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Abstract
We estimate the temperature dependence of the bulk viscosity in a relativistic
hadron gas. Employing the Green–Kubo formalism in the SMASH (Simulat-
ing Many Accelerated Strongly-interacting Hadrons) transport approach, we
study different hadronic systems in increasing order of complexity. We analyze
the (in)validity of the single exponential relaxation ansatz for the bulk-channel
correlation function and the strong influence of the resonances and their life-
times. We discuss the difference between the inclusive bulk viscosity of an
equilibrated, long-lived system, and the effective bulk viscosity of a short-lived
mixture like the hadronic phase of relativistic heavy-ion collisions, where the
processes whose inverse relaxation rate are larger than the fireball duration
are excluded from the analysis. This clarifies the differences between previous
approaches which computed the bulk viscosity including/excluding the very
slow processes in the hadron gas. We compare our final results with previous
hadron gas calculations and confirm a decreasing trend of the inclusive bulk
viscosity over entropy density as temperature increases, whereas the effective
bulk viscosity to entropy ratio, while being lower than the inclusive one, shows
no strong dependence to temperature.
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1. Introduction

Transport coefficients give insights about the microscopic dynamics of interacting matter close
to equilibrium. The shear viscosity over entropy density η/s is the most extensively stud-
ied transport coefficient in relativistic heavy-ion collisions (RHICs); since the first viscous
hydrodynamic calculations became available in 2008 [1, 2], the extraction of η/s and its tem-
perature dependence has been increasingly refined over the last decade. However, the situation
is a bit different for the case of the bulk viscosity. Since AdS/CFT calculations (as models for
QCD dynamics in the strong coupling) imply that it is very small for nearly-conformal sys-
tems [3], the bulk viscosity ζ (and its corresponding dimensionless ratio ζ/s)—which can be
thought of as the resistance to uniform expansion/compression of a fluid—has not been subject
to the same extended treatment as η in the context of RHICs [4]. It should be pointed out that
although ζ is identically zero in conformal fluids [5], and that QCD approaches conformality in
the limit of high energies/temperatures [6, 7], there is no evidence that the nuclear matter which
is produced in accelerators (even at the highest LHC energies) is a conformal fluid. Moreover,
the system becomes less and less scale invariant as the system cools down with time [8].

Although not exhaustive, some studies on the effect of bulk viscosity on some observables
such as elliptic flow [9, 10] and particle spectra [11] were made. More recently, the bulk viscos-
ity has started attracting more attention since it was pointed out by phenomenological studies
in hybrid models that the inclusion of bulk viscosity as described by [12] was important in
some cases to properly reproduce simultaneously the radial and azimuthal flow anisotropies
[13, 14]. Most notably, the first quantitative extractions of shear and bulk viscosities employing
Bayesian techniques have recently appeared [15, 16]. In these works, the functional form of
the temperature dependence of the transport coefficients influences the prior and therefore an
external input for these is very important. In particular, the bulk viscosity is expected to have a
peak around the transition from hadronic matter to the quark–gluon plasma [16]. Close to the
phase transition at vanishing baryochemical potential calculations based on lattice QCD indi-
cate an enhancement of the bulk viscosity [8]. Above the crossover temperature, a fast drop-off
is also suggested by quasi-particle models [17, 18].

On the purely hadronic side, theoretical calculations of the bulk viscosity are notoriously
more complicated than those of the shear viscosity, and as such are scarcer. However, using dif-
ferent models and computational techniques, the temperature dependence of the bulk viscosity
of a hadron gas was presented e.g. in references [19–35]. Results from the various calculations
differ from one another by an order of magnitude or more, as we will see when comparing our
own results with some of these calculations.

Among these calculations we will pay special attention to those restricted to very low
temperatures where pions dominate the hadronic mixture. In this regime the interactions of
pions can be described by chiral perturbation theory (and its unitarized version to describe the
resonant energy domain). One of these calculations [23] applied a diagrammatic Green–Kubo
method and predicted a double bump structure for ζ at low T. The first of these bumps was
explained from the explicit conformal breaking due to the pion mass, while the second was
related to the conformal anomaly appearing at temperatures close to the crossover. A calcu-
lation with similar interactions but using the Boltzmann–Uehling–Uhlenbeck equation [28]
further commented that the addition of a pion pseudochemical potential was also necessary
for a consistent treatment of pion elastic collisions. However, in reference [27] the focus
was on the much slower 2 ↔ 4 pion inelastic processes and obtained a very different value
of the bulk viscosity (diverging at T = 0). These rather different calculations illustrate the
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effect of including or excluding particle number-changing processes: whereas reference [27]
uses the idea that the slowest processes (inelastic collisions) should dominate the value of
ζ, references [23, 28] argue that such processes are so slow that they cannot be effective at
all in RHICs. In this paper we will clarify the conceptual difference between the two points
of view—distinguishing between ‘inclusive’ and ‘effective’ bulk viscosities—by addressing
this coefficient using the microscopic simulation code SMASH (simulating many accelerated
strongly-interacting hadrons).

In the following we will present various results for the bulk viscosity in simple hadronic
systems of various chemical compositions, among which hadronic predictions for hydrody-
namical calculations of RHICs. Some more technical considerations that have to be taken into
account in order to obtain them will also be discussed.

In section 2 we introduce the methodology to extract the bulk viscosity via a Green–Kubo
relation and introduce the SMASH transport approach. In section 3 we apply the model to
a simple relativistic gas interacting with constant cross section, where comparison with the
corresponding Chapman–Enskog solution will calibrate our model in terms of systematic
uncertainties. In section 4 we show that adding resonances to the system requires a revisit-
ing of the assumption made for the form of the correlation function. We show how the simple
exponential decay ansatz breaks down, and further analyze the effect of the resonance life-
times. In section 5 we apply the method to the full hadron gas for several temperatures and box
sizes. We introduce definitions for the inclusive and effective bulk viscosities and present final
results for both ζ/s and ζeff/s, comparing with previous calculations. Finally, in section 6 we
summarize our work.

2. Methodology

2.1. Green–Kubo formalism

In this work we apply the Green–Kubo formalism [36–38] to obtain the bulk viscosity coef-
ficient of different systems. While different versions of the Green–Kubo formula exist in the
literature depending on the system and thermodynamical ensemble used, the most general form
reads [39–43]

ζ =
V
T

∫ ∞

0
dt 〈ΔΠ(0)ΔΠ(t)〉, (1)

where V is the volume of the system, T is the temperature, and ΔΠ(t) ≡ Π(t) − 〈Π〉 is a
fluctuation around the thermodynamical equilibrium average. The variable Π is defined as

Π(t) ≡ P(t) −
(
∂P
∂ε

)
n

ε(t) −
(
∂P
∂n

)
ε

n(t), (2)

where P(t) = 1
3 Tii(t)4 is the (instantaneous) pressure, ε(t) = T 00(t) the (instantaneous)

energy density and n(t) = j0(t) the (instantaneous) particle density. All components of the
energy–momentum tensor Tμν and the particle 4-current jν are understood to be averaged
over V ,

Tμν(t) =
1
V

∫
dr Tμν(t, r), jμ(t) =

1
V

∫
dr jμ(t, r). (3)

4 Our Minkowski metric convention is mostly minus gμν = (+,−,−,−).
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In Π(t) appear two thermodynamical quantities: the speed of sound at constant number
density and the compressibility at constant energy density. These quantities naturally appear
in the source function (left-hand side) of the Boltzmann equation when considering the bulk
viscosity of a gas with a conserved (net) particle number [19, 44–46].

For later reference the adiabatic speed of sound at constant entropy per particle S = s/n is
related to these two quantities as [44, 46]

v2
S =

(
∂P
∂ε

)
s/n

=

(
∂P
∂ε

)
n

+
n
w

(
∂P
∂n

)
ε

, (4)

where w = ε+ P is the enthalpy density. Expressions for all these quantities as functions of
temperature are given in appendix A.

