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Abstract.
We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B

setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für
Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the
experimental data for the 12C(α,γ)16O fusion reaction and to reach lower center-of-
mass energies than measured so far.

The experiment required beam intensities of 109 16O ions per second at an energy of
500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another
challenge: The magnetic rigidities of the particles are so close because of the same
mass-to-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes
of the R3B setup were necessary. All detectors had slits to allow the passage of the
unreacted 16O ions, while 4He and 12C would hit the detectors’ active areas depending
on the scattering angle and their relative energies. We developed and built detectors
based on organic scintillators to track and identify the reaction products with sufficient
precision.

1. The fusion reaction 12C(α,γ)16O

The fusion reaction of carbon and helium to oxygen is key to understanding the evolution
of stars and the relative abundances of both elements. The reaction rate of 12C(α,γ)16O
has to be known with an uncertainty lower than 10% at a center-of-mass energy of
300 keV during Helium burning conditions. A direct measurement of the cross section
12C(α,γ)16O reaction in the astrophysically important energy region around 300 keV is
very challenging because of the extremely low value of about 10−17 b [1].

Huge efforts have been undertaken to determine the 12C(α,γ)16O cross section over
the last decades. Starting at higher energies, lower and lower center-of-mass energies
were investigated. So far, experiments have studied the reaction down to about 1 MeV,
e.g. [2]. Hence, only extrapolations of experimental data from higher center-of-mass
energies to the astrophysical relevant energy region are available.
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2. Coulomb dissociation of 16O

Indirect methods may bridge the gap towards the stellar energy regime. The Coulomb
dissociation of 16O is very promising and had first been suggested by Baur, Bertulani
and Rebel [3, 4].

We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B
setup in a first campaign within FAIR Phase-0 at GSI Helmholtzzentrum für
Schwerionenforschung, Darmstadt. The 16O beam impinged on a lead target, where
the ions could be excited in the Coulomb field of the lead nuclei such that 16O would
break up into 12C and 4He. A count rate of about 140 counts per hour was estimated at
ECM = 1 MeV using a 50 mg/cm2 lead target and a rate of 5 · 109 16O ions per second.
This would allow to extract the 12C(α,γ)16O cross section with considerably reduced
statistical errors, and even to extend the measured region down to about ECM = 0.8 MeV.

Nuclear breakup reactions from direct collisions have to be disentangled from the
Coulomb dissociation. A beryllium target was used, which has a low Z compared to lead,
since the target-charge dependence of the corresponding cross sections is very different.
To understand this separation procedure and to investigate possible interference effects
between the nuclear and Coulomb breakup we also used a third, intermediate-Z tin
target [5].

3. The setup

The Coulomb dissociation experiment of 16O required radical changes compared to the
standard R3B setup [6]: (1) The magnetic rigidities of the particles are so close because
of the same mass-to-charge-number ratio A/Z = 2 for 16O, 12C and 4He. (2) The
high beam intensities of 109 ions per second could not be measured by our scintillation
tracking detectors. Hence, all detectors had slits to allow the passage of the unreacted
16O ions, while 4He and 12C would hit the detectors’ active areas due to the scattering
angle and their relative energies from the Coulomb dissociation reaction.

Figure 1 shows a sketch of our setup. The ions passed through two active collimators
(ROLU) in front of the target to center and focus the beam during the beam setup
phase. The CALIFA protoype around the target measured prompt γ-rays from excited
12C fragments. The unreacted 16O ions as well as the reaction products 4He and 12C
were deflected in the superconducting magnet GLAD.

We used three pairs of scintillation fiber detectors to track the ions’ trajectories.
The detectors were mounted on linear drives to adjust the slits to the beam dimensions
during the setup phase. The two fiber detectors between the target and GLAD are made
of 200 μm square fibers and have an active area of 10x10 cm2. They were designed and
built at Goethe University Frankfurt. The four fiber detectors in the vacuum chamber
connected to GLAD are significantly larger, they are made of 500 μm square fibers and
cover an active area of about 50x50 cm2. They were built at the detector laboratory at
GSI Helmholtzzentrum. Figure 2 shows the fiber detector setups.
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Figure 1. Experimental setup for the Coulomb dissociation of 16O. The ions passed
through two active collimators (ROLU) in front of the target to center and focus the
beam during the beam setup phase. The CALIFA protoype measured prompt γ-rays
from excited 12C fragments. The tracking detectors - a pair of fiber detectors before
the magnet GLAD and two pairs of fiber detectors and the time-of-flight wall ToFD
behind GLAD - had slits to allow the unreacted beam to pass through while the
breakup products would be detected. A SEETRAM [7] detector behind ToFD as well
as a scintillator and an ionisation chamber at the end of the beam line measured the
beam intensities. A beam stop was installed in the cave due to the expected high dose
rate.

The ToFD detector measured the flight time and the energy loss of the ions,
from which the charge Z can be determined. The detector consisted of two layers
of scintillation bars, each 2.7 cm wide, 0.5 cm thick and about 1 m long. The first layer
had 41 bars and an inner gap of about 8 cm, the second layer had 42 bars and an inner
gap of about 5.5 cm. The layers are shifted by half a paddle, so that the paddles of the
second layer cover the small gaps of the first layer and vice versa.

A SEETRAM detector behind ToFD as well as a scintillator and an ionisation
chamber at the end of the beam line measured the beam intensities. The different
intensity ranges of these detectors were used for a step-by-step calibration with 105 to
109 particles per second during the beam setup phase.

4. The first experimental campaign

4.1. A first look at the data

Figure 3 shows the calibrated charge number measured by plane 1 of ToFD as a function
of the paddle number for a subset of the recorded data. All charges from eight to two
are visible in the plot. The inner paddles receive a high beam rate, which smears out
the charges. Paddle numbers 1 to 20 show higher count rates than numbers 24 to 44.
Fragments from nuclear reactions have a lower energy than the primary beam and will
therefore be deflected in the magnetic field to the side of ToFD with low paddle numbers.
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Figure 2. Scintilation fiber detectors to track the reaction products. Left: Two fiber
detectors with 200 μm square fibers and an active area of 10x10 cm2. Right: Four fiber
detectors with 500 μm square fibers and an active area of 50x50 cm2 in the vacuum
chamber connected to GLAD. All fiber detectors are mounted on linear drives to adjust
the slits inbetween.

Figure 3. Charge number measured by plane 1 of ToFD as a function of the paddle
number for a subset of the recorded data.

4.2. The beamtime

The first experimental campaign was carried out for six days in April 2019.
Unfortunately, the accelerator could not reach the conditions desired by the experiment.
The used extraction method of the synchrotron accelerator caused a micro-structure of
the spills that resulted in high dead times of the data acquisition system. Overall,
the statistics on tape is about a factor 20 lower than expected, which is especially
problematic for reactions with very small cross sections at low center-of-mass energies.

Nevertheless, many events at higher energies were recorded, which will allow the
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validation of the Coulomb dissociation method and the comparison against results of
previous direct reaction measurements. Future experimental campaigns will attempt to
gather the necessary statistics to reach low center-of-mass energies of ECM = 0.8 MeV
or lower.
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