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Abstract: Human lymph nodes play a central part of
immune defense against infection agents and tumor cells.
Lymphoid follicles are compartments of the lymph node
which are spherical, mainly filled with B cells. B cells are
cellular components of the adaptive immune systems. In
the course of a specific immune response, lymphoid folli-
cles pass different morphological differentiation stages.
The morphology and the spatial distribution of lymphoid
follicles can be sometimes associated to a particular
causative agent and development stage of a disease. We
report our new approach for the automatic detection of
follicular regions in histological whole slide images of
tissue sections immuno-stained with actin. The method is
divided in two phases: (1) shock filter-based detection of
transition points and (2) segmentation of follicular regions.
Follicular regions in 10 whole slide images were manually
annotated by visual inspection, and sample surveys were
conducted by an expert pathologist. The results of our
method were validated by comparing with the manual
annotation. On average, we could achieve a Zijbendos
similarity index of 0.71, with a standard deviation of 0.07.

Keywords: computer vision; digital pathology; human
lymph node; morphological filtering; shock filter; whole
slide image.

Introduction

A human organism needs a functional immune system to
defend against bacteria, viral structures and tumor cells. In
this concept an integral part of the adaptive immune sys-
tem is the structural and cellular flexibility of lymph nodes
(Oswald et al. 2019). Important and sometimes critical
components of the immunologically flexible lymph nodes
are especially the lymphoid follicles which can be seen by
light microscopy as spherical structures (Willard-Mack
2006). During an ongoing infection and the associated
antigenic contact, lymphoid follicles pass different stages
of development and change their morphology (Victora and
Nussenzweig 2012). Many known diseases, as, e.g., follic-
ular lymphoma (Broyde et al. 2009), and different benign
lymphadenopathies (Weiss and O’malley 2013), are asso-
ciated with specific morphological findings of lymphoid
follicles. For example, rheumatoid arthritis is character-
ized by a follicular hyperplasia in which lymphoid follicles
becomeheavily enlarged (Nosanchuk and Schintzier 1969).

Computer-aided diagnosis will get an increasing
importance in future diagnostics. Novel cutting-edge
technologies facilitate a differentiated phenotyping of
disease entities and generate a huge amount of data. An
example is histology and immunohistochemistry using
multi-staining and digitalization that leads to gigabytes of
data for an individual patient. To handle data in future
routine diagnostics, there is a strong need to develop and
establish computer-aided diagnosis (Doi 2007).

Nowadays, lymphoid follicles are visually inspected by a
pathologist using a light microscope in diagnostic routine.
Various algorithms for the detection of lymphoid follicles
have been presented. Belkacem-Boussaid et al. (Belkacem-
Boussaid et al. 2011) have applied a region-based approach
using curve evolution to segment lymphoid follicles. Tosta
et al. (Tosta et al. 2017, 2018) have proposed unsupervised
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segmentation methods for the detection of neoplastic nuclei
in histological whole slide images (WSI) to identify
indicative regions. A worthwhile method is supervised
machine learning, however, a large number of annotated
training images are required. A challenge for all seg-
mentation methods are the broad variety of the morpho-
logical structures andunsharp edges of lymphoid regions,
as, e.g., follicles, cortex, paracortex andmedulla (Willard-
Mack 2006).

In the 1990s, Osher and Rudin (Osher and Rudin
1990) have proposed a hyperbolic partial differential
equation (PDE) for sharpening and restoring of images
called shock filter. The iterative application of the shock
filter produces sections of constant functions that show
fracture points at inflection points (Belean et al. 2015a,b;
Osher and Rudin 1990). In the following decades, their
method, known as shock filter method, has found many
applications in the field of computer vision (Goyal et al.
2020; Huo et al. 2016; Money and Kang 2008; Varathar-
ajan et al. 2018). An exemplary application is the seg-
mentation of spots on microarrays. Belean et al. (Belean
et al. 2015a) have applied the shock filter method to
compute the border points to envelope microarray spots
of various morphologies.

The aim of this work was the development of a method
to detect lymphoid regions and substructures in human
biopsies. We concentrated on the detection of lymphoid
follicles in tissue sections that are stained for actin. In actin-
stained tissue lymphoid follicles are well-differentiated
and structures are distinctly pronounced. The staining of
actin enables even the detection of multiple lymphoid
substructures (Dominguez and Holmes 2011). Here, we
abstained from studying the detection of complex sub-
structures as, e.g., sinus and vascular structures.

