Electronic Supplementary Information File

for

The natural product vioprolide A exerts anti-inflammatory actions through inhibition of its cellular target NOP14 and downregulation of importin-dependent NF-kB p65 nuclear translocation

Luisa D. Burgers¹, Betty Luong¹, Yanfen Li³, Matthias P. Fabritius^{4,5}, Stylianos Michalakis³, Christoph A. Reichel⁴, Rolf Müller⁶ and Robert Fürst^{1,2*}

¹Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany

²LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany

³Department of Ophthalmology, University Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany

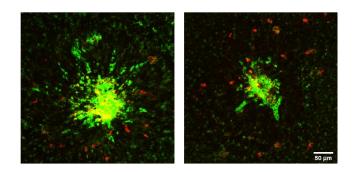
⁴Department of Otorhinolaryngology and Walter Brendel Centre of Experimental Medicine, Clinical Centre of Ludwig-Maximilians Universität München (LMU), Munich, Germany

⁵Department of Radiology, University Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany

⁶Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research and Department of Pharmacy at Saarland University, Saarbrücken,

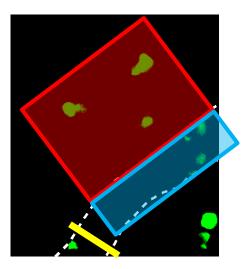
Germany

*Corresponding author:

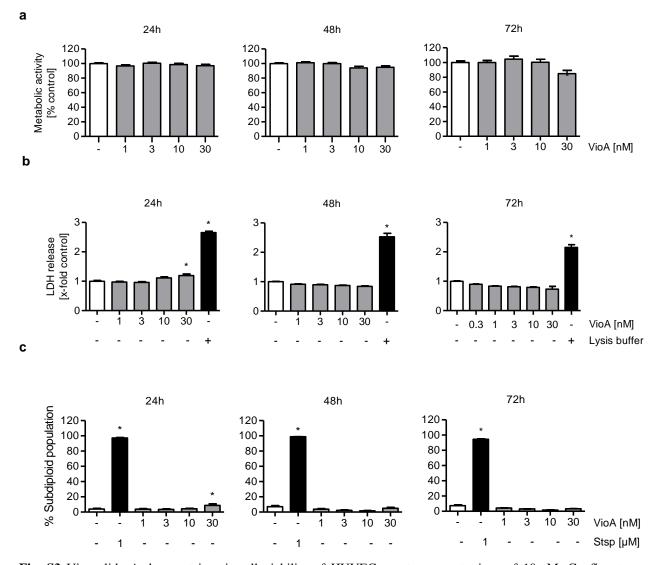

Robert Fürst, Ph.D.

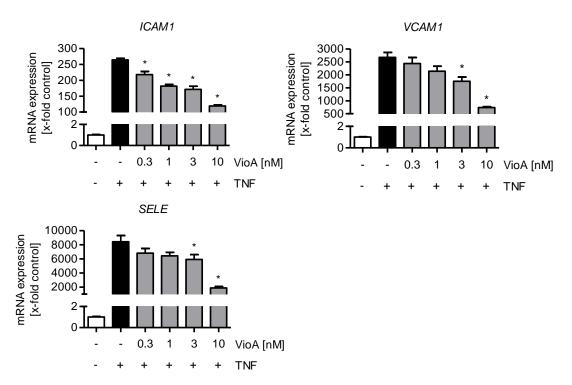
Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany

Phone: +49-69-798-29655


Fax: +49-69-798-763-29655

E-mail: <u>fuerst@em.uni-frankfurt.de</u>


Fig. S1 Representative merged images of CNV lesions in eye cup flat mounts prepared from vioA and vehicletreated mice on day 14 of laser injury. Microglia/macrophage were immunostained with Iba1 antibody and CNV lesions were visualized with IB4 antibody (green). Scale bar, 50 µm.


Fig. S2 Example for quantification of rolling flux (over yellow line), adherence (in blue vessel segment along a vessel length of 100μ m), and transmigration (in red perivascular area covering $100 \times 75 \mu$ m) of Gr-1⁺ neutrophils and classical monocytes in the mouse cremaster muscle.

