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Abstract
This thesis presents research which spans three conference papers and one manuscript which
has not yet been submitted for peer review.

The topic of 1 is the inherent complexity of maintaining perfect height in B-trees. We con-
sider the setting in which a B-tree of optimal height contains n = (1− ε)N elements whereN
is the number of elements in full B-tree of the same height (the capacity of the tree). We show
that the rebalancing cost when updating the tree—while maintaining optimal height—depends
on ε. Specifically, our analysis gives a lower bound for the rebalancing cost of Ω(1/(εB)). We
then describe a rebalancing algorithm which has an amortized rebalancing cost with an almost
matching upper bound of O(1/(εB) · log2(min{1/ε, B})). We additionally describe a scheme
utilizing this algorithm which, given a rebalancing budget f(n), maintains optimal height for
decreasing ε until the cost exceeds the budget at which time it maintains optimal height plus
one. Given a rebalancing budget of Θ(logn), this scheme maintains optimal height for all but
a vanishing fraction of sizes in the intervals between tree capacities.

Manuscript 2 presents empirical analysis of practical randomized external-memory algo-
rithms for computing the connected components of graphs. The best known theoretical results
for this problem are essentially all derived from results for minimum spanning tree algorithms.
In the realm of randomized external-memory MST algorithms, the best asymptotic result has
I/O-complexity O(sort(|E|)) in expectation while an empirically studied practical algorithm
has a bound of O(sort(|E|) · log(|V |/M)). We implement and evaluate an algorithm for con-
nected components with expected I/O-complexity O(sort(|E|))—a simplification of the MST
algorithm with this asymptotic cost, we show that this approach may also yield good results
in practice.

In paper 3, we present a novel approach to simulating large-scale population protocol mod-
els. Naive simulation of N interactions of a population protocol with n agents and m states
requires Θ(n logm) bits of memory and Θ(N) time. For very large n, this is prohibitive both
in memory consumption and time, as interesting protocols will typically requireN > n inter-
actions for convergence. We describe a histogram-based simulation framework which requires
Θ(m logn) bits of memory instead—an improvement as it is typically the case that n � m.
We analyze, implement, and compare a number of different data structures to perform correct
agent sampling in this regime. For this purpose, we develop dynamic alias tables which allow
sampling an interaction in expected amortized constant time. We then show how to use sam-
pling techniques to process agent interactions in batches, giving a simulation approach which
uses subconstant time per interaction under reasonable assumptions.

With paper 4, we introduce the new model of fragile complexity for comparison-based al-
gorithms. Within this model, we analyze classical comparison-based problems such as finding
the minimum value of a set, selection (or finding the median), and sorting. We prove a number
of lower and upper bounds and in particular, we give a number of randomized results which
describe trade-offs not achievable by deterministic algorithms.
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Zusammenfassung
Diese Dissertation befasst sich mit Forschungsergebnissen dreier Publikationen im Rahmen
wissenschaftlicher Konferenzen und eines unveröffentlichten Manuskripts. Hierbei widmen
sich Publikation 1 und Manuskript 2 beide dem übergefassten Thema der Algorithmen und
Datenstrukturen für Externspeicher (External Memory). Spezifisch widmen wir uns in Publi-
kation 1 der Problemstellung der Ausbalancierung bzw. des Rebalancings von B-Bäumen. Wir
analysieren die Komplexität des Rebalancings nach durchgeführten Aktualisierungen während
die optimale Höhe des Baums aufrecht erhalten wird. In Manuskript 2 implementieren, testen
und optimieren wir effiziente, randomisierte External Memory Algorithmen zur Bestimmung
der Zusammenhangskomponenten eines vollständig externen Graphen. Publikation 3 befasst
sich mit einem Ansatz zur effizienteren Simulation von Population Protocols beim Vorliegen
von großen Populationsgrößen. Zuletzt stellen wir in Publikation 4 algorithmische Ergebnisse
für ein neues Komplexitätsmodell vor, welches wir als Fragile Complexity bezeichnen.

Publikation 1: “On Optimal Balance in B-Trees: What Does It Cost to Stay in Per-
fect Shape?” Hier widmen wir uns der inhärenten Komplexität des Erhalts einer idealen
Höhe von B-Bäumen. Bei B-Bäumen [6] handelt es sich um balancierte Suchbäume, die zur
Indizierung von Daten auf Datenträgern angewandt werden und somit vor allem für Daten-
banken und Dateisystemen von Bedeutung sind. Eines der Hauptmerkmale von B-Bäumen ist
hierbei deren hoher Verzweigungsfaktor, der zu einer geringen Höhe dieser Suchbäume führt.

Das standardmäßig angewandte Rebalancing Schema legt hierbei einen unteren Grenzwert
für den Verzweigungsfaktor fest, welcher für gewöhnlich die Hälfte des oberen Grenzwertes
des Verzweigungsfaktors beträgt. Erfolgt eine Überschreitung des oberen Grenzwerts wird der
Baumknoten infolgedessen geteilt. Bei einer Unterschreitung des unteren Grenzwerts hinge-
gen erfolgt eine Verschmelzung zwischen zwei Geschwisterknoten. Beide Operationen können
sich hierbei nach oben hin ausweiten. Sollte dabei die Wurzel erreicht werden, kommt es im
Falle einer Teilungsoperation zur Vergrößerung der Baumhöhe, wohingegen es im Falle einer
Verschmelzungsoperation zu einer Verkleinerung kommt. Die Anwendung dieses Standard-
schemas ist sehr effizient und die Kosten eines Rebalancings sind höchstens logarithmisch. Er-
folgt eine geringe Senkung des unteren Grenzwerts sind die amortisierten Rebalancingkosten
konstant. Jedoch kann es im schlechtesten Fall dazu führen, dass die Höhe des Baums negativ
beeinflusst wird. Somit liegt der Unterschied zwischen der idealen und der schlechtesten Höhe
eines B-Baums unter Anwendung dieses Schemas in einem konstanten Faktor.

Da die Suchkosten innerhalb eines B-Baums proportional zur Höhe sind und die Höhe dieser
Suchbäume üblicherweise relativ gering ist, hat eine suboptimale Höhe einen signifikanten
Einfluss auf die Suchkosten. Der Fokus unserer Arbeit lag in der Analyse des Einflusses auf die
Kosten des Rebalancings unter der Annahme, dass die Höhe eines B-Baums im idealen Zustand
gehalten wird.

Wir betrachten den Zustand, in welchem ein B-Baum mit optimaler Höhe n = (1 − ε)N
Elemente enthält, wobei N die Anzahl der Elemente in vollständigen B-Bäumen identischer
Höhe darstellt. Wir zeigen, dass die Kosten eines Rebalancings bei einer Aktualisierung des
Baums mit gleichzeitigem Erhalt der optimalen Höhe abhängig ist von ε. Konkret stellt unsere
Analyse die Untergrenze der Kosten eines Rebalancings von O(1/(εB)) dar. Wir beschreiben
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hierzu einen Rebalancing Algorithmus, welcher amortisierte Kosten eines Rebalancings mit
einer nahezu übereinstimmenden oberen Schranke von

O
(

1

εB
· log2(min{1/ε, B})

)
aufweist. Ferner wird ein Schema beschrieben, das unter Anwendung dieses Algorithmus und
unter Voraussetzung eines Rebalancing Budgets f(n) die ideale Höhe für ein sinkendes ε so
lange erhält, bis die Kosten das Budget übersteigen, in welchem Fall die ideale Höhe plus eins
beibehalten wird. Eine offensichtliche Wahl für das Rebalancing Budget stellt O(logn) dar, da
dies den Suchkosten in diesem Baum entspricht. Mit diesem Rebalancing Budget erhält die-
ses Schema die ideale Höhe für den Großteil des Intervalls zwischen den Baumkapazitäten
aufrecht. Soweit es uns bekannt ist, handelt es sich hierbei um das erste Rebalancing Sche-
ma, welches garantiert, dass die Höhe des B-Baumes maximal bei der idealen Höhe plus einer
Konstante gehalten wird.

Manuskript 2: “Engineering an Expected O(Sort(m)) External Connected Compon-
ents Algorithm.” Im Rahmen unseres Manuskripts präsentieren wir eine empirische Ana-
lyse angewandter, randomisierter External Memory Algorithmen zur Berechnung von Zusam-
menhangskomponenten von Graphen. Die Partitionierung eines Graphen in dessen Zusam-
menhangskomponenten stellt eine der einfachsten Berechnungen dar, welche auf einem Gra-
phen durchgeführt werden kann. Bezogen auf Internspeicher (Internal Memory) ist die Berech-
nung der Zusammenhangskomponenten trivial in linearer Zeit unter Verwendung von jegli-
chen Graphtraversierungen durchfürbar, wie zum Beispiel durch Breitensuche (Breadth First
Search, BFS) oder Tiefensuche (Depth First Search, DFS).

Im External Memory hingegen ist die Berechnung nicht-trivial und die bekannten theore-
tischen Ergebnisse für diese Problemstellung beziehen sich hier meist auf das kompliziertere
minimale Spannbaum (MST) Problem. Die derzeit beste asymptotische Schranke für determi-
nistische Algorithmen [5] liegt bei einer I/O-Komplexität von

O
(
sort(|E|) log log

(
|V |B
|E|

))
.

Mit sort(N) beschreibenwir die I/O-Komplexität des Sortierungsvorgangs vonN Elementen
im External Memory Modell [2]:

sort(N) = Θ

(
N

B
logM

B

N

B

)
Im Bereich der randomisierten External Memory MST Algorithmen weist das beste asym-

ptotische Ergebnis eine I/O-Komplexität vonO(sort(|E|)) auf [7, 1]. Dies wird erreicht, indem
der Algorithmus mit erwarteter linearer Zeit von Karger, Klein und Tarjan (KKT) [8] für Ex-
ternal Memory adaptiert wird. Die MST Version des KKT Algorithmus ist hierbei auf einen
nicht-trivialen Verifikationsalgorithmus angewiesen. Weiterhin nutzt er Borůvka Schritte zur
Knotenkontraktion.

6



Es gibt jedoch auch einen deutlich simpleren Algorithmus nach Sibeyn und Meyer (SM) [9],
der sich empirisch als effizient erwiesen hat und eine erwartete I/O-Komplexität von

O
(
sort(|E|)) · log

(
|V |
M

))
aufweist. Dieser SMAlgorithmus verwendet weiterhin eine effiziente Knotenkontraktionsstra-
tegie basierend auf Time Forward Processing. Im Falle der Berechnung der Zusammenhangs-
komponenten entfällt jedoch für den KKT Algorithmus ebenfalls die Notwendigkeit des Veri-
fikationsalgorithmus; dieser kann hier durch simples Relabelling ersetzt werden.

In der in Manuskript 2 präsentierten Arbeit implementieren, evaluieren und optimieren wir
verschiedene Varianten des KKT Algorithmus für das Bestimmen der Zusammenhangskompo-
nenten eines Graphen. Wir erwägen verschiedene Knotenkontraktionsalgorithmen zur Nut-
zung innerhalb des KKT Algorithmus. Die übliche Wahl zur Knotenkontraktion liegt in der
Verwendung von Borůvka Schritten. Wir beschreiben und analysieren eine simple, randomi-
sierte Modifikation eines Borůvka Schrittes. Der Vorteil dieser randomisierten Modifikation
liegt darin, dass sie nur ein einfaches Relabelling erfordert, welches mittels zweier Sortierungs-
schritte erreicht wird. Der Nachteil jedoch liegt darin, dass der Vorgang eine Anzahl an Kanten
bereits vor der Kontraktion verwirft, was zu weniger Kontraktion pro Schritt verglichen mit
gewöhnlicher Borůvka Knotenkontraktion führt. Eine dritte Option liegt in der Nutzung von
SM zur Knotenkontraktion. Für die Analyse des KKT Algorithmus muss der Knotenkontrakti-
onsalgorithmus die Anzahl der Knoten um einer konstanten Bruchteil reduzieren, in welchem
Fall SM erwartete I/O Kosten vonO(sort(|E|)) aufweist [9]. In unserer Arbeit stellen wir fest,
dass SM sich als effizientester Weg zur Knotenkontraktion erweist.

Für eineMenge anGraphen vergleichenwir die Performance von Borůvkas Algorithmus, SM
und den von uns erwogenen, verschiedenen Versionen des KKT Algorithmus. Im Allgemeinen
lässt sich feststellen, dass SM eine hohe Effizienz aufweist und den schnellsten Algorithmus zur
Verwendung bei sehr dünnen Graphen darstellt. Jedoch weisen wir nach, dass Varianten des
KKT Algorithmus diese Effizienz schlagen, wenn die Graphendichte einen bestimmten Grenz-
wert überschreitet. Dieser Grenzwert variiert zwischen verschiedenen Graphenklassen und
liegt bei etwa |E|/|V | = 5; er scheint niedriger für Gilbert-Graphen als für zufällige, hyperbo-
lische Graphen zu sein.

Publikation 3: “Simulating Population Protocols in Sub-Constant Time per Inter-
aktion.” Wir erläutern im Rahmen dieser Arbeit einen neuen Ansatz für die Simulation von
umfassenden Population Protocol Modellen [3, 4]. Innerhalb eines Population Protocols be-
trachten wir eine Gruppe von n Agenten, wobei jeder eine Instanz eines endlichen Automaten
mit einer Menge von m Zuständen darstellt. Die Berechnung eines Protokolls erfolgt hierbei
über die Interaktion zwischen Agenten. Eine Übergangsfunktion spezifiziert die resultierenden
Zustände für jede mögliche Interaktion zweier Agenten. Im Standardmodell werden je Inter-
aktion zwei Agenten uniform zufällig ausgewählt.

Für unterschiedliche Fragestellungen auf technischen Systemen wurde Forschung zur Er-
stellung von Protokollen durchgeführt, die nach einer möglichst geringen Anzahl an Inter-
aktionen konvergieren und gleichzeitig möglichst wenige Zustände nutzen. Die Simulation
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solcher Protokolle stellt hierbei ein sinnvolles Tool dar, um die Analyse zu steuern. Jedoch er-
fordert die empirische Unterscheidung zwischen polylogarithmischen Termen die Simulation
von immensen Populationsgrößen.

Die Durchführung einer einfachen Simulation vonN Interaktionen eines Population Proto-
cols mit n Agenten undm Zuständen erfordert O(n logm) Speicher und O(N) Zeit. Für sehr
große Werte von n ist dieser Vorgang äußerst kostspielig bezüglich der Nutzung von Speicher
und Zeit, da interessante Protokolle üblicherweise N > n Interaktionen für eine Konvergenz
benötigen.

Wir beschreiben einen Weg um die Konfiguration als Histogramm der Zustände zu reprä-
sentieren. Diese alternative Darstellung benötigt hierbei lediglich O(m logn) Speicher. Dies
stellt eine Verbesserung dar, da üblicherweise von n� m ausgegangen werden kann.

Die Auswahl von zufälligen Agenten basierend auf dem Histogramm stellt jedoch eine grö-
ßere Herausforderung dar. Wir beschreiben eine Anzahl von Datenstrukturen, die ein solches
Sampling zweier uniform zufälliger Agenten ermöglichen. Ein lineares Array von Zuständen
lediglich zu erhalten, führt zu zufälligem Sampling inO(m) Zeit. Eine weitere Option liegt dar-
in, das Histogramm in einem balancierten, binären Baum zu speichern, was einen O(logm)
Preis für das Sampling und das Aktualisieren der Frequenzen erfordert. Als dritte Option prä-
sentieren wir eine neue Datenstruktur, die wir als Dynamic Alias Table bezeichnen. Hierbei
handelt es sich um eine simple Erweiterung bereits bekannter Alias Tables, welche effizient
implementiert werden können. Die amortisierten Sampling-Kosten zufälliger Agenten unter
Verwendung unserer Dynamic Alias Tables liegen in Erwartung bei O(1).

Wir präsentieren anschließend einen Ansatz zur Verarbeitung von Batches von Agentenin-
teraktionen. Dies führt zu einem Simulationsverfahren für die Verarbeitung von Agentenin-
teraktionen, welches unter vernünftigen Rahmenbedingungen o(N) Zeit benötigt. Die Kerno-
beobachtung, auf die wir uns für unseren Ansatz berufen liegt darin, dass wir eine Menge von
unabhängigen Interaktionen effizient zeitgleich ausführen können. Hierzu wird ausgenutzt,
dass die Agenten uniform zufällig gezogen werden; eine Sequenz ist unabhängig, wenn kein
Agent doppelt in der Sequenz vorliegt. Wir analysieren die Verteilung der Längen solcher Se-
quenzen und zeigen, dass diese in Erwartung mindestens eine Länge von Ω(

√
n) aufweisen.

Liegt eine solche unabhängige Sequenz vor und sind die Frequenzen der Zustände der dar-
in enthaltenen Agenten bekannt, so können wir in O(m2) Zeit das Histogramm gemäß der
Interaktionen innerhalb dieser Sequenz aktualisieren.

Unser Batch Processing Ansatz funktioniert hierbei wie folgt: wir ziehen zunächst die Län-
ge der nächsten unabhängigen Sequenz. Hierzu nutzen wir die Inversionsmethode, um diesen
Vorgang in O(logn) Zeit abzuschließen. Daraufhin ziehen wir gemäß einer multivariaten hy-
pergeometrischen Verteilung die Frequenzen jedes Zustandspaares. Das Histogrammwird nun
entsprechend der Transitionsfunktion für alle Zustandspaare aktualisiert. Anschließend ziehen
wir zufällig aus der Gruppe der Agenten innerhalb der Sequenz, um eine Kollision hervorzu-
rufen. Auf diese Weise simulieren wir erwartet Ω(

√
n) viele Interaktionen in O(logn +m2)

Zeit.

Publikation 4: “Fragile Complexity of Comparison-Based Algorithms.” Im Rahmen
dieser Publikation führen wir die Fragile Complexity als neues Modell für vergleichsbasierte
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Algorithmen ein. Für gewöhnlich liegt der Fokus der Algorithmusanalyse auf der Gesamtan-
zahl der Vergleiche, die ein Algorithmus durchführt. Hinter dem Fragile Complexity Modell
steht der Gedanke, stattdessen die individuellen Elemente und die Anzahl an Vergleichen zu
betrachten, in die jedes einzelne Element involviert ist. Somit definieren wir die Fragile Com-
plexity eines Algorithmus als maximale Anzahl an Vergleichen, die für jedes individuelle Ele-
ment durchgeführt werden. Dieses Modell weist immer dann eine hohe Relevanz auf, wenn die
durchgeführten Vergleiche selbst einen Einfluss auf die Elemente haben, welche vergleichen
werden.

Exemplarisch lässt sich dieser Zusammenhang gut anhand der Bestimmung einer Rangfolge
für eine Reihe von Genussmitteln wie zum Beispiel Wein erläutern. Jeder Vergleich erfordert
hierbei ein Testen beider Proben, die verglichen werden sollen. Da es nur eine limitierte Men-
ge von jeder Probe gibt, muss hierbei sichergestellt werden, dass keine der Proben erschöpft
wird, bevor der Test vollständig abgeschlossen werden konnte. Dieser Vergleich zeigt, dass ein
solches Ranking nur durchgeführt werden kann, wenn die Fragile Complexity des Rankingal-
gorithmus die Menge einer jeden vorliegenden Probe nicht übersteigt.

Im Rahmen unserer Arbeit analysieren wir innerhalb des Modells der Fragile Complexity
klassische, vergleichsbasierte Fragestellungen. Für die Bestimmung des Minimalwerts weisen
wir eine scharfe Schranke von Θ(logn) für deterministische Algorithmen nach. Interessan-
terweise können wir auch zeigen, dass randomisierte Algorithmen die Fragile Complexity für
das minimale Element verringern können, wenn selbige gleichzeitig für alle anderen Elemente
erhöht wird. Ein Beispiel für einen solchen Kompromiss liefert eine erwartete Fragile Comple-
xity von O(1) für das minimale Element und O(n) für alle anderen Elemente. Dieser Kom-
promiss wird durch einen Sampling basierten Algorithmus erreicht. Wir beweisen auch eine
nicht-triviale untere Schranke, die diesen Kompromiss charakterisiert. Diese untere Schranke
besagt, dass sofern die Fragile Complexity aller Elemente O(∆) nicht überschreitet, so muss
die Fragile Complexity des minimalen Elements mindestens Ω(log∆ n) betragen.

Im Bezug auf die Problemstellung der Selektion und Sortierung wird logarithmische Fragi-
le Complexity trivial erreicht durch Simulation von AKS Sortiernetzwerken. Die Größe sol-
cher Netzwerke beträgt Θ(n logn), was bedeutet, dass die Simulation eine Zeitkomplexität
von Θ(n logn) benötigt. Wir zeigen wie das Selektionsproblem deterministisch mit Θ(logn)
Fragile Complexity und Θ(n) Zeitkomplexität durchgeführt werden kann. Unter Zuhilfenah-
me eines bestehenden Ergebnisses zu Sortiernetzwerke, konnten wir nachweisen, dass jedes
Sortiernetzwerk, welches Selektion durchführt, eine Größe Ω(n logn) haben muss. Weiterhin
stellen wir einen randomisierten Selektionsalgorithmus vor, der eine Anzahl an Kompromissen
zwischen der Fragile Complexity des Medians und allen anderen Elementen ermöglicht.

Bezüglich der Sortierung ist eine logarithmische Fragile Complexity und Θ(n logn) Zeit-
komplexität asymptotisch optimal. Wir weisen nach, dass jeglicher deterministischer, Merge-
basierter Algorithmus eine Fragile Complexity von mindestens Ω(log2 n) aufweisen muss. Ein
gewöhnlicher Mergesort wird eine lineare Fragile Complexity haben, jedoch zeigen wir, wie
man den Algorithmus mit Hilfe einer Modifikation im Merge-Vorgang so anpassen kann, dass
die untere Schranke erreicht wird. Interessanterweise wird ein gewöhnlicher Mergesort mit
hoher Wahrscheinlichkeit eine Fragile Complexity von O(logn) aufweisen, wenn der Input
vor dem Sortieren durchmischt wird, sodass er in einer rein zufälligen Permutation vorliegt.
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Resumé
Denne afhandling præsenterer forskningsresultater, der spænder over tre konferenceartikler
samt et manuskript, vi endnu ikke har indsendt til en konference.

Artikel 1 undersøger den iboende kompleksitet for rebalancering af B-trær med optimal høj-
de. Betragt et B-træ af optimal højde, der indeholder n = (1− εN) elementer, hvorN er antal
elementer et fuldt B-træ af samme højde ville have (kapaciteten for B-træet). Vi viser en sam-
menhæng mellem prisen for rebalancering (efter indsættelse af et nyt element) og parameteren
ε. Mere konkret giver vi en nedre grænse på rebalanceringskompleksiteten i denne situation på
Ω(1/(εB)). Vi beskriver dernæst en rebalanceringsalgoritme, hvis amortiserede kompleksitet
næsten matcher den nedre grænse: O(1/(εB) · log2(min{1/ε, B})). Med denne algoritme be-
skriver vi et system, der—givet et rebalanceringsbudget f(n)—kan opretholde optimal træhøj-
de efterhånden som ε går mod 0 indtil omkostningen overstiger budgettet, hvorefter højden
holdes på optimal plus én. Hvis rebalanceringsbudgettet er Θ(logn), vil dette system holde
optimal højde for størsteparten af størrelsesintervallerne mellem trækapaciteter for voksende
n: brøkdelen af intervallerne, hvor højden bliver optimal plus én, vil være aftagende.

Manuskript 2 præsenterer empirisk analyse af praktiske algoritmer til at finde sammen-
hængskomponenter for grafer i ekstern hukommelse. De bedste teoretiske resultater for dette
problem kommer alle fra algoritmer til at finde minimale udspændende træer. Blandt MST-
algoritmer er den bedst kendte asymptotiske I/O-kompleksitet O(sort(|E|)) i forventning,
mens den mest lovende praktiske algoritme har en forventet asymptotisk I/O-kompleksitet
påO(sort(|E|) · log(|V |/M)). Vi implementerer og tester en algoritme til sammenhængskom-
ponenter, der har forventet I/O-kompleksitet O(sort(|E)) (en simplificeret version af MST-
algoritmen med denne I/O-kompleksitet). Vi viser, at den er kompetitiv for adskillige grafer.

I artikel 3 præsenterer vi en ny algoritme til effektivt at simulere population protocols med
ekstremt store populationer. Naiv simulering af N interaktioner i en protokol med n agenter
med hver m tilstande kræver Θ(n logm) bits hukommelse og har en køretid på Θ(N). Dette
skaber udfordringer for simuleringer med store værdier for n; både mht. hukommelse (n kan
overstige RAM) og mht. køretid, da interessante protokoller ofte bruger Ω(poly(n)) interak-
tioner førend de konvergerer. Vi beskriver en alternativ måde at repræsentere konfigurationen
for en populationsprotokol (grundlæggende repræsenteres konfigurationen som et histogram
over tilstande), der kræverΘ(m logn) bits hukommelse i stedet—en markant forbedring da det
typisk gælder at n � m. Vi analyserer, implementerer, og evaluerer mulige datastrukturer til
at opbevare og trække tilfældige elementer fra denne histogram-repræsentation. Blandt disse
strukturer udvikler vi dynamic alias tables, som har forventet tidskompleksitet Θ(N) til brug
i denne sammenhæng. Derefter beskriver vi en teknik til at simulere store partier af interak-
tioner på samme tid, hvilket lader os simulere N interaktioner med o(N) operationer under
passende betingelser.

Med artikel 4 præsenterer vi modellen fragile complexity for sammenligningsbaserede algo-
ritmer. I denne nye model analyserer vi en række klassiske problemer såsom at finde mindste
element, selection (eller at finde medianen) og sortering. Vi viser en række nedre og øvre græn-
ser, heriblandt en række resultater for randomiserede algoritmer, der adskiller sig fra vores
deterministiske resultater.
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1 Introduction

This thesis covers results spanning multiple distinct topics: external-memory algorithms, pop-
ulation protocols, and fragile complexity. At its outset, the focus of the PhD project was ex-
ternal memory algorithms. Among the results presented, the ones which fit this description
include the results on B-trees which we introduce in section 1.2 and the work on connected
components in external memory which we introduce in section 1.3. However, in working with
colleagues at the algorithm engineering group at Goethe Universität Frankfurt am Main, other
algorithmic problems came up which inspired additional lines of research, leading to paper 3
and 4 presented in this thesis.

The following sections provide a short introduction of the external memory model. The
formal model we consider for external memory analysis is described along with some basic
results in section 1.1. Two areas are touched upon in particular by the included papers: B-trees
and graph algorithms. Section 1.2 presents a summary introduction to B-trees, introducing the
work presented in paper 1. Section 1.3 gives a compact overview of some of the challenges in
designing graph algorithms for external memory, describing the context for our ongoing work
on computing connected components in external memory presented in manuscript 2.

The remaining two papers included in this thesis deal with simulation of population proto-
cols and fragile complexity. To motivate the former, we describe briefly the population pro-
tocol model in section 1.4 before describing the main techniques used and interesting results
presented in paper 3.

For the latter, we introduce the model of fragile complexity in section 1.5. As this is a novel
new model, the introduction focuses on motivating and describing the model before summa-
rizing some of the interesting results found in 4. Some of these results are contrasted with
existing results for comparison networks to compare the properties of the two models.

Chapters 2 to 5 consist of the included papers mentioned in the publication list.

1.1 Algorithms for external memory

A fundamental challenge facedwhen processing sizeable datasets is the potential for data trans-
fer to become a bottleneck. Even with modern solid state drives, there still remains an order-
of-magnitude gap between latency for RAM and latency for disk accesses. Generally, memory
systems offer trade-offs between size, speed, and price due to simple physical limitations, which
has encouraged hardware manufacturers to add several intermediate cache levels. In modern
consumer systems, CPUs typically have three levels of cache, L1 to L3, with increasing size and
latency which cache data from RAM. To mitigate the effect of increased latency, data is typi-
cally transferred in blocks (or cache lines) between different levels of the memory hierarchy.
For a thorough introduction to algorithms dealing with memory hierarchies, we refer to [45].
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1 Introduction

The rest of this section introduces the specific model we use in analyzing algorithms operating
on external memory and some results relevant for the rest of this thesis.

For theoretical analysis of external-memory algorithms, we will use the external memory
model of Aggarwal and Vitter [3], sometimes referred to as the I/O model or the disk access
model. In this model, computation can only be done on (the subset of) data stored in internal
memory which has a limited size M . Data is moved between internal memory and an un-
bounded external memory by input/output operations (I/Os), each of which moves blocks of
B elements at a time. The model is illustrated in fig. 1.1. Motivating this model is the assump-

CPU internal memory external memory

M

B

Figure 1.1: Illustration of the I/O model

tion that I/Os are expensive (CPU work is ignored) and that the block size B is rather large.
Optimizing for I/O-efficiency involves arranging computation to exploit theB elements trans-
ferred per I/O. One basic operation which is trivially I/O-efficient is scanning N consecutive
elements in order; this naturally requires scan(N) = dN/Be I/Os. Simple queues and stacks
implemented with consecutive arrays are efficient, too, requiring O(scan(N)) I/Os to process
N operations.

Another basic operation is sorting. Upper and lower bounds for comparison-based sorting
in external memory were presented in [3]: sorting N elements requires

sort(N) = Θ

(
N

B
logM

B

N

B

)
I/Os. As we will see examples of in section 1.3, several more complex operations can be ex-
pressed by combining sorting and scanning steps. For reasonable values of M , B, and N ,
sorting is strongly preferable to random I/Os; scan(N) < sort(N)� N .

A number of data structures have been developed specifically for external memory. Paper
1 presented in this thesis deals with the rebalancing complexity of B-trees, which are search
trees adapted for external memory (although they predate the particular formal I/O model we
consider). B-trees and the particular work we have done on them is described in section 1.2.

Priority queues are a cornerstone of several graph algorithms. Significant work has gone
into developing priority queues for external memory. For applications where the decrease-key
operation is not needed, there are priority queues which are asymptotically optimal by the
obvious bound imposed by sorting; N operations takes O(sort(N)) I/Os [11, 40]. If decrease-
key is required, the problem becomes more complicated. A recent lower bound [29] shows that
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1.2 Keeping B-trees in shape

the same I/O bound (which is amortizedO(1/B logM/B N/M)) cannot be achieved for priority
queues with the decrease-key operation. For a long time, the best upper bound was achieved
with tournament-tree based priority queues requiringO(1/B log2N/M) (amortized) I/Os per
operation [40]. A recent more advanced structure [36] performs insert and decrease-key in
O(1/B logM/B N/B) amortized I/Os and extract-min and delete key in

O
(⌈

M ε

B
logM

B

N

B

⌉
logM

B

N

B

)
amortized I/Os.

One particular use for priority queues in external memory algorithms is time-forward pro-
cessing. This refers to an algorithmic framework where data needed for later computation is
sent forward in “time” (a key associated with data inserted into a priority queue) to the point at
which it will be needed. Time-forward processing is applicable when the structure of the prob-
lem allows it to be cast as traversal of a DAGwith a known topological ordering. Several graph
algorithms employ time-forward processing—one example is the Sibeyn-Meyer algorithm [48]
which we mention in section 1.3 and test empirically in manuscript 2.

In section 1.3, we introduce the challenges posed by graph traversal in external memory
which is the context for our work in manuscript 2.

1.2 Keeping B-trees in shape

1.2.1 Preliminaries

B-trees were first introduced in 1970 by Bayer and McCreight [14, 15]. Suitable for indexing
data stored on disk, they quickly gained traction in applications (described as ubiquitous in a
1979 survey [27]). They are found in different variants across numerous databases and virtually
all modern file systems, including NTFS (Windows), HFS+ and APS (macOS), as well as Btrfs
and ext4 (Linux). In this brief introduction, we will distinguish between the elements (also
called records) stored in a tree and their search keys. The search keys are assumed to have a
fixed size and to have a total order.

We will broadly consider B-trees to be multi-way search trees with fan-out at most B in
which all leaf nodes lie on the same level. For simplicity, we in our work focus on leaf-oriented
trees which means that all elements stored in the tree are stored in the leaf nodes. Each leaf
node contains up toB elements. Internal nodes only serve to guide searches. An internal node
contains up to B− 1 separator keys which partition the key space of the subtrees and up to B
pointers to their children.

We will use ordinary B-trees to refer to B-trees where internal nodes have fan-out at least
dB/2e—except the root which only needs to have at least two children—and the tree balance
(the upper and lower bound on node usage) is maintained as follows: If an insertion overfills
a node, it is split in two. As splitting a node in two requires adding a separator key (and an
additional child pointer) to the parent node, a split may overfill the parent and can propagate
upwards towards the root. The height of the tree increases if the root node is split. The opposite
of a split is a merge; due to the relationship between the upper and lower bounds, combining
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1 Introduction

an underfull node and a node exactly matching the lower bound results in one full node. As
this decreases the degree of the parent, this can also propagate upwards. In case a deletion
renders a node underfull while its neighbor has content to spare, a share operation can be used
instead, equivalent to first merging and then splitting. A share operation does not propagate
upwards.