In our approach, we focused on the applicability of
the shock filtermethod to detect transition points between
lymphoid regions. The transition points marked out
the border lines of lymphoid follicles. The QuickHull-
algorithm (Barber et al. 1996) transformed transition
points in the tissue section to an annotation of the indi-
vidual lymphoid follicles. The quality of the segmentation
outperformed standard methods of computer vision,
i.e., watershed and Otsu thresholding. We discussed the
limitations of our approach and its potential application
for measuring the spatial structure of lymph nodes.

Results

The solid line in Figure 1 shows values of the Zijdenbos
similarity index (ZSI) of the shock filter approach (FLDe-
tect) for 10 images, seeMaterial andMethods. The values of
the ZSI are in the range of 0.6 ≤ ZSI ≤ 0.8 with a mean of

ZSI = 0.71 ± 0.07. The values are excellent, i.e., ZSI ≥ 0.7,
for six out of 10 WSI and less favorable, i.e., ZSI ≤ 0.7, for
four WSI (Belkacem-Boussaid et al. 2011). The ZSI is high-
est, i.e., ZSI ≈ 0.8, for WSI-7, WSI-8, and WSI-9.

The shock filter approach yielded lowest values of ZSI,
i.e., ZSI ≈ 0.6, for WSI-1, WSI-2, and WSI-10. By visual
inspection, we identified image 1 and 10 to have the lowest
overall contrast, see Table in Figure 10. Image two con-
tained, beside local regions of low contrast, a number of
follicles whose annotation posed a special challenge for
automatic approaches. Exemplary, Figure 2 shows a sub-
section of WSI-2. In the subsection several oval structures
(light gray) of lymphoid follicles are arranged around an
elongated top-down structure of a vessel (bright region)
and surrounded by tissue (dark gray). Black crosses denote

Figure 1: Zijdenbos similarity index (ZSI) for
10 whole slide images (WSI). The shock
filter approach (solid line) yields values of
the ZSI better than 0.6 for all images and
excellent values, i.e., ZSI ≥ 0.7, for six WSI.
Averaged overall images the shock filter
approach improves the ZSI by 45% when
compared to watershed segmentation
(dashed line) andOtsu thresholding (dotted
line).
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transition point pairs which fulfill Eqs. (15)–(18) and
(19)–(22), respectively. The transition point pairs are
located on the outsides of follicles but do not completely
encircle individual follicles as, e.g., shown for a well-
differentiated and isolated lymphoid follicle in Figure 9. As
a result, a transition point pairmaymark the border lines of
two different lymphoid follicles. In Figure 2, horizontal line
(a) indicates a transition point pair that spans the borders
of two lymphoid follicles in x-direction. Vertical line
(b) indicates a transition point pair that spans the borders
of two lymphoid follicles in y-direction. Relevant intensity
jumps on the border of the lymphoid follicles are ignored
by our approach because of threshold conditions (15) and
(19), respectively. Because of the ignored intensity jumps,
several lymphoid follicles got aggregated. The resulting
cluster of lymphoid follicles got filtered because of its
unrealistic, large size.

On each image of our data set, the shock filter
approach outperformed the standard methods Otsu
thresholding and the watershed approach, see Dataset in
Materials and Methods. The dashed line and the dotted
line in Figure 1 show corresponding values of the ZSI
obtained with watershed segmentation and Otsu thresh-
olding, respectively. For the watershed segmentation and
Otsu thresholding, the ZSI vary in a broad range of

0.1 ≤ ZSI ≤ 0.7 with mean values of ZSI = 0.48 ± 0.19 and

ZSI = 0.49 ± 0.16, respectively. The shock filter approach
improved the mean ZSI by 45% compared to these stan-
dard approaches. The performance of all three methods

suffered from low contrast in local regions of images. In
comparison of three methods, the shock filter approach
turned out to be most robust against intensity fluctuation
and low contrast. Exemplary, Figure 3 shows a subsection
of WSI-10 with several lymphoid follicles and binary
masks of segmentations that are obtained by shock filter
approach, Otsu thresholding method, and watershed
approach. The shock filter identifies correctly three folli-
cles of which Otsu thresholding method and watershed
approach identify only a minor fraction of the relevant
regions.

