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We study the diffusion properties of the strongly interacting quark-gluon plasma (sQGP) and evaluate
the diffusion coefficient matrix for the baryon (B), strange (S) and electric (Q) charges—κqq0

(q; q0 ¼ B;S;Q) and show their dependence on temperature T and baryon chemical potential μB. The
nonperturbative nature of the sQGP is evaluated within the dynamical quasiparticle model (DQPM) which
is matched to reproduce the equation of state of the partonic matter above the deconfinement temperature
Tc from lattice QCD. The calculation of diffusion coefficients is based on two methods: (i) the Chapman-
Enskog method for the linearized Boltzmann equation, which allows to explore nonequilibrium corrections
for the phase-space distribution function in leading order of the Knudsen numbers as well as (ii) the
relaxation time approximation (RTA). In this work we explore the differences between the two methods.
We find a good agreement with the available lattice QCD data in case of the electric charge diffusion
coefficient (or electric conductivity) at vanishing baryon chemical potential as well as a qualitative
agreement with the recent predictions from the holographic approach for all diagonal components of the
diffusion coefficient matrix. The knowledge of the diffusion coefficient matrix is also of special interest for
more accurate hydrodynamic simulations.
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I. INTRODUCTION

An exploration of the properties of hot and dense
matter—created in heavy-ion collisions (HICs) at relativ-
istic energies—is the focus of extensive research. It is the
primary goal of experimental programs of the LHC (Large-
Hadron-Collider) at CERN, the RHIC (Relativistic Heavy
Ion Collider) at BNL, the future FAIR (Facility for
Antiproton and Ion Research) at GSI, and the NICA
(Nuclotron-based Ion Collider fAcility) facility at JINR,
which reproduce in the laboratory the extreme conditions of
the early stages of our universe by “tiny bangs.” In the
central region of heavy-ion collisions the deconfined QCD
(quantum chromodynamics) matter—a quark-gluon plasma
(QGP)—is created which can achieve an approximate local
equilibrium and exhibit hydrodynamic flow [1–3]. The

hydrodynamic behavior of the fluid can be characterized by
transport coefficients such as shear η, bulk ζ viscosities, and
diffusion coefficients κ, which describe the fluids dissipa-
tive corrections at leading order. The interpretation of the
experimental data, and especially the elliptic flow v2, in
terms of the hydrodynamic models showed that the QGP
behaves almost as a nearly perfect fluid with a very low
shear viscosity to entropy density (s) ratio, η=s, which
reflects that its properties correspond to nonperturbative,
strongly interacting matter [4–6].
By performing an experimental energy scan of HICs one

can explore the different stages of the QCD phase diagram.
At ultrarelativistic heavy-ion collisions at LHC and RHIC
energies, the QGP is created at very large temperatures T
and almost zero or low baryon chemical potential μB, where
according to lattice QCD (lQCD) results [7,8] the transition
from the QGP to the hadronic matter is a crossover. By
reducing the collision energy one can also explore the large
μB region where one might expect the existence of a critical
point and a 1st order phase transition. Such conditions are
presently under investigation within the RHIC BES (Beam
Energy Scan) experiments and in future by the FAIR and
NICA facilities.
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The theoretical description of the QCDmatter at finite μB,
and especially in the vicinity of the critical point, requires an
appropriate description of transport of conserved charges—
baryon B, strangeness S, and electricQ charges. In order to
study the phenomenon of baryon-stopping, the baryon
diffusion was recently introduced to various fluid dynamic
models [9–11]. Moreover, the baryon diffusion coefficient
has been studied in Refs. [12–18].
In the recent past we have addressed the coupling of the

conserved baryon number, strangeness and electric charge;
the diffusion coefficient matrix (κqq0 , where q; q0 ¼ B; S;Q)
was introduced and evaluated for a hadron gas and a simple
model for quark-gluon plasma (QGP) [15,17]. These
investigations were followed by a more extended study
in the hadronic phase from kinetic theory in the case of the
electric cross-conductivities [19]. Furthermore, a first study
on the impact of the coupling of baryon number and
strangeness was provided in Ref. [17]. For this the diffusion
coefficient matrix of hot and dense nuclear matter has to be
investigated thoroughly being important for accurate
hydrodynamic simulations. It was further motivated that
the off-diagonal coefficients may have implications on the
chemical-composition of the hadronic phase [19].
The study of the transport of conserved electric chargeQ

during heavy-ion collisions has been in the focus of
intensive research. Due to its importance for the description
of soft photon spectra and rates [20–23] as well as for
hydrodynamic approaches modeling the generation and
evolution of electromagnetic fields [24–27], much attention
was paid to the electric conductivity within different
theoretical approaches for the evaluation of the properties
of the partonic and hadronic matter [13–15,17–19,28–42].
The exploration of the QGP properties at finite (T; μB)

are of special interest for an understanding of the
phase transition. The transport properties of the strongly
interacting QGP has been studied using the dynamical
quasi-particle model (DQPM) [43–47] that is matched to
reproduce the equation of state of the partonic system
above the deconfinement temperature Tc from lattice QCD.
The DQPM is based on a propagator representation with
complex self energies which describes the degrees of
freedom of the QGP in terms of strongly interacting
dynamical quasiparticles which reflect the nonperturbative
nature of the QCD in the vicinity of the phase transition
where the QCD coupling grows rapidly with decreasing
temperature according to lQCD calculations [48].
Moreover, the DQPM allows to explore the properties of
the QGP at finite ðT; μBÞ, expressed in terms of transport
coefficients such as shear η, bulk ζ viscosities, baryon
diffusion coefficients κB and electric conductivity σ0 based
on the RTA (relaxation time approximation) [18,47,49].
We note that an important advantage of a propagator

based approach is that one can formulate a consistent
thermodynamics [50] and a causal theory for nonequili-
brium dynamics on the basis of Kadanoff–Baym

equations [51]. This allows us to use the DQPM for the
description of the partonic interactions and parton proper-
ties in the microscopic parton–hadron–string dynamics
(PHSD) transport approach [46,52–55] and to study the
QGP properties out-of equilibrium as created in HICs as
well as in equilibrium by performing box calculations with
periodic boundary conditions [56]. Moreover, the ðT; μBÞ
dependence of partonic properties and interaction cross
sections have been explored in a more recent study within
PHSD 5.0 [49,57,58].
We note that the studies of transport coefficients

(η=s; ζ=s; κB; σ0) within the DQPM (and PHSD) has been
based on the relaxation-time approximation (RTA) as
incorporated in Refs. [59–62] as well as on the Kubo
formalism [63–66] for η=s (cf. [49,56]). In Refs. [15,17,40]
the evaluation of the diffusion coefficient matrix has been
done within the Chapman-Enskog method [67] which
allows us to explore nonequilibrium corrections for the
phase-space distribution function in leading order of the
Knudsen numbers.
In the present study we combine the developments of

Refs. [15,17,18] and evaluate the diffusion coefficient
matrix of the strongly interacting nonperturbative QGP at
finite (T; μB), with properties described by the DQPM
model, based on recently explored the Chapman-
Enskog method [15,17,40]. This allows us to explore
the influence of traces of nonequilibrium effects by
accounting for the higher modes of the distribution
function on the transport properties and compare the
results with the often used kinetic RTA approximation.
We provide the (T; μB) dependence of the diffusion
coefficients κqq0 for q; q0 ¼ B; S;Q charges for baryon
chemical potentials μB ≤ 0.5 GeV, where the phase tran-
sition is a rapid crossover.
This paper is structured as follows. In Sec. II we provide

a short review of the basic definitions and conventions,
followed by a reminder of the basic ideas of the Chapman-
Enskog method and its relaxation time approximation,
which was used to evaluate the diffusion coefficient matrix
in Refs. [15,17,40], and a short review of the dynamical
quasi-particle model (DQPM) [18,43–45,53] in Sec. II C.
In the preface of Sec. III we explain how to achieve
results for the diffusion matrix from the DQPM by using
the Chapman-Enskog method, and we demonstrate the
differences between various assumptions in Sec. III A by
providing an simple example. Finally, we provide and
discuss improved results for all diffusion coefficients and
conductivities and compare them to the available results
from other approaches.