Do note that the parameter B in this section only directly refers to the fan-out of B-trees
rather than block size in the I/O model. For external-memory applications, the node size of a
B-tree should be chosen appropriately for the block size of the storage system and the node size
will typically be proportional to the block size. Therefore, although we do not explicitly discuss
I/O complexity in this particular section, assuming that loading one node into memory gener-
ally costs Θ(1) I/Os, all results translate directly into I/O complexity. As such, the discussion
can be focused on the tree structure. In the context of B-trees, the measure for (rebalancing)
cost will be the number of nodes which need to be changed.

1.2.2 Motivation

Though B-trees have been studied intensely, we address a hitherto unanswered question about
their inherent rebalancing complexity. Suppose one wants to keep a tree at optimal height in
a dynamic setting—something not guaranteed by ordinary B-trees. One could ensure optimal
height by rebuilding the tree after every update, though this would be prohibitively costly.
Rearranging the contents of the tree locally instead will intuitively grow harder as the tree
grows closer to being full (that is, containing the maximum number of records for its current,
optimal height). The focus of our work is analyzing the relationship between how full the tree
is and how costly rebalancing to maintain perfect height becomes.

For the model of B-trees we use in our analysis, a tree of height h can contain up to Bh

elements. If a tree has optimal height h, then Bh−1 < n ≤ Bh. We consider Bh to be the
capacity of a tree for its current height h, and denote it by N = Bh. Then, the amount of free
space left in the tree isN −n. Our complexity results are expressed as a function of the ratio ε
of free space relative to the capacity; n = (1−ε)N . Intuitively, rebalancing (while maintaining
optimal height) gets harder as ε approaches zero.

To justify this focus on optimal height, we recall that the I/O-cost of searching in a B-tree
depends on the height of the tree. Typical applications have rather large block sizes and as
such, practical B-trees will typically have rather high fan-out and very low height. Therefore,
even a small improvement in height could have a non-trivial impact on cost of searching. From
an I/O-perspective, this is further amplified by the fact that most of the internal layers of the
tree fit into cache, meaning that disk access is only needed for very few bottom layers. In such
cases, reducing the height by even a single layer could lower the amount of cache misses per
lookup. For applications where the number of searches dominate the number of updates, it
may be worthwhile to spend more time per update in order to achieve better height.

Note that the optimal height is dlogB ne. Ordinary B-trees keep fan-out in a range from
dB/2e to B (with the root being allowed to have fan-out of only two). In the worst case, an
ordinary B-tree will therefore have worst-case height

⌊
1 + logdB/2e n/2

⌋
. Compared to the

optimal height of dlogB ne, the change in the base of the logarithm increases the height by a
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constant factor (not accounting for the potentially even worse fan-out for the root node and
rounding).

As we will briefly review in section 1.2.3, the focus in much of the previous work on B-
trees has been to increase storage utilization which is equivalent to increasing the fan-out.
This typically entails designing schemes which guarantee that the storage utilization is kept
at least some constant fraction, preferably higher than 1/2 which ordinary B-trees achieve.
Guaranteeing this, however, only improves the constant factor of the worst-case height.

Another motivation to investigate the trade-off is that this would provide a natural gener-
alization for results known for binary trees. For binary trees, the upper and lower bounds are
known to be tight (see [31] and [32]). Specifically, there is a lower bound stating that when the
available space ratio is ε, then there exists an update such that rebalancing the tree to accom-
modate this update will requireΩ(1/ε) nodes to be changed [31]. A matching amortized upper
bound is presented in [32]. The upper bound is given by a rebalancing scheme which requires
O(1/ε) amortized node changes per update. Considering these results, an obvious question is
whether similar bounds can be achieved for B-trees.

1.2.3 Previous work

A lot of work on B-trees has been done to create different variants with improved storage
utilization: the average over all nodes allocation of the fraction fields. Given that the amount of
disk space allocated for a node is typically fixed, low storage utilization directly implies wasting
disk space. Additionally, low storage utilization for internal nodes implies lower average fan-
out which potentially increases the height of the tree, slowing down searches. Variants found
in literature typically present different trade-offs between storage utilization and rebalancing
complexity. As discussed in the previous section, ordinary B-trees have a worst-case storage
utilization of approximately roughly 1/2 and their rebalancing cost by O(logB n).

If the goal is to reduce the cost of rebalancing, a small decrease in storage utilization has a
significant effect. In (a, b) trees (which denotes B-trees with lower bound a and upper bound
b on fan-out), decreasing a to a < db/2e yields amortized constant rebalancing cost [35, 43]. If
the gap between a and b is increased, the amortized rebalancing cost is even subconstant.

Another approach to improving update times is to add buffers. A noteworthy example of
a structure doing this is Bε-trees which give a scale of trade-offs between query and update
cost [19]. The parameter ε in these trees determines the amount of space internal nodes use for
buffering and howmuch they use for separator keys. With fan-outO(Bε, the height of the tree
becomesO(1/ε logB n), but the amortized update cost drastically lowered: O(1/B1−ε logB(N)).
Given this trade-off, these trees have been adopted in high-performance databases and seem
promising for use in file systems [37]. In our work, we focus on pure B-trees and as such avoid
considering the use of buffers, however.

An obvious idea for improving the worst-case storage utilization of B-trees beyond 1/2 is
to avoid splitting as often by first attempting to share node loads among siblings—Bayer and
McCreight [15] themselves discuss such an overflow technique. B-trees with this adaptation are
referred to as B*-trees by Knuth [39] and have worst-case storage utilization of approximately
2/3 instead of 1/2.

The overflow approach can be extended (also suggested in [15]) to consider larger groups for
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load sharing—naturally, larger groups will lead to better storage utilization at the cost of more
expensive rebalancing. Work has also been done to investigate average rather than worst-case
storage utilization for these approaches. For instance, [41] shows that the storage utilization
under random insertions approaches m ln((m + 1)/m) with m being the group size used in
the overflow method.

While the generalized overflow approach considers groups of siblings locally, one may con-
sider extending the scope of local rebalancing vertically. Brown [22, 21] presents B-slack trees
in which the slack of each node is defined to be the number of child pointers (or elements, in
the case of leaf nodes) missing. The special constraint imposed on B-slack trees is that, for each
internal node, the total slack of its children is at most B − 1 (note that B > 4 for these trees).
For n > B3, it is shown (among several other interesting properties) that the space complexity
of a B-slack tree is bounded by 2nB/(B − 3) which goes to 2n (optimal space complexity) as
B increases and that average degree exceeds B − 2. Update times are amortized logarithmic
and some variants are additionally presented which trade slightly worse space complexity for
amortized constant update costs.

1.2.4 Our contribution

In paper 1, we give lower and upper bounds for the rebalancing complexity as a function of ε.
As described in the preceding section 1.2.2, we analyse a model of simple leaf-oriented B-trees1
in which all elements are stored in the leaves, each leaf node contains at mostB elements, and
internal nodes have at most B children. With n = (1− ε)N where n is the current number of
records stored in the tree andN = Bh is the capacity of the tree at its current (optimal) height,
we show that there exists an insertion which will require updating Ω(1/(εB)) nodes in order
to rebalance the tree.

We also describe a layout and rebalancing algorithm which requires amortized

O
(

1

εB
· log2 (min{1/ε, B})

)
node updates per insertion. The workings of this algorithm rely upon the ratio of free space
being within a constant factor of the ε the layout was initialized with. Simple rebuilding once
this no longer holds is sufficient to maintain the amortized complexity for the new ε′.

The core component of the algorithm is a strategy to distribute and manage the free space
left within the tree, bounding the distance that keys need to be shifted around by grouping
nodes. This approach is inspired by the optimal rebalancing algorithm for binary trees found
in [32]. Quick analysis shows that the amortized rebalancing cost achieved by this algorithm is
asymptoticallyO(1/(εB))—matching the lower bound—for all levels except the leaf level. For
the leaf level, however, the amortized rebalancing cost is O(1/ε); the same as is achieved for
binary search trees and far from our lower bound for B-trees. To improve this, we describe how
to apply density keeping techniques such as described in section 3 of [20] to better manage the

1The results we prove also apply to other reasonably similar models—such as B-trees where leaf nodes may contain
up to cB elements for some constant c or node-oriented trees where elements are stored in all nodes and not
just the leaves.
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Figure 1.2: Plot (from fig. 2.2 in paper 1) illustrating different B-tree heights for growing n. The
functions represent the worst-case height of standard B-trees, the height achieved
by our new scheme using a rebalancing budget of O(logB(n)), and the optimal
height bound for B-trees. For visualisation purposes, B is only 10 for this plot.

distribution of free spacewithin the groups on the leaf level, bringing the amortized rebalancing
cost down to the stated bound.

Using this algorithm, we additionally describe how to construct a scheme which, given a
rebalancing time budget f(n) dependent upon the tree size, will keep tree height optimal for
n in the interval Bh−1 < n ≤ N where the cost of doing so is within the budget and optimal
plus one in the remaining interval N ′ < n ≤ N .

Providing our scheme with a rebalancing budget of Θ(logB n)—which matches the cost of
searching in the B-tree—is sufficient for it to maintain optimal height for all but a vanishing
fraction of the size intervals (between powers of B) for increasing n (illustrated in fig. 1.2). To
the best of our knowledge, this is the first scheme achieving B-tree height within an additive
constant of optimal.

1.2.5 Open problems

Given the results presented in our paper, an obvious open problem is to close the gap between
the upper and lower bounds presented. It is not immediately obvious which of the two bounds
(or indeed both bounds) could be improved.

Considering the upper bound, the log2 factor is a consequence of the density-keeping scheme
applied to the groups of leaf nodes. Improving this would presumably require a significantly
different approach: If we consider the isolated problem of shifting elements aroundwithin a leaf
group as elements are inserted, this is essentially equivalent to the on-line list-labeling problem
(also referred to as the file maintenance problem): each node in the group corresponds to a slot
in an array of sizeΘ(1/ε). For our scheme to work, the group needs to handleΘ(B) insertions
before being rebuilt (see the paper for details). This, in the list labeling model, means that the
array is filled to some constant fraction. A known lower bound [24] states that inserting n
elements into an array of size Cn for C > 1 has a cost (counting number of times elements
have to be moved) of Θ(log2 n).
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Another open problem based on our results is deamortizing the upper bound. This would
presumably require preemptive restructuring under our scheme and additional analysis. For-
tunately, there already exists worst-case O(log2 n) file maintenance algorithms [51, 16], sug-
gesting that the density-keeping scheme for the leaves could be adapted more simply.

1.3 Graph algorithms for external memory

1.3.1 Overview

Graphs arise in modeling a large number of phenomena and a vast amount of research has
gone into developing algorithms for analyzing graphs. Contemporary examples of large graphs
include social graphs and communication networks. Handling large graphs in an external-
memory setting, however, adds significant complexity to even simple graph problems.

In internal memory2, several problems related to graph traversal are trivial in linear or al-
most linear time. Both breadth-first search and depth-first search take linear time and enable
computation of interesting properties such as shortest (unweighted) paths or topological or-
derings in the case of directed acyclic graphs. Minimum spanning trees3 can be computed
in O(mα(m,n)) time deterministically [25], where α is the inverse Ackermann function and
n and m denote the number of vertices and edges, respectively. Using the randomized algo-
rithm proposed by Karger et al. [38], MSTs can be computed with expected time complexity
O(m). It is a longstanding open problem whether there exists a deterministicO(m) time MST
algorithm—though Pettie and Ramachandran have described an algorithm which they prove
to be optimal [47], the exact upper bound for this algorithm is not known. Note however that
simply finding a spanning tree is implicitly achieved in O(m) time using any graph traversal.
Similarly, partitioning a graph into its connected components is trivial to do in timeO(m+n)
while traversing it. Our work is focused on computing connected components of fully external
graphs.

In external memory, simply traversing a graph efficiently is non-trivial. For the remainder of
this section, V andE denote the vertices and edges of a graph. It is common in internalmemory
to represent graphs using adjacency lists. With this representation, the list of neighbors for
any node can be accessed in O(1) time. If, in external memory, the graph is stored as an edge
list plus an index enabling lookup of a neighbor list inO(1) I/Os, then following edges naively
leads to random I/Os. Recalling that |E| � scan(|E|), this is immensely inefficient.

For a closer look at the specific challenges in adapting algorithms for external memory, con-
sider the ordinary internal-memory breadth-first search algorithm (shown in algorithm 1). For
each edge (u, v) this algorithm processes, it needs to check whether v has already been visited.
If the graph is fully external (|V | > M ), keeping this information in memory for all u ∈ V
is not possible and this check may in and of itself cause an I/O, for a total of |E| I/Os during
the algorithm. As the order in which the adjacency lists of the nodes is not known before-
hand, each visit to a new node starts with a random I/O, causing |V | I/Os for the adjacency list

2We intentionally use the term “internal memory” somewhat loosely, serving only to discuss classical algorithms
and how they fare in external memory. The term may be replaced with “the RAM model”.

3For graphs with multiple components, the more general problem is that of computingminimum spanning forests.
This does not, however, pose a problem for the algorithms we consider.
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accesses (in addition to then scanning the adjacency lists which sums to O(scan(|V |))).

Algorithm 1 Breadth-first traversal in internal memory
procedure BFS(G = (V,E), r)

discovered[u]← false for u ∈ V \ {r} and true for r
let Q be a queue initially containing r
while Q 6= ∅

u← dequeue(Q)
report u
for v ∈ V adjacent to u

if discovered[v] is false
enqueue(Q, v)
discovered[v]← True

Specialised algorithms have been developed to reduce the I/O complexity below O(|V | +
|E|). An algorithm by Munagala and Ranade [46] uses properties of BFS levels in undirected
graphs to reduce the |E| term, achieving an I/O complexity of O(|V | + sort(|E|)). Adding
preprocessing to first cluster the adjacency lists, Mehlhorn and Meyer [44] give an algorithm
which additionally improves upon the |V | term to achieve the first sublinear I/O complexity of

O

(√
|V |(|V |+ |E|)

B
+ sort(|V |+ |E|)

)

for BFS traversal.
Depth-first search (algorithm 2) is even more problematic as, when loaded, adjacency lists

are not scanned—instead, the search continues recursively. Thus, even without considering the
data structure keeping track of discovered nodes, naive depth-first search may incur Θ(|V |+
|E|) I/Os. A simple adaptation by Chiang et al. [26] is to essentially keep the marking structure

Algorithm 2 Depth-first traversal in internal memory
procedure DFS((G = (V,E), s))

marked[u]← false for u ∈ V
procedure recurse(u)

marked[u]← true
report u
for v ∈ adj[u]

if marked[v] is false
dfs(v)

recurse(s)

in memory and whenever memory is full, scanning all edges and discarding ones which will
not be needed before emptying the marking structure and continuing. This yields an I/O cost
of O (1 + V /Mscan(E) + V ) (an improvement over O(V + E) if E ∈ o(V B)).
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Buchsbaum et al. [23] propose an algorithm centered around buffered repository trees (a
dictionary structure they introduce optimized for fast insertions) and priority queues to keep
track of already visited nodes. It performs directed DFS (or directed BFS) with O(|V |) calls
to extract-min and O(|E|) calls to insert on a number of priority queues and O(|V |) calls to
extract and O(|E|) calls to insert on a BRT. Using their buffered repository trees based on
(2, 4)-trees and an optimal priority queue (which does not need decrease-key; they refer to the
buffer trees by Arge [11]), this yields an I/O cost of:

O
((
|V |+ |E|

B

)
log2
|V |
B

+ sort(|E|)
)
.

Using the recent external-memory priority queues of [36] instead, this algorithm has an I/O
cost of:

O

(
|V |M

α
1+α

B
log2M

B

|E|
B

+ |V | logM
B

|E|
B

+
|E|
B

logM
B

|E|
B

)
,

which matches sort(|E|) for fully external dense graphs with |E| ∈ Ω(|V |1+ε) for ε > 0.
It is worth noting that several improved results are available for restricted graph classes.

Notably, for planar graphs, the separator algorithm of Maheswari and Zeh [42] combined with
algorithms by Arge et al. [13, 12] enables BFS and DFS on planar graph in O(sort(|V |)) I/Os.

Minimum spanning trees can be efficiently computed for semiexternal graphs (V < M < E)
using Kruskal’s algorithm; as a union-find structure for all nodes in V can in this case fit into
memory, the I/O complexity is simplyO(sort(|E|)) to sort the edges before scanning them. As
mentioned in [48], sorting E can be omitted by using dynamic trees, reducing the I/O cost to
O(scan(|E|)) at the cost of increased computational effort.

For fully external graphs, the best known deterministic algorithms are based on Borůvka’s
MST algorithm. In each step, Borůvka’s algorithm contracts (super)nodes along their lightest
incident edges. With common external-memory techniques, a Borůvka step can be performed
in O(sort(|E|)) I/Os. Arge et. al [12] show how to achieve I/O complexity

O
(
sort(|E|) log log

(
|V |B
|E|

))
by carefully scheduling Borůvka steps in a number of super-phases with edge filtering in be-
tween.

In terms of randomized algorithms, the expected linear time algorithm for internal mem-
ory [38] (which we will refer to as KKT) can be translated into an expected O(sort(|E′′)) I/O
complexity algorithm [26, 2]. A simpler algorithm, designed to be efficient in practice, is pre-
sented by Sibeyn et al. in [48]; we will refer to this as the Sibeyn-Meyer algorithm. The main
component of this algorithm is a simple node contraction approach which can be seen as an
application of time-forward processing over the edges ordered by source andweight. Contract-
ing nodes until the semi-external base case of Kruskal’s algorithm is reached, the Sibeyn-Meyer
algorithm requires O(sort(|E|) log(|V |/M)) I/Os in expectation.

Interestingly, current results do not provide a clear separation between the complexity of
computing an MST and simply computing a spanning tree of a graph—or even decomposing
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a graph into its connected components (which we will refer to as the CC problem). The best
known algorithms for connected components are essentially the best known MST algorithms
or asymptotically equivalent simplifications of them.

1.3.2 Our contribution

Considering the current best known results, our goal is to implement and evaluate a CC algo-
rithm which is efficient in practice and has an expected I/O complexity of O(sort(|E)). The
KKT MST algorithm relies on a verification subroutine which would seem to introduce quite
some overhead; though we have not found external-memory evaluations of this, an empir-
ical survey [30] with experiments on somewhat smaller graphs concludes that the expected
linear-time algorithm of Karger et al. is not feasible in practice.

If the goal is simply to compute connected components, however, the full verification rou-
tine is not needed: the verification step can be replaced with simple relabeling. Another way
to describe this algorithm is that follows the structure of the functional CC algorithm from [1]
with the addition of node contraction in the beginning of each recursive call. We describe,
analyze, and test empirically several variants of this algorithm. In the ordinary version of the
KKT algorithm, Borůvka steps are used to perform node contraction. We propose a simple
randomized version of a Borůvka step, sacrificing some contraction power to make the exe-
cution of a simple step faster. Additionally, we suggest using node contraction approach from
the Sibeyn-Meyer in place of the Borůvka steps: when used to reduce the number of nodes by
a constant factor, the Sibeyn-Meyer algorithm uses only O(sort(|E|)) I/Os with rather good
constants.

The most obvious candidates to compare our results to include the external-memory ver-
sion of Borůvka’s algorithm simplified for CC computation and Sibeyn-Meyer’s MST algorithm
modified for CC computation. We find that the Sibeyn-Meyer algorithm is consistentlymore ef-
ficient for node contraction than both the ordinary and the randomized Borůvka algorithms we
consider. However, our implementation of the KKT-based algorithm using Sibeyn-Meyer style
node contraction is competitive with appropriate tuning parameters. For graphs which are
not too sparse—the threshold depending on the graph class—it outperforms the Sibeyn-Meyer
algorithm. On random graphs (Gilbert graphs), we see the optimized KKT-based algorithm
winning already for graphs with |E| ≥ 5 · |V |.

1.3.3 Open problems

In existing literature, there seems to be a lack of empirical evaluation of external-memory
MST algorithms. Our work includes an implementation of Borůvka’s algorithm modified to
compute connected components. We are, however, not aware of any implementations of the
super-phase Borůvka MST algorithm by Arge et. al. Additionally, we are not aware of any
implementations of the full KKT MST algorithm; in choosing to analyze the KKT-based CC al-
gorithm, we assumed that the MST version would be impractical due to the constants involved.
Considering [30], this may very well be the case, but this assumption should nonetheless be
tested empirically in the external-memory setting.

When modifying the Sibeyn-Meyer algorithm to compute CCs rather than MSTs, a number
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of simplifications can bemade. One particular difference is that the CC version of the algorithm,
when contracting a node, can freely choose which outgoing edge to contract along. This choice
has significant impact on the time-forward process; whereas the MST version always contracts
along the lightest incident edge (essentially a random choice, given that node IDs are first
randomized), the CC version can choose to send information to the farthest neighbor with
respect to the time-forward process. Based on experimental results, we conjecture that this
makes the total number of edges processed asymptotically lower than the upper bound given
for the MST algorithm.

1.4 Simulating population protocols

1.4.1 Preliminaries

Several models exist to model the behavior of systems consisting of multiple autonomous
agents. These models can be used to reason about and predict the behavior of complex sys-
tems or aid in developing protocols for the systems to operate under. One such model is the
population model introduced by Angluin et al. [9, 8].

The object of consideration in this model is a set of n agents, each an instance of a finite
automaton. As a system, they compute a population protocol by interacting with each other in
pairs. In each interaction, one or both agents may update their state according to a transition
function.

The agents all follow the same state machine model though they may have different initial
states. We denote the set of states byQ with |Q| = m. Originally presented as a way to model
simple mobile sensors (for example, sensors attached to birds), an important characteristic of
the model is that the agents have very simple behavior. This is reflected in the number of states;
m � n and in most relevant population models, m ∈ O(polylogn). For some of our results,
we will assume thatm <

√
n.

The state of the entire system—that is, the state of all the agents at a given time—is referred
to as the configuration. Though a population protocol does not terminate, it is meaningful to
analyzewhen the system converges to a desired configuration. For instance, in a leader election
protocol, the goal might be for the system to reach a (stable) configuration in which exactly one
agent is in the leader state. In the case of majority protocols, agents start in one of two states
and the goal is for all agents to arrive at a (correct) consensus on which state was initially in
the majority.

The order in which different agents are chosen to interact is determined by a scheduler. In
order to give convergence guarantees, one may analyze how a protocol performs under an ad-
versarial scheduler (potentially restricted by some fairness conditions). One may also consider
randomized schedulers—a natural choice for the setting of modeling simple mobile sensors
being moved around, communicating when randomly meeting each other. In our work, we
consider the standard probabilistic scheduler: for each interaction, it selects two agents uni-
formly at random two.
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1.4.2 Previous work

Work has been done to analyze the computational model of population protocols, including
characterizing its computational power [10] and considering extensions of the model [18].

For particular problems, research has been done to produce optimize protocols in terms of
convergence time and number of states needed. An intensively studied example is the problem
of leader election: all agents start in the same state and the goal is to reach a configuration
in which exactly one agent is in a leader state and all others are in follower states. For this
problem, several different properties have been proven. Note that the term time sometimes
refers to parallel time in the literature—for consistency, we state the summarized results in
terms of number of interactions.

Literature indicates that there is a trade-off between the number of states used by a protocol
and the expected convergence time it can achieve. If protocols are restricted to a constant num-
ber of states, Doty and Soloveichik [28] showed that any stable leader election protocol requires
Ω(n2) interactions in expectation. Recently, Sudo and Masuzawa [49] showed that any popu-
lation protocol needsΩ(n logn) interactions, regardless of the number of states used. In terms
of upper bounds, Alistarh and Gelashvili [6] gave a protocol which uses O(log3) states and
converges in O(n log3 n) expected interactions. Gas̨ieniec et al. [33] improved both parts of
the trade-off by providing a protocol converging in expectedO(n log2 n) interactions while us-
ing onlyO(log logn) states. This number of states matches a lower bound [7] for any protocol
converging in expected o(n2/ polylogn) interactions. Gas̨ieniec et al. [34] later improved the
expected number of interactions to O(n logn log logn) before Berenbrink et al. [17] recently
closed the gap by providing a protocol using Θ(log logn) states and converging in O(n logn)
expected interactions (which is optimal for both states and time).

In the field of population protocols, simulation results can be useful in guiding theoretical
analysis of the convergence behavior of different protocols. However, if hampered by computa-
tional effort, simulation may be of limited use. For instance, subtle differences in upper bounds
may be impossible to infer from observed behaviors unless the simulations can reach massive
scales. If simulation times restrict the feasible population sizes to n ≤ 232, for example, then
factors on the order of log logn may be impossible to discern.

1.4.3 Our contributions

Our main contribution is an approach to more efficiently simulate population protocols with
massive populations. We exploit two assumptions about the particular type of protocols we are
interested in simulating: agents are indistinguishable and we only need to observe the concrete
configuration infrequently rather than for every interaction, allowing us to process updates in
batches. With these, we develop a batch processing approachwhich, under reasonable assump-
tions, simulates population protocols using o(1) time per interaction, enabling simulation of
massive populations.

Compact configuration representation In a population protocol, agents are indistinguish-
able in the sense that any agent is only defined by its current state. As such, the configuration
at any timemay be representedmore compactly as a histogram over the states rather than as an
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explicit enumeration of agents. This reduces the amount of memory required fromΘ(n logm)
bits to Θ(m logn) bits. For protocols where m is bounded polylogarithmically in n, this im-
mediately makes it feasible to perform simulations in which n exceeds the amount of available
memory.

We consider a number of data structures to represent the configuration as a histogram while
allowing for efficiently sampling agents at random. Such data structures essentially simulate
urns models: they support drawing random balls (corresponding to agents) from a set with or
without replacement (with the transition function in our case defining the replacement policy).
Among these, we present what we call dynamic alias tables which are an extension of the alias
method [50]. There are other approaches capable of modeling a dynamic urn, but as these are
more complex, we believe that, considering their efficiency and simplicity, our dynamic alias
tables may be of independent interest.

Batch processing When empirically examining for instance the convergence behavior of
a protocol, one typically wants to simulate a large number of interactions and it may not be
relevant to inspect the global configuration after each individual interaction. If, for instance,
the convergence time for a protocol is polynomial in n, it may suffice to performN > n inter-
actions at a time. Our main contribution—leading to simulating protocols in sublinear time—is
an efficient batch processing scheme capable of simulating a numberN > n of interactions as
a batch operation.

The main idea of this scheme is to identify and process a run of independent interactions: a
maximal sequence of agents drawn and grouped into pairs without any agent appearing more
than once. With the interactions within a run being independent, the order in which updates
happen does not matter, which means that we can update the states for all agents in the run at
once.

The latter is rather simple: suppose we have an independent run and we know the frequency
with which ordered pair of states occurs. Then, considering these frequencies and evaluating
the transition function for each state pair inQ2, we can determine how many agents will enter
or exit each state. Having computed this, we update the frequencies stored for all states.

The efficiency of this approach depends on the length of the independent runs. If ` is the
expected length of an independent run, then we need to simulate N/` runs (in expectation)
for a batch, each of which takes timeO(m2) plus some additional work (described later) which
amounts to O(logn) per run. In the paper, we show that ` ∈ Θ(

√
n) in expectation which

means that our batched approach provides a speedup when
√
n ∈ ω(max{logn,m2}).

This process of course requires us to be able to sample an independent run in the first place
and efficiently determine the state-pair frequencies. In the paper, we analyze in more detail the
distribution that the independent run lengths follow. This allows us to use an inverse sampling
technique to sample a run length at random from this distribution—this sampling process as
implemented takes time O(logn). Knowing the length of the run (the number of agents in
total), we then sample from hypergeometric distributions based on the current frequencies of
each state to arrive at the needed set of state pair frequencies. For correctness of the simulation,
we sample and handle a collision: a repeat agent which appears immediately after the end of
the independent run, by definition.
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As sampling the m2 interaction frequency matrix is the most computationally demanding
part of our approach, we further develop a method to combine multiple batches into an epoch.
Essentially, we sample the length of several independent runs, take care of collisions happen-
ing between them and only sample the full interaction matrix once per epoch. This takes
O(ρ logn +m2) time for an epoch of ρ runs. Since the notion of collisions within an epoch
refers to all agents sampled, later independent runs will in expectation get shorter, limiting
efficient choices for ρ. We analyze the distribution of run lengths within an epoch to provide
a balanced trade-off between the costs associated with each run (handling collisions, sampling
the length) and batch processing (sampling the interaction matrix).

1.4.4 Open problems

We have so far considered a model in which agents are chosen uniformly at random to inter-
act. It may be interesting to consider agents which are nodes in a network where edges define
possible interactions (in which case our setting would correspond to a complete graph). Sim-
ulating models efficiently requires a different approach, however, as our approach specifically
exploited the indistinguishability of agents with identical states. For large-scale simulations,
external-memory graph techniques may be necessary. Using network-based model simulation
to predict virus spread, for instance, would be quite relevant given current events.

1.5 Fragile complexity

1.5.1 Motivation

In our paper “Fragile Complexity of Comparison-Based Algorithms”, we introduce the concept
of fragile complexity. Ordinary algorithm analysis is focused on time complexity. In the case of
comparison-based algorithms, one may asymptotically bound the total number of comparisons
performed which typically will be proportional to the total amount of computation done. We
propose to instead analyze how many times individual elements in the input set are subjected
to comparison.

Inspiration for this model comes from scenarios in which comparing two elements may not
only take some quantum of time—evaluating the comparison may also impact the elements
being compared. For instance, the algorithmic problem at hand could be a boxing tournament
and the elements to compare could be boxers. Each boxing match would result in an outcome
proving one boxer to be superior to his or her opponent; a “comparison” between two ele-
ments. Boxing, however, is exhausting and each match brings a risk of debilitating injury. As
such, a good boxing tournament structure should take care to avoid subjecting any individual
boxer to an unreasonable number of fights. This example can be generalized to settings where
consumables are sampled and compared directly. Perhaps one wishes to select the best wine
out of a selection of wines by comparing them (avoiding assigning fixed ratings) two at a time.
If the goal is instead to rank the wines, the problem of sorting naturally arises.

We define the fragile complexity of an algorithm to be the maximum over all input elements
of the number of comparisons performed involving this particular element. One may addi-
tionally wish to protect a particular element. Perhaps the boxing tournament is a national
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qualification event from which the winner will go on to the Olympics. In this case, it may
make sense to lower the number of fights the winner will have to endure to improve their
chances at the Olympics—even if this is at the expense of other unfortunate contestants. For
some problems, we therefore also consider the fragile complexity of specific elements (such as
the minimum or the median) rather than the maximum over all elements.

We compare results achieved in the fragile model to existing results for comparison or sort-
ing networks. A comparison network gets its input on a number of “wires” and it performs
computation by letting elements move along these wires, crossing through comparators: nodes
at which elements on two wires are compared and potentially swapped. Such a network rep-
resents a data-oblivious algorithm in the sense that all the comparisons are given ahead of
time. The depth of a network is the largest number of comparators any given element can pass
through. When used as a model for parallel algorithms, the depth determines the parallel run-
ning time. In the fragile model, simulating a comparison network with depth d will directly
result in an algorithm with fragile complexity d. The size of a network is the total number of
comparators; when simulating the network sequentially, this translates into the running time.

1.5.2 Our contribution

To the best of our knowledge, the concept of fragile complexity has not been formally studied
before. We formally define this new model of algorithmic complexity and provide bounds
for a number of basic algorithmic problems for comparison-based algorithms, most notably
minimum finding, selection (or median finding), and sorting.

In the case of finding the minimum element of a set (which is equivalent to boxing tourna-
ment example), we show that no deterministic algorithm can do better than regular tournament
treeswhich have logarithmic height and therefore logarithmic fragile complexity. Interestingly,
we prove that randomized approaches can provide different trade-offs between the expected
fragile complexity for the minimum element and all other elements. For example, using sur-
prisingly simple sampling, one can protect the winning element such that it in expectation
only endures O(1) comparisons—at the expense of the runner-ups which go through O(nε)
comparisons. This is all the more significant as our lower bound for deterministic algorithms
specifically targets the winning element, ruling out the possibility to “protect” it in a deter-
ministic way. Our sampling approach allows for a number of different trade-offs between the
expected number of comparisons involving the minimum element and all others. Additionally,
we give an almost matching non-trivial lower bound on the fragile complexity of this trade-off.

For the problem of sorting, the ordinary lower bound on comparison-based sorting ofΩ(n logn)
implies that the best fragile complexity one could hope for is Ω(logn). This is achieved deter-
ministically by simulating AKS sorting networks [4] which have logarithmic—although with
(in)famously large constants—depth. The time complexity of such a simulation is O(n logn).
It remains an open problem to sort deterministically with O(log(n)) depth without using this
construction.

The popular Quicksort algorithm is entirely infeasible in the fragile model; by design, the
first pivot element will participate in n − 1 comparisons. Ordinary merge sort has fragile
complexityΘ(n), thoughwe show that this can be improved toO(log2 n) by using exponential
search when merging. This is tight: by a simple adversary argument, we show that with any
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merging strategy, binary merge sort will have fragile complexityΩ(log2 n). As with the case of
minimum finding, randomization helps. Ordinary merge sort (with linear merging) will have
O(logn) fragile complexity with high probability if the input is first shuffled.

