COSMO-CLM Regional Climate Simulations in the CORDEX framework: a review

Silje Lund Sørland^{1,*}, Roman Brogli¹, Praveen Kumar Pothapakula², Emmanuele Russo³, Jonas Van de Walle⁴, Bodo Ahrens², Ivonne Anders^{5,6}, Edoardo Bucchignani^{7,8}, Edouard L. Davin¹, Marie-Estelle Demory¹, Alessandro Dosio⁹, Hendrik Feldmann¹⁰, Barbara Früh¹¹, Beate Geyer¹², Klaus Keuler¹³, Donghyun Lee¹⁴, Delei Li¹⁵, Nicole P.M. van Lipzig⁴, Seung-Ki Min¹⁴, Hans-Jürgen Paniz¹⁰, Burkhardt Rockel¹², Christoph Schär¹, Christian Steger¹¹, and Wim Thierv¹⁶ ¹Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland ²Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, Germany ³Climate and Environmental Physics, University of Bern, Switzerland ⁴Department of Earth and Environmental Sciences, KU Leuven, Belgium ⁵Deutsches Klimarechenzentrum, Germany ⁶Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria ⁷Centro Italiano Ricerche Aerospaziali (CIRA), Capua, Italy ⁸Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) Caserta. Italy ⁹European Commission Joint Research Centre (JRC), Ispra, Italy ¹⁰Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Germany ¹¹Deutscher Wetterdienst (DWD), 63067 Offenbach, Germany ¹²Helmholtz-Zentrum Geesthacht, Germany ¹³Chair of Atmospheric Processes, Brandenburg University of Technology (BTU) Cottbus - Senftenberg, Germany ¹⁴Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), South Korea ¹⁵CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Oingdao, China ¹⁶Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Belgium *Current affiliation NORCE Norwegian Research Centre, Bergen, Norway

Correspondence: ssor@norceresearch.no

List of Tables

5

1	Overview of the different model versions and the associated configurations	3
2	Overview over the observational datasets.	4
3	Overview over the GCMs that have been downscaled for the RCP8.5 scenario with various COSMO-CLM	
	model versions and the horizontal grid spacings 0.44° , 0.22° and 0.11° . The number of simulations for each	
	domain is given at the bottom, where RCP4.5 and RCP2.6 is included for reference	5
4	Mean bias (only land points) for the seasons DJF, MAM, JJA and SON for each ERA-Interim driven simulation	
	for the five domains for 2M temperature (K) and precipitation (%)	6

10 List of Figures

	1	Temperature seasonal Climatology (1981-2010) for Europe given by the three different observational datasets	
		GHCN, UDEL and CRU. See Table S2 for details about the observatios.	7
	2	Precipitation seasonal climatology (1981-2010) for Europe given by the three different observational datasets	
		UDEL, CRU, CPCC, MSWEP, GPCP and CPC. See Table S2 for details about the observatios	8
15	3	Same as Figure S1, but for Africa.	9
	4	Same as Figure S2, but for Africa.	10
	5	Same as Figure S1, but for Australasia	11
	6	Same as Figure S2, but for Australasia	12
	7	Same as Figure S1, but for East-Asia.	13
20	8	Same as Figure S1, but for East-Asia.	14
	9	Same as Figure S1, but for South-West Asia	15
	10	Same as Figure S2, but for South-West Asia	16
	11	2-meter air temperature absolute bias ($\Delta_a T_{2m}$; column 1 and 3) and total seasonal precipitation relative bias	
		$(\Delta_r P;$ column 2 and 4) of the evaluations runs for MAM for the different domains and model resolutions and	
25		versions. The bias is masked white when the model value falls within the observational range. See Table S1 for	
		the model configurations and Table S3 for the full simulation overview.	17
	12	Same as Figure S11, but for SON.	18
	13	2-meter air temperature absolute bias ($\Delta_a T_{2m}$; column 1 and 3) and total seasonal precipitation relative bias	
		$(\Delta_r P;$ column 2 and 4) of the ERA-Interim reanalysis for DJF for the different domains. The bias is masked	
30		white when the model value falls within the observational range	19
	14	Same as Figure S13 but for MAM.	20
	15	Same as Figure S13 but for JJA.	21
	16	Same as Figure S13 but for SON	22
	17	Zoomed in version of Figure 5 in the main text.	23
35	18	Zoomed in version of Figure 6 in the main text.	24
	19	Zoomed in version of Figure 7 in the main text.	25
	20	Zoomed in version of Figure 8 in the main text.	26

