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PURPOSE: Preoperative (neoadjuvant) chemoradiotherapy (CRT) and total mesorectal excision is the standard treatment for rectal
cancer patients (UICC stage II/III). Up to one-third of patients treated with CRT achieve a pathological complete response (pCR).
These patients could be spared from surgery and its associated morbidity and mortality, and assigned to a “watch and wait”
strategy. However, reliably identifying pCR based on clinical or imaging parameters remains challenging.
EXPERIMENTAL DESIGN: We generated gene-expression profiles of 175 patients with locally advanced rectal cancer enrolled in
the CAO/ARO/AIO-94 and -04 trials. One hundred and sixty-one samples were used for building, training and validating a predictor
of pCR using a machine learning algorithm. The performance of the classifier was validated in three independent cohorts,
comprising 76 patients from (i) the CAO/ARO/AIO-94 and -04 trials (n= 14), (ii) a publicly available dataset (n= 38) and (iii) in 24
prospectively collected samples from the TransValid A trial.
RESULTS: A 21-transcript signature yielded the best classification of pCR in 161 patients (Sensitivity: 0.31; AUC: 0.81), when not
allowing misclassification of non-complete-responders (False-positive rate= 0). The classifier remained robust when applied to
three independent datasets (n= 76).
CONCLUSION: The classifier can identify >1/3 of rectal cancer patients with a pCR while never classifying patients with an
incomplete response as having pCR. Importantly, we could validate this finding in three independent datasets, including a
prospectively collected cohort. Therefore, this classifier could help select rectal cancer patients for a “watch and wait” strategy.
TRANSLATIONAL RELEVANCE: Forgoing surgery with its associated side effects could be an option for rectal cancer patients if the
prediction of a pathological complete response (pCR) after preoperative chemoradiotherapy would be possible. Based on gene-
expression profiles of 161 patients a classifier was developed and validated in three independent datasets (n= 76), identifying over
1/3 of patients with pCR, while never misclassifying a non-complete-responder. Therefore, the classifier can identify patients suited
for “watch and wait”.
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INTRODUCTION
Colorectal cancer is the third most common cancer in the United
States (145,600 cases), of which approximately one-third are
located in the rectum (SEER Cancer Stat Facts 2019). Rectal cancer
has been treated primarily by surgery for over 200 years.
Attributable to effective screening programs, the introduction of
chemoradiotherapy (CRT), and improved surgical techniques [1],

the mortality rate for rectal cancers has been significantly reduced
[2, 3]. The current therapy for rectal cancer (UICC II/III) consists of
neoadjuvant CRT, followed by standardised radical surgery
including total mesorectal excision (TME) [4–8]. While this
treatment results in improved oncological control, surgical
resection may have severe complications, including anastomic
leakage, which occurs in 10–20% of patients [9–11], accompanied
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by increased morbidity and mortality. Furthermore, many patients
are suffering from the side effects of surgery: up to 27% of
patients need a permanent stoma [12], 39% experience faecal
incontinence [13, 14], 30% urinary [15] and 67% sexual dysfunc-
tions [16, 17], all resulting in a severe reduction in quality of life.
The response to preoperative CRT is very heterogeneous,