Using ideas from the AKS construction and careful sampling, we construct a selection4 algo-
rithmwhich performs selection inO(n) time complexity andO(logn) fragile complexity. This
shows a separation between the fragile model and comparison networks: using a lower bound
for comparison networks which perform partition [5], we show that any selection network
must have size Ω(n logn). We also provide a randomized parameterized selection algorithm
which offers different trade-off between the (expected) comparisons to the median element and
all others (with expected linear time complexity). One interesting trade-off achieved by this is
O(log logn) comparisons with the median element and O(

√
n) with all others.

1.5.3 Open problems

As mentioned in the previous section, we refer to AKS networks for deterministically sorting
with optimal fragile complexity O(log(n)). Such networks have notoriously large constants
hidden by the asymptotic notation and are as such not considered to have any practical appli-
cations. A natural question is therefore whether there exists a “simple” sorting algorithm with
fragile complexity O(log(n)) that does not rely on such networks.

As we use part of the machinery from AKS networks in our deterministic selection algo-
rithm (which does, however, have better time complexity than simulating a full AKS sorting
network), one could also ask whether this could be replaced with something “simpler”. Note
that by a simple padding argument, the lower bound of Ω(logn) on the fragile complexity of
deterministic minimum finding carries over to the selection problem.

Looking at the randomized results, the bounds for randomized minimum finding are not
tight—an obvious open problem is to close this gap. The randomized median trade-offs we
present are not quite good as the ones for minimum finding; it does not enable expected O(1)
comparisons with the median element. Improving this or providing a matching (or indeed any)
lower bound for the trade-off is still an open problem.

On the level of comparing models of computation, there is still an open question about the
relationship between fragile complexity and depth of comparison networks. We do show that
there are algorithms with fragile complexity matching the best depth of comparison networks
while having lower time complexity than the corresponding network size. We do not, how-
ever, show any algorithms which have fragile complexity strictly lower than the best depth
of comparison networks for the same problems. An interesting open problem is therefore to
either identify a problem and an algorithm where this is the case or to provide a proof that
maps algorithm with a given fragile complexity to comparison networks.

Taking a step back, the scope of our paper is limited to basic problems for comparison-
based algorithms, motivated by the notion that a comparison can impact the elements being
compared negatively. Perhaps further avenues of research could be opened by extending the
concept of fragile complexity to other appropriate contexts.

4The algorithm finds the median element, but this can be used for arbitrary selection (finding the element of a
desired rank) by a simple padding argument.
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1 Introduction

A different direction to extend the model is to add more flexibility to prioritizing certain
elements. We give a number of results on trade-offs in terms of the comparisons impacting “the
result” such as the minimum element in minimum finding or the median in median finding.
This could be generalized, for example, to a model in which each element is assigned a weight
and the fragile complexity is the maximum over the comparisons to each element scaled by its
weight.
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2 On Optimal Balance in B-trees: What
Does it Cost to Stay in Perfect Shape?

Rolf Fagerberg∗, David Hammer†, Ulrich Meyer‡

Abstract

Any B-tree has height at least dlogB(n)e. Static B-trees achieving this height are easy to build.
In the dynamic case, however, standard B-tree rebalancing algorithms only maintain a height
within a constant factor of this optimum. We investigate exactly how close to dlogB(n)e the
height of dynamic B-trees can bemaintained as a function of the rebalancing cost. In this paper,
we prove a lower bound on the cost of maintaining optimal height dlogB(n)e, which shows that
this cost must increase from Ω(1/B) to Ω(n/B) rebalancing per update as n grows from one
power of B to the next. We also provide an almost matching upper bound, demonstrating this
lower bound to be essentially tight. We then give a variant upper bound which can maintain
near-optimal height at low cost. As two special cases, we can maintain optimal height for all
but a vanishing fraction of values of n usingΘ(logB(n)) amortized rebalancing cost per update
and we can maintain a height of optimal plus one using O(1/B) amortized rebalancing cost
per update. More generally, for any rebalancing budget, we can maintain (as n grows from
one power of B to the next) optimal height essentially up to the point where the lower bound
requires the budget to be exceeded, after which optimal height plus one is maintained. Finally,
we prove that this balancing scheme gives B-trees with very good storage utilization.

2.1 Introduction

2.1.1 Motivation

B-trees are search trees particularly suited for data organization in external memory. They
are widely employed in database systems and file systems [12] and since their introduction in
1972 by Bayer and McCreight [7], they have been the subject of much theoretical and practical
study.
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2 On Optimal Balance in B-trees: What Does it Cost to Stay in Perfect Shape?

A standard B-tree of orderB is a search tree where all leaves are on the same level and every
internal node has between dB/2e and B children except for the root which may have any
number of children between 2 and B. One common generalization is (a, b)-trees [16] where
internal nodes have between a and b children for 2 ≤ a ≤ db/2e. The standard operations for
rebalancing B-trees are split of an overfull node into two nodes (increasing the degree of the
parent by one), merge which is the reverse of split, and share which is a redistribution of keys
among neighboring nodes.

In search trees, the cost of an operation is measured as the number of nodes accessed. For a
search operation, this cost is determined by the height of the tree. For any search treewithmax-
imal fanout B, dlogB(n)e is a lower bound on its height. In the static case, this height is easily
achieved by a bottom-up linear (that is, O(n/B) assuming presorted keys) cost construction
method. In the dynamic case, standard B-trees maintain an upper bound of b1+logdB/2e(n/2)c
on their height using O(logB(n)) rebalancing cost per insertion and deletion. Using (a, b)-
trees, the amortized rebalancing cost per update can be reduced to O(1) for a = bb/2c and to
O(1/b) for a = b/4, at the price of a moderate increase in the height bound [16, 22].

The upper bound of b1+ logdB/2e(n/2)c on the height is a constant factor of approximately
logB/(logB− 1) away from the lower bound. The optimal bound dlogB(n)e can of course be
achieved by spending linear cost on a rebuilding after each update, but this cost is prohibitive
in most situations and begs the question: can optimal height be maintained more cheaply?

Intuitively, maintaining optimal height should become harder as n approaches the next
power of B, since the amount of available space in the tree decreases, giving less flexibility
during rebalancing. Or put differently, the number of different trees of optimal height shrinks
as n increases—when reaching a power of B, there is only one such tree. Overall, we can ex-
pect that there must be a trade-off between how full the tree is and how costly rebalancing to
optimal height will be. The goal we pursue in this paper is to find this trade-off. More generally,
we would like to know which height bounds can be maintained at which costs—a correlation
which may be called the intrinsic rebalancing cost of B-trees.

2.1.2 Our contributions

For any n, letN denote the next power ofB (i.e.,N = BdlogB ne) and define ε by n = N(1−ε).
Our first main result is a lower bound showing that for any B-tree of optimal height, there
exists an insertion forcing Ω(1/(εB)) nodes to be rebalanced before the tree can again have
optimal height. This expression describes how the rebalancing cost must change from Ω(1/B)
to Ω(n/B) as n approaches the next power of B. See Figure 2.1 for a visualization of this
bound.

Our second main result is an almost matching upper bound, which maintains optimal height
using amortized O(log2B/(εB)) rebalancing per update, thereby proving the lower bound
essentially tight.

This lower bound (and hence the upper bound) approaches linear cost as n approaches the
next power of two. As our third main result, we give a variant rebalancing scheme that al-
lows almost optimal height at much lower amortized cost. More precisely, for any rebalancing
budget f(n), we can maintain optimal height dlogB(n)e as n approaches the next power of B
essentially up to the point where the lower bound result requires the budget to be exceeded,
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Figure 2.1: Plot illustrating how the lower bound for rebalancing cost increases as n approaches
different powers of B. Intervals where the cost exceeds logB(n) are highlighted in
orange.
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Figure 2.2: Plot showing different B-tree heights as a function of n. The functions represent
the height of standard B-trees, the height achieved by our new scheme using a re-
balancing budget of O(logB(n)), and the optimal height bound. For this particular
plot, B = 10.

after which height dlogB(n)e+1 is maintained. To our knowledge, this is the first rebalancing
scheme for B-trees with a height bound whose difference compared to optimal is an additive
constant rather than a multiplicative constant.

One natural choice of budget is f(n) = logB(n) as this matches the search cost. fig. 2.2
illustrates the height bound of this new scheme, the height bound of standard B-trees, and the
optimal height bound. As is hinted by the figure, the fraction of values of n for which this
scheme does not maintain optimal height dlogB(n)e is actually vanishing for growing n. Since
in real life uses of B-trees in external memory the values ofB are large and realistic values of n
are fairly bounded in terms of possible powers ofB, one may also want to look at the concrete
improvements in height bounds for some practically occurring values of B and n. In database
systems and file systems there are two main regimes, often termed OLTP and OLAP in the
database setting. In the former, B = 256 is a typical value, in the latter, B = 106 is a typical
value. For B = 256, the expression B3 < M � n . B4 (where M denotes the number of
keys that can be held in internal memory) describes many real situations. fig. 2.3a repeats the
plot of fig. 2.2 for the interval B3 < n < B4, but with B = 256 and the horizontal axis linear
(not logarithmic). Standard B-trees and our scheme achieve the optimal height bound 4 for
some part of the interval, but that part differs significantly in size: 12.16% versus 93.71%. For
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(a) B = 256. Standard B-trees are optimal in
12.16% of the interval, our scheme is in 93.71%
of the interval.
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(b) B = 106. Standard B-trees are optimal in
27.49% of the interval, our scheme is in 99.98%
of the interval. Note: two of the plots are es-
sentially coincident.

Figure 2.3: Plots showing different B-tree heights as a function of n similar to fig. 2.2 but for
two specific, realistic settings. The horizontal axes are non-logarithmic to more
faithfully show proportions.

B = 106, the expression B1 < M � n . B2 describes many real situations. As illustrated
by fig. 2.3b, the part of the interval B1 < n < B2 where optimal height is guaranteed is here
27.49% and 99.98% for the two schemes.

Another natural choice of budget is f(n) = O(1/B) as this is the best possible amortized
rebalancing cost (we can always make one node overflow at least every B insertions). With
this budget, our scheme maintains height at most dlogB(n)e+ 1 for all values of n.

Finally, we prove that our near-optimal balancing scheme gives B-trees with very good stor-
age utilization. Storage utilization is the fraction of the total space in the nodes allocated which
is occupied by tree pointers, keys, and elements, i.e., the average use of the space in a node.
High storage utilization is a desirable quality since it allows more of the tree to be cached in
main memory and it has been the topic of much previous literature on B-trees, in particular in
the database setting.

2.1.3 Previous work

Not much work has been done with an explicit focus on the height of B-trees. The concept
of storage utilization is rather closely related, since optimizing the height requires increasing
the average fanout of nodes, which again increases storage utilization. A number of previous
results present different trade-offs between update complexity and storage utilization, and we
now survey these. Standard B-trees have a worst-case storage utilization of approximately
1/2 and a logarithmic rebalancing cost. It is well known that lowering the worst-case storage
utilization of B-trees slightly by using (a, b)-trees with a < db/2e allows for amortized constant
rebalancing costs [22, 16]. The average storage utilization may be somewhat better than the
worst-case. In [26], an analysis of 2–3 trees with random insertions suggests that such trees
tend towards an expected storage utilization of ln 2 ≈ 0.69.

To improve the storage utilization in dynamic B-trees, Bayer and McCreight [7] proposed
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an overflow technique: full nodes share their load with their siblings (when possible) instead
of splitting (Knuth [18] refers to this variant as B*-trees). This improves the storage utilization
in the worst case from 1/2 to 2/3, and the height bound from b1 + logdB/2e(n/2)c to b1 +
logd2B/3e(n/2)c, at the price of increasing the update cost by a constant factor. As suggested
in [7], this approach can be generalized to redistribution in bigger groups of nodes before
splitting, thus further improving the storage utilization and the height bound at the cost of
even higher rebalancing costs. However, no matter the group size, the height bound will be
some constant factor away from optimal. The average storage utilization in a randomized
setting using this approach is analyzed in [19], indicating that storage utilization converges to
m ln((g + 1)/g) for random trees under insertions where g is the overflow group size.

Similarly, an overflow scheme is tested in [25] which attaches overflow nodes to groups
of nodes to delay splitting. They compute the average storage utilization to be 2g/(2g + 3)
when each overflow node is shared by a group of up to g leaf nodes. Both theoretical analysis
and practical simulations show improved storage utilization at a cost of increased complexity
during updates.

Rosenberg and Snyder [24] introduce so-called compact B-trees which are node-oriented
trees shown to be close to optimal with respect to access costs while requiring minimal space.
However, it is essentially a static structure as compaction incurs linear cost and no faster
compactness-preserving update algorithm is known. The empirical analysis in a dynamic set-
ting presented in [6] indeed shows that insertion into compact B-trees is very costly and that,
without compaction, storage utilization rapidly degrades when the number of updates grows.

Recently, Brown [11, 10] has developed a practically motivated variation called B-slack trees
which has amortized logarithmic update complexity while achieving high storage utilization.
Slack for a node refers to the difference between itsmaximumdegree and actual degree (number
of children “missing”). Special to B-slack trees is that the children of any internal node have a
combined slack of at most B − 1 where B > 4 is the maximum degree of nodes. Maintaining
this property is shown to ensure that a tree with n keys occupies at most 2B

B−3.4nwords (which
approaches 2n—the optimal value given the model used—asB increases). The rebalancing cost
is amortized logarithmic per update.

It is worth mentioning key compression techniques like those found in prefix B-trees [8] as
an approach to improve fanout and thus potentially lower tree height. This and similar key
compression techniques represent an orthogonal line of research which we do not pursue.

In contrast to B-trees, there for binary trees is a much stronger tradition for focusing on
the height. In particular, there is a body of work [23, 5, 2, 1, 4, 3, 21, 20, 14, 15] focusing on
rebalancing schemes with height bounds close to the optimal value dlog2(n)e. The end result
of this line of investigation is the matching upper and lower bounds in [14, 15]. Our results in
this paper can be seen as a generalization of those methods and results to the case of B-trees—
setting B = 2 in our bounds gives those of [14, 15]. One core new ingredient is the methods
of Section 2.4.4 which are necessary for the upper bound to almost match the loss of a factor
of B in the lower bound in Section 2.3 compared to the bound in [15].
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2.2 Model
We describe our results for leaf-oriented B-trees, as these are standard in the literature. In
leaf-oriented B-trees, internal nodes contain a total of 2B − 1 fields: B pointers to subtrees
and B − 1 search keys to guide the search (consistent with B-trees of order B as defined by
Knuth [18]). Both keys and pointers can be nil. Since keys separate subtrees, the number of
non-nil pointers is equal to the number of non-nil keys plus one. Leaf nodes contain the actual
elements, including their search keys. For simplicity, we assume that leaf nodes contain up to
B elements.1 All leaf nodes appear at the same level.

A B-tree of height h can contain up to N = Bh elements. We let T denote a B-tree with n
elements and optimal height h = dlogB ne and we define ε by n = N(1 − ε) = Bh(1 − ε).
Since the height is optimal, we haveBh−1 < n ≤ Bh and hence 0 ≤ ε < (B−1)/B. A node is
said to be modified by an update operation if any of its fields are changed. Clearly the number
of modified nodes is a lower bound on the rebalancing cost of an update operation. Unlike in
standard B-trees, we do not impose a lower bound on the number of keys. This only makes our
lower bound stronger and it thus applies to standard B-trees. Our upper bounds can easily be
adapted to conform to a lower bound on node contents.

2.3 Lower bound
In this section, we prove the following main theorem.

Theorem 1. For any B-tree T of optimal height h = dlogB ne, there exists an insertion into T
such that rebalancing T to optimal height after the insertion will require modifying Ω(1/(εB))
nodes, where ε is given by n = Bh(1− ε).

The proof is based on creating a mapping from B-trees into arrays (by suitably generalizing
a mapping for binary trees in [14]). Themapping allows us to exploit the existence in any array
of a “uniformly dense” position, which will point to an update position in T for which we can
prove the lower bound stated in theorem 1.

2.3.1 Mapping into array
We create the mapping from elements of T to entries of an array ψ(T ) of lengthBh as follows.
For a full tree (n = Bh), this mapping is given by an inorder traversal which maps elements
met during the traversal to increasing array entries. For a non-full tree, we embed T into
a full tree of the same height before applying the mapping. We use the following specific
embedding: keys fill up nodes from the left such that missing keys (and for internal nodes the
corresponding missing subtrees) for non-full nodes will be on the right. This embedding and
the resulting mapping is illustrated in fig. 2.4.

The mapping has the property that any subtree of the full tree is mapped to a contiguous
interval inψ(T ). In particular, for the full tree, a subtree with root at height h′ spans an interval

1In practice, the size of elements relative to the size of keys may vary between data sets (and leaves may also
store pointers to elements instead of elements themselves), but it is straight-forward to adapt our statements
accordingly.
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T :

ψ(T ) :

Figure 2.4: Illustration of the mapping of a tree T (with B = 3) into ψ(T ). Grey circles repre-
sent keys in internal nodes, black circles represent elements (in leaves).

of size Bh′ in ψ(T ). This implies that if such a subtree of T is moved during a rebalancing,
(say, if siblings of the parent of the subtree are added or removed in T ), the positions in ψ(T )
of its nodes will be shifted by a multiple of Bh′ .

We denote intervals of array indices (that is, intervals of integers) as [a; b] and the length
b − a + 1 of such intervals as l([a; b]). The following lemma regarding density of subsets of
intervals is from Dietz et al. [13].

Lemma 1. For any two indices a and b and any S ⊆ [a; b], there is an index i ∈ [a; b] such that
for any indices s and t where a ≤ s ≤ i ≤ t ≤ b, the following holds:

|S ∩ [s; t]|
l([s; t])

≤ 2
|S|

l([a; b])
.

Consider the subset S = {j ∈ [a; b] | ψ(T )[j] is empty}where a and b are the endpoints of
the arrayψ(T ). Applying lemma 1with this S, a, and b shows the existence of an index iwhere
any interval around i in ψ(T ) will have a density of “holes” (empty array entries) of at most
two times the global density of holes in ψ(T ), i.e. of at most 2ε. For this i, setting s = t = i and
s = i− 1, t = i+ 1 in lemma 1 shows that ψ(T )[i] and at least one of its direct neighbors are
non-empty if ε < 1/3. We insert a new element in the tree with a key x lying between ψ(T )[i]
and this neighbor. The rest of the proof assumes w.l.o.g. that ψ(T )[i] < x < ψ(T )[i+ 1].

2.3.2 Counting node changes

Consider any rebalancing operations ensuing from the insertion of x into the original tree T
and letT ′ be the tree after rebalancing. Let all nodes inT modified by the rebalancing be colored
blue and let unmodified nodes be colored white. We apply a recursive splitting procedure on
all blue nodes layer for layer in a top-downmanner. This procedure will maintain a set of parts.
Each part is a tuple which contains a connected subgraph of T and a contiguous subset of the
elements in ψ(T ) which we call a segment. As the subgraph in a part is connected, it has a
unique highest node which will be called the root of the part.

Initially, the set of parts contains a single tuple consisting of T and a segment containing all
elements of ψ(T ). Each splitting step on a blue node splits a part into new parts containing
subsets of the original part.

We now describe a splitting step on a blue node v. Let Tv be the subtree of v and let Sv be
the elements corresponding to the elements contained in the leaves of Tv mapped into ψ(T ).
Let (Gp, Sp) be the existing part (where p is the root of Gp) containing v and its subtree. The
existing part (Gp, Sp) is replaced by the following new parts.
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For each subtree under v, add a new part consisting of the subtree and all elements in the
subtree in ψ(T ). Refer to fig. 2.5 for an illustration of these subtree parts. When splitting blue

v

T

Gp

Figure 2.5: Illustrating of a general case of a splitting step on the node v. The subtree parts
created in this step (both subgraphs and segments) have been highlighted.

leaf nodes, we create a part for each element stored in the node. Such a part will consist of
an empty subgraph and a singleton segment containing the element. Generally, Gp may be a
proper superset of Tv (see fig. 2.5). In this case, we create up to two boundary parts for Sp \Sv .
The segment S< for the left boundary part (G<, S<) consists of all elements in Sp left of Sv .
The subgraphG< consists of all nodes on the path from v to p and all nodes inGp to the left of
this path. Creating the right boundary part is done similarly. See fig. 2.6 for examples of these
boundary parts. For later use, we note that this splitting procedure results in O(B) segments

v

G<

S<

(a) (G<, S<)

v

G>

S>

(b) (G>, S>)

Figure 2.6: Illustration of the boundary parts of fig. 2.5.
per blue node.

The following simple invariants for the splitting procedure are easy to verify: 1) When pro-
cessing layer k, no part will have a subgraph containing a blue node on any layer k′ > k. 2)
For each part (G,S) where |S| > 1, elements of S are in leaves of G. 3) Until the leaves are
reached, the process does not create any parts with empty subgraphs.

After the splitting procedure, there will by 1) be no blue nodes within connected subgraphs
of the remaining parts. This can be used to show that such subgraphs are not moved up or
down.

Lemma 2. After splitting is done, for parts (G,S) with |S| > 1, G will appear in T and T ′ with
the same height.

Proof. By 3),G will be a non-empty subgraph consisting of white nodes. Hence, this subgraph
must appear again in T ′. Due to 2), G contains some leaves, hence they appear on the same
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height in both T and T ′ (all leaves appear on the same level, soG cannot have moved vertically
between T and T ′).

We now focus on the segments of parts as the construction will impose restrictions on their
ability to move around from ψ(T ) to ψ(T ′). The previous lemma implies that segments can
only be shifted when going fromψ(T ) toψ(T ′) (meaning that elements appearing in a segment
will have the same relative positions to each other in both arrays). How far a segment is shifted
can be bounded from below by its size.

Lemma 3. A segment containing s elements which has different position in ψ(T ) compared to
ψ(T ′) has moved by a distance of Ω(s).

Proof. For segments of at most one element, the statement is obvious. Consider a part (G,S)
with s = |S| > 1 and let v be the topmost node of G. By lemma 2, G will be found in T ′, too,
with v having the same height in both trees. As discussed in section 2.3.1, nodes on a given
height can only appear in specific positions. When v moves, it translates the elements of S
by (at least) a multiple of the size (in number of elements in leaves) of a full subtree under v.
By (2), this size is at least s.

Proof of theorem 1. Suppose that the newly inserted element x lies between two segments, Sl−1

and Sl. As no holes were available, at least one of Sl−1 and Sl must have moved in ψ(T ′)
compared to ψ(T ). Suppose w.l.o.g. that Sl has moved to the right (potentially along with
some segments to the right of Sl). Let j be the index of the right-most element in the last
consecutive segment Sr right of i which has moved to the right and let ` = l([i; j]). Due to
the choice of i, at most 2ε` of the entries in [i; j] are empty, so there are at least (1 − 2ε)`
elements in this interval of ψ(T ). All of these elements are in the segments Sl, Sl+1, . . . , Sr
by choice of Sr . Segments can only be translated if there is room in the array (available holes).
Since Er+1 did not move to the right, this implies that none of the segments Sl, Sl+1, . . . , Sr
can have moved more than 2ε`, so by lemma 3, they can then only contain O(2ε`) elements
each. This means that the number of segments Sl, Sl+1, . . . , Sr must be Ω

(
(1−2ε)`

2ε`

)
= Ω

(
1
ε

)
.

As each blue node accounts for O(B) segments, this implies the existence of Ω(1/(εB)) blue
nodes.

2.4 Upper bound

In this section, we present a rebalancing scheme for performing insertions into a B-tree con-
taining Bh(1− ε) elements while maintaining optimal height h. The basic scheme is building
on ideas from a rebalancing scheme for binary search tree in [15]. It may also be viewed as a
(highly non-trivial) extension of the overflow technique analyzed in [19]. Adding ideas from
density keeping algorithms [17], we arrive at the final scheme.

For convenience of notation in the proof, we introduce the parameter k = 1/ε. Also, ε from
now on denotes a value fixed over a sequence of updates (it will be used in such a way that it
is never more than a constant factor from its previous meaning, defined by n = Bh(1− ε)).
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Theorem2. For any εwith 0 < ε < (B−1)/B there exists a rebalancing scheme for maintaining
optimal height h in a B-tree while its size ranges between (1− ε)Bh and (1− ε/2)Bh which has
an amortized rebalancing cost per update of

O

(
k log2(min{k,B})

B

)
,

where k = 1/ε.

In section 2.4.1, we describe the initial setup of the scheme, and in section 2.4.2 we describe
its rebalancing operations. In section 2.4.3, we show how these rebalancing operations can
maintain the structure at an amortized rebalancing cost of O(k) node updates per update. In
section 2.4.4, we combine the scheme with density keeping methods in order to lower the
amortized rebalancing cost to O(k log2(min{k,B})/B). We focus on insertions, since rebal-
ancing after deletions can be handled by simply running the operations in reverse. We assume
n = (1− ε)Bh initially.

2.4.1 Layout
The main mechanism employed in the structure is the distribution and redistribution of holes
in the tree. A hole in a node is simply a missing entry—for leaves, this means that an element
field is NIL, for internal nodes this means that a search key field and a corresponding pointer
field are NIL. We define the weight of a hole in a node of height h′ to be Bh′ , i.e., the capacity
of a subtree of height h′. This is the number of elements missing from the full tree due to this
hole.

Since we initially have n = (1 − ε)Bh, we must initialize the tree such that the sum of
weights of all holes in the tree is εBh. We call this sum our weight budget. On each level of the
tree, we divide the nodes into horizontal groups of contiguous nodes. It will be an invariant of
the rebalancing scheme that each group contains between 0 and B holes. Initially, this value
is B. The bigger the groups, the more sparse the holes will be. On the leaf level we set the
group size (the number of nodes in a group) toΘ(k). On the levels above, we double the group
size for each new level. If we conceptually consider this to happen in the full tree of degree B,
the B holes per group will on the leaf level correspond to a constant fraction of the weight
budget. By tuning the exact group size on the leaf level, we make this fraction be at most 1/8.
While the weight of a hole increases by a factor B per level, the width of the layers in the full
tree decreases by the same factor. Thus, doubling the group size means that the total weight
of holes in a level decreases by a factor of two for each level. Hence, the level sums in the full
tree form a geometrically decreasing series with total sum at most twice the weight of the leaf
level, i.e., at most 1/4 of the weight budget. Some level hmax will be the last where the group
size does not exceed the total number of nodes on that level. On this level, we place 3/4 of the
total weight budget (arbitrarily positioned on the level). We will refer to this as the reservoir.

The actual initial layout is built top-down: Above hmax no weight is placed and all nodes
have degree B. At level hmax, 3/4 of the total weight budget is placed, which compared to the
full tree removes nodes (by removing entire subtrees) on the levels below. The weight on the
lower levels (which removes further nodes of the tree during the top-down process) is given by
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Figure 2.7: Illustration of horizontally sliding a hole within a (sub)tree.

the group sizes defined above and the rule that each group has B holes. Due to the top-down
removal of nodes in the tree, the resulting tree will be thinner than the full tree, hence the level
sums in the actual tree produced will be smaller than the 1/4 of the total budget. Hence, after
this top-down procedure, there is some budget of left. This is distributed evenly as holes on
the leaf level (these holes are for simplicity of argumentation in proofs considered inactive, i.e.,
they will not take part in the rebalancing process described below and will not be considered in
the invariant that groups have at mostB holes). Once the shape of the tree has been produced,
it is filled with elements and search keys in a bottom-up fashion. Assuming the elements given
in sorted order (for instance during a global rebuild), the above process can be done at linear
cost O(n/B).

The rebalancing scheme we describe below works until there are no more holes in the reser-
voir. By the invariant on the number of holes per group in layers below the reservoir, the total
weight outside of the reservoir will never exceed the fraction 1/4, so emptying the reservoir
requires a number of insertions proportional to the initial weight in the reservoir. Hence, the
scheme will last at least until size (1− ε/2)Bh, as required for theorem 2.

2.4.2 Rebalancing operations

Two basic operations will be used in the rebalancing scheme to move holes around within the
tree: horizontal sliding and vertical redistribution. As the names imply, horizontal sliding will
move a hole from one location to another (within a group) on the same level while vertical
redistribution moves a hole from one level to another.

The horizontal sliding procedure is illustrated in fig. 2.7. To efficiently access the nodes to
be slid on the sliding level, we maintain horizontal level-pointers between nodes which are
neighbors on the level. As groups do not necessarily align with subtree boundaries, neigh-
bors on the level may have a lowest common ancestor which is further away than the sliding
distance. Since this ancestor is among the nodes whose keys should be changed due to the
slide (to maintain search tree order), we maintain pointers to these ancestors for all pairs of
neighboring nodes on a level which are not siblings (these pointers and the level-pointers are
not shown in fig. 2.7). When sliding, subtrees below the slide level must be moved along with
the keys to maintain search tree order of the keys (as shown in fig. 2.7). In that process, the
ancestor pointers between the edges of these subtrees may have to be updated, which for each
subtree is a number of pointers proportional to its height. Thus, sliding a hole from another
node in the current group on a level at height i will require accessing O(i2ik) nodes, since the
group size is 2ik.

A vertical redistribution transforms one hole on a level l + 1 into B holes on level l. It is
illustrated in fig. 2.8. This operation is the same as the split operation in standard B-trees. To
perform a vertical redistribution, one clearly needs to access less nodes than for a slide at the
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Figure 2.8: Illustrating the vertical redistribution. A hole is moved down one layer, thus allow-
ing the creation of a new node on said layer. This corresponds directly to splitting
in standard B-trees.

same level.

2.4.3 Insertion
We now describe how to insert a new element with a given key. As in standard B-trees, we
first search for the key in the tree to find a leaf node, v. If v contains a hole, we simply add
the element to v as in a standard B-tree and no further work is done. Otherwise, a hole is first
moved to v to make room for the new element. This is done by a searching the group of v
for a hole to slide to v. If none exists, we ask for the parent of v to obtain a hole, which we
then can redistribute to v’s level as B holes. If the parent has no hole, the process is repeated
recursively. This recursive process, called Reqest, is described as algorithm 3. The recursion
ends at the latest when the reservoir is reached.

Algorithm 3
procedure Reqest(v)

if any node in v’s group has a hole
slide this hole to v

else
Reqest(parent node of v)
redistribute a hole from parent
if v’s group is too big

split v’s group

Moving down holes from higher levels via a vertical redistribution increases the size of the
receiving group by one (see fig. 2.8). To keep the sizes of groups, and hence the cost of sliding
within groups, we split a group in two when a redistribution discovers that the size of the
receiving group has doubled compared to its initial group size from section 2.4.1. Groups are
simply implemented bymarking the border nodes of groups, so this splitting is straight-forward
to carry out as part of the operation.

As each redistribution provides B holes to a group, algorithm 3 will only recurse upwards
(the else case) from a group when B new calls of algorithm 3 to nodes in the group have been
issued since the last recursion upwards from this group. Recall that a horizontal slide on a
level at height i has a cost of O(i2ik) and that vertical redistributions are also covered by this
bound. From this follows an amortized bound on the rebalancing cost of:

k +
1 · 2k
B

+
2 · 22k
B2

+ · · ·+ i · 2ik
Bi

+ · · ·+ hmax · 2hmaxk

Bhmax
(2.1)
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which is O(k) (assuming B > 2). As is standard, this can formally be proven by a potential
function which amounts to each insertion bringing an amount of “coins” equal to eq. (2.1).
Coins are conceptually stored in groups and will pay for all rebalancing work. When splitting
a group, the new group has an additional need for coins not covered by eq. (2.1). As groups grow
slowly, the extra amount compared to eq. (2.1) is low order in its terms, so just doubling eq. (2.1)
is more than enough.

2.4.4 Achieving log squared amortized rebalancing

We now describe how to modify the rebalancing procedure such that the amortized cost per
insertion becomes:

O

(
k log2(min{k,B})

B

)
Note that the amortized cost of rebalancing on all non-leaf levels is already as low as O

(
k
B

)
.

This can be seen by excluding the first term in eq. (2.1). Since k = Θ(1/ε), that value matches
the lower bound, so we only need to lower the cost of rebalancing on the leaf level.

The overall plan is to distribute holes more evenly within leaf groups, both when construct-
ing the tree initially and when vertically redistributing holes from the next higher level. We
will use a density keeping scheme [17] on the nodes within each leaf group. Concretely we will
use the version described in section 3.1 of [9] (to which we refer for full details). The scheme
maintains a distribution of holes in a binary search tree by enforcing density (number of keys
relative to the maximum for a given height) bounds on the levels of the tree. In this scheme,
each insertion will require redistribution within an interval of sizeO

(
log2(n)/τ1

)
(amortized)

where n is the size of the array and τ1 is upper limit on the density for the array (τ1 can be set
to 1/2 here).

We apply this scheme to each group of k leaves such that each leaf node within a group is
treated like a leaf node in the binary tree of the density keeping scheme. The binary tree is
implicitly overlaid on the group and not actually constructed. The analysis in [9] requires that
redistributing everything in a subtree takes linear time in the size of the subtree. We point out
that this requirement is satisfied in this setting as the number of nodes involved in rebuilding
an interval on the leaf level will be dominated by the distance on the leaf level (as described
regarding sliding in section 2.4.3).

