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We examine the thermodynamic behavior of a static neutral regular (non-singular) black hole enclosed 
in a finite isothermal cavity. The cavity enclosure helps us investigate black hole systems in a canonical 
or a grand canonical ensemble. Here we demonstrate the derivation of the reduced action for the general 
metric of a regular black hole in a cavity by considering a canonical ensemble. The new expression of the 
action contains quantum corrections at short distances and concludes to the action of a singular black 
hole in a cavity at large distances. We apply this formalism to the noncommutative Schwarzschild black 
hole, in order to study the phase structure of the system. We conclude to a possible small/large stable 
regular black hole transition inside the cavity that exists neither at the system of a classical Schwarzschild 
black hole in a cavity, nor at the asymptotically flat regular black hole without the cavity. This phase 
transition seems to be similar with the liquid/gas transition of a Van der Waals gas.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Black holes are probably among the most fascinating topics in 
Physics. They are not only mysterious astrophysical objects but 
also a theoretical laboratory where one can study fundamental 
physics. Indeed, at their center general relativity brings about its 
own downfall by predicting singularities. This issue can be over-
come by fully quantizing gravity. However, the already existing 
candidates of quantum gravity are not helping that much to over-
come such a problem. As a result, a literature of effective regular 
and ultraviolet complete black holes has been proposed [1–11], re-
placing the curvature singularity of the black hole with a regular 
core, while recovering general relativity at large distances.

On the top of that, a variety of thermodynamic phenomena 
have been noticed for black holes during the years following the 
derivation of the black hole temperature [12] and the related ther-
modynamics [13]. Of particular interest is the discovery of the 
Hawking-Page transition [14] between pure thermal radiation and 
a stable anti-de Sitter (AdS) black hole. Moreover, charged AdS 
black holes have an intriguing phase structure [15,16], in contrast 
to the uncharged ones, which is recently identified with the phase 
structure of a Van der Waals gas [17]. This result is possible if we 
consider an extended phase space for the black hole, where the 
cosmological constant is treated as the thermodynamic pressure of 
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the system [18,19]. Similar phase structures have also been noticed 
for the known Bardeen black hole in AdS spacetime [20]. Another 
interesting issue is the enclosure of classical black hole systems, 
uncharged [21,22] or charged [23,24], inside an isothermal cav-
ity that acts as a reservoir. This can be realized by placing a heat 
bath around the cavity that fixes the temperature at its surface, al-
lowing for thermodynamically stable black holes to exist. Such a 
system is in analogy with the known canonical ensemble in statis-
tical mechanincs. The cavity enclosure appears similarities with the 
properties of AdS spacetime, which also stabilizes the black hole 
by acting as a reflecting box. For instance, Carlip and Vaidya [25]
found the same phase structure between pure AdS black holes and 
asymptotically flat cases in a cavity, as well as de Sitter cases. More 
recently, new phase transitions and critical phenomena have been 
discovered for both neutral and charged de Sitter black holes with 
a Born-Infeld gauge field inside an extended phase space [26,27].

So far, a model of a regular black hole surrounded by an 
isothermal cavity has not been discussed in the scientific liter-
ature. For this reason, it is the goal of this paper to study the 
thermodynamics and the phase structure of such a system. The 
structure of the paper is as follows: In Sec. 2 we choose as our 
regular black hole candidate the noncommutative Schwarzschild 
black hole [1], which is a non-singular black hole solution of the 
Einstein equations, and we review its basic geometrical and ther-
modynamic features. In addition, we provide the basic boundary 
conditions/constraints for the general system black hole-cavity. In 
Sec. 3 we assume the cavity enclosure for any generic regular black 
hole solution, resulting from the existence of an anisotropic fluid 
with two pressure terms, and we perform the derivation of the re-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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duced action. The new action is a generalization of the action char-
acterizing the classical system Schwarzchild black hole-cavity [28]
(see also the uncharged version in [23]), containing extra quan-
tum correction terms at short scales, due to the existence of the 
minimal cut-off length that regularizes the spacetime geometry at 
the center. The action of the regular case concludes to the singular 
case at the large distance regime. In Sec. 4 we consider the model 
of the noncommutative Schwarzschild black hole and we examine 
the phase structure of the system noncommutative black hole-cavity. 
In contrast to the classical Schwarzchild black hole, which appears 
a Hawking-Page-like phase transition inside the cavity [28], the 
regular black hole undergoes a phase transition between a small 
and a large stable black hole similar to the liquid/gas transition 
of a Van der Waals gas. Similar behavior has also been noticed 
for noncommutative [29] and Reissner-Nördstrom [17] black holes 
inside the AdS space. Here the role of the negative cosmological 
constant has been replaced by the cavity, indicating that the cavity 
acts to the system the same way as the AdS space does. Sec. 5 is 
devoted to conclusions. Throughout the paper we use Planck units 
(c = h̄ = G = kB = 1) and we consider a canonical-like ensemble, 
where the boundary radius and the temperature of the cavity wall 
are held fixed and the only variable which is allowed to fluctuate 
is the event horizon.