Whereas Otsu thresholding and watershed turned out
to be sensitive to a lack of homogeneity in the brightness of
the WSI, the shock filter enhanced and utilized local in-
tensity jumps and identified the border of structures. In two
subsequent steps, the shock filter applied a set of filter
rules and an adapted cluster algorithm to facilitate an
effective detection and segmentation of lymphoid follicles.

Discussion

We evaluated the shock filter iteration to identify lymphoid
follicles in images of actin-stained tissue sections. Our
approach is fully automated.We generated a gold standard
annotation by careful manual visual inspection of 10WSIs.
We evaluated the quality of the results of the shock fil-
ter approach by a comparison with the gold standard
annotation. The results of the shock filter approach were
excellent for six out of 10 test images. For four test images,

Figure 2: Subsection of WSI-2 with several oval structures (light
gray) of lymphoid follicles that are arranged around an elongated
top–down structure of a vessel (bright region) and surrounded by
tissue (dark gray). Black crosses denote transition point pairs
located on the outsides of follicles and the vessel. The transition
point pairs do not completely encircle individual follicles. A transi-
tion point pair may mark the border lines of two different lymphoid
follicles. Horizontal line (a) indicates a transition point pair that
spans the borders of two lymphoid follicles in x-direction. Vertical
line (b) indicates a transition point pair that spans the borders of two
lymphoid follicles in y-direction.

Figure 3: A subsection of WSI-10 with several lymphoid follicles
(top left) and the according binary masks of segmentation that are
obtained by shock filter approach (top right), Otsu thresholding
method (bottom left), and watershed approach (bottom right).
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the results were less favorable, i.e., the ZSI drops below
70%and reaches theminimal value of 60% for two images.
The lower quality was caused by an increasing number of
follicles with less defined borders. This was often corre-
lated with a high density of surrounding unstained
substructures.

We observed similar deficiencies for the Otsu’smethod
and watershed segmentation. On our 10 test images, the
shock filter approach outperformed Otsu’s method and
watershed segmentation. A final conclusive comparison of
the shock filter with standard methods may require an
evaluation of a larger series of WSIs. Prerequisite is the
availability of an appropriate gold standard, i.e., an
annotation of lymphoid follicles in all WSI. A larger data
set may facilitate the worthwhile inclusion of machine
learning approaches (Abadi et al. 2015; Pedregosa et al.
2011) in the comparison.

The performance of all three methods, Otsu’s method,
watershed segmentation, and shock filter, turned out to
drop down for WSIs that had no ideal homogeneous
brightness, low contrast, or contained vaguely separated
structures. Inhomogeneous staining, local low contrast,
and intertwined substructures are common in WSI of
lymph nodes. Standard operating procedures of quality
control address the requirements of clinical routine. By the
visual inspection and diagnosis, a pathologist may be able
to compensate for inhomogeneous staining, low contrast,
local deviation of intensity, and additional artifacts. The
three computational approaches, Otsu’s method, water-
shed segmentation, and shock filter are, however, not
designed to compensate unsharp borders. The diverse
quality of WSIs remains a challenge for the correct auto-
matic detection of lymphoid follicles.

The results of the shock filter approach are promising.
In the future, the shock filter method may be enhanced by
considering additionally the texture of regions of lymphoid
follicles. Additionally, other methods for the trans-
formation of transition points to annotations of lymphoid
follicles, like randomized algorithms may allow a better
approximation of follicular morphologies (De Berg et al.
2008; Guibas et al. 1992).

Regions of follicles contain more actin positive pixels
than the surrounding sinus structure or a vessel. The
challenge to separate an individual follicle in a cluster of
intertwined structures arose from an incomplete enclosure
by transition point pairs; relevant transition point pairs
were missed. The shock filter iterations yielded a hierarchy
of positions of intensity jumps. The approach ignored the
majority of these positions by applying simple selection
rules with threshold values that were determined and set

for the entire WSI. Exploring the entire hierarchy of in-
tensity jumps may improve the performance of a shock
filter approach significantly. Methods in the field of geo-
metric point patterns (Kendall 1989) and spatial networks
(Barthélemy 2011) may contribute to future improvements.