Region	Region-ID	Model version	Institution	Vertical levels Model top	Time step (s)	Aerosol	Tuning parameters	Comments	Reference
		CCLM4-8-17	BTU, DWD, ETH	40/22.7km	100	Tanre	Default	Evaluation run 1989-2008	Kotlarski et al. (2014); Keuler et al. (2016); Dalelane et al. (2018); Buïlow et al. (2019).
Europe	EOK-11	COSMO-crCLIM-v1-1	ETH	40/22.7km	90	Aerocom	Default, except a some changed due to past experience and sensistivity runs (tkhmin, tkmmin,		Leutwyler et al. (2017) Vautard et al. (2020)
(EUR)		CCLM4-8-17	BTU	40/22.7km	300	Tanre	Default		
	LUK-44	CCLM5-0-6	ЕТН	40/22.7km	300	Tanre	Objective Calibration	The recommended version from the CLM-Community (from year 2015)	Sørland et al. (2018)
Africa	AER-22	CCLM4-8-17	KIT	35/30km	120	Tanre	Default	Used to investigate the added value of increasing the horizontal resolution. Thus, only one evaluation run (1989-2000).	Panitz et al. (2014)
(AFR)	A111-22	CCLM-5-0-15	КІТ	57/30km	150	Tegen	Default, except q_crit, rlam_heat, uc1, following Bucchignani et al. (2016)	CORDEX-CORE framework	
	AFR-44	CCLM4-8-17	KIT	35/30km	240	Tanre	Default	Tropical setup, and lower height of damping changed to 18 km. Evaluation run 1989-2008	Panitz et al. (2014) Dosio and Panitz (2016) Dosio et al. (2015)
East Asia	EAS-22	CCLM5-0-9	POSTECH	40/22.7km	150	Tanre	Default except tkhmin, rlam_heat, entr_sc, uc1, fac_rootdp2, soilhyd	Spectral nudging on. CORDEX-CORE framework	
(LAS)	EAS-44	CCLM-5-0-2	HZG	45/30km	300	Tegen	Default	Tropical setup, and lower height of damping changed to 18 km.	Li et al. (2018, 2019)
Australasia	AUS-22	CCLM-5-0-15	HZG	57/30km	150	Tanre	Default (except rat_sea which is decreased)	Tropical setup, and lower height of damping changed to 18 km. Bechthold et al. (2008) convection scheme. CORDEX-CORE framework.	
(AUS)	AUS-44	CCLM4-8-17-CLM3-5	HZG	35/30km	360	Tanre	Default	Tropical setup, and lower height of damping changed to 18 km Bechthold et al. (2008) convection scheme. Coupled to the Community Land Model	Di Virgilio et al. (2019) Hirsch et al. (2019)
South Asia	WAS-22	COSMO-crCLIM-v1-1	ETH/GUF	57/30km	150	Aerocom	Default, except a couple changed due to sensitivity runs: rlam_heat, radfac, I_g	Tropical setup, and lower height of damping changed to 18 km. CORDEX-CORE framework.	Leutwyler et al. (2017) Pothapakula et al. (2020)
(WAS)	WAS-44	CCLM4-8-17	GUF	35/30km	240	Tanre		Kessler (1969) microphysics scheme. No ERA-Interim simulation is performed, but the MPI-ESM-LR has been downscaled for the historical period and RCP4.5 scenario.	Asharaf and Ahrens (2015)

Table S1. Overview of the different model versions and the associated configurations and horizontal resolution, for the five different domains investigated; Europe at 0.44 ° (EUR-44) and 0.11° (EUR-11), Africa at 0.44 ° (AFR-44) and 0.22° (AFR-22), East-Asia at 0.44 ° (EAS-44) and 0.22° (EAS-22), Australasia at 0.44 ° (AUS-44) and 0.22° (AUS-22), and South Asia at 0.44 ° (WAS-44) and 0.22° (WAS-22). The institute acronyms are Brandenburg University of Technology Cottbus - Senftenberg, Germany (BTU); Deutscher Wetterdienst, Germany (DWD); ETH Zurich, Switzerland (ETH); Goethe University Frankfurt, Germany (GUF); Helmholtz-Zentrum Geesthacht, Germany (HZG); Karlsruhe Institute of Technology, Germany (KIT); POSTECH, South-Korea (POSTECH). For each model configuration, an evaluation run has been performed, where the boundary conditions are taken from the ERA-Interim reanalysis. If nothing else is stated, the evaluation period is covering the years 1979-2010. The log-files from the respective simulations with a full overview over the different configurations is provided as a supplementary file.