II. FOUNDATIONS

Let x≡ xμ be the four-coordinate and k≡ kμ the four-
momentum. The single-particle distribution function,
fi;k ≡ fiðx; kÞ, of a multi-component quasiparticle system
obeys the effective Boltzmann equation [68]
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kμi ∂μfi;k þ 1

2
∂μðm2

i Þ
∂

∂ki;μ fi;k ¼
XNspecies

j¼1

Cijðx; kÞ; ð1Þ

where Cij is the collision term and the masses
depend on temperature and chemical potentials, i.e.,
mi≡miðT;μB;μQ;μSÞ. The (local) equilibrium state of
the system is described by

fð0Þi;k ¼ gi
exp ðuμkμi =T − μi=TÞ − ai

; ð2Þ

where μi ¼ BiμB þQiμQ þ SiμS is the chemical potential,
gi is the degeneracy of the ith species and

ai ≡

8>><
>>:

þ1 ðBosonsÞ;
−1 ðFermionsÞ;
0 ðClassicalÞ:

ð3Þ

Further, we define in short hand notation:

f̃ð0Þi;k ≡ 1þ ai
fð0Þi;k

gi
¼ 1þ ai

exp ðuμkμi =T − μi=TÞ − ai
: ð4Þ

Furthermore, the isotropic local equilibrium pressure is
determined by the temperature and chemical potentials,
P0 ≡ P0ðT; μB; μQ; μSÞ. In this work, we adapt the isotropic
pressure from lattice QCD [69,70]. From the equation of
state the energy density and the net charge densities are
defined:

ϵ≡ ϵðT; μB; μQ; μSÞ; nq ≡ nqðT; μB; μQ; μSÞ;
q ∈ fB;Q; Sg: ð5Þ

In kinetic theory the net charge densities are defined as:

nq ¼
XNspecies

i¼1

qi

Z
dKiEi;kf

ð0Þ
i;k; q ∈ fB;Q; Sg ð6Þ

where q is the type of the conserved quantum number,
i.e., namely baryon number B, strangeness S or electric
charge Q, and qi is the quantum number (of type q) of the
ith species. In this work we assume a partonic system with
three flavors and thus the following particle species: up-
(u), down- (d), strange-quark (s), the gluon (g), and the
corresponding anti-particles. Furthermore, the Landau
matching conditions were assumed [71]:

XNspecies

i¼1

qi

Z
dKiEi;kðfi;k − fð0Þi;kÞ ¼ 0; ð7Þ

using the notation

dKi ≡ d3ki

ð2πÞ3Ei;k
; ð8Þ

with the on-shell energy Ei;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ k2
i

p
.

An (unpolarized) interaction is characterized by the
invariant matrix-element M̄i1…in→j1…jm ≡ M̄ðki1…kin →
pj1…pjmÞ, which is averaged over the ingoing spin-states
and is summed over the outgoing spin-states. The differ-
ential cross section for a binary process of on-shell particles
(iþ j → aþ b) in the center-of-momentum frame (CM),
where the momenta of the colliding particles obey
kiþk0

j¼paþp0
b¼P¼0 and k0i þ k00j ¼

ffiffiffi
s

p ¼ p0
i þ p00

j ,
is given by

dσij→abð
ffiffiffi
s

p
;ΩÞ ¼ 1

64π2s
pout

pin
jM̄j2dΩ; ð9Þ

where s in the Mandelstam variable and dΩ is the differ-
ential solid angle corresponding to one of the final particles.
The momenta of the initial (pin) and final particles (pout) in
the CM frame are found to be

pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðmi þm0

iÞ2Þðs − ðmi −m0
iÞ2Þ

p
2

ffiffiffi
s

p ; ð10Þ

where i ¼ in=out, mi and m0
i being the masses of the

colliding partons. The total cross section is obtained via:

σij→ab
tot ð ffiffiffi

s
p Þ≡ 2πγij

Z
d cosðϑÞ d

dΩ
σij→abð

ffiffiffi
s

p
; cosðϑÞÞ

¼ 1

32πs
pout

pin
γij

Z
1

−1
d cosðϑÞjM̄j2; ð11Þ

where ϑ is the final polar angle of one of the final particles
in the CM frame, and γij ¼ 1 − 1

2
δij is the symmetry factor.

In this paper we use the short-hand “fμqg” instead of
“μB, μQ, μS” in function arguments, and the ðþ;−;−;−Þ-
signature for the metric. Greek indices run from 0 to 3 and
latin ones run from 1 to 3. Furthermore, we employ natural
units, ℏ ¼ c ¼ kB ¼ 1.

A. First-order Chapman-Enskog approximation

If the perturbations from equilibrium are small, one can
expand the single-particle distribution function in orders of
the Knudsen number (Kn):

fi;k ¼ fð0Þi;k þ ϵfð1Þi;k þOðϵ2Þ; ð12Þ

where ϵ is an assisting parameter for counting the orders of
the gradients (or equivalently, the orders of the Knudsen
number), which will be send to 1 afterwards. This approxi-
mation is known as the Chapman-Enskog expansion to first
order (CE) [67]. Neglecting second-order terms leads to the
linearized effective Boltzmann equation:
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kμi ∂μf
ð0Þ
i;k þ 1

2
∂μðm2

i Þ
∂

∂ki;μ f
ð0Þ
i;k ¼

XNspecies

j¼1

Cð1Þij ½fi;k�; ð13Þ

with the linearized collision term

XNspecies

j¼1

Cð1Þij ½fi;k�≡1

2

XNspecies

j;a;b¼1

Z
R3

dPa

Z
R3

dP0
b

Z
R3

dK0
j

×Wij→ab
kk0→pp0f

ð0Þ
i;kf

ð0Þ
j;k0 f̃

ð0Þ
a;pf̃

ð0Þ
b;p0

×

�
fð1Þa;p

fð0Þa;pf̃
ð0Þ
a;p

þ fð1Þb;p0

fð0Þb;p0 f̃
ð0Þ
b;p0

−
fð1Þi;k

fð0Þi;kf̃
ð0Þ
i;k

−
fð1Þj;k0

fð0Þj;k0 f̃
ð0Þ
j;k0

�
; ð14Þ

and

Wij→ab
kk0→pp0 ≡ ð2πÞ4

16
δð4Þðki þ k0j − pa − p0

bÞjM̄ij→abj2 ð15Þ

for the inelastic binary transition rate. To linear order the
diffusion currents are given via:

Vμ
q ¼

XNspecies

i¼1

qi

Z
R3

dKik
hμi
i fð1Þi;k; ð16Þ

and therefore the explicit mass-term in Eq. (13) does not
affect the currents due to the antisymmetry of the integrand
[17]. Here qi is again the quantum number of type
q ∈ fB;S;Qg of the ith particle species.
For further evaluations with the CE method in this study

we consider a classical system of on-shell particles,
ai ¼ 0 ∀ i, and binary, elastic collisions that are charac-
terized by their angle-integrated, total cross sections, such
that the on-shell transition rate for this case reads:

Wij→ab
kk0→pp0 ¼ ðδiaδjb þ δibδjaÞð2πÞ6s

×
σij→ij
tot

4π
δð4Þðki þ k0j − pa − p0

bÞ: ð17Þ

We remark that, on the level of the CE method, that this
effectively renders it an isotropic approach but the inte-
grated cross sections may be taken from theories describing
anisotropic interactions.
In the following we will review the CE method presented

in previous works [15,17,40], and where it was applied to a
variety of hadronic and partonic systems. For these so-
called tunes, the thermal quantities (energy density, charge
density and pressure), a list of particles and its properties
(mass, charge, etc.), and the (total) cross sections of their
respected interactions are needed. In this work, we want to
apply (“tune”) the CE method to the dynamical quasi-
particle model (DQPM) and therefore significantly
improve our computations for partonic systems from
the former publications. In general the DQPM delivers,
among others, medium-corrected differential cross sec-
tions for anisotropic, inelastic binary processes of partons
(see review of the DQPM in Sec. II C). In order to be able
to use these in the CE method (as presented here), we
evaluate the corresponding total cross section via Eq. (11),
and neglect the inelastic channels. It should be noted that
these cross sections depend on the collisional energy

ffiffiffi
s

p
,

the temperature and the baryon chemical potential,
σij→ij
tot ≡ σij→ij

tot ð ffiffiffi
s

p
; T; μBÞ. For the convenience of the

reader, all underlying assumptions for the CE method
will be again summarized in the preface of Sec. III.
Following the steps taken in Refs. [15,17,40], we can

express the diffusion coefficient matrix for a classical
system under the above given assumptions as

κqq0 ¼
1

3

XNspecies

i¼1

qi
XM
m¼0

λðiÞm;q0

Z
R3

dKiEm
i;kðm2

i − E2
i;kÞfð0Þi;k;

ð18Þ

where the scalars λðiÞm;q0 are solutions of the linearized
Boltzmann equation in the form [15,17,40]:

XM
m¼0

XNspecies

j¼1

ðAi
nmδ

ij þ CijnmÞλðjÞm;q ¼ biq;n; ð19Þ

with the abbreviations

Ai
nm ≡ XNspecies

l¼1

Z
dKidK0

ldPidP0
lð2πÞ6s

σil→il
tot

4π
δð4Þðki þ k0l − pi − p0

lÞfð0Þi;kf
ð0Þ
l;k0En−1

i;k ki;hαiðEm
i;pp

hαi
i − Em

i;kk
hαi
i Þ;

Cijnm ≡
Z

dKidK0
jdPidP0

jð2πÞ6s
σij→ij
tot

4π
δð4Þðki þ k0j − pi − p0

jÞfð0Þi;kf
ð0Þ
j;k0En−1

i;k ki;hαiðEm
j;p0p0hαi

j − Em
j;k0k0hαij Þ;

biq;n ≡
Z
R3

dKiEn−1
i;k ðm2

i − E2
i;kÞ

�
Ei;knq
ϵþ P0

− qi

�
fð0Þi;k; ð20Þ
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and where we further impose Landau’s definition of the
frame [71], which leads to the additional constraint:

Wμ ¼
XNspecies

i¼1

Z
R3

dKiEi;kk
hμi
i fð1Þi;k ¼! 0 ⇒

XNspecies

i¼1

XM
m¼0

λðiÞm;q

Z
R3

dKiE
mþ1
i;k ðm2

i − E2
i;kÞfð0Þi;k ¼! 0: ð21Þ

Above we introduced the truncation order M; for the
sake of simplicity the order is fixed to M ¼ 1 which
corresponds to the 14-moment approximation [72]. We
further define the corresponding conductivities as,
σqq0=T ¼ κqq0=T2 and note that for q ¼ Q or q0 ¼ Q they
are equivalent to the cross-electric conductivities intro-
duced in Ref. [19]. Especially, κQQ=T2 ¼ σel=T is the

electric conductivity, which was already evaluated in
various models [13–15,17–19,28–42].

