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A B S T R A C T   

Cross-sectional findings suggest that volumes of specific hippocampal subfields increase in middle childhood and 
early adolescence. In contrast, a small number of available longitudinal studies reported decreased volumes in 
most subfields over this age range. Further, it remains unknown whether structural changes in development are 
associated with corresponding gains in children’s memory. Here we report cross-sectional age differences in 
children’s hippocampal subfield volumes together with longitudinal developmental trajectories and their re-
lationships with memory performance. In two waves, 109 participants aged 6–10 years (wave 1: MAge=7.25, 
wave 2: MAge=9.27) underwent high-resolution magnetic resonance imaging to assess hippocampal subfield 
volumes (imaging data available at both waves for 65 participants) and completed tasks assessing hippocampus 
dependent memory processes. We found that cross-sectional age-associations and longitudinal developmental 
trends in hippocampal subfield volumes were discrepant, both by subfields and in direction. Further, volumetric 
changes were largely unrelated to changes in memory, with the exception that increase in subiculum volume was 
associated with gains in spatial memory. Longitudinal and cross-sectional patterns of brain-cognition couplings 
were also discrepant. We discuss potential sources of these discrepancies. This study underscores that children’s 
structural brain development and its relationship to cognition cannot be inferred from cross-sectional age 
comparisons.   

1. Introduction 

A prominent branch of the quest to advance our understanding of 
children’s memory development attempts to identify maturational tra-
jectories of the hippocampal network (Lee et al., 2017). This interest is 
fueled by the hippocampus’ key functions in both learning and 
remembering (Scoville and Milner, 1957) that render it a brain region of 
particular interest to research on individual development and 
school-based education. Recently developed high-resolution magnetic 
resonance imaging (MRI) techniques provide researchers with new tools 

to delineate hippocampal subfields in vivo (Bakker et al., 2008; Eldridge 
et al., 2005). Volumetric measures of hippocampal subfields obtained 
using these techniques provide the current best in vivo proxy for 
assessing maturity of intrahippocampal networks in children (Keresztes 
et al., 2018). However, developmental trends inferred from 
cross-sectional comparisons are not always supported – and rather are 
often contradicted – by data from longitudinal studies. In this study, we 
examine hippocampal subfield development and its relationship with 
children’s memory performance by assessing both cross-sectional age--
differences and longitudinal change in hippocampal subfield volumes 
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and memory. To foreshadow our conclusions, the data presented un-
derscores the necessity to refrain from making inferences on develop-
mental trajectories based on cross-sectional data. 

1.1. Developmental trends inferred from cross-sectional comparisons 
versus longitudinal studies 

In line with histological studies of monkeys (Lavenex and Lavenex, 
2013), high-resolution structural MRI investigations of children have 
observed age-related volumetric differences in the hippocampus (for 
reviews, see Keresztes et al., 2018; Lee et al., 2017) suggesting that 
hippocampal development extends at least into early adolescence, and 
potentially into adulthood. Importantly, this may demonstrate a more 
protracted development than previous human data had indicated 
(Frotscher and Seress, 2007; Utsunomiya et al., 1999). This line of 
research also provided evidence for heterogeneous developmental 
trends across regions within the hippocampus, previously observed 
using longitudinal standard resolution MRI (Gogtay et al., 2006). Recent 
high-resolution MRI studies with pediatric samples (Bouyeure et al., 
2021; Canada et al., 2019; Daugherty et al., 2017; Keresztes et al., 2020, 
2017; Krogsrud et al., 2014; Lee et al., 2014; Riggins et al., 2018; 
Schlichting et al., 2017; see Table S1) consistently reported volumetric 
age-differences in the dentate gyrus (DG), cornu ammoni (CA) regions, 
and subiculum (SUB), but not in the entorhinal cortex (EC). Due to 
differences in sample size, age range, the longitudinal extent of the 
hippocampus assessed, as well as the subregions delineated (see 
Table S1), comparing the available findings is not straightforward. That 
said significant age–volume associations reported in most studies for 
regions comprising DG, CA1 to CA4, and SUB were either positive linear 
or quadratic, with quadratic associations reflecting a positive associa-
tion for younger children and no association or a negative association for 
older children (see Table S1). 

Two studies (Daugherty et al., 2017; Schlichting et al., 2017) 
diverged from this overall pattern of results. Daugherty et al. (2017) 
found a quadratic association for a region comprising CA1 and 2 – with 
younger children showing a negative association and older children 
showing a positive association with age – and a negative linear associ-
ation for a region comprising CA3 and DG. One critical difference be-
tween this and all other studies that may drive the divergence of findings 
is the extent of the hippocampal longitudinal axis assessed. Compared to 
other studies assessing hippocampal subfield volumes along the full 
length of the hippocampal body, or head and body, or the full hippo-
campus, this study only used the three most anterior slices of the hip-
pocampal body to assess hippocampal subfield volumes. Schlichting 
et al. (2017) reported a negative linear age–volume association for SUB 
in the hippocampal body, and a negative linear association for CA1 in 
the head. Although these findings were inconsistent with the pattern of 
findings observed across other studies, consistently with those, 
Schlichting and colleagues also found a positive linear association for 
DG. In this case, the divergent findings may be due to a multitude of 
differences in methods compared to other studies. 

To our knowledge, three previous studies have examined longitudi-
nal trajectories of subfield volumes in children (Canada et al., 2021; 
Tamnes et al., 2018, 2014, see also Table S1). Critically, their findings 
stand in stark contrast to cross-sectional results. One early study 
(Tamnes et al., 2014) found volumetric decrease in all subfields 
measured within the hippocampus proper, except in the right CA1 from 
8 to 21 years of age. Another study from the same lab (Tamnes et al., 
2018), but with an independent sample of participants aged 8–26 years, 
found linear decreases in most subfields, except for CA1 with an increase 
until 20 followed by a decrease, as well as an increase until age 13–15 
followed by decelerated decrease in the SUB. The third study (Canada 
et al., 2021) found volumetric increases in all subfields, but only in 
specific age windows and hippocampal sections (body or head) for 
specific subfields: DG2–4/CA3 and SUB in the hippocampal body 
showing an increase between 5 and 6 years of age, and CA1 in the 

hippocampal head showing an increase between 4 and 5 years of age, 
within the 4–8 years age-window covered in their study sample. 

Sources of discrepancies across and among cross-sectional and lon-
gitudinal findings may involve differences in methods of subfield 
delineation (Yushkevich et al., 2015a) in scanning parameters, in age 
ranges, in intervals between waves in case of longitudinal studies 
(Canada et al., 2019), and in sample size. These potential sources of 
differences aside, however, theoretical accounts, simulations, and 
comparisons of cross-sectional and longitudinal analyses of the same 
data caution strongly against making inferences about change based on 
cross-sectional studies (Bender and Raz, 2015; Lindenberger et al., 2011; 
Louis et al., 1986; Nyberg et al., 2010; Pfefferbaum and Sullivan, 2015). 
For instance, Louis et al. (1986) have mathematically shown that line-
arly modeled cross-sectional and longitudinal slopes from the same 
sample will only agree under the assumption that age distributions in 
cross-sectional samples are Gaussian and that change is linear or 
quadratic nonlinear. However, real life samples may rarely behave this 
way and can change in various non-linear ways (Ghisletta et al., 2020; 
Raz and Lindenberger, 2011). One striking example of discrepancy be-
tween cross-sectional age difference and longitudinal slope was identi-
fied by Nyberg et al. (2010). They showed that change across six years in 
frontal recruitment in healthy aging was negative which contradicted a 
plethora of cross–sectional evidence that had suggested increased 
frontal recruitment in older than in younger adults. Similarly, a recent 
study of hippocampal volume in a lifespan sample found no 
cross-sectional age-differences while longitudinal analyses of the same 
sample detected change (Pfefferbaum and Sullivan, 2015). 