For convenience let us define the autocorrelation function

Cζ (t) ≡ 〈ΔΠ(0)ΔΠ(t)〉, (5)

which will be extracted from our numerical SMASH simulations and integrated over time as in
equation (1). For other transport coefficients such as the shear viscosity or electric conductivity
in dilute systems [47–52] it is generally assumed that the correlation function takes the form
of a decaying exponential. This ansatz can be motivated by the relaxation-time approximation
of the Boltzmann equation [53] or by the causal hydrodynamic equations [54]. This particular
form should always be confirmed a posteriori within the precision of the data acquired. We
have checked it for every case presented in this work. If this ansatz is inadequate, then it will
be not used (as will happen for hadron mixtures later on). For the bulk viscosity, this ansatz
reads

Cζ (t) = Cζ (0) e−t/τζ , (6)

where τ ζ is the bulk relaxation time of the system. From equation (1), it follows that

ζ =
Cζ (0)Vτζ

T
. (7)

In some previous works the relaxation time τ ζ has been estimated to be related to the mean
free time of the particles, i.e. the average time between collisions used for other transport coef-
ficients as well. However this introduces a new source of uncertainty, as different transport
coefficients are sensitive to different transport mechanisms. For example, while the mean free
path is inversely proportional to the total cross section, the shear viscosity is sensitive to the
‘transport cross section’, which could be a factor of 2 smaller than the total cross section in a
p-wave scattering [50]. More importantly, the use of the mean free time misses the dependence
of τζ on the resonance lifetimes, which was noted to be very important in the shear viscosity
case [50]. As we will see, this will also prove to be particularly significant for the bulk viscos-
ity, where the relaxation times for elastic and inelastic processes are, in general, completely
different [27, 55].

It is helpful to realize that the value of Cζ (0) is an equilibrium quantity. From its definition,

Cζ (0) =

〈∫
d3 p1

(2π)3
[ f1(0) − f eq

1 ]

[
p2

1

3E1
−

(
∂P
∂ε

)
n

E1 −
(
∂P
∂n

)
ε

]

×
∫

d3 p2

(2π)3
[ f2(0) − f eq

2 ]

[
p2

2

3E2
−

(
∂P
∂ε

)
n

E2 −
(
∂P
∂n

)
ε

]〉
, (8)
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where f eq
1 = f eq(p1) is the (spatially-averaged) distribution function in equilibrium e.g. the

Maxwell–Boltzmann function f eq
1 = g exp[−(E1 − μ)/T] (g is the internal degeneracy of the

particle), and E1 =
√

p2
1 + m2.

To compute Cζ(0) we need to know the equal-time correlation function of the spatially-
averaged fluctuation of the distribution function,

δ f1(t) ≡ f1(t) − f eq
1 , (9)

for which we can directly apply the result of [56] for the 2-point correlation function,

〈δ f1(0)δ f2(0)〉 = (2π)3

V
f eq

1 δ(3)(p1 − p2). (10)

Combining these, we obtain

Cζ (0)V =

∫
d3 p

(2π)3
f eq(p)

1
E2

p

[
p2

3
−

(
∂P
∂ε

)
n

E2
p −

(
∂P
∂n

)
ε

Ep

]2

. (11)

Incidentally, this formula exactly coincides with the quantity Tζ/τζR derived in [46] for a
(Bose) gas with binary interactions. The result in [46] uses the relaxation time approxima-
tion, where one identifies τζR � τζ . Using the expressions given in appendix A for the differ-
ent thermodynamics quantities appearing in (11), one can compute the explicit temperature
dependence of Cζ(0).

2.2. Hadron gas modeling: SMASH

In this work we use the SMASH transport approach [57, 58] to simulate infinite hadronic
matter in a box with periodic boundary conditions. In SMASH, all well-established hadrons of
the PDG [59] are included, with their interactions modeled by resonance excitation and decay,
elastic as well as inelastic 2 ↔ 2 processes.

At this point it is important to mention that the V used in our analysis is the entire simulation
box volume, instead of a subvolume of the whole system. By doing so, we get that the total
energy and total particle number are conserved (at least in simple systems), bringing the system
in a sort of microcanonical ensemble over V . ThereforeΔn(t) = Δε(t) = 0, and the correlation
function reduces to

Cζ (t) = 〈ΔP(0)ΔP(t)〉. (12)

The instantaneous pressure P(t) is extracted from the energy–momentum tensor Tμν(t) of
the equilibrated system, following the methodology described in [50, 51]. Such simulations
provide the complete phase-space information of all particles in the system, which are in this
case discrete, and given at specific time steps. For this situation, we can define the components
of the energy–momentum tensor as

Tμν(t) =
1
V

N∑
i=1

pμ
i (t)pν

i (t)
p0

i (t)
, (13)

where N is the total number of particles in V , pμi is a component of the momentum 4-vector
associated with particle i.
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The averaging contained in the correlation function (12) also has to be defined for the
discrete times t ≡ uΔt at which the information is available,

Cζ (t) = 〈ΔP(0)ΔP(uΔt) = lim
K→∞

1
K − u

K−u∑
s=0

ΔP(sΔt)ΔP(sΔt + uΔt), (14)

where K is the total number of considered time steps, u is a positive integer with u < K and
Δt is the time interval between each time step. It is numerically challenging to take the limit
of K →∞ in equation (14) and thus the relative error of any numerical computation of the
correlation function necessarily increases rather quickly with time and eventually reaches a
state of pure noise, as one can see for example on figure 2.

3. Simple gas with elastic interaction

A single-component relativistic gas interacting through elastic collisions provides the first
example to test our method. In the case of a gas with constant, isotropic cross section (hard-
sphere gas) the bulk viscosity is zero in the nonrelativistic and the ultrarelativistic limits [5, 8].
However in an intermediate domain of temperatures the bulk viscosity is small, but nonzero.
Without loss of generality we will assign a mass to the particles m = 138 MeV, and internal
degeneracy of g = 3 (resembling a pion gas but interacting with a constant cross section of
σ = 20 mb).

Such a hard-sphere gas has been studied before in the context of the bulk viscosity. Its value
has been extracted analytically e.g. in [60] by linearizing the collision term of the Boltzmann
equation using the Chapman–Enskog approximation to first order (see also [31]). More gener-
ally, by modifying the numerical codes used in [28, 46] we can extend the Chapman–Enskog
expansion for this system to higher orders to check convergence. This will help us to calibrate
the Green–Kubo calculation in this simple case.

To start with, it is instructive to look at a sample of the measured fluctuations of the pres-
sure in such a system and to compare it to the off-diagonal energy–momentum fluctuations
Txy(t) associated with shear viscosity (see [50, 61]), which is done on figure 1. While the fluc-
tuating nature of the two signals appears relatively similar at first glance, there are significant
differences between them. First, the amplitude of the signal for Txy(t) is roughly 25 times
larger than the case of the pressure (notice the different OY axis scales). Second is the fact that
pressure does not oscillate around zero, and thus an average pressure needs to be subtracted
in the correlation function. This is not as trivial as one could think, as the average pressure
also introduces a statistical error which can be non-negligible. While the calculation of the
correlation function is done over 4000 time steps spanning 200 fm as in the case of the shear
viscosity (see [50]), we find that in order to get results in which the statistical error does not
completely wash out the signal, the averaging of the pressure requires much larger data sets.
We determined that for the studied cases, an averaging going over 100 000 time steps spanning
5000 fm was sufficient, in the middle of which we perform the previously mentioned
calculation of the correlation function.