ForB ≥ k, we must ensure that a node will sustainΘ(B/k) insertions per request for more
holes to achieve the desired amortized cost. To this end, we specify how many holes a node
gets from its neighbors via a request (slide) and how many holes a node must have in order
to be able to give some holes away (this specifies whether the density keeping scheme should
consider the node full). We split the B/k holes in each node into two equal portions: one to
handle insertions into the node and one to service a request from another node. This means
that a node issues a request only afterΘ(B/k) keys have been inserted into it and that a node
is given Θ(B/k) holes when it issues a request for holes. A node can only help another node
(potentially itself) once—this is also the case in the setting of [9] as each node has capacity one.
The amortized number of insertions between each request within the group is now Ω(k/B)

and hence the amortized cost is O
(
k log2(k)

B

)
.
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For k > B, not all nodes can get a hole per vertical redistribution. Instead, we apply the
density keeping scheme to subgroups of k/B nodes where each such subgroup gets one hole
after a vertical redistribution. The distance to a hole within a subgroup is O(k/B) and as
there will be B subgroups per actual group, using the density keeping scheme will mean that
insertions will have an amortized cost of O

(
k log2(B)

B

)
.

It is important to note that, in both cases, Θ(B) of the holes are used before a vertical redis-
tribution is requested (this is necessary to cover the cost of global rebuilding).

To handle deletions, the operations can be performed in reverse, as mentioned earlier. This
implies moving holes upwards in the tree (equivalent to merge in standard B-trees) when the
number of holes in a group grows sufficiently big.

2.5 Global rebalancing scheme

We here describe how repeated global rebuilding can be used with the scheme presented in
section 2.4 to achieve a global rebalancing scheme (i.e., not bound to a specific range of tree
sizes as in theorem 2).

Immediately before performing a global rebuild, the tree contains n = N(1−ε) elements for
some ε, whereN is the next power ofB. We set up the system from section 2.4 by performing a
global rebuild at linear cost (i.e.,O(n/B) node updates). We use this set-up whileN(1−2ε) ≤
n ≤ N(1 − ε/2). Once one of these bounds have been reached, we rebuild again, updating ε
by increasing or decreasing it by a factor of two. There will be at leastΘ(Nε) updates between
each rebuilding. Thus, the amortized cost incurred by the rebuilding process per update will
be O(1/(Bε)), which does not increase the upper bound from section 2.4.

Applying this scheme during insertions (with ε successively decreasing by factors of two
along the way) allows us to maintain optimal height until the tree is arbitrarily full and the
update cost hence is arbitrarily close to Θ(n/B). In practice, one would presumably choose
to allow suboptimal height when the complexity of rebalancing exceeds a certain rebalanc-
ing budget. fig. 2.1 illustrates how the complexity (lower bound) behaves as n approaches
powers of B and how this complexity lower bound relates to a logarithmic budget. Suppose
we want to limit the update complexity to a given budget f(n). We can do that by keeping
optimal height from n = Bh−1 up to the point where the budget is exceeded and from that
point up to n = Bh allowing the height to be optimal plus one. Specifically, we define ε′ by
k log2(min{k,B})/B = f(n) and k = 1/ε′. For most f(n), this has for Bh−1 < n ≤ Bh

one solution ε′ for each h, similarly to fig. 2.1. We assume this to be the case for the f(n) in
question. We adjust the scheme above in the following way:

• If n exceeds Bh(1− ε′/2), rebuild the tree with the height incremented by one and use
ε = 1/2.

• If n falls below Bh(1− ε′), rebuild the tree with the height decremented by one and use
ε = ε′.

This gives the result below, where ε′ is defined as above.
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2.6 Storage utilization

Theorem 3. There exists a rebalancing scheme such that, given a rebalancing budget f(n), a
B-tree can be maintained with perfect height from Bh−1 to (1 − ε′)Bh and with perfect height
plus one up to Bh.

We highlight two interesting special cases. The first case is f(n) = Θ(logB(n)), which is a
natural choice since it allocates the same cost for rebalancing as for searching time. For this
choice, ε′ = o(1), leading to:

Corollary 1. There exists a rebalancing scheme that given a rebalancing budget of Θ(logB(n))
maintains a B-tree which has optimal height for all but a vanishing fraction of values of n. For
the remaining values of n the height is optimal plus one.

A comparison of the result of corollary 1 to optimal height and to the height bound obtained
by standard B-trees is given in fig. 2.2.

The second case is f(n) = Θ(1/B), for which we have ε′ = Θ(1), leading to:

Corollary 2. There exists a rebalancing scheme that given a rebalancing budget ofΘ(1/B)main-
tains a B-tree with optimal height plus one.

2.6 Storage utilization
We here consider the connection between the parameter ε and the storage utilization.

Our upper bound rebalancing scheme directly implies excellent storage utilization. Whenwe
lay out a tree with a given k this tree will have a storage utilization of at least (k−1)/k = 1−ε.
This is trivially true for the leaf level as each group consisting of a multiple of k leaves has at
most one empty node worth of holes (refer to section 2.4.1). As holes are more sparse on higher
levels of the tree, these levels have higher storage utilization than the leaves. The total weight
of holes in the reservoir is at most a constant times the total weight of holes in the leaves.
Since the number of nodes allocated in the reservoir is bounded by the number of allocated
leaves and the weight per hole in the reservoir will be greater (by a factor of a power of B),
the storage utilization among nodes in the reservoir is at least that of the leaves, too.

The scheme in section 2.5 changes ε and thus the guaranteed storage utilization while grow-
ing a tree. To get a consistent high storage utilization while growing a tree, one can instead
choose a desired low ε′ (lower than needed initially for n = (1−ε)N ), lay out the holes among
the leaves and internal layers according to this ε′, and leave the extra free storage this would
yield in the reservoir. By the same arguments as before, the storage utilization on the leaf and
inner levels of the tree would then be 1 − ε′. On the reservoir level, one could compact the
nodes such that at most one node would be non-full.

Our lower bound results do not translate directly into a statement about storage utilization.
This result is about the amount of room (weight) in a tree of a particular height—the actual
number of nodes allocated within the tree is not considered. As a counter-example to impli-
cations for storage utilization, take for instance a B-tree with all nodes completely full except
the root which has only a tiny fraction of the B possible children. This tree will have excellent
storage utilization—it will approach 1 for increasing n—while ε will be large as the number of
keys could be increased massively without increasing tree height.
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abstract

Weempirically investigate algorithms for solving Connected Components in the externalmem-
ory model. In particular, we study if the randomized O(sort(E)) algorithm by Karger, Klein,
and Tarjan can be implemented to compete with practically promising and simpler algorithms
having only slightly worse theoretical cost, namely Borůvka’s algorithm and the algorithm by
Sibeyn, Meyer and collaborators.

Our experiments are executed on a large set of different graph classes, including random
graphs, grids, geometric graphs, and hyperbolic graphs.

Among our findings are: The Sibeyn-Meyer algorithm is a very strong contender due to its
simplicity and due to an added degree of freedom in its internal workings when used in the
CC setting. With the right tunings, the Karger-Klein-Tarjan algorithm can be implemented to
be faster in many cases. Those cases are marked by higher density (the threshold is around
five, but varying among the graph classes). Also, larger graph sizes seems to benefit Karger-
Klein-Tarjan relative to Sibeyn-Meyer, which is in line with its better asymptotic bound on the
expected I/O cost. Borůvka’s algorithm is not competitive with the two others.
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3 Engineering an Expected O(Sort(m)) External Connected Components Algorithm.

3.1 Introduction

The Connected Components (CC) problem is a fundamental algorithmic task on undirected
graphs and has a large number of uses, including web graph analysis, communication network
design, image analysis, and clustering in computational biology.

CC may be viewed as a smaller sibling of the minimum spanning forest (MSF) problem de-
fined on weighted, undirected graphs—any algorithm solving MSF and able to return the trees
of the forest one by one can be used to solve CC by first assigning arbitrary edge weights.

In internal memory, CC is straight-forward to solve in linear time using DFS or BFS. It is a
long-standing open problem whether MSF also can be solved in linear time. A large body of
work has been devoted to the question (see e.g. the references in [17]), leaving the impression
that in internal memory, MSF is harder to tackle than CC, at least in terms of the algorithmic
sofistication needed (and potentially also in terms of the complexity of the problem).

In external memory, there is a lower bound for CC and MSF of Ω(E/V · sort(V )) [13] and
a number of algorithms that come within at most a logarithmic factor of O(sort(E)). No
deterministic algorithm is known to match the lower bound, but a randomized algorithm with
O(sort(E))1 expected cost exists [11, 5]. Unlike the situation in internal memory, the known
algorithms in external memory for CC are essentially the same as the known algorithms for
MSF, either exactly or as close variants. The largest discrepancy between the two settings is for
the randomized O(sort(E)) algorithm, where a fairly involved subroutine for its MSF variant
becomes straight-forward for its CC variant.

The randomized O(sort(E)) external memory algorithm seems never empirically investi-
gated. The aim of this paper is do exactly this, focusing on the CC setting, where the dis-
crepancy mentioned above gives the algorithm the largest opportunity of being competitive in
practice. In more detail, we want to investigate implementations and tuning options for this
algorithm and to compare the best of our implementations with tuned versions of the practi-
cally most promising of the remaining set of (asymptotically slightly worse, but often simpler)
external CC algorithms. Due to the large size of internal memory in most current computer
systems, it is not clear at all whether a small asymptotic advantage of at most a logarithmic
factor will ever materialize in practice for graphs of (very) large, but still plausible sizes. At the
same time, our investigations will provide guidance for practitioners wanting to solve CC for
large graphs on current hardware.

3.1.1 Previous work

In the semi-external case, where V < M , scanning the edges and maintaining the components
via a Union-Find data structure will solve CC in O(scan(E)) I/Os. The classic Borůvka MSF
algorithm was externalized by Chiang et al. [5] by showing how to implement a Borůvka step
inO(sort(E)) I/Os, leading toO(log(V /M) · sort(E)) cost for the entire algorithm. A simpler
method for implementing a Borůvka step inO(sort(E)) I/Os was later given by Arge et al. [3].
Munagala and Ranade [13] gave a CC algorithm using O(log log(V B/E) · sort(E)) I/Os, and

1Using sparsification, the algorithm can be implemented to have O(E/V · sort(V )) cost [5], matching the lower
bound exactly. In this paper, we will consider its O(sort(E)) version, as the two bounds are very close and we
want the algorithmic complexity to be kept down.
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3.2 Definitions

also proved the above-mentioned lower bound. The algorithm was later generalized to MSF by
Arge et al. [3], keeping the I/O bound.

In [11], Karger, Klein, and Tarjan gave an internal MSF algorithm with expected O(E) run-
ning time, using a linear time MSF verification algorithm as a central subroutine. Chiang et
al. [5] gave an external algorithm for MSF verification. Based on this, sorting, scanning, and ex-
ternal Borůvka steps, it is fairly straight-forward to convert the algorithm of [11] to an external
MSF algorithm with expected cost O(sort(m)) [5].

For the CC, it is an easy observation (already made in [2]) that the MSF verification part
can be substituted by a simple contraction step, thereby reducing the implementation com-
plexity considerably. To our knowledge, neither the CC nor the MSF variant of this expected
O(sort(m)) algorithm has been tested empirically.

A very simple randomized MSF algorithm with an expected I/O cost of O(log(V /M) ·
sort(E)) was given by Sibeyn and Meyer and was first reported in Schultes [18]. It was fur-
ther described and empirically tested by Dementiev et al. [20]. A variant for CC was studied
by Sibeyn [21] theoretically and empirically (it was also described and tested empirically in
Schultes [19]). Due to its simplicity, the algorithm is likely to have very competitive constants
in its I/O-cost expression, which is argued theoretically in [21] and substantiated by the ex-
periments in [20, 21]. However, none of the experiments [20, 21] compared to other external
memory algorithms.

3.1.2 Our contribution
We implement the CC version of the O(sort(E)) randomized, external algorithm by Karger,
Klein, and Tarjan [11] and develop and investigate a number of tuning options. We then com-
pare it to tuned versions of what we consider the practically most promising other algorithms
for the CC, namely external Borůvka and the algorithm by Sibeyn, Meyer, and collaborators [18,
20, 21, 19]. Our experiments are executed on a large set of different graph classes, including
random graphs (the Gilbert type where each edge is picked with equal probability), grids, ge-
ometric graphs, and hyperbolic graphs.

Among our findings are: The Sibeyn-Meyer algorithm is a very strong contender due to its
simplicity and due to an added degree of freedom in its internal workings when used in the CC
setting. Still, with the right tunings, the Karger-Klein-Tarjan algorithm can be implemented to
be faster in many cases. Those cases seems marked by higher density (the threshold is around
five, but varying among the graph classes). Also, larger graph sizes seems to benefit Karger-
Klein-Tarjan relative to Sibeyn-Meyer, which is in line with its better asymptotic bound on the
expected I/O cost. Borůvka’s algorithm is not competitive with the two others.

3.2 Definitions
In this paper, all graphs G = (V,E) are undirected. As is common, we are overloading the
symbols V and E: When used as a set, V denotes the set of nodes, when used as a number, V
denotes the number of nodes (and similarly with E and edges).

The cost of algorithms are analysed in the standard I/O-model of Aggarwal and Vitter [1],
whereM denotes the size of the internal memory andB denotes the block size. By scan(N)we
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3 Engineering an Expected O(Sort(m)) External Connected Components Algorithm.

denote the I/O costΘ(N/B) of scanning and by sort(N) the I/O costΘ(N/B logM/B(N/M))
of sorting.

The Connected Components (CC) problem is to identify the partition of V induced by the
equivalence relation ∼ defined by: u ∼ v iff u is connected to v by a path in G. As input, we
will assume the standard external memory representation of a graph as a list of edges.2 All
our algorithms need the edges to be sorted lexicographically. To avoid an initial sorting step,
we assume the input to be sorted—this can only make differences in running times between
algorithms larger. Unless otherwise stated, we also assume that each unordered edge (u, v) is
stored once and in normalized form, i.e. with u ≤ v. As output, we will require a mapping
f : [0 . . . V − 1] → [0 . . . V − 1] where f(v) = f(u) iff u and v are in the same connected
component. We choose that this output should be returned as the pairs {(v, f(v)) | v ∈ V },
i.e., in the form of a graph consisting of stars. In all algorithms, each star center will be some
chosen representative node from the corresponding connected component.

By a relabeling of a graph G = (V,E) by a mapping f : [0 . . . V − 1] → [0 . . . V − 1],
we mean applying f to all edge endpoints and then removing parallel edges and self-loops in
the resulting graph. As a relabeling can be performed by O(1) sorts and scans of E, this has
cost sort(E).

By a contraction G/E′ of a graph G = (V,E) by a subset E′ ⊆ E of its edges we mean
solving CC on G′ = (V,E′) and then relabeling G by the mapping f ′ returned.

Note that if we solve CC on the contracted graph G/E′ and by f ′′ denote the mapping
represented by the graph of stars returned, then we can solve CC on the original graph G
as follows: Use the graph of stars representing f ′′ to relabel the edges in the graph of stars
representing f ′ (only one endpoint of each edge is affected by the relabeling). Then merge
those relabeled edges with the edges of the graph of stars representing f ′′. It is easy to see that
this will produce a graph of stars representing the solution f to CC on the original graph G.
All recursive algorithms in the current paper use that as their overall framework.

3.3 Algorithms

In this section, we describe the basic versions of the algorithms implemented.

Union-Find In the semi-external case, where V < M , scanning the edges once while main-
taining a Union-Find data structure on V in internal memory allows the CC to be solved in
O(scan(E)) I/Os (andO(Eα(E)) CPU time [22], where α is the inverse Ackermann function).
We will use this algorithm as a base case.

Borůvka A Borůvka step in the MSF setting means letting each node choose an incident
edge of minimum weight and then contracting the graph by the set E′ of chosen edges. In the
graph G′ = (V,E′), each node is in a connected component of size at least two, so the num-
ber of nodes is at least halved in the step. Assuming that a Borůvka step can be implemented

2This means that isolated nodes should be handled separately by the user, which is straight-forward as they
constitute their own connected components.
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atO(sort(E)) cost, this leads to a recursive algorithmwhichwill useO(log2(V /M)sort(E)) I/Os
before the semi-external base case is reached. This is Borůvka’s algorithm.

The first part of a Borůvka step is to find E′. This is done as follows: double E during a
scan to make it contain for each edge both its original normalized version and its reversal, then
choose a minimum incident edge for all nodes via a single sort and scan of this doubled version
of E. This has O(sort(E)) cost.

To implement the remainder of a Borůvka step, one can exploit thatG′ = (V,E′) is a graph
where each connected component has exactly one cycle, as seen by repeatedly following paths
of chosen edges until all nodes have been met. If we assume that all edge weights are unique,
the weights along any path are strictly decreasing, except when closing a two-cycle by travers-
ing the same undirected edge in two directions. Hence, the cycles must all be two-cycles.
By sorting E′ using a comparator which first normalizes its two input edges, all two-cycles
(u, v), (v, u) can be found. Removing the edge (v, u) from E′ leaves the corresponding con-
nected component as a tree with v as root. Declaring v to be the ID of that connected com-
ponent, the task is now to distribute those IDs of connected components in G′ to the rest of
the nodes of the trees, in order to be able to return the star graph representing the mapping f ′
needed for the contraction.

For this task, early external methods for Borůvka steps [5, 2] used algorithms for Euler tours
of trees which again are based on list ranking algorithms. A simpler method was described
in [3], which is the one we will use. It is based on the fact that edge weights are strictly
increasing on root-to-leaf paths in the trees. This allows edge weights to be used as a “time line”
for coordinating the step-wise propagation of IDs downwards in the trees (the entire process
is often called “time forward processing”). The propagation is done for all trees simultaneously
by maintaining a set of ID propagation signals in an external priority queue, with the priority
queue key being the edge weight of the edge above the destination node v of the signal. When
a signal is removed from the priority queue by a delete-min operation, we scan the child edges
of v and for each insert a signal with the same ID and with the key being the weight of the child
edge. The priority queue is initialized by for each tree root inserting signals for all its children.

As a preprocessing step, we first create a list L of all tree edges not incident to a root. In L,
all child edges of a node v are grouped together, and the order between groups is determined
by the weight of the parent edge of v. This preprocessing can be done via a few sorts and scans
of the tree edges. After this preprocessing, all accesses to child edges during the propagation
process combined constitute a single scan of L. Hence, the second part of a Borůvka step
has O(sort(V )) cost. For further details, see [3].

In the CC setting, the above algorithm for a Borůvka step can be implemented by (formally)
assigning to all edges their normalized identity as their weight. Note that in the first part of the
step, this is equivalent to each node simply choosing the edge to the neighbor with the lowest
ID. Also note that this weight assignment fulfills the assumption of edge weights being unique.

Karger-Klein-Tarjan We now describe the CC version of the O(sort(E)) randomized, ex-
ternal algorithm based on Karger, Klein, and Tarjan [11]. It is a recursive algorithm with the
following structure:

1. Perform three Borůvka steps in the input graph. Let the result be G = (V,E).
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2. Sample E1 ⊆ E by independently sampling each edge in E with probability 1/2. Let
G1 = (V1, E1) be the graph represented by E1.

3. Compute the connected components CC(G1) recursively.

4. Contract G by CC(G1). Let the result be G′.

5. Recursively compute CC(G′).

6. Relabel CC(G1) using CC(G′) and merge the result with CC(G′) (as per the last para-
graph of Section 3.2).

7. Perform the corresponding relabelings and merges based on the three contractions of
the initial Borůvka steps (as per the last paragraph of Section 3.2).

Note that in step 4, the stars found representing CC(G1) are not impacted in contraction
which means that only the edges E \ E1 need to be processed.

The input to the second recursive call isG′ = G/CC(G1) represented by its edge list. Having
been contracted by CC(G1), the only edges remaining are edges between connected compo-
nents of G1. The crux of the Karger-Klein-Tarjan algorithm is that the number of these edges
is O(n) in expectation. The argument for this is as follows.

To bound the expected number of edges left inG′, consider each edge e ∈ E1 as if the edges
were taken in a Kruskal-like fashion, building up a spanning forest F ofG1 one edge at a time.
As the sampling is done independently for each edge, we can analyse this process in arbitrary
order of the edges.

1. If e forms a cycle with already sampled edges, we need not count it

• If it were sampled, it (or another edge on the same cycle) would not become part of
F

• If it were not sampled, it would become an intra-CC edge and thus not end in G′

2. If e does not close a cycle and is sampled in E1, it counts towards F

3. If e does not close a cycle and is not sampled in E1, it counts towards G′

The number of edges counted towardsG′ in the third case might be an overestimate: It may
be the case that later edges are sampled which, with edges already counted towardsG′, would
form cycles. There may also be several edges in G′ between any pair of computed CCs; these
are easy to identify as parallel edges given the CC IDs.

To bound the expected number of remaining edges, note first that |F | ≤ V −C where C is
the number of connected components of G. The decision of whether or not to include an edge
in the sample is independent of previous samples, so cases 2 and 3 are equally likely. Thus, the
expected size of E′′ is at most the size of |F |.

This argument is analogous to Lemma 2.1 of [11] for the MSF version. The rest of the argu-
ment in [11] for the expected cost carries over almost verbatim, with O(E) time substituted
by O(sort(E)) I/O cost.
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Sibeyn-Meyer TheMSF algorithm presented in [20] is designed to be simple yet I/O-efficient
for practical applications. The algorithm works by repeatedly letting one node select its min-
imum incident edge and contracting it. The contractions are done in a lazy fashion using the
time-forward processing method, with the time dimension being the node IDs.

The original algorithm is described in two versions using different main data structure(s):
one using buckets and the other using a priority queue. As the bucket version involves param-
eter choices during implementation which potentially makes it break for some graphs, we in
this paper focus on the version based on priority queues.

By first randomizing the node IDs, the algorithm is shown [20] to generate expectedO(E log(V /V ′))
priority queue operations when contracting the node set V to a smaller node set V ′ (i.e. for
contracting V − V ′ nodes). Stopping the contractions when the semi-external V ′ < M case
is met and finishing using Kruskals algorithm gives an expected O(log(V /M) · sort(E)) algo-
rithm.

The priority queue version of the algorithm can be described as follows:

• Initialize Q as a PQ containing all the input edges (u, v, w), ordered by u and w

• while |Q| > 0:

– (u, v, w)← ExtractMin(Q)

– Output (u, v, w) as an MSF-edge

– while |Q| > 0 and the minimum edge left in Q has source u

∗ (u, v′, w′)← ExtractMin(Q)

∗ Insert(Q, (min{v, v′},max{v, v′}′, w′))

As mentioned, the algorithm in effect uses time-forward processing to propagate informa-
tion from smaller to larger node IDs. When a new source u appears as the minimum, all edges
incident to u have already been “sent” to u and the minimum-weight edge among these is the
first one extracted. Note that to get a correct MSF, the forwarded edges will in the original
algorithm be annotated with the original nodes.

In our setting, where the goal is to just compute the connected components of a graph, the
algorithm can be simplified in a number of ways (see [19]). The tree that the algorithm will
output only matters for connectivity and as such, the “edges” of this tree need not be edges
from the original input E, so there is no need to annotate forwarded edges with original node
IDs. As edge weight is not relevant for connectivity, one can choose an arbitrary edge out of
the “current” source u as the new target to forward edges to. A natural choice would be to send
the information as far forward in time as possible. This is achieved by simply ordering the PQ
by source in increasing order and by target in decreasing order as the first edge out of each
new source will then go to the furthest neighbour (or known reachable node due to forwarded
edges) immediately.

The final CC information should be represented as a set of stars, so some post-processing
has to be done on the trees output by this modified algorithm. Observing that the node IDs
give a topological ordering of the tree edges, one can simply reverse all the tree edges and use
time-forward processing in the opposite direction of the initial algorithm:
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• Initialize a priority queue Q ordered by decreasing u.

• for each reversed tree edge (u, v)

– (u, v)← ExtractMax(Q)

– Output (u, v, w) as an MSF-edge

– Remove from Q any messages (u′, v′) where u′ > u

– If there is a message (u, v′) on top of Q, then v ← v′

– Output (v, u)

– Add message (v, u) to Q

Randomized Borůvka A standard Borůvka step has a first part where each node selects
an outgoing edge, and a second part where the connected components of this edge set E′ are
found via time-forward processing and then returned as amapping represented by a star graph.
A Borůvka step is guaranteed to contract V by at least a factor of two.

We now describe a novel randomized method for the second part which is simpler than time-
forward processing, at the cost of a lower contraction factor. In the empirical part of the paper,
we then investigate if this trade-off is beneficial for the overall I/O cost when using Borůvka
steps (either as part of Borůvka’s algorithm or in the Karger-Klein-Tarjan algorithm).

The idea is simple: let 1) each node keep its selected edge with probability p and 2) in the
set E′′ of remaining edges mark all edges (u, v) for which E′′ contains an edge (w, u), then
remove all marked edges to give the final edge set E′′′. Step 1) can be done during the edge
selection process at no cost, and step 2) can be done in one additional sort and scan step. No
(oriented) path in E′′′ has length more than one, hence E′′′ is a star graph itself (it represents
its own connected components) and can just be returned.

We now bound the expected size of E′′′. E′ has size V , so the expected size of E′′ is pV .
If we for each edge (w, u) in E′ count a mark if (w, u) was kept and (u, v) was kept (where
(u, v) is u’s chosen edge), then we have an upper bound on the total number of marks (it is
an upper bound, as (u, v) could also be counted as marked via another edge (w′, u), but (u, v)
can only hold one mark). Hence, the expected number of edges removed fromE′′ toE′′′ is less
than p2V . Thus, the expected size ofE′′′ is at least p(1−p)V , which is maximized for p = 1/2.

When contracting using the star graphE′′′, each edge ofE′′′ will remove at least one node, so
expected at least 1(1−1/2)V = V /4 nodes are removed. Thus, the expected contraction factor
is at least 1/(1− 1/4) = 4/3. The actual contraction for a given graph may of course be larger
than this, just as for standard Borůvka steps and its lower bound of two on the contraction
factor. We will in the empirical section investigate what typically happens in practice.

We note in passing that when finding E′ in the first part of a Borůvka step, there is for the
method above no need to choose a minimum incident edge according to some assigned unique
edge weights, since there is no need for the cycles of the connected components to have size
two with the above method (as opposed to the method based on time-forward processing on
trees).
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3.4 Tuning Options

We investigate several variations of the algorithms with potential for impact on their I/O costs.

Pipelining Pipelining is the concept of one algorithmic sub-routine handing its output di-
rectly to another sub-routine without storing the intermediate data on disk. Applying this
where possible can be expected to save I/Os, and our implementation platform STXXL offers
tools for this type of programming. Before settling on using it, however, we want to investigate
its impact.

Contraction sub-routine In Borůvka’s algorithm, and in the Karger-Klein-Tarjan algorithm
(before its first recursive call), nodes are contracted. We investigate if time-forward process
based Borůvka steps or the proposed randomized version will be the fastest. The general
form of the running time argument in [20, 18] states that if the Sibeyn-Meyer algorithm is
run until the number of nodes has been contract from V to V ′, it uses expectedO(log(V /V ′) ·
sort(E)) I/Os. Thus, another possible contraction sub-routine in Karger-Klein-Tarjan is to use
Sibeyn-Meyer.

Omitting node contractions at the root in Karger-Klein-Tarjan From the details of the
cost analysis of Karger-Klein-Tarjan [11], it seems likely that the initial contraction in the root
node of its recursion tree will dominate the running time. The asymptotic result of expected
O(sort(E) cost will still hold if this contraction (but not the contractions in other nodes of the
recursion tree) is omitted. Then the algorithm will simply start with a scan of the input edge
list when sampling edges before the first recursive call. If the returned mapping happens to
contract nodes and edges well, the second recursive call will not contribute much to the total
I/O cost, either. In this case, the dominating part will be the contraction after the first recursive
call, which constitute two sorts and scans ofE (if we enter the base case in the second recursive
call, we can even save one of the sorts, because the edges do not need to be sorted beforemaking
the call).

Sampling parameter in Karger-Klein-Tarjan The original sampling probability for edges
before the first recursive call in Karger-Klein-Tarjan was set to p = 1/2, but others values are
possible. Lowering pmakes the first recursive call cheaper, and for denser graphs, we may still
have a good effect of the contraction before the second recursive call, because a sparser subset
of edges may still span large portions of the connected components. If this turns out to be true,
an option could be to make p depend on the density (lower p when higher density).

Which neighbor to contract in Sibeyn-Meyer In each step of Sibeyn-Meyer, the MSF
version of the algorithm must choose to contract the current node and its neighbor given by
its incident edge of minimum weight. In the CC version, it is free to choose any neighbor. As
argued in [21], it may be beneficial to choose the neighbor with largest node ID. We want to
investigate what is the best choice and the gains possible, andwe compare empirically choosing
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a neighbor with largest node ID, a neighbor with smallest node ID, and a random neighbor
(which corresponds to the MSF version).

3.5 Implementation
All algorithms are implemented in C++ using the STXXL library [6], which offers highly tuned
external memory versions of fundamental algorithmic building blocks like sorting and priority
queues. It also supports pipelining which avoids the need for unnecessary round trips to disk.
For the external priority queue used in several places in the algorithms implemented we also
use the one provided by STXXL.

In order to accommodate different contraction schemes as replacements in the contraction
of the recursive Karger-Klein-Tarjan algorithm, we implemented a general framework which
generically performs the sampling, contraction, relabeling and merging in the algorithm’s ex-
ecution depending on the given contraction. As of now, currently considered contraction
schemes are Sibeyn-Meyer, Karger-Klein-Tarjan and randomized Borůvka contractions. The
framework comes in two flavors: as a purely vector-based and a pipelined stream-based im-
plementation. Despite the fact that the stream-based implementations perform superiorly, the
extent of their benefits were a priori not clear. Additionally, as our framework does not pri-
marily depend on a priority-queue, unlike the pure Sibeyn-Meyer algorithm, several small op-
timizations can be added.

Edge representation In our implementation we store each undirected edge by its ordered
pair (u, v) where u < v. For sorted edges we additionally employ a more I/O-efficient data
structure: consecutive edges with the same source u are compressed to a single entry u fol-
lowed by all its adjacent nodes and a delimiter.

Data structures Thepipelined implementationsmake use of several efficient data structures
of STXXL. For this, any generated data is not saved in an explicit vector but fed to a container
that functions as a data stream which can only be accessed in a read-only fashion. An example
for this is STXXL’s sorter : in the first phase, items are pushed into the write-only sorter in an
arbitrary order by some algorithm. After an explicit switch, the filled data structure becomes
read-only and the elements are provided as a sorted stream which can be rewound at any
time. While a sorter is functionally equivalent to filling, sorting and reading back an external
memory vector, the restricted access model reduces constant factors in the runtime and I/O-
complexity [4].

Semi-external base case While we assume that the number of nodes in the original in-
put is known exactly, this is not true during any recursive subcall in the programs execution.
As edge reductions are performed due to either node contractions, relabeling or sampling, the
exact number of nodes in the current subproblem is not known without any additional com-
putational efforts. While computing the exact number of nodes only requires an additional
cost of a few scanning and sorting steps, the addition leads to infeasibly long running times.
We therefore only upper bound the currently present number of nodes in the processed edges
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and invoke the semi-external base case accordingly. For the contractions we use the pessimistic
worst-case contraction factor in order to guarantee good worst-case behaviour, i.e. a factor of 2
for an original Borůvka step and a factor of 4/3 for a randomized Borůvka step, respectively.
During sampling, we count the number of distinct source nodes and update the upper bound
accordingly3.

By using these upper bounds we can additionally save I/Os in the relabeling as relabeled
edges may immediately be piped into the semi-external base case without the otherwise re-
quired final sorting step.

3.6 Graph classes

For our experiments, we turn to a variety of different synthetic graph models. In order to cover
an extensive range of different parameters, we generate sufficiently large graphs using scalable
graph generators. For a recent overview of such generators, see [16]. We consider four types
of graphs: the Gilbert type classic random graphs, random geometric and random hyperbolic
graphs, both belonging to the class of spatial network models, and finally deterministically
generated grid graphs.

Gilbert graphs In the G(n, p) model of Gilbert [9], each edge is present independently with
probability p. While the G(n, p) model can emit graphs with a varying number of connected
components for sufficiently small p, its degree distribution is considered atypical for real-world
instances.

Random Geometric graphs Random Geometric graphs (RGGs) [8, 14] are a simple case
of spatial networks where graphs are projected onto Euclidean space. In RGGs n points are
placed uniformly at random into a d-dimensional unit-cube [0, 1)d where any two points are
connected if their Euclidian distance is below a given threshold r. To generate graphs in this
model, we use the generator available in KaGen [7].