Materials and methods

Dataset

Ten actin-stained tissue sections, shown in Figure 10were provided by
the Dr. Senckenbergisches Institut für Pathologie. The tissue sections
were various slices of one human lymph node. The slices were digi-
tized with anAperio ScanScope XT scanner. Themaximal resolution of
an image was 0.25 μm per pixel. We adopted a lower resolution of
7.8944 μm in our approach. Figure 4 shows a WSI of an exemplary
slice. The size of the image is about 35.2 × 28.5 mm. The prominent red
color in the image labels actin which is stained by a fuchsin dye. The
blue color shows cells that express the programmed cell death protein
1 (PD1) as, e.g., a subset ofmainly T cells. Lymphoid follicles are round
objects with low density of actin illustrated by the bright ellipsoid
objects in the tissue. The overlay shows a magnification of an indi-
vidual lymphoid follicle. We applied the color deconvolution method
of Ruifrok and Johnston (Ruifrok and Johnston 2001) to extract a
grayscale image of the actin staining. We identified the tissue (region
of interest, ROI) by thresholding the grayscale image. Figure 5 depicts
an individual lymphoid follicle in a subsection of a grayscale image.
Before applying our shock filter method (FDLdetect), we analyzed
each image gray-scale by three standard methods.
(1) Manual annotation. We manually annotated follicular regions

inside every WSI with the VGG Image Annotator (VIA) (Dutta and
Zisserman 2019; Dutta et al. 2016). Sample surveyswere conducted
by an expert pathologist.

(2) Otsu’s method (Fan and Zhao 2007; Vala and Baxi 2013; Xu et al.
2011; Zhang andHu 2008; Zhu et al. 2009).We usedOtsu’smethod
to assign the pixels of each image to one of two classes. A pixel of
high intensity above the Otsu threshold was assigned to the class
“follicular”. A pixel of low intensity below the Otsu threshold was
assigned to the class “non-follicular”. A region growing with a
four-point neighborhood yielded connected components of
follicular pixels. Each individual connected component identified
the region of a lymphoid follicle. We filtered the regions for size
and shape. Regionswere deleted if theywere not compact enough,
i.e., if their form factors

F* = 4 × π × Area
Perimeter2

(1)

were smaller than the threshold of 0.71. Too small and too large
regions were deleted. Regions were accepted only if they covered an
area between 340 pixels and 42,000 pixels. We implemented the Otsu
pipeline by applying the algorithms of the Python libraries scipy
(Virtanen et al. 2020) and scikit-image (Van der Walt et al. 2014). The
Otsu pipeline included the preprocessing steps of the section
Preprocessing.
(3) Watershed segmentation (Ng et al. 2006; Serra 1983; Soille 2013).

We expanded the Otsu pipeline with the watershed algorithm of
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Neubert and Protzel (Neubert and Protzel 2014) to improve the
gold standard pipeline with the dissociation of clustered folli-
cles. We identified local maxima inside the thresholded image
and defined each peak as the centroid of one single follicle. We
used the watershed segmentation to separate the covered re-
gions. The separated regions were filtered for size and shape.
The regions were deleted if their form factors drop below 0.71.
Regions outside the range of 340 pixels and 42,000 pixels were
deleted. We expanded the Otsu pipeline with existing imple-
mentations of the peak identification algorithm and watershed
algorithm provided by the Python libraries scipy (Virtanen et al.
2020) und scikit-image (Van der Walt et al. 2014).

We accepted the manual annotation as gold standard reference to
measure the quality of the results of Otsu’s method, the watershed

segmentation, and the shock filter approach. The quality of the three
methods were evaluated by comparisons pixel by pixel.

The Zijdenbos similarity index (ZSI), also called Dice coefficient
or F1 score

ZSI = 2*
|V ∩ R|
|V | + |R| (2)

is an effective measure of the pixel-wise quality of an annotation
(Belkacem-Boussaid et al. 2011).V andR are the sets of follicular pixels
in the annotation under consideration and in the reference gold
standard, respectively. The ZSI is zero for disjunct sets, V ∩ R = ϕ, and
becomes one for perfect agreement, V = R. A ZSI better than 70% is
considered as excellent agreement (Bartko 1991; Zijdenbos et al. 1994).

Preprocessing

We identified the tissue (ROI) by thresholding the grayscale image. For
noise suppression and contrast enhancement, we adopted the concept
of preprocessing of Belean et al. 2015 (Belean et al. 2015a). We applied
a Gaussian filter with σ = 5 pixel ≈39.5 μm (Deng and Cahill 1993). We
transformed the intensity values of the grayscale image, Iraw(x, y),

I ′(x, y) = log2(1 + Iraw(x, y)) (3)

anddetermined theminimumandmaximum intensity values, I ′min and
I ′max, in each scaled image.