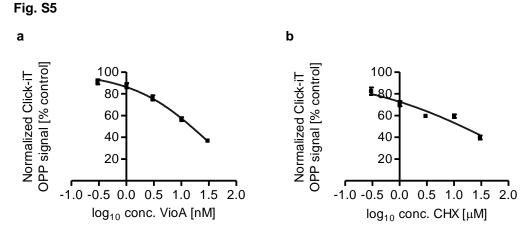
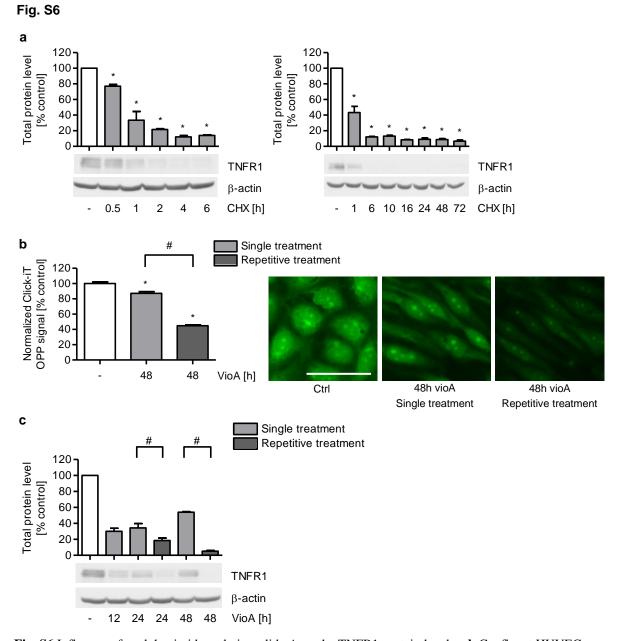
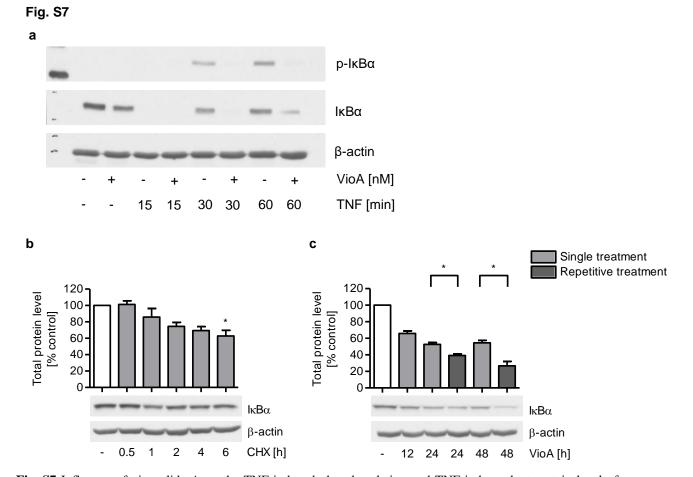
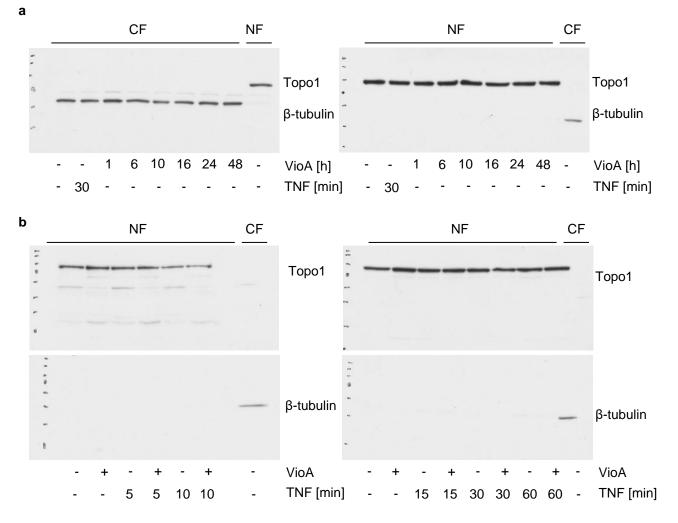


Fig. S3 Vioprolide A does not impair cell viability of HUVECs up to concentrations of 10 nM. Confluent HUVECs were treated with vioprolide A as indicated for 24 h, 48 h or 72 h. **a** Metabolic activity was measured using the CellTiter-Blue Cell Viability Assay. Fluorescence was measured at 590 nm. **b** Lysis buffer was used as positive control to damage cell membrane integrity. Lactate dehydrogenase release was determined using the Cytotox 96 non-radioactive cytotoxicity assay. Absorbance was measured at 490 nm. **c** Staurosporine was used as positive control for inducing apoptosis. HUVECs were stained with propidium iodide. Late apoptosis was measured by determining the number of sub-diploid events via flow cytometry. VioA, vioprolide A; LDH, lactate dehydrogenase; Stsp, staurosporine. Data are expressed as mean \pm SEM. n=3. *P \leq 0.05 vs. negative control.