1.2. Volume-memory associations across childhood development 

An early meta-analysis of 33 studies on the association between 
hippocampal volume and memory (Van Petten, 2004) favored a “smaller 
is better” rather than a “bigger is better” hypothesis in childhood, 
adolescence, and young adulthood. More recent studies that tested for 
associations between memory and hippocampal subfield volumes in 
children using high-resolution MRI (summarized in Table S1) paint a 
less straightforward picture. These studies detected associations be-
tween hippocampal subfield volumes and memory discrimination 
(Bouyeure et al., 2021; Canada et al., 2019; Keresztes et al., 2017; Lee 
et al., 2014), associative memory (Daugherty et al., 2017; Lee et al., 
2014), source memory (Canada et al., 2021; Riggins et al., 2018), sta-
tistical learning and associative inference (Schlichting et al., 2017), as 
well as learning and delayed free recall (Tamnes et al., 2014). Both 
positive and negative associations were found, and in cross-sectional 
studies, age often moderated the direction of the association 
(Bouyeure et al., 2021; Canada et al., 2019; Riggins et al., 2018; 
Schlichting et al., 2017). Although such shifts in the direction of 
volume-memory associations may be partly driven by measurement 
variance across the tested age-window, they do point out that 
volume-memory associations may be the outcome of diverse underlying 
mechanisms potentially changing along different trajectories across 
childhood. This notion additionally underlies the need for longitudinal 
tests of volume-memory associations. In particular, cross-sectional 
studies do not provide information about heterogeneous trajectories of 
change (Lindenberger et al., 2011) and thus are unable to inform 
research on how change in brain is associated with change in cognition. 
Thus, to understand how hippocampal subfields development is coupled 
with memory development, longitudinal studies are needed. 

To our knowledge, longitudinal data on hippocampal subfield vol-
ume–memory associations is only reported in two studies (see Table S1), 
and of these only one tested memory constructs that had been tested in 
any extant cross-sectional study. In a longitudinal study, Canada et al. 
(2021) found associations between change in CA1 and SUB and change 
in source memory, whereas in an earlier cross-sectional analysis of the 
same sample, Riggins et al. (2018) found associations between volumes 
of CA1 and CA2–4/DG and performance on the same source memory 
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task. In brief, cross-sectional data on associations between memory and 
hippocampal subfield volumes is sparse, and longitudinal data – 
necessary for inferences on brain-cognition couplings – is very limited. 

Cross-sectional and longitudinal results are rarely compared within 
the same dataset also in the broader field of cognitive neuroscience (for 
examples that did such comparison, see Nyberg et al., 2010; Pfefferbaum 
and Sullivan, 2015; Raffington et al., 2019). One potential reason for 
this may be pressure on PhD students, postdocs and senior researchers 
who – due to limited term funding – cannot wait with publication of 
cross-sectional results until a longitudinal study is concluded. Thus, 
results of initial waves in a longitudinal study are usually already pub-
lished when longitudinal results are written up. That said, a recap of 
cross-sectional results and their comparison to longitudinal results in all 
manuscripts publishing longitudinal data could prove critical in high-
lighting what cross-sectional data can tell researchers – if anything – 
about developmental mechanisms. 

In sum, the current study aims at providing further longitudinal 
evidence on hippocampal subfield development as well as its associa-
tions to memory development. In addition, it aims to assess consistency 
between developmental trends inferred from cross-sectional and longi-
tudinal data within the same sample. 

1.3. The current study 

Here we examine cross-sectional age-differences and longitudinal 
change in hippocampal subfield volumes as well as their relationship 
with 6–10-year-old children’s memory performance. We assessed age- 
differences and change across two years in aggregated hippocampal 
subfield volumes, in memory measures assessing function of the hip-
pocampus as a whole or of its specific subfields, as well as in hippo-
campal subfield volume–memory associations across time. Based on 
cross-sectional age–volume associations, we hypothesized that DG- 
CA3, CA1–2, and potentially SUB would exhibit longitudinal volu-
metric increases, but that we would observe no increase in EC volume. 
Further hypotheses were based on prior cross-sectional findings on age- 
volume-memory associations (reviewed in Keresztes et al., 2018; for a 
newer study see Canada et al., 2019). Based on the role of DG-CA3 in 
pattern separation on highly similar inputs to the hippocampus (Yassa 
and Stark, 2011), we hypothesized that volumetric change in DG-CA3 
will be specifically associated with change in the behavioral ability to 
discriminate highly similar memories, i.e., with mnemonic discrimina-
tion (Bakker et al., 2008; Berron et al., 2016). Findings by Daugherty 
et al. (2017) additionally raised the possibility that change in DG-CA3 is 
potentially associated with change in associative memory. Finally, we 
expected that change in spatial memory, which seems to rely on overall 
function of the hippocampal circuitry (Burgess et al., 2002; Li and King, 
2019) would be associated with change in total hippocampal volume, 
but not with change in specific subfield volumes. 

2. Methods 

2.1. Participants 

Participants included 147 children (6.08–7.98 years, Mage = 7.19, 
SDage = 0.46, 67 girls) from socioeconomically diverse families (parental 
income similar to city average; parental education and employment 
above city average) in Berlin, Germany who were enrolled in a longi-
tudinal study (for details of the recruitment procedure, socioeconomic 
status, and additional demographics, see Raffington et al., 2018). Of 
them, 127 returned at wave 2, approximately two years later (8.3–10.15 
years, Mage = 9.25, SDage = 0.45, 59 girls), also described in detail 
elsewhere (Raffington et al., 2019). A subsample of children participated 
in one magnetic resonance imaging (MRI) session at both waves within 
three weeks of the behavioral sessions. In this study we included all 
children who had a high-resolution structural scan in at least one of the 
waves. The final sample therefore consisted of 109 children. 

Hippocampal subfield data available at both waves was lower (n = 65, 
24 girls; 6.08–8.00 years, Mage = 7.26, SDage = 0.42 at wave 1, and 
8.38–10.12 years, Mage = 9.27, SDage = 0.42 at wave 2). Completeness of 
data for each variable, sex and age for complete cases, as well as causes 
of exclusion per variable, are reported in the supplement (Table S2). 
Informed consent was obtained from legal guardians of all participants: 
Parents provided written informed consent and children provided verbal 
assent. The study was approved by the ‘Deutsche Gesellschaft für Psy-
chologie’ ethics committee (YLS_012015). Limited – mostly 
cross-sectional – results from wave 1 of this study have already been 
published (Keresztes et al., 2020; Raffington et al., 2020, 2019, 2018). 

2.2. Procedure 

At wave 1, all participants were invited for two sessions, and a 
subsample of participants was also invited for a third session. Each 
session lasted approximately two hours, and included various behav-
ioral tests, physiological measurements, and questionnaires. Session 1 
and 2 took place on consecutive days. Session 3 followed within three 
weeks of session 2 and included a ~35-minute-long MRI session. Of 
interest to the current study, participants completed an associative 
memory task followed by a spatial memory task at the beginning of 
session 1 and underwent structural MRI and completed a mnemonic 
similarity task at the end of session 3. At wave 2, all participants 
returning from wave 1 were invited to participate in two sessions, each 
two-hours-long. Session 1 comprised of behavioral tests and two ~ 20- 
minute-long MRI sessions separated by a break. Session 2, which fol-
lowed session 1 within three weeks, comprised of only behavioral tests. 
Of interest, the associative memory, the spatial memory, and the mne-
monic similarity tasks were all performed at session 2. 