B. Relaxation time approximation

Anderson and Witting proposed an approximation to the
collision term by defining a governing relaxation time [73].
To first order, we write for each particle species i:

XNspecies

j¼1

Cð1Þij ½fi;k� ¼ −
Ei;k

τi
ðfi;k − fð0Þi;kÞ

¼ −
Ei;k

τi
fð1Þi;k þOðKn2Þ: ð22Þ

The relaxation time τi is related to the scattering rate
Γiðki; T; fμqgÞ. For binary scattering we may write down
themomentumdependent on-shell relaxation time [60,74,75]:

1

τiðki; T; fμqgÞ
¼ Γiðki; T; fμqgÞ

¼
XNspecies

j¼1

1

2!

1

Ei;k

XNspecies

a;b¼1

Z
R3

dK0
jdPadP0

bf
ð0Þ
j;k0 f̃

ð0Þ
a;pf̃

ð0Þ
b;p0W

ij→ab
kk0→pp0 : ð23Þ

From this we can also define the momentum-averaged
relaxation time τi;0 which may be used instead:

1

τi;0ðT;fμqgÞ
¼Γi;0ðT;fμqgÞ

≡ 1

ni

Z
R3

dKiEi;kΓiðki;T;fμqgÞfð0Þi;k ð24Þ

with the on-shell particle density of species i:

niðT; fμqgÞ≡
Z
R3

dKiEi;kf
ð0Þ
i;k: ð25Þ

This is also known as the relaxation time approximation
(RTA) (cf. [59–62]).
In the classical limit and for the case of elastic, binary

processeswith geometric cross sections,σij→ij
tot ≡σtot¼const.,

using Eq. (17) we can make the usual approximation
(see e.g., [17]):

1

τi;0ðT; fμqgÞ
¼ Γi;0ðT; fμqgÞ ≈ σtot

X
j

nj ¼ σtotntot: ð26Þ

Following Ref. [17], the diffusion coefficient matrix in the
RTA can be expressed as:

κqq0 ¼
1

3

XNspecies

i¼1

qi

Z
R3

dKiτi;0ðT; μBÞ
1

Ei;k
ðm2

i − E2
i;kÞ

×

�
Ei;knq0

ϵþ P0

− q0i

�
fð0Þi;kf̃

ð0Þ
i;k: ð27Þ

C. Dynamical quasiparticle model for the
quark-gluon plasma

In the dynamical quasi-particle model (DQPM) [18,43–
45,53] the properties of the QGP are described in terms of
strongly interacting dynamical quasi-particles—quarks and
gluons—with medium-adjusted properties. Their properties
are constructed such that the equation of state (EoS) from
lattice quantum chromodynamics (lQCD) is reproduced
above the deconfinement temperature Tc. These quasipar-
ticles are characterized by broad spectral functions ρi
(i ¼ q; q̄; g), which are assumed to have a Lorentzian form
[44–46]. They depend on the parton masses mi and their
associated widths γi,

ρiðω;pÞ ¼
γi
Ẽi;p

�
1

ðω − Ẽi;pÞ2 þ γ2i
−

1

ðωþ Ẽi;pÞ2 þ γ2i

�
:

ð28Þ

Here, we introduced the off-shell energy
Ẽi;p¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

i −γ2i
p

. In the DQPM the effective (squared)
coupling constant g2 is assumed to depend on temperature
T and baryon-chemical potential μB [47,76–78]. At μB ¼ 0
its temperature-dependence is parametrized via the entropy
density sðT; μB ¼ 0Þ from lattice QCD from Refs. [69,70]
in the following way:

g2ðT; μB ¼ 0Þ ¼ dððsðT; 0Þ=sQCDSB Þe − 1Þf; ð29Þ
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with the Stefan-Boltzmann entropy density sQCDSB ¼
19=9π2T3 and the dimensionless parameters d ¼ 169.934,
e ¼ −0.178434 and f ¼ 1.14631. In order to obtain the
coupling constant at finite baryon chemical potential μB,
we use of the “scaling hypothesis” which assumes that g2

is a function of the ratio of the effective temperature
T� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2B=ð9π2Þ

p
and the μB-dependent critical tem-

perature TcðμBÞ as [79]:

g2ðT=Tc; μBÞ ¼ g2
�

T�

TcðμBÞ
; μB ¼ 0

�
; ð30Þ

with TcðμBÞ¼TcðμB¼0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−αμ2B

p
, TcðμB¼0Þ≈0.158GeV

and α ¼ 0.974 GeV−2. The ðT; μBÞ behavior of
the DQPM coupling g2=ð4πÞ is shown in Fig. 9 in
Appendix VA. At μB ¼ 0 one can see a good agreement
between the lQCD evaluation of the QCD running
coupling αs ¼ g2=ð4πÞ for Nf ¼ 2 [80] and the DQPM
running coupling.
With the coupling g2 fixed from lQCD, one can now

specify the dynamical quasiparticle mass (for gluons
and quarks) which is assumed to be given by the HTL
thermal mass in the asymptotic high-momentum regime
by [46,81]

m2
gðT; μBÞ ¼

g2ðT; μBÞ
6

��
Nc þ

Nf

2

�
T2 þ Nc

2

X
q

μ2q
π2

�
;

m2
qðq̄ÞðT; μBÞ ¼

N2
c − 1

8Nc
g2ðT; μBÞ

�
T2 þ μ2q

π2

�
; ð31Þ

where Nc ¼ 3 the number of colors, while Nf ¼ 3 denotes
the number of flavors. The strange quark has a larger bare
mass which needs to be considered in its dynamical
mass. Empirically we findmsðT; μBÞ ¼ mu=dðT; μBÞ þ Δm
and Δm ¼ 30 MeV. Furthermore, the quasiparticles
in the DQPM have finite widths, which are adopted in
the form [22,79]

γiðT; μBÞ ¼
1

3
Ci

g2ðT; μBÞT
8π

ln

�
2cm

g2ðT; μBÞ
þ 1

�
; ð32Þ

where we use the QCD color factors for quarks,

Cq ¼ CF ¼ N2
c−1
2Nc

¼ 4=3, and gluons, Cg ¼ CA ¼ Nc ¼ 3.
Further, we fixed the parameter cm ¼ 14.4, which is related
to the magnetic cutoff. We assume that the width of the
strange quark is the same as that for the light (u, d) quarks.
The evaluated masses and widths in the DQPM are shown
in Fig. 8 in Appendix VA.
With the quasiparticle properties (or propagators) fixed

as described above, one can evaluate the entropy density
sðT; μBÞ, the pressure P0ðT; μBÞ and energy density
ϵðT; μBÞ in a straight forward manner by starting with
the entropy density sdqp and number density ndqp in the

propagator representation from Baym [82,83] and then
identifying, s ¼ sdqp and nB ¼ ndqp=3 [18]. The isotropic
pressure P0 can then be obtained by using the Maxwell
relation of a grand canonical ensemble:

P0ðT; μBÞ ¼ P0ðT; 0Þ þ
Z

μB

0

nBðT; μ0BÞdμ0B; ð33Þ

where the pressure for μB ¼ 0 is defined using the entropy
density as

P0ðT; 0Þ ¼ P0ðT0; 0Þ þ
Z

T

T0

sðT 0; 0ÞdT 0; ð34Þ

In Eq. (34) the lower bound is chosen between 0.12 <
T0 < 0.15 GeV (we use here T0 ¼ 0.145 GeV). P0ðT0; 0Þ
is the lQCD pressure taken from Refs. [69,70]. The energy
density ϵ then follows from the Euler relation

ϵ ¼ Ts − P0 þ μBnB: ð35Þ
The ðT; μBÞ behavior of the DQPM scaled pressure P0=T4

and scaled energy density ϵ=T4 are shown in Fig. 11 in
Appendix VA. In Ref. [49] we found a good agreement
between the entropy density sðTÞ, pressure P0ðTÞ, energy
density ϵðTÞ and interaction measure IðTÞ ¼ ϵ − 3P0

resulting from the DQPM, and results from lQCD obtained
by the BMW group [69,70] at μB ¼ 0 and μB ¼ 400 MeV.
From the above parametrizations of the masses, widths

and the couplings, cross sections for anisotropic, inelastic
binary tree-level QCD interactions with the dressed propa-
gators and dressed couplings, have been evaluated which
depend on temperature and baryon-chemical potential
[18,49]. The corresponding total cross sections are shown
in Fig. 9 in Appendix VA, and are used of in the Chapman-
Enskog evaluation described in Sec. II A. Further, we
provide new results for the complete diffusion coefficient
matrix from the DQPM in the RTA by using Eq. (27) and
assuming relaxation times from Eq. (23). In the following
the results from both approaches are presented.