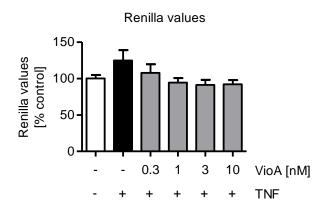
Fig. S4 Vioprolide A impairs CAM gene expression after 4 h (*SELE*) and 6 h (*ICAM1*, *VCAM1*) of TNF treatment. Confluent HUVECs were treated as indicated for 16 h followed by TNF activation (10 ng/ml) for 4 h (*SELE*) or 6 h (*ICAM1*, *VCAM1*). The mRNA expression was analyzed by quantitative PCR. VioA, vioprolide A. Data are expressed as mean \pm SEM. n=3 (*SELE*), n=4 (*ICAM1*, *VCAM1*). *P \leq 0.05 vs. TNF control.

Fig. S5 Dose response curve for the effect of vioprolide A and cycloheximide on *de novo* protein synthesis in HUVECs. Confluent HUVECs were treated with vioprolide A (**a**) or cycloheximide (**b**) for 24 h as indicated. The IC₅₀ was determined by analyzing nascent polypeptide chains with immunocytochemistry using Click-iT Plus OPP Alexa Fluor 488 and fluorescence microscopy. Three independent experiments were used to calculate the respective IC₅₀ of translation inhibition of vioprolide A and cycloheximide in HUVECs. VioA, vioprolide A; CHX, cycloheximide.


Fig. S6 Influence of cycloheximide and vioprolide A on the TNFR1 protein level. **a-b** Confluent HUVECs were treated with cycloheximide (3 µg/ml) as indicated. Total protein expression of TNFR1 was determined by western blot analysis. One representative blot out of 3 is shown. **c** Confluent HUVECs were treated with vioprolide A (10 nM) for a total of 48 h either as single treatment of repetitive treatment each 12 h. Nascent polypeptide chains were visualized by immunocytochemistry using Click-iT Plus OPP Alexa Fluor 488 and fluorescence microscopy. One representative experiment out of 3 is shown. Scale bar, 50 µm. **d** Confluent HUVECs were treated with vioprolide A (10 nM) as indicated either as single treatment or repetitive treatment each 12 h. Total protein expression of TNFR1 was analyzed by western blot experiments. One representative blot out of 3 is shown. VioA, vioprolide A; CHX, cycloheximide. Data are expressed as means \pm SEM. n=3. *P \leq 0.05 vs. negative control; #P \leq 0.05 vs. single treatment.

6


Fig. S7 Influence of vioprolide A on the TNF-induced phosphorylation and TNF-independent protein level of IkBa in HUVECs. **a** Confluent HUVECs were treated with vioprolide A (10 nM) for 16 h followed by activation with TNF (10 ng/ml) for the indicated time points. Total protein expression of phospho-IkBa (p-IkBa) was analyzed by western blot experiments. One representative blot out of 3 is shown. **b** Confluent HUVECs were treated with cycloheximide (3 µg/ml) as indicated. Total protein level of IkBa was determined by western blot analysis. One representative blot out of 3 is shown. **c** Confluent HUVECs were treated with vioprolide A (10 nM) as indicated either as single treatment or repetitive treatment each 12 h. Total protein level of IkBa was determined by western blot analysis. One representative blot out of 3 is shown. VioA, vioprolide A; CHX, cycloheximide. Data are expressed as mean \pm SEM. n=3. *P ≤ 0.05 vs. negative control (**b**) or single treatment (**c**).

F	ia	S	8
	IY	J	U

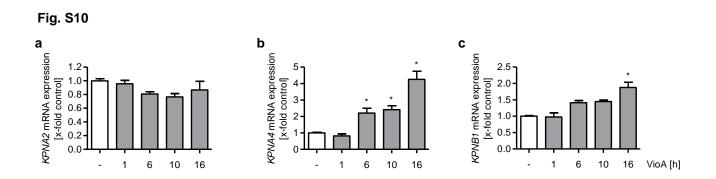


Fig. S8 Purity of the cytosolic and nuclear fraction after cell fractionation. **a** Confluent HUVECs were treated with vioprolide A (10 nM) or TNF (10 ng/ml) as indicated. Cytosolic and nuclear fractions were separated. Purity of the subcellular fractions was verified using western blot analysis. One representative blot out of 3 is shown. **b** Confluent HUVECs were treated with vioprolide A (10 nM) for 16 h followed by activation with TNF (10 ng/ml) as indicated. The nuclear fraction was separated and its purity was verified using western blot analysis. One representative blot out of 3 is shown. CF, cytosolic fraction; NF, nuclear fraction; VioA, vioprolide A; Topo1, topoisomerase 1. n=3.