2.3. Volumetric measurement of hippocampal subfields 

Acquisition of high-resolution MRI images of the hippocampus and 
surrounding mediotemporal areas, and the full process of subfields 
delineation on MRI images was identical across waves and is described 
in detail in Keresztes et al. (2020). In brief, we acquired partial field of 
view (FoV) proton density (PD)-weighted T2 images (FoV: 206 mm; 
repetition time (TR): 6500 ms; echo time (TE): 16 ms; number of slices: 
30; voxel size: 0.4 mm × 0.4 mm × 2.0 mm) perpendicular to the lon-
gitudinal axis of the right hippocampus on a 3 T Siemens Magnetom 
TrioTim syngo MRI scanner. Subfield segmentation utilized the Auto-
mated Segmentation of Hippocampal Subfields (ASHS) (Yushkevich 
et al., 2015b) software using a customized atlas generated in ASHS from 
highly reliable manual segmentations measured in earlier studies 
(Bender et al., 2018). This approach has been shown to be highly reliable 
and valid in identifying hippocampal subfield boundaries in a lifespan 
sample, including 20 6–24 year-old and 20 62–79 year-old participants 
(Bender et al., 2018). Moreover, Homayouni et al. (2021) have shown 
that hippocampal subfield volumes delineated using the manual seg-
mentation protocol described in Bender et al. (2018) had excellent 
test-retest reliability and the method had high sensitivity to detect 
two-year change in a longitudinal sample (n = 28) of children aged 7–17 
years. The customized atlas included manual demarcations of three re-
gions within the hippocampal body, bilaterally – SUB, a region including 
CA regions 1 and 2 (CA1–2), and a region including DG and CA3 
(DG-CA3) – as well as the EC on six consecutive slices anterior to the 
hippocampal body (see Fig. 1 of Bender et al., 2018 for the illustration of 
the heuristic rules used for manual demarcation in the atlas sample). 
Importantly, this atlas includes additional demarcations in both anterior 
and posterior directions beyond the above described manually defined 
ranges. This extension of the atlas was necessary to ensure that ASHS 
always returns fully segmented output even for the most anterior and 
most posterior slices within the manually defined ranges (Bender et al., 
2018). 

For the current study, after delineating subfields using ASHS with the 
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custom atlas by Bender et al. (2018), we used a custom shell script 
(Bender et al., 2018) to truncate CA1–2, DG-CA3, and SUB outputs to 
include only the delineations within a manually defined range of the 
hippocampal body, and to truncate EC outputs to the six consecutive 
slices anterior to the body (see Fig. 1 in Keresztes et al., 2020). Before 
manually defining hippocampal body ranges, to establish reliability of 
manually identified boundaries of the hippocampal body, first at wave 
1, K.B. and A.K. both determined the starting and end slices, for left and 
right hemispheres, in a subset (n = 48) of the sample (for all, Cohen’s 
kappa >0.82), then K.B. ranged the rest of the sample (for more details 
on this step, see Keresztes et al., 2020). Next, before determining hip-
pocampal body boundaries in wave 2, K.B. established reliability of 
boundaries determined by herself, by determining boundaries again on a 
subset (n = 13) of the sample from wave 1 (Cohen’s kappas >0.76 for 
left and right starting and end slices). Then, K.B. determined hippo-
campal body boundaries on the whole sample of wave 2. Final outputs 
were visually inspected by K.B. and A.K. and obvious errors were cor-
rected (e.g., voxels labeled by ASHS as subfield outside the hippocampus 
were cleared of their label, and voxels not labeled by ASHS as subfield 
within a continuous cluster of subfield voxels were labeled as subfield.). 
In addition, for 3 cases in wave 1, errors in subfields delineated by ASHS 

called for manual delineation of all subfields. A.K. performed these de-
lineations following rules used for manual delineation of subfields for all 
atlas cases used, detailed in Bender and colleagues (Bender et al., 2018). 
An example delineation for the hippocampal body is shown in Fig. 1. 
Volumetric measures for all regions were adjusted for intracranial vol-
ume based on (Jack et al., 1989; Keresztes et al., 2017; Raz et al., 2005). 
In brief, first, we obtained ICV estimates using the brain extraction tool 
in FSL 5.0 (Smith, 2002) using procedures described in Bender et al. 
(2013). Then we regressed ICV on age to obtain an individual ICV es-
timate predicted by age only and adjusted each subfield volume by 
correcting for differences in subfield volumes due to differences in actual 
and predicted ICV (adjusted volume = raw volume – ß (ICV – predicted 
ICV). The resulting adjusted volumetric measures were summed across 
hemispheres and used for all analyses presented in this study. Note that 
running all analyses reported in this study using raw volumetric values 
yielded an identical pattern of results to those reported with ICV cor-
rected values. 

2.4. Memory measures 

We administered three memory tasks to assess hippocampal 

Fig. 1. Illustration of hippocampal subfields delineated. Subfields subiculum (in green), CA1–2, (in yellow), and DG-CA3 (in blue) were segmented in the hippo-
campal body shown here in order from most anterior slice (1) to the most posterior slice (8) in the right medial temporal lobe, with PD-T2 images unlabeled on the 
left and labeled on the right. Entorhinal cortex (in copper) was segmented on the most anterior slice of the body as well as 5 more consecutive slices (not shown here). 
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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contributions to memory: a mnemonic similarity task, a spatial memory 
task, and an associative memory task. All three were computerized tasks 
administered on desktop computers with 21.5-inch screens. 

Based on established methods (Kirwan and Stark, 2007) the mne-
monic similarity task used a continuous recognition memory design to 
assess participants’ ability to discriminate memories of highly similar 
stimuli. Participants saw 162 pictures depicting everyday objects, pre-
sented sequentially. Critically, 48 pictures were repeated after a delay of 
2–14 intervening trials. Twenty-four of the pictures were repeated 
exactly, whereas 24 pictures were repeated with a slightly different lure 
picture of an identical object. For each trial the child was instructed to 
identify pictures as “old” (exact repetition), “similar” (lure repetitions), 
or “new” (new items). We calculated a lure discrimination index (i.e., a 
measure of participants’ ability to discriminate between highly similar 
memories) as the proportion of “similar” responses to lure repetitions 
minus the proportion of “similar” responses to new items. More details 
on this task are provided in recent work (Keresztes et al., 2020). 

The spatial memory task was based on methods originally reported 
by Kessels et al. (2007), and assessed memory for items and 
item-location associations. Briefly, participants encoded locations of 15 
sequentially presented line drawings of everyday objects on a 6 × 6 grid. 
After a short delay, they performed a recognition task using the same 
pictures of studied objects randomly intermixed with 15 pictures of new 
objects. For each correctly recognized object, we asked them to point to 
the location of the given picture in the grid during encoding. As a 
measure of spatial memory, we used the percentage of correctly indi-
cated locations for the 15 old items. For a detailed description of the task 
see Raffington et al. (2018). 