Random Hyperbolic graphs Random Hyperbolic graphs (RHGs) [12, 10] are a special case
of spatial networks where graphs are projected onto hyperbolic space. We describe the thresh-
oldmodel, the simplest RHGvariant [10]. The points are randomly placed onto a two-dimensional
disk in hyperbolic space where the radial probability density function increases exponentially
towards the border. The angular coordinate is sampled uniformly at random from [0, 2π) and
points are connected if their hyperbolic distance is less than a given threshold R. The density
of points near the center is controllable by setting a dispersion parameter α. One interesting
feature of RHGs is that the node degrees follow a power law distribution which is often ob-
served in real-world graph instances, in particular when generated via human activities and
choices. In the threshold model the exponent is γ = 1 + 2α with high probability [10]. To
generate graphs in this model, we use the HyperGen generator [15].

3We note that streaming algorithms can be employed to improve the estimates. The additional internal work
should however be limited as the sampling process is I/O-bound.
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Grid graphs We consider two different types of square grid graphs. In both versions, the
nodes are seen as points in a two-dimensional grid; (x, y) for 1 ≤ x ≤ w and 1 ≤ y ≤ h.
For the simpler version, nodes are connected horizontally and vertically to their neighbors. All
nodes except for boundary nodes thus have degree 4. To achieve higher degree, we additionally
consider generalized grids in which nodes are connected to all nodes within distance d under
the infinity norm. That is, node (x, y) has edges to nodes (x + i, y + j) where −d ≤ i ≤ d
and −d ≤ j ≤ d, except where this exceeds the grid boundary. Internal nodes in these graphs
have degree 4d(d+ 1). To investigate the effects of increasing the number of components, we
additionally generate graphs which we refer to as cubes consisting of multiple disjoint layers,
each of which is a generalized grid graph.

3.7 Experiments

3.7.1 Evaluating the Randomized Borůvka algorithm

We first aim to investigate the contraction ratio achieved by our simple randomized Borůvka
steps described in section 3.3. We consider a number of variants motivated by various possible
edge list representations:

• Simple undirected version: each edge {u, v} is represented by both (u, v) and (v, u) in
the edge list. When sampling an edge for a node u, we actually sample from all edges
incident to u as described in section 3.3.

• Directed version: each edge is only represented once as (u, v). This saves space and
I/O volume—in our large-scale timing experiments, edges in the edge list are only rep-
resented once. For this algorithm, this means that some nodes may not sample an edge
even though they have degree greater than zero.

• Directed oriented version: edges are additionally all oriented from the node with lower
ID to the node with higher ID. This representation corresponds to the storage format we
use for the large-scale experiments. Note that this guarantees that the sampled edges
cannot form cycles. For pathological node IDs, this may however give rise to long paths.

For the directed variants, one can additionally consider randomly flipping the edge orienta-
tion (for the simple directed version) or randomly permuting the node IDs before orienting the
edges (for the directed orienting version) to mitigate pathological behavior.

Recall that in the analysis in section 3.3, p is the probability that each node keeps its chosen
edge. For each of the following plots, we performed edge sampling based on the variants
described above for different values of p. We then removed all marked edges, breaking paths
of length greater than one and counted the number of edges remaining: these remaining star
edges would each contract one node. This allows us to compute the ratio of nodes which is
contracted by one randomized Borůvka step. We compare this to the contraction ratio for a
standard deterministic Borůvka step.

We did this for various types of graphs. The simplest case is that of a path graph—results are
plotted for this in fig. 3.1. The node IDs given by the generator are increasing along the path,
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which makes this the worst-case input for the “1-way, ordered” variant; for p=1, it samples the
entire path andwill only contract one node along this path. Fitting the analysis from section 3.3,
the best choice of p for this variant on this input is p = 1/2 where approximately 1/4 of
the nodes would be contracted. Permuting the node IDs first (“1-way, permuted, ordered”)
effectively mitigates this problem to the extent that p = 1 seems the best choice.
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Figure 3.1: Contraction ratios achieved by variants of a randomized Borůvka step on a path
graph. In comparison, a standard Borůka step achieved a contraction rate of more
than 0.74 on average.

For the remaining graphs tested, preemptively discarding edges by setting p < 1 generally
does not seem worthwhile. In random Gilbert graphs, permuting the node IDs does not seem
necessary; see figs. 3.2 and 3.3. The directed, oriented variants outperform the others which all
behave very similarly. Increasing the density of the random Gilbert graph (from 2 in fig. 3.2 to
50 in fig. 3.3) slightly increases the contraction ratio for the randomized variants; for the best
variant, approximately half the nodes would be contracted. Note however that it also increases
the contraction ratio achieved by a full Borůvka step to quite close to 1.
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Figure 3.2: Contraction ratios achieved by variants of a randomized Borůvka step on a sparse
random Gilbert graph. In comparison, a standard Borůka step achieved a contrac-
tion rate of more than 0.86 on average.
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Figure 3.3: Contraction ratios achieved by variants of a randomized Borůvka step on a some-
what dense random Gilbert graph. In comparison, a standard Borůka step achieved
a contraction rate of more than 0.99 on average.
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In our timing experiments, we found that running the Karger-Klein-Tarjan with randomized
Borůvka steps (specifically the directed oriented version, which here seems the best overall
choice) as the node contraction was consistently worse than using the Sibeyn-Meyer algorithm
for the node contraction instead. Depending on the instance, the version using randomized
Borůvka steps was slower than the version using Sibeyn-Meyer node contraction by a factor
between 1.5 and 2 (plots omitted here).

Our overall conclusion from the investigations above is that the randomized Borůvka steps
do not offer any improvements over the standard version. Our tuning choices for our remaining
experiments therefore exclude this variant.

3.7.2 Evaluating the impact of contraction edges for Sibeyn-Meyer
As mentioned in section 3.3, for the CC version of Sibeyn-Meyer, there is a free choice of which
neighbor to send information to (i.e., which incident edge to contract along). One choice sug-
gested as a good in [21, 19] is to send as far forward in time as possible. We want to experi-
mentally investigate the impact of this choice. For this, we run the node contraction phase of
Sibeyn-Meyer on a various graphs until all nodes have been contracted (without switching to
a base case). During this, we record how many messages were inserted into the PQ for each
node.

For choosing which incident edge to contract along, we consider three possible choices: first,
random or last. Here, first and last refers to sending information to the nearest, respectively
farthest neighbor (this is including the messages to later nodes available). Random means
picking a neighbor at random—this is to simulate the work done in the MST algorithm where,
due to node ID permutation, the lightest incident edge is essentially random.
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Figure 3.4: Message volume for the three different choices of neighbor selection when run on
a very sparse random graph.

As seen clearly in fig. 3.4, forwarding information to the closest neighbor in time leads to
vastly increased message volume. We omit this option from the remaining plots in fig. 3.5.

75



3 Engineering an Expected O(Sort(m)) External Connected Components Algorithm.

Instead, we plot the cumulative degrees for the nodes processed as a basis for evaluating the
total amount ofmessages. As the sumof the degrees of all nodes is 2E, matching the cumulative
degrees essentially means processing a number of messages linear in E.
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Figure 3.5: Message volume of forwarded messages for different graphs.

The expected upper bound given in [20] on the number of edges processed by the algorithm
when contracting from V nodes down to V ′ nodes is 2E ln(V /V ′). We suspect that choosing
the last neighbor for time forward processing improves the algorithm asymptotically below this
bound. We generated a number of random Gilbert graphs with different V , all with the same
density. In fig. 3.6, the total number of messages handled by the PQ (that is, after contracting
until the PQ is empty) divided by the upper bound is plotted against V .

We observe that the plot for last neighbor selection does not seem to converge to some
constant value whereas the plot for random neighbor selection does. This suggests that – at
least for Gilbert graphs – sending information to the last neighbor yields an improvement in
the asymptotic behavior of the algorithm.

3.7.3 Timing experiments for fully external CC computation
We now proceed to our main set of experiments, all on graphs fully in external memory (M <
min{V,E}).
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Figure 3.6: Normalized number of forwarded messages for G(n, p) graphs for increasing values
of n. The value p is chosen s.t. a density of 5 is fixed.

Experimental setup

The experiments were run on nodes in the Goethe-HLR cluster. Individual nodes each have
an Intel Xeon Skylake Gold 6148 CPUs and 192GB of RAM (though, to compare algorithms
based on their I/O performance within a reasonable time frame, we did not utilize the full
amount of RAM available). Each node has a HGST Ultrastar HUS726020ALA610 hard drive
which was used for the STXXL disk file. The code was compiled using GCC version 8.3.1 with
the optimization parameters O3 and march=native.

In each run, the input graph was first loaded onto the local hard drive in the appropriate
STXXL data structure: an edge stream for the stream-based implementations and an STXXL
vector for the vector-based implementations. The threshold for switching to the semi-external
base case was for all the algorithms set to 33,554,432 nodes which corresponds to 256 MiB of
node IDs. To capture wall-time and I/O volume, we used the iostats module provided by
the FOXXLL library (a component of STXXL). The plots in the following subsections show the
wall time (bars) and total I/O volume (bytes read plus bytes written during the execution of the
algorithm) reported by the iostats.

To limit the amount of memory used, we limited the internal memory allowed for STXXL
primitives used (sorting streams and priority queues were limited to 1GB of RAM each). With
the base case threshold (accounting for overhead), and the above limits, the implementations
should be able to run with approximately 2GB of memory—we did not, however, have a mech-
anism to enforce a strict bound on the memory actually allocated. To force disk accesses rather
than additional buffering, the direct flag was used for the STXXL disk file.

We measured several variants of the Karger-Klein-Tarjan algorithm. As mentioned in sec-
tion 3.4, it may be worthwhile to skip node contraction in the root. Additionally, we vary the
sampling probability. In the plots, “default” refers to the variant which does perform contrac-
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tion in all levels of recursion (including the root) and samples with p = 1/2. The five other
variants do not perform contraction in the root and have varying p from 1/2 down to 1/20.
Though our implementation does support setting p locally in each recursive call based on es-
timated graph density, the measurements presented here use fixed p values in each variant
across all calls.
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Figure 3.7: Running times and I/O volume for G(n, p) graphs with a node set size of 5 GiB and
varying density. Missing entries are due to running times exceeding a time limit of
at least ten hours.

We measured the performance of the Karger-Klein-Tarjan algorithm and the Sibeyn-Meyer
algorithm on a number of Gilbert graphs, varying the number of nodes and density. Generally,
the Sibeyn-Meyer performs extremely well on sparse graphs whereas the Karger-Klein-Tarjan
algorithm (using Sibeyn-Meyer node contraction) performs better as density increases. This
pattern is most noticeable for Gilbert graphs.

Looking at graphs with 5GB of node IDs (671,088,640 nodes), we see that Sibeyn-Meyer
has lower I/O volume for density 2 (see fig. 3.7a) whereas variants of the Karger-Klein-Tarjan
algorithm win for density 5 as seen in fig. 3.7b. Interestingly, despite having higher I/O volume
for density 2 than Sibeyn-Meyer, the best variant of the Karger-Klein-Tarjan algorithm has
slightly lower wall time.

Increasing the density, the Sibeyn-Meyer algorithm performs worse. The algorithms were
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run on a graph with the same number of nodes and density 20—the results for the Karger-
Klein-Tarjan variants are found in fig. 3.7c, but the Sibeyn-Meyer algorithm timed out after 20
hours.

Increasing the number of nodes, the same general pattern can be observed when varying
the density. We see that the advantage for I/O volume which Sibeyn-Meyer has for density 2
gets relatively smaller for larger graphs with the same density; compare figs. 3.7a, 3.8a, 3.9a
and 3.10a.
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(b)m = 6.71× 109,m/n = 5.00,
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Figure 3.8: Running times and I/O volume for G(n, p) graphs with a node set size of 10GiB and
varying density.

Generally, looking at the performance of the Karger-Klein-Tarjan algorithm, lowering the
sampling parameter p seems better when density increases. In most cases—this is seen when
comparing figs. 3.10a and 3.10b in particular—the best choice of p seems inversely proportional
to the density, as one would expect. In fig. 3.10a, we see that p = 1/2 performs the best when
density is 2 while in fig. 3.10b, p = 1/4 is the best choice when density is 5. Note that this
pattern is more consistent in I/O volume than wall time. This suggests that adapting p based
on the estimated density in each call may be beneficial.

Grids

The simple grid graphs with only horizontal and vertical edges are rather sparse, having a
density of 2 (not accounting for nodes on the boundary of the grid). For these, Sibeyn-Meyer
performs extremely well—see fig. 3.11a. Path graphs are grids with one dimension set to one;
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Figure 3.9: Running times and I/O volume for G(n, p) graphs with a node set size of 15GiB and
varying density.
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Figure 3.10: Running times and I/O volume for G(n, p) graphs with a node set size of 20GiB
and varying density.

in this case, the gap between Sibeyn-Meyer and the best variant of our Karger-Klein-Tarjan
implementation is significant (see fig. 3.11b).

Adding edges to all neighbors of distance 2 as described in section 3.6 increases the density
to approximately 12. At this point, the Karger-Klein-Tarjan variants outperform Sibeyn-Meyer;
see fig. 3.12a. Note, however, that the Karger-Klein-Tarjan variants win by a smaller margin
here than on Gilbert graphs of comparable density; compare for instance figs. 3.8c and 3.12a
where the latter has density 10, but a much larger performance gap.

Adding more components (layers) to the generalized grid graphs as described in section 3.6
does not seem to change much. In fig. 3.12b, there are 100 layers and the dimensions have been
changed to get approximately the same file size. The relative performance of the algorithms
measured is almost identical to the results in fig. 3.12a which had only one component.

Random Geometric graphs

For testing on random geometric graphs, we ran the algorithms on a sequence of graphs with
230 nodes and varying densities. As with the other classes considered so far, Sibeyn-Meyer is
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Figure 3.11: Running times and I/O volume for (a) a grid graph with (w, h) = (25 905, 25 905)
and (b) a path graph. For both instances the parameters were chosen to generate
a 20GiB graph. Node IDs are permuted.
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Figure 3.12: Running times and I/O volume for cubes with the parameters (a) one layer and
(w, h, d) = (18 000, 18 000, 2) and (b) 100 layers and (w, h, d) = (2600, 1300, 2).

faster for sparse graphs; clearly winning in fig. 3.13a where density is close to 1 and fig. 3.13b.
For higher densities, the Karger-Klein-Tarjan variants start outperforming Sibeyn-Meyer as

seen in figs. 3.13c and 3.13d. As we observed for grid graphs, the improvement over Sibeyn-
Meyer is smaller on RGGs than for Gilbert graphs of comparable density. The RGG used for
fig. 3.13c has approximately density 5 and a number of nodes between that of the Gilbert graph
for fig. 3.7b and the one for fig. 3.8b. For those two Gilbert graphs, the Karger-Klein-Tarjan
algorithm without node contraction in the root and p between 1/2 and 1/4 clearly outperform
the Sibeyn-Meyer. For the RGG, however, the variants with p = 1/2 and p = 1/3 have only
slightly better wall time and slightly higher I/O volume than Sibeyn-Meyer.

Random Hyperbolic graphs

For randomhypegeometric graphs, the Sibeyn-Meyer algorithmperforms extremelywell. Though
the variants of Karger-Klein-Tarjan algorithm do seem to be competitive in terms of wall time
already for density between 3.5 and 4 (figs. 3.14a and 3.14b), their I/O volume i consistently
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Figure 3.13: Running times and I/O volume for RGGs with roughly n = 2× 1030 and varying
density. Node IDs are permuted.

higher than that of Sibeyn-Meyer.
Increasing density to approximately 8 (figs. 3.14c and 3.14d), they start achieving comparable

I/O volume and in better wall time. Interestingly, lowering the sampling probability p below
1/2 for these two graphs does not improve wall time.

When density is further increased to around 17—see figs. 3.14d and 3.14e)—Karger-Klein-
Tarjan variants noticeably outperform Sibeyn-Meyer. The relationship between p, wall time,
and I/O volume is much less consistent than for the other graph classes reviewed. In both of
these plots, we see that the best wall time is achieved for the variant with p = 1/8 whereas
the lowest I/O volume is achieved for the variant with p = 1/3—which has the worst wall time
among all the variants without root node contraction.

3.8 Conclusion
Among our main findings are:

• The Sibeyn-Meyer algorithm is a strong contender. One reason is that it is very sim-
ple, using essentially only a priority queue. A tuned implementation of external priority
queues can be highly efficient: our measurements on STXXL show that sorting by its
priority queue is less than a factor of 2.5 slower than its sorting routine. Another rea-
son is that for its CC variant, the choice of contracting each node with the last of its
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neighbors seems to lower the number of signals generated, as also argued in [21]. From
the plots in Section 7.2, it seems to only exceed 2E signals in total at the very end of
the execution, which in the external version is preempted by entering the semi-external
base case. Hence, it in practice is making less than 2E priority queue operations. Very
few sorts and scans of the input edge list can be performed by a competing algorithm
before it will lose to Sibeyn-Meyer.

• Still, with the right tunings, the Karger-Klein-Tarjan algorithm can be implemented to
be faster in many cases. For all graph classes in our experiments, there seems to be a
density threshold (generally not far from five) above which Karger-Klein-Tarjan is the
fastest of the two algorithms. The threshold is lowest for random Gilbert graphs, highest
for random hyperbolic graphs, and somewhere in between for grid graphs and random
geometric graphs. For a fixed density, larger graph sizes seems to benefit Karger-Klein-
Tarjan relative to Sibeyn-Meyer, which is in line with its better asymptotic bound on the
expected I/O cost.

• Borůvka’s algorithm was not able to compete with the above two.

Note that we found Sibeyn-Meyer to be the best contraction algorithm for use in Karger-
Klein-Tarjan. We also found that for dense graphs, not making contractions at the root is
an advantage for Karger-Klein-Tarjan. A natural next step will be to investigate an adaptive
hybrid algorithm, which based on V , E, and possibly the graph class (if known by the user)
makes choices between strong contraction at the root via Sibeyn-Meyer (essentially using this
for most of the work), or skipping contraction at the root. Also the sampling parameter should
probably be chosen adaptively.
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(c) n = 6.70× 108,m = 5.57× 109,
m/n = 8.30, graph size 82.95GiB,
γ = 3
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(d) n = 6.70× 108,m = 5.22× 109,
m/n = 7.80, graph size 77.81GiB,
γ = 4
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(e) n = 6.71× 108,m = 1.18× 1010,
m/n = 17.61, graph size 176.07GiB,
γ = 3
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(f) n = 6.71× 108,m = 1.14× 1010,
m/n = 17.01, graph size 170.13GiB,
γ = 4

Figure 3.14: Running times and I/O volume for RGGs with roughly n = 2× 1040, degree expo-
nent γ ∈ {3, 4} and varying density. Node IDs are permuted.
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4 Simulating Population Protocols in
Sub-Constant Time per Interaction

Petra Berenbrink∗, David Hammer†, Dominik Kaaser‡, Ulrich Meyer§, Manuel Penschuck¶,
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The version of the paper reproduced here is the short version accepted into ESA 2020. A
longer version [18] of the paper is available at http://arxiv.org/abs/2005.03584.

Abstract
We consider the efficient simulation of population protocols. In the population model, we are
given a system of n agents modeled as identical finite-state machines. In each step, two agents
are selected uniformly at random to interact by updating their states according to a common
transition function. We empirically and analytically analyze two classes of simulators for this
model. First, we consider sequential simulators executing one interaction after the other. Key
to the performance of these simulators is the data structure storing the agents’ states. For our
analysis, we consider plain arrays, binary search trees, and a novel Dynamic Alias Table data
structure. Secondly, we consider batch processing to efficiently update the states of multiple
independent agents in one step. For many protocols considered in literature, our simulator
requires amortized sub-constant time per interaction and is fast in practice: given a fixed time
budget, the implementation of our batched simulator is able to simulate population protocols
several orders of magnitude larger compared to the sequential competitors, and can carry out
250 interactions among the same number of agents in less than 400 s.

4.1 Introduction
Weconsider the populationmodel, introduced byAngluin et al. [8] tomodel systems of resource-
limited mobile agents that interact to solve a common task. Agents are modeled as finite-state
machines. The computation of a population protocol is a sequence of pairwise interactions of
agents. In each interaction, the two participating agents observe each other’s states and update
their own state according to a transition function common to all agents.
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4 Simulating Population Protocols in Sub-Constant Time per Interaction

Typical applications of population protocols are networks of passively mobile sensors [8].
As an example, consider a flock of birds, where each bird is equipped with a simple sensor.
Two sensors communicate whenever their birds are sufficiently close. An application could
be a distributed disease monitoring system raising an alarm if the number of birds with high
temperature rises above some threshold. Further processes which resemble properties of pop-
ulation protocols include chemical reaction networks [38], programmable chemical controllers
at the level of DNA [22], or biochemical regulatory processes in living cells [21].

While the computational power of population protocols with constantly many states per
agent is well understood by now (see below), less is known about the power of protocols with
state spaces growingwith the population size. In this setting, much interest has been on analyz-
ing the runtime and state space requirements for probabilistic population protocols, where the
two interacting agents are sampled in each time step independently and uniformly at random
from the population. This notion of a probabilistic scheduler allows the definition of a runtime
of a population protocol. The runtime and the number of states are the main performance
measures used in the theoretical analysis of population protocols.

For the theoretical analysis of population protocols, a large toolkit is available in the liter-
ature. Consequently, the remaining gaps between upper and lower bounds for many quanti-
ties of interest have been narrowed down: for many protocols, the required number of states
has become sub-logarithmic, while the runtime approaches more and more the (trivial) lower
bounds for any meaningful protocol. So far, when designing new protocols, simulations have
always proven a versatile tool in getting an intuition for these stochastic processes. However,
once observables are of order log logn and below, naive population protocol simulators fail to
deliver the necessary insights (e.g., log logn ≤ 5 for typical input sizes of n ≤ 232). Our main
contribution in this paper is a new simulation approach allowing to execute a large number of
interactions even if the population size exceeds 240. In the remainder of this section, we first
give a formal model definition in section 4.1.1 and then describe our main contributions and
related work in sections 4.1.2 and 4.1.3.

4.1.1 Formal Model Definition

In the population model, we are given a distributed system of n agents modeled as finite-state
machines. A population protocol is specified by a state space Q =

{
q1, . . . , q|Q|

}
, an output

domain Y , a transition function δ : Q × Q → Q × Q, and an output function γ : Q → Y .
At time t, each agent i has a state si(t) ∈ Q, which is updated during the execution of the
protocol. The current output of agent i in state si(t) is γ(si(t)). The configuration C(t) =
{s1(t), . . . , sn(t)} of the system at time t contains the states of the agents after t interactions.
For the sake of readability, we omit the parameter t in C(t) and si(t) when it is clear from the
context. The initial configuration is denoted C(0) = C0.

The computation of a population protocol runs in a sequence of discrete time steps. In each
time step, a probabilistic scheduler selects an ordered pair of agents (u, v) independently and
uniformly at random to interact. Agent u is called the initiator and agent v is the responder.
During this interaction, both agents u and v observe each other’s state and update their states
according to the transition function δ such that (su(t+1), sv(t+1))← δ (su(t), sv(t)).

A given problem for the population model specifies the agents’ initial states, the output do-
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Table 4.1: Simulating N interactions among n agents in |Q| states. For MultiBatched, we
restrict |Q| = ω(

√
logn). Values indicated by † hold in expectation.

Simulator Section Time Complexity Space Complexity (bits)

Se
qu

en
tia

l SeqArray section 4.2 Θ(N) Θ(n log |Q|)
SeqLinear section 4.2 O(N |Q|) Θ(|Q| logn)
SeqBST section 4.2 Θ(N log |Q|) Θ(|Q| logn)
SeqAlias section 4.2 Θ(N) w.h.p. Θ(|Q| logn)

B
at

ch Batched section 4.4 O(N(logn+ |Q|2)/
√
n)† Θ(|Q| logn)

MultiBatched section 4.5 O(N |Q|
√

logn/
√
n)† Θ(|Q| logn)

mainO, and (a set of) desired (output) configurations for a given input. As an example, consider
the Majority problem. Each agent is initially in one of two states qA and qB corresponding
to two opinions A and B. Assuming that A is the initially dominant opinion, the protocol
concludes once all agents u give γ(su) = A as their output. Any configuration in which all
agents output the initially dominant opinion is a desired configuration.

This notion of a desired configuration allows to formally define two notions of a runtime of
a population protocol. The convergence time TC is the number of interactions until the sys-
tem enters a desired configuration and never leaves the desired configurations in a given run.
The stabilization time TS is the number of interactions until the system enters a desired stable
configuration for which there does not exist any sequence of interactions due to which the sys-
tem leaves the desired configurations. A population protocol is stable, if it always eventually
reaches a desired output configuration.

A number of variants of this model are commonly used. For symmetric protocols, the or-
der of the interacting agents is irrelevant for the transition. In particular, this means that if
δ(qu, qv) = (q′u, q

′
v), then δ(qv, qu) = (q′v, q

′
u). In protocols with probabilistic transition func-

tions, the outcome of an interaction may be a random variable. In one-way protocols, only the
initiator updates its states such that δ(qu, qv) = (q′u, qv) for any interaction.

Model Assumptions We assume a meaningful protocol which converges after at mostN =
poly(n) interactions, has an O(1) time transition function δ, and uses |Q| <

√
n states (observe

that many relevant protocols only use |Q| = O(polylogn) states; see section 4.1.3).

4.1.2 Our Contributions

In this paper, we present a new approach for simulating population protocols. Our simulator
allows us to efficiently simulate a large number,N , of interactions for large populations of size
n. Our findings are summarized in table 4.1.

Sequential Simulators As a baseline, we directly translate the population model into a se-
quential algorithm framework Seq: Seq selects for each interaction two agents uniformly at
random, updates their states, and repeats. We analyze the runtime and memory consumption
of various variants in section 4.2.

91



4 Simulating Population Protocols in Sub-Constant Time per Interaction

Batch Processing To speed up the simulation, we introduce and exploit collision-free runs, a
sequence of interactions where no agent participates more than once. Our algorithms Batched
and MultiBatched coalesce these independent interactions into batches for improved effi-
ciency. Batched first samples the length ` of a collision-free run. It then randomly pairs ` in-
dependent agents, adds one more interaction —the collision— reusing one of the run’s agents,
and finally repeats. Batched is presented in section 4.4 and extended into MultiBatched in
section 4.5. We discuss practical details and heuristics in section 4.6.

Dynamic Alias Tables The simulation of population protocols often needs an urn-like data
structure to efficiently sample random agents (marbles) and update their states (colors). The
alias method [41, 40] enables random sampling from arbitrary discrete distributions in O(1)
time. However, it is static in that the distribution may not change over time. Thus, we extend
it and analyze a Dynamic Alias Table in section 4.2. It supports sampling with and without
replacement uniformly at random (u.a.r.) and addition of elements (if the urn is sufficiently
full). Due to its practical performance and simplicity compared to more general solutions [30,
33], we believe this data structure might be of independent interest and show:

Theorem 4. Let U be a Dynamic Alias Table that stores an urn of nmarbles, where each marble
has one of k possible colors. U requires Θ(k logn) bits of storage. If n ≥ k2, we can

• select a marble u.a.r. from U with replacement in expected constant time,

• select a marble u.a.r. from U without replacement in expected amortized constant time,

• and add a marble of a given color to U in amortized constant time.

4.1.3 Related Work

Population Protocols The population model was introduced in [8], assuming a constant
number of states per agent. Together with [7, 9], they show that all semilinear predicates
are stably computable in this model. In the following, we focus on two prominent problems,
Majority and Leader Election. For a broad overview, we refer to surveys [12] and [26].

In [5] a Majority protocol with three states is presented where the agents agree on the
majority after O (n logn) interactions w.h.p. (with high probability 1 − n−Ω(1)), if the initial
numbers of agents holding each opinion differ by at least ω (

√
n logn). In [34, 25], four-state

protocols are analyzed that stabilize in expectation in O
(
n2 logn

)
interactions. In a recent

series of papers [35, 4, 1, 3, 19, 15, 16, 13], bounds for theMajority problemhave been gradually
improved. The currently best known protocol [13] solves Majority w.h.p. in O

(
n log3/2 n

)
interactions using O

(
logn

)
states. Regarding lower bounds, [4] shows that protocols with

less than (log logn)/2 states require in expectation
(
n2/ polylog(n)

)
interactions to stabilize.

In [1] it is shown that any Majority protocol that stabilizes in n2−(1) expected interactions
requires (logn) states under some natural assumptions.

The goal for Leader Election protocols is that exactly one agent is in a designated leader
state. Doty and Soloveichik [24] show that any population protocol with a constant number
of states that stably elects a leader requires

(
n2
)
expected interactions, a bound matched by a
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natural two-state protocol. Upper bounds for protocols with a non-constant number of states
per agent were presented in [2, 4, 19, 1, 17, 28, 29, 14]. In [28] a Leader Election protocol
that stabilizes w.h.p. in O

(
n log2 n

)
interactions, using O

(
log logn

)
states (matching a corre-

sponding lower bound [4]) is presented. The core idea is to synchronize the agents using a
phase-clock. The currently best known protocol for Leader Election is due to [14], stabilizing
in expected O

(
n logn

)
interactions using O

(
log logn

)
states per agent.

As a tool for self-synchronization, so-called phase-clocks have been explored in a wide range
of related areas, see, e.g., the seminal paper [10]. In the populationmodel, the concept of phase-
clocks was first introduced in [6] under the assumption that a leader is present. These clocks
were generalized in [28] to a junta of nε agents. In section 4.7 we empirically analyze a variant
of this phase-clock process.

Simulations have proven a versatile tool to get an intuitive understanding of population
protocols. This is also reflected in the related work: See, e.g., [6, 5, 3, 2] for some examples of
papers that also present empirical data. However, to the best of our knowledge, our paper is
the first systematic analysis of simulators for population protocols.

Sampling from Discrete Distributions Themethods to sample non-uniform variates heav-
ily depend on the modeling and properties of the required probability distributions.

If the distribution is governed by a closed-form density function f(x), “numerical tricks”
can yield efficient algorithms with small memory footprints; this is the case for most well-
known distributions [23, 20]. A standard approach is the inverse sampling technique [23]. It
needs to compute the inverse F−1 of f ’s cumulative density function F (x) =

∫ x
−∞ f(y)dy (cf.

section 4.6.1). Another concept is rejection sampling [20, Sec. 5.2.5/6]. It obtains a sample x
from a suitable simpler distribution g. In order to generate the distribution f , the sample is
accepted only with probability proportional to f(x)/g(x). The process repeats until a sample
is obtained (cf. section 4.3). A special case is the ratio-of-uniforms method, commonly used to
obtain hypergeometric random variates [39].

Dedicated data structures support sampling from arbitrary discrete distributions. Given a
finite universe U = {1, . . . , u} with probabilities (p1, . . . , pu) with

∑
i pi = 1, Walker’s alias

tables [41] allow sampling in constant expected time, and can be constructed in O(u) time [40];
recentlyHübschle-Schneider et al. [31] discussed engineering aspects and parallel construction.

In this paper, we model an urn with n balls with O(
√
n) colors (typically much less) as a

distribution over k colors where pi is proportional to the number of balls with color i. While
alias tables work in the static case, they do neither support removal nor insertion of balls
without rebuilding the data structure.

A suited binary tree can be constructed in O(k) time, and supports updates and sampling in
O(log k) time. Two independent but similar data structures by [30] and [33] support updates
and sampling in expected constant time. They partition the input into groups such that the
probabilities of elements within a group differ by at most a factor of two. This allows rejection
sampling within a group with an acceptance rate of at least 1/2. Since updates to the distri-
bution can affect the partition sizes, over-provisioning and table doubling involving garbage
collection [33, App. B] is used.

The approaches differ in the way they select a group to sample from. They are however both
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Algorithm 4 Seq: The algorithmic framework for sequential simulation.
Require: configuration C , transition function δ, number of steps N

for t = 1 to N
sample and remove agents i and j without replacement from C
add agents in states δ(si, sj) to C

recursive in the sense that the group selection is carried out with another instance of the data
structure itself. To achieve constant access times, the recursion is stopped after constantly
many layers, and the remaining very small problem is treated as a special case. As a result,
the data structures are quite complex, and were excluded in preliminary experiments due to
performance considerations. By constraining the supported distributions, simpler schemes can
be obtained [36, 27]. However, in our use case, they incur impractically high rejection rates, as
we cannot give non-trivial bounds on the number of balls per color.

It is note-worthy that Hagerup et al. [30] operate on integer weights (modeled as generalized
distributions lacking the normalization constraint), and require integer arithmetic only.

4.2 Sequential Simulation
As a baseline, we first consider variants of Seq, a sequential approach defined in section 4.2. It
is a direct translation of the machine model discussed in section 4.1.1. Seq carries outN steps
in a fully serialized manner. For each interaction, it selects two agents uniformly at random,
computes their new states based on their current ones, and updates the configuration.

Under the realistic assumption that the transition function δ can be evaluated in constant
time, Seq’s runtime and memory footprint is dominated by storing, sampling from, and updat-
ing the configuration C . We therefore consider appropriate data structures. In the population
model, agents typically are anonymous, i.e., we cannot distinguish two agents in the same state.
Hence, we can store a configuration C as an unordered multiset Ĉ and maintain multiplicities
rather than individual states. To this end, Seq requires an urn-like data structure which effi-
ciently supports (i) weighted sampling (with and without replacement) and (ii) adding of single
agents. In the following, we consider various data structures and their impact on the complex-
ity of the sequential approach.