III. RESULTS

We provide first results for the diffusion coefficient
matrix for the hot quark-gluon plasma at zero and finite
baryon chemical potential μB by applying the Chapman-
Enskog method, reviewed in Sec. II A and described in
detail in Refs. [15,17,40], to a strongly interacting QGP
system described by the DQPM (see Sec. II C and
Ref. [18]). This is meant to be a significant and important
improvement to the “simplified” model of a partonic
system proposed in Refs. [15,17]. These results—obtained
within the Chapman-Enskog method—are further com-
pared to the results for the diffusion coefficient matrix
calculated within RTA approach based on the DQPM as
well as to various other models. The fact that the linearized
Boltzmann equation is solved in the CE framework implies
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an improvement compared to approaches using the RTA
(also see Ref. [17]) in terms of accounting for high
moments of the distribution function. However, the pro-
posed Chapman-Enskog method requires a few approx-
imations for the QGP description, which are not in the spirit
of the DQPM, in particular:
(1) The system is assumed to obey classical (Maxwell-

Boltzmann) statistics (i.e., ai ¼ 0 for all particle
species in Eq. (2).

(2) All particles are on-shell, therefore only the pole-
masses from the DQPM, which depend on temper-
ature and baryon-chemical potential, are assumed
but their widths are neglected (for general quasipar-
ticle properties see Appendix VA, the Table I and
the Fig. 8).

(3) Inelastic scattering channels are neglected. That
implies that flavor-changing processes are not taken
into consideration, i.e., qq̄ → q0q̄0 are not allowed.

(4) All scattering processes are considered to be repre-
sented by angle-integrated (total) cross sections via
Eq. (11) (i.e., processes are effectively considered to
be isotropic). The dependence on

ffiffiffi
s

p
, temperature

and baryon-chemical potential is taken into account,
σij→ij
tot ≡ σij→ij

tot ð ffiffiffi
s

p
; T; μBÞ (see Appendix VA, the

Fig. 10 for an example at μB ¼ 0).
We note that the CE method can in principle be improved
such that approximations (1) and (3) become unnecessary.
In Sec. III Awe find indication that approximation (3) might
have a non-neglectable impact. Such improvements are left
for future work. However, the nature of the method makes

further improvement of points (2) and (4) difficult and
require further detailed study.
The CE evaluations are fed with the DQPM EoS, which

is in good agreement with the lattice data (see Sec. II C).
Since the net strangeness and net electric densities are not
available from the assumed lQCD results, we compute their
values from kinetic theory [see Eq. (6)].
In the following the results from the RTA approach

applied to the original DQPM are denoted as “DQPM
RTA” while the results from the Chapman-Enskog method
applied to the DQPM under assumptions (1)–(4) (as
described above) is denoted as “CE (DQPM).” We remind
here that for constant cross sections the scaled diffusion
coefficients behave as κqq0=T2 ∼ 1=T2, as found in
Ref. [17]. Such a decreasing behavior is indeed found
in Fig. 1.

A. Model study: A system with
geometric cross sections

In order to evaluate the systematic differences between
the DQPM RTA and the CE (DQPM) approaches we
perform a here “model study” by assuming a (total)
geometric cross section of σtot ¼ 10 mb for all interactions.
For this comparison we consider the same assumptions as
described in the preface above, but assume all channels to
be characterized by the constant cross section.
In Fig. 1 we show results for the scaled baryon

coefficient, κBB=T2 (left plot), and the scaled electric
conductivity, σel=T (right plot) at μB ¼ 0 in a temperature
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FIG. 1. The scaled baryon diffusion coefficient, κBB=T2 (left), and the scaled electric conductivity, σel=T (right), for a partonic system
with geometric cross sections, σtot ¼ 10 mb at vanishing baryon-chemical potential as a function of temperature from different
approaches. We compare the DQPM RTA (τiðki; T; fμqgÞ) results from Eq. (27) (for a system obeying quantum statistics, i.e., ai ¼ �1

in Eq. (2) with (blue dashed line) and without (red dashed-double-dotted line) inelastic, flavor-changing channels to the CE (DQPM)
results either in RTA (τ0ðT; fμqgÞ) (green dashed-dotted line) from Eq. (27) [for a system obeying classical statistics, i.e., ai ¼ 0 in
Eq. (2)] or for “full” linearized collision term (orange solid line) from Eq. (18) [ai ¼ 0 in Eq. (2)].
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range from 160 MeV to 420 MeV. The DQPM RTA
calculations are presented for two cases: first, where all
binary channels, including the inelastic ones (flavor
changing processes qq̄ → q0q̄0), are considered (blue
dashed line), and for the case where only the elastic
channels are accounted for (red dashed-double-
dotted line). For the DQPM RTA results presented
in this paper we use Eq. (27), where the momentum-
dependent relaxation times τiðki; T; fμqgÞ from Eq. (23)
are used [for a system obeying quantum statistics, i.e.,
ai ¼ �1 in Eq. (2)]. The CE (DQPM) calculations are
presented in Fig. 1 also for two cases with only elastic
channels: in the first case we evaluate the coefficients in
RTA with the help of Eq. (27) [for a system obeying
classical statistics, i.e., ai ¼ 0 in Eq. (2)] under the
assumption of the simplistic momentum independent
relaxation time τ0ðT; fμqgÞ ¼ 1=ntotσtot (orange solid
line), and for the second case (full) we consider the full
linearized Boltzmann equation via Eq. (18) (for a system
obeying classical statistics, i.e., ai ¼ 0 in Eq. (2)) (green
dashed-dotted line).
This model study shows the influence of the consid-

eration of the linearized Boltzmann equation compared to
its relaxation time approximation, and the influence of the
inelastic channels compared to its neglect. We find that the
consideration of the full linearized collision term effectively
reduces the scattering rate of a specific particle species,
while in the RTA the scattering rate is overestimated. This
is because in the collision term not only the scattering of
particles from a specific momentum bin into all other
disjoint momentum bins is considered, but also the rescat-
tering into this particular momentum bin is accounted for
(gain and loss term). As argued in Ref. [17] such an
overestimation of the scattering rate leads to a decrease of
the diffusion coefficients from RTA (which are antipropor-
tional to the rate).
Furthermore, we find that the inelastic channels lead to a

further decrease of the diffusion coefficients due to the
repeated effective increase of the scattering rate as shown in
Fig. 1. Comparing the elastic version of the DQPM RTA
evaluation with the CE (DQPM) calculation in the RTA
limit [Eq. (27)], we find a good agreement of the results at
high temperatures. This is expected since the only differ-
ence between both calculations—DQPM RTA and CE
(DQPM) in the RTA limit—is the consideration of quantum
corrections and the more sophisticated (momentum-depen-
dent) relaxation time in DQPM RTA.

B. Diffusion coefficient matrix of
the quark-gluon plasma

In the following we show results for the scaled diffusion
coefficient matrix, κqq0=T2, for the partonic phase from the
DQPM (RTA) and CE (DQPM) evaluation under the
considerations described in the preface of Sec. III.
Additionally we consider two cases:

(i) We fix all chemical potentials to zero, μq ¼ 0
(q ¼ B; S;Q), and show the temperature depend-
ence of the coefficients.

(ii) We fix the temperature to T ¼ 2TcðμBÞ, and show
their dependence on the baryon chemical potential,
μB. Here we further set the other chemical potentials
to zero, μS ¼ 0 and μQ ¼ 0.

