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Abstract Hypermassive hybrid stars (HMHS) are extreme astrophysical objects that could be produced in
the merger of a binary system of compact stars. In contrast to their purely hadronic counterparts, hyper-
massive neutron stars (HMNS), these highly differentially rotating objects contain deconfined strange quark
matter in their slowly rotating inner region. HMHS and HMNS are both mestastable configurations and
can survive only shortly after the merger before collapsing to rotating black holes. The appearance of the
phase transition from hadronic to quark matter in the interior region of the HMHS and its conjunction
with the emitted GW will be addressed in this article by focussing on a specific case study of the delayed
phase-transition scenario that takes place during the post-merger evolution of the remnant. The compli-
cated dynamics of the collapse from the HMNS to the more compact HMHS will be analysed in detail. In
particular, we will show that the interplay between the spatial density/temperature distributions and the
rotational profiles in the interior of the wobbling HMHS after the collapse generates a high-temperature
shell within the hadron-quark mixed phase region of the remnant.

1 Introduction

On September 14, 2015, almost exactly a hundred years
after Albert Einstein developed the field equations of
General Relativity and predicted the existence of GWs,
these curious spacetime-ripples have been observed
from a pair of merging black holes by the LIGO detec-
tors (GW150914, [61]). Using the GW detectors LIGO
and Virgo, two signals so far have been associated with
the collision of two neutron stars: GW170817 [2] and
GW190425 [1]. For GW170817 electromagnetic radi-
ation in all frequency ranges was also detected dur-
ing this event [62] and an emitted gamma-ray burst
(GRB 170817A, [37]) hit the gamma-ray satellite tele-
scopes with a delay of 1.7 s. Space-based gamma-ray
telescopes (e.g., the Fermi’s gamma-ray burst moni-
tor or the Swift gamma-ray burst mission) detect on
average approximately one gamma-ray burst per day—
however, the gamma-ray burst [37] that had been asso-
ciated with GW170817 is an outstanding event and, in
addition with the observations of the electromagnetic
counterparts of the associated kilonova, provides a con-
clusive picture of the whole merger event. This coinci-
dence of the direct detection of a GW from a neutron-
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star collision with the emitted short gamma-ray burst
was the first observational proof that binary neutron
star (BNS) mergers generate short gamma-ray bursts.
Finally, with the use of the observed tidal deforma-
bilities of the two neutron stars from the late inspiral
phase and other properties of GW170817, the equation
of state (EOS) of dense matter could be severely con-
strained [3,4,13,19,22,40,44,47,48,53].

Taking the results of various BNS merger simulations
into account, it is apparent that the overall picture of
the GW events GW170817 and GW190425 matches
well with the results obtained in numerical simula-
tions. These simulations show that right after the neu-
tron stars merge, a metastable hypermassive neutron
star (HMNS) is formed. This remnant either collapses
promptly and leaves no electromagnetic counterpart,
which is the most likely scenario for GW190425 given
the high binary mass and the absence of an electro-
magnetic counterpart or it collapses delayed within less
than a second to a rotating Kerr black hole (see [27] for
the case of GW170817). Alternatively, after redistribut-
ing its angular momentum it could turn into a supra-
massive neutron star with smaller gravitational mass
and which is stable for longer times. In the case of a
collapse, a short gamma-ray burst is emitted, releas-
ing in less than 1 s the energy emitted by our Galaxy
over one year [52]. To understand the post-merger evo-
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lution of a BNS merger, numerous numerical-relativity
simulations have been performed in the last decades
by various groups (see [11] for a review). The emit-
ted GW spectrum [20,59], the impact of initial spin
[15,24,35], eccentricity [23,46], and mass ratio [25] have
been analyzed in detail, however, the possibility of a
hadron-to-quark phase transition (HQPT) and its effect
on the GW signal have been addressed only recently
[12,43,65]. The temperatures and densities reached dur-
ing the merger and post-merger evolution of the rem-
nant are extreme and a phase transition to deconfined
quark matter is most likely to happen in the HMNS,
which then becomes a hypermassive hybrid star (HMHS
[5]).