Array SeqArray maintains the configuration C in an array A[1 . . . n] where A[i] holds si, the
state of the i-th agent. Sampling with replacement is trivial, as we only draw a uniform variate
X ∈ [n] and return A[X]. Sampling without replacement works analogously: we overwrite
A[i] with A[n] and remove the array’s last element A[n]. Adding new elements is possible by
appending. (Note that we do not grow the memory since we always store at most n agents in
the array.) This leads to an O(N) time algorithm and a memory footprint of O(n log |Q|) bits,
which can be prohibitively large if simulating large populations in parallel.

Linear Search SeqLinear maintains the multiset Ĉ in an array A such that A[i] holds the
number of agents in state qi. Sampling requires a linear search on A in O(|Q|) per sample.
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F [i] S[i] A[i]
rejection
probability

q1 q4 7 2 q4 0

q2 q1 5 1 q1 3/9

q1 0 3 q1 6/9

q4 6 0 q1 3/9

q5 q1 4 2 q1 3/9

n
kαn

k β n
k

Rmin Rmax

reject

Figure 4.1: Dynamic Alias Table storing Ĉ = (q1 : 13, q2 : 5, q3 : 0, q4 : 8, q5 : 4), i.e., n = 30
and k = 5. This imbalanced configuration will soon need rebuilding, e.g., after the
next decrease of q1 in row 3, or after adding two more agents in state q1 in row 1.

This results in a worst-case simulation time of Θ(N |Q|). Nevertheless, in practice SeqLinear is
among the fastest sequential variants for small |Q| (see section 4.7). Compared to SeqArray, it
has a significantly smaller memory footprint of O(|Q| logn) bits.

Binary Search Tree SeqBST maintains the multiset Ĉ using a balanced binary search tree.
The i-th leaf (from left to right) encodes Ĉi, the number of agents in state i. Each inner node v
stores the number `v of agents in its left subtree. To randomly sample an agent, we draw an
integer X from {0, . . . , n− 1} uniformly at random and compare it to the root’s value `r . If
X < `r , the sample is in the interval covered by the left sub-tree, and we descend accordingly.
Otherwise, we updateX ← X − `r and descend into the right subtree. We recurse until some
leaf i is reached, where we emit an agent of state i.

Each operation on the tree involves a simple path from the root to a leaf of lengthΘ(log |Q|).
Since the work per level is constant, all operations takeΘ(log |Q|) time. Thus, SeqBST requires
Θ(N log |Q|) total time and O(|Q| logn) bits of memory.

SeqAlias combines the linear runtime of SeqArray (w.h.p.) with the small memory footprint
of SeqBST, provided |Q| <

√
n. At the heart of SeqAlias lies a Dynamic Alias Table introduced

in the following section.

4.3 Dynamic Alias Tables
Dynamic Alias Tables In this section we introduce our Dynamic Alias Table data structure.
Our goal is to model an urn which initially contains n marbles, each of which has one of k
possible colors. We assume that the colors are identified by numbers in {1, . . . , k}. The urn
defines a probability distribution D for the color of a marble drawn uniformly at random: let
pi be the probability that we sample a marble of color i.

Original Alias Method The alias method [41] uses a table with two columns and k rows, one
row for each element (color) in the distribution D. Each row i has two entries corresponding
to two elements. Each element has a weight in [0, 1], and the two weights sum up to 1 in each
row. The first element of row i is always element i. It has weight F [i]. The second element of
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4 Simulating Population Protocols in Sub-Constant Time per Interaction

row i is stored in A[i]. It has a weight of 1 − F [i]. This means that the original alias method
uses only the two arrays, F and A, to store the distribution p1, . . . , pk.

To sample fromD in the original alias method, we first sample a row i uniformly at random
from {1, . . . , k}. Then we draw a random real X ∈ [0, 1). If X < F [i], we return the left
element, i. Otherwise, we return the right element, A[i]. In the following, we modify the alias
method and call the resulting data structure Dynamic Alias Table.

Dynamic Alias Tables Recall that we assume that our distribution corresponds to an urn
storing nmarbles of k different colors. First, we explicitly add a secondweight array S[i]which
stores the weight of the alias. Now instead of storing just one real value F [i] for each row i,
we store the exact numbers of marbles as integers for the first and the second entry of row i
in F [i] and S[i], respectively (cf. generalized distributions of [30]). As before, the first entry
of row i corresponds to color i and the second entry of row i corresponds to color A[i]. As
illustrated in fig. 4.1, the rows are constructed in such a way that the total weight of each row
no longer adds up to the real value 1, but to the integer value bn/kc or dn/ke such that all
rows in total add up to n.

Observation 1. Let U be a Dynamic Alias Table encoding an urn with n marbles and k colors.
The data structure U can be constructed in O(k) time.

Proof. The algorithm by Vose [40] can generate an (original) alias table representation of such
a discrete probability distribution D in O(k) time. It is straightforward to define a mapping
between the weights of the original alias method as computed in [40] and the two integer
values used in our Dynamic Alias Table. It follows that the Dynamic Alias Table (using integer
weights) can be constructed in O(k) time.

Updating and Sampling from Dynamic Alias Tables Our modified data structure now
allows us to sample elements with and without replacement. Let Ri = F [i] + S[i] denote the
weight of row i and define Rmin and Rmax as smallest and largest row weights, respectively.
Observe that in general Rmin 6= Rmax.

In order to sample from U , we first select row i uniformly at random from {1, . . . , k}. Then
we draw a uniform variate X from {0, . . . , Rmax − 1}.1 There are three possible events: If
X < F [i], we emit the first element i. If F [i] ≤ X < Ri, we emit the second element A[i].
Otherwise, we reject the trial and restart the sampling process.

If we sample from U without replacement, we decrement the weight of the element just
sampled. This is always possible, since only elements with strictly positive weights can be
sampled in the first place. If we add a new element with color i to U , we increment the weight
of the first element of row i.

In order to guarantee expected constant sampling time, we ensure that the fraction between
Rmin and Rmax does not exceed a certain value. Let 0 < α < 1 and β > 1 be two parameters
chosen such that β/α = O(1). After each update to U we require

αbn/kc ≤ Rmin ≤ Rmax ≤ βdn/ke. (4.1)
1Observe that in a practical implementation one can draw a single uniform variateU ′ from {1, . . . , k ·Rmax − 1},
and derive U and X from it.
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4.3 Dynamic Alias Tables

Otherwise, we rebuild the data structure in O(k) time.

We are now ready to show theorem 4.

Proof of theorem 4. We start with the memory complexity. The Dynamic Alias Table U stores
the values of k, n, and Rmax as well as three arrays. Array F [1 . . . k] stores the weight of the
first column, array S[1 . . . k] stores the weight of the second column, and arrayA[1 . . . k] stores
the alias, i.e., the element of the second column. All entries are integers from {0, . . . , n} (recall
that we assume k ≤

√
n). Thus, the Dynamic Alias Table requires Θ(k logn) bits of memory.

Let us now consider the sampling procedure. First, we consider the rejection probability.
Recall that we first sample a row i and then draw a uniform variateX from {0, . . . , Rmax − 1}.
As before, we denote the total weight of row i asRi withRi = F [i] +S[i]. A sampling trial in
row i is rejected if X ≥ Ri, i.e., with probability Ri/Rmax. Therefore, the probability to reject
a sample from any row is at most Rmin/Rmax. From the conditions in eq. (4.1) we get that
the rejection probability is at most α/β = O(1) and, conversely, we have at least a constant
success probability of (β − α)/β. The number of trials until we emit an element is therefore
geometrically distributed and has an expected value of at most β/(β − α) = O(1).

It remains to show that we emit an element of color i with probability pi = Ĉi/n, where
Ĉi is the number of marbles of color i in the Dynamic Alias Table U . We consider a sin-
gle sampling trial. Observe that in each trial we are given a uniform probability space =
{(i, x) : 1 ≤ i ≤ k and 0 ≤ x < Rmax}. From this probability space we draw the row i and
the value X uniformly at random. Fix a color c and let Sc be the set of all events (i, x) which
lead to emission of an element of color c for this probability space . An event (i, x) is in Sc if
and only if (i) i = c and x < F [i] or (ii) A[i] = c and F [i] ≤ x < F [i] + S[i].

The Dynamic Alias Table U is constructed such that the total weight for each color c always
equals Ĉc. Therefore, counting all elementary events gives us |Sc| = Ĉc. Observe that is a
uniform probability space since the row i and the value X are drawn uniformly. It has size
|| = kRmax. Hence, all events in Sc have equal probability 1/(kRmax), and we get Pr [Sc] =
|Sc|/(kRmax) = Ĉc/(kRmax).

Let R be the event that a trial is rejected. Analogously to before, we enumerate over all
elementary events and obtain |R| =

∑
i(Rmax − Ri) = kRmax − n. For the complementary

eventR we get |R| = n, which matches the intuition that the urn contains n marbles. Hence,
we have Pr

[
R
]
= n/(kRmax). Observe that Sc and R are mutually exclusive and hence

Sc ∩R = Sc \ R = Sc.
Rejected trials emit no element, but are repeated. Hence, we condition onR and obtain

pc = Pr
[
Sc|R

]
=

Pr
[
Sc ∩R

]
Pr
[
R
] =

Pr [Sc]
Pr
[
R
] = Ĉc

kRmax
· kRmax

n
=
Ĉc

n
.

This means that a color c is indeed emitted with the correct probability pc = Ĉc/n.

Finally, we consider the amortized costs of rebuilding the Dynamic Alias Table U ever so
often. Observe that U has to be rebuilt whenever the condition in eq. (4.1) is violated. This can
happen in two possible ways.

• Case 1: Rmin < αbn/kc.

97



4 Simulating Population Protocols in Sub-Constant Time per Interaction

In this case there must exist a row i for whichRi < αbn/kc. Observe that by assumption
of the theorem we have n ≥ k2, and after rebuilding U we have Rmin = bn/kc. In
order to have Ri < αbn/kc, at least bn/kc − αbn/kc ≥ k(1 − α) elements must have
been deleted from row i. As 0 < α < 1, this happens only after at least k(1 − α) =
Ω(k) sampling operations. Now according to observation 1, rebuilding takes time O(k).
Together this implies that rebuilding U takes amortized constant time per update of U .

• Case 2: Rmax > βdn/ke.

The second case follows analogously to the first case. If Rmax > βdn/ke, at least
βdn/ke − dn/ke ≥ k(β − 1) elements must have been added. This takes at least
k(β − 1) = Ω(k) insertions, and hence rebuilding U takes amortized constant time
per insertion.

Removal and insertion operations can be arbitrarily mixed and interact only beneficially to-
wards the amortization arguments. This concludes the proof of the theorem.

4.4 Batch Processing

So far, we discussed algorithms to simulate a population protocol step-by-step. These simula-
tors can output the population’s configurationC(t) for each time step 1 ≤ t ≤ N . With a time
complexity of O(N), the simulators SeqArray and SeqAlias are optimal in this sense. In practice,
however, it often suffices to obtain a configuration snapshot every Θ(n) steps. In this setting,
we can achieve sub-constant work per interaction under mild assumptions.

Recall that SeqBST has a small memory footprint but a sub-optimal time complexity of
Θ(N log |Q|). Observe, however, that the underlying binary search tree can update the multi-
plicity of any existing state in time O(log |Q|) independently of the changed quantity. Here, we
introduce the new algorithm Batched (see algorithm 5) to exploit this observation. The algo-
rithm uses a binary search tree to store the configuration. It updates Ω(

√
n) agents in expec-

tation with each access and therefore reduces the time complexity to O(N(logn+ |Q|2)/
√
n)

which is o(N) for |Q| = o(n1/4) and N = Θ(poly(n)).

Batching interactions In order to coalesce individual updates into batches, Batched uses
the notion of collision-free runs as illustrated in fig. 4.2. We interpret the execution of a protocol
as a sequence i1, i2, . . . where at time t agents i2t−1 and i2t interact.

Let ` be the largest index such that all i1, . . . , i` are distinct. Then, the first b`/2c interactions
are independent of each other and can be rearranged in any order. We refer to them as a
collision-free run of length `. If ` is odd, the first agent of the (b`/2c + 1)-th interaction is
also considered collision-free. Since we are free to reorder the interactions, we can group all
interactions of states (qi, qj) together, evaluate δ(qi, qj), and update all accordingly affected
states in one step.

Now instead of sampling a sequence of agents and partitioning the sequence into collision-
free runs, we take the opposite direction. We first sample only the length ` of a collision-free
run from the appropriate probability distribution (see below). Then, we randomly match `
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The original interaction sequence (cf. section 4.2):

q3 q2

si1 si2
q1 q2

si3 si4
q1 q1

si5 si6
q2 q1

si7 si8
q3 q3

si9 si10
q1 q2

si11 si12
. . . q1 q1

si2`−1si2`
q2 q?

si2`+1 si6

δ
the updated state of the agent drawn twice is

known only after the δ was evaluated

the ` independent interactions can be rearranged arbitrarily

After sorting state pairs:

special treatment
for collision

q1 q1

si20 si21
q1 q1

si2`−1si2`
q1 q2

si3 si4
q1 q2

si11 si12
q2 q1

si7 si8
. . . q3 q3

si9 si10
q1 q1

si5 si6
q2 q?

si2`+1 si6

δ

After merging interactions with identical state pairs:

q1 q1 q2 q?q1 q1d11 × q1 q2d12 × q1 q3d13 ×

q2 q1d21 × q2 q2d22 × q2 q3d23 ×

q3 q1d31 × q3 q2d32 × q3 q3d33 ×

D =

( )
δ

Figure 4.2: Batch processing uses collision-free runs, long sequences of independent interac-
tions, which can be rearranged and grouped together.
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4 Simulating Population Protocols in Sub-Constant Time per Interaction

Algorithm 5 Batched: The algorithmic framework for simulation in batches.
Require: configuration C , transition function δ, number of steps N
t← 0
while t < N `← sample length of a collision-free run

letD = (dij) be a |Q| × |Q|matrix and sample dij as the number of interactions (qi, qj)
among ` interactions . batch processing

let C ′ be an empty configuration
for (qi, qj) ∈ Q2

remove from C : dij agents in states qi, and dij agents in states qj
(q′i, q

′
j)← δ(qi, qj)

add to C ′: dij agents in states q′i, and dij agents in states q′j
if ` is even . plant a collision

sample agent c1 without replacement from C ′ . collision at c1
merge C ′ into C
sample agent c2 without replacement from C

else
sample agent c1 without replacement from C
sample agent c2 without replacement from C ′ . collision at c2
merge C ′ into C

add agents δ(c1, c2) to C t← t+ `+ 1

agents as discussed below. Finally, we reuse one of the agents from the matching in order to
plant a collision. These steps are repeated until at least N interactions are simulated.

Matching Agents We simulate sampling ` agentswithout replacement to construct a collision-
free run of length `. While we cannot afford to draw the agents individually, we only need to
know how many interactions nij of each state pair (qi, qj)we encountered. Thus, a run can be
modeled by a |Q|×|Q| matrix D = (nij) with

∑
ij nij = b`/2c. (If ` is odd, we remove one

agent and treat it individually.)
To obtain D, we first sample the row sums Di =

∑
j nij of the matrix from a multivariate

hypergeometric distribution. This simulates sampling b`/2c initiating agents without replace-
ment. We then sample values within each row analogously to find the matching responding
agents. Sampling D takes O(|Q|2) time in total since each individual sample from a hyperge-
ometric distribution can be computed in O(1) time [39].

For correctness, note that our sampling approach corresponds to first selecting b`/2c agents
as initiators and then b`/2c agents as responders. That is, we first sample agents i1, i3, . . . , i2b`/2c−1

and then agents i2, i4, . . . , i2b`/2c (instead of the natural interleaved variant i1, i2, . . . , i2b`/2c).
Since, each draw is taken uniformly at random, the permutation does not change the distribu-
tion (see full version [18] for a formal proof).

Length of a Collision-Free Run In the following, we analyze the length ` of a collision-free
run. Observe that the following analysis is similar to the analysis of a generalized variant of
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the birthday problem [32]. We consider a generalization which we also use in section 4.5. We
assume that r agents have already interacted and ask howmany more collision-free agents can
be added. Formally we define the distribution coll (n, r) as follows.

Definition 1. Consider a sequence a1, a2, . . . of agents sampled independently and uniformly at
random. Let A0 be a set of r initially prescribed agents and let Ai = Ai−1 ∪ {ai} be the set of
agents after i draws. We define the random variable ` as the smallest index s.t. a` ∈ A`−1. We
say ` ∼ coll (n, r), where n is the total number of agents and r is the number of prescribed agents.

In section 4.6.1 we discuss how we can sample from this distribution using the inverse sam-
pling technique [23]. We find that sampling ` takes O(logn) time. In practice, this is compara-
ble to the time it takes to sample a hypergeometric random variate. In the following, we show
basic properties of coll (n, r) in order to show bounds on the runtime of Batched.

Lemma 4. Let ` ∼ coll (n, r). Then ` has support {1, . . . , n− r} and distribution
Pr[` = k] = n−(k+1)(n− r)!(r + k)/(n− r − k)!.

Proof. Consider an urn with n marbles. Initially, r marbles are red, while the remaining n− r
marbles are green. We now take out one marble at a time: if it is green, we keep on going
(think of a traffic light) and put a red one back in. If we take a red marble, we stop. Observe
that the number of marbles we take out is exactly ` as above, as the green marbles represent
new unconsidered agents while the red ones represent agents in A`−1.
This directly leads to the acclaimed distribution:

Pr[` = k] =

k−1∏
i=0

(n− r)− i
n︸ ︷︷ ︸

select k out of n− r

· r + k

n︸ ︷︷ ︸
(k+1)-th is red

Lemma 5. Let ` ∼ coll (n, 0). Then E [`] = Θ(
√
n).

Proof. We first upper bound E [`] = O(
√
n) and then give a matching lower bound E [`] =

Ω(
√
n). In both cases, we write E [`] =

∑n
i=0 Pr[` ≥ i] and split the sum at

√
n. Then we

bound both terms appropriately. Observe that for some fixed value i we have Pr [` ≥ i] =∏i−1
j=0 (1− j/n). For the upper bound on E [`] we get

E [`] =

n∑
i=0

Pr[` ≥ i] =
n∑

i=0

i−1∏
j=0

(
1− j

n

)
≤

√
n−1∑
i=0

1 +

∞∑
i=

√
n

(
1−
√
n

n

)i

≤ 2
√
n.

Similarly, we get for the lower bound on E [`] that

E [`] =
n∑

i=0

Pr[` ≥ i] =
n∑

i=0

i−1∏
j=0

(
1− j

n

)
≥

√
n∑

i=0

i−1∏
j=0

(
1−
√
n

n

)
=

√
n∑

i=0

(
1− 1√

n

)i

=
√
n

(
1−

(
1− 1√

n

)√
n+1
)
≥
√
n
(
1− e−1

)
.

Therefore we have E [`] = Θ(
√
n).
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Using lemma 5, we are now ready to bound the runtime and space complexity of Batched.

Theorem 5. Let n be the number of agents and |Q| the number of states. Batched simulates N
interactions in O(N(|Q|2 + logn)/

√
n) expected time using Θ(|Q| logn) bits.

Proof. According to lemma 5, each batch simulatesΘ(
√
n) interactions in expectation. It takes

O(logn) time to sample the length of a collision-free run ` (see section 4.6.1) and O(|Q|2)
time (cf. [39]) to sample the interaction numbers and process the interactions for all pairs of
states. This implies the runtime complexity. The space complexity follows immediately from
the binary search tree used to store the configuration.

4.5 Merging Batches

In an empirical evaluation, we found that our implementation of algorithm Batched spends
most time in the batch processing step (to sample and transition the |Q| × |Q| matrix D);
this is especially true for complex protocols with non-trivial state space sizes. As the matrix
sampling cost is independent of the length ` of the underlying collision-free run, we modify
the algorithm to support more than one collision per batch processing step.

Introducing Epochs An execution of the improved algorithmMultiBatched logically con-
sists of several epochs. For each epoch, the algorithm samples the lengths `1, `2, …, `ρ of
multiple collision-free runs R1, . . . , Rρ. As no agent may appear twice in the union of those
collision-free sequences, later runs become shorter in expectation (E [`i+1] < E [`i]), naturally
limiting the number ρ of runs per epoch. After each run Ri, we plant one collision, i.e., an in-
teraction with an agent that was already considered in the current epoch. An epoch concludes
with a single batch processing step, in which matrix D is sampled and processed analogously
to algorithm Batched.

Tracking Dependencies While algorithmBatched only reorders and groups together inde-
pendent interactions, our improved algorithm MultiBatched delays most interactions until
the end of the epoch. To do so, the algorithm conceptually assigns each agent one of three
types, and updates these labels as it progresses through the epoch:

• untouched agents did not interact in the current epoch. Hence, all agents are labeled
untouched at the beginning of an epoch.

• updated agents took part in at least one interaction that was already evaluated. Thus,
updated agents are already assigned their most recent state.

• delayed agents took part in exactly one interaction that was not yet evaluated. Thus,
delayed agents are still in the same state they had at the beginning of the epoch, but are
scheduled to interact at a later point in time. We additionally require that their interac-
tion partner is also labeled delayed.
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Analogously to algorithm Batched, we maintain two urns C and C ′. Urn C ′ contains
updated agents, while urnC stores untouched and delayed agents (or in other words, all agents
whose state was not updated in the current epoch). At any point in time, an agent is either
in C or C ′ meaning that |C| + |C ′| = n. Due to symmetry, we do not explicitly differentiate
untouched from delayed agents. We rather maintain only the number T of delayed agents and
lazily select them while planting collisions or during batch processing.

If a delayed agent a is selected while planting a collision, it takes part in a second interaction
and —by definition— cannot be labeled delayed any more. Thus, we randomly draw a second
delayed agent b, evaluate their transition, store the updated state of b in C ′, and directly evalu-
ate a again in the planted collision. Finally, we decrease T ← T − 2 as agents a and b changed
their labels from delayed to updated. Observe that we might repeat this step in the (unlikely)
case that a planted collision involved two formerly delayed agents.

Length of an Epoch We now analyze the length of an epoch. We start by extending the
analysis of coll (n, r) to the r = Ω(

√
n) regime (reached after O(1) runs w.h.p.). The following

lemmas establish expected value and concentration.

Lemma 6. Let ` ∼ coll (n, r) and r = Ω(
√
n). Then E [`] = Θ(n/r).

Proof. The proof follows analogously to lemma 5. Again, we start with the upper bound.

E [`] =

n−r∑
i=0

Pr[` ≥ i] =
n−r∑
i=0

i−1∏
j=0

(
1− j + r

n

)
≤

∞∑
i=0

(
1− r

n

)i
=
n

r
.

For the lower bound we derive a general result for arbitrary r.

E [`] =
n−r∑
i=0

Pr[` ≥ i] =
n−r∑
i=0

i−1∏
j=0

(
1− j + r

n

)
≥

r−1∑
i=0

i−1∏
j=0

(
1− j + r

n

)
≥

r−1∑
i=0

(
1− 2r

n

)i

=
n

2r

(
1−

(
1− 2r

n

)r)
≥ n

2r
(1− e−2r2/n).

The last inequality holds since e−2r2/n constitutes an upper bound on (1 − 2r/n)r as it can
be rewritten as (1 − 2r/n)n·r/n and (1 − 2r/n)n ≤ e−2r . For r = Ω(

√
n) the second factor

(1− exp(−2r2/n)) is Ω(1) which proves the claim.

Lemma 7. Let ` ∼ coll (n, r) and r = Ω(
√
n). Then ` = Θ(n/r) with probability 1− o(1).

Proof. We prove the claim by showing that Pr[` < t] and Pr[` > t] are o(1) for t = o(n/r) and
t = ω(n/r), respectively. We have

Pr[` < t] = 1− Pr[` ≥ t] = 1−
t−1∏
i=0

(
1− i+ r

n

)
≤ 1−

(
1−

t−1∑
i=0

i+ r

n

)
≤ 2tr + t2

2n
,
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where the first inequality follows from the Weierstrass product inequality. Furthermore, with
r = Ω(

√
n) we have n/r = O(

√
n) and thus t = o(n/r) such that t2 = o(n) and tr = o(n).

For the second part, we have

Pr[` > t] =

t∏
i=0

(
1− i+ r

n

)
≤
(
1− r

n

)t
≤ e−rt/n,

and for t = ω(n/r) and thus rt/n = ω(1) the claim follows.

Intuitively, lemma 6 shows that for sufficiently many prescribed agents r, the probability
of drawing a colliding agent remains approximately r/n throughout the run. Similar to a
geometric distribution, this results in a concentrated expected length of Θ(n/r). We now
estimate the number of agents sampled after ρ runs.

Lemma 8. Let Lk =
∑k

i=1 `i be the number of agents drawn in an epoch with k runs. Then, for
|Q| = ω(

√
logn), |Q| = o(

√
n logn) and ρ = O(|Q|2/ logn) we have E [Lρ] = Θ(

√
ρn).

Proof. The variable Lk equivalently corresponds to the number of marbles B(k, n) that need
to be drawn in the birthday problem s.t. k coincidences occur. The asymptotics of E [B(k, n)]
have first been studied by Kuhn and Struik [32] for the cases that k = o(n1/4). Their results
have since been improved by Arratia et al. [11] where the asymptotic bounds on the moments
of B(k, n) have been calculated for more general conditions on k. By [11, Corollary 12] for k
a function of n, i.e., k = kn where kn →∞ and kn/n→ 0 it holds that

E [B(kn, n)] ∼
√
2nkn as n→∞.

By assumption the conditions aremet since ρ = ω(1) and ρ = o(n), thusE [Lρ] = Θ(|Q|
√
n/ logn) =

Θ(
√
ρn).

Complexity In order to analyze MultiBatched’s runtime, we first establish the time re-
quired per epoch, and then bound the total expected runtime and memory requirements.

Lemma 9. MultiBatched takes time O(ρ logn+ |Q|2) for an epoch of ρ runs.

Proof. Planting a collision is done by drawing the two interacting agents from the appropriate
urns and setting them to be updated which requires O(1) time. Sampling the length of a single
collision-free run takes time O(logn) (see section 4.6.1). For the final batch-processing step
MultiBatched takes Θ(|Q|2) time independently of the number of delayed agents.

Theorem 6. Let n be the number of agents and |Q| the number of states. MultiBatched sim-
ulates N interactions in O(N |Q|/

√
n/ logn) expected time if |Q| = ω(

√
logn) and |Q| =

o(
√
n logn).

Proof. Combining lemmas 8 and 9, we find a runtime of O(N(ρ logn + |Q|2)/√ρn). Setting
ρ = Θ(|Q|2/ logn) balances the cost of sampling runs and planting collisions with the cost of
batch processing, and thus does not increase the asymptotic cost per epoch. Higher values of
ρ only increase the expected time complexity.

MultiBatched has sub-constant work per interaction for |Q|=o
(√

n
logn

)
andN=Θ(polyn).
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4.6 Heuristics and Implementation Details

Implementations of all discussed simulators (including scripts to reproduce figures and num-
bers included in this paper) are freely available. In the following, we highlight important as-
pects necessary to obtain simulators that are both fast in practice and highly customizable.

All simulators are implemented in C++ and use compile-time specializations to implement
specific protocols and experimental setups.

In contrast to pure deterministic functions, non-deterministic transition functions (possibly
with side-effects) have to be informed about every interaction carried out.2 To allow for batch
processing, we cannot use the natural invocation order. Instead, we inform the protocol how
often a state pair will interact within an epoch. It is then expected to assign all participating
agents to the appropriate states. See the full version of this paper [18] for more details and
listings.

4.6.1 Sampling the Length of a Collision-Free Run

Recall that Batched and MultiBatched repeatedly sample the length ` of a collision-free run.
In the following we discuss how this sampling can be implemented using the inverse sampling
technique (Ist) [23]: let cdf(x) be the cumulative density function of a target distribution.
Then, Ist draws a uniform variate U from [0; 1], solves U = cdf(x) for x, and returns it as the
sample. We denote the CDF of coll (n, k) as Fn,k(t). Lemma 4 yields:

1− Fn,k(t) = Pr[`>t] =
t∏
i

n−k−i
n

=
1

nt
(n− k)!

(n− k − t− 1)!

(x−1)!=Γ(x)
= n−tΓ(n− k + 1)

Γ(n− k − t)
.

Since we are not aware of an inverse that can be evaluated fast, we numerically solve U =
Fn,k(t) for t. To avoid numerical instabilities, we rewrite the expression in terms of logΓ(x),
which is available as the C standard function lgamma(x):

U = 1−n−tΓ(n− k + 1)

Γ(n− k − t)
⇔ log (1− U) = logΓ (n− k + 1)−logΓ (n− k − t)−t logn

Lacking a cheap derivative of the RHS, we rely on first-order numerical inversion methods
only. In this context, an ad-hoc combination of binary search and regula-falsi gavemost consis-
tent results. We jump-start the search using a small look-up table containing lower and upper
bounds on t for intervals of U and k.

While the method requires O(logn) evaluations of Fn,k(·), we observe less than ten calls
on average for n = 250. The resulting sampling algorithm has a practical runtime comparable
to the sampling of hypergeometric random variates. Since the latter is sampled much more
frequently, further optimizations will yield limited results to the total runtimes of Batched
and MultiBatched.

2Observe that many protocols with non-deterministic transition functions have been derandomized, see, e.g.,
the notion of (biased) synthetic coins in [4, 17]. While this is supported by the simulator, we feel it is more
convenient to offer the most expressive interface possible.
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0 1 2 3
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1 1 1 2 1
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Full matrix Row for qu = 1

Group (q′u = 1) Group (q′u = 2)

Figure 4.3: Simplified transition matrix ∆′ for a clock with period m=4. The initiator’s phase
(row) is circularly incremented only when matched with a suitable responder (col-
umn).

4.6.2 Heuristics

The frequent sampling of hypergeometric random variates, dominates MultiBatched’s run-
time. In the following, we discuss three heuristics to reduce this number.

Renaming In the renaming heuristic we exploit the observation that agents are typically not
uniformly distributed over all states. Instead there are often sparsely populated states which
are seldom hit when sampling an agent.

It can be beneficial to consider these states last. SeqLinear’s linear search, for instance,
stops as soon as the sampled state is found. The same is true when sampling Batched’s and
MultiBatched’s interaction matrices: for row i, we draw Di agents from a multivariate hy-
pergeometric distribution. This is implemented by obtaining |Q|−1 properly parametrized
hypergeometric variates; the process terminates early once all Di agents have been sampled.

In both examples, we maximize the probability of early stopping by considering highly pop-
ulated states first. To this end, we maintain a permutation π : [|Q|] → [|Q|] that sorts states
decreasingly by their sizes. We then process states in the order indicated by π. If this permuta-
tion is updated once everyΩ(|Q| log |Q|) interactions, the sorting step becomes asymptotically
negligible for sequential simulators. For Batched and MultiBatched, π can be updated once
every Ω(log q) batches.

Partitioning If δ is a deterministic function, we can model it as a matrix∆ ∈ (Q×Q)|Q|×|Q|.
Thematrix of a deterministic one-way protocol can be further simplified to∆′ ∈ Q|Q|×|Q| since
the states of the responders remain unchanged.

For many meaningful protocols, the entries of∆′ are not random but exhibit some structure.
As an example, consider the simplified3 phase-clock transition matrix illustrated in fig. 4.3.
Here, each row contains only two different output states. The partitioning heuristic uses this
observation during the batch steps of Batched and MultiBatched. When sampling Di re-
sponders for initiators in state qi, we group together all entries in the i-th row of∆′ that assign
the same new state to the initiating agents. It then suffices to draw one random hypergeometric
variate per group.

3Formally the states of the phase-clock are pairs (x, b) where x represents the phase, and b marks an agent as
leader. For the sake of simplicity we assume that all agents are followers.
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Note that the heuristic does not reduce the runtime complexity of the algorithm— even if we
precompute the partitioning. This is due the fact that we still need to compute the population
sizes for each group which involves Θ(|Q|) additions per row. For pathological protocols, the
number of hypergeometric random variates required for each row remains Ω(|Q|). A simple
worst-case protocol is the transition function δ(qu, qv) = (qv, qv).

Skipping Generalizing partitioning heuristic to two-way protocols tends to be ineffective in
practice: since initiator and responder may both update their states, the transition matrix is
often more fragmented. The partitioning overhead then easily exceeds the potential savings.
For such protocols MultiBatched uses a coarser partitioning, and only detects and skips tran-
sitions that preserve the configuration (i.e., δ(qu, qv) = (qu, qv) or δ(qu, qv) = (qv, qu)).

