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Additional file 22: Supplementary theoretical considerations 

A mechanical model to describe the dynamics of pancreas organoids 

To describe the growth and dynamics of a pancreas organoid, we assume it has a roughly 

spherical shape, with cells forming a monolayer filled with fluid at a different pressure relative 

to the environment. The volume of the organoid is changed by two mechanisms: a) the influx 

of liquid caused by an osmotic imbalance or active pumping, and b) cell division. The first 

mechanism increases the tension between the cells. Cell division, on the other hand, increases 

the surface of the organoid and reduces tension. If the stress is greater than a critical threshold, 

at least one cell connection breaks and leakage occur through the organoid shell. The leakage 

reduces the internal pressure, the monolayer can contract, which in turn allows the ruptured 

cells to reconnect. Subsequently, the whole process can repeat. 

A triangulated-network model was used to simulate the membranes as an elastic surface 

consisting of cells. Here, the shell of the organoid is described as an infinitely thin elastic 

surface consisting of hard, spherical beads (the cell's centres) connected by dynamic bonds 

to form a triangulated network. 

A spring potential acting on neighbouring beads is used to describe the elasticity of the shell 

and has the typical form 

 

𝑈𝑈𝑆𝑆 =
𝑘𝑘𝑆𝑆
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, 

 

where 𝑘𝑘𝑆𝑆 is the spring constant, 𝑑𝑑𝑖𝑖,𝑗𝑗 is the distance between two neighbouring cells 𝑖𝑖 and 𝑗𝑗, 

and 𝑟𝑟0 is their equilibrium bond length. The spring potential is minimised if 𝑑𝑑𝑖𝑖,𝑗𝑗 between two 

neighbouring cells 𝑖𝑖 and 𝑗𝑗 corresponds to the equilibrium distance 𝑟𝑟0. Since the method of finite 

elements is used in the simulation, the force must be derived from the potential used. The force 

acting on every cell is given as 
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𝐹𝐹𝑆𝑆 = −𝑘𝑘𝑆𝑆 � �𝑑𝑑𝑖𝑖,𝑗𝑗 − 𝑟𝑟0�𝑒𝑒𝑖𝑖,𝑘𝑘
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, 

 

where 𝑘𝑘 are the indices of the neighbours of the cell 𝑖𝑖, and 𝑒𝑒𝑖𝑖,𝑗𝑗 is the normalised direction vector 

between 𝒙𝒙𝑖𝑖 and its neighbour 𝒙𝒙𝑗𝑗 . 

 

The surface bending energy acts on neighbouring triangles and is minimised when the angle 

between the neighbouring triangles is zero. 

 

𝑈𝑈𝐵𝐵 = 𝑘𝑘𝐵𝐵(1 − 𝒏𝒏 ⋅ 𝒎𝒎), 

 

where 𝒏𝒏 and 𝒎𝒎 are the normal vectors of two neighbouring triangles sharing a common edge 

b. The resulting force can be generated by deriving the bending potential after point 𝒙𝒙𝑖𝑖. 

 

𝐹𝐹𝐵𝐵 = 𝑘𝑘𝐵𝐵
𝒃𝒃 × 𝒎𝒎

|𝒏𝒏| � 1�  − �
𝒃𝒃 × 𝒎𝒎

|𝒏𝒏|𝟐𝟐 �⨂𝒂𝒂�, 

 

where 𝒂𝒂 describes the direction vector from 𝒙𝒙𝒊𝒊 to 𝒙𝒙𝒋𝒋 in the triangle 𝒙𝒙𝒊𝒊𝒙𝒙𝒋𝒋𝒙𝒙𝒌𝒌 and 𝒂𝒂⨂𝒃𝒃 denotes 

the dynamic product of the two vectors 𝒂𝒂 and 𝒃𝒃. For one cell 𝒙𝒙𝒊𝒊 it is then summed over all 𝒏𝒏,𝒎𝒎 

pairs of the neighbouring triangles of 𝒙𝒙𝒊𝒊. In order to compensate for the differences between 

cells with different numbers of neighbouring cells, a normalisation is made about the number 

of neighbouring cells. 

In the simulation, the assumption is made that each cell pumps mass (e.g. water) or fluid 

through an osmotic imbalance into the lumen of the organoid and thus, an internal pressure 

that differs from the external pressure can build up. The internal pressure is one of the factors 

of organoid expansion. The force 𝐹𝐹𝑃𝑃, which affects each mass point from the resulting osmotic 

pressure Π, is given as 
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𝐹𝐹𝑃𝑃 = 𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝒏𝒏𝒗𝒗, 

 

whereby 

 

𝑃𝑃 =
1
3
�

1
2
𝒏𝒏𝒊𝒊 

𝑁𝑁𝑁𝑁

𝑖𝑖=1

. 

 

The osmotic pressure Π has an effect on the area 𝑃𝑃, which is understood as the sum of the 

adjacent triangular areas to the cell center 𝒙𝒙𝒊𝒊, with the direction vector 𝒏𝒏 (normal vector to cell 

𝑖𝑖= summed normal vectors of the adjacent triangles). The osmotic pressure Π is calculated 

using the van-‘t-Hoff law for osmotic pressure 

 

Π =
𝑛𝑛
𝑉𝑉
⋅ 𝑖𝑖𝑣𝑣𝑣𝑣 ⋅ 𝑅𝑅 ⋅ 𝑇𝑇 =

𝑛𝑛
𝑉𝑉
⋅ 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐, 

 

where 𝑛𝑛 is the amount of substance, 𝑖𝑖𝑣𝑣𝑣𝑣 is the van-‘t-Hoff factor, 𝑅𝑅 is the ideal gas constant 

and 𝑇𝑇 is the temperature. The volume of the organoid 𝑉𝑉 is calculated for each time step over 

the convex shell of the cells. The amount of secreted substance changes over time with 

 

𝑑𝑑𝑛𝑛
𝑑𝑑𝑐𝑐

= 𝑁𝑁𝐽𝐽𝑖𝑖𝑖𝑖 − 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛. 

 

𝑁𝑁 indicates the number of cells in the organoid, 𝐽𝐽𝑖𝑖𝑖𝑖 the amount of substance produced per cell, 

and 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜 describes the substance drop through a hole in the organoid shell. If the organoid 

shell has a rupture, 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜 is greater than zero, otherwise 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜 is zero. The equation of motion 

used in the simulation applies to the overdamped case and contains stochastic fluctuations 𝐹𝐹𝑜𝑜 

of the cells, 

 

𝜆𝜆𝒙𝒙 = −∇𝑈𝑈 + 𝐹𝐹𝑜𝑜 , 
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whereby the potential 𝑈𝑈 is given as the sum of the above-mentioned potentials. 

Cell division is adjusted to the experimental data, obtained by long-term single cell analysis of 

pancreas-derived organoids, but can easily be adapted to other growth dynamics. If cell 

division takes place a new cell is added to the system in the middle of a random triangle formed 

by three neighbouring cells. 
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