Note that, in principle, the thermodynamic pressure can be calculated analytically for such
a gas assuming Boltzmann thermodynamics (e.g. via the Jn,k functions defined in appendix
A). However, in more complex systems, although the SMASH equilibrium is very close to the
grand canonical one, it can deviate from it slightly. For these bulk viscosity calculations, even
minimal deviations in the average pressure of the order of a fraction of a percentage point can
make a significant difference in the final signal, and thus such an analytical calculation would
be highly non-trivial to perform to the required precision. Therefore, to keep our methodology
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Figure 1. Sample fluctuations for the shear (left) and bulk (right) channels for a gas of
particles with m = 138 MeV interacting via a constant σ = 20 mb cross-section at a
temperature of 125 MeV in a V = (20 fm)3 volume. The thick blue band on the right
panel is the average pressure, with its uncertainty.

Figure 2. Bulk correlation function for a gas of m = 138 MeV particles interacting
through constant cross-section σ = 20 mb at various temperatures (left) and system
volume (right), as well as exponential fits, fitting from t = 0–10 fm.

consistent with the following sections, we always use the numerical extraction of the average
pressure, instead of the Boltzmann expression.

Figure 2 shows a collection of correlation functions. The left panel illustrates how a rising
temperature leads to a steeper Cζ (t) (which translates to a shorter relaxation time) as well as
the expected increase of the statistical error as time increases. What is quite unique to the case
of the bulk viscosity is that the initial value Cζ (0) can have a relatively large statistical error,
up to 20% in this case, whereas in previous works the same error on the shear viscosity [50]
or electrical conductivity [51] correlation function initial value was never larger than ∼6%,
which would barely be visible.
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Table 1. System size used for the single gas calculation of the bulk viscosity. For each
temperature we use two sets of box sizes, denoted as ‘larger box’ and ‘smaller box’ in
the figures. The volume of each box is V = length3.

T = 75 MeV T = 100 MeV T = 125 MeV T = 150 MeV T = 175 MeV

Larger box, length 200 fm 100 fm 60 fm 40 fm 30 fm
Smaller box, length 60 fm 20 fm 20 fm 20 fm 20 fm

Figure 3. Correlation function at t = 0 for a gas of m = 138 MeV particles interact-
ing through constant cross-section σ = 20 mb at various temperatures. The dots are
the extracted results from SMASH, and the solid line is the analytical result from
equation (11).

The right panel of figure 2 additionally shows that the correlation function scales as the
inverse of the volume of the box used [cf equation (11)], so that the increase of factor of 3
in the size of the box is reflected by a decreasing of a factor of 27 in Cζ(t), with the slope
being the same in both curves. Reducing the size of the box also reduces the relative statistical
error, as the size of the fluctuations with respect to the average pressure diminishes as volume
increases (10).

To calculate ζ, one then has to strike a balance between having a system which is large
enough for thermodynamic quantities to be calculated, but small enough that the signal does
not get washed out by the statistical error. This volume might differ for each value of the
temperature within the same system, as can be seen in table 1, where we provide the specific
volumes used for each temperature. Notice that for the ‘smaller box’ set we have not applied
smaller volumes than (20 fm)3 because the number of pions inside the box becomes very scarce.

In figure 3 we compare the VCζ (0) values for the simple gas as a function of the temper-
ature. The symbols are the extracted values from our simulations using SMASH, including
statistical errors. The solid line is the result of equation (11) at the corresponding temperature.
Larger/smaller boxes refer to the values presented in table 1; notice how the bigger volumes
provide larger error bars, which is consistent with the larger error on the correlation function for
these volumes. We observe that a very good agreement is obtained between the two, providing
a nontrivial check on the method.
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Figure 4. Left panel: bulk viscosity of a gas interacting through constant σ = 20 mb,
as computed with the Green–Kubo formalism and compared to the third order Chap-
man–Enskog calculation. Dots are the result from SMASH for 2 different box sizes
smaller’ and ‘larger’ detailed in table 1. The theoretical calculation comes from the
Chapman–Enskog estimates in references [60] (1st order) and [46] (first to third order).
Right panel: bulk relaxation time for the same system as a function of the temperature,
for the same box sizes.

We proceed to fit the correlation function to the exponential decay form (6). Notice that the
relatively large uncertainty in Cζ (t) makes it difficult to systematically decide where to stop
the fit; we will simply stop it at t = 5 fm for this simple gas case.

The bulk viscosity of this system calculated using the Green–Kubo formalism is compared
to the semi-analytic Chapman–Enskog expansion in the left panel of figure 4 as a function of
the temperature. The first-order Chapman–Enskog result is taken from [60] and numerically
re-calculated with the method of [46], which also allows to go to third-order Chapman–Enskog
where convergence is achieved. The agreement is rather good for temperatures between
100 and 175 MeV, even for smaller system sizes. At low temperatures, the agreement starts to
break down, and, although not shown here, crumbles completely at even lower temperatures.
At those low temperatures we observe that the correlation function is still exponential, but the
uncertainties are large: the number of pions at these temperatures is so small, that statistics are
very poor, making results at lower temperatures than shown unreliable. In parallel, using large
volumes to increase statistics also washes out the signal; this can be seen in the black dots,
which not only underestimate the analytic ζ but also see their error bars increase significantly.
We are thus unfortunately not able to observe the nonrelativistic limit in which the bulk vis-
cosity turns to zero at T → 0. In the right panel of figure 4 we show the relaxation time τζ .
The uncertainty of the large volumes is again much larger than the smaller volumes, although
the central values are compatible with those of the smaller volumes. The two panels of the
figure show a good agreement between different calculations, validating the method for more
complex systems.

4. Effect of resonances

It is known that the presence of internal dynamical degrees of freedom (rotational, vibrational)
as well as inelastic collisions—allowing a redistribution of internal energy in a more efficient
way—contribute critically to the bulk viscosity [55, 62]. The latter might happen via strongly
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number-changing processes like the 2π ↔ 4π considered in [27] or the NN̄ → 5π annihilation,
but also due to the presence of continuous resonance decay and recombination. These processes
made a notable difference already for the shear viscosity [61], and their role is expected to be
even more relevant due to the nature of the bulk viscosity coefficient.

We start this discussion by presenting the bulk correlation function for the full hadron gas
with resonances. While we relegate its full analysis to section 5, it will first serve us as a
motivation to consider a more general ansatz for Cζ(t) in the presence of several hadron species
and resonances.

4.1. Breakdown of the single exponential ansatz

A solid baseline has been established for the calculation of the bulk viscosity at temperatures
between 100 MeV and 175 MeV after using a simple pion gas with constant cross section.
We directly proceed to the case of the full hadron gas as described by SMASH v1.6 [58]. As
mentioned earlier, this gas includes not only elastic but also inelastic processes, be they binary
inelastic 2 ↔ 2 interactions or, most commonly, indirect resonant 2 ↔ 1 ↔ 2 reactions where
two particles will form a resonance of mass m, width Γ(m) and a sampled lifetime averaging at
τ life = 1/Γ(m), after which it will decay into two new daughter particles which can or not be
of the same species as the original ones (it is also possible for resonances to scatter and form
larger resonances with other particles during their lifetime; see [57] for details). Note that in
order to calculate the average pressure of this system to an appropriate degree of precision, we
require simulations to provide at least 5000 fm of equilibrium data; this is extremely costly in
terms of computational power, and as such limits the breadth of the exploration of the parameter
space.

While in this system the particle number is not formally conserved by the inelastic processes,
we make the approximation that the contribution of the third term in equation (2) is small with
respect to the pressure fluctuations. We checked that particle number fluctuations are of the
same order of magnitude as pressure fluctuations, but the former are multiplied by a small
(∂P/∂n)ε (see figure 14), largely reducing their contribution.

