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México, D.F., México
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Abstract. r-process calculations have been performed for matter ejected dynamically in
neutron star mergers (NSM), such calculations are based on a complete set of trajectories
from a three-dimensional relativistic smoothed particle hydrodynamic (SPH) simulation. Our
calculations consider an extended nuclear reaction network, including spontaneous, β- and
neutron-induced fission and adopting fission yield distributions from the ABLA code. In this
contribution we have studied the sensitivity of the r-process abundances to nuclear masses by
using diferent mass models for the calculation of neutron capture cross sections via the statistical
model. Most of the trajectories, corresponding to 90% of the ejected mass, follow a relatively
slow expansion allowing for all neutrons to be captured. The resulting abundances are very
similar to each other and reproduce the general features of the observed r-process abundance
(the second and third peaks, the rare-earth peak and the lead peak) for all mass models as they
are mainly determined by the fission yields. We find distinct differences in the predictions of the
mass models at and just above the third peak, which can be traced back to different predictions
of neutron separation energies for r-process nuclei around neutron number N = 130.

1. Introduction
The astrophysical r process produces about half of the heavy elements in the Universe, including
all of the actinides [1, 2]. It is commonly accepted that it occurs as a sequence of neutron captures
and β decays in environments with extreme neutron densities. The natural candidate involves
NSM, in fact numerical simulations indicate that the matter ejected during the dynamical phase
is very neutron rich with extremely large neutron-to-seed ratios (Rn/s > 400) [3, 4, 5]; i.e. there
are many neutrons which can be captured by seed nuclei transporting matter to very heavy
nuclei in the region of the nuclear chart where decay by fission is possible. In this study, we
work under the assumption that all ejecta remain neutron rich.
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Nuclear masses are particularly important as they, via the neutron separation energies, define
the r-process path in the nuclear chart and secondly they are crucial ingredients in the statistical
model calculation of neutron capture cross sections. As the masses of the extremely neutron-rich
nuclei on the r-process path are not known experimentally, they have to be modeled. We use
four different mass models (FRDM [6], HFB21 [7], WS3 [8] and DZ31 [9, 10]) for the calculation
of the neutron capture rates that enter in the r-process simulations. Despite there are two recent
sensitivity studies already available, on the one hand randomly varying individual masses [11],
and on the other hand exploring systematic uncertainties for masses estimated via different
energy density functionals [12]; in this contribution we aim at determining the nuclear origin of
the robust r-process pattern observed in several NSM simulations. It is often stated that NSM
produce a robust r-process due to fission cycling. However, this statement simply expresses the
fact that fission cycling is unavoidable due to the large neutron-to-seed ratios (Rn/s) reached
in NSM ejecta without really explaining the nuclear mechanism responsible for the robustness.
Our paper is organized as follows. In the next section we give a brief description of our r-
process simulations and the input being used. The results of our simulations for the r-process
abundances and their dependence on the adopted mass models are presented and discussed in
section 3. Finally, we conclude in section 4.