Fig. S9

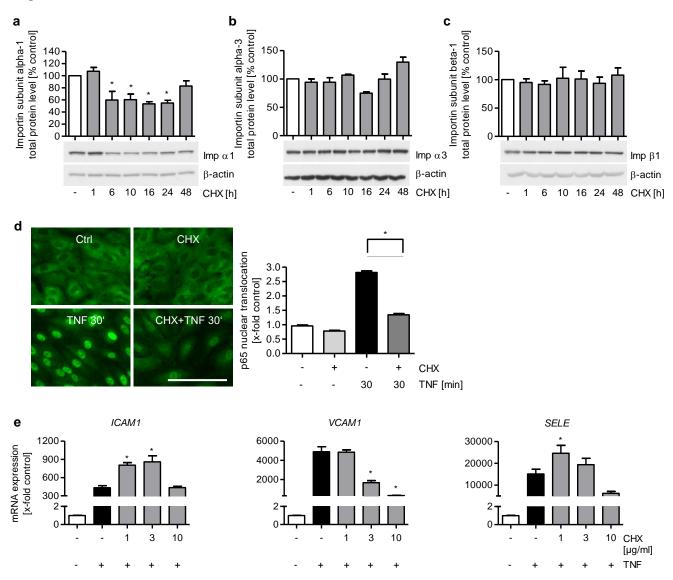


Fig. S9 Vioprolide A has no influence on the expression of *Renilla* luciferase. HUVECs were co-transfected with a vector coding for the NF- κ B response element and firefly luciferase and a control vector coding for *Renilla* luciferase. 24 h post transfection, HUVECs were treated with vioprolide A as indicated for 16 h followed by activation with TNF (10 ng/ml) for 6 h. *Renilla* luciferase activity was measured by dual-luciferase reporter gene assay and luminescence measurement. Data are expressed as mean \pm SEM. n=4.

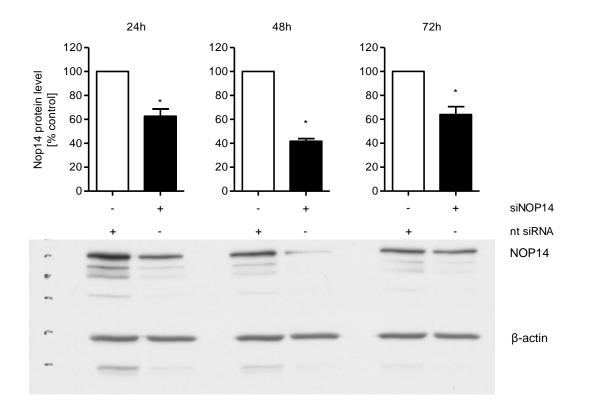

Fig. S10 Vioprolide A has no influence on KPNA2 mRNA expression but increases *KPNA4* and *KPNB1* mRNA levels. Confluent HUVECs were treated with 10 nM vioprolide A as indicated. Total mRNA expression of *KPNA2* (a), *KPNA4* (b) and *KPNB1* (c) was measured with quantitative PCR. vioA, vioprolide A. Data are expressed as mean \pm SEM. n=3. *P \leq 0.05 vs. TNF control.

Fig. S11

Fig. S11 Effects of cycloheximide on the total protein level of importins, p65 nuclear translocation and target gene expression. **a-c** Confluent HUVECs were treated with 3 µg/ml cycloheximide as indicated. Total protein levels of importin subunit alpha-1 (**a**), importin subunit alpha-3 (**b**) and importin subunit beta-1 (**c**) were determined by western blot. One representative blot is shown. **d** Confluent HUVECs were treated with 3 µg/ml cycloheximide for 16 h followed by activation with 10 ng/ml TNF for 30 min. p65 was visualized by immunocytochemistry and fluorescence microscopy. One representative experiment out of 3 is shown. Scale bar, 200 µm. **e** Confluent HUVECs were treated for 16 h with cycloheximide as indicated followed by activation with TNF (10 ng/ml) for 2 h (*SELE*) or 4 h (*ICAM1*, *VCAM1*). The mRNA expression of *ICAM1*, *VCAM1* and *SELE* was analyzed by quantitative PCR. CHX, cycloheximide; Imp, importin. Data are expressed as mean \pm SEM. n=3. *P \leq 0.05 vs. control (**a-c**) or TNF control (**d**-**e**).

Fig. S12

Fig. S12 Knockdown of NOP14 in HUVECs. Subconfluent cells were transfected with siRNA against NOP14 (siNOP14, 60 nM) or non-targeting siRNA (nt siRNA, 60 nM) using GeneTrans II Transfection Reagent. 24 h, 48 h and 72 h after transfection, total protein expression of NOP14 was analyzed using western blot experiments. One representative blot out of 3 is shown. Data are expressed as mean \pm SEM. n=3. *P \leq 0.05 vs. negative control.