For most coefficients we find a rich μB-dependence. This
dependence originates from the fact that all quarks carry
baryon number and thus are sensitive to variations in μB. In
Ref. [17] the temperature dependence of these transport
coefficients was reviewed, and it was found that they
roughly scale as κqq0=T2 ∼ 1=ðσtotT2Þ. In the case of the
DQPM at fixed chemical potential, the cross sections
depend on temperature as σtot ∼ 1=T3 or ∼1=T4 (for the
considered temperature range). For moderate temperatures
Tc < T < 3Tc the precise temperature dependence of
σij→ij
tot varies for different reactions. It depends on the

combinations of s−; t−; u− channels for different parton-
parton scatterings: for q − q, q − q̄ and q − g scatterings
σtot ∼ 1=T3, while for the g − g channel the terms 1=T3,
1=T4 have equivalent contribution to the total cross section
σtot ∼ c3=T3 þ c4=T4, where c3, c4 depend on

ffiffiffi
s

p
, μB (see,

e.g., Fig. 10 in Appendix VA). The temperature depend-
ence of the cross sections is in accordance with the
temperature scaling of the DQPM coupling constant
g2ðT; μBÞ (see, e.g., Fig. 9 in Appendix VA). Averaged
over momenta the quark relaxation time decreases with
increasing temperature and stays almost constant at high T
and increases with increasing baryon chemical potential
(see Fig. 2(b) in Ref. [18]). For temperatures T > 2.5TC
this leads to a roughly linear dependence in temperature,
κqq0=T2 ∼ T, which is demonstrated in the figures below.
We remind that the diffusion coefficient matrix is sym-
metric and therefore we may only show six instead of nine
coefficients [84,85]. In the following we subdivide the
presentation of the conductivities in three sections: electric
conductivities (κQQ, κQS and κQB), strange conductivities
(κSS and κSB), and finally the baryon conductivities (κBB).
Since diffusion coefficients and conductivities are related to
each other via temperature, κqq0 ¼ σqq0T, we use their
denomination interchangeably.

1. Electric conductivities

The electric conductivity, σel=T, was evaluated in various
models (cf. Refs. [13–15,17–19,28–42,79]). In Fig. 2 we
compare the results from DQPMRTA and CE (DQPM) to a
variety of models for both, the partonic [13,29,31,32,34,35]
and hadronic phase [15,17,19,30,40,42], at μq ¼ 0 in a
temperature range between 0 and 3Tc, where here
the deconfinement temperature is Tc ¼ 158 MeV. The
Chapman-Enskog and RTA results for the dimensionless
ratio of electric conductivity to temperature σel=T (later
referred to as scaled electric conductivity) for μq ¼ 0 are
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presented in Fig. 2 (left) as solid red and dashed black lines.
Results for both methods have a similar increase with
temperature, which is mainly a consequence of the temper-
ature dependence of the cross section (as discussed before)
and also of the increasing total electric charge density [17].
We find that the results from DQPM RTA and CE

(DQPM) are consistent with results from lattice QCD in the
vicinity of the crossover region, 1 ≤ T=Tc ≤ 1.5. We again
point out the apparent quadratic dependence on temper-
ature which was shortly motivated in the preface of this
section above. Due to our discussion from Sec. III A
we suppose that a realistic result for the conductivities
may be between the evaluations from DQPM RTA and
CE (DQPM).
As follows from Fig. 2, the hadronic models presented

there—the hadronic transport model SMASH [19,42,88]
(grey short-dashed line with squared points), effective field
theory (EFT) [30] (blue dashed-dotted line), and CE tuned
to a hadron gas [CE (HRG)] from Refs. [15,17,40] (dark-
red dashed line)—substantially overestimate the lQCD data
in the vicinity of Tc as well as the results from the
nonconformal holographic models (blue dotted line from
Ref. [13] and violet dashed-dotted line from Ref. [31]). The
DQPM RTA results are in a good agreement in the vicinity
of phase transition with the previous estimations for

DQPM* from Ref. [79], where nonrelativistic formula
for estimation the electric conductivity was used, which
results in the linear dependence of the σel=T on temperature
while presented DQPM results show the quadratic depend-
ence on temperature.
Additionally to the electric conductivity, in Fig. 3 we

show the cross-electric conductivities, σBQ and σQS, from
the CE (DQPM) and the DQPM RTA calculation together
with results achieved within SMASH [19] and the CE
(HRG) evaluation from Refs. [15,17] for the same thermal
considerations for the hadronic phase. Comparing the
results in both phases, we find a significant disagreement
for σQB around the crossover temperature. Further, we find
such discrepancies to a smaller extend in the other electric
conductivities and in the coefficients to follow. Such
disagreement may hint to a difference in the chemical
composition of the adjacent phases [19].
Furthermore, as advertised in the preface, in Figs. 2

(right) and 4 we present the sensitivity of the electric
conductivities on μB at fixed scaled temperature,
T ¼ 2TcðμBÞ. Compared to the coefficients directly con-
nected to the baryonic sector, we find a rather weak
dependence on μB (see discussion of κBB and κSB).
Surprisingly also σQB has such a weak dependence even
though it also belongs to the baryonic sector. Further, σQB is

κ

μ

μσ
κ

μ

FIG. 2. Left: scaled electric conductivity, σel=T ¼ κQQ=T2, as a function of the scaled temperature T=Tc at vanishing chemical
potentials, μq ¼ 0, from various approaches. The results from the CE (DQPM) is shown by the red solid line, and from DQPMRTA—by
the black dashed line with crossed points. These are compared to results from the lattice QCD calculations (various shaped points with
error bars: quenched: orange circle-shaped points [39], light green rhombus-shaped points [86], Nf ¼ 2∶ light cyan circle-shaped points
[29], magenta rhombus-shaped points [38], and Nf ¼ 2þ 1∶ dark cyan circle-shaped points [34] and blue stars [87]), the kinetic
partonic cascade model BAMPS (dark-green solid line with triangular-shaped points) [35], and from nonconformal holographic models
(blue dotted line from Ref. [14] and violet dashed-dotted line from Ref. [31]). For temperatures below Tc ¼ 0.158 GeV we show
evaluations from hadronic models: SMASH [19,42,88] (grey short-dashed line with squared points), effective field theory (EFT) [30]
(blue dashed-dotted line), and CE tuned to a hadron gas [CE (HRG)] from Refs. [15,17,40] (dark-red dashed line). Right: scaled electric
conductivity of the QGP at fixed scaled temperature, T ¼ 2TcðμBÞ, and vanishing μQ and μS are shown for varying baryon chemical
potential μB from the DQPM RTA (black dashed line with cross-shaped points) and the CE (DQPM) (red solid line with circle-shaped
points) evaluation.
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very small—it has the smallest magnitude of all conduc-
tivities in the diffusion matrix. One can discuss its
plausibility with a symmetry argument: the σQB coefficient
relates the generated electric current to the baryonic
gradient which generates it (via the corresponding
Navier-Stokes term). Assume a QGP with constant geo-
metric cross section as discussed in Sec. III A. Further,
assume that all quarks have the same mass. The down- and
strange-quark have the same baryon number and electric
charge, B ¼ þ1=3 and Q ¼ −1=3e, while the up-quark has
B ¼ þ1=3 and Q ¼ þ2=3e, i.e., the same baryon number
but an electric charge which is twice the magnitude but has

the opposite sign (refer to Table I). Due to the quarks
carrying the same baryon number, a baryon gradient
generates a baryon current Vμ

B which is equally composed
by a current of up-, down- and strange-quarks (Vμ

i ):
Vμ
B ¼ P

i BiV
μ
i , with Vμ

i ¼ Vμ
quark ∀ i. With this we can

estimate the generated electric current:

Vμ
Q ¼

X
i

QiV
μ
i ¼ Vμ

quark

�
−
1

3
−
1

3
þ 2

3

�
¼ 0: ð36Þ

The same argument can be made additionally accounting
for the antiquarks. The nonequal mass of the quarks and the
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FIG. 3. Scaled cross-electric conductivities, σQB=T2 (left) and σQS=T2 (right), from SMASH [19,88] (grey short-dashed line with
square-shaped points), the DQPM RTA (black dashed line with cross-shaped points), and the CE (DQPM) (red solid line with circle-
shaped points) and CE (HRG) [15,17] (dark-red dashed line) evaluation at vanishing chemical potentials, μq ¼ 0, as a function of scaled
temperature in the range from 0.5 to 3Tc.

FIG. 4. Scaled cross-electric conductivities, σQB=T2 (left) and σQS=T2 (right), from the DQPM RTA (black dashed line with cross-
shaped points) and the CE (DQPM) evaluation at fixed scaled temperature, T ¼ 2TcðμBÞ, shown over baryon chemical potential μB in
range 0 to 0.5 GeV. Further, the other chemical potentials are fixed to zero, μQ ¼ 0 and μS ¼ 0.
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varying cross sections lead to a nonvanishing σQB.
However, the above estimate illustrate the small magnitude
of the respected coefficient.