A natural question that emerges from these consid-
erations is: Can we detect the HQPT? In future GW
detections of BNS merger systems it might be possible
to detect the QCD phase transition by analysing the
spectrum of the emitted GW during the merger and
post-merger phase. The post-merger GW signatures of
phase transitions in binary mergers of compact stars
have been recently systematically analysed [65]. While
in the prompt phase transition (PPT) scenario [12] a
strong first-order phase transition leads, immediately
after merger, to the formation of a gravitationally sta-
ble extended pure-quark matter core in the merger rem-
nant, in the case of a phase-transition triggered collapse
(PTTC), the phase transition takes place in the post-
merger evolution and leads to the rather rapid collapse
of the HMHS to a Kerr black hole. We here discuss
in more detail the third possibility of a delayed phase
transition (DPT) scenario that was recently presented
in [65]. Like in the PTTC case, the phase transition
within the DPT scenario takes place at late post-merger
times, however, the collapse of the HMNS is halted by
the formation of a metastable HMHS and the corre-
sponding GW signatures of a HQPT are more distinct
than in the PTTC case.

In particular, the properties of the HMHS produced
in a DPT scenario will be discussed here. We focus on
the specific case study of an irrotational, equal mass
BNS simulation using the FSU2H-PT EOS. In contrast
to [65], where we mostly described the gravitational
wave signal, we here provide more details on the den-
sity, temperature and rotation profiles inside the inner
area of the HMHS. We also provide a detailed expla-
nation on how these thermodynamic properties create
a large m = 1 oscillation mode connected to the post-
merger GW signal and for the first time show the strong
correlation between the central density and the GW fre-
quency. The paper is structured as follows: Sect. 2 sum-
marizes briefly the essential aspects of the microphys-
ical matter treatment and shows the static properties
of hybrid stars obtained within the FSU2H-PT EOS. In
Sect. 3, the numerical setup of the BNS merger simu-
lation will be briefly summarized. In Sect. 4 the results
of the DPT simulation will be discussed in detail. The
collapse from the HMNS to the HMHS, the properties
of the produced HMHS and the GWs emitted during
its post-merger evolution will be compared to a purely

hadronic evolution. Finally, a summary and outlook will
be presented in Sect. 5.

2 Microphysical description

For the cold, purely hadronic part of the EOS, a rela-
tivistic mean-field model (FSU2H, for details see [63,64])
has been used. To account for a first-order transition
from hadronic to quark matter, a mixed phase and
pure-quark matter region has been included. The over-
all cold EOS (FSU2H-PT) used within our simulation
consists of a piecewise polytrope representation [54] of
the FSU2H model (purely hadronic part), a soft mixed
phase region with polytropic index Γ = 1.04 in the
rest-mass density range ρ/ρ0 ∈ [2.085, 4.072] and a stiff
pure-quark matter part (Γ = 5.1) for densities above
4.072 ρ0. With these special choices of the parameters
determining the phase transition, a strong HQPT has
been modeled and, additionally, the recent constraints
from electromagnetic and GW detections, namely the
constraints on the maximum mass [9,40,53,56,58],
radius [8,18,22,39,44,51,60] (which are also compati-
ble with recent constraints from the NICER mission
[41,55]) and tidal deformability of neutron stars [3,21,
22,36], are fullfilled. To guarantee that the sound speed
of pure-quark matter is always below the speed of light,
three additional piecewise polytropes have been added
for ultra-high densities (ρ/ρ0 = 4.823, 4.969, 5.289;Γ =
4.7, 4.1, 3.1). To describe the low-density regime (ρ <
0.005 ρ0), namely the crust consisting of leptons and
nuclei, the standard prescription of Baym, Pethick and
Sutherland has been used [14]. For the intermediate–
low density regime (0.005 < ρ/ρ0 < 0.65), the results of
Negele and Vautherin have instead been employed [45].
The special choice of parameters in the FSU2H-PT EOS
produces a mass-radius relation with a small twin-star
branch (see the supplemental material of [65]), belong-
ing formally to the twin-star Category III (see [42] for
details).