4.6.3 Dynamic Epoch Lengths
Recall that MultiBatched is split into several epochs that each consist of multiple collision-
free runs. In our implementation, we add runs to an epoch until the number of interactions
exceeds a specified threshold T . The value of T has to be chosen as a trade-off between the
cost of adding another run (i.e., sampling the run length and planting a collision) versus the di-
minishing return it yields (as later runs become shorter in expectation). This trade-off depends
on the protocol and its configuration. For instance, the batch processing cost of a convergent
protocol may become smaller compared to the initial costs (e.g., when most agents are in only
a small fraction of the states).

As the trade-off is dynamic, we maximize the throughput using a control loop that dynami-
cally optimizes the length of an epoch. Given the currently best value known for T , it increases
(and later decreases) T to 1.1T and 0.9T , respectively. For each of the three values, wemeasure
the throughput, chose the T which maximizes it and repeat. Since the throughput response
curve is single-peaked, the process will find a nearly optimal T .

4.7 Experimental Evaluation
In the following, we empirically evaluate the various simulation algorithms. The code is com-
piled using g++-8.3 with flags -O3 -march=native and executed on the following system: 2×
Intel Xeon Gold 6148 CPU @ 2.4GHz (40 cores/80 hardware threads in total), 192GiB DDR4
RAM@ 2666MHz. Each data point is the median of at least five measurements (using different
random seeds); error bars indicate their standard deviation.

SeqBST’s search tree is implemented as an array with breath-first-indexing (i.e., the weight
of node i ≥ 1 is stored at A[i]; its left child is at index 2i, its right child at 2i+1). In order to
reduce pipeline stalls, we implement a branch-free traversal similarly to [37]. SeqArray uses an
array with 32 bit words to store states. We additionally consider Seqprefetch

Array which prefetches
states for eight4 interactions ahead of time as a latency hiding technique. If our Dynamic Alias
Table implementation detects an imbalance necessitating rebuilding of the data structure, it
will first attempt to quickly solve the problem by swapping the alias of the affected row with

4This is the optimal value measured for this CPU type and slightly varies between machines.
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Figure 4.4: Processing time per interaction as function of the number of agents n. Each series
ends with the largest value n for which the median of the total processing time is
below 400 s.

up to five randomly selected partners; only if this fails a rebuild is issued. This heuristic does
not change the asymptotic time complexity of the data structure.

The runtime of most simulators has non-trivial dependencies on the input parameters, proto-
col, and state distribution. Hence, we simulate a small numberN = n of interactions to prevent
measuring artifacts caused by significant changes in the state distributions. MultiBatched
typically simulates slightly more interactions due to the batching granularity. Since the run-
time of all simulators is linear in N , we always report the time per interaction to ease extrapo-
lation.
Three different protocols are used to highlight certain aspects of the algorithms.

• Uniform Clock and Running Clock implement the same deterministic one-way protocol
phase-clock protocol inspired by [28]. In the running variant, all agents start in the first
phase, and

√
n of them are marked. Due to the choice of parameters, we expect only

one out ofΘ(
√
n) interactions to change states. Thus, even at the end of the benchmark,

the population is still highly concentrated in the lowest phase. The uniform variant, in
contrast, evenly distributes marked and unmarked agents over all phases. This results in
a constant update probability per interaction.

• The Random Two-Way protocol uses a deterministic transition function δ(qi, qj) = dij
where each dij is initially drawn independently and uniformly at random from Q. Ini-
tially agents are evenly distributed over all states.

To ensure the correctness of our implementations, we rely on unit tests (e.g., using a family
of protocols that count the number of interactions of each agent). Additionally, we cross-
reference the results of various algorithms. Since we cannot expect two simulators to yield the
same set of interactions, we compare their simulated dynamics. We, for instance, monitor the
number of interactions required until a Uniform Clock starts running.

Number of Agents We begin our experimental study by investigating the dependencies on
the problem size n. To this end, we search for the largest number n of agents that a simulator
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Figure 4.5: Processing time per interaction as function of the number of states |Q|withn = 230.

can simulate within a fixed time budget of 400 s. Figure 4.4 reports such measurements for two
different settings (see the full version of this paper [18] for the full set).

For the Uniform Clock protocol with |Q| = 8 states, the fastest Seq variant reaches n = 232

within the time budget. In the same time, MultiBatched simulates N = n = 250 interac-
tions. For Random Two-Way, the ratio between the achievable population sizes is smaller but
still exceeds three orders of magnitude. We attribute the different ratios mainly to the batching
step. MultiBatched requiresΘ(|Q|2) hypergeometric variates per batching step for the latter
protocol, since neither the partitioning nor the skipping heuristics (see section 4.6) are effec-
tive on a featureless transition matrix with uniformly random states. For the Uniform Clock
protocol, the partitioning heuristic reduces the number of hypergeometric random variates to
less than 2|Q| per batch.

Number of States As summarized in table 4.1, the number |Q| of states crucially affects
the algorithms’ runtimes. To quantify the practical impact, we carry out scaling experiments
for 4 ≤ |Q| ≤ 128 while fixing all remaining parameters. Figure 4.5 visualizes the results.

MultiBatched performs best in all cases supporting our previous analysis. It shows almost
no scaling behavior for both clock protocols. For Random Two-Way, the algorithm is almost one
order of magnitude faster than its competitors despite a slow-down of 40 between the smallest
and largest state sizes.

Seqprefetch
Array is the second fastest solution in almost all settings. In the Running Clock cam-

paign, it is however outperformed by SeqLinear. This can be explained by the fact that initially
almost all agents are in state 0 which results in a constant time look-up despite the usage of a
linear search. This behavior motivates the renaming heuristic.

We observe no systematic dependency on |Q| for SeqAlias rendering it a good choice for very
large state spaces. While it is up to a factor of 2.0 slower compared to Seqprefetch

Array , the algorithm
might be preferable in a parallel setting.

Memory Footprint and Parallelism Due to the stochastic nature of the protocols, we ex-
pect that in almost all applications several runs of the same protocol are required to derive
statistically significant results. On modern machines with many processor cores, one should
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Figure 4.6: Effect of process parallelism on a machine with 40 CPU cores (plus HyperThread-
ing).

be able to maximize the throughput by executing multiple independent simulations in parallel.
As visualized in fig. 4.6, most simulators scale well with the number of threads and typically
achieve a self-speedup of 40 to 50 times using 40 cores (plus HyperThreading) at n = 230. A
notable exception is Seqprefetch

Array , which reaches only a speedup of 30 as it saturates the memory
controllers of both CPU sockets.

Another aspect of parallel execution is the memory footprint. Since SeqArray requires con-
stant memory per agent, our implementations of SeqArray and Seqprefetch

Array allocate in excess of
320GBmainmemory to execute 80 processes in parallel. Although, this number can be reduced
by constant factors using a more efficient representation of states, it has to be contrasted to the
competing algorithms with a state space of only a few kilobytes5 for the same campaign.

4.8 Conclusions and Open Problems
We considered the simulation of large population protocols to allow the experimental investi-
gation of slowly scaling observables in such systems. Two algorithm classes are discussed.

Sequential simulators carry out each interaction one after the other. We analyze the variants
SeqArray, SeqLinear, SeqBST, and SeqAlias which differ in the data structures maintaining the
agents’ states, and demonstrate substantial differences in their practical performances. As a
by-product, we describe the Dynamic Alias Table which might be independently applicable.

Batched simulators coalesce interactions to achieve asymptotical speed-ups for protocols
with a limited number of states. Our implementation then simulates more than 250 interactions
in 400 s which is several orders of magnitudes larger than the fastest sequential simulator.

Possible Extensions In some variants of the populationmodel it is assumed that interactions
are limited to some communication network. Since we store the configurations in our batched
simulators as a multiset, it is not clear how to directly adapt our approach. We believe this
might be an interesting extension of our work.

Further variants are concerned with the way how agents interact. It is straightforward to
adapt our simulator software to a setting where, e.g., a random matching of agents interacts

5We report no exact numbers as the system’s process overheads exceed the simulators’ internal states.
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in each time step. Furthermore, our approach could be generalized to a setting where more
than two agents interact. In this case we are in need of good heuristics for partitioning the
transition-tensor, since the work for updating a batch grows exponentially in the number of
interacting agents. In general, sampling the interaction counters is a frequent and costly task.
Therefore, any improved heuristic to sample from the |Q| × |Q| matrix using only o(|Q|2)
variates would yield a measureable benefit for the total runtime of a simulation.
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We initiate a study of algorithms with a focus on the computational complexity of individual
elements, and introduce the fragile complexity of comparison-based algorithms as the maximal
number of comparisons any individual element takes part in. We give a number of upper
and lower bounds on the fragile complexity for fundamental problems, including Minimum,
Selection, Sorting and Heap Construction. The results include both deterministic and
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for a number of problems. The depth of a comparator network is a straight-forward upper
bound on the worst case fragile complexity of the corresponding fragile algorithm. We prove
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5 Fragile Complexity of Comparison-Based Algorithms

5.1 Introduction
Comparison-based algorithms is a classic and fundamental research area in computer sci-
ence. Problems studied includeminimum, median, sorting, searching, dictionaries, and priority
queues, to name a few, and by now a huge body of work exists. The cost measure analyzed
is almost always the total number of comparisons needed to solve the problem, either in the
worst case or the expected case. Surprisingly, very little work has taken the viewpoint of the
individual elements, asking the question: howmany comparisons must each element be subjected
to?

This question not only seems natural and theoretically fundamental, but is also practically
well motivated: in many real world situations, comparisons involve some amount of destruc-
tive impact on the elements being compared, hence, keeping the maximum number of com-
parisons for each individual element low can be important. One example of such a situation is
ranking of any type of consumable objects (wine, beer, food, produce), where each comparison
reduces the available amount of the objects compared. Here, classical algorithms like Quick-
Sort, which takes a single object and partitions the whole set with it, may use up this pivot
element long before the algorithm completes. Another example is sports, where each compar-
ison constitutes a match and takes a physical toll on the athletes involved. If a comparison
scheme subjects one contestant to many more matches than others, both fairness to contes-
tants and quality of result are impacted. The selection process could even contradict its own
purpose—what is the use of finding a national boxing champion to represent a country at the
Olympics if the person is injured in the process? Notice that in both examples above, quality
of elements is difficult to measure objectively by a numerical value, hence one has to resort to
relative ranking operations between opponents, i.e., comparisons. The detrimental impact of
comparisons may also be of less directly physical nature, for instance if it involves a privacy
risk for the elements compared, or if bias in the comparison process grows each time the same
element is used.

Definition 2. We say that a comparison-based algorithmA has fragile complexity f(n) if each
individual input element participates in at most f(n) comparisons. We also say that A has work
w(n) if it performs at most w(n) comparisons in total. We say that a particular element e has
fragile complexity fe(n) in A if e participates in at most fe(n) comparisons.

In this paper, we initiate the study of algorithms’ fragile complexity—comparison-based com-
plexity from the viewpoint of the individual elements—and present a number of upper and
lower bounds on the fragile complexity for fundamental problems.

5.1.1 Previous work
One body of work relevant to what we study here is the study of sorting networks, propelled by
the 1968 paper of Batcher [6]. In sorting networks, and more generally comparator networks,
the notions of depth and size correspond to fragile complexity and standard worst case com-
plexity,1 respectively, since a network with depth f(n) and size w(n) easily can be converted
into a comparison-based algorithm with fragile complexity f(n) and work w(n).

1For clarity, in the rest of the paper we call standard worst case complexity work.
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5.1 Introduction

Batcher gave sorting networks with O(log2 n) depth and O(n log2 n) size, based on clever
variants of the MergeSort paradigm. A number of later constructions achieve the same
bounds [10, 15, 16, 19], and for a long time it was an open question whether better results
were possible. In the seminal result in 1983, Ajtai, Komlós, and Szemerédi [2, 4] answered
this in the affirmative by constructing a sorting network of O(logn) depth and O(n logn)
size. This construction is quite complex and involves expander graphs [20, 22], which can be
viewed as objects encoding pseudorandomness, and which have many powerful applications
in computer science and mathematics. The size of the constant factors in the asymptotic com-
plexity of the AKS sorting network prevents it from being practical in any sense. It was later
modified by others [8, 12, 17, 21], but finding a simple, optimal sorting network, in particular
one not based on expander graphs, remains an open problem. Comparator networks for other
problems, such as selection and heap construction have also been studied [5, 7, 14, 18, 23]. In
all these problems the size of the network is super-linear.

As comparator networks of depth f(n) and size w(n) lead to comparison-based algorithms
with f(n) fragile complexity and w(n) work, a natural question is, whether the two models
are equivalent, or if there are problems for which comparison-based algorithms can achieve
either asymptotically lower f(n), or asymptotically lower w(n) for the same f(n).

One could also ask about the relationship between parallelism and fragile complexity. We
note that parallel time in standard parallel models generally does not seem to capture frag-
ile complexity. For example, even in the most restrictive exclusive read and exclusive write
(EREW) PRAM model it is possible to create n copies of an element e in O(logn) time and,
thus, compare e to all the other input elements inO(logn) time, resulting inO(logn) parallel
time but Ω(n) fragile complexity. Consequently, it is not clear whether Richard Cole’s cele-
brated parallel merge sort algorithm [9] yields a comparison-based algorithm with low fragile
complexity as it copies some elements.

5.1.2 Our contribution

In this paper we present algorithms and lower bounds for a number of classical problems, sum-
marized in Table 5.1. In particular, we study finding the Minimum (Section 5.2), the Selection
problem (Section 5.3), and Sorting (Section 5.4).

Minimum. The case of the deterministic algorithms is clear: using an adversary lower
bound, we show that the minimum element needs to suffer Ω(logn) comparisons and a tour-
nament tree trivially achieves this bound (Subsection 5.2.1). The randomized case, however,
is much more interesting. We obtain a simple algorithm where the probability of the mini-
mum element suffering k comparisons is doubly exponentially low in k, roughly 1/22

k (see
Subsection 5.2.2). As a result, the Θ(logn) deterministic fragile complexity can be lowered to
O(1) expected or even O(log logn) with high probability. We also show this latter high prob-
ability case is lower bounded by Ω(log logn) (Subsection 5.2.3). Furthermore, we can achieve
a trade-off between the fragile complexity of the minimum element and the other elements.
Here ∆ = ∆(n) is a parameter we can choose freely that basically upper bounds the fragile
complexity of the non-minimal elements. We can find the minimum with O(log∆ n) expected
fragile complexity while all the other elements suffer O(∆ + log∆ n) comparisons (Subsec-
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5 Fragile Complexity of Comparison-Based Algorithms

Problem
Upper Lower

f(n) w(n) f(n)

Minimum

Determ. O(logn) [T 7] O(n) fmin = Ω(logn) [T 7](Sec. 5.2)
Rand.

〈
O(log∆ n)†,O(∆ + log∆ n)†

〉
[T 10] 〈Ω(log∆ n)†,∆〉 [T 11]

(Sec. 5.2)
〈
O(1)†,O(nε)

〉
(setting ∆ = nε) O(n)

O( logn
log logn)

† [Cor 4] Ω( logn
log logn)

† [Cor 4]〈
O(log∆ n log log∆)‡, O(n) fmin =
O(∆ + log∆ n log log∆)‡

〉
[T 10] O(n) = Ω(log logn)‡ [T 12]

Selection

Determ. O(logn) [T 13] O(n) [T 13] Ω(logn) [Cor 3](Sec. 5.3)
Rand.

〈
O(log logn)†,O (

√
n)

†
〉

[T 14] O(n)†
〈
Ω(log∆ n)†,∆

〉
[T 11]

(Sec. 5.3)
〈
O
(

logn
log logn

)†
,O(log2 n)†

〉
[T 14]

Merge Determ. O(logn) [T 18] O(n) Ω(logn) [Lem 15](Sec. 5.4)
Heap Determ. O(logn) [Obs 19] O(n) Ω(logn) [T 7]Constr. (Sec. 5.5)

Table 5.1: Summary of presented results. Notation: f(n) means fragile complexity; w(n)
means work; 〈fm(n), frem(n)〉 means fragile complexity for the selected element
(minimum/median) and for the remaining elements, respectively – except for lower
bounds, where it means 〈expected for the selected, limit for remaining〉; † means
holds in expectation; ‡ means holds with high probability (1 − 1/n). ε > 0 is an
arbitrary constant.

tion 5.2.3). Furthermore, this is tight: we show an Ω(log∆ n) lower bound for the expected
fragile complexity of the minimum element where the maximum fragile complexity of non-
minimum elements is at most ∆.

Selection. Minimum finding is a special case of the selection problem where we are in-
terested in finding an element of a given rank. As a result, all of our lower bounds apply to
this problem as well. Regarding upper bounds, the deterministic case is trivial if we allow for
O(n logn) work (via sorting). We show that this can be reduced to O(n) time while keeping
the fragile complexity of all the elements at O(logn) (Section 5.3). Once again, randomization
offers a substantial improvement: e.g., we can find the median inO(n) expected work and with
O(log logn) expected fragile complexity while non-median elements suffer O(

√
n) expected

comparisons, or we can find the median in O(n) expected work and with O(logn/ log logn)
expected fragile complexity while non-median elements suffer O(log2 n) expected compar-
isons.

Sorting and other results. The deterministic selection, sorting, and heap construction
fragile complexities follow directly from the classical results in comparator networks [4, 7].
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5.2 Finding the minimum

However, we show a separation between comparator networks and comparison-based algo-
rithms for the problem of Median (Section 5.3) and Heap Construction (Section 5.5), in the
sense that depth/fragile complexity ofO(logn) can be achieved inO(n)work for comparison-
based algorithms, but requires Ω(n logn) [5] and Ω(n log logn) [7] sizes for comparator net-
works for the two problems, respectively. For sorting the two models achieve the same com-
plexities: O(logn) depth/fragile complexity and O(n logn) size/work, which are the optimal
bounds in both models due to the Ω(logn) lower bound on fragile complexity for Minimum
(Theorem 7) and the standard Ω(n logn) lower bound on work for comparison-based sorting.
However, it is an open problem whether these bounds can be achieved by simpler sorting al-
gorithms than sorting networks, in particular whether expander graphs are necessary. One
intriguing conjecture could be that any comparison-based sorting algorithm with O(logn)
fragile complexity and O(n logn) work implies an expander graph. This would imply ex-
panders, optimal sorting networks and fragile-optimal comparison-based sorting algorithms
to be equivalent, in the sense that they all encode the same level of pseudorandomness.

We note that our lower bound of Ω(log2 n) on the fragile complexity of MergeSort (The-
orem 15) implies the same lower bound on the depth of any sorting network based on binary
merging, which explains why many of the existing simple sorting networks have Θ(log2 n)
depth. Finally, our analysis of MergeSort on random inputs (Theorem 17) shows a separation
between deterministic and randomized fragile complexity for such algorithms. In summary,
we consider the main contributions of this paper to be:

• the introduction of the model of fragile complexity, which we find intrinsically interest-
ing, practically relevant, and surprisingly overlooked

• the separations between this model and the model of comparator networks

• the separations between the deterministic and randomized setting within the model

• the lower bounds on randomized minimum finding

Due to space constraints, some proofs only appear in the full paper [1].

5.2 Finding the minimum

5.2.1 Deterministic Algorithms

As a starting point, we study deterministic algorithms that find the minimum among an input
of n elements. Our results here are simple but they act as interesting points of comparison
against the subsequent non-trivial results on randomized algorithms.

Theorem 7. The fragile complexity of finding the minimum of n elements is dlogne.

Proof. The upper bound is achieved using a perfectly balanced tournament tree. The lower
bound follows from a standard adversary argument.
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5 Fragile Complexity of Comparison-Based Algorithms

Observe that in addition to returning the minimum, the balanced tournament tree can also
return the second smallest element, without any increase to the fragile complexity of the mini-
mum. We refer to this deterministic algorithm that returns the smallest and the second smallest
element of a set X as TournamentMinimum(X).

Corollary 3. For any deterministic algorithm A that finds the median of n elements, the fragile
complexity of the median element is at least dlogne − 1.

Proof. By a standard padding argument with n− 1 small elements.

5.2.2 Randomized Algorithms for Finding the Minimum

We now show that finding the minimum is provably easier for randomized algorithms than
for deterministic algorithms. We define fmin as the fragile complexity of the minimum and
frem as the maximum fragile complexity of the remaining elements. For deterministic algo-
rithms we have shown that fmin ≥ logn regardless of frem. This is very different in the
randomized setting. In particular, we first show that we can achieve E [fmin] = O(1) and
fmin = O(1) + log logn with high probability (we later show this high probability bound is
also tight, Theorem 12).

1: procedure SampleMinimum(X) . Returns the smallest and 2nd smallest element of X
2: if |X| ≤ 8 return TournamentMinimum(X)
3: Let A ⊂ X be a uniform random sample of X , with |A| = d|X|/2e
4: Let B ⊂ A be a uniform random sample of A, with |B| =

⌊
|X|2/3

⌋
5: .The minimum is either in (i) C ⊆ X \A, (ii) D ⊆ A \B or (iii) B
6: (b1, b2) = SampleMinimum(B) . the minimum participates only in case (iii)
7: Let D = {x ∈ A \B | x < b2} . the minimum is compared once only in case (ii)
8: Let (a′1, a′2) = SampleMinimum(D) . only case (ii)
9: Let (a1, a2) = TournamentMinimum(a′1, a′2, b1, b2) . case (ii) and (iii)

10: Let C = {x ∈ X \A | x < a2} . only case (i)
11: Let (c1, c2) = TournamentMinimum(C) . only case (i)
12: return TournamentMinimum(a1, a2, c1, c2) . always
First, we show that this algorithm can actually find the minimum with expected constant

number of comparisons. Later, we show that the probability that this algorithm performs t
comparisons on the minimum drops roughly doubly exponentially on t.

We start with the simple worst-case analysis.

Lemma 10. Algorithm SampleMinimum(X) achieves fmin ≤ 3 log |X| in the worst case.

Proof. First, observe that the smallest element in Lines 9 and 12 participates in at most one
comparison because pairs of elements are already sorted. Then the fragile complexity of the
minimum is defined by the maximum of the three cases:

1. One comparison each in Lines 10 and 12, plus (by Theorem 7) dlog |C|e ≤ log |X| com-
parisons in Line 11.

2. One comparison each in Lines 7, 9, and 12, plus the recursive call in line 8.
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5.2 Finding the minimum

3. One comparison each in Lines 6, 9, and 12, plus the recursive call in line 6.

The recursive calls in lines 8 and 6 are on at most |X|/2 elements because B ⊂ A, D ⊂ A,
and |A| = d|X|/2e. Consequently, the fragile complexity of the minimum is defined by the
recurrence

T (n) ≤
{

max {3 + T (n/2), 2 + logn} if n > 8
3 if n ≤ 8

,

which solves to T (n) ≤ 3 logn.

Lemma 11. Assume that in Algorithm SampleMinimum, the minimum y is inX \A, i.e. we are
in case (i). Then Pr[|C| = k | y 6∈ A] ≤ k

2k
for any k ≥ 1 and n ≥ 7.

Proof. There are
(
n−1
dn/2e

)
possible events of choosing a random subset A ⊂ X of size dn/2e s.t.

y 6∈ A. Let us count the number of the events {|C| = k | y 6∈ A}, which is equivalent to a2,
the second smallest element of A, being larger than exactly k + 1 elements of X .

For simplicity of exposition, consider the elements ofX = {x1, . . . , xn} in sorted order. The
minimum y = x1 6∈ A, therefore, a1 (the smallest element of A) must be one of the k elements
{x2, . . . , xk+1}. By the above observation, a2 = xk+2. And the remaining dn/2e−2 elements
of A are chosen from among {xk+3, . . . , xn}. Therefore,

Pr[|C| = k | y 6∈ A] =
k ·
(n−(k+2)
dn/2e−2

)(
n−1
dn/2e

) = k · (n− (k + 2))!

(bn/2c − k)!(dn/2e − 2)!
· (dn/2e)!(bn/2c − 1)!

(n− 1)!

Rearranging the terms, we get:

Pr[|C| = k | y 6∈ A] = k · (n− (k + 2))!

(n− 1)!
· (dn/2e)!
(dn/2e − 2)!

· (bn/2c − 1)!

(bn/2c − k)!

There are two cases to consider:

k = 1 : Pr[|C| = k | y 6∈ A] = 1 · 1

(n− 1)(n− 2)
· dn/2e (dn/2e − 1) · 1

≤ 1

(n− 1)(n− 2)
· (n+ 1)

2
· (n− 1)

2

=
n+ 1

4 · (n− 2)
≤ 1

2
=

k

2k
for every n ≥ 5.
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5 Fragile Complexity of Comparison-Based Algorithms

k ≥ 2 : Pr[|C| = k | y 6∈ A] = k · 1∏k+1
i=1 (n− i)

· dn/2e (dn/2e − 1) ·
k−1∏
i=1

(⌊n
2

⌋
− i
)

≤ k · 1∏k+1
i=1 (n− i)

· n+ 1

2
· n− 1

2
·
k−1∏
i=1

n− 2i

2

≤ k

2k+1
· (n+ 1)(n− 1) ·

∏k−1
i=1 (n− 2i)∏k+1
i=1 (n− i)

≤ k

2k+1
· (n+ 1)(n− 1) · n− 2

(n− 1)(n− 2)(n− 3)

=
k

2k+1
· n+ 1

n− 3
≤ k

2k+1
· 2 =

k

2k
for every n ≥ 7.

Theorem 8. Algorithm SampleMinimum achieves E [fmin] ≤ 9.

Proof. By induction on the size of X . In the base case |X| ≤ 8, clearly fmin ≤ 3, implying the
theorem.

Now assume that the calls in Line 8 and Line 6 have the property that E [f(b1)] ≤ 9 and
E [f(a′1)] ≤ 9. Both in case (ii) and case (iii), the expected number of comparisons of the
minimum is ≤ 9 + 3. Case (i) happens with probability at least 1/2. In this case, the expected
number of comparisons is 2 plus the ones from Line 11. By Lemma 11 we have Pr[|C| = k |
case (i)] ≤ k2−k. Because TournamentMinimum (actually any algorithm not repeating the
same comparison) uses the minimum at most k−1 times, the expected number of comparisons
in Line 11 is

∑bn/2c
k=1 (k − 1)k2−k ≤

∑∞
k=1(k − 1)k2−k ≤ 4. Combining the bounds we get

E [fmin] ≤ 9+3
2 + 2+4

2 = 9.

Observe that the above proof did not use anything about the sampling ofB, and also did not
rely on TournamentMinimum.

Lemma 12. For |X| > 2 and any γ > 1: Pr
[
|D| ≥ γ|X|1/3

]
< |X| exp(−Θ(γ))

Proof. Let n = |X|, a = |A| = dn/2e and b = |B| =
⌊
n2/3

⌋
. The construction of the set B

can be viewed as the following experiment. Consider drawing without replacement from an
urn with b blue and a− b red marbles. The i-th smallest element of A is chosen into B iff the
i-th draw from the urn results in a blue marble. Then |D| ≥ γ|X|1/3 = γn1/3 implies that
this experiment results in at most one blue marble among the first t = γn1/3 draws. There are
precisely t + 1 elementary events that make up the condition |D| ≥ t, namely that the i-th
draw is a blue marble, and where i = 0 stands for the event “all t marbles are red”. Let us
denote the probabilities of these elementary events as pi.

Observe that each pi can be expressed as a product of t factors, at least t− 1 of which stand
for drawing a red marble, each upper bounded by 1 − b−1

a . The remaining factor stands for
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5.2 Finding the minimum

drawing the first blue marble (from the urn with a− imarbles, b of which are blue), or another
red marble. In any case we can bound

pi ≤
(
1− b− 1

a

)t−1

≤
(
1− b− 1

a

)γn1/3−1

= exp

(
−Θ

(
bγn1/3

a

))
.

Summing the t+ 1 terms, and observing t+ 1 < n if the event can happen at all, we get

Pr[|D| ≥ γ|X|1/3] < n · exp

(
−Θ

(
γn1/3n2/3

n/2

))
= n · exp (−Θ(γ)) .

Theorem 9. There is a positive constant c, such that for any parameter t ≥ c, the minimum in
the Algorithm SampleMinimum(X) participates in at most O(t+ log log |X|) comparisons with
probability at least 1− exp(−2t)2 log log |X|.

Proof. Let n = |X| and y be the minimum element. In each recursion step, we have one of
three cases: (i) y ∈ C ⊆ X \ A, (ii) y ∈ D ⊆ A \ B or (iii) y ∈ B. Since the three sets
are disjoint, the minimum always participates in at most one recursive call. Tracing only the
recursive calls that include the minimum, we use the superscriptX(i), A(i), B(i), C(i), andD(i)

to denote these sets at depth i of the recursion.
Let h be the first recursive level when y ∈ C(h), i.e., y 6∈ A(h). It follows that y will not be

involved in the future recursive calls because it is in a single call to TournamentMinimum.
Thus, at this level of recursion, the number of comparisons that y will accumulate is equal to
O(1)+ log |C(h)|. To bound this quantity, let k = 4 · 2t. Then, by Lemma 11, Pr[|C(h)| > k] ≤
k2−k = 4·2t ·2−4·2t = 4·2t ·4−2t ·4−2t . Since 4x4−x ≤ 1 for any x ≥ 1, Pr[|C(h)| > k] ≤ 4−2t

for any t ≥ 0. I.e., the number of comparisons that y participates in at level h is at most
O(1) + log k = O(1) + t with probability at least 1− 4−2t ≥ 1− exp(−2t).

Thus, it remains to bound the number of comparisons involving y at the recursive levels
i ∈ [1, h − 1]. In each of these recursive levels y 6∈ C(i), which only leaves the two cases:
(ii) y ∈ D(i) ⊆ A(i) \ B(i) and (iii) y ∈ B(i). The element y is involved in at most O(1)
comparisons in lines 7, 9 and 12. The two remaining lines of the algorithm are lines 6 and 8
which are the recursive calls. We differentiate two types of recursive calls:

• Type 1: |X(i)| ≤ 24t. In this case, by Lemma 10, the algorithm will perform O(t) com-
parisons at the recursive level i, as well as any subsequent recursive levels.

• Type 2: |X(i)| > 24t. In this case, by Lemma 12 on the set X(i) and γ = |X(i)|1/3 we
get:

Pr[|D(i)| ≥ γ|X(i)|1/3] < |X(i)| exp
(
−Θ

(
|X(i)|1/3

))
< exp

(
−Θ

(
|X(i)|1/3

))
Note that since |X(i)|1/3 > 2t, by the definition of the Θ-notation, there exists a posi-
tive constant c, such that exp

(
−Θ

(
|X(i)|1/3

))
< exp(−2t). Thus, it follows that with

probability 1− exp(−2t), we will recurse on a subproblem of size at most γ|X(i)|1/3 ≤
|X(i)|2/3. Let Gi be this (good) event, and thus Pr[Gi] ≥ 1− exp(−2t).
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5 Fragile Complexity of Comparison-Based Algorithms

Observe that the maximum number of times we can have good events of type 2 is very lim-
ited. With every such good event, the size of the subproblem decreases significantly and thus
eventually we will arrive at a recursive call of type 1. Let j be this maximum number of “good”
recursive levels of type 2. The problem size at the j-th such recursive level is at most n(2/3)

j−1

and we must have that n(2/3)
j−1

> 24t which reveals that we must have j = O (log logn).
We are now almost done and we just need to use a union bound. Let G be the event that at

the recursive level h, we perform at most O(1) + t comparisons, and all the recursive levels
of type 2 are good. G is the conjunction of at most j + 1 events and as we have shown,
each such event holds with probability at least 1− exp(−2t). Thus, it follows that G happens
with probability 1− (j+1) exp(−2t) > 1−2 log logn exp(−2t). Furthermore, our arguments
show that ifG happens, then the minimumwill only particpate inO(t+j) = O (t+ log logn)
comparisons.

The major strengths of the above algorithm is the doubly exponential drop in probability
of comparing the minimum with too many elements. Based on it, we can design another
simple algorithm to provide a smooth trade-off between fmin and frem. Let 2 ≤ ∆ ≤ n be
an integral parameter. We will design an algorithm that achieves E [fmin] = O(log∆ n) and
fmin = O(log∆ n · log log∆) whp, and frem = ∆+O(log∆ n · log log∆) whp. For simplicity
we assume n is a power of ∆. We build a fixed tournament tree T of degree ∆ and of height
log∆ n on X . For a node v ∈ T , let X(v) be the set of values in the subtree rooted at v. The
following code computesm(v), the minimum value of X(v), for every node v.

1: procedure TreeMinimum∆(X)
2: For every leaf v, setm(v) equal to the single element of X(v).
3: For every internal node v with ∆ children u1, . . . , u∆ where the values
m(u1), . . . ,m(u∆) are known, computem(v) using SimpleMinimum algorithm on input
{m(u1), . . . ,m(u∆)}.

4: Repeat the above step until the minimum of X is computed.

The correctness of TreeMinimum∆ is trivial. So it remains to analyze its fragile complexity.

Theorem 10. In TreeMinimum∆, E [fmin] = O(log∆ n) and E [frem] = ∆ + O(log∆ n). Fur-

thermore, with high probability, fmin = O
(

logn log log∆
log∆

)
and frem = O

(
∆+ logn log log∆

log∆

)
.