2. NSM trajectories and nuclear input
We have calculated the r-process abundances for 528 trajectories with a total ejected mass of
∼ 1.70 × 10−3 M¯ comming from a binary system of two NSs with gravitational masses of
1.35 M¯, which may be representative for the observed double NS systems (see e.g. [13] for a
compilation of measured binary NS masses). In a previous work [14] such trajectories were
classified with respect to two competing rates: the depletion rate due to neutron captures on
seed nuclei (λn) and the hydrodynamic expansion rate (λd). “Slow ejecta” corresponds to most
of the trajectories (484 trajectories with a total mass of ∼ 1.57 × 10−3 M¯), where nearly all
initial neutrons can be captured as λn & λd until the end of the r process at ∼ 1 s. On the other
hand, about ∼ 10% of the ejecta (44 trajectories, ∼ 1.28× 10−4 M¯) initially expand extremely
fast (“fast ejecta”), and as a consequence free neutrons are left at the end of the r process. We
have started our r-process calculations at temperatures of T = 6 GK, with densities ranging from
ρ ∼ 107 g cm−3 to ∼ 3 × 1013 g cm−3. The initial matter compositions have been determined
assuming the matter to be in Nuclear Statistical Equilibrium (NSE). The initial neutron-to-seed
ratios (Rn/s) of those ejecta range from 400 to 2000. Starting from these initial compositions
we have followed the r-process evolution by a large network including more than 7300 nuclei
which cover the nuclear chart from free nucleons up to 313Ds. The dynamics of the r-process
was governed by the astrophysical trajectories, however, consistently corrected for reheating
by energy release in nuclear reactions (for more details see [14]). As nuclear reactions among
these nuclei we considered charge particle reactions, neutron captures and its inverse process,
photo-dissociation, and β and α decay and fission. We have derived the neutron capture rates
consistently for each individual mass model within the statistical model using the code MOD-
Smoker [15]. The photodissociation rates were obtained from the neutron capture rates by
detailed balance. For nuclei, for which the half lives are not known experimentally, we have
adopted the β decay (and β delayed neutron emission) rates from the compilation of Möller et
al. [16], which was derived from QRPA calculations on top of the FRDM mass model. We used
the parametrization of Ref. [17] of the Viola-Seaborg formula to estimate the α-decay rates,
which become relevant for heavy nuclei beyond lead. Finally, for nuclei with Z > 83, where a
competition between (n, γ) and neutron induced fission can take place, we used neutron-induced
reaction rates taken from [18] that are based on the FRDM mass model [6] and the Thomas-
Fermi fission barriers of Myers and Swiatecki [19]. Rates for β delayed and spontaneous fission
were adopted from [20]. Our fission yields were taken from the calculations of Ref. [21] which
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were derived using the code ABLA. This approach also gives a consistent estimate for the
number of neutrons set free during the fission process.

3. Results
3.1. Evolution of the r-process abundances for the slow ejecta
For the r-process nucleosynthesis of the so-called slow ejecta we show in Fig. 1, the abundances
at 3 different phases of the evolution: a) at freeze out, which we define as the moment where
Rn/s = 1, b) the moment when the average timescale for β decays becomes equal to the average
timescale for neutron captures, c) the final abundance, calculated at a time of 1 Gyr.

At freeze-out, the abundances show a strong odd-even staggering, moreover nuclei are pushed
into the transuranium region, where the nuclei with largest abundances are located around
A ∼ 280 corresponding to the N = 184 shell closure, such nuclei have lower barriers and
consecuently n-induced fission dominates over n-capture, and the r-process cycles to medium
mass nuclei rather than producing heavier nuclei. In addition fission is also an important source
of free neutrons, under such conditions the total number of neutrons produced can be divided
into two components: 1) a prompt component that consists of the neutrons evaporated mainly
by the highly excited fragments, and 2) a delayed component that occurs during the decay of
the fragments to the instantaneous r-process path.

Once neutron captures are slower than β decays, matter decays to stability. In particular, the
significant amount of matter above lead, still existing in the middle panels of figure 1, decays to
finally form the lead peak. At 1 Gyr only the long-lived thorium and uranium isotopes survive.
When comparing the time evolution of the third peak (from the upper to the middle to the lower
panel of figure 1) one clearly notices a shift of the third peak to slightly larger mass numbers
in the FRDM and HFB21 mass model but absent in the WS3 and DZ31 mass models. To
understand the reason for this behavior it is important to remember that the r process operates
along a path of almost constant neutron separation energy. The speed at which the r process
proceeds from lighter nuclei to heavier nuclei depends on the beta-decay half-lives which increase
with increasing mass number. On top of this global behavior, there are local effects induced by
the presence of neutron shell closures. In the r-process path nuclei with N & 82 and N & 126
have the longest half-lives. At freeze-out, it corresponds to charge numbers Z ≈ 48 and Z ≈ 70,
respectively. Alternatively, the effective r-process timescale in the region can change if the r-
process path changes due to modifications of the underlying mass model. Different mass models
differ substantially in their predictions in regions where there is a sudden change in the intrinsic
deformation [22]. This is particularly the case around N ∼ 90 and N ∼ 130 where all mass
models used in the present work predict a transition from spherical to deformed configurations.
The particular relevance for the r process is the fact that this transition can be associated with a
sudden drop in the neutron separations energies. This is the case for the FRDM mass model and
its most noticeable consequence is the presence of a narrow peak around A ∼ 136 at freeze-out
(see upper panel for FRDM mass model in Fig. 1). Due to the accumulation of material in this
region, the r process lasts slightly longer using the FRDM mass model when compared with the
other models. The peak becomes washed out at later times due to continuous production of
material in this region by fission. However, neutron captures on the fission yields are responsible
for a flow of matter from the second r-process peak to heavier nuclei. This flow operates in all
used mass models except in FRDM due to the fact that material is halted at N ∼ 90.