ranging from a pathological complete response (pCR) with no
viable tumour cells left (10–25% of patients) to virtually no tumour
regression at all or even tumour progression during therapy
[5, 18, 19]. Patients with a pronounced tumour regression have a
favourable oncological outcome, with a 5-year overall survival
probability of more than 90% [20]. Importantly, residual lymph
node metastases, even after complete regression of the primary
tumour, indicate a poor prognosis [21, 22]. In 2004, Habr-Gamma
et al. presented data of a selected group of rectal cancer patients,
assessed to be clinically complete responders (cCR) and consecu-
tively spared from surgery (“watch and wait”). These patients had a
similar oncological outcome compared to standard treatment [23].
Forgoing surgery spares patients with a cCR from operation
associated morbidity and mortality as later shown by Maas et al.
[18, 24]. Conversely, as retrospectively collected data revealed an
adverse outcome for “watch and wait” patients compared to the
initial report of Habr-Gama et al. [25], this concept was rejected by
a majority of surgeons. It was later shown that the data were too
heterogeneous, possibly due to an incorrect assessment of cCR.
This emphasises the importance of a stringent assessment of cCR
as the key to the acceptance of a “watch and wait” strategy.
Currently the selection of patients is imaging-based and
incorporates clinical and endoscopic parameters. Nevertheless,
the rate of local recurrence within the first two years is ~25%, as
recently published by the international “watch and wait”
consortium [26]. Molecular markers, as outlined by Yoo et al.
[27], could augment the development of pretreatment response-
prediction models improving the selection of patients for a “watch
and wait” strategy.
This dilemma precipitated a plethora of studies trying to predict

response to CRT by gene-expression profiling of pretreatment
biopsies. However, efforts to establish universal molecular
response predictors were thus far not successful [28, 29] because
the validation of proposed predictors in independent datasets
mostly failed. Consequently, none of these classifiers ever
translated into routine clinical practice.
Here we present data from gene-expression profiles of

pretreatment rectal cancer biopsies from 161 patients that were
treated within the CAO/ARO/AIO-94 and CAO/ARO/AIO-04 trials
using a machine learning approach to build a classifier predicting
pCR to preoperative CRT. The classifier was validated in three
independent cohorts (n= 76).

MATERIALS AND METHODS
Patients, clinical staging and treatment
Pretreatment biopsies were collected during the initial staging endoscopy
between 2001 and 2012 at six surgical departments, all members of the
“German Rectal Cancer Study Group (GRCSG)”. A total of 175 patients from a
consecutive series of 236 patients with locally advanced rectal cancer
(cUICC II/III) fulfilled inclusion requirements, regarding RNA quality, tumour
cell content, complete clinical annotation and array quality (CONSORT
Diagram, Fig. S1A). The study was approved by the local ethics
committees, and all participants gave written informed consent. Detailed
patient characteristics can be found in Table S1A. Precise staging and
treatment procedures are described in Fig. S2 and in Supplementary
Materials and Methods. Macroscopic and microscopic assessment of
tumour stage was performed as previously described [4]. Residual tumour
after CRT was assessed as a ratio of remaining viable tumour cells and the
area covered by the tumour before treatment as described previously by
Roedel et al. [5]. However, the tumour regression grading was reported in
percent (TRG in %) to achieve a more accurate spectrum of response.
Additionally, TRG was evaluated using the classification of Dworak et al.

[30]. Pathological complete response (pCR) was defined as the absence of
viable tumour cells in the primary tumour and lymph nodes (TRG= 100%,
TRG 4, ypT0 pN0). Four to six weeks after surgery patients received an
adjuvant therapy of either 5-FU alone or in combination with folinic acid
and Oxaliplatin [4, 8].
For 14/175 patients treated at three German surgical centres we were

unable to obtain TRG in %, so these cases were only used as the first
independent validation dataset (Table S1B).
For the second independent validation dataset, clinical and gene-

expression data of additional 38 patients with local advanced rectal cancer
treated at the Department of Surgery, University of Padua, Italy, were
acquired from the GEO database [31] (Table S1C).
For a third independent validation, a clinical trial was set up, named

TransValid A (German Clinical Trial Register No 00003659). The goal of this
open, non-randomised, prospective exploratory multicenter validation
study was to collect biomaterial from patients with stage II/III rectal cancer
treated according to established multimodal therapy. Inclusion criteria
were adjusted to the previous trials of the GRCSG [7, 8]. Overall, 25 patients
from 6 institutions were included. Applying the same quality criteria as for
the first two sample sets 24 patients could be included in the final analysis
(Fig. S1B and Table S1D).