Proof. First, observe that E [fmin] = O(log∆ n) is an easy consequence of Theorem 8. Now we
focus on high probability bounds. Let k = c · h log ln∆, and h = log∆ n for a large enough
constant c. There are h levels in T . Let fi be the random variable that counts the number of
comparisons the minimum participates in at level i of T . Observe that these are independent
random variables. Let f1, . . . , fh be integers such that fi ≥ 1 and

∑h
i=1 fi = k, and let c′ be

the constant hidden in the big-O notation of Theorem 9. Use Theorem 9 h times (with n set to
∆, and t = fi), and also bound 2 log log∆ < ∆ to get

Pr
[
f1 ≥ c′(f1 + log log∆) ∨ · · · ∨ fh ≥ c′(fh + log log∆)

]
≤ ∆he−

∑
i 2

fi ≤ ∆he−h2k/h

where the last inequality follows from the inequality of arithmetic and geometricmeans (specif-
ically, observe that

∑h
i=1 2

fi is minimized when all fi’s are distributed evenly).
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5.2 Finding the minimum

Now observe that the total number of different integral sequences f1, . . . , fh that sum up
to k is bounded by

(
h+k
h

)
(this is the classical problem of distributing k identical balls into h

distinct bins). Thus, we have

Pr[fmin = O(k + h log log∆)] ≤
(
h+ k

h

)
·∆h 1

eh·2
k/h
≤
(
e(h+ k)

h

)h

·∆h 1

eh·2
k/h

≤

(
O
(
k
h

)
·∆

e2
k/h

)h

=

(
O
(
∆2
)

e2c log ln∆

)h

<

(
O(∆2)

eln
c ∆

)h

<

(
∆3

∆lnc−1 ∆

)h

< ∆−ch = n−c

where in the last step we bound (ln∆)c−1 − 3 > c for large enough c and ∆ ≥ 3. This
is a high probability bound for fmin. To bound frem, observe that for every non-minimum
element x, there exists a lowest node v such that x is not m(v). If x is not passed to the
ancestors of v, x suffers at most∆ comparisons in v, and below v x behaves like the minimum
element, which means that the above analysis applies. This yields that whp we have frem =

∆+O
(

logn log log∆
log∆

)
.

5.2.3 Randomized Lower Bounds for Finding the Minimum

Expected Lower Bound for the Fragile Complexity of the Minimum.

The following theorem is our main result.

Theorem 11. In any randomized minimum finding algorithm with fragile complexity of at most
∆ for any element, the expected fragile complexity of the minimum is at least Ω(log∆ n).

Note that this theorem implies the fragile complexity of finding the minimum:

Corollary 4. Let f(n) be the expected fragile complexity of finding theminimum (i.e. the smallest
function such that some algorithm achieves f(n) fragile complexity for all elements (minimum
and the rest) in expectation). Then f(n) = Θ( logn

log logn).

Proof. Use Theorem 10 as the upper bound and Theorem 11, both with ∆ = logn
log logn , observing

that if f(n) is an upper bound that holds with high probability, it is also an upper bound on
the expectation.

To prove Theorem 11 we give a lower bound for a deterministic algorithm A on a random
input of n values, x1, . . . , xn where each xi is chosen iid and uniformly in (0, 1). By Yao’s
minimax principle, the lower bound on the expected fragile complexity of the minimum when
running A also holds for any randomized algorithm.

We prove our lower bound in a model that we call “comparisons with additional information
(CAI)”: if the algorithmA compares two elements xi and xj and it turns out that xi < xj , then
the value xj is revealed to the algorithm. Clearly, the algorithm can only do better with this
extra information. The heart of the proof is the following lemma which also acts as the “base
case” of our proof.
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5 Fragile Complexity of Comparison-Based Algorithms

Lemma 13. Let ∆ be an upper bound on frem. Consider T values x1, . . . , xT chosen iid and
uniformly in (0, b). Consider a deterministic algorithm A in CAI model that finds the minimum
value y among x1, . . . , xT . If T > 1000∆, then with probability at least 7

10 A will compare y
against an element x such that x ≥ b/(100∆).

Proof. By simple scaling, we can assume b = 1. Let p be the probability that A compares y
against a value larger than 1/(100∆). Let Ismall be the set of indices i such that xi < 1/(100∆).
Let A′ be a deterministic algorithm in CAI model such that:

• A′ is given all the indices in Ismall (and their corresponding values) except for the index
of the minimum. We call these the known values.

• A′ minimizes the probability p′ of comparing the y against a value larger than 1/(100∆).

• A′ finds the minimum value among the unknown values.

Since p′ ≤ p, it suffices to bound p′ from below. We do this in the remainder of the proof.
Observe that the expected number of values xi such that xi < 1/(100∆) is T/(100∆). Thus,

by Markov’s inequality, Pr[|Ismall| ≤ T/(10∆)] ≥ 9
10 . Let’s call the event |Ismall| ≤ T/(10∆)

the good event. For algorithmA′ all values smaller than 1/(100∆) except for the minimum are
known. Let U be the set of indices of the unknown values. Observe that a value xi for i ∈ U
is either the minimum or larger than 1/(100∆), and that |U | = T − |Ismall|+1 > 9

10T (using
∆ ≥ 1) in the good event. BecauseA′ is a deterministic algorithm, the set U is split into set F
of elements that have their first comparison against a known element, and setW of those that
are first compared with another element with index inU . Because of the global bound∆ on the
fragile complexity of the known elements, we know |F | < ∆ · |Ismall| ≤ ∆T/(10∆) = T/10.
Combining this with the probability of the good event, by union bound, the probability of the
minimum being comparedwith a value greater than 1/(100∆) is at least 1−(1− 9

10)−(1−
8
9) ≥

7/10.

Based on the above lemma, our proof idea is the following. Let G = 100∆. We would
like to prove that on average A cannot avoid comparing the minimum to a lot of elements.
In particular, we show that, with constant probability, the minimum will be compared against
some value in the range [G−i, G−i+1] for every integer i, 1 ≤ i ≤ logG n

2 . Our lower bound
then follows by an easy application of the linearity of expectations. Proving this, however, is
a little bit tricky. However, observe that Lemma 13 already proves this for i = 1. Next, we use
the following lemma to apply Lemma 13 over all values of i, 1 ≤ i ≤ logG n

2 .

Lemma 14. For a value b with 0 < b < 1, define pk =
(
n
k

)
bi(1 − b)n−k, for 0 ≤ k ≤ n.

Choosing x1, . . . , xn iid and uniformly in (0, 1) is equivalent to the following: with probability
pk, uniformly sample a set I of k distinct indices in {1, . . . , n} among all the subsets of size k.
For each i ∈ I , pick xi iid and uniformly in (0, b). For each i 6∈ I , pick xi iid and uniformly in
(b, 1).

Proof. It is easy to see that choosing x1, . . . , xn iid uniformly in (0, 1) is equivalent to choosing
a point X uniformly at random inside an n dimensional unit cube (0, 1)n. Therefore, we will
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5.2 Finding the minimum

prove the equivalence between (i) the distribution defined in the lemma, and (ii) choosing such
point X .

Let Q be the n-dimensional unit cube. Subdivide Q into 2n rectangular region defined by
the Cartesian product of intervals (0, b) and (b, 1), i.e., {(0, b), (b, 1)}n (or alternatively, bisect
Qwith n hyperplanes, with the i-th hyperplane perpendicular to the i-th axis and intersecting
it at coordinate equal to b).

Consider the set Rk of rectangles in {(0, b), (b, 1)}n with exactly k sides of length b and
n−k sides of length 1−b. Observe that for every choice of k (distinct) indices i1, . . . , ik out of
{1, . . . , n}, there exists exactly one rectangle r inRk such that r has side length b at dimensions
i1, . . . , ik, and all the other sides of r has length n− k. As a result, we know that the number
of rectangles in Rk is

(
n
k

)
and the volume of each rectangle in Rk is bk(1 − b)k. Thus, if we

choose a pointX randomly inside Q, with probability pk it will fall inside a rectangle r in Rk;
furthermore, conditioned on this event, the dimensions i1, . . . , ik where r has side length b is
a uniform subset of k distinct indices from {1, . . . , n}.

Remember that our goal was to prove that with constant probability, the minimum will be
compared against some value in the range [G−i, G−i+1] for every integer i, 1 ≤ i ≤ logG n

2 . We
can pick b = G−i+1 and apply Lemma 14. We then observe that it is very likely that the set of
indices I that we are sampling in Lemma 14 will contain many indices. For every element xi,
i ∈ I , we are sampling xi independently and uniformly in (0, b) which opens the door for us
to apply Lemma 13. Then we argue that Lemma 13 would imply that with constant probability
the minimum will be compared against a value in the range (b/G, b) = (G−i, G−i+1). The
lower bound claim of Theorem 11 then follows by invoking the linearity of expectations.

We are ready to prove that the minimum element will have Ω(log∆ n) comparisons on av-
erage.

Proof of Theorem 11. First, observe that we can assume n ≥ (100, 000∆)2 as otherwise we are
aiming for a trivial bound of Ω(1).

We create an input set of n values x1, . . . , xn where each xi is chosen iid and uniformly in
(0, 1). Let G = 100∆. Consider an integer i such that 1 ≤ i <

logG n
2 . We are going to prove

that with constant probability, the minimum will be compared against a value in the range
(G−i, G−i+1), which, by linearity of expectation, shows the stated Ω(log∆ n) lower bound for
the fragile complexity of the minimum.

Consider a fixed value of i. Let S be the set of indices with values that are smaller than
G−i+1. Let p be the probability that A compares the minimum against an xj with j ∈ S
such that xj ≥ G−i. To prove the theorem, it suffices to prove that p is lower bounded by a
constant. Now consider an algorithm A′ that finds the minimum but for whom all the values
other than those inS have been revealed and furthermore, assumeA′ minimizes the probability
of comparing the minimum against an element x ≥ G−i (in other words, we pick the algorithm
which minimizes this probability, among all the algorithms). Clearly, p′ ≤ p. In the rest of the
proof we will give a lower bound for p′.

Observe that |S| is a random variable with binomial distribution. HenceE [|S|] = nG−i+1 >√
n where the latter follows from i <

logG n
2 . By the properties of the binomial distribution we
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5 Fragile Complexity of Comparison-Based Algorithms

have that Pr
[
|S| < E[|S|]

100

]
< 1

10 . Thus, with probability at least 9
10 , we will have the “good”

event that |S| ≥ E[|S|]
100 ≥

√
n

100 .
In case of the good event, Lemma 14 implying that conditioned on S being the set of values

smaller than G−i+1, each value xj with j ∈ S is distributed independently and uniformly in
the range (0, G−i+1). As a result, we can now invoke Lemma 13 on the set S with T = |S|.
Since n ≥ (100, 000∆)2 we have T = |S| ≥

√
n

100 ≥
100,000∆

100 . By Lemma 13, with probability
at least 7

10 , the minimum will be compared against a value that is larger than G−i.
Thus, by law of total probability, it follows that in case of a good event, with probability 7

10 the
minimum will be compared to a value in the range (G−i, G−i+1). However, as the good event
happens with probability 9

10 , it follows that with probability at least 1−(1− 7
10)−(1−

9
10) =

6
10 ,

the minimum will be compared against a value in the range (G−i, G−i+1).

Lower bound for the fragile complexity of the minimum whp.

With Theorem 9 in Subsection 5.2.2, we show in particular that SampleMinimum guarantees
that the fragile complexity of the minimum is at most O(log logn) with probability at least
1− 1/nc for any c > 1. (By setting t = 2 log logn).

Here we show that this is optimal up to constant factors in the fragile complexity.

Theorem 12. For any constant ε > 0, there exists a value of n0 such that the following holds for
any randomized algorithm A and for any n > n0: there exists an input of size n such that with
probability at least n−ε, A performs ≥ 1

2 log logn comparisons with the minimum.

Proof. We use (again) Yao’s principle and consider a fixed deterministic algorithm A working
on the uniform input distribution, i.e., all input permutations have probability 1/n!. Let f =
1
2 log logn be the upper bound on the fragile complexity of the minimum. Let k = 2f =√

logn and let S be the set of the k smallest input values. Let π be a uniform permutation
(the input) and π(S) be the permutation of the elements of S in π. Observe that π(S) is a
uniform permutation of the elements of S. We reveal the elements not in S to A. So, A only
needs to find the minimum in π(S). By Theorem 7 there is at least one “bad” permutation
of S which forces algorithm A to do log k = f comparisons on the smallest element. Observe
log k! < log kk = k log k =

√
logn1

2 log logn. Observe that there exists a value of n0 such
that for n > n0 the right hand side is upper bounded by ε logn, so k! ≤ nε, for n > n0. Hence,
the probability of a “bad” permutation is at least 1/k! > n−ε.

5.3 Selection and median

The (n, t)-selection problem asks to find the t-th smallest element among n elements of the
input. The simplest solution to the (n, t)-selection problem is to sort the input. Therefore, it
can be solved in O(logn) fragile complexity and O(n logn) work by using the AKS sorting
network [2]. For comparator networks, both of these bounds are optimal: the former is shown
by Theorem 7 (and in fact it applies also to any algorithm) and the latter is shown in the full
version of this paper [1].
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Figure 5.1: Illustration of the alternating division process using ε-halvers.

In contrast, in this section we show that comparison-based algorithms can do better: we
can solve Selection deterministically in Θ(n) work and Θ(logn) fragile complexity, thus,
showing a separation between the two models. However, to do that, we resort to constructions
that are based on expander graphs. Avoiding usage of the expander graphs or finding a simpler
optimal deterministic solution is an interesting open problem (see Section 5.6). Moreover, in
Subsection 5.3.2 we show that we can do even better by using randomization.

5.3.1 Deterministic selection

Theorem 13. detMed There is a deterministic algorithm for Selection which performs O(n)
work and has O(logn) fragile complexity.

Proof sketch. It suffices to just find the median since by simple padding we can generalize the
solution for the (n, t)-selection problem.

We use ε-halvers that are the central building blocks of the AKS sorting network. An ε-halver
approximately performs a partitioning of an array of size n into the smallest half and the largest
half of the elements. More precisely, for anym ≤ n/2, at most εn of them smallest elements
will end up in the right half of the array, and at most εn of the m largest elements will end
up in the left half of the array. Using expander graphs, a comparator network implementing
an ε-halver of constant depth can be built [2, 3]. We use the corresponding comparison-based
algorithm of constant fragile complexity.

The idea is to use ε-halvers to find roughly n
logn elements with rank between (1 + α)n2 and

(2−α)n2 and also roughly n
logn elements with rank betweenαn

2 and (1−α)n2 , for some constant
0 < α < 1. This is done by repeatedly using ε-halvers but alternating between selecting the
left half and the right half (Figure 5.1). Using these, we filter the remaining elements and
discard a constant fraction of them. Then we recurse on the remaining elements. The details
are a bit involved, as we have to guarantee that no element accumulates too many comparisons
throughout the recursions. We have to do some bookkeeping as well as some additional ideas
to provide this guarantee. Details can be found in the full version of the paper [1].

Corollary 5. There is a deterministic algorithm for partition which performsO(n) work and has
O(logn) fragile complexity.
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5 Fragile Complexity of Comparison-Based Algorithms

Proof. At the end of the Selection algorithm, the set of elements smaller (larger) than the
median is the union of the respective filtered sets (sets L andR in the proof in the full version
of the paper [1]) and the first (last) half of the sorted set in the base case of the recursion. Again,
simple padding generalizes this to (n, t)-partition for arbitrary t 6= n

2 .

5.3.2 Randomized selection

In the full paper [1], we present the details of an expected work-optimal selection algorithm
with a trade-off between the expected fragile complexity fmed(n) of the selected element and
the maximum expected fragile complexity frem(n) of the remaining elements. In particular, we
obtain the following combinations:

Theorem 14. Randomized selection is possible in expected linear work, while achieving expected
fragile complexity of the median E [fmed(n)] = O(log logn) and of the remaining elements
E [frem(n)] = O(

√
n), or E [fmed(n)] = O

(
logn

log logn

)
and E [frem(n)] = O(log2 n).

5.4 Sorting

Recall from Section 5.1 that the few existing sorting networks with depth O(logn) are all
based on expanders, while a number of O(log2 n) depth networks have been developed based
on binary merging. Here, we study the power of the mergesort paradigm with respect to
fragile complexity. We first prove that any sorting algorithm based on binary merging must
have a worst-case fragile complexity of Ω(log2 n). This provides an explanation why all exist-
ing sorting networks based on merging have a depth no better than this. We also prove that
the standard mergesort algorithm on random input has fragile complexity O(logn) with high
probability, thereby showing a separation between the deterministic and the randomized sit-
uation for binary mergesorts. Finally, we demonstrate that the standard mergesort algorithm
has a worst-case fragile complexity of Θ(n), but that this can be improved to O(log2 n) by
changing the merging algorithm to use exponential search. The omitted proofs can be found
in the full paper [1].

Lemma 15. lemMergeLB Merging of two sorted sequences A and B has fragile complexity at
least blog2 |A|c+ 1.

Theorem 15. Any binary mergesort has fragile complexity Ω(log2 n).

Proof. The adversary is the same as in the proof of Lemma 16, except that as scapegoat element
for a merge of A and B it always chooses the scapegoat from the larger of A and B. We claim
that for this adversary, there is a constant c > 0 such that for any node v in the mergetree, its
scapegoat element has participated in at least c log2 n comparisons in the subtree of v, where
n is the number of elements merged by v. This implies the theorem.

We prove the claim by induction on n. The base case is n = O(1), where the claim is
true for small enough c, as the scapegoat by Lemma 15 will have participated in at least one
comparison. For the induction step, assume v merges two sequences of sizes n1 and n2, with
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n1 ≥ n2. By the base case, we can assume n1 ≥ 3. Using Lemma 15, we would like to prove
for the induction step

c log2 n1 + blogn2c+ 1 ≥ c log2(n1 + n2). (5.1)

This will follow if we can prove

log2 n1 +
logn2
c
≥ log2(n1 + n2) . (5.2)

The function f(x) = log2 x has first derivative 2(logx)/x and second derivative 2(1−logx)/x2,
which is negative for x > e = 2.71 . . . . Hence, f(x) is concave for x > e, which means that
first order Taylor expansion (alias the tangent) lies above f , i.e., f(x0)+f ′(x0)(x−x0) ≥ f(x)
for x0, x > e. Using x0 = n1 and x = n1+n2 and substituting the first order Taylor expansion
into the right side of (5.2), we see that (5.2) will follow if we can prove

logn2
c
≥ 2

logn1
n1

n2 ,

which is equivalent to
logn2
n2

≥ 2c
logn1
n1

. (5.3)

Since n1 ≥ n2 and (logx)/x is decreasing for x ≥ e, we see that (5.3) is true for n2 ≥ 3 and c
small enough. Since log(3)/3 = 0.366 . . . and log 2/2 = 0.346 . . . , it is also true for n2 = 2
and c small enough. For the final case of n2 = 1, the original inequality (5.1) reduces to

log2 n1 +
1

c
≥ log2(n1 + 1) . (5.4)

Here we can again use concavity and first order Taylor approximation with x0 = n1 and
x = n1 + 1 to argue that (5.4) follows from

1

c
≥ 2

logn1
n1

.

which is true for c small enough, as n1 ≥ 3 and (logx)/x is decreasing for x ≥ e.

Theorem 16. Standard MergeSort with linear merging has a worst-case fragile complexity of
Θ(n).

Lemma 16. Standard MergeSort has fragile complexity Ω(log2 n).

Proof. In MergeSort, when merging two sorted sequencesA andB, no comparisons between
elements of A and B have taken place before the merge. Also, the sorted order of A ∪ B has
to be decided by the algorithm after the merge. We can therefore run the adversary argument
from the proof of Lemma 15 in all nodes of the mergetree of MergeSort. If the adversary
reuses scapegoat elements in a bottom-up fashion—that is, as scapegoat for a merge of A and
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B chooses one of the two scapegoats from the twomerges producingA andB—then the scape-
goat at the root of the mergetree has participated in

Ω(

logn∑
i=0

log 2i) = Ω(

logn∑
i=0

i) = Ω(log2 n)

comparisons, by Lemma 15 and the fact that a node at height i in the mergetree of standard
MergeSort operates on sequences of length Θ(2i).

Observation 2. Consider two sorted sequences A = (a1, . . . , an) and B = (b1, . . . , bn). In
linear merging, the fragile complexity of element ai is at most `+1 where ` is the largest number
of elements from B that are placed directly in front of ai (i.e. bj < . . . < bj+`−1 < ai).

Lemma 17. Let X = {x1, . . . , x2k} be a finite set of distinct elements, and consider a random
bipartitionXL, XR ⊂ X with |XL| = |XR| = k andXL ∩XR = ∅, such that Pr [xi ∈ XL] =
1/2. Consider an arbitrary ordered setY = {y1, . . . , ym} ⊂ X withm ≤ k. ThenPr [Y ⊆ XL ∨ Y ⊆ XR] <
21−m.

Proof.

Pr [Y ⊆ XL ∨ Y ⊆ XR] = 2

m∏
i=1

Pr [ yi ∈ XL | y1, . . . yi−1 ∈ XL ] = 2
(2k)−mk!

(k −m)!
≤ 2 · 2−m.

Theorem 17. Standard MergeSort with linear merging on a randomized input permutation has
a fragile complexity of O(logn) with high probability.

Proof. Let Y = (y1, . . . , yn) be the input-sequence, π−1 be the permutation that sorts Y and
X = (x1, . . . , xn)with xi = yπ−1(i) be the sorted sequence. Wlog we assume that all elements
are unique2, that any input permutation π is equally likely3, and that n is a power of two.

Merging in one layer. Consider any merging-step in the mergetree. Since both input se-
quences are sorted, the only information still observable from the initial permutation is the
bi-partitioning of elements into the two subproblems. Given π, we can uniquely retrace the
mergetree (and vice-versa): we identify each node in the recursion tree with the set of elements
it considers. Then, any node with elements XP = {y`, . . . , y`+2k−1} has children

XL =
{
xπ(i)

∣∣ ` ≤ π(i) ≤ `+ k − 1
}
= {y`, . . . , y`+k−1} ,

XR =
{
xπ(i)

∣∣ `+ k ≤ π(i) ≤ `+ 2k − 1
}
= {y`+k, . . . , y`+2k−1} .

Hence, locally our input permutation corresponds to an stochastic experiment in which we
randomly draw exactly half of the parent’s elements for the left child, while the remainder
goes to right.

This is exactly the situation in Lemma 17. LetNi be a random variable denoting the number
of comparisons of element yi in the merging step. Then, from Observation 2 and Lemma 17 it

2If this is not the case, use input sequence Y ′ = ((y1, 1), . . . , (yn, n)) and lexicographical compares.
3If not shuffle it before sorting in linear time and no fragile comparisons.
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follows that Pr [Ni = m+1] ≤ 2−m. Therefore Ni is stochastically dominated by Ni � 1+Yi
where Yi is a geometric random variable with success probability p = 1/2.

Merging in all layers. Let Nj,i be the number of times element yi is compared in the j-th
recursion layer and define Yj,i analogously. Due to the recursive partitioning argument, Nj,i

and Yj,i are iid in j. Let NT
i be the total number of comparisons of element i, i.e. NT

i �
log2 n+

∑log2 n
j=1 Yj,i. Then a tail bound on the sum of geometric variables (Theorem 2.1 in [13])

yields:

Pr
[∑log2 n

j=1
Yj,i ≥ λE

[∑log2 n

j=1
Yj,i

]
= 2λ log2 n

]
[13]
≤ exp

(
−1

2

2 lnn
ln 2

[λ−1− logλ]
)

= n−2,

where we set λ ≈ 3.69 in the last step solving λ− logλ = 2 log 2. Thus, we bound the proba-
bility Pr

[
NT

i ≥ (1+2λ) log2 n
]
≤ n−2.

Fragile complexity. It remains to show that with high probability no element exceeds the
claimed fragile complexity. We use a union bound on NT

i for all i:

Pr
[
max

i
{NT

i } = ω(logn)
]
≤ nPr

[
NT

i = ω(logn)
]
≤ 1/n .

Theorem 18. thmMergeExponential Exponential merging of two sequences A = (a1, . . . , an)
and B = (b1, . . . , bn) has a worst-case fragile complexity of O(logn).

Corollary 6. corMergesortExponential Applying Theorem 18 to standard MergeSort with ex-
ponential merging yields a fragile complexity of O(log2 n) in the worst-case.

5.5 Constructing binary heaps
Theorem19. The fragile complexity of the standard binary heap construction algorithm of Floyd [11]
is O(logn).

The above observation is easy to verify (shown in the full paper [1]). We note that this frag-
ile complexity is optimal byTheorem 7, since Heap Construction is stronger than Minimum.
Brodal and Pinotti [7] showed how to construct a binary heap using a comparator network in
Θ(n log logn) size and O(logn) depth. They also proved a matching lower bound on the size
of the comparator network for this problem. This, together with Observation 19 and the fact
that Floyd’s algorithm has work O(n), gives a separation between work of fragility-optimal
comparison-based algorithms and size of depth-optimal comparator networks for Heap Con-
struction.

5.6 Conclusions
In this paper we introduced the notion of fragile complexity of comparison-based algorithms
and we argued that the concept is well-motivated because of connections both to real world
situations (e.g., sporting events), as well as other fundamental theoretical concepts (e.g., sort-
ing networks). We studied the fragile complexity of some of the fundamental problems and
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revealed interesting behavior such as the large gap between the performance of determinis-
tic and randomized algorithms for finding the minimum. We believe there are still plenty of
interesting and fundamental problems left open. Below, we briefly review a few of them.

• The area of comparison-based algorithms is much larger than what we have studied.
In particular, it would be interesting to study “geometric orthogonal problems” such
as finding the maxima of a set of points, detecting intersections between vertical and
horizontal line segments, kd-trees, axis-aligned point location and so on. All of these
problems can be solved using algorithms that simply compare the coordinates of points.

• Is it possible to avoid using expander graphs to obtain simple deterministic algorithms
to find the median or to sort?

• Is it possible to obtain a randomized algorithm that finds the median where the median
suffers O(1) comparisons on average? Or alternatively, is it possible to prove a lower
bound? If one cannot show a ω(1) lower bound for the fragile complexity of the median,
can we show it for some other similar problem?

136



Bibliography

[1] Peyman Afshani et al. “Fragile Complexity of Comparison-Based Algorithms”. In: CoRR
abs/1901.02857 (2019). arXiv: 1901.02857. url: http://arxiv.org/abs/1901.02857.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. “An O(n logn) Sorting Network”. In: Proceedings
of the 15th Symposium on Theory of Computation. STOC ’83. ACM, 1983, pp. 1–9. isbn:
0-89791-099-0. url: http://doi.acm.org/10.1145/800061.808726.

[3] M. Ajtai, J. Komlós, and E. Szemerédi. “Halvers and Expanders”. In: FOCS’92. Pittsburgh,
PN: IEEE Computer Society Press, Oct. 1992, pp. 686–692. isbn: 0-8186-2900-2.

[4] M. Ajtai, J. Komlós, and E. Szemerédi. “Sorting in c logn parallel steps”. In:Combinatorica
3.1 (Mar. 1983), pp. 1–19. issn: 1439-6912. url: https://doi.org/10.1007/BF02579338.

[5] V. E. Alekseev. “Sorting Algorithms with minimum memory”. In: Kibernetika 5.5 (1969),
pp. 99–103.

[6] K. E. Batcher. “SortingNetworks and their Applications”. English. In: Proceedings of AFIPS
Spring Joint Computer Conference (1968), pp. 307–314.

[7] G. Stølting Brodal and M. C. Pinotti. “Comparator Networks for Binary Heap Construc-
tion”. In: Proc. 6th ScandinavianWorkshop on AlgorithmTheory. Vol. 1432. LNCS. Springer
Verlag, Berlin, 1998, pp. 158–168. isbn: 978-3-540-64682-2. doi: 10.1007/BFb0054364.

[8] V. Chvátal. Lecture notes on the new AKS sorting network. Tech. rep. DCS-TR-294. Depart-
ment of Computer Science, Rutgers University, New Brunswick, NJ, Oct. 1992.

[9] R. Cole. “Parallel Merge Sort”. In: SIAM Journal on Computing 17.4 (1988), pp. 770–785.
[10] M. Dowd et al. “The periodic balanced sorting network”. In: J. ACM 36.4 (Oct. 1989),

pp. 738–757.
[11] R. W. Floyd. “Algorithm 245: Treesort”. In: Commun. ACM 7.12 (Dec. 1964), p. 701. issn:

0001-0782. url: http://doi.acm.org/10.1145/355588.365103.
[12] M. T. Goodrich. “Zig-zag sort: a simple deterministic data-oblivious sorting algorithm

running in O(n logn) time”. In: STOC’14. ACM, 2014, pp. 684–693. isbn: 978-1-4503-
2710-7. url: http://dl.acm.org/citation.cfm?id=2591796.

[13] S. Janson. “Tail bounds for sums of geometric and exponential variables”. In: Statistics &
Probability Letters 135 (2018), pp. 1–6. issn: 0167-7152. doi: https://doi.org/10.1016/
j.spl.2017.11.017.

[14] S. Jimbo and A. Maruoka. “A Method of Constructing Selection Networks withO(logn)
Depth”. In: SIAM Journal on Computing 25.4 (1996), pp. 709–739.

[15] I. Parberry. “The pairwise sorting network”. In: Parallel Processing Letters 2.2-3 (1992),
pp. 205–211.

137

https://arxiv.org/abs/1901.02857
http://arxiv.org/abs/1901.02857
http://doi.acm.org/10.1145/800061.808726
https://doi.org/10.1007/BF02579338
https://doi.org/10.1007/BFb0054364
http://doi.acm.org/10.1145/355588.365103
http://dl.acm.org/citation.cfm?id=2591796
https://doi.org/https://doi.org/10.1016/j.spl.2017.11.017
https://doi.org/https://doi.org/10.1016/j.spl.2017.11.017


Bibliography

[16] B. Parker and I. Parberry. “Constructing sorting networks from k-sorters”. In: Informa-
tion Processing Letters 33.3 (Nov. 1989), pp. 157–162.

[17] M. S. Paterson. “Improved sorting networks with O(logN) depth”. In: Algorithmica 5.1
(1990), pp. 75–92.

[18] N. Pippenger. “Selection Networks”. In: SIAM Journal on Computing 20.5 (1991), pp. 878–
887.

[19] V. R. Pratt. Shellsort and Sorting Networks. Outstanding Dissertations in the Computer
Sciences. Garland Publishing, New York, 1972. isbn: 0-8240-4406-1.

[20] S.Hoory, N. Linial, and A. Wigderson. “Expander Graphs and Their Applications”. In:
BAMS: Bulletin of the American Mathematical Society 43 (2006), pp. 439–561.

[21] J. I. Seiferas. “Sorting Networks of Logarithmic Depth, Further Simplified”. In: Algorith-
mica 53.3 (2009), pp. 374–384.

[22] S. P. Vadhan. “Pseudorandomness”. In: Foundations and Trends in Theoretical Computer
Science 7.1-3 (2012), pp. 1–336.

[23] A. Yao and F. F. Yao. “Lower Bounds on Merging Networks”. In: J. ACM 23.3 (1976),
pp. 566–571.

138


	Introduction
	Algorithms for external memory
	Keeping B-trees in shape
	Preliminaries
	Motivation
	Previous work
	Our contribution
	Open problems

	Graph algorithms for external memory
	Overview
	Our contribution
	Open problems

	Simulating population protocols
	Preliminaries
	Previous work
	Our contributions
	Open problems

	Fragile complexity
	Motivation
	Our contribution
	Open problems


	On Optimal Balance in B-trees: What Does it Cost to Stay in Perfect Shape?
	Introduction
	Motivation
	Our contributions
	Previous work

	Model
	Lower bound
	Mapping into array
	Counting node changes

	Upper bound
	Layout
	Rebalancing operations
	Insertion
	Achieving log squared amortized rebalancing

	Global rebalancing scheme
	Storage utilization

	Engineering an Expected O(Sort(m)) External Connected Components Algorithm.
	Introduction
	Previous work
	Our contribution

	Definitions
	Algorithms
	Tuning Options
	Implementation
	Graph classes
	Experiments
	Evaluating the Randomized Borůvka algorithm
	Evaluating the impact of contraction edges for Sibeyn-Meyer
	Timing experiments for fully external CC computation

	Conclusion

	Simulating Population Protocols in Sub-Constant Time per Interaction
	Introduction
	Formal Model Definition
	Our Contributions
	Related Work

	Sequential Simulation
	Dynamic Alias Tables
	Batch Processing
	Merging Batches
	Heuristics and Implementation Details
	Sampling the Length of a Collision-Free Run
	Heuristics
	Dynamic Epoch Lengths

	Experimental Evaluation
	Conclusions and Open Problems

	Fragile Complexity of Comparison-Based Algorithms
	Introduction
	Previous work
	Our contribution

	Finding the minimum
	Deterministic Algorithms
	Randomized Algorithms for Finding the Minimum
	Randomized Lower Bounds for Finding the Minimum

	Selection and median
	Deterministic selection
	Randomized selection

	Sorting
	Constructing binary heaps
	Conclusions