Variable, symbol (unit)	Dataset and version	Temporal resolution	Spatial resolution	References
Near-surface				
temperature, T2M				Fan and van den
(K)	GHCN v2 +CAMS	monthly	0.5 °	Dool (2008)
		monthly	0.5.0	Willmott and
	UDEL V401	monthly	0.5	Matsuura (2001)
	TS CRU v3.24	monthly	0.5 °	Jones (2008)
Precipitation, P		monthly	٥٢٩	Willmott and
(mm)	UDEL V401	monthly	0.5	Matsuura (2001)
	CRU v401	monthly	0.5 °	Jones (2008)
				Schneider et al.
	GPCC v2018	monthly	0.25 °	(2018)
	MSWEP v2	3H	0.1 °	Beck et al. (2019)
			2 50	
	GPCP v2.3	monthly	2.5	Adier et al. (2003)
	CPC v1.0	daily	0.5 °	Chen et al. (2008)

Table S2. Overview over the observational datasets with their temporal and spatial resolution and references. All datasets provide data for the full evaluation period 1979 - 2010.

		E	UR	A	FR	E	AS	A	US	W	AS
		0.11	0.44	0.22	0.44	0.22	0.44	0.22	0.44	0.22	0.44
MPI-ESM-r1	CCLM4-8-17	\checkmark	\checkmark		\checkmark						(√)
	CCLM4-8-17-CLM3-5								\checkmark		
	CCLM5-0-2						\checkmark				
	CCLM5-0-6		\checkmark								
	CCLM-5-0-9					\checkmark					
	CCLM-5-0-15			\checkmark				\checkmark			
	CcrCLIM-v1-1	\checkmark								\checkmark	
MPI-ESM-r2	CcrCLIM-v1-1	\checkmark									
MPI-ESM-r3	CcrCLIM-v1-1	\checkmark									
HadGEM2-ES-r1	CCLM4-8-17	\checkmark			\checkmark						
	CCLM5-0-2						\checkmark				
	CCLM5-0-6		\checkmark								
	CCLM5-0-15			\checkmark				\checkmark			
HadGEM2-AO-r1	CCLM-5-0-9					\checkmark					
CNRM-CM5-r1	CCLM4-8-17	\checkmark			\checkmark						
	CCLM5-0-2						\checkmark				
	CCLM5-0-6		\checkmark								
EC-EARTH-r12	CCLM4-8-17	\checkmark			\checkmark						
	CCLM4-8-17-CLM3-5								\checkmark		
	CCLM5-0-2						\checkmark				
	CCLM5-0-6		\checkmark								
	CcrCLIM-v1-1	\checkmark								\checkmark	
CanESM2-r1	CCLM4-8-17	\checkmark									
NorESM-r1	CCLM5-0-15			\checkmark				\checkmark			
	CcrCLIM-v1-1	\checkmark								\checkmark	
MIROC5-r1	CCLM4-8-17	\checkmark									
	CCLM5-0-6		\checkmark								
Sum RCP8.5	38	11	6	3	4	2	4	3	2	3	0
Sum RCP4.5	16	4	1	0	4	0	4	0	2	0	1
Sum RCP2.6	14	4	0	3	0	2	0	3	0	2	0
Sum all RCPs	68 (80 incl ERA-I)										

Table S3. Overview over the GCMs that have been downscaled for the RCP8.5 scenario with various COSMO-CLM model versions and the horizontal grid spacings 0.44° , 0.22° and 0.11° . The number of simulations for each domain is given at the bottom, where RCP4.5 and RCP2.6 is included for reference.