2. Basic review

2.1. Noncommutative Schwarzschild black hole

A basic feature of noncommutative geometry [3] is the pres-
ence of a minimal cut-off length that makes gravity ultraviolet 
self-complete below this scale. The meaning of a smooth classi-
cal manifold breaks down when approaching this length because 
quantum fluctuations are expected to appear, making spacetime 
“fuzzy” at short distances. These fluctuations can be encoded in 
the commutator[
xμ ,xν

] = iθμν , (1)

where θμν is an anti-symmetric tensor that discretizes the space-
time vectors xμ in the same way the Planck constant discretizes 
the phase space. The quantity 

√
θ has dimensions of length and 

can be interpreted as the minimal cut-off length, very close to the 
Planck length, i.e., 

√
θ ∼ 10−33 cm, below which there is no phys-

ically meaningful length.
It can be shown that noncommutativity implies the replace-

ment of point-like structures, that are described by Dirac-delta 
functions, with very narrow Gaussian distributions [30–32]. This 
feature has been used to improve the Schwarzschild singularity [1]
by imposing that the black hole mass is diffused throughout the 
center, just like a Gaussian distribution of minimal width 

√
θ , in-

stead of being a vacuum Dirac-delta function. The mass density of 
the anisotropic fluid-source is chosen to be then

ρ(r) = M

(4πθ)3/2
exp(−r2/4θ) . (2)

We make the following ansatz for the line element

ds2 = −b2(r)dt2 + a2(r)dr2 + r2d�2 , (3)

with d�2 = dθ2 + sin2 θ dφ2 and

b2(r) = 1 − 2m(r)

r
= 1

a2(r)
. (4)

Then we have to solve the Einstein equations with a stress-energy 
tensor T μ

ν that can be specified from the Schwarzschild-like prop-
2

erty gtt = −g−1
rr , as well as from the energy-momentum conser-

vation ∇μT μ
ν = 0. With such conditions, the tensor T μ

ν has the 
following profile

T μ
ν = Diag

( − ρ(r) , pr , p⊥ , p⊥
)
, (5)

with

pr = −ρ(r) and p⊥ = −ρ(r) − r

2
∂rρ(r) . (6)

Such a tensor characterizes a self-gravitating droplet of anisotropic 
fluid with two pressure terms; one radial pressure pr and one tan-
gential pressure p⊥ . On physical grounds, a non-vanishing radial 
pressure balances the inward gravitational pull and prevents the 
source to collapse into a singular matter-point. It has also been 
shown that noncommutativity affects the matter sector [33]. The 
geometry sector is modified accordingly, even if the Einstein ten-
sor is formally kept unchanged. By solving the Einstein equations 
one finds the following metric potential

b2(r) = 1 − 4M

r
√

π
γ (3/2, r2/4θ) , (7)

where

γ (3/2, r2/4θ) =
r2/4θ∫
0

dt t1/2e−t (8)

is the lower incomplete Gamma function. One can introduce 
a mass function for the above line element, namely m(r) =
2M√

π
γ (3/2, r2/4θ), that respects the Schwarzschild solution at large 

distances, since γ (3/2, r2/4θ)|r2�4θ ≈ √
π/2. Near the origin (r 	√

θ ) we can approximate γ (3/2, r2/4θ)|r2	4θ ≈ r3

12θ3/2 and (7) be-
comes

b2(r) ≈ 1 − 
eff

3
r2 , (9)

where 
eff = M√
πθ3/2 . Therefore, the singular origin of the

Schwarzschild black hole has been replaced by a regular repulsive 
de Sitter-like core with a constant and positive curvature, since the 
Ricci scalar is finite at the center and reads R(0) = 4M√

πθ3/2 = 4
eff . 
Moreover, by solving the horizon equation one finds two hori-
zons (one Cauchy and one event horizon) for M > M0 where 
M0 = 1.9

√
θ . For M = M0 one finds a degenerate horizon, while 

for M < M0 no horizons exist. The energy scale M0 can be seen as 
the transition point between black holes and elementary particle.