Pretreatment tumour biopsies, RNA isolation and gene-
expression microarray analysis
Biopsies were collected during the initial staging rectoscopy and
immediately stored in RNAlater as previously described [32, 33]. The
tumour content of the biopsies was analysed by a pathologist, and only
samples containing more than 50% of tumour tissue were used in this
analysis. Gene-expression microarray (Human 4 × 44 K v2 gene-expression
array, Agilent Technologies (G4845A)) analysis was performed per
manufacturer’s instructions as previously described [34–36]. Gene-
expression data were deposited to Gene Expression Omnibus
(GSE87211). Details are described in Supplementary Methods.

Statistical methods
Metric, ordinal and categorical parameters were compared between
complete and partial responders by the two-sample t-, Mann–Whitney U-
and Fisher’s exact test, respectively. Survival times were compared by
Kaplan–Meier curves. Independent cohorts of Microarray gene-expression
data were log-transformed and normalised using the quantile method. The
normalisation algorithm was initially applied to the first dataset, and the
quantiles of the validation datasets were then aligned to the same
distribution. MATLAB R2018b Support Vector Machine functions were used
to train and test classifiers. Performance was evaluated via area under the
curve (AUC) resulting from receiver operating characteristic (ROC) curves.
All programming work in this study was done in MATLAB 2018b (The
MathWorks Inc., Natick, MA, 2000).

Evaluation of classifiers
The classification performance was evaluated via two measures. The first is
the area under the curve (AUC) of the receiver operating characteristic
curves (ROC) of classification. The second is the maximal sensitivity (True
positive rate) reached when the false-positive rate is zero (i.e. the maximal
rate of true pCR captured when no patients were misclassified as pCR). For
simplicity, this measure is termed sensitivity throughout the manuscript.

Feature selection, cross-validation and support vector
machine (SVM) classifier training
For feature selection, out of the 161 cases enrolled in this study, 32 positive
(pCR, TRG= 100%) and 32 negative (poor response, TRG < 45%) cases were
used. The samples were randomly divided 500 times into a training set (3/4
of the samples) and a test set (the remaining 1/4). Each time we performed
a differential gene-expression analysis. A hill-climbing [37] procedure was
applied to each of the resulting 500 gene sets to generate Support Vector
Machines (SVMs). To evaluate the predictive power, each of the 500
resulting SVMs was applied to their corresponding test sets. Finally, genes
that were selected a significant number of times (P-value < 0.05, Supp.
Methods) as having optimal sensitivity on the test sets, i.e. a set achieving
the highest percentage of correctly identified positive samples, while not
allowing any false positives in the test set, were used as features for the
classifier. With the resulting 21 transcripts, we performed a four-fold cross-
validation. The full set of 64 samples and the classifier signature were used
to train a final SVM which was applied to all 161 cases, with a tumour
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regression grade ranging from 10 to 100%. Subsequently the classifier was
applied to independent datasets. A detailed description, as well as a
graphic visualisation of the feature selection process, is shown in Fig. S4
and Supplementary Methods.

Evaluating previously published signatures for predicting
response to CRT
Gene-expression signatures from five studies, published by us and others
[29, 38–41], that aimed to predict response to preoperative CRT, were
analysed. The gene lists were adapted to unify annotation. The predictive
performance of each signature was independently evaluated in our dataset
of 161 patients and in a second dataset [31]. Therefore, a SVM classifier
with a linear kernel was used via a leave-one-out cross-validation, as
performed in these studies. The resulting performance (in terms of AUC)
for each of these classifiers was established (Table 1). Additionally, a
heatmap and PCA were plotted for each signature (Fig. S5).