Let us consider the normalized (i.e. divided by their value at t = 0) correlation functions
presented on figure 5 for different temperatures. As is readily visible, these offer a considerably
different picture as what we observed in the previous case in figure 2. First, the statistical errors
are here much less significant than they previously were. This is expected, as the introduction
of resonances (and thus of mass-changing processes which dissipates the otherwise purely
kinetic energy) leads to a massive increase in the magnitude of the fluctuations with respect to
the average pressure, and as such, it is expected that the error on the pressure plays a smaller
role in this case.

More importantly, the correlation functions at all temperatures display a somewhat peculiar
shape. In the first 2–3 fm a period of rapid exponential decorrelation is followed later on by
a less abrupt decay over relatively long times before the relative error finally increases to a
point where the signal is dominated by noise. It is evident that the correlation functions are not
describable by a single exponential function, and one needs to abandon the simple ansatz in
equation (6).

4.2. Single resonance gas: resonance lifetime and relaxation time

To physically understand these important modifications of the shape of the correlation function,
we look at a toy system with a minimal content of particles. Let us consider a box with pions
(with their physical mass and isospin degeneracy) interacting through a single resonance, the
ρ meson. We switch off all other possible resonances and set to zero any contact cross section.

10
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Figure 5. Bulk correlation functions for a full hadron gas, where every curve is
normalized with its initial value.

This is a relatively simple system, in which we scale the lifetime of the decay ρ→ π + π by a
multiplicative factor.

Figure 6 shows the correlation function at T = 150 MeV of the π − ρ mixture in which
the lifetime (and thus its relative abundance5) is varied and eventually taken to zero. In
this precise limit we recover the previously discussed case of 2 ↔ 2 elastic scattering with
no intermediate resonance. First notice that the correlation decays exponentially, as we
previously assumed. Second, it is also evident that even a very small τ life profoundly modi-
fies the underlying physics. Such a lifetime allows for a continuous formation and decay of a
resonance allowing the imbalance in the longitudinal (bulk) channel to relax in a more effective
way than a pure local collision. Such a mechanism produces a large increase of the fluctuations
[seen in Cζ (0)], and a reduction of the relaxation time. By decreasing the resonance lifetime,
we increase the number of decays and recombinations per unit time (π + π → ρ→ π + π).
Therefore the relaxation time of the bulk viscosity is shortened, as can be seen in the figure.
However, in the zero lifetime limit the collisions become effectively elastic, and we reach a
limit in which the momentum relaxation is ineffective, with a very large relaxation time.

This example shows the large dependence of τζ on the resonance lifetime. However, no
deviation from the exponential form can be inferred so far.

4.3. Several resonances: effect on correlation function

Our previous analysis concerning the relaxation time dependence on the resonance lifetime
was still possible on the basis of the single exponential decay of Cζ(t). For such a system with
a single channel (one resonance) the correlation function does not develop a non-exponential

5 In equilibrium, a fraction of the system is composed of transient ρ resonances. If only the lifetime is modified with-
out affecting the width used for the cross-section, then the scattering rate remains the same but the proportion of ρ
resonances will vary according to the same scaling as was applied to the lifetime.
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Figure 6. Bulk correlation function at T = 150 MeV for a pion gas using the ρ resonance
for the cross-section for the cases where the ρ has zero, a fifth, half or its full lifetime.

behavior similar to what we see in figure 5. As the next step, it is possible to speculate that the
presence of several interactions and decay modes, with a variety of relaxation times, determines
the more complicated form of Cζ (t). This idea was explored for a binary system of quarks and
gluons in the BAMPS model in reference [63] where a single exponential ansatz was unable
to describe the shear viscosity correlation function.

To validate this hypothesis we study the effect of two independent resonant channels in
the box. We start with the π − ρ system of the previous section (using the physical ρ life-
time, not modified anymore). In addition, we introduce a parallel particle/resonance system
in the simulation. We add a non-physical particle species B with the same mass as the pion
(m = 138 MeV) interacting through a single resonance B∗ with the same pole mass as the ρ
meson (m = 776 MeV); however, we use a much smaller decay width for the B∗ (see table 2).
In summary, we insert a copy of the π − ρ system but with a longer-lived resonance6. Finally,
to simplify the analysis, note that the π − ρ and the B − B∗ are not coupled to each other.

The reason for such a particular system is the following. Under a fluctuation in the bulk
channel, the π − ρ subsystem will have a relaxation time of the order of τ life ∼ 1/Γ � 1 fm
(similar to the result in the previous section). The new B − B∗ system has a significantly lower
cross-section, and a lifetime which is an order of magnitude larger; this new subsystem is thus
expected to relax ∼10 times slower than the π − ρ one, and it is expected that this separation
of time scales will be visible in the correlation function of the mixture.

6 For practical purposes the B − B∗ system is based on the kaon-a0 system in SMASH with modified parameters
according to table 2. This notably means even though the masses and widths are identical, the degeneracies and recom-
bination patterns of the particles and resonances are not exactly the same and can have an impact on Cζ (0) and τ ζ ; this
has been verified to be a small effect.
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Table 2. Properties of the species present in the π − ρ− B − B∗ system. The 2 reso-
nances, ρ and B∗ decay exclusively to 2 pions and 2B, respectively, with the total decay
widths shown in the third column.

Particle Mass (MeV) Width (MeV) Decay channel

π 138 0 —
ρ 776 149 π + π
B 138 0 —
B∗ 776 20 B + B

Figure 7. Left: bulk correlation functions for various gases interacting through reso-
nances, π − ρ, B − B∗, and π − ρ− B − B∗ at T = 150 MeV. The direct sum of correla-
tion functions of π − ρ plus the B − B∗ is indistinguishable from the correlation function
of the mixture π − ρ− B − B∗. Right: double exponential fit of the mixture of gases.

We plot the bulk correlation function of the different systems in the left panel of figure 7. As
expected, the π − ρ subsystem (in blue) has a smaller relaxation time than the B − B∗ system
(flatter red curve). The smaller Cζ(0) of the B − B∗ is due to the more suppressed resonant
contribution, as the broader ρ resonance weights more in the thermodynamic average of Cζ(0).
For both subsystems the correlation function is a single exponential, as expected.

Looking at the correlation function of the mixture of π − ρ− B − B∗, we observe a non-
exponential shape comparable to the ones for the full hadron gas in figure 5. Even more
interestingly, adding up the individual exponential contributions from the π − ρ and B − B∗

systems results very precisely in the same correlation function for the full system, with later
times being dominated by the B − B∗ process, the slowest one.

We proceed to fit the resulting correlation function of the mixture at T = 150 MeV to a
double exponential form,

Cζ (t) = Cζ,π(0)e−t/τζ ,π + Cζ,B(0)e−t/τζ ,B. (15)

The tail of the correlation function is first fitted to extract Cζ,B(0) and τ ζ,B, and then subtracted
from the total correlation function. After checking that the remaining function is indeed expo-
nential, it is fitted to obtain Cζ ,π(0) and τ ζ,π . The final fit is shown in the right panel of figure 7
in dashed line (the correlation function itself is hidden by the fit, but its error band is still vis-
ible). We obtain τ ζ,π = 0.91 fm and τ ζ,B = 9.65 fm. These values turn out to be of the same
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order of magnitude as the respective lifetimes 1/Γρ � 1.32 fm and 1/ΓB∗ � 9.85 fm. Thus,
both microscopic processes of resonance formation/decay do affect the bulk viscosity of the
mixture, each of them with its own characteristic relaxation time.

It is therefore natural to expect that the full hadron gas, being a massively more complex
system, will be described by a collection of individual exponentials. However, contrarily to
the case we just discussed, since many of the subsystems of the full hadron gas are actually
coupled to each other, it would be complicated to associate these individual exponentials to
a specific individual particle-resonance pair. Each one will correspond to each of the many
interlinked subsystems (containing elastic and/or inelastic processes) present in the gas, with
later times being dominated by the slowest such subsystem (i.e. the one containing the slowest
set of processes).