To account for additional shock heating during the
merger and post-merger phase, thermal effects are
included by adding a “thermal” ideal-fluid component
(pth = ρεth (Γth − 1)) to the cold EOS where ρ is the
rest-mass density, and Γth = 1.75. The effective tem-
perature obtained within this ideal-gas approach can
be roughly approximated as T = (mnpth)/(kBρ), where
mn is the nucleonic mass and kB the Boltzmann con-
stant. It should be stressed that the estimated tempera-
ture within this simple approximation only accounts for
contributions of the ideal gas of neutrons and protons
(mass differences have been neglected). Especially at
the low-density regions of the outer crust of the hybrid
star (which is composed of gas of leptons and nuclei
at high values of electron fraction Ye), the underly-
ing temperature estimates deduced from the thermal
pressure should be decreased by a factor (1 + Ye) and
account for the contribution due to the radiation pres-
sure [see Eq. (2) in [26]]. Finally, the thermal component
of the FSU2H-PT EOS does not account for any contri-
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bution resulting from a high-temperature hadron-quark
crossover transition and, as a result, the structure of the
phase diagram for T > 80MeV is different from that
resulting from fully temperature-dependent EOSs (see
e.g., [43]).

3 Mathematical and numerical setup

The simulations were performed using the general-
relativistic hydrodynamics code WhiskyTHC [49,50] and
the dynamical spacetime solver McLachlan [17], which
is part of the Einstein Toolkit [38]. These codes solve
the combined set of the Einstein within the CCZ4-
formulation [6,7] and of the general-relativistic hydro-
dynamic equations in a conservative form [54].

The initial configuration of the irrotational equal-
mass binary is computed with the LORENE code [28],
where we have used an initial separation of 45 km and
a total binary mass of 2.64M�. The grid, provided by
the Carpet mesh-refinement driver [57], consists of six
refinement levels with the finest level having a resolu-
tion of dx = 0.16M� (� 237m) and uses a reflection
symmetry across the z = 0 plane to reduce the com-
putational cost, but does not employ a π-symmetry to
allow for the appearance of m = 1 features triggered
by the phase transition (see discussion below). We have
performed the simulations also at a higher (dx � 198m)
and lower (dx � 368m) resolution and verified the qual-
itative consistency of our results.

4 Dynamics of the hypermassive hybrid star

The signals detected from GW170817 and GW190425
can only give information about the late-inspiral phase
of the merging systems, when the stellar matter is
still rather cold and the rest-mass densities are slightly
below the central rest-mass densities of the initial con-
figurations. In the late-inspiral phase, the maximum
rest-mass density value of the tidally deformed purely
hadronic neutron stars is slightly decreasing (see green
area in Fig. 1). During the last few orbits, the tidal
deformations increase and the temperature in the outer
stellar layers increases rapidly as the two stars collide
[29,32]. The time of the merger (t = 0) has been defined
at the moment when the amplitude of the emitted GW
reaches its first maximum.

Shortly after the merger, the maximum rest-mass
density of the remnant increases, reaching a maximum
at t ≈ 0.5ms (see the pronounced first local maximum
marked by a star symbol in Fig. 1), that is high enough
so that a mixed phase including quark matter is created
in the core. For this reason we refer to this object as
a HMHS. The temperature of the mixed-phase matter
within the central region of the HMHS is at moderate
values (T < 20MeV), whereas in the inner and outer
shocked regions, spots of high-temperature values can
increase up to 100MeV at moderate densities ρ < ρ0.
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Fig. 1 Evolution of the maximum rest-mass density for
the FSU2H-PT (red line) and FSU2H (black line) simulation
with an initial total mass of M = 2.64M�. Symbols mark
important times during the evolution: the endpoint of the
merger phase (�), the beginning of the collapse from the
HMNS to the HMHS (◦) and two late-time snapshots (�,
�)