Participants also completed a paired-associate memory task, with an 
incidental encoding phase followed by two retrieval phases, including 
one at a short (< 2 mins) delay and one after approximately 24 h, to 
assess associative memory performance across different time spans. At 
encoding, 34 pairs of German nouns (for the list of words see Table S3 in 
the Appendix) were presented to participants sequentially. Each word 
pair was presented simultaneously both in visual (on the computer 
screen) and auditory modalities (via loudspeaker). In each trial, 
following a fixation cross (500 ms), a cue word appeared in the middle 
of the screen for 2 s, then the target word appeared on the screen below 
the cue word; both cue and target words remained on screen for an 
additional 4 s. Participants then saw a question mark on the screen for 
15 s, and their task was to decide whether the two words are related to 
each other or not. The two retrieval phases were identical, both came as 
a surprise to participants, and both included different halves of the word 
pairs encoded. The retrieval phase consisted of a cued recall block fol-
lowed by a stem-cued recall block. Trials in cued recall consisted of a cue 
presented both visually and auditorily, with the visually presented cue 
remaining on screen for 15 s or until the participant pressed a response 
button on a keyboard. Then the experimenter asked the participant to 
report the answer verbally. The experimenter typed in the answer via 
the same keyboard and then advanced the experiment to the next trial. 
Trials in the stem cued recall block were identical to trials in the cued 
recall block but the cue was appended with the first two phoneme of the 
target (e.g. ‘Gi’ for Giraffe, and ‘Kr’ for “Kreide”/chalk). Because cued 
recall performance was close to floor on the second retrieval test per-
formed a day after encoding, and because stem-cued recall is known to 
be less dependent on hippocampal processing, in this study we only used 
cued recall performance on the first retrieval test. As a measure of 
associative memory, we used percentage of targets correctly recalled. 

2.5. Cross-sectional and longitudinal assessment 

To assess cross-sectional age-differences, we linearly regressed var-
iables of interest on age. We assessed bivariate associations between 
hippocampal subfield volumes and memory measures cross-sectionally 
using Pearson’s zero-order correlations. As a measure of stability, we 
also report Pearson’s zero order correlations between wave 1 and wave 2 

data for all measures of interest. To assess longitudinal change across 
two waves, we applied latent change score (LCS) structural equation 
models (Kievit et al., 2018; McArdle and Nesselroade, 1994), using the 
lavaan package (Rosseel, 2012) in R (R Core Team, 2019). The LCS 
models produced three parameter estimates of particular interest: (1) 
mean change from wave 1 to wave 2, (2) variance in change, and (3) the 
covariance between the intercept (wave 1 values) and change. After 
fitting univariate LCS models to assess change in each of the variables 
(see Fig. 2a), we employed a bivariate LCS approach (Fig. 4a) to assess 
pairwise change–change associations between variables. Age at wave 1 
was included as a covariate in all models, covarying with change, and 
predicting wave 1 intercept. For estimation of LCS model parameters, 
hippocampal subfield volume values were divided by 100 to match the 
scale of other variables in the analyses. 

Volumetric measures acquired using MRI are not free of measure-
ment error (Karch et al., 2019; Maclaren et al., 2014; Madan and Ken-
singer, 2017), therefore in addition to LCS models with single bilateral 
volumetric indicators, we also tested univariate LCS models of change in 
hippocampal subfields where left and right hemispheric volumes served 
as dual observed indicators for the volumetric latent variables at each 
wave (Figs. 2b and 4b). These models thus separate error variance from 
construct variance and establish measurement invariance over time. We 
used these models – henceforth referred to as bilateral indicator uni-
variate LCS models (Kievit et al., 2018) of the hippocampal subfield 
volumes – to replicate findings of the univariate LCS models. 

All models were computed using maximum likelihood estimation 
implemented in lavaan. To evaluate model fit, we used standard 
goodness-of-fit indices: root mean square error of approximation 
(RMSEA) and comparative fit index (CFI). Models were considered a 
good fit with RMSEA < 0.08 and CFI > 0.95 (Kline, 2015). The differ-
ence in χ2 fit statistics was used to compare nested models, with the 
degrees of freedom being the difference in the number of free parame-
ters. The threshold for statistical significance was alpha = 0.05. In 
addition, we calculated 95% confidence intervals for parameter esti-
mates using 1000 bootstrapped resamples. 

3. Results 

3.1. Age-differences in hippocampal subfield volumes were stable across 
time points but did not match longitudinal change in hippocampal subfield 
volumes over time 

Wave 1 and wave 2 vol estimates strongly correlated for all four 
subfields (rs between.76 and.82, all ps < 0.001). The pattern of cross- 
sectional associations in wave 2 was similar to that observed in wave 
1 (Keresztes et al., 2020, see also Fig. S1). CA1–2, DG-CA3, and total HC 
volume correlated positively, and significantly with age, whereas 
neither SUB nor EC showed significant associations with age. However, 
these patterns were at odds with change observed within individuals. 
Latent change score models (see Fig. 2a for a graphical depiction of 
univariate LCS model specifications; and Table 1 for model fit and 
parameter estimates) indicated significant, positive mean volumetric 
changes for SUB and EC, as well as non-significant negative mean 
volumetric change in CA1–2, and non-significant positive mean change 
in DG-CA3 and in HC. Confidence intervals calculated from boot-
strapped samples (see Table S5), provided support for the robustness of 
the significant associations. Importantly, bilateral indicator univariate 
LCS models of the hippocampal subfield volumes (see Fig. 2b and 
Table S4) also replicated these results. Discrepancies between 
cross-sectional and longitudinal slope estimates are visualized in Fig. 3. 

We observed significant variance in volumetric change in all hip-
pocampal subfields (see Table 1 and Fig. 3). As shown in Fig. 3, the 
number of individuals showing volumetric increase (versus decrease) 
differed across subfields, with 27 (42%), 34 (52%), 46 (71%), and 42 
(65%) of 65 participants showing volumetric increase in CA1–2, DG- 
CA3, SUB, and EC, respectively. Volumes at wave 1 were also 
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significantly negatively associated with volumetric change for all sub-
fields, except for EC. Removing age as a covariate from LCS models did 
not change the observed pattern of results. 

3.2. Cross-sectional age-differences in memory measures were stable 
across time points and agreed with change in memory measures over time 

Wave 1 and wave 2 performance moderately correlated for all three 
memory measures (rs between.36 and.45, ps < .005). Except for spatial 
memory at wave 1, memory measures and age were positively associ-
ated at both waves, although most of these associations did not signifi-
cantly differ from zero (Fig. 4). LCS models on memory measures 
showed a significant linear mean change over time for all three memory 
measures (see Table 1 and Fig. 4). As shown in Fig. 4, we observed 
significant variance in change across the three tasks, with 61%, 74%, 
and 71% of participants showing an increase in spatial memory, lure 
discrimination and associative memory respectively. Wave 1 perfor-
mance on all three tasks was negatively associated with change in per-
formance across the two waves. Again, removing age as a covariate from 
LCS models did not change the observed pattern of results. 

3.3. Consistency of cross-sectional associations between hippocampal 
subfields and memory measures at wave 1 and wave 2 

Zero-order correlations between volumetric measures of hippocam-
pal subfields and memory measures (Fig. S1) showed that SUB was the 
only hippocampal subfield significantly associated with memory at 
either wave. In wave 1, SUB correlated positively and significantly with 
associative memory, and in wave 2 it significantly correlated with all 
three memory measures. Thus, only one association – between asso-
ciative memory and SUB volume – was consistent in both waves. In the 
model of total HC, we observed significant positive associations between 

HC and lure discrimination and spatial memory at wave 2, as well as a 
positive trend at both waves between HC and associative memory. 

3.4. Longitudinal associations between hippocampal subfields and 
memory measures 

Next, we tested for potential longitudinal associations between per-
formance on memory measures and volumetric measures in hippocam-
pal subfields using bivariate LCS models. Altogether, we ran 15 LCS 
models, 4 subfield volumetric measures plus volume of total hippo-
campal body × 3 memory measures, and extracted parameter estimates 
for change–change covariances as well as covariances between memory 
measures at wave 1 and change in hippocampal subfield volumes, and 
between hippocampal subfield volumes at wave 1 and change in mem-
ory (see Fig. 5a for bivariate LCS model specification, and Table 2 for 
model fit and parameter estimates). 