In a more general way, one should then replace the single exponential ansatz by a linear
combination of many such exponentials,

Cζ (t) =
∫ ∞

0
dτ ρ(τ ) exp

(
−t/τ

)
, (16)

where the kernel function of relaxation times ρ(τ ) is normalized to
∫ ∞

0 dτ ρ(τ ) = Cζ (0) and
can be found, in principle, via a Laplace transform of the correlation function [64]. Notice that
the range of the possible relaxation times runs from 0 to +∞, accommodating fast as well as
slow processes.

However, in the remaining part of this work we do not need to use the full integral version of
equation (16), as we will see that the kernel function ρ(τ ) can be taken as a linear combination
of a few Dirac deltas,

ρ(τ ) = 2
N∑
i

Cζ,i(0)δ(τ − τζ,i),
N∑
i

Cζ,i(0) = Cζ (0), (17)

one for each relaxation time taking place in the system. Notice that for N = 1 one recovers
equation (6).

5. Full hadron gas

We focus again on the correlation functions of figure 5 for the full hadron gas, and use the multi-
exponential form (16) and (17) to fit them. By inspection, we observe that N = 3 components
(that is, three Dirac deltas) are sufficient to achieve a good fit of the correlation functions.
The corresponding relaxation times should be considered as the dominant modes contained
in the kernel ρ(τ ), which are related to physical processes in the hadron system. Of course,
many other relaxation times do exist in the mixture (in principle, as many as independent
microscopic processes), but they carry such a small amplitude that are not reflected in the
correlation function. We perform a global fit using the ROOT library, which takes into account
the error band of Cζ(t) and provides statistical uncertainties of the fitting parameters. A much
more detailed discussion on the multi-exponential fitting can be found in appendix B.

We provide the results for two different sizes of the box, denoted as ‘larger’ and ‘smaller
box’, the precise lengths of which are given in table 3.

The resulting fitting parameters are summarized in tables 4 and 5 of appendix B. Among
them, the relaxation times for each temperature in the larger box are given in figure 8, where
one can see the different time scales taken place in the gas dynamics.

In figure 9 we plot the final result of the bulk viscosity (left panel) and the bulk viscosity
over entropy density (right panel) for the full hadron gas as functions of the temperature.
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Table 3. Box sizes for the full hadron gas in SMASH. For each temperature we use two
sets of volumes, larger and smaller. The volume of each box is V = length3.

T (MeV) Larger box, length Smaller box, length

86 100 fm 60 fm
114 60 fm 40 fm
142 40 fm 20 fm
172 20 fm 10 fm

Figure 8. Relaxation times from 3-mode fits for the full hadron gas in SMASH at four
different temperatures in the larger box calculation.

Along with this ‘inclusive’ ζ and ζ/s (where all modes present in the fit are included in
the calculation) we have included results of an ‘effective’ bulk viscosity coefficient. The latter
is calculated by taking the long-lived modes out of the analysis for phenomenological rea-
sons: in an infinite-lived system all modes contribute to the correlation function at some point,
as the total relaxation of a fluctuation does not happen entirely until all modes in the sys-
tem have equilibrated. In particular, the slowest mode is typically the one that dominates the
bulk viscosity, as it is the one describing the long tail of the correlation function; however
such slow processes are not effective in a short-lived system, if their inverse rate is much
larger than the lifetime of the system. If in RHICs the hadronic phase lasts approximately
10–30 fm, then a relaxation mode with τζ = 102 − 103 fm cannot play any role. The part of
the system corresponding to that mode remains out of equilibrium for the whole time, and does
not contribute to the transport coefficient calculation. We define the effective bulk viscosity ζeff

to be the transport coefficient where such modes have been excluded.
More formally, the effective bulk viscosity can be defined as

ζeff =
V
T

∫ ∞

0
dt Cζ,eff(t, τ ∗), (18)

where the effective correlation function now depends on a cutoff τ ∗, or the order of the lifetime
of the system, above which the modes are suppressed. Using e.g. a hard cutoff to remove
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Figure 9. Bulk viscosity for the full hadron gas for 2 different box sizes. As explained
in the text, the effective bulk viscosity is obtained by removing the long-lived modes.
Left panel: Bulk viscosity ζ. Right panel: ζ/s. The different box sizes are described in
table 3.

these modes,

Cζ,eff(t, τ ∗) =
∫ τ∗

0
dτ ρ(τ ) exp

(
−t/τ

)
. (19)

Note that to obtain the effective bulk viscosity one still integrates the correlation function up to
∞, but the kernel ρ(τ ) is restricted. This definition still assumes the validity of the exponential
ansatz for every mode.

Why should this effective bulk viscosity be of any relevance? Suppose that one tries to
describe the evolution of the system by a relativistic hydrodynamic code for heavy-ion colli-
sions with the bulk viscosity as an input parameter to be fixed 7. We argue that the extremely
long-lived processes will hardly happen during the real evolution of the system, so they can-
not be part of the eventually-inferred viscosity. The effective transport coefficient defined
here should be associated to the one obtained from matching experimental observables using
hydrodynamic codes; in contrast, the inclusive bulk viscosity should rather be compared with a
theoretical calculation, e.g. solving the Boltzmann equation in the thermodynamic limit. Due to
the suppression of the dominant mode (or modes), it is clear that ζeff should always be smaller
than ζ.

To completely understand this distinction, let us finally present another example of such an
effective viscosity. Mannarelli et al [65] calculated the shear viscosity due to phonons in opti-
cally trapped cold Fermi atoms. At low temperatures, the mean free path of phonons increases
and exceeds the physical boundaries of the superfluid region. The shear viscosity is propor-
tional to the mean free path, so at low temperatures it is possible to define an effective shear
viscosity where the mean free path is replaced by a distance of the order of the atomic cloud.
In our particular case, the bulk viscosity is proportional to a linear combination of relaxation
times, and the effective bulk viscosity imposes a limiting time of the order of the system’s own
duration.

7 In practice the late dilute stage of the hadronic evolution is usually simulated via a transport approach, instead of using
hydrodynamics, but the argument is equally valid for the denser part of the evolution described by hydrodynamics.
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Figure 10. Averaged (over 2 box sizes) bulk viscosity for the full hadron gas. Left panel:
ζ and ζeff . Right panel: ζ/s and ζeff/s.

In our study, motivated by RHIC physics, we calculate this effective bulk viscosity by
removing the slowest mode of the three (upper points in figure 8), whose relaxation time is
typically much larger than the hadronic lifetime in an RHIC. Notice that for the highest tem-
peratures T = 142 MeV and T = 172 MeV, τ ζ,3 is actually of the order of the lifetime of the
fireball, and one could argue that this mode can still play some role in heavy-ions. Therefore,
one should strictly interpret the effective bulk viscosity as a lower bound in these cases. Also
note that this implies that systems with different lifetimes could have a different effective bulk
viscosity, such as for example in the experiments at the very different beam energies of the
relativistic heavy ion collider and the large hadron collider.

The final results for ζ and ζ/s in figure 9 behave similarly for both box volumes. ζ/s
decreases systematically with temperature to values around ζ/s � 1, perhaps reaching a
plateau around T = 172 MeV. Only the result for T = 86 MeV is quite different in the two
volumes, and might correspond to a poor quality in one of the volumes used, similar to the
discrepancy in the simple pion gas in section 3.

The effective bulk viscosity is always smaller in magnitude, as expected. The ζeff at
T = 172 MeV is somewhat different between the two volumes, due to the different value of the
τ ζ,2 for that temperature. It is not evident to us which one of the two, if any, is of lesser quality.
ζeff/s is a rather flat or slightly increasing function of the temperature for the considered range.

