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Introduction

This supplementary information provides additional methodological details and figures.
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Text S1. A non-parametric estimate of the IPI

A non-parametric measure of the uncertainty in the estimate of E is obtained through

direct comparison of modeled estimates of E with observations. Values of Êi are gen-

erated by passing the calibration values of Pi to Eq. 2. A non-parametric estimate of

the IPI can be made by directly determining the desired quantiles of the distribution of

differences between all of the observed Ei and model-predicted Êi (i.e., the 2.5th, and

97.5th percentiles, for 95% confidence level). This estimate of uncertainty is shown as the

non-parametric estimate of the IPI in the manuscript. Non-parametric approaches are

powerful – they require few assumptions, and can be asymmetric about the regression

line, but rely entirely on the raw data and do not extrapolate beyond it. This approach,

therefore, works best with large calibration data sets.

Text S2. A Bayesian estimate of the IPI

The Bayesian estimate of the IPI shown in Figs 1, 2, S2 and S3 is calculated in two

steps. The first step is calibration, where calibration data is used to generate posterior

probability distributions for β0, β1, and σ. The linear relationship between P and E for

the calibration data set can be re-written:

Pi ∼ N (β0 + β1Ei, σ
2). (1)

The second step is prediction, where the posterior probability distribution for E0 is gen-

erated. The relationship between a new value of P, P0, and the corresponding value of E,

E0, is given by:

P0 ∼ N (β0 + β1E0, σ
2), (2)
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where β0, β1 and σ are posterior probability distributions calculated in Eq.1. A posterior

distribution in E0 is generated for each realized calibration parameter set, and all values

are combined for a total posterior distribution in E0. We used flat priors for the slope

and intercept parameters, and for the values of E0. The prior for σ was flat, but strictly

positive. All calculations were done numerically with the R interface to the software Stan

(code available at: https://github.com/qgeobio/IPI).

Text S3. Monte Carlo simulation

The reliability of the methods used to estimate the IPI were evaluated with a Monte Carlo

simulation (Figs S2 and S3). The details of this approach are as follows (also depicted

in Fig. S2.A): First, as for the analysis shown in Fig. 1, an artificial calibration data set

of n pairs of E and P values was generated by choosing ‘true’ values of the intercept and

slope (β0 and β1), and σ (with ε assumed normal), and passing randomly chosen E values

to Eq. 1 to generate corresponding P values (i.e. (Ei, Pi), i = 1, ..., n). An OLS linear

regression model was then fitted to the artificial dataset to generate estimates of β0 and

β1 (β̂0 and β̂1 respectively). The Monte Carlo simulation was then initiated by inserting

one further ‘true’ E value (E0) into Eq. 1 to generate a corresponding P value. This P

value was then treated as a new measurement (P0) and inserted to Eq. 2, using the fitted

estimates β̂0 and β̂1, to generate a value of the classical estimator for E (Ê0) for the new

P0. As the ‘true’ value of E, E0, is known, the error in the estimate, Ê0, can be calculated

(i.e. ∆E = Ê0 - E0). This was repeated a large number (∼ 106) of times. The values of

∆E corresponding to a narrow band around a specific P0 value were taken, and the 2.5th
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and 97.5th percentiles of this distribution are presented as the Monte Carlo simulation

or the error in E for that value of P (Fig. S2.B and S2.C). This analysis simulates an

‘empirical’ distribution of estimates of E for a given artificial calibration data set.

This entire approach was repeated with randomly generated artificial calibration data

sets of different sizes to evaluate the impact of n on the reliability of statistical estimates

of the IPI (Fig. S3). 100,000 artificial datasets were generated ranging from n = 3 to

n = 1000. The MC simulation is considered as an empirical representation of the error

distribution associated with estimates of E0 for a given calibration dataset. At high n

the estimate of the IPI is not reduced with the addition of data points. At very low n

(n < 8), the calibrations are not reliable, and the fiducial approach is unstable in this

region. At low to medium n (8 < n < 30− 50), the non-parametric approach systemati-

cally underestimates the IPI while the fidicual approach systematically overestimates the

IPI. The Bayesian approach and the Simple IPI approach described in the main text are

a good estimates of the IPI. At high n (n > 30− 50) all approaches converge to the same

value of the IPI. As can be seen here, there are substantial increases in the reliability

of calibrations with increasing n, up to around n = 30 − 50. Beyond this, increasing n

results in only modest improvements.
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Figure S1. Graphical representation of the Simple IPI. The surface in this illustration

represents the probability distribution of the response variable (P: the proxy variable, plotted on

the y axis) across a continuous range of values of the independent variable (E: the environmental

variable, plotted on the x axis). The red lines and corresponding shaded regions represent the

probability distribution at 3 different values of the environmental variable (noise in the regres-

sion). The blue line and corresponding shaded area represent the translation of the probability

distribution in the y axis to the x axis by ‘rotating’ the distribution through the gradient. This

represents the ‘Simple IPI’ approach outlined in the main text (Eq.3).
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Figure S2. Validation of IPI estimation methods. A) Example calibration based

on synthetic data. B) Example application to synthetic time series data. C) Illustration of the

Monte Carlo (MC) simulation and definition of ∆E (see Text S3 for description of the approach).

The value ∆E (Ê0 - E0) represents the offset of the estimate of E from the ‘true’ value of E.

D) Cumulative distribution function (CDF) of ∆E from the Monte Carlo analysis at a given P

value (labeled in A), with IPI estimates plotted for comparison. Parameters: β0 = 0.1; β1 = 0.8;

σ = 0.07; n = 100. Code available at: https://github.com/qgeobio/IPI

July 19, 2021, 5:23am



: X - 7

0.1 0.2 0.5 1.0 2.0 5.0 10.0

Width of estimated IPI / Width of simulated IPI

N
o
. 

c
a

lib
ra

tio
n

 d
a

ta
 p

o
in

ts
 (

N
)

1
0

3
0

1
0

0
3

0
0

1
0

0
0 95% IPI: Simple

95% IPI: Non−par
95% IPI: Fiducial
95% IPI: 

A) B)

C)

D)
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Calibration data, N = 1000

0.5 1.0 2.0

Simple
Non−parametric
Fiducial
Bayesian

e
p

d
f

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Calibration data, N = 100

0.5 1.0 2.0

Simple
Non−parametric
Fiducial
Bayesian

e
p

d
f

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Calibration data, N = 20

Width of estimated IPI / Width of simulated IPI

0.5 1.0 2.0

Simple
Non−parametric
Fiducial
Bayesian

e
p

d
f

Bayesian

N = 1000

N = 100

N = 20

Figure S3. Effect of n on IPI for different methods. A) Estimates of the width of the

IPI, calculated using four different methods, at a wide range of differently-sized calibration data

sets (no. data points = n), relative to the width of the IPI from the MC simulation. B) Empirical

cumulative distribution function (ecdf) of the width of the estimated IPI relative to the MC IPI

for four different methods, for a calibration dataset consisting of n = 1000 datapoints. Each ecdf

is formed of 5000 MC simulations. C) As B but with n = 100. D) As B but with n = 20. The

parameters of the artificial calibration data sets are: β0 = 0.3; β1 = 0.5; σ = 0.05; and variable

n.
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Figure S4. Maximum and minimum inferred paleoenvironmental changes for a

given proxy time series. Annotated version of Figure 2B from the main manuscript. Grey

region represents the ’simple IPI’. Red and blue arrows respectively depict the minimum and

maximum inferred change in [CO2−
3 ] for the observed change in SNW of foraminifera shells – i.e.

the minimum and maximum change possible within the shaded region.
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