Validation of our SVM classifier in three independent rectal
cancer datasets
Independent dataset I: 14 patients, all treated within the CAO/ARO/AIO-94
or -04 study. These patients were not included in the initial analysis
because we were unable to obtain the percentage of TRG. However, as TRG
according to the classification of Dworak [30] was available, these patients
were used as an independent validation set. Samples with TRG= 4 were
considered pCR (n= 4).
Independent dataset II: Gene-expression and clinical data of 38 rectal

cancer patients published by Millino et al. [31]. Samples with TRG= 1 per
the classification of Mandard [42] were considered pCR (n= 8), patients
with TRG > 1 were considered incomplete responders (n= 30). Additional
patients published as a validation dataset by Millino et al. [31] were not
analysed, as there was no annotation of pCR.
Independent dataset III (TransValid A trial): Additional pretreatment

biopsies and clinical data were collected after 2012 and analysed
prospectively on a day-to-day basis (n= 25). Four patients had a pCR
(TRG= 100%), 20 were incomplete responders (TRG < 100%).
All gene-expression data were quantile-normalised using the mean

expression values of the initial gene-expression data (n= 161) as reference
distribution and the predictor was applied to the normalised gene-
expression patterns.

Building a second, not normalisation-dependent, score-
classifier based on the 21 genes
SVM classifiers require a data distribution similar to their training set and
are hence normalisation dependent. Normalisation introduces additional
bias and requires trained personnel. To demonstrate the usefulness of the
21 genes, a second classifier, that does not require any transformation of
the data, was trained. The second classifier is a score, based on the
expression levels of the 21 genes selected for the SVM classifier. First, 64
cases, comprising 32 positive (pCR, TRG= 100%) and 32 negative (poor
response, TRG < 45%) cases, were randomly divided into a training and test
set with two-fold cross-validation. In 100 iterations, a simulated annealing
procedure was used to train the score. The procedure starts with a random
assignment of genes to the numerator and/or denominator of the score. In
each step, all possible modifications of the score (additions or removals to
or from the numerator or denominator) are evaluated. The score is
adjusted in a way that maximises the sensitivity of the training (until
reaching a maxima). The 100 trained scores are then evaluated in the test
set. The score-classificator with maximal test sensitivity is selected:
P

i¼IAA1598;ASPM;TMPO;HOMER1;CXCL10;CENPL;BRCA1;FZD10;C19orf51;C20orf26;CASC5;CCNB1;FANCM;BLM Expi
P

i¼CGREF1;TNPO3;XPO1;TSNAX;CENPL;FANCM;FZD10;C19orf51;C20orf26;CCNB1;CSPP1;BLM Expi

Analog to the SVM-classifier, the final score-classificator is applied to all
161 cases (tumour regression grade ranging from 10 to 100%) and to three
independent datasets comprising additional 78 patients. Additionally the
score classifier was applied to the expression data of 28 patients from
Canto et al. [43] (GSE123390), the resulting ROC curve can be found in the
Supplementary Fig. SF7.

Ingenuity pathway analysis (IPA)
The 21 transcripts comprising the classifier were uploaded into the IPA®
software (Ingenuity, QIAGEN, Hilden, Germany), and a pathway, as well as a
network analysis, was performed. Only experimentally validated edges
were considered.

Testing the predictive value of the classifier in rectal cancer
patients
As a response to preoperative CRT is associated with a favourable
outcome, we speculated that the classifier should also identify patients
with a good clinical prognosis. Therefore, patient data from the “The
Cancer Genome Atlas” (TCGA) were analysed. We used the classification
scores obtained from applying the trained classifier to the gene-expression
data of the 21-transcript used to train the classifiers (applied to the mRNA
values, as is, using RNA_Seq_v2_expression_median). The classifier was
applied to the 161 patients in our rectal cancer dataset, and the resulting
classification scores were correlated with the TRG in percent of the patient
are plotted.
Then, cancer survival and gene-expression data from 468 colon and

rectal cancer patients were retrieved from the READ-TCGA [44], and the
classifier was applied to this data as well. The top and bottom 50% of the
resulting classification scores were used to plot the Kaplan–Meier survival
curve assessing overall survival (OS), and disease-free survival (DFS).