The third peak abundance is noticeably more sensitive to nuclear masses that influence the
neutron capture rates. For two of the mass models (FRDM, HFB21) the peak width is noticeably
narrower than observed, the peak height is overestimated, the position shifted slightly to larger
mass numbers and an abundance trough is predicted just above the peak as can be seen in
Fig. 1. This is because the FRDM and HFB21 mass models predict noticeably smaller neutron
separation energies than the Duflo-Zuker or the WS3 models at N = 130, just above the magic
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number N = 126. Thus these nuclei act as (additional) obstacles in r-process simulations. In
summary, the third peak in the abundance distribution shift to higher mass numbers is caused
mainly by late-time neutron captures.
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Figure 1. (Color online) R-process abundances of the slow ejecta for different mass models
at different phases of the evolution. The upper panels show the abundances at Rn/s = 1. The
middle panel at the time where the average timescales for beta-decay and neutron captures
become identical. The lower panel shows the abundances at 1 Gyr when most of the material
has already decayed to the stability.
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3.2. Evolution of the r-process abundances for fast ejecta
In Fig. 2 we show r-process abundances obtained for the fast ejecta at three different phases of
the evolution and for the 4 different mass models. The top panel, for each mass model, shows
the abundances before the “last” fission cycle, when the average mass number 〈A〉 reaches the
final maximum. The middle panel exhibits the freeze-out abundances at τ(n,γ) = τβ rather than
by Rn/s = 1, and the lower panel shows the final r-process abundances at 1 Gyr.
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Figure 2. (Color online) R-process abundances of fast ejecta for different mass models at
different phases of the evolution. The upper panels show the abundances at times before the
“last” fission cycle, when the average mass number 〈A〉 reaches the final maximum. The middle
panel at the time where the average timescales for beta-decay and neutron captures become
identical. The lower panel shows the abundances at 1 Gyr when most of the material has
already decayed to the stability.
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Due to the slower neutron capture rates, the r-process path for the fast ejecta runs noticeably
closer to the region of stability. This has several consequences: First, the position of third r-
process peak, related to nuclei with magic neutron number N = 126, is shifted to larger mass
numbers around A ∼ 200. Second, under the conditions of fast expansion, and slow neutron
captures, the nuclei with magic neutron numbers N = 82 are a noticeable obstacle for the
mass flow towards heavier nuclei. Third, neutron captures are too inefficient to replenish the
region of A ∼ 280 prior to the last fission cycle for most of the trajectories. As a consequence,
the subsequent decay of these heavy nuclei by fission contributes only rather modestly to the
r-process abundances around the second peak at A ∼ 130, as can be seen in the lower panels
of Fig. 2. However, the decay of matter beyond the third peak, after freeze-out, fills up the
abundances around lead.

In contrast to the slow ejecta, the fast ejecta exhibit a large spread in the final abundances
observed between the different trajectories. This points to a very strong sensitivity to details of
the astrophysical conditions and to the nuclear properties, if neutron captures are slow during the
r process. In fact, the fast ejecta, encountered in our NSM scenario, resemble a nucleosynthesis
process somewhat between r-process and s-process.