The only significant change-change association was a positive one 
between change in SUB volume and change in spatial memory perfor-
mance (p = .036). However, a confidence interval calculated from 
bootstrapped samples [− 0.001,0.065] did not provide support for the 
robustness of this association. In addition, we observed a significant 
positive association between performance on the spatial memory task at 
wave 1 and change in EC (p = .029). A confidence interval from boot-
strapped samples [0.001,0.03] provided additional support for the 
robustness of this association. No other longitudinal parameter esti-
mates of interest were significant. Importantly, bivariate LCS models 
including bilateral indicator univariate LCS models for the hippocampal 
subfield volumes (see Fig. 5b), replicated the observed pattern of results 
(see Table S6), that was also unaltered when age was removed as a co-
variate from the models. 

Fig. 2. Illustration of univariate latent change score models used to investigate change in variables of interest. Rectangles, circles, and triangles represent indicator 
variables, latent variables, and means, respectively. Estimated variances, covariances and regression paths are shown as thinner solid lines. Thicker solid lines 
represent path values fixed at 1. Age represents age at wave 1. In (A) used to model change in all variables of interest, wave-1 and wave-2 represent observed values 
of a given variable at each wave. In bilateral indicator univariate LCS models (B), used as an additional model of change in hippocampal subfield volumes, latent 
wave 1 and wave 2 estimates are modeled by observed left and right hemispheric volumetric measures. Identical path names denoted by (a–e) represent estimated 
parameters that are constrained to be equal to each other to ensure measurement invariance (Raz et al., 2005). Difference in χ2 fit statistics indicated that lifting these 
constraints did not improve model fit, except for EC. For EC letting indicator variances of left (b) and right (c) differ across waves improved model fit, therefore we 
lifted these constraints in that model (see Bender and Raz, 2015). Parameter estimates of interest are shown separately in Table 1 for model (A) and Table S4 for 
model (B) for better readability of the figure. 
Figures created by Onyx, version 1.0–1010 (von Oertzen et al., 2015). 
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3.5. Sex effects 

To control for effects of sex, we tested for sex differences as well as 
for age × sex interactions in all variables of interest, using independent 
samples t-tests and multiple linear regressions, respectively. We found a 
significant difference in EC volume – with girls having larger volumes – 
in both wave 1 (t(82) = 2.1, p = .04), and wave 2 (t(83) = 4.06, p <

[TS82 0.001 other sex effects were significant, nor any sex × age in-
teractions. Including Sex in LCS models of EC did not change the pattern 
of results reported in 3.1 and 3.4. 

3.6. Additional control and power analyses 

We performed additional independent sample t-tests to rule out the 
possibility that selective attrition between waves may underlie, at least 
in part, the discrepancies between estimates of cross-sectional age-dif-
ferences and longitudinal change. For instance, if dropouts have lower 
or higher values compared to ongoing participants, we could observe 

longitudinal changes even if there is no actual change or miss out on 
detecting longitudinal change. Because the sample also included par-
ticipants who participated in both waves but were scanned only at wave 
2, we defined dropouts for analyses both forward (wave 1 data present 
and wave 2 data missing) and backward (wave 2 data present and wave 
1 data missing) in time. For all volume and memory variables, for both 
forward and backward dropouts, we performed Welch t-tests comparing 
dropouts with non-dropouts. Neither of these analyses yielded signifi-
cant effects (all ts < .97, all ps > .34), suggesting that potential differ-
ences between dropouts and non-dropouts were not affecting 
longitudinal estimates of change in any variables of interest. 

In addition, we also tested whether dropouts differed from non- 
dropouts on sex or age. Forward dropouts were significantly older 
than non-dropouts, t(8.7) = 4.00, p = .003. We found no other age or 
sex differences between dropouts and non-dropouts (See section S1.1 of 
the Supplement for the same analyses performed separately for each 
variable of interest separately). 

To rule out a limit on power to detect otherwise existing associations 

Fig. 3. Cross-sectional age-differences and longitudinal age-trends in hippocampal subfield volumes. Dots represent individuals, triangles represent mean volume at 
each wave. Black lines show regressions of volume on age cross-sectionally at each wave. The thick transparent white line represents mean change, thinner colored 
lines represent individual change with orange and blue lines showing a decrease or increase in volume, respectively. Bold letters ‘C’ and ’L’ represent significant 
cross-sectional age-difference at a given wave, and significant mean change across waves, respectively. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.) 
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in our relatively small sample, we performed post-hoc power analyses 
for univariate LCS models using the RAMpath R package (Zhang et al., 
2015; Zhang and Liu, 2018), based on the original RAMpath software 
(Boker et al., 2002), relying on lavaan (Rosseel, 2012). This analysis 
indicated that LCSs in our longitudinal sample, given an α = 0.05, had a 
power of.99 to detect a mean volumetric change in DG-CA3 and CA1–2; 
this was equivalent to the smallest cross-sectional slope for the same 
regions across the two waves (slope of CA1–2 on Age at wave 1 = 0.34). 
Because longitudinal slopes may indeed be smaller than cross-sectional 
slopes, we drew power curves plotting power against sample size as a 
function of longitudinal slope estimates. This analysis (see Fig. S2) 
indicated that our LCS model’s power decreased below the conven-
tionally accepted.8 value when the estimated slope was below.19, 
meaning that we may have missed existing effects of change if these 
were below an annual change of 19 mm3. 

4. Discussion 

The two most important highlights from our study are (1) we found 
longitudinal changes that had not been predicted based on cross- 
sectional data, and (2) most of our hypotheses based on cross- 

sectional age associations were not supported by longitudinal data. 
Crucially, for hippocampal subfields, we found a cross-sectional trend 
for age-related differences in CA1–2 at wave 1 and significant age- 
related differences in CA1–2 and DG-CA3 at wave 2, coupled with no 
differences in SUB and EC. This pattern of results is partly in line with 
the available evidence for cross-sectional age-differences in childhood 
(Canada et al., 2019; Keresztes et al., 2018; for a review, see: Lee et al., 
2017; Riggins et al., 2018). Together, these findings would suggest an 
ongoing development of hippocampal subfields potentially lasting into 
adolescence. 

In sharp contrast, our hypothesis that DG-CA3 and CA1–2 volumes 
increase over time was not supported by our longitudinal analysis. 
Rather, we observed significant positive changes for SUB and EC. We 
observed substantial individual variation in change over time across all 
variables except for EC. Some of these variations were due to a negative 
association between initial values and change. Despite high variability 
across individuals, we did not find strong change-change associations 
between subfield volume and memory. Importantly, we found no sup-
port for the hypothesis that change in DG-CA3 volume is associated with 
change in the ability to discriminate highly similar memories. Instead, 
our data showed an association between change in SUB volume and 

Fig. 4. Cross-sectional age-differences and longitudinal age-trends in memory measures. Dots represent individuals, triangles represent mean volume at each wave. 
Black lines show regressions of volume on age cross-sectionally at each wave. The thick transparent white line represents mean change, thinner colored lines 
represent individual change with red and green lines showing a decrease or increase in volume, respectively. Bold letters ‘C’ and ’L’ represent significant cross- 
sectional age-difference at a given wave, and significant mean change across waves, respectively. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.) 

Table 1 
Key parameter estimates in univariate latent change score models for all variables of interest.   