RESULTS
Patient characteristics
Patient characteristics for the test and training as well as the
independent validation sets are summarised in Table S1A-C and
Fig. S3. For neither dataset was there a significant correlation of
response with age, sex, tumour stage and addition of oxaliplatin to
CRT. There was also no significant (p= 0.346) distribution
difference between responders and nonresponders according to
their Consensus molecular subgroups (CMS) [45], see Table S1F.

Identification of a gene-expression signature that predicts
pathological complete response (pCR)
As the purpose of this study is to reliably identify pathological
complete response (pCR) without misclassifying incomplete
responders (false-positive rate= 0), we performed feature
selection aiming to maximise the performance of the classifier.
Thirty-two positive (pCR, TRG= 100%) and 32 negative (poor
response, TRG < 45%) cases were chosen for feature selection
and generation of the classifier. These 64 cases were randomly
divided into training and test sets. Differentially expressed genes
between pCR patients and incomplete responders were identi-
fied in the training set. A hill-climbing feature selection [37] was
applied, gradually adding genes/features, that improve the
sensitivity of the resulting classifier when applied to the test set.
The procedure of splitting 64 samples into two groups,
performing differential gene-expression analysis and generating
a classifier with maximal sensitivity when applied to the test set

Table 1. Comparison of the performance (in terms of AUC) of published gene signatures (GS) identifying pCR when applied to our primary patient
cohort (n= 161) and the one from Millino et al. [31] (n= 38).

Test set our signature GS1 GS2 GS3 GS4 GS5

161 samples 0.81 0.51 0.55 0.61 0.27 0.59

38 0.76 0.48 0.68 0.63 0.74 0.4

GS1 was published by Lopes-Ramos et al. [29]; GS2 by Ghadimi et al. [39]; GS3 by Empuko et al. [40]; GS4 by Watanabe et al. [38] and GS5 by Kim et al. [41].
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was repeated 500 times. A signature of 21 transcripts, that were
consistently selected (P-value < 0.05) to have maximal sensitivity
during the 500 repetitions, was chosen to generate a final
classifier (Table 2). A four-fold cross-validation procedure on 32
positive and 32 negative cases resulted in a sensitivity of 0.4 and
an AUC of 0.75 (Fig. 1a). Based on these 64 cases, an SVM
approach was applied to all 161 cases. Encouragingly, applying
our classifier to the entire dataset, it achieved a sensitivity of
0.31 and an AUC of 0.81 (Fig. 1b), indicating that even when
considering the full range of TRG (10–100%), our SVM-classifier
can correctly identify more than a third of complete responders
without error. The tradeoff between precision and recall is
visualised in Fig. 1c.

Previously published signatures are poor predictors of
response in independent datasets
A major issue impeding the emergence of robust prognostic or
diagnostic tools from molecular signatures is the poor reprodu-
cibility in independent datasets [46]. We therefore compared our
SVM-classifier with classifiers published earlier by us and others
[29, 38–41] on our dataset of 161 patients as well as on the 38
patients published by Millino et al. [31]. As shown in Table 1 and
visualised in Fig. S5, none of the published signatures was useful
for response prediction.

The 21-transcript classifier robustly identifies over 1/3 of
patients with pCR in independent datasets
To test if our SVM-classifier can identify patients with pCR in
independent datasets we applied it without any further training,
to three additional patient cohorts. The first one comprised 14
patients treated within the CAO/ARO/AIO-94 or 04 studies. The
classifier identified two out of four patients with pCR (Sensitivity=
0. 5, AUC= 0.7), while none of the patients was wrongly classified
as pCR (Fig. 2a, b). In a dataset of 38 patients (8 pCR), recently
published by Millino et al. [31], the classifier correctly identified
four patients to have pCR (Sensitivity= 0.5, AUC= 0.76), again not
misclassifying any patient incorrectly as pCR (Fig. 2c, d). Finally, the
classifier was applied to 25 prospectively collected patients and
could correctly identify two out of five patients with pCR
(Sensitivity= 0.4 AUC= 0.81), again not misclassifying any patient
as pCR when they were not (Fig. 2e, f). A graphic illustration of the
support vector values used for the SVM-classifier can be found in
Fig. S6 and the full support vector is provided in Table S2. The
classification was independent of demographic parameters
(Fig. S3).
To further demonstrate the clinical relevance of the 21 genes,