The final value of our coefficients is obtained by averaging the two box sizes and combining
their uncertainties. Our average value for ζ(ζ/s) and ζeff(ζeff/s) is shown in the left (right) panel
of figure 10.

5.1. Discussion and comparison

In this section we attempt to contextualize the present calculation by testing it against previ-
ous calculations of the bulk viscosity. Before doing so, let us briefly comment on the relation
between the bulk viscosity and the adiabatic speed of sound vS defined in equation (4).

In a massless, weakly-coupled gas, previous calculations using the Boltzmann equation
and kinetic theory have shown that the relation between shear and bulk viscosity should be
proportional to the squared non-conformality parameter [43, 62, 66, 67].
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Figure 11. Left panel: pressure and energy density for each of the 4 temperatures in the
full hadron gas computed in SMASH (line is a fitting function in the form P = aεb).
Right panel: speed of sound versus temperature. SMASH result are obtained by using
the fit made in the left panel. The line is the result of the physical resonance gas
approximation in [68], and the lattice-QCD data is extracted from reference [6].

ζ

η
� 15

(
1
3
− v2

S

)2

. (20)

We can try to estimate the adiabatic speed of sound from the measurements of the energy
density and pressure in SMASH for the full hadron gas studied before. This is illustrated in
the left panel of figure 11, where we plot the values of these two quantities for each of the four
temperatures. This shows the dependence of P versus ε needed to obtain the speed of sound.
Before extracting v2

S, we verify whether the entropy density s, number density n or entropy
per particle s/n is held constant in these measurements, as we have not imposed any of those
conditions explicitly. This is detailed in figure 12, where we provide the values of s, n and
s/n for each temperature. None of the three quantities remains absolutely constant but it is
clear that one can rule out an isentropic (constant s) and isochoric (constant n) dependence. On
the other hand, the entropy per particle does not vary much. Therefore it is fair to assume
that the speed of sound, obtained from the relation between P and ε in our plot, will be
approximately adiabatic (constant s/n), or, at least, a close proxy for it.

We parametrize the dependence of the pressure to the energy density with a power law, and
find that P(ε) = 0.153ε0.914, where both quantities are measured in GeV fm−3. The fit is shown
as a solid line in the left panel of figure 11. In the right panel of the same figure we show the
resulting v2

S from this relation in blue dots, which is a decreasing function within this range of
temperatures. Our values compare well with the result of reference [68] for a hadron resonance
gas including resonances up to a mass of 2.5 GeV (similar to ours), and it is also comparable
with the lattice QCD calculation of reference [6], the deviation at high temperatures being due
to the absence of a deconfined phase in our model.

Finally we move to a comparison of available calculations for ζ/s presented in figure 13,
and we shortly discuss every other result with our own. We have shown both ζ/s and ζeff/s
computed from SMASH in red and green symbols, respectively.

• Noronha–Hostler et al [22] use a hadron resonance gas model which assumes a compa-
rable set of hadronic states as the ones used by SMASH. However, this model assumes a
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Figure 12. Entropy density, number density, and entropy per particle of each of the four
temperature points, simulated in the full hadron gas using SMASH.

noninteracting tower of states, and the hadron resonance gas is supplemented with an expo-
nentially increasing density of Hagedorn states [HS]. The bulk viscosity is calculated using
the small-frequency spectral ansatz presented in [8], which matches the Euclidean version
of the correlator of the trace of the energy–momentum tensor. Their result is comparable
to our ζeff/s, as that calculation lacks of the very slow dynamical process affecting our
viscosity. An increase of ζ/s close to Tc is only obtained by the inclusion of the Hagedorn
states (see the two curves on figure 13), and such an increase is not captured by any other
model, except perhaps, by the SMASH effective bulk viscosity due to the amount of dif-
ferent resonances implemented here. Nevertheless, this increase turns out to be very mild,
unless an actual phase transition with a rapid change in degrees of freedom is considered
in the model close to Tc.

• Both Attems et al8 [34] and Rougemont et al [35] calculations are performed in holo-
graphic setups, with certain degree of conformality breaking to get a finite bulk viscosity.
Given the radical different framework it is difficult to compare to our own results. The
bulk viscosity is small in these calculations and rather flat (with a broad peak close to
T = 150 MeV) which is compatible with our values of ζeff/s.

• The calculation of Dobado et al [28] and Lu et al [27] are both computed for a pure pion gas
using chiral perturbation theory at low temperatures. However, their different approaches
illustrate the conceptual difference between ζ and ζeff . While [27] considers the slowest
number changing process affecting the bulk viscosity (2π ↔ 4π) and neglects any elastic
collisions, the calculation in [28] does not consider this process and uses the 2π ↔ 2π
process only with a pion pseudochemical potential. In the first calculation the extremely
slow inelastic process (suppressed by the derivative coupling at low energies) describes ζ .
In the second calculation these processes are absent during the hadronic stage of RHICs
and only elastic collisions are able to build a ζ at the expense of the change in chemical
potential. This might explain why [28] is closer to ζeff/s, while [27] is closer to ζ/s.

However one should also note that neither of these theoretical calculations include
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dynamical resonances like SMASH, and any agreement is probably accidental, as the
scattering processes are different in the three calculations.

• Interestingly, the PHSD calculation from Ozvenchuk et al [30] is not far from our ζ/s,
which can be explained in part because PHSD also propagates resonances, and thus includ-
ing mass changing processes. Using their discrete test particle representation, the bulk
viscosity is computed from a discretized version of the relaxation time approximation,

ζ =
1

9TV

∑
i

∫
d3 p

(2π)3

Γ−1
i (p)
E2

p,i

(
(1 − v2

S)E2
p,i − m2

i

)2
, (21)

where the sum is taken over all particles in the system, which also includes all the
resonances.
While this calculation does not account for the dynamical effects of resonances, their
widths are explicitly incorporated in the bulk viscosity. In that sense, the effect of long-
lived resonances which potentially block the bulk relaxation are also included in the PHSD
bulk viscosity calculation.

• The Moroz calculation [31] uses the relaxation time approximation to analytically calcu-
late the viscosities of the hadron gas in a similar fashion as to what was presented with the
Chapman–Enskog formalism in section 3. In this framework, although all resonances are
incorporated in the various cross-sections of the collision term, they do not per se exist as
propagating particles in the calculation, and only binary elastic collisions are considered.

As this calculation is closer to our ζeff/s, we conjecture that the slow processes domi-
nating ζ/s in SMASH are not included in the list of processes of [31], or that the difference
is due to dynamical effects not being included in that calculation.

• Let us comment now on the state-of-the-art values of ζ/s(T ) extracted from hybrid mod-
els [16, 69, 70]. The temperature dependence follows some predefined ansatz, motivated
by the Hagedorn picture of [22] where ζ/s increases with temperature. A Bayesian anal-
ysis is then employed to constrain the functional dependence using experimental data for
bulk observables at RHIC and LHC energies. We show the final results for the temper-
ature dependence of ζ/s at temperatures close to Tc given in reference [16] in the 90%
credible region, and a more recent (yet unpublished) calculation given in [69] in the 90%
confidence interval. The latter study uses 17 parameters (instead of 14 of the former) and
applies closure tests to validate the Bayesian analyses. In addition, the parametrization
of the prior for the bulk viscosity is different. The values of the bulk viscosity are of the
same order as our ζeff/s (which, we remind the reader, should at these high temperatures
be considered a minimum value, since some contribution from the higher modes might
be missing) but not compatible with ζ/s. This is nicely consistent with the claim that in
heavy-ion collisions, the slowest processes (whose inverse rates are larger than the fireball
lifetime) do not play any role in the inferred bulk viscosity.