Parameter estimates  

Mchange Varchange ßAge-at-wave 1–»wave 1 Covchange–wave 1  

PE (SE) Δχ2 (1) PE (SE) Wald statistica PE (SE) Δχ2 (1) PE (SE) Δχ2 (1) 

Hippocampal subfields 
CA1–2 -0.08 (0.05) 2.45 0.172 (0.031) 5.6 * ** 0.307 (0.153) 3.94 * -0.094 (0.035) 9.20 * * 
DG-CA3 0.015 (0.065) 0.06 0.288 (0.051) 5.59 * ** 0.294 (0.222) 1.74 -0.204 (0.066) 12.70 * ** 
SUB 0.25 (0.088) 7.66 * * 0.533 (0.094) 5.67 * ** -0.01 (0.277) 0.001 -0.417 (0.109) 22.22 * ** 
EC 0.143 (0.047) 8.55 * * 0.154 (0.027) 5.73 * ** -0.007 (0.14) 0.003 -0.033 (0.027) 1.55 
Total HC 0.192 (0.189) 1.02 2.5 (0.451) 5.55 * ** 0.577 (0.572) 1.01 -1.892 (0.498) 21.63 * ** 
Memory measures 
LDI 0.101 (0.019) 24.11 * ** 0.023 (0.004) 5.78 * ** 0.044 (0.050) 0.76 -0.018 (0.003) 73.23 * ** 
SM 0.084 (0.017) 23.02 * ** 0.029 (0.004) 7.23 * ** -0.036 (0.033) 1.17 -0.013 (0.003) 8.375 * * 
Cued recall 0.139 (0.019) 43.36 * ** 0.036 (0.005) 7.03 * ** 0.116 (0.037) 9.35 * * -0.013 (0.003) 22.67 * ** 

Note. M: mean, Var: variance, PE (SE): parameter estimate (standard error), DG: dentate gyrus, SUB: subiculum, EC: entorhinal cortex, HC: hippocampus. SM: Spatial 
memory, LDI: Lure discrimination index. Model fit was perfect for all models, χ2 = 0, RMSEA= 0, CFI= 1. Estimates for error variances, as well as for indicator variable 
means are not presented. ’: p < .1, * :p < .05, * *:p < .01, * ** :p < .001, uncorrected for multiple comparisons. Confidence intervals calculated from bootstrapped 
samples provided support for the robustness of all associations significant at p < .05. a: For Varchange estimates, the difference in χ2 could not be obtained because the 
models did not converge without this parameter. Therefore, the Wald statistic was used instead. Units are mm3/100 for hippocampal subfields and % for memory 
measures. 

A. Keresztes et al.                                                                                                                                                                                                                               



Developmental Cognitive Neuroscience 54 (2022) 101085

9

change in performance on a spatial memory task, although this weak 
effect should be dealt with caution. That said, it is worth noting that this 
effect was not predicted based on the structure–memory associations 
observed at wave 1, but is somewhat consistent with associations be-
tween SUB volume and memory found at wave 2. In addition, we found a 
positive association between spatial memory performance at wave 1 and 
change in EC volume. Because this was also an unpredicted and weak 
association, we refrain from interpreting this specific association until 
further replication. 

4.1. Potential factors driving the disagreement between cross-sectional 
age-associations and longitudinal trends 

Below, we first discuss how these critical discrepancies between 
cross-sectional and longitudinal data may emerge, and their implication 
for research on neural and cognitive development. Then, we consider 
the implications of our specific findings for research on the neuro-
cognitive development of memory, and in particular hippocampal sub-
field development. 

Differences between cross-sectional and longitudinal results are 
commonly attributed to a multitude of factors, as they stem from 
different studies with varying methodologies. One strength in our 
approach here is that we used identical methods across waves, hence 
effects of discrepant methodological details including delineation of 
subfields, the choice of volumetric measure, and delays between waves 
(Canada et al., 2020) were attenuated. However, at least for total hip-
pocampal volume, cross-sectionally agreeing automatic segmentation 
methods have been shown to provide heterogenous estimates for 

longitudinal change (Sankar et al., 2017), suggesting that change esti-
mation may be noisy even with identical automatic segmentation 
methods. Although this likely applies to our method, we believe that our 
analytic approach –modeling hippocampal subfield volumes as latent 
variables expressed by separate hemispheric indicators– reduced this 
concern. 

Moreover, the cross-sectional age span and the interval between the 
two waves of the study were both approximately 2 years, allowing us to 
assess longitudinal and cross-sectional slopes on equal timescales, which 
rarely is the case in a longitudinal study. Second, given the small age- 
range of the samples collected at each wave, it is unlikely that cohort 
effects (Raz and Lindenberger, 2011) drive the observed age-differences 
in DG-CA3 and CA1–2. Third, there were no selective dropouts that 
could have led to disagreement between cross-sectional age-differences 
and longitudinal estimates of change (Nyberg et al., 2010). Although we 
did not find differences in memory or volumetric measures between 
dropouts and non-dropouts, we did find that dropouts after wave 1 were 
older than ongoing participants, and for some variables (see Supplement 
S1.1) predominantly boys. However, these differences can hardly 
explain the effects found: We only found sex differences in volume of EC, 
with boys having smaller volumes than girls. Given that wave 1 volumes 
were negatively associated with change for all subfields, if sex differ-
ences in dropouts had an effect, if any, on observed change in EC, this 
should have been an attenuation of the observed increase. In addition, 
because age was included as a covariate in our LCS models estimating 
change, age differences between dropouts and non-dropouts cannot 
drive the observed effect of change. That said, based on these post-hoc 
tests, we cannot fully rule out that we missed out on any effects, had 

Fig. 5. Illustration of bivariate latent change score models used to assess change-change association between hippocampal subfield volumes and memory measures. 
Rectangles, circles, and triangles represent indicator variables, latent variables, and means, respectively. Estimated variances, covariances and regression paths are 
shown as thinner solid lines. Thicker solid lines represent path values fixed at 1. Age represents age at wave 1. Blue and red colors used to distinguish between 
memory and hippocampal subfield variables respectively. In (A) wave-1 and wave-2 represent observed values of both variables at each wave. In (B), latent wave 1 
and wave 2 estimates of hippocampal subfields are modeled by observed left and right hemispheric volumetric measures. Identical path names denoted by (a–e) 
represent estimated parameters that are constrained to be equal to each other to ensure measurement invariance (Raz et al., 2005). Paths representing means are 
shaded for better visibility. Parameter estimates of the change-change covariance between hippocampal subfields and memory measures are shown separately in 
Table 2 for model (A) and in Table S6 for model (B) for better readability of the figure.(For interpretation of the references to color in this figure, the reader is referred 
to the web version of this article.) 
Figures created by Onyx, version 1.0–1010 (von Oertzen et al., 2015). 
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we no dropouts at all. Fourth, using post-hoc power calculations we have 
also shown that despite the relatively low sample size, our study was 
well powered to detect the magnitude of change in DG-CA3 and CA1–2 
hypothesized based on cross-sectional data. Our null finding of change 
in CA1–2 is even more unlikely to result from low power as the observed 
effect was negative. That said, we may still be missing brain-cognition 
associations due to limited power. Fifth, low sample size may also 
lead to unreliable spurious correlations, and such correlations have been 
pinpointed as potential causes behind disagreeing longitudinal and 
cross-sectional results from the same sample (Louis et al., 1986). That 
said, cross-sectional age-associations and longitudinal changes reported 
here are unlikely to be spurious; the cross-sectional results fit well to a 
consistent line of previous findings. 