2. Strange conductivities

We continue with the results for the strange sector: κSS
and κSB. The coefficient κSQ, or equivalently σSQ ¼ σQS,
was already discussed above as part of the electric sector.
Figure 5 shows the κSS and κSB as a function of temperature
at vanishing chemical potentials. Further, we show their μB-
dependence in Fig. 6 in the range μB ¼ 0 to 0.5 GeV at

fixed scaled temperature, T ¼ 2TcðμBÞ and for vanishing
electric and strange chemical potential. We compare results
from the DQPM RTA and CE (DQPM) computation to
results from CE (HRG) in our recent publications [15,17],
and to results from nonconformal holography [14].
We find that the baryon-strange diffusion coefficient is

negative due to the definition of strangeness carried by the
s-quark as has been already advocated in Ref. [15,17]. We
obtain an almost quadratic dependence in temperature
again, and a rather strong dependency on μB. However,
the results from DQPM RTA for κSB in Fig. 6 show a
slightly different μB-behavior than the results from CE

FIG. 5. Scaled strange and strange-baryon diffusion coefficients, κSS=T2 (left) and κSB=T2 (right), as a function of scaled temperature
in the range from 0.5 to 3 Tc at vanishing chemical potentials, μq ¼ 0. We compare results from CE (DQPM) (red solid line with circles),
DQPM RTA (black dashed-line with crossed-shaped points), the CE (HRG) [15,17] (dark-red dashed line) and from nonconformal
holography [14] (blue dotted line).

FIG. 6. Scaled strange and strange-baryon diffusion coefficients, κSS=T2 (left) and κSB=T2 (right), from the DQPM RTA (black dashed
line with cross-shaped points) and the CE (DQPM) evaluation at fixed scaled temperature, T ¼ 2TcðμBÞ, shown over baryon chemical
potential μB in range 0 to 0.5 GeV. Further, the other chemical potentials are fixed to zero, μQ ¼ 0 and μS ¼ 0.
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(DQPM) for μB ≥ 0.3 GeV. Furthermore, judging from
Fig. 5, in the vicinity of the crossover region the results
from CE (HRG) for the hadronic phase, and the calculation
from the DQPM RTA and CE (DQPM) agree well. As for
other diffusion coefficients, the scaled strange diffusion
coefficient from holography has a different temperature
dependence and smaller values in the vicinity of the
crossover phase transition.

3. Baryon conductivities

In order to describe the deconfined QCD medium at the
nonzero baryon density one should first consider the
baryon diffusion coefficient κBB. This diffusion coefficient
was already evaluated in various models [12,13,15–18].
Figure 7 (left) shows the temperature dependence of the
baryon diffusion coefficient for the quark-gluon plasma
estimated with the CE (DQPM) (red solid line) and DQPM
RTA approaches (black dashed line with crosses). We also
show the results from nonconformal holography [13,14]
(blue dotted lines). For temperatures below Tc we again
refer to the CE (HRG) calculation from Refs. [15,17] (dark-
red dashed line). The comparison is presented at zero
chemical potentials μq ¼ 0. Around Tc the results from
DQPMRTA, CE (DQPM) and CE (HRG) seem to be rather
consistent with each other. Furthermore, we show its
dependence on μB at fixed scaled temperature T ¼
2TcðμBÞ in Fig. 7 (right). The DQPM RTA shows a rather
weak μB dependence, while κBB from the CE (DQPM)
decreases with μB.

IV. CONCLUSION

In this study we have calculated the complete diffusion
coefficient matrix κqq0 (q; q0 ¼ B; S;Q) of the strongly
interacting quark-gluon plasma by using the Chapman-
Enskog method as well as the relaxation time approximation
(RTA) from kinetic theory. We have explored the T and μB
dependencies of the diffusion coefficients by considering
microscopical properties of quarks and gluons within the
dynamical quasiparticle model (DQPM). The DQPM pre-
dictions of thermodynamic quantities for finite μB show a
good agreementwith the available lQCDEoS [49].Moreover,
for μB ¼ 0 the DQPM estimations of the QGP electric
conductivity (σel=T2) are in a good agreement with the
Nf ¼ 2þ 1 lQCD results and in case of the specific
shear and bulk viscosities (η=s; ζ=s) the estimations are
remarkably close to the predictions from the gluodynamic
lQCD calculations [18].
We find that the electric conductivities (κQQ, κQS and κQB),

strange conductivities (κSS and κSB), and finally the baryon
conductivity (κBB) have a similar temperature dependence in
the vicinity of the phase transition while the μB dependence
is rather different among the considered diffusion coeffi-
cients. In particular, the diffusion coefficients κBB and κQB
decrease with μB, while other coefficients increase. A
suppression of baryon diffusion in a sQGP with finite μB
has been seen also in the holographic calculations [13].
One of the main endeavors of this paper is to deliver

reasonable estimates for the diffusion coefficients of the
strongly interacting quark-gluon plasma. Furthermore, we

κ
μ

κ

μ

μ

FIG. 7. Scaled baryon diffusion coefficient, κBB=T2, (left) at vanishing chemical potentials, μq ¼ 0, as a function of the scaled
temperature from various approaches and (right) at fixed scaled temperature, T ¼ 2TcðμBÞ, as a function of baryon chemical potential
μB. The strange and electric potential are fixed to zero: μS ¼ 0 and μQ ¼ 0. We show results from the CE evaluation tuned to DQPM (red
solid line), as described above, and tuned to a hadron gas from Refs. [15,17] (dark-red dashed line). We again compare to the calculation
from DQPM RTA [18] (black dashed line with crosses) and to nonconformal holography [13,14] (blue dotted line) as done for the
electric conductivity.
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compare the RTA evaluations from recent DQPM pub-
lications [18,57,89] with the Chapman-Enskog method. We
demonstrate that once the cross sections and the (thermal)
properties (masses, equation of state, etc.) of a system are
known, the CE framework at hand is able to deliver
consistent results. We show a good agreement for both
methods with the available predictions from the literature
for the partonic phase, in particular results for the scaled
electric conductivity are remarkably close to the lQCD
estimates at μB ¼ 0, as well as with the estimates for the
hadronic phase. However, κQB nondiagonal diffusion coef-
ficient does not coincide well in the vicinity of the phase
transition with the estimates for the hadronic phase, which
can be interpreted as an indication of a difference in the
chemical composition of the adjacent phases. There are
several model calculations of diagonal conductivities
(mostly κQQ) in the literature that are similar to the RTA
approach but used numerous restrictive assumptions for the
evaluation of the relaxation times or cross sections.
Studying the diffusion coefficients of the QGP should
have future benefits when considering hydrodynamical

description for the time evolution of the deconfined
QCD medium.
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APPENDIX: PROPERTIES OF PARTONS IN THE DQPM

TABLE I. Properties of the particle species considered in the quark-gluon plasma in this work. Here, e denotes the elementary electric
charge in natural units.

Name Spin Degeneracy Baryon number Electric charge Strangeness

g 1 16 0 0 0
u 1=2 6 þ1=3 þ2=3e 0
ū 1=2 6 −1=3 −2=3e 0
d 1=2 6 þ1=3 −1=3e 0
d̄ 1=2 6 −1=3 þ1=3e 0
s 1=2 6 þ1=3 −1=3e −1
s̄ 1=2 6 −1=3 þ1=3e þ1
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(a)
(b)

FIG. 9. The running coupling αs ¼ g2=ð4πÞ from the actual DQPM as a function of the scaled temperature T=Tc at μB ¼ 0 a) and for
moderate values of baryon chemical potential μB <¼ 0.5 GeV (b) [89]. The lattice results for quenched QCD, Nf ¼ 0, (blue circles) are
taken from Ref. [48] and for Nf ¼ 2 (black triangles) are taken from Ref. [80].

FIG. 8. The effective quark (left) and gluon (right) pole-masses M (upper row) and their widths γ (lower row) from the actual DQPM
as a function of the temperature T and baryon chemical potential μB [89]. The strange quark mass was assumed to be ms ¼ mq þ Δm,
with Δm ¼ 30 MeV, and the width is identical with the widths of the light quarks, γs ¼ γq. In the calculation of the diffusion matrix
with the Chapman-Enskog method partons were assumed to be on-shell and thus the widths vanish.
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(a) (b)

FIG. 11. Scaled pressure P0=T4 (a) and scaled energy density ϵ=T4 (b) from the DQPM (lines) as a function of temperature T at
various values of μB ¼ 0, 0.2, 0.4 GeV. The lQCD results obtained by the BMW group are taken from Refs. [69,70] (circles).

(a) (b)

(c) (d)

FIG. 10. DQPM total cross sections between different partons for the on-shell case from Eq. (11) evaluated in the center of mass of the
collision system as a function of the collision energy

ffiffiffi
s

p
for (a) fixed μB ¼ 0, T ¼ 0.19 GeV for different elastic channels, (b) for various

values of temperature μB ¼ 0, T ¼ 0.19, 0.316, 0.458 GeV, (c) various values of baryon chemical potential μB ¼ 0, 0.2, 0.5 GeVat fixed
T¼ 0.19GeV, and (d) for various values of baryon chemical potential μB ¼ 0, 0.2, 0.5 GeV for T ¼ 2TcðμBÞðT ¼ 0.316;
0.310; 0.275 GeVÞ. For the minimal allowed center-of-momentum energy of the colliding partons only their pole-masses are taken into
account. In the Chapman-Enskog evaluation of the diffusion matrix, the inelastic channels were neglected for simplicity.