From a thermodynamic viewpoint, we have an improvement of 
the standard Hawking temperature. In this case, it is given by

T = 1

4πr+

[
1 − r3+e−r2+/4θ

4θ3/2γ (3/2, r2+/4θ)

]
, (10)

with the event horizon r+ satisfying the condition b(r+) = 0. In 
Fig. 1 we plot the temperature (10). In contrast to the classical 
case, the regular black hole temperature reaches a maximum be-
fore undergoing a positive heat capacity phase. Accordingly, the 
maximum of the temperature corresponds to a Hawking-Page-
like transition between thermal radiation and a small stable black 
hole. The evaporation stops with a zero temperature remnant con-
figuration with radius r0 = 3

√
θ . According to this scenario, the 

quantum back reaction is strongly suppressed and it is possible to 
extend the validity of the semiclassical approximation to the final 
stage of the evaporation. The black hole actually cools down by 
emitting less and less energy. This concept is very similar to the 
known Rayleigh-Jeans catastrophe, where classical physics predicts 
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Fig. 1. The red solid curve represents the noncommutative black hole temperature 
T vs r+ in 

√
θ units, while the dashed black curve represents the Hawking temper-

ature of a classical Schwarzschild black hole, appearing an ultraviolet divergence to 
the final stage of the evaporation.

an ultraviolet divergence at short wavelengths of the black-body 
radiation. Quantum mechanics cures this pathology much in the 
same way noncommutativity cures the ultraviolet divergence of 
the Hawking radiation.

2.2. The black hole-cavity system

Following the seminal paper of Braden et al. [23], as well as 
similar works mentioned in the introduction, we have to take into 
account certain conditions that can be applied to any black hole-
cavity system:

1. We consider a spherically symmetric Euclidean line element of 
the form

ds2 = b(r)2dτ 2 + a(r)2dr2 + r2d�2 , (11)

which is the same as in the aforementioned papers of the 
introduction but slightly simplified (this form has also been 
used in [28]). The Euclidean time τ comes after the analyti-
cal continuation τ = it , providing us with a positive-definite 
Euclidean metric.

2. The event horizon r+ is the inner boundary of the system with 
topology of a two-sphere S2 and two constraints:

b(r+) = 0 and
b′(r)
a(r)

∣∣∣∣
r+

= 1 , (12)

where the prime symbol (′) denotes from now on differenti-
ation with respect to r. The second constraint is a regularity 
condition, arising from the fact that we wish the geometry of 
the τ − r plane to look like a flat disk near r+ , in order to 
avoid conical singularities.

3. The cavity wall is the outer boundary of the system with 
topology S1 × S2. The wall is located at distance rc and has an 
S2 component with an area of 4πr2

c . In addition, heat can flow 
in either direction of the wall maintaining the temperature 
fixed. This way the black hole can be in thermal equilibrium 
with the cavity. The temperature of the boundary equals with 
the inverse of the period β , which is simply the proper length 
of the circle S1 of the boundary:

T −1 = β =
2π∫
0

dτ b(rc) = 2πb(rc) . (13)

We have chosen the periodicity of τ to be 2π for convenience.
3

4. Applying the Gauss-Bonnet-Chern theorem, we find that the 
Euler number of the manifold should be χ = 2. That gives us 
one more constraint:

1

a2(r)

∣∣∣∣
r+

= 0 . (14)

Now that we have given the above boundary conditions, we can 
proceed to the calculation of the reduced action for the desired 
system.