One additional possibility is that change in hippocampal subfields is 
nonlinear. The use of only two measurement occasions in our study pre-
cluded the detection of any non-linear effects. Louis et al. (1986) have 
mathematically shown that linearly modeled cross-sectional and longitu-
dinal slopes from the same sample should agree if the age distributions in 
cross-sectional samples are Gaussian and the change is linear or quadratic 
nonlinear. Shapiro-Wilk’s test of normality indicated that our age distri-
butions were normal (for both waves p > .1). This leaves open the possi-
bility that the disagreement between cross-sectional and longitudinal 
slopes for hippocampal subfield volumes in our study are due to non-
quadratic (e.g., cubic) nonlinearity of actual change. This nonlinearity is 
supported by both existing longitudinal studies in the field that have more 
than two measurement occasions. Canada et al. (2021) used an accelerated 
longitudinal design with a 4- and a 6-year old cohort followed for up to 
three years. Using this design, they could assess longitudinal change in 
hippocampal subfield volumes in a sample of children aged 4–8. Intrigu-
ingly, the authors found a positive change in all subfields investigated 
(CA2–4/DG, CA1, and SUB) but only between 5 and 6 years of age. In 
another study using an accelerated longitudinal design, Tamnes et al. 
(2018) assessed a sample of 8–26 year-old participants at 3 measurement 
occasions two year apart from one another. These authors showed 
quadratic effects for the CA1 and cubic effects for the SUB. Both of these 
subfields started off with an initial increase until 13–15 years of age, 
whereas all other regions showed a linear decrease. 

Nonlinearity of hippocampal development as well as of its associa-
tion to memory is also supported by recent longitudinal investigations of 

developmental change in total hippocampal volume (Herting et al., 
2018; Langnes et al., 2020; Lee et al., 2020). Herting et al. (2018) pooled 
multisite data (n = 216) from three longitudinal samples of 
8–22-year-old participants, and found significant nonlinear, including 
cubic, patterns of change. These nonlinear effects may also partly 
explain inconsistent results of investigations of developmental change in 
total hippocampal volume, with studies finding increase (Raffington 
et al., 2019; Swagerman et al., 2014), decrease (Tamnes et al., 2013), 
and null-effect (Barnea-Goraly et al., 2014; Gogtay et al., 2006; Sullivan 
et al., 2011; Yurgelun-Todd et al., 2003). In addition to these data, some 
cross-sectional studies have also found non-linear age-effects in partic-
ular in the case of the SUB (Keresztes et al., 2017; Krogsrud et al., 2014; 
Lee et al., 2014; Tamnes et al., 2014). Nonetheless, given that cubic 
nonlinear effects have been observed for the SUB only, this explanation 
falls short of accommodating our discrepant findings for the other three 
subfields investigated. 

We should note that discrepancies between cross-sectional and lon-
gitudinal results may also emerge because sources of within-person 
variation, i.e., change, and sources of between-person variation, i.e., 
differences as a function of factors such as age, can largely differ both in 
scope and magnitude (Ritchie et al., 2016; Schmiedek et al., 2020). As a 
striking example, in a meta-analysis of 92 studies Seblova et al. (2020) 
showed that between-person variation in cognitive abilities was in part 
driven by levels of education, but the latter was unrelated to 
within-person change in cognitive performance. The same study 
revealed a large heterogeneity in change in cognition that was unex-
plained by several factors (e.g., age, GDP) that explained 
between-person variance in cognition. This underscores the notion that 
research trying to identify key factors affecting change may not be well 
informed by cross-sectional associations. A full discussion on how to 
bridge between-person and within-person approaches is beyond the 
scope of this paper, but we want to point towards important conceptual 
and empirical work on this topic (Voelkle et al., 2014). 

4.2. Developmental change in the subiculum and its implications for 
memory development 

Our results clearly suggest that the SUB undergoes volumetric in-
crease between ages 6 and 10. This notable finding merits particular 

Table 2 
Model fit, and parameter estimates for covariance between change in hippocampal subfields and change in memory measures in bivariate latent change score models.   

LDI Spatial memory Cued recall  

PE (SE) Δχ2 (1) PE (SE) Δχ2 (1) PE (SE) Δχ2 (1) 

Covchange–change 

CA1–2 0 (0.008) 0.002 0.005 (0.008) 0.395 0.005 (0.011) 0.225 
DG-CA3 -0.004 (0.012) 0.119 0.012 (0.011) 1.225 -0.003 (0.014) 0.043 
SUB 0.002 (0.015) 0.027 0.03 (0.015) 4.395 * 0.006 (0.02) 0.096 
EC -0.001 (0.009) 0.005 -0.002 (0.008) 0.057 -0.006 (0.01) 0.313 
HC -0.004 (0.033) 0.012 0.047 (0.032) 2.199 0.01 (0.041) 0.055 
Covvolume at wave 1 – change in memory 

CA1–2 -0.005 (0.011) 0.181 0.006 (0.011) 0.301 0.001 (0.013) 0.008 
DG-CA3 -0.009 (0.017) 0.283 0.002 (0.015) 0.026 -0.005 (0.019) 0.083 
SUB -0.016 (0.020) 0.668 -0.008 (0.019) 0.197 -0.005 (0.023) 0.038 
EC -0.005 (0.011) 0.193 0.001 (0.01) 0.004 0.017 (0.012) 2.181 
HC -0.032 (0.042) 0.588 0.001 (0.039) 0.000 -0.011 (0.048) 0.057 
Covmemory at wave 1 – change in volume 

CA1–2 0.005 (0.009) 0.283 0.01 (0.008) 1.602 -0.003 (0.009) 0.085 
DG-CA3 0.012 (0.012) 1.028 0.01 (0.01) 0.994 0.009 (0.012) 0.531 
SUB 0.011 (0.015) 0.485 0.011 (0.014) 0.629 0.001 (0.017) 0.006 
EC 0.002 (0.01) 0.034 0.016 (0.007) 4.788a 0.001 (0.008) 0.004 
HC 0.031 (0.034) 0.846 0.034 (0.03) 1.353 0.006 (0.035) 0.034 

Note. M: mean, Var: variance, PE (SE): parameter estimate (standard error), DG: dentate gyrus, SUB: subiculum, EC: entorhinal cortex, HC: hippocampus. LDI: Lure 
discrimination index. Model fit was perfect for all models, χ2 = 0, RMSEA= 0, CFI= 1. Estimates for error variances, as well as for indicator variable means are not 
presented. 

a p < .05, uncorrected for multiple comparisons. 
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emphasis for two reasons. First, it is partly in line with previous longi-
tudinal as well as cross-sectional studies, and so far provides the only 
consistent observation across extant longitudinal studies. Second, in 
investigations of hippocampal subfield development, the developmental 
trajectory of the SUB and its association to memory has received little 
attention as compared to the DG, and the CA regions. As pointed out 
earlier, the association between change in SUB volume and change in 
spatial memory performance we observed in this study was weak and 
should be dealt with care. However, the only change–change association 
between memory measures and hippocampal subfields in studies with 
children has been reported for the association of SUB and source 
memory (Canada et al., 2021). Thus, although we caution against 
overinterpretation, we do suggest that longitudinal associations be-
tween SUB and memory development warrant more attention. 

The role of the SUB in memory development has been under- 
investigated. The limited evidence available for humans have linked 
SUB structure and function to delayed recall in adolescents (Jeon et al., 
2019), to mnemonic specificity in young and older adults (Nash et al., 
2021; Stark and Stark, 2017), and to spatial learning in a lifespan sample 
(Daugherty et al., 2016). In addition, cross-sectional studies of hippo-
campal subfield in children have reported associations of SUB volume 
with context (Lee et al., 2014), statistical learning (Schlichting et al., 
2017), and mnemonic discrimination (Bouyeure et al., 2021), whereas 
other studies testing for similar associations in children provided null 
results (see Table S1). 