A linear transformation

Ĩ(x, y) = I ′(x, y) − I ′min

I ′max − I ′min

× 255 (4)

scaled the intensity values of each image in the rangeof 0–255. Finally,
a morphological operation of closing (Haralick et al. 1987) with a
3 × 3 pixel window eliminated interrupted surface structures. This
sequence of standard methods resulted in an image optimized for
noise and contrast. In Figure 6, the gray line depicts the original in-
tensity profile

iraw(x) = Iraw(x, y = 0.87 mm) (5)

along a constant y-value in Figure 5. The black line depicts the cor-
responding intensity profile

i(x) = I(x, y = 0.87 mm) (6)

after preprocessing. I(x, y) represents the field of intensities of the
preprocessed image. After preprocessing, the range of intensities is
stretched, the profile is smooth, and distinct maxima and minima
become visible. Notice that, the plateau of high intensities in the re-
gion of 0.4 mm ≲ x ≲ 1 mm corresponds to the bright area of the
follicular region inside the center of Figure 5.

Detection of transition points by shock filter

In the next step, we want to determine plateaus of high intensity
in profiles, such as shown in the black line of Figure 6. The border of
a plateau is characterized by points at which the intensity
drops significantly. We call such a point of intensity drop a transition
point.

Figure 4: Tissue section of a human lymph node. The tissue section
wasprimarily stained against PD1 and secondarily against actin. PD1
is used to visualize T cells and their ligands, whereas the secondary
staining displays underlying sinus cells. A sample section of a
lymphoid follicle is magnified. The size of the image is in round
numbers 35.2 × 28.5 mm.

Figure 5: Subsection of a grayscale image of the actin staining. The
bright ellipsoid object in the tissue is a lymphoid follicle. The size of
the image is in round numbers 1.5 × 1.5 mm.
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For determining transition points, we used two families of
intensity profiles. Each intensity profile was averaged over slices of
10 pixels, i.e., 78.944 μm,

vy=a(x): = 1
10

∑
a+10

y=a
I(x, y) (7)

and

hx=b(y): = 1
10

∑
b+10

x=b
I(x, y), (8)

respectively. The usage of averaged vertical and horizontal profiles,
vx=a(y) and hy=b(x), resulted in a reduction of noise and a speedup
of the computation. The intensity profiles vx=a(y) and hy=a(x)
were located at the grid positions a, b = i × 5 pixel ≈ i × 39.5 μm for
i = 0, 1, 2, … ,n.

We applied a shock filter to the profiles vx=a(y) and hy=a(x). The
shock filter is a finite number of iterations:

pt+1 = pt − sign(Δpt)
⃒⃒
⃒⃒∇pt

⃒⃒
⃒⃒ with t = 0, 1, 2, 3, 4… tmax (9)

for each of the starting conditions, p0 = vx=a(y) and p0 = hy=a(x). The
Laplace operator was spatially discretized by the three-point
estimation:

Δp(k) ≐ p(k + 1) − 2p(k) + p(k − 1). (10)

The Nabla operator was computed as theminimumof the left and
right derivative:

∇p(k) ≐min(Δlp(k),Δrp(k)). (11)

If the left and right derivatives had the same sign, we estimated
them by the two-point estimates:

∇lp(k) := p(k + 1) − p(k)
∇rp(k) := p(k) − p(k − 1). (12)

For different signs of the left and right derivatives, we replaced
the iteration by the identity operation:

pt+1(i) = pt(i). (13)

We performed tmax = 20 iterations. Figure 7 shows an intensity
profile before (gray line) and after (black line) the application of the
shock filter iterations. The iterative application of the shock filter
produces a piecewise constant function. A smooth transition from low
to high intensity in the gray line becomes an abrupt jump in the
intensity of the black line. The position of the jump in the profile
becomes well-defined after the application of the shock filter itera-
tions. We call the position of an intensity jump a transition point. The
jumps of intensity at transition points may differ in their heights. We
computed the increment of intensity ΔI for the transition points of all
vertical and horizontal profiles, vx=a(y) and hy=b(x), of an image. We

determined a threshold S:

S = Q3 + 1.5 × IQR, (14)

where Q3 and IQR are the third quartile and the interquartile

range, respectively, of the increments ΔIi, i = 1, 2,…, k. For each

vertical and horizontal profile vx=a(y) and hy=b(x), we computed pairs

of start and end values, (ystart, yend) and (xstart, xend), respectively. The

start and end values fulfill the conditions of a plateau of high

intensity

vx=a(ystart) − vx=a(ystart − 1) > S, (15)

Figure 6: Intensity profile before and after the preprocessing. The
gray line shows an initial intensity profile of the subsection in
Figure 5, iraw(x) = Iraw(x, y = 0.87 mm). The black line depicts the
intensity profile after preprocessing, i(x) = I(x, y = 0.87 mm). The
intensity profile is smoothed, and plateaus of high and low
intensities get pronounced.