3.3. Robust r-process abundances
Fig. 3 shows the final abundances at times of 1 Gyr for all individual NSM trajectories and
for all the mass models. Additionally, the figure exhibits mass-averaged abundances for all
trajectories (red curves), for the slow trajectories (green curves), and for the fast ejecta (blue
curves), respectively. To better visualize the contribution of slow and fast ejecta to the total
ejected mass we have multiplied the slow and fast trajectories and their averages by the fractional
contribution of each ejecta, i.e. ∼ 0.9 for the slow and ∼ 0.1 for the fast ejecta.
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Figure 3. (Color online) Final r-process abundances at a time of 1 Gyr for the different mass
models and all trajectories used in the calculations. The grey (brown) curves correspond to the
abundances of the trajectories of the slow (fast) ejecta shown previously in the bottom panels of
Fig. 1 and 2 but without the color gradient. The mass-averaged abundances for all trajectories
(red curves), the slow ejecta (green curves), and the fast ejecta (blue curves) are also shown.
The abundances for the slow and fast trajectories and their averages have been scaled by the
value of their fractional contribution to the total ejecta.
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As already stressed above, the most striking feature of our calculations is the fact that the
final abundances for mass numbers A > 120 are virtually identical, for a given mass model, for
all the slow ejecta, while they vary noticeably for the fast ejecta. Furthermore, the total mass-
averaged abundances show the same pattern as those for the slow ejecta, as these constitute the
dominating part of the ejected mass. We hence conclude that dynamical ejecta of NS mergers
show a robust r-process pattern, as already concluded in refs. [3, 4, 5], provided that Ye in the
ejecta remains low, see refs [23, 24, 25]. We find that the main requirement to achieve a robust r-
process pattern is that the amount of material accumulated at freeze-out in the fissioning region,
A & 250 is much larger than the one present in the region below the 3rd r-process peak. For the
slow ejecta, this is guaranteed by the fact that the beta-decay half-lives grow with increasing
mass number and by the presence of a neutron shell closure around N = 184. Both effects are
responsible of producing a peak in the freeze-out r-process abundances around A ∼ 280 (see
upper panels Fig. 1). The material in this peak decays by fission contributing to the abundances
around the 2nd r-process peak and producing a final robust r-process pattern. For the fast
ejecta, the lack of material accumulated in the A > 250 region, due to the much slower neutron
capture rates at later stage of the r-process, results in reduced impact of fission yields on the
final distributions and in a much larger spread of the final abundance distributions. However,
these trajectories contribute only mildly to the final mass-integrated abundances except for the
region around A = 200.

The general features of this pattern is also independent of the mass models as it is mainly
determined by fission yields. This is demonstrated in Fig. 4 where we compare the final mass-
integrated abundances (at 1 Gyr) for four different mass models (FRDM, WS3, HFB21, DZ31).
Although there are specific differences originating in the dependence of neutron captures on
the underlying mass model, all the calculations reproduce the second and third r-process peaks
reasonably well. We mention again that the peaks have different origins in our simulations: the
peak around A ∼ 130 arises from fission yields, while the peak at A ∼ 195 reflects the N = 126
waiting points in the matter flow towards heavy nuclei. It is also satisfying to observe that the
lead peak around A ∼ 208 agrees reasonably well with the solar abundances. This peak is mainly
produced by α decay of heavier nuclei. Finally also the abundances of the long-lived isotopes
232Th and 238U, which are the final product of some matter with charge numbers Z ≈ 90− 96,
is reproduced reasonably well.
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Figure 4. (Color online) Final mass-integrated abundances for all trajectories at a time of
1 Gyr for all mass models considered in this work.
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4. Conclusions
We have been able to reproduce the main features of the r-process abundances (the second
and third peaks, the rare-earth peak and the lead peak) reasonably well. There are modest
differences in the position of the third peak and in abundance distribution just above this peak
around A ∼ 205. Here experimental work is needed to resolve these different mass predictions
for the N = 130 nuclei.

Most of our simulations corresponding to 90% of the ejected mass, support the hypothesis
that the r-process in dynamical ejecta from NSM yield rather robust abundance distribution in
good agreement with the observed solar distribution for nuclei with A & 120. We have shown
that a requirement to achieve such a robust pattern is that at freeze-out the amount of material
accumulated in the fissioning region (A & 250) is much larger than the material located in the
second r-process peak and above (A ≈ 120–180). To achieve these astrophysical conditions,
a sufficiently large neutron-to-seed ratio (Rn/s) is required, which, together with the fact that
beta-decay half-lives along the r-process path grow with increasing mass number, guarantees
the pile up of material in the fissioning region. The decay of this material by fission produces a
robust r-process pattern in the region A ≈ 120-180 that, however, depends on the used fission
yields (see ref. [26]). This pattern is slightly modified by late neutron captures during the decay
back to stability, which also introduces a small dependence on the astrophysical conditions.

Further extensions of the present work, need to address the impact of variations of nuclear
masses for the calculation of fission and beta-decay rates.
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