DIFFUSION COEFFICIENT MATRIX OF THE STRONGLY … PHYS. REV. D 104, 034014 (2021)

034014-15



[1] J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[2] U.W. Heinz and P. F. Kolb, Nucl. Phys. A702, 269

(2002).
[3] E. Shuryak, Prog. Part. Nucl. Phys. 62, 48 (2009).
[4] E. V. Shuryak, Nucl. Phys. A750, 64 (2005).
[5] M. Gyulassy and L. McLerran, Nucl. Phys. A750, 30

(2005).
[6] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99,

172301 (2007).
[7] M. Cheng et al., Phys. Rev. D 77, 014511 (2008).
[8] Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S. D. Katz, S. Krieg,

and K. K. Szabo, J. High Energy Phys. 06 (2009) 088.
[9] G. S. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke, and

C. Shen, Phys. Rev. C 98, 034916 (2018).
[10] M. Li and C. Shen, Phys. Rev. C 98, 064908 (2018).
[11] L. Du and U. Heinz, Comput. Phys. Commun. 251, 107090

(2020).
[12] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy

Phys. 05 (2003) 051.
[13] R. Rougemont, J. Noronha, and J. Noronha-Hostler, Phys.

Rev. Lett. 115, 202301 (2015).
[14] R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha,

and C. Ratti, Phys. Rev. D 96, 014032 (2017).
[15] M. Greif, J. A. Fotakis, G. S. Denicol, and C. Greiner, Phys.

Rev. Lett. 120, 242301 (2018).
[16] J. Ghiglieri, G. D. Moore, and D. Teaney, J. High Energy

Phys. 03 (2018) 179.
[17] J. A. Fotakis, M. Greif, C. Greiner, G. S. Denicol, and H.

Niemi, Phys. Rev. D 101, 076007 (2020).
[18] O. Soloveva, P. Moreau, and E. Bratkovskaya, Phys. Rev. C

101, 045203 (2020).
[19] J.-B. Rose, M. Greif, J. Hammelmann, J. A. Fotakis, G. S.

Denicol, H. Elfner, and C. Greiner, Phys. Rev. D 101,
114028 (2020).

[20] S. Turbide, R. Rapp, and C. Gale, Phys. Rev. C 69, 014903
(2004).

[21] Y. Akamatsu, H. Hamagaki, T. Hatsuda, and T. Hirano, J.
Phys. G 38, 124184 (2011).

[22] O. Linnyk, E. L. Bratkovskaya, and W. Cassing, Prog. Part.
Nucl. Phys. 87, 50 (2016).

[23] Y. Yin, Phys. Rev. C 90, 044903 (2014).
[24] K. Tuchin, Phys. Rev. C 88, 024911 (2013).
[25] G. Inghirami, M. Mace, Y. Hirono, L. Del Zanna, D. E.

Kharzeev, and M. Bleicher, Eur. Phys. J. C 80, 293 (2020).
[26] G. S. Denicol, E. Molnár, H. Niemi, and D. H. Rischke,

Phys. Rev. D 99, 056017 (2019).
[27] L. Oliva, Eur. Phys. J. A 56, 255 (2020).
[28] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy

Phys. 11 (2000) 001.
[29] B. B. Brandt, A. Francis, H. B. Meyer, and H. Wittig, J.

High Energy Phys. 03 (2013) 100.
[30] J. M. Torres-Rincon, Hadronic transport coefficients from

effective field theories, Ph.D. thesis, Universidad Complu-
tense de Madrid, 2012.

[31] S. I. Finazzo and J. Noronha, Phys. Rev. D 89, 106008
(2014).

[32] A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands, and
J.-I. Skullerud, Phys. Rev. Lett. 111, 172001 (2013).

[33] R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, and H.
Berrehrah, Phys. Rev. C 88, 045204 (2013).

[34] G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands, and
J.-I. Skullerud, J. High Energy Phys. 02 (2015) 186.

[35] M. Greif, I. Bouras, C. Greiner, and Z. Xu, Phys. Rev. D 90,
094014 (2014).

[36] A. Puglisi, S. Plumari, and V. Greco, Phys. Rev. D 90,
114009 (2014).

[37] A. Puglisi, S. Plumari, and V. Greco, Phys. Lett. B 751, 326
(2015).

[38] B. B. Brandt, A. Francis, B. Jaeger, and H. B. Meyer, Phys.
Rev. D 93, 054510 (2016).

[39] H.-T. Ding, O. Kaczmarek, and F. Meyer, Phys. Rev. D 94,
034504 (2016).

[40] M. Greif, C. Greiner, and G. S. Denicol, Phys. Rev. D 93,
096012 (2016); 96, 059902(E) (2017).

[41] L. Thakur, P. K. Srivastava, G. P. Kadam, M. George, and H.
Mishra, Phys. Rev. D 95, 096009 (2017).

[42] J. Hammelmann, J. M. Torres-Rincon, J.-B. Rose, M. Greif,
and H. Elfner, Phys. Rev. D 99, 076015 (2019).

[43] A. Peshier and W. Cassing, Phys. Rev. Lett. 94, 172301
(2005).

[44] W. Cassing, Nucl. Phys. A795, 70 (2007).
[45] W. Cassing, Nucl. Phys. A791, 365 (2007).
[46] O. Linnyk, E. Bratkovskaya, and W. Cassing, Prog. Part.

Nucl. Phys. 87, 50 (2016).
[47] H. Berrehrah, E. Bratkovskaya, T. Steinert, and W. Cassing,

Int. J. Mod. Phys. E 25, 1642003 (2016).
[48] O. Kaczmarek, F. Karsch, F. Zantow, and P. Petreczky, Phys.

Rev. D 70, 074505 (2004); 72, 059903(E) (2005).
[49] P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, and

E. Bratkovskaya, Phys. Rev. C 100, 014911 (2019).
[50] B. Vanderheyden and G. Baym, J. Stat. Phys. 93, 843

(1998).
[51] L. Kadanoff and G. Baym, Quantum Statistical Mechanics

(Benjamin, New York, 1962), p. 203.
[52] W. Cassing and E. Bratkovskaya, Phys. Rev. C 78, 034919

(2008).
[53] W. Cassing, Eur. Phys. J. Special Topics 168, 3 (2009).
[54] W. Cassing and E. Bratkovskaya, Nucl. Phys. A831, 215

(2009).
[55] E. Bratkovskaya, W. Cassing, V. Konchakovski, and O.

Linnyk, Nucl. Phys. A856, 162 (2011).
[56] V. Ozvenchuk, O. Linnyk, M. Gorenstein, E. Bratkovskaya,

and W. Cassing, Phys. Rev. C 87, 024901 (2013).
[57] O. Soloveva, P. Moreau, L. Oliva, V. Voronyuk, V.

Kireyeu, T. Song, and E. Bratkovskaya, Particles 3, 178
(2020).

[58] P. Moreau, O. Soloveva, I. Grishmanovskii, V. Voronyuk, L.
Oliva, T. Song, V. Kireyeu, G. Coci, and E. Bratkovskaya,
Astron. Nachr. 1 (2021).

[59] A. Hosoya and K. Kajantie, Nucl. Phys. B250, 666 (1985).
[60] P. Chakraborty and J. Kapusta, Phys. Rev. C 83, 014906

(2011).
[61] M. Albright and J. Kapusta, Phys. Rev. C 93, 014903

(2016).
[62] S. Gavin, Nucl. Phys. A435, 826 (1985).
[63] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[64] G. Aarts and J. M. Martinez Resco, J. High Energy Phys. 04

(2002) 053.
[65] D. Fernandez-Fraile and A. Gomez Nicola, Phys. Rev. D 73,

045025 (2006).

JAN A. FOTAKIS et al. PHYS. REV. D 104, 034014 (2021)