We finally comment on the comparison between two results of ζ/s above Tc. The first one [8]
is based on lattice-QCD calculations, and the second one is obtained from Bayesian analyses
using heavy-ion collisions [16]. While the first one shows a large enhancement of the bulk
viscosity up to ζ/s � 0.3 near Tc, the second result shows a more smooth peak with a maximum
of ζ/s � 0.04 (median value in green dotted line in our figure 13). We argue that (part of)
this discrepancy should come from the same conceptual difference between the inclusive and
effective bulk viscosities. While the calculation in [8] is performed for a static QGP medium in
equilibrium with all modes integrated, the method in reference [16] uses information from real
heavy-ion collisions, and estimates the viscosity associated to an evolving, finite-lived system
where slow modes do not have time to contribute. This difference becomes even more evident
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Figure 13. Comparison of several calculations for ζ/s at μB = 0; see text for details.

in the analysis of the chiral critical point in [8], where a very slow critical mode provides the
bulk viscosity with a critical exponent, making it divergent at Tc. In a dynamical system like
a heavy-ion collision, these soft effects are not effective in practice, transforming any possible
large increase of ζ/s into a milder peak like the one seen in [16]. It such a case the effective bulk
viscosity is also blind to the very slow critical modes. This is another reason supporting the
relevance of the distinction between an inclusive and an effective bulk viscosity in heavy-ion
physics 8.

6. Conclusions

We have presented our estimates for the bulk viscosity and ζ/s of a hadron gas as a function
of temperature between the range T = 80–170 MeV at vanishing baryochemical potential.
The results at the highest temperatures should be understood as a theoretical extrapolation, as
the effects of a deconfined medium—which should take place at such temperatures—are not
included.

The calculation of the bulk viscosity is numerically very challenging due to the small size
of the fluctuations in the bulk channel, and because the statistical uncertainties in the pressure
average can be of the same order. The systematic uncertainty is estimated by comparing to
Chapman–Enskog calculations in a simple system with only one particle species. For the final
results in a full hadron gas we can confirm that our calculation lies within the same area as pre-
vious calculations and extractions from experimental data in heavy-ion collisions. We observe
a decreasing trend of ζ/s as a function of temperature, which needs to be reconciled with the

8 Note that the data in [34] was obtained using a 150 MeV crossover temperature and φM = 20.
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expectation of a smooth maximum around the crossover transition to the quark–gluon plasma,
which is absent in our model.

We find that mass-changing processes, namely resonance excitations, have a very strong
influence on the bulk viscosity. This is rather straightforward to understand since such pro-
cesses allow to store kinetic energy in the mass of the particles and enhance the fluctuations
of the kinetic energy of the system. Our results can be employed in future assumptions for the
prior for Bayesian multi-parameter analyses and compared to lattice-QCD calculations once
they become available.

One of our main results is the need for a distinction between the inclusive bulk viscosity ζ
and the effective bulk viscosity ζeff . The first one is computed for long-lived systems in equi-
librium, in which all components of the medium need to relax for the restoration to equilibrium
to occur. We have explicitly shown that the slowest processes determine the bulk viscosity, as
their contribution dominates the decay of the correlation function. These modes with relax-
ation times of several dozens and even hundreds of fm/c make the ζ/s a large coefficient for
all temperatures.

The effective bulk viscosity is the coefficient controlling the relaxation to equilibrium of
systems with a finite lifetime, as the ones happening in RHICs. The very slow modes do
not have enough time to play a role and their contribution to the correlation function are
explicitly removed. This ζeff/s, rather than the inclusive ζ/s, seems to be the analogue to the
extracted bulk viscosity over entropy density in relativistic hydrodynamic simulations, as such
computations pretend to describe the realistic real-time evolution of RHICs. The state-of-
the-art simulations, implementing Bayesian techniques to extract this (and other) parameters
[15, 16, 69, 70] provide values of ζ/s � 0.04–0.1 for temperatures between T = 140 MeV
and T = 160 MeV. Our effective bulk viscosity is compatible with these numbers, whereas
the inclusive ζ/s is not consistent with them. Such a difference illustrates once more the need
of both kind of coefficients. The Green–Kubo method applied to a static box in equilibrium
allows the system to wait until all microscopic processes have relaxed—including the very
slow ones—and incorporate all of them to the ‘genuine’ transport coefficient of the hadron
gas. However, in heavy-ion collisions these very slow modes cannot keep up with the dynam-
ics of the fireball and remain out of equilibrium until freeze-out occurs. Any fast process able to
relax during the fireball lifetime, will have an effect into the transport coefficients, and eventu-
ally, into the experimental observables which depends on those (flow harmonics, mean trans-
verse momentum. . . ). On the contrary, the inferred transport coefficients via hydrodynamic
simulations of RHICs should rarely be affected by the slow modes.

The effect of these very slow modes was not observed in other coefficients like the shear
viscosity, electrical conductivity or cross-conductivities [50–52], where the single exponen-
tial decay was found to be a good approximation (except for very high temperatures where
the system becomes dense). This situation illustrates that the bulk viscosity is a much more
subtle quantity than other transport coefficients; being extremely dependent on the microscop-
ical details of the interactions, any comparison between calculations must be performed with
caution.
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Appendix A. Correlation function at t = 0 and other thermodynamical
quantities

In section 2 we obtained the expression for the bulk correlation function at t = 0,

Cζ (0) =
g
V

∫
d3 p

(2π)3

1
E2

p

[
p2

3
− E2

p

(
∂P
∂ε

)
n

− Ep

(
∂P
∂n

)
ε

]2

× exp

(
−Ep − μ

T

)
, (A1)

with Ep =
√

p2 + m2, and where we have written explicitly the Boltzmann distribution
f eq(p) = g exp[−(Ep − μ)/T]. This quantity is a function of temperature and chemical poten-
tial. For the pion gas with only elastic interactions, we take the pion pseudochemical potential
to zero without loss of generality, while for the full hadron gas the baryochemical potential is
set to zero in this work.

The value of Cζ(0) depends itself on other thermodynamical quantities. In the ideal gas
limit, these can be expressed in terms of some integrals Jn,k(T,μ), as done in reference [46]
but for a Boltzmann gas in the local rest frame,

Jn,k(T,μ) =
g

(2k + 1)!!

∫
d3 p

(2π)3
p2kEn−2k−1

p exp

(
−Ep − μ

T

)
. (A2)

The particle and entropy densities can be expressed as

n = J2,1/T, s = (J3,1 − μJ2,1)/T2. (A3)

For the quantities used in equation (A1) the relations become much more complicated. To
simplify the expressions, let us consider the case μ = 0 from now on, which is the one taken
in this work. We obtain

(
∂P
∂ε

)
n

=
J3,1J1,0 − J2,1J2,0

J3,0J1,0 − J 2
2,0

, (A4)

(
∂P
∂n

)
ε

=
J2,1J3,0 − J3,1J2,0

J3,0J1,0 − J 2
2,0

. (A5)

The adiabatic speed of sound (4) reads

v2
S =

(
∂P
∂ε

)
n

+
n

sT

(
∂P
∂n

)
ε

=
J 2

3,1J1,0 − 2J2,1J2,0J3,1 + J 2
2,1J3,0

J3,1(J3,0J1,0 − J 2
2,0)

. (A6)
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Figure 14. Thermodynamic quantities (A4)–(A6) versus the temperature as a function
of hadron components in an ideal hadron gas.

In a similar fashion Cζ(0) can be expressed in terms of Jn,k(T,μ) functions if desired.
We plot some of these thermodynamic quantities as functions of T for different systems

containing several hadron species. We consider π, K, N, ρ, K∗,Δ, where for the resonances
we need to generalize the expression (A2) to include an additional integral over their spectral
functions.