Figure 7: Evolution of an intensity profile through the application of
20 shock filter iterations. Here, we apply the shock filter to the
intensity profile, i(x) = I(x, y = 0.87 mm). The two lines show the
intensity profile before (gray) and after (black) the application of the
shock filter. The generation of constant functions out of a smooth
intensity profile through the application of shock filter iterations is
demonstrated. The boxes start and end represent an example for a
transition point pair. Validation: The height h1 of the initiating
intensity jump, aswell as the heighth2 of the closing intensity jump,
is higher than the threshold S = 42. In the range of start and end, no
intensity value drops below Imin = 175. The distance d between start
and end is in between 0.018 and 1.579 mm.
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vx=a(yend) − vx=a(yend + 1) > S, (16)
∀y ∈ [ystart, yend]  :  vx=a(y) > Imin, (17)
118 μm < yend − ystart < 1579 μm, (18)

and

hy=b(xstart) − hy=b(xstart − 1) > S, (19)
hy=b(xend) − hy=b(xend − 1) > S, (20)

∀x ∈ [xstart, xend]  :  hy=b(x) > Imin, (21)
118 μm < xend − xstart < 1579 μm, (22)

The table in Figure 10 gives the threshold S and the minimal
intensity value of the plateau, Imin, for each image. Each
pair of values (ystart, yend) of the profile vx=a(y) yields a pair of points
(s = (a + 5, ystart), e = (a + 5, yend)) in the 2D image. Each pair of values

(xstart, xend) of the profile hx=b(x) yields a line (s′ = (xstart, b + 5), e′ =
(xend, b + 5)) in the 2D image. For an image, we computed a set of
vertical lines V = {(s1, e1), (s2, e2),…, (sn, en)} and a set of horizontal

lines H = {(s′1, e′1), (s′2, e′2),…, (s′m, e′m)}.

Segmentation of lymphoid follicles

The start point and the end point of a line in V and H are located on
the borderline of the region of high intensity. A vertical line and a
horizontal line with an intersection run across the same plateau of
high intensity. We aggregated the lines in V and H in clusters

Ci ⊂ V ∪ H, i = 1, 2, 3,…, n. A vertical line v ∈ V and a horizontal line
h ∈ H with an intersection were assigned to the same cluster Ci. Each
cluster Ci represents a plateau of high intensity and is a candidate of
a follicular region. Clusters were deleted if they contain only a single
line, i.e., an isolated linewithout any intersection to another line, see
Figure 8.

For each cluster Ci, we computed the convex hull (Barber
et al. 1996) and its shape parameters. Clusters were deleted if
the form factor of their convex hulls were smaller than the threshold
of 0.71. Too small and too large clusters were deleted. Clusters
were accepted only if the area of their convex hulls is in the range of
340 pixels and 42,000 pixels. Note that, the thresholds for the
minimal and maximal size corresponds to circles with diameters
d in the range of 0.104 mm ≤ r ≤ 1.024 mm. The left part of Figure 9
shows the transition points of a cluster. Right part of Figure 9 shows
the binary mask of the convex hull of a cluster.

Supplementary

The implementation is available under the following link:
https://sourceforge.net/projects/fldetect/.
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Figure 8: Scheme of the clustering algorithm. One box represents
one pixel in an image. If two boxes are linked, they represent
potential transition point pairs. Transition point pairs with crossing
links get clustered. If the convex hull of a cluster fulfills predefined
mathematical conditions, it will be accepted as a valid lymphoid
follicle, here shown in green. A transition point pair without an
intersecting analog gets rejected, here shown in red.

Figure 9: Computation of the convex hull. The left part displays the
sample image with marked transition point pairs. The right part is
the resulting binary mask of the lymphoid follicle segmentation
based on the sample section.
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