were added and the mixture was stirred for 48 h at rt . The resulting suspension was filtered and washed with EtOAc. The filtrate was added to an aqueous solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL}, 20 \%)$ and then extracted with EtOAc ($3 x, 40 \mathrm{~mL}$) and DCM ($3 x, 40 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The crude product was purified by column chromatography (DCM/MeOH 99:1 to 9:1) to obtain 35 as a colorless solid ($586 \mathrm{mg}, 1.26 \mathrm{mmol}, 53 \%$). $\mathrm{R}_{f}=0.79$ (DCM/MeOH 9:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=10.65(\mathrm{~s}, 1 \mathrm{H}), 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 2.93 (q, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=169.3,159.0,158.7,155.7,137.9,130.7,122.1,121.6,119.4,115.5,104.8$, $77.5,51.8,36.4,35.5,33.1,28.3,25.9 \mathrm{ppm}$ (a signal around 39 ppm is masked by the solvent signal). MS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 463.2; found 463.1. HRMS (MALDI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{NaO}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 485.21190$; found 485.21173 .

Boc- - Py-Im-OH 36

Compound 35 (200 mg, $432 \mu \mathrm{~mol}$, 1 eq) was suspended in a mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,8 \mathrm{~mL})$ and a 10 M solution of KOH in $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL}, 2.0 \mathrm{mmol}, 4.6 \mathrm{eq})$ was added. Subsequently, the suspension was stirred for 21.5 h at rt . Afterwards, MeOH was evaporated and the residue was acidified with 1 M HCl .

The resulting precipitate was collected and dried in vacuum. 36 was obtained as a colorless solid ($147 \mathrm{mg}, 327 \mu \mathrm{~mol}, 76 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=10.60(\mathrm{~s}, 1 \mathrm{H}), 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H})$, $7.27(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.93$ (q, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}(\mathrm{COOH}$ signal not observable). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=169.3,160.1,158.7,155.7,137.4,131.7,122.1,121.7$, $119.3,115.2,104.7,77.5,36.4,35.6,33.1,28.3,25.9 \mathrm{ppm}$ (a signal around 39 ppm is masked by the solvent). MS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 449.2$; found 449.3. HRMS (MALDI): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{NaO}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 471.19625$; found 471.19662.

Py-Py-OMe 37 (RN: 295805-46-8)

Compound 10 ($500 \mathrm{mg}, 2.70 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{Pd} / \mathrm{C}(50 \mathrm{mg}, 10 \%$ on activated charcoal) were suspended in EtOAc (10 mL) and stirred in a H_{2}-atmosphere for overnight. The suspension was filtered through celite to remove the catalyst, the solvent was evaporated, and the residue dried in vacuum.
Compound 5 ($400 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.1 \mathrm{eq}$), HOBt ($460 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.1 \mathrm{eq}, 88 \%$) were dissolved in dry DMF (5 mL) and DIC ($930 \mu \mathrm{~L}, 6.00 \mathrm{mmol}$, 2.2 eq) was added. The resulting mixture was stirred overnight and afterwards added to the freshly prepared amine. DIPEA ($460 \mu \mathrm{~L}, 5.4 \mathrm{mmol}, 2 \mathrm{eq}$) was added and the solution was heated to $60^{\circ} \mathrm{C}$ for 5 h . Afterwards the solution was stirred at rt overnight. The reaction mixture was poured in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and was extracted with EtOAc. The combined organic layers were washed with a conc. NaHCO_{3} solution, $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. The solvent was evaporated, and the crude product was purified by column chromatography (cyclohexane/EtOAc $3: 1$ to $1: 1$). Yield: $630 \mathrm{mg}, 2.40 \mathrm{mmol}, 89 \% \mathrm{R}_{f}=0.58$ (cyclohexane/EtOAc $3: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, DMSO- d_{6}) $\delta=9.81(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, ~ J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{dd}$, $J=3.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.84$ (s, 3H), 3.73 (s, 3H) ppm.