In figure 14 we present the quantities (A4), (A5) and the adiabatic speed of sound (A6), for
a hadron gas when several species are subsequently introduced. Notice that v2

S already presents
a nonmonotonous behavior when ρ mesons are introduced in the pion gas. For a more realistic
case with more states covering higher masses, we refer to figure 11.

Let us finally comment on two particular cases which can be quite illustrative, although they
are not used in the results of this paper. For massless particles, we note that

Jn,k(T) =
gTn+2

2π2

Γ(n + 2)
(2k + 1)!!

, (A7)

and one obtains
(
∂P
∂n

)
ε
= 0,

(
∂P
∂ε

)
n
=

(
∂P
∂ε

)
S
= 1/3, so the bulk viscosity is seen to vanish

proportionally to the square of 1/3 − v2
S [5, 67].
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Figure 15. Example of the triple exponential fit to the correlation function obtained from
SMASH for the full hadron gas at T = 86 MeV. We show the resulting sequential fit in
dashed line on top of the error band of C(t).

For an ensemble where the particle number n is not conserved, one does not introduce any
chemical potential, and the thermodynamic functions only depends on T. The speed of sound
reduces to,

v2
S =

(
∂P
∂ε

)
S

=
dP/dT
dε/dT

=
J3,1

J3,0
. (A8)

The Cζ(0) in this particular case would read

Cζ (0) =
g
V

∫
d3 p

(2π)3

1
E2

p

(
p2

3
− E2

pv
2
S

)2

exp

(
−Ep

T

)
. (A9)

which can be further simplified to

Cζ (0) =
g
V

∫
d3 p

(2π)3

[(
1
3
− v2

S

)
Ep −

m2

3Ep

]2

exp

(
−Ep

T

)
. (A10)

Combining the expression for the bulk viscosity in equation (7) and our previous result on
the shear viscosity [50] (also using the exponential decay ansatz) we obtain

ζ

η
=

Cζ (0)τζ
Cη(0)τη

, (A11)

where

Cη(0) =
1

15V

∫
d3 p

(2π)3
f eq(p)

p4

E2
p

, (A12)

is the shear correlation function at t = 0, and τη is the relaxation time of a fluctuation in the
shear channel. If we assume that τη � τ ζ and introduce the result (A10) for massless particles
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Table 4. Results from the fits with 3 modes. Above: component-to-component fit, with individual sequential subtractions. Below: fit to ansatz in
one global fit using the ROOT library.

Sequential fit

T (MeV) Cζ ,1(0) (GeV2 fm−3) τ ζ ,1 (fm) Cζ ,2(0) (GeV2 fm−3) τ ζ ,2 (fm) Cζ,3(0) (GeV2 fm−3) τ ζ ,3 (fm)

86 1.96 × 10−11 1.00 1.74 × 10−11 3.55 2.06 × 10−10 1328.01
114 1.01 × 10−9 1.16 2.44 × 10−10 5.47 1.28 × 10−9 92.80
142 1.03 × 10−8 0.66 6.39 × 10−9 2.65 1.75 × 10−8 34.81
172 2.09 × 10−7 0.42 1.85 × 10−7 1.77 5.40 × 10−7 19.31

Global fit

86 (2.49 ± 1.61) ×10−11 1.21 ± 0.53 (1.23 ± 0.69) ×10−11 4.3 ± 2.7 (2.05 ± 0.01) ×10−10 1388 ± 262
114 (9.59 ± 0.80) ×10−10 1.10 ± 0.10 (2.97 ± 1.99) ×10−10 4.9 ± 1.5 (1.28 ± 0.03) × 10−9 93.0 ± 6.8
142 (1.15 ± 0.09) ×10−8 0.73 ± 0.06 (5.52 ± 0.69) ×10−9 3.3 ± 0.6 (1.71 ± 0.03) ×10−8 36.1 ± 1.3
172 (2.86 ± 0.15) ×10−7 0.58 ± 0.05 (1.50 ± 0.09) ×10−7 3.7 ± 0.7 (4.91 ± 0.17) ×10−7 21.6 ± 0.7
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Table 5. Results from the fits with 3 modes for the ‘smaller box’. The fit to the ansatz (B1) is done with the ROOT library.

Global fit
T (MeV) Cζ,1(0) (GeV2 fm−3) τ ζ,1 (fm) Cζ ,2(0) (GeV2 fm−3) τ ζ,2 (fm) Cζ,3(0) (GeV2 fm−3) τ ζ ,3 (fm)

86 (1.35 ± 0.18) × 10−10 1.36 ± 0.26 (4.08 ± 1.51) × 10−11 7.2 ± 4.2 (3.77 ± 0.07) × 10−10 616 ± 171
114 (2.97 ± 0.33) × 10−9 1.02 ± 0.11 (1.26 ± 0.30) × 10−9 4.0 ± 1.0 (4.03 ± 0.07) × 10−9 84.4 ± 4.3
142 (9.63 ± 0.72) × 10−8 0.77 ± 0.06 (3.62 ± 0.51) × 10−8 3.6 ± 1.0 (1.38 ± 0.04) × 10−7 32.9 ± 1.3
172 (2.28 ± 0.06) × 10−6 0.57 ± 0.03 (1.98 ± 0.19) × 10−6 5.6 ± 0.7 (3.05 ± 0.24) × 10−6 25.7 ± 1.9
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(Ep = p) one gets

ζ

η
� 1

V

∫
d3 p

(2π)3

(
1
3
− v2

S

)2

p2 f eq(p) /
1

15V

∫
d3 p

(2π)3
p2 f eq(p)

= 15

(
1
3
− v2

S

)2

, (A13)

which coincides with the well-known relation (20) also in the numerical factor.

Appendix B. Multi-exponential fitting

We fit the correlation functions given in figure 5 to the form

Cζ (t) �
3∑

i=1

Cζ,i(0) exp
(
−t/τζ,i

)
, (B1)

using different methods. First of all, to check that all modes are indeed exponential, we proceed
with a sequential method, as described at the end of section 4: one finds the exponential fit of
the tail of Cζ (t) and then subtracts the fitted component from the full correlation function. Then,
one repeats the procedure to find the exponential decay of the intermediate range of times, and
after another subtraction, one fits the small-t part of the function.

We present an example of such a fit in figure 15 for the temperature of T = 86 MeV (the
one with largest error bars). It is difficult to assign an uncertainty to the sequential fit itself, due
to the rather manual procedure, so it is given as is.

The quality of the fit is very good. We double-check the resulting fit procedure against
a global fit of Cζ (t) using the NonlinearModelFit option in Mathematica [71], and also see
that using a larger number N of exponentials results in a poorer quality of the fit, as some
components have negative amplitudes, which is physically unreasonable.

The parameters of the ‘sequential fits’ for all temperatures are summarized in table 4 in the
upper block of data. All fits have been checked against independent fits in Mathematica (not
shown here).

We apply yet another method by making a global fit using ROOT [72], which takes into
account the error band of Cζ(t) and also provides the statistical uncertainties of the fitting
parameters. The outcome of these fits is shown in the lower block of data of table 4. The
numbers are more or less consistent with the ‘sequential fit’, although some deviations remain.
Notice that the sequential fit carries an additional systematic error (also difficult to extract)
coming from the selection of fit ranges, which has to be decided relatively arbitrarily. In every
case, we checked that both independent fits in table 4 describe the correlation function really
well, and they actually result in a very similar bulk viscosity. In the main text, the global fit by
ROOT is used because it provides a measure of its statistical uncertainty.

For completeness we also provide the results for the global fit in the case of the ‘smaller’
boxes for the same full hadron system. They are shown in table 5 only for the case of the fits
using ROOT package.
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