3. The reduced action

The starting point is the Euclidean version of the known 
Einstein-Hilbert action with the Gibbons-Hawking-York boundary 
term:

I = −
∫
M

d4x
√

g

(
R

16π
+Lm

)
− 1

8π

∫
∂M

d3x
√

h
(

K − K0
)
, (15)

where g and h are the determinants of the Euclidean metric of 
our manifold M and the induced metric on the boundary ∂M
respectively, R is the Ricci scalar, Lm is the matter Lagrangian, K
is the trace of the extrinsic curvature on the boundary and K0 is 
a term of our reference choice, analogous to K , that is needed to 
regulate the boundary action. For notational convenience, we split 
the above action into 3 pieces (gravitational, matter and surface 
action)

Ig = − 1

16π

∫
M

d4x
√

g R , (16)

Im = −
∫
M

d4x
√

gLm , (17)

Is = − 1

8π

∫
∂M

d3x
√

h
(

K − K0
)
, (18)

so that I = Ig + Im + Is. The major difference from the classical 
system singular black hole-cavity is that the matter action (17) is 
no longer zero for the regular case. We evaluate first the gravita-
tional action Ig. For a metric of the form (11), the quantity 

√
g R is 

calculated to be

√
g R =

[
−2b

a
+ 2ba − 4rb′

a
− 4rb

(
1

a

)′
− 2r2

(
b′

a

)′]
sin θ ,

(19)

where a = a(r) and b = b(r). Plugging (19) into the action (16) and 
integrating over the imaginary time and over the two angles θ and 
φ, we get

Ig = π

rc∫
r+

dr

(
1

a
− a − 2ra′

a2

)
b +

(
πr2 b′

a

)∣∣∣∣
rc

− πr2+ , (20)

where we have performed integration by parts and used the 
boundary conditions (12). Proceeding a bit further, we use the 
Hamiltonian constraints

Gτ
τ = Gr

r = −8πρ , (21)

where ρ = ρ(r) is the matter density profile of the regular black 
hole. The components of the Einstein tensor read

Gτ
τ =

(
a − a3 − 2ra′)

2 3
and Gr

r = b − a2b + 2rb′
2 2

. (22)

r a r a b
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From the relation Gτ
τ /Gr

r = 1, we conclude to b = C/a, where the 
integration constant C can be specified, if the profile ρ(r) of the 
regular black hole is specified. For now we can use the condition 
(13) to write C = βa(rc)

2π . Under these circumstances, the gravita-
tional action can be written as

Ig = βa(rc)

2

[
r

(
1

a2
− 1

)]∣∣∣∣
rc

r+
− β

2

(
r2a′

a2

)∣∣∣∣
rc

− πr2+ . (23)

Next we shift our interest to the matter action (17). Following the 
reasoning of [34], our effective fluid-like approach takes leading 
order quantum geometry effects, while letting us formally work in 
a classical framework. This allows us to connect our matter La-
grangian with the “on shell” action of an anisotropic fluid that 
reads

S(on shell) =
∫

d4x
√−g

(
2pr − p⊥

)
, (24)

identifying our matter Lagrangian with

Lm = 2pr − p⊥ = −ρ + r

2
ρ ′ . (25)

Plugging (25) into the action (17) and performing the integration, 
we get

Im = 8π2

rc∫
r+

dr abr2(ρ − r

2
ρ ′) . (26)

From the Hamiltonian constraint Gτ
τ = 1

r2

[
r
(

1
a2 − 1

)]′ = −8πρ , 

we can extract an expression for the integral 
rc∫

r+
dr r2ρ:

rc∫
r+

dr r2ρ = − 1

8π

[
r

(
1

a2
− 1

)] ∣∣∣∣
rc

r+
. (27)

Thus using (27), the relation ab = C = βa(rc)
2π , and integrating by 

parts the ρ ′-term in (26), we conclude to

Im = 4πβa(rc)

[
5

16π

(
r − r

a2

) ∣∣∣∣
rc

r+
− 1

2
r3ρ

∣∣∣rc

r+

]
. (28)

We continue with the derivation of the surface action (18). Our 
boundary is a timelike surface at rc = const., described by a radial 
spacelike normal unit vector ημ = δ

μ
r√
grr

(ημημ = 1) perpendicular 
to the boundary. Thus the induced metric on the boundary can be 
written as hμν = gμν −ημην and is described by a line element of 
the form

ds2 = b(rc)
2dτ 2 + r2

c d�2 . (29)

This allows us to define the trace of the extrinsic curvature K as 
the divergence of the normal unit vector ημ , giving

K = ∇μημ =
(
br2

)′

abr2

∣∣∣∣
rc

. (30)

As for K0, we can choose any space we wish as the reference point 
from which the energy is measured. In our case, we choose K0

such that I = 0 when M = 0, corresponding to an asymptotically 
flat spacetime that gives