Py-Py-OH 38 (RN: 268727-24-8)

Compound 37 (630 mg , $2.4 \mathrm{mmol}, 1.0 \mathrm{eq}$) was suspended in $\mathrm{MeOH}(8 \mathrm{~mL})$ and a 1 M solution of NaOH in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL}, 15 \mathrm{mmol}, 6.3 \mathrm{eq})$ was added. The mixture was heated to reflux for 2 h and was stirred for further 18 h at rt . Afterwards the solution was extracted with EtOAc and the aqueous layer was acidified with 2 M HCl . The resulting solution was extracted with EtOAc; the organic layers were washed with brine and dried over MgSO_{4}. The solvent was evaporated to obtain 38 as a yellow solid (580 mg , $2.34 \mathrm{mmol}, 91 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=12.15(\mathrm{~s} b, 1 \mathrm{H}), 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=3.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=3.7$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (s, 3H), $3.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=162.0,158.6,128.2$, 125.3, 122.6, 120.3, 119.5, 112.6, 108.3, 106.7, 36.2, 36.2 ppm . MS (ESI): m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}$ $\left([M+H]^{+}\right): 248.1$; found 248.2.

Py-Py-Py-Py- $\boldsymbol{\gamma}$-Py-Im-Py-Py- β-linker-NH2 39

Compound 39 was synthesized on solid support in a 5 mL springe. ${ }^{[2]}$ Boc- β-Ala-Pam-resin (101 mg , $0.5 \mathrm{mmol} / \mathrm{g}$) was used. The resin was equilibrated in DMF for 30 min . Afterwards the Boc group was removed with a mixture of TFA/H2O/phenol ($92.5 / 2.5 / 5$; two times, $1 \mathrm{~mL}, 5 \mathrm{~min}$). After washing with DMF ($4 \times 2 \mathrm{~mL}$), the resin was equilibrated in THF ($1 \mathrm{~mL}, 2 \mathrm{~min}$). Meanwhile, the Boc-protected amino acids (32, 36 and 38, $200 \mu \mathrm{~mol}, 4 \mathrm{eq}$) and triphosgene ($66 \mu \mathrm{~mol}, 1.3 \mathrm{eq}$) were dissolved in THF (1 mL). Collidine ($606 \mu \mathrm{~mol}, 12 \mathrm{eq}$) was added and the mixture was activated for 1 min . Then, DIPEA ($404 \mu \mathrm{~mol}$, 8 eq) was added and the mixture was transferred to the deprotected resin. The solution was shaken for 1.5 h and after that, the reaction mixture was removed. After washing with DMF ($4 \times 2 \mathrm{~mL}$), unreacted material was capped ($\mathrm{Ac}_{2} \mathrm{O}(100 \mu \mathrm{l})$ and DIPEA ($175 \mu \mathrm{l}$) in $1 \mathrm{~mL} \mathrm{DMF}$,5 min) and the resin was washed with DMF ($4 \times 2 \mathrm{~mL}$). This procedure was repeated until the full peptide chain was assembled on the PAM-resin. Afterwards the resin was dried in vacuum. To liberate the peptide, the resin was incubated with a large excess of amine $28(1 \mathrm{~mL})$ for 20 h at $55^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{MeOH}(200 \mu \mathrm{~L})$ and the polyamide was precipitated by adding $\mathrm{Et}_{2} \mathrm{O}(1.8 \mathrm{~mL})$ and cooling to $-20^{\circ} \mathrm{C}$. The crude polyamide was purified by semi preparative HPLC and freeze dried to yield $39(6 \mathrm{mg}, \sim 10 \%)$. The structure was confirmed by MALDI-MS: calcd. for $\mathrm{C}_{61} \mathrm{H}_{77} \mathrm{~N}_{21} \mathrm{O}_{10}\left(\left[\mathrm{M}^{*}\right]^{+}\right)$: 1263.6157; found 1263.2139.