Even in animal studies, the role of the subicular complex – 
comprising the presubiculum, the parasubiculum, and the SUB – has 
received little attention, and its functions remain elusive. Although 
several studies provided evidence for the involvement of the subicular 
complex in spatial memory and episodic memory, these studies also 
have highlighted the large heterogeneity of its cytoarchitectonic prop-
erties, cognitive functions, and maturational profile (Aggleton, 2012; 
Brotons-Mas et al., 2017; Ku et al., 2017; Lavenex and Lavenex, 2013; 
O’Mara et al., 2009, 2001). For instance, based on cross-sectional his-
tological examination of hippocampi of rhesus monkeys, Lavenex and 
Lavenex (2013) suggested an early maturing network connecting the 
SUB with the EC, and a later maturing network connecting the SUB to 
the CA1. The same data also suggested differential developmental tra-
jectories of presubiculum, parasubiculum, and SUB. In addition, given 
that the subicular regions and neuronal layers are part of distinct hip-
pocampal networks (Aggleton, 2012), deducing their specific functions 
is difficult from either lesion or activation studies (O’Mara et al., 2009). 
Because these regions are – by constraints of technological limits – 
lumped together in high-resolution MR imaging of human hippocampal 
subfields, it is highly likely that such heterogeneity will contribute to the 
available observations (Canada et al., 2021; Tamnes et al., 2018) of 
non-linear development of the SUB. Moreover, SUB measures in human 
high-resolution volumetry often include some transitional zone in which 
both SUB and CA1 cells are present; it is unclear whether this poor 
specificity may contribute to the observed effects or lack thereof. 

4.3. Implications for future research on hippocampal contributions to 
memory development 

Based on the results and theoretical consideration presented in this 
article, we formulate some suggestions for future studies assessing 
developmental trajectories of hippocampal subfields. First, inclusion of 
more than two measurement points per individual will allow researchers 
to detect non-linear change if these exist. More than three measurement 
time points per individual will further allow researchers to detect non 
quadratic non-linearity in change if these exist (Ghisletta et al., 2020). 
Second, a priori power calculations based on the growing number of 
related studies may help to decide on necessary sample size to detect 
both linear and non-linear effects of change (for available tools, see 
Brandmaier et al., 2015; Zhang and Liu, 2018). Importantly, using 
measures with established test-retest reliability and good sensitivity to 

detect change (not only) in hippocampal subfield volumes may help 
increase power to detect change (Homayouni et al., 2021). Third, and 
related, longitudinal sample sizes are necessarily constrained by re-
sources available for recruiting and testing participants, MRI hours, as 
well as manual or semi-automated hippocampal segmentations. There-
fore, a viable route to achieve large enough sample sizes may be to 
combine data in consortia (Herting et al., 2018; cf., Walhovd et al., 
2018). Complementing these efforts with non-verbal behavioral mea-
sures assessing specific hippocampal functions (e.g., variations of the 
mnemonic similarity task; Stark et al., 2019) and spatial tasks should 
enhance such efforts across different nations and regions. Fourth, when 
reporting longitudinal results, reporting cross-sectional results from the 
same studies may help tease apart cohort and period effects and actual 
change. Comparing cross-sectional effects in openly available longitu-
dinal datasets to longitudinal change may be a fruitful direction in this 
regard. 

Longitudinal studies are not without methodological challenges 
(Louis et al., 1986; Raz and Lindenberger, 2011). Beyond their resource 
needs, they also amplify practice and test-retest effects in performance 
(Telzer et al., 2018), which have been related to hippocampal subfield 
volumes in older adults (Bender et al., 2013). Although practice effects 
are intuitive in the case of behavioral studies, longitudinal MRI mea-
surement are also subject to them. For instance, because 
motion-artefacts affect both structural (Reuter et al., 2015) and func-
tional (Satterthwaite et al., 2012) MRI measures, and motion is in turn 
affected by initial exposure to the scanning environment as well as age, 
estimations of changes in MRI measures are likely to be confounded by 
both age and number of repeated measurement occasions (Tamnes et al., 
2017; see Satterthwaite et al., 2012 for a demonstration of this effect on 
functional connectivity). Thus, longitudinal studies need careful plan-
ning to incorporate – if possible – measures of practice effects on 
behavioral and on MRI measures (Maclaren et al., 2012; Telzer et al., 
2018). 

Finally, longitudinal and cross-sectional results may provide infor-
mation about distinct mechanisms of change. Complex and sudden 
changes in one’s environment during development, e.g., schooling, may 
trigger neural changes distinct from ongoing neurodevelopmental 
change (Brod et al., 2017). For instance, intense new types of learning in 
the first school year may lead to synaptogenesis in DG/CA3 and CA1–2 
(Shors, 2004), and perhaps neurogenesis in DG/CA3 (Boldrini et al., 
2018; Sorrells et al., 2018), leading to increase in volume, while at the 
same time, ongoing developmental reorganization of the hippocampal 
circuit is accompanied by pruning in other hippocampal subfields (Bagri 
et al., 2003), leading to a decrease in volume. Combining cross-sectional 
and longitudinal analysis of the same sample may help tease apart such 
parallel but opposing changes in indirect measures of neural change, 
such as volumetry. 

4.4. Limitations 

Our results need to be interpreted in light of some limitations: 
Following extant conventions, we followed a protocol for delineating the 
EC on six consecutive slices anterior to the hippocampal body (see 
Section 2.2). Using a fix number of slices to extract volumetric measures 
from at both waves may have biased any estimates of change for EC 
volume. This makes the observed association between change in EC 
volume and wave 1 performance on spatial memory challenging. 
Related to this, due to the low validity of available hippocampal head 
segmentation methods, our volumetric measures for DG-CA3, CA1–2 
and SUB were constrained to the body of HC, therefore we could not 
capture potential changes in HC head during the observed period. 
Another limitation of our study is the lack of data collected to allow us to 
calculate cohort effects, e.g., in which school year participants were. 
Unfortunately, birth date in this sample is not enough to determine 
when a child started school. Although cohort effects are unlikely given 
the small age-range of the sample, schooling at the age of 5–7 has been 
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shown to affect brain function and cognition independent of age (Brod 
et al., 2017). This result raises the possibility that brain structure may be 
affected by schooling, even in such a limited age-range. In addition, 
although our study was well-powered to detect univariate change, it was 
underpowered to assess fine-grained effects of covariates on change. For 
instance, studies on total hippocampal development using larger sam-
ples found sex interactions (Herting et al., 2018), and thus warrant 
exploring sex effects in future studies of hippocampal subfield 
development. 

Further, additional age-related covariates not assessed in this study 
may provide a more fine-grained picture of neural changes in the hip-
pocampus. Puberty status may be one such variable of interest as it has 
been shown to have both a main effect and an interaction effect with sex 
on hippocampal morphology (Goddings et al., 2014). Lastly, we used 
identical task versions across wave 1 and wave 2, a design feature that 
did not allow us to separate memory gains from practice effects. For 
instance, our associative memory task included an unexpected memory 
test which participants at wave 2 may have anticipated. This in turn may 
explain gains in performance beyond actual memory development. 
Similarly, we did not use online motion detection during structural MRI, 
thus were not able to covary practice effects out of volumetric measures 
in our study. 

5. Conclusion 

This study highlights striking inconsistencies between cross-sectional 
age-associations and longitudinal change. Our results specifically ques-
tion the hypothesis that the DG-CA3, as well as CA1–2 subfields of the 
hippocampus undergo protracted volumetric increase in middle child-
hood and that volumetric change in these regions is related to change in 
memory performance – at least between 6 and 10 years of age. The 
inconsistency between cross-sectional and longitudinal estimates of 
volume–behavior associations has direct implications not only for 
studies of hippocampal subfield volumes–memory associations, but also 
more broadly for studies investigating effects of various mediators (e.g., 
life experiences) of hippocampal subfield development (Phillips et al., 
2021), and studies of developmental brain–behavior couplings in gen-
eral. We hope that emphasizing the observed discrepancies, as well as 
the outlined mechanisms potentially driving them will prove useful to 
studies of neurocognitive change. 
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