we developed a second, simple, score-based classifier using the 21
genes (Methods, Fig. 2g). This simple classifier does not require
normalisation yet allowed good identification of a considerable
percentage of the pCR patients, while not misclassifying any
patient incorrectly as pCR (Fig. 2h). It identified more than 30% of
all pCR samples in the independent datasets, without misclassify-
ing any patient incorrectly as pCR (Fig. 2i, j).

Expression of the 21-transcript score correlates with
treatment response and survival of colorectal cancer patients
pCR is associated with improved survival and a more favourable
oncological outcome [18, 47]. We therefore hypothesised that our
classifier would also be useful for disease prognostication. To this
end, we first used the classifier score based on the expression of
the 21 transcripts on the 161 rectal cancer patients. As expected,
we observed a significant (Spearman rho= 0.36, p= 5e-06)
correlation with tumour regression (Fig. 3a). We then applied
the classifier to 468 colon and rectal cancer patients from the
TCGA database to obtain classification scores and found that high
classification scores were significantly (p= 0.0007) associated with
longer overall survival (Fig. 3b) and a significantly (p= 0.0002)
longer disease-free survival (Fig. 3c).

Ingenuity pathway analysis (IPA) identifies enrichment of
radiation response pathway genes
To gain insight into the biological mechanisms of the 21
transcripts comprising the classifier an IPA®-pathway analysis
was performed. There was significant enrichment for genes
involved in DNA-damage control pathways; the “Role of BRCA1
in DNA Damage Response” (p= 0.002239) pathway, “DNA G2/M
DNA Damage Checkpoint regulation” (p= 0.012589) and “ATM
signaling” (p= 0.002239) were, after correction for multiple
testing, significantly over-represented (Table S3).

DISCUSSION
Sparing rectal cancer patients from severe side effects and
complications associated with radical surgery or even amputation
(removal of the anus, the rectum, partly the sigmoid colon and
permanent colostomy) is an attractive option for patients with a
cCR after preoperative CRT. Unfortunately, the number of local
relapses is still high, indicating shortcomings in the initial
assessment of cCR which requires patients to undergo a strictly
standardised follow-up, including frequent clinical, endoscopic
and image-based surveillance, in highly specialised centres [26].
Even though the majority of patients with tumour regrowth can
be salvaged with definite surgery after “watch and wait” [48], there
is an urgent clinical need for additional parameters to correctly
identify complete responders.
Recent clinical trials in other tumour entities demonstrated that

gene-expression profiling can be useful. Examples are the
MammaPrint [49, 50] signature for breast cancer, the OncoTy-
peDX® [51] and ColoPrint® for colorectal cancer [52, 53].
Exploring the utility of gene-expression profiling for the

prediction of response to preoperative CRT in rectal cancers has
been actively pursued. However, despite several studies reporting
promising results, none has translated into a clinical test to guide
individualised therapy [54, 55]. Two studies tried to identify
markers that predict pCR in rectal cancer. The first, published by
Kim et al. [41], using gene-expression profiling of pretreatment (n
= 31/11 pCR) biopsies to build a classifier. When applied to an
independent dataset (n= 15/4 pCR), the signature identified all
four pCR patients correctly, but also identified two incomplete
responders as pCR. The second study was performed by
Brettingham-Moore, analyzing 51 cases (7 pCR). However, they
could not identify reproducible predictive signatures [28].
Since previously published gene-expression signatures for