Synthesis of adaptors 1 and $2{ }^{[3]}$

The DNA part including the 5 ' amino linker was assembled from fast deprotection amidites on a standard support. 10 mg of the support ($\sim 250 \mathrm{nmol}$) were suspended in DCM $(1 \mathrm{~mL})$ for 30 min . The MMT group was then removed by incubation with 3% trichloroacetic acid in dry DCM $(0.5 \mathrm{~mL})$ for 5 min . The support was washed with DCM (0.5 mL) and the acid treatment was repeated. Afterwards, the support was washed five times with acetonitrile (0.5 mL). Then a solution of DIPEA ($1.7 \mu \mathrm{~L}, 10 \mu \mathrm{~mol}$) and 1,6 diisocyanatohexane ($8.42 \mu \mathrm{~L}, 48 \mu \mathrm{~mol}$) in 1 mL of dry acetonitrile was added. After incubation for 18 h at room temperature, the support was washed five times with acetonitrile. Subsequently, a solution of the polyamide (e.g. 24; $2.5 \mu \mathrm{~mol}, 10 \mathrm{eq}$.) in dry $\mathrm{MeOH}(150 \mu \mathrm{~L})$ and DIPEA ($10-25 \mu \mathrm{~L}$) in dry acetonitrile $(750 \mu \mathrm{~L})$ were added. The mixture was mildly shaken for 24 h at room temperature and afterwards washed five times with acetonitrile (0.5 mL). To detach the product, the solid support was incubated with aqueous ammonia ($32 \%, 0.5 \mathrm{~mL}$) for 30 min at room temperature. This procedure was repeated three times and the combined ammonia solutions were heated to $55^{\circ} \mathrm{C}$ for 5 h . After removal of the solvent in a vacuum centrifuge, the dry residue was dissolved in a small volume of saturated aqueous urea solution, mixed with some $2 x$ loading buffer (8 M urea, 20 mM EDTA, 0.2% orange G), heated to $90^{\circ} \mathrm{C}$ for 5 - 10 min and then purified by electrophoresis in a 16% denaturing polyacrylamide gel (7 M urea, $1 \times$ TBE buffer, acrylamide : bisacrylamide $19: 1$). The electrophoresis was run at $230-250 \mathrm{~V}$ in 0.5 x TBE buffer until the dye had moved to the mid of the gel. Bands containing the pure adaptors $\mathbf{1}$ or $\mathbf{2}$ were visualized by UV shadowing, excised, and extracted from the gel matrix over night with elution buffer (500 mM NaOAc pH 7.0, 2 mM EDTA, 0.1 \% SDS). Afterwards, the solution was passed through a centrifugal filter (VWR, 516-0235, 13000x g), mixed with a threefold volume of EtOH and kept overnight at $-20^{\circ} \mathrm{C}$. The precipitated product was isolated by centrifugation, dissolved in water, and desalted by gel filtration (NAP-10). Finally, the product was identified by mass spectrometry and the concentration was determined via UV absorption (Nanodrop 200c).

Adaptor 1:

Py-Im-Py-Py- γ-Py-Py-Py-Py- β-DMDPA-C6-C6-5’TTTTTGGCGAGGAGGGGCGTGGCCGGC

Figure S2. Mass spectrum of adaptor 1 (ESI - TOF; Bruker micrOTOF-Q II with Agilent 1200 Series HPLC and MultoKrom 5-C18 column; a gradient from 95\% A (400mM HFIP and 16.3mM TEA in $\mathrm{H}_{2} \mathrm{O}$) and 5% B (MeOH) to 100% B was used.). Top: Original data. Bottom: Deconvolution. m / z calcd. for $\mathrm{C}_{340} \mathrm{H}_{434} \mathrm{~N}_{131} \mathrm{O}_{179} \mathrm{P}_{27}\left([\mathrm{M}]^{-}\right): 10051.2$; found 10053.3.