tas land bias (K)	DJF	MAM	JJA	SON
EUR-44-CCLM4.8.17	-0.89	0.01	1	-0.17
EUR-44-CCLM5.0.6	-0.61	-0.17	0.38	-0.13
EUR-11-CCLM4.8.17	-0.44	0.01	0.68	-0.21
EUR-11-crCLIM	-0.33	0.15	0.51	-0.18
AFR-44-CCLM4.8.17	-0.96	0.71	0.27	0.38
AFR-22-CCLM4.8.17	-0.56	1.12	0.59	0.66
AFR-22-CCLM5.0.15	-1.01	-0.05	-0.23	-0.48
WAS-22-crCLIM	-0.61	0.2	0.08	-0.3
AUS-44-CCLM4.8.17	0.1	0.24	0.14	0.47
AUS-22-CCLM5.0.15	-0.24	-0.43	-0.94	-0.07
EAS-44-CCLM5.0.2	0.9	0.5	0.76	0.37
EAS-22-CCLM5.0.9	0.83	0.49	0.81	-0.01
pr land bias (%)	DJF	MAM	JJA	SON
EUR-44-CCLM4.8.17	-11.18	-4.83	-42.7	-26.2
EUR-44-CCLM5.0.6	-4.56	0.7	-29.79	-14.94
EUR-11-CCLM4.8.17	-7.9	1.31	-34.51	-17.45
EUR-11-crCLIM	-9.8	-3.42	-34.37	-23.46
AFR-44-CCLM4.8.17	-54.28	16	-19.43	1.75
AFR-22-CCLM4.8.17	-62.74	-26.3	-45.25	-41.56
AFR-22-CCLM5.0.15	-41.33	22.05	3.17	-1.81
WAS-22-crCLIM	17.77	17.63	-27.67	2.35
AUS-44-CCLM4.8.17	-7.36	-3.13	-13.03	-5.46
AUS-22-CCLM5.0.15	-30.19	-27.25	-17.54	-11.44
EAS-44-CCLM5.0.2	84.96	45.8	-4.44	20.39
EAS-22-CCLM5.0.9	79.24	56.82	-2.85	19.11

Table S4. Mean bias (only land points) for the seasons DJF, MAM, JJA and SON for each ERA-Interim driven simulation for the five domains for 2M temperature (K) and precipitation (%)

Figure S1. Temperature seasonal Climatology (1981-2010) for Europe given by the three different observational datasets GHCN, UDEL and CRU. See Table S2 for details about the observatios.

Figure S2. Precipitation seasonal climatology (1981-2010) for Europe given by the three different observational datasets UDEL, CRU, CPCC, MSWEP, GPCP and CPC. See Table S2 for details about the observatios.

Figure S3. Same as Figure S1, but for Africa.

Figure S4. Same as Figure S2, but for Africa.

Figure S5. Same as Figure S1, but for Australasia.

Figure S6. Same as Figure S2, but for Australasia.

Figure S7. Same as Figure S1, but for East-Asia.

P (mm/month)

Figure S8. Same as Figure S1, but for East-Asia.

Figure S9. Same as Figure S1, but for South-West Asia

Figure S10. Same as Figure S2, but for South-West Asia

Figure S11. 2-meter air temperature absolute bias ($\Delta_a T_{2m}$; column 1 and 3) and total seasonal precipitation relative bias ($\Delta_r P$; column 2 and 4) of the evaluations runs for MAM for the different domains and model resolutions and versions. The bias is masked white when the model value falls within the observational range. See Table S1 for the model configurations and Table S3 for the full simulation overview.

Figure S12. Same as Figure S11, but for SON.

/

Figure S13. 2-meter air temperature absolute bias ($\Delta_a T_{2m}$; column 1 and 3) and total seasonal precipitation relative bias ($\Delta_r P$; column 2 and 4) of the ERA-Interim reanalysis for DJF for the different domains. The bias is masked white when the model value falls within the observational range.

Figure S14. Same as Figure S13 but for MAM.

Figure S15. Same as Figure S13 but for JJA.

Figure S16. Same as Figure S13 but for SON.

Figure S17. Zoomed in version of Figure 5 in the main text.

Figure S18. Zoomed in version of Figure 6 in the main text.

Figure S19. Zoomed in version of Figure 7 in the main text.

Figure S20. Zoomed in version of Figure 8 in the main text.