Next, the density quickly drops again and for t ∈
[0.5, 2]ms the density everywhere in the remnant is low
enough so that there is no mixed phase present, i.e.
the HMHS turns into an HMNS. Then for t > 2ms
the evolution of the FSU2H-PT simulation (red line in
Fig. 1) starts to differ significantly from the simulation
without phase transition (NPT; black line in Fig. 1)
and for t > 3.5ms, the evolution of the DPT scenario
differs qualitatively from the NPT case. This can be
seen in the left column of Fig. 2, which reports the dis-
tributions of the density/temperature at t = 3.46ms
(top and middle panels) and visualizes these quanti-
ties in a (T, ρ) phase diagram (bottom panel). The
DPT occurs in the transient post-merger phase and as
a result, the density profile shows a pronounced double-
core structure (for details see [30]). In the time window
t ∈ [3.5, 4.0]ms the HMHS, which at this point still
consists mostly of hadronic matter, collapses rapidly to
a smaller and more compact configuration with a sig-
nificant pure-quark core, whose overall angular velocity
increases. The pure-quark core now comprises ≈ 20–
30% of the total binary mass.

Before we analyse the properties and dynamics of
the HMHS generated from the DPT collapse, the
results of the NPT simulation will be briefly illus-
trated. After the violent, early post-merger phase of the
HMNS, two high-temperature hot-spots emerge. The
high-temperature values (T ≈ 40MeV) are reached
in regions where the rest-mass density is in a range
∼ (1 − 2)ρ0, while the maximum-density values are
always located in the center at moderate tempera-
tures T < 5MeV. The dynamics of the underlying
fluid can be visualized using tracer particle (see [16]
for details). Some of the tracer particles circle around
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Fig. 2 Distributions on the equatorial plane of the rest-mass density (top), temperature (middle) and their appearance
within a phase diagram (bottom) for three representative times (see markers in Fig. 1)

the high-temperature hot-spots, others populate the
low temperature-high density inner region, and some
are in the outer surface of the HMNS within the low-
density region. At later post-merger times, the HMNS
reaches a quasi-stationary configuration and the tem-
perature hot-spots are smeared into a ring-like struc-
ture in the equatorial plane (this structure is effectively
a thick torus in the three dimensions). The “peanut”
shape of the density distribution will also dissolve and
the populated area in the (T, ρ) plane will consist of
only a small region that is quasi-stationary.

The left column in Fig. 2 shows the configuration of
the HMHS at a time right before the collapse to the

more compact star. The small asymmetry in the den-
sity profile and especially the double-core structure is
amplified by the collapse, resulting in a large one-sided
asymmetry (i.e., an m = 1 asymmetry in a spherical-
harmonics decomposition [10]), which triggers a size-
able h21

+ GW strain (see supplemental material of [65]
for details). It is reasonable that this asymmetry is
present also in the vertical direction but we cannot
measure it because of the imposed symmetry across the
z = 0 plane.

The configuration following this collapse is shown in
the middle column of Fig.2, which corresponds to a time
near the second-density maximum at t = 6.25ms (see
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secutive peaks in the top and bottom panel, respectively,
are marked by horizontal grey lines. The average difference
between the two different types of peaks is less than 5%

marker � in Fig. 1). The large m = 1 contribution can
be seen by looking at the asymmetry of the spatial loca-
tion of the pure-quark core, which is marked with the
blue contour line in the top row of Fig. 2. As a result
of this asymmetry, the location of the two temperature
hot-spots (see second row, middle column) are at differ-
ent radial distances from the grid center. Additionally,
the temperature maximum of the hot-spot which is fur-
ther away from the center is higher (T ≈ 95MeV) than
the more central hot-spot (T ≈ 65 MeV), as seen from
the double-peaked structure near ρ/ρ0 ∼ 2 in the bot-
tom panel, middle column, of Fig. 2.