Figure S3. Purity check of adaptor 1. Lane 1: crude product; lane 2: adaptor 1 after preparative gel electrophoresis (conditions see page S16).

Adaptor 2:

Py-Py-Py-Py- γ-Py-Im-Py-Py- β-DMDPA-C6-C6-5’TTTTTGGCGAGGAGGGGCGTGGCCGGC

Figure S4. Mass spectrum of adaptor 2 (ESI - TOF; Bruker micrOTOF-Q II with Agilent 1200 Series HPLC and MultoKrom 5-C18 column; a gradient from 95\% A (400 mM HFIP and 16.3 mM TEA in $\mathrm{H}_{2} \mathrm{O}$) and 5% B (MeOH) to 100% B was used.). Top: Original data. Bottom: Deconvolution. m / z calcd. for $\mathrm{C}_{340} \mathrm{H}_{434} \mathrm{~N}_{131} \mathrm{O}_{179} \mathrm{P}_{27}\left([\mathrm{M}]^{-}\right): 10051.2$; found 10053.3.

Figure S5. Purity check of adaptors after gel electrophoresis (conditions see page S16):
Lane 1: adaptor 2; Lane 2: adaptor 1.

Analytical dPAGE used for the purity check of adaptors 1 and 2

The oligonucleotides $(1 \mu \mathrm{M})$ were dissolved in a loading buffer (4 M urea, 10 mM EDTA, 0.1 \% orange G) and heated to $90^{\circ} \mathrm{C}$ for 5 to 10 min . Analytical dPAGE (16% (7 M urea, $1 \times$ TBE-buffer; acrylamide:bisacrylamide 19:1) was performed at $200-220 \mathrm{~V}$ using an $0.5 \times$ Tris-borate-EDTA (TBE)running buffer. Subsequently the gel was stained with SYBR Gold (Thermo Fisher Scientific; 1:10000 in 10 mM Tris-HCl pH 7.5, 1 mM EDTA).

Isolation of a byproduct

From the crude reaction mixtures containing adaptors 1 or $\mathbf{2}$, a byproduct with a molecular mass of 17414 could be isolated. It is formed when the bifunctional 1,6-diisocyanatohexane connects the amino linkers of two DNA strands:

```
\({ }^{3}\) CGGCCGGTGCGGGGAGGAGCGGTTTTT \({ }^{5}{ }^{\prime}-\mathrm{C}_{6}-\mathrm{C}_{6}-\mathrm{C}_{6}-{ }^{-}{ }^{\prime}\) TTTTTTGGCGAGGAGGGGCGTGGCCGGC \({ }^{3}\)
```


Figure S6. Mass spectrum of a byproduct containing two DNA strands (ESI - TOF; Bruker micrOTOFQ II with Agilent 1200 Series HPLC and MultoKrom 5-C18 column; a gradient from A (5 mM TEA in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to $100 \% \mathrm{~B}(\mathrm{MeOH})$ was used). Top: Original data. Bottom: Deconvolution. m / z calcd. for $\mathrm{C}_{550} \mathrm{H}_{702} \mathrm{~N}_{218} \mathrm{O}_{336} \mathrm{P}_{54}$ ([M] ${ }^{-}$):17407.0; found 17413.9

References

[1] M. Bialer, B. Yagen, R. Mechoulam, Tetrahedron 1978, 34, 2389-2391.
[2] I. Singh, C. Wendeln, A. W. Clark, J. M. Cooper, B. J. Ravoo, G. A. Burley, J. Am. Chem. Soc. 2013, 135, 3449-3457.
[3] T. Kubo, M. Morikawa, H. Ohba, M. Fujii, Org. Lett. 2003, 5, 2623-2626.

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & 1(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30

Γ	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
									f1 (ppm)								