K0 = 2
. (31)
rc

4

Using the above expressions for K and K0, the surface action be-
comes

Is = β

(
r2a′

2a2
− r

a
+ r

)∣∣∣∣
rc

. (32)

Finally, from the sum Ig + Im + Is we obtain the reduced action I
that reads

I =β

{
−a(rc)

2

(
r − r

a2

) ∣∣∣∣
rc

r+
+ 4πa(rc)

[
5

16π

(
r − r

a2

) ∣∣∣∣
rc

r+

− 1

2
r3ρ

∣∣∣rc

r+

]
− rc

a(rc)
+ rc

}
− πr2+ . (33)

For large distances relative to the minimal cut-off length, the mass 
density profile of the black hole becomes proportional to the Dirac 
delta function, i.e., ρ(r) ∼ Mδ(r), meaning that ρ(r+) = ρ(rc) =
0 since r+, rc �= 0. Then the Hamiltonian constraints give 1

a(r)2 ≈
1 − r+

r , implying the relation 
(

r
a2 − r

) ∣∣∣rc

r+
≈ 0. Therefore, in this 

limit the matter action (28) vanishes and the reduced action (33)
reduces to the action of the classical uncharged system singular 
black hole-cavity [28]:

I ≈ βrc

(
1 −

√
1 − r+

rc

)
− πr2+ . (34)

4. The phase structure

In this last section we apply the reduced action formalism to 
the case of a noncommutative Schwarzschild black hole as an ex-
ample. Then we derive the desired thermodynamic quantities and 
we study possible phase transitions that take place inside the cav-
ity. For the noncommutative case, the profile of the density is 
given by (2). Solving the Hamiltonian constraints for this profile, 
the metric functions a and b of the line element (11) are evalu-
ated to be

a(r) = 1√
1 − 4M

r
√

π
γ (r)

and

b(r) = C/a(r) = β

2π
√

1 − 4M
rc

√
π
γ (rc)

√
1 − 4M

r
√

π
γ (r) , (35)

where γ (r) = γ (3/2, r2/4θ). Moreover, the boundary condition 
(14) implies the relation M = r+

√
π

4γ (r+)
. Plugging these expressions 

into the general form of the reduced action (33), we get the form 
of the noncommutative reduced action I∗:

I∗ = βrc

(
1 −

√
1 − r+γ (rc)

rcγ (r+)

)
+ βr+

2

⎛
⎜⎝1 − γ (rc)/γ (r+)√

1 − r+γ (rc)
rcγ (r+)

⎞
⎟⎠

+ 4πβ√
1 − r+γ (rc)

rcγ (r+)

[
5r+
16π

(
γ (rc)

γ (r+)
− 1

)
− 1

2
r3

c ρ(rc)

+ 1

2
r3+ρ(r+)

]
− πr2+ . (36)

As discussed in [35], thermodynamic quantities can be derived 
from the reduced action. The canonical partition function Z , eval-
uated in the zero-loop approximation, is connected to the Eu-
clidean action through the relation Z = e−β F ≈ e−I∗ , where F is 
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Fig. 2. The noncommutative black hole temperature T inside the cavity vs r+ in 
√

θ

units, for rc = 17
√

θ (red solid curve), for rc = ri � 10.913
√

θ (black dashed curve) 
and for rc = 9

√
θ (blue solid curve).

Fig. 3. The heat capacity C of the noncommutative black hole inside the cavity vs r+
in 

√
θ units, for rc = 17

√
θ (red solid curve), for rc = ri � 10.913

√
θ (black dashed 

curve) and for rc = 9
√

θ (blue solid curve).

the Helmholtz free energy. The inverse temperature can be derived 
by extremizing the action with respect to r+ and solving for β:

∂ I∗(β, θ, r+, rc)

∂r+
= 0 −→ β = β(θ, r+, rc) = T −1 . (37)

Then the entropy of the system can be found from the relation

S = β

(
∂ I∗
∂β

)
θ,rc

− I∗ = β

(
∂ I∗
∂r+

)
θ,rc

(
∂β

∂r+

)−1

θ,rc

− I∗ = πr2+ ,

(38)

giving the known area law. The expression of the temperature is 
omitted here since it is rather lengthy but its plot is illustrated in 
Fig. 2 for different horizons inside the cavity. Depending on the 
fixed distance rc of the cavity wall relative to the minimal length √