The following evolution of the HMHS is characterized
by large density oscillations (see Fig. 1 for t > 4ms),
during which the density maxima reached in the center
of the HMHS (ρmax) and the emitted instantaneous GW
frequency fGW are highly (but not exactly) correlated.
In particular, the time interval between consecutive

peaks of the density oscillations, i.e., Δtρ, and of the
instantaneous graviational-wave frequency, i.e., ΔtGW,
differs by less than 5% as can be seen from Fig. 3. These
oscillations are accompanied by a change of the differ-
ential rotation profile of the HMHS. More specifically,
when the rest-mass density of the HMHS reaches its
maximum during each oscillation, the HMHS is more
compact and spins faster and, as a result, the emitted
GW frequency also reaches a maximum. Following these
large macroscopic oscillations strong shocks are created
within the soft mixed-phase region of the HMHS, which
are accompanied by local increases of the temperature
within the mixed-phase region. The interesting aspect
of this correlation between the density and the GW
oscillations is that it is in principle possible to deter-
mine with good precision from the evolution of fGW

when the hadron-to-quark PT actually takes place.
The right-most panels of Fig. 2 report the HMHS

properties at t = 13.15ms and shows that in addition to
the two temperature hot-spots, a new high-temperature
shell surrounding a cold-core appears within the mixed
phase region of the remnant. For subsequent post-
merger times, the two temperature hot-spots (and the
maxima of the angular-velocity profile; cf. Fig. 4) will
be smeared out to become a ring-like structure on the
equatorial plane. Furthermore, the high-temperature
sphere in the mixed phase will increase in value until
the m = 1 density asymmetry has dissolved and the
HMHS has reached a metastable configuration.

Finally, as discussed in the case of BNS simulations
with purely hadronic EOSs (see [31,33–35]), the spa-
tial location of the temperature hot-spots and the sub-
sequent torus-like structure are closely connected with
the angular-velocity profile Ω of the differentially rotat-
ing HMHS. The distribution of the latter on the equa-
torial plane is depicted in Fig. 4 at two representative
times, and shows that the two maxima of the angular-
velocity profile occur at the same spatial location as the
two temperature maxima. Interestingly, however, the
hot-spot with the highest temperature coincides with
the location of the smaller rotation maxima (cf. mid-
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dle and right columns in the central row of Fig. 2);
this behaviour is likely due to the conservation of the
Bernoulli constant, which anticorrelates the evolution
of the angular velocity to that of the density [33]. Last
but not least, it should be mentioned that the high-
temperature shell, which is present in the mixed phase
region of the HMHS has no counterpart in the angular
velocity profile, as it is caused by the softness of the
EOS.

5 Summary and outlook

Gravitational waves emitted from merging neutron-
star binaries open a new observable window to explore
the high-density/temperature regime of nuclear matter.
The post-merger GW signatures of a HQPT in a binary
merger of compact stars have recently been analyzed
systematically in [65]. This paper presents an extension
to this study and focuses on the DPT scenario, which
has been possible when considering the specific case of
the FSU2H-PT EOS. In particular, we have shown that
the collapse of the merger remnant to a black hole can
be stopped by the formation of a differentially rotat-
ing HMHS. Due to the large stiffness of the pure-quark
phase, the collapse is hindered and the late post-merger
dynamics (i.e., for t > 4ms) is characterized by large
macroscopic oscillations of the maximum density.

The amplitude and frequency of these oscillations are
mainly determined by the properties of the mixed- and
pure-quark matter phases (e.g., they depend on the
total extent of the mixed-phase region and on the sound
speed in the pure-quark phase) and will be studied sys-
tematically in a subsequent work. Overall, the scenario
presented here highlights that with future GW detec-
tions of binary compact-star mergers and by analysing
the post-merger GW emission of the differentially rotat-
ing HMHS, it might be possible to detect the QCD
phase transition and hence the formation of a quark-
gluon plasma in the present universe.
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