034014-16

https://doi.org/10.1103/PhysRevD.46.229
https://doi.org/10.1016/S0375-9474(02)00714-5
https://doi.org/10.1016/S0375-9474(02)00714-5
https://doi.org/10.1016/j.ppnp.2008.09.001
https://doi.org/10.1016/j.nuclphysa.2004.10.022
https://doi.org/10.1016/j.nuclphysa.2004.10.034
https://doi.org/10.1016/j.nuclphysa.2004.10.034
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevD.77.014511
https://doi.org/10.1088/1126-6708/2009/06/088
https://doi.org/10.1103/PhysRevC.98.034916
https://doi.org/10.1103/PhysRevC.98.064908
https://doi.org/10.1016/j.cpc.2019.107090
https://doi.org/10.1016/j.cpc.2019.107090
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1103/PhysRevLett.115.202301
https://doi.org/10.1103/PhysRevLett.115.202301
https://doi.org/10.1103/PhysRevD.96.014032
https://doi.org/10.1103/PhysRevLett.120.242301
https://doi.org/10.1103/PhysRevLett.120.242301
https://doi.org/10.1007/JHEP03(2018)179
https://doi.org/10.1007/JHEP03(2018)179
https://doi.org/10.1103/PhysRevD.101.076007
https://doi.org/10.1103/PhysRevC.101.045203
https://doi.org/10.1103/PhysRevC.101.045203
https://doi.org/10.1103/PhysRevD.101.114028
https://doi.org/10.1103/PhysRevD.101.114028
https://doi.org/10.1103/PhysRevC.69.014903
https://doi.org/10.1103/PhysRevC.69.014903
https://doi.org/10.1088/0954-3899/38/12/124184
https://doi.org/10.1088/0954-3899/38/12/124184
https://doi.org/10.1016/j.ppnp.2015.12.003
https://doi.org/10.1016/j.ppnp.2015.12.003
https://doi.org/10.1103/PhysRevC.90.044903
https://doi.org/10.1103/PhysRevC.88.024911
https://doi.org/10.1140/epjc/s10052-020-7847-4
https://doi.org/10.1103/PhysRevD.99.056017
https://doi.org/10.1140/epja/s10050-020-00260-3
https://doi.org/10.1088/1126-6708/2000/11/001
https://doi.org/10.1088/1126-6708/2000/11/001
https://doi.org/10.1007/JHEP03(2013)100
https://doi.org/10.1007/JHEP03(2013)100
https://doi.org/10.1103/PhysRevD.89.106008
https://doi.org/10.1103/PhysRevD.89.106008
https://doi.org/10.1103/PhysRevLett.111.172001
https://doi.org/10.1103/PhysRevC.88.045204
https://doi.org/10.1007/JHEP02(2015)186
https://doi.org/10.1103/PhysRevD.90.094014
https://doi.org/10.1103/PhysRevD.90.094014
https://doi.org/10.1103/PhysRevD.90.114009
https://doi.org/10.1103/PhysRevD.90.114009
https://doi.org/10.1016/j.physletb.2015.10.070
https://doi.org/10.1016/j.physletb.2015.10.070
https://doi.org/10.1103/PhysRevD.93.054510
https://doi.org/10.1103/PhysRevD.93.054510
https://doi.org/10.1103/PhysRevD.94.034504
https://doi.org/10.1103/PhysRevD.94.034504
https://doi.org/10.1103/PhysRevD.93.096012
https://doi.org/10.1103/PhysRevD.93.096012
https://doi.org/10.1103/PhysRevD.96.059902
https://doi.org/10.1103/PhysRevD.95.096009
https://doi.org/10.1103/PhysRevD.99.076015
https://doi.org/10.1103/PhysRevLett.94.172301
https://doi.org/10.1103/PhysRevLett.94.172301
https://doi.org/10.1016/j.nuclphysa.2007.08.010
https://doi.org/10.1016/j.nuclphysa.2007.04.015
https://doi.org/10.1016/j.ppnp.2015.12.003
https://doi.org/10.1016/j.ppnp.2015.12.003
https://doi.org/10.1142/S0218301316420039
https://doi.org/10.1103/PhysRevD.70.074505
https://doi.org/10.1103/PhysRevD.70.074505
https://doi.org/10.1103/PhysRevD.72.059903
https://doi.org/10.1103/PhysRevC.100.014911
https://doi.org/10.1023/B:JOSS.0000033166.37520.ae
https://doi.org/10.1023/B:JOSS.0000033166.37520.ae
https://doi.org/10.1103/PhysRevC.78.034919
https://doi.org/10.1103/PhysRevC.78.034919
https://doi.org/10.1140/epjst/e2009-00959-x
https://doi.org/10.1016/j.nuclphysa.2009.09.007
https://doi.org/10.1016/j.nuclphysa.2009.09.007
https://doi.org/10.1016/j.nuclphysa.2011.03.003
https://doi.org/10.1103/PhysRevC.87.024901
https://doi.org/10.3390/particles3010015
https://doi.org/10.3390/particles3010015
https://doi.org/10.1002/asna.202113988
https://doi.org/10.1016/0550-3213(85)90499-7
https://doi.org/10.1103/PhysRevC.83.014906
https://doi.org/10.1103/PhysRevC.83.014906
https://doi.org/10.1103/PhysRevC.93.014903
https://doi.org/10.1103/PhysRevC.93.014903
https://doi.org/10.1016/0375-9474(85)90190-3
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1088/1126-6708/2002/04/053
https://doi.org/10.1088/1126-6708/2002/04/053
https://doi.org/10.1103/PhysRevD.73.045025
https://doi.org/10.1103/PhysRevD.73.045025


[66] R. Lang, N. Kaiser, and W. Weise, Eur. Phys. J. A 51, 127
(2015).

[67] S. Chapman and T. G. Cowling, The Mathematical Theory
of Non-Uniform Gases: An Account of the Kinetic Theory of
Viscosity, Thermal Conduction and Diffusion in Gases
(Cambridge University Press, Cambridge, England, 1970).

[68] P. Romatschke, Phys. Rev. D 85, 065012 (2012).
[69] S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, C.

Ratti, and K. K. Szabo, J. High Energy Phys. 08 (2012) 053.
[70] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg,

and K. K. Szabo, Phys. Lett. B 730, 99 (2014).
[71] L. D. Landau and E. M. Lifschitz, Course of Theoretical

Physics. Vol. 6: Fluid Mechanics (Pergamon Press, London,
1959).

[72] G. S. Denicol, H. Niemi, E. Molnár, and D. H. Rischke,
Phys. Rev. D 85, 114047 (2012).

[73] J. Anderson and H. Witting, Physica (Amsterdam) 74, 466
(1974).

[74] E. Braaten and M. H. Thoma, Phys. Rev. D 44, 1298 (1991).
[75] M. H. Thoma, Phys. Rev. D 49, 451 (1994).
[76] H. Berrehrah, E. Bratkovskaya, W. Cassing, P. Gossiaux, J.

Aichelin, and M. Bleicher, Phys. Rev. C 89, 054901 (2014).
[77] H. Berrehrah, E. Bratkovskaya, W. Cassing, and R. Marty, J.

Phys. Conf. Ser. 612, 012050 (2015).

[78] H. Berrehrah, E. Bratkovskaya, W. Cassing, P. B. Gossiaux,
and J. Aichelin, Phys. Rev. C 91, 054902 (2015).

[79] H. Berrehrah, E. Bratkovskaya, T. Steinert, and W. Cassing,
Int. J. Mod. Phys. E 25, 1642003 (2016).

[80] O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510
(2005).

[81] M. L. Bellac, Thermal Field Theory, Cambridge Mono-
graphs on Mathematical Physics (Cambridge University
Press, Cambridge, England, 2011).

[82] B. Vanderheyden and G. Baym, J. Stat. Phys. 93, 843
(1998);

[83] J. P. Blaizot, E. Iancu, and A. Rebhan, Phys. Rev. D 63,
065003 (2001).

[84] L. Onsager, Phys. Rev. 37, 405 (1931).
[85] L. Onsager, Phys. Rev. 38, 2265 (1931).
[86] G. Aarts, C. Allton, J. Foley, S. Hands, and S. Kim, Phys.

Rev. Lett. 99, 022002 (2007).
[87] N. Astrakhantsev, V. V. Braguta, M. D’Elia, A. Y. Kotov,

A. A. Nikolaev, and F. Sanfilippo, Phys. Rev. D 102,
054516 (2020).

[88] J. Weil et al., Phys. Rev. C 94, 054905 (2016).
[89] O. Soloveva, P. Moreau, L. Oliva, T. Song, Cassing,

and E. Bratkovskaya, J. Phys. Conf. Ser. 1602, 012012
(2020).

DIFFUSION COEFFICIENT MATRIX OF THE STRONGLY … PHYS. REV. D 104, 034014 (2021)

034014-17

https://doi.org/10.1140/epja/i2015-15127-7
https://doi.org/10.1140/epja/i2015-15127-7
https://doi.org/10.1103/PhysRevD.85.065012
https://doi.org/10.1007/JHEP08(2012)053
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1103/PhysRevD.44.1298
https://doi.org/10.1103/PhysRevD.49.451
https://doi.org/10.1103/PhysRevC.89.054901
https://doi.org/10.1088/1742-6596/612/1/012050
https://doi.org/10.1088/1742-6596/612/1/012050
https://doi.org/10.1103/PhysRevC.91.054902
https://doi.org/10.1142/S0218301316420039
https://doi.org/10.1103/PhysRevD.71.114510
https://doi.org/10.1103/PhysRevD.71.114510
https://doi.org/10.1023/B:JOSS.0000033166.37520.ae
https://doi.org/10.1023/B:JOSS.0000033166.37520.ae
https://doi.org/10.1103/PhysRevD.63.065003
https://doi.org/10.1103/PhysRevD.63.065003
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1103/PhysRevLett.99.022002
https://doi.org/10.1103/PhysRevLett.99.022002
https://doi.org/10.1103/PhysRevD.102.054516
https://doi.org/10.1103/PhysRevD.102.054516
https://doi.org/10.1103/PhysRevC.94.054905
https://doi.org/10.1088/1742-6596/1602/1/012012
https://doi.org/10.1088/1742-6596/1602/1/012012