θ , the temperature may appear two (red curve in Fig. 2), one 
(black dashed curve in Fig. 2) or no extrema (blue curve in Fig. 2). 
For rc = ri the two extrema of the temperature merge at one in-
flexion point, while for rc > ri the system appears always a local 
maximum and a local minimum temperature. The cavity has al-
ready changed the picture relative to the pure asymptotically flat 
regular case (10), where there is only one extremum for the tem-
perature, as can be seen in Fig. 1. Inside the cavity there is a strong 
indication of a different phase transition when rc ≥ ri . This can be 
checked by calculating the heat capacity

C = T

(
∂ S

∂T

)
= −β2

(
∂2 I

∂β2

)
θ,rc

, (39)

whose form is also omitted here but its shape is plotted in Fig. 3. 
For rc > ri (red curve in Fig. 3) the heat capacity appears two di-
5

Fig. 4. The free energy F of the noncommutative black hole inside the cavity vs r+
in 

√
θ units, for rc = 17

√
θ (red solid curve), for rc = ri � 10.913

√
θ (black dashed 

curve) and for rc = 9
√

θ (blue solid curve).

vergent regions where dT = 0. In this case, there exists a small 
locally stable black hole with C > 0 when r+ is smaller than the 
first divergent region. Then it turns to a locally unstable inter-
mediate black hole with C < 0 when r+ lies between the two 
divergences and finally it turns into a locally stable large black 
hole with C > 0 when r+ is bigger than the second divergent 
region. Hence, a phase transition seems to take place between a 
small and a large stable black hole inside the cavity, in contrast to 
the asymptotically flat case of Sec. 2 without a cavity, where the 
transition occurs between background radiation and a small stable 
black hole. This small/large stable black hole transition seems to be 
similar with the liquid/gas transition of a Van der Waals gas [17], 
in contrast to the Hawking-Page-like transition of the singular black 
hole-cavity system [28]. For rc = ri (black dashed curve in Fig. 3) 
the two stable black holes coexist at one inflexion point, while for 
rc < ri (blue curve in Fig. 3) there exists a single thermally sta-
ble black hole with no phase transitions and with a temperature 
which is monotonically increasing with the horizon.

Similar phase structure appears also regular black holes [20,29]
inside an AdS background without a cavity. In other words, either 
confining the regular black hole in a cavity, or placing it inside an 
AdS space, the black hole appears a small/large black hole phase 
transition, mimicking the liquid/gas transition of a Van der Waals 
gas. This indicates that AdS holography might not depend on some 
properties of AdS spacetime, but rather on the confinement char-
acteristic, as has also been noticed in [28].

Last but not least, the Helmholtz free energy F is the ther-
modynamic potential governing our system and is identified to be 
F = I∗/β . Its form is illustrated in Fig. 4. For rc > ri the free energy 
appears two extrema (red curve in Fig. 4) with an unstable mid-
dle branch of an increasing F due to the phase transition. These 
extrema correspond to the two divergences of the heat capacity, 
as can be seen from the above plots. For rc < ri the free energy 
is a monotonically decreasing function of r+ (blue curve in Fig. 4) 
with no indication of a phase transition, signalling this way the lo-
cal and global stability of the system. For rc = ri the two extrema 
of F merge at one inflexion point (black dashed curve in Fig. 4).

5. Conclusions

We have presented a geometric and a thermodynamic analy-
sis of a regular black hole enclosed by a cavity. The temperature 
at the walls and the radius of the cavity are held fixed, allow-
ing us to work in a canonical ensemble. Based on the assump-
tion that any regular black hole solution is described by a source 
of anisotropic fluid with two pressure terms, we performed the 
derivation of the reduced action. The new action is a generaliza-
tion of the one describing a singular black hole, since it contains 
an extra matter action-piece that vanishes in the classical limit. 
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Applying this formalism to the profile of the noncommutative case, 
we derived through the reduced action all the necessary thermo-
dynamic quantities, in order to study the phase structure of the 
system. The conclusion is that, above a certain value of the posi-
tion of the cavity wall, i.e., rc ≥ ri , the black hole can undergo a 
phase transition between a small/large stable black hole, similar to 
the liquid/gas transition of a Van der Waals gas, while for rc < ri
there exists always a thermally stable remnant. The enclosing cav-
ity provides similar phase structure with the system of a regular 
black hole placed in AdS space without a cavity.
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