response prediction lacked reproducibility [29], we re-tested several
of these classifiers and could also not observe a reliable prediction
of response in our patient cohort (Table 1, Fig. S5). A possible
explanation for this is that feature selection was performed in
parallel to the training procedure, which increases the risk of
overfitting [56, 57]. Our model was initially designed to discriminate
between the extremes in response to CRT (pCR vs poor response),
but it remained robust when applied to the full range (0–100%) of
response (Fig. 1). It identifies over 1/3 of the patients with pCR in all
datasets examined and, most importantly, when considering a
possible clinical application, never classifies any patient with an
incomplete response as pCR. Unlike previous studies we aimed to
predict pCR with the highest accuracy, at the cost of sensitivity [58].
Allowing mistakes when training a classifier would increase the rate
of identifying patients with pCR; however, the clinical benefit of
such a predictor would be limited. Finally, unlike previous studies,
we show that using the same 21-transcript signature in indepen-
dent, comparable datasets previously published by others (Fig. 2c,
d), robustly classifies pCR, which is essential for clinical applicability.
Additionally, we show that our classifier predicts response in
routinely collected samples: for the TransValid trial we did not
collect a set of pretreatment biopsies and analysed them in one
batch. For every four patients, RNA was isolated and gene-
expression levels analysed. This method introduced additional bias,
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but resembles the infrastructure of routine day-to-day clinical
testing (Fig. 2e, f). To overcome these issues, the test microarray
datasets were quantile-normalised before applying the SVM
classifier, which introduces a limitation to the approach which is,
necessarily, dependent upon normalisation.
To demonstrate that the 21 gene signature is also useful

without any data transformation, we trained an additional
classifier. The second classification score was developed using
the same 21 genes, it does not require normalisation and can be
applied to any data as is (Fig. 2g–j). Both classifiers robustly
predicted pCR in all test datasets. Even when applied to additional
independent data, published by Canto et al. [43], missing values
for some of the 21 genes, the score classifier stayed robust
(Supplementary Fig. SF7) underscoring a potential clinical utility.
Investigating the cases that were not identified as pCR in our

data by the two classifiers, we did not identify genes that were up
or downregulated in these samples. We additionally did not
identify differences in stage or age between the correctly
classified and misclassified samples, but we did find that the
misclassified samples included more female patients (46%,
compared to 32% in the total set of patients). It is possible that
the performance for female patients is impaired because the
classifier was trained using predominantly male patient samples
(as a result of the increased frequency of rectal cancer in male
compare to female patients). Future studies are therefore
warranted to thoroughly investigate the need for sex-balanced
patient cohorts when training pCR classifiers.

To further strengthen the potency of the classifier we used it as a
predictor of prognosis. Knowing that pCR is associated with a good
prognosis determined by disease-free survival and overall survival
[18, 59], we speculated that patients with a high score based on the
classifier genes should also have a favourable outcome. As the
follow-up data for our 161 patients is relatively short, and to test our
classifier in another independent patient cohort, we applied it to
468 colon and rectal cancer patients from the TCGA database.
Tumour regression for these patients is not reported; we therefore
used overall survival as a surrogate for pCR. We found that the 50%
of patients with the highest “pCR score”, as determined by the
expression of the 21 genes, had an excellent outcome (Fig. 3). This
shows the clinical utility of the classifier in general, even though it
was trained for the specific task of pCR prediction.
From a mechanistic point of view, the classifier contains,

intuitively, genes associated with DNA-Damage control and repair,
underscoring the relevance of the signature. Most prominent are
BRCA1, BLM and FANCM, all associated with the same DNA-
damage response signaling pathway. CCBN1 (Cyclin B1) and other
genes are associated with cell cycle control, ATM signaling and
DNA-damage checkpoint regulation. Furthermore, the classifier
includes FZD10, a gene coding for one of the Frizzled receptors,
activating the canonical Wnt/beta catenin pathway. Recently, we
and others provided experimental proof that the Wnt-pathway
mediates treatment resistance in rectal cancer [60–62]. Other
genes are involved in response to cellular stress and other
pathways associated with cellular survival. We assume that genes
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in the classifier might be suitable targets for overcoming
treatment resistance.
Currently, watch and wait strategies are validated in clinical

trials such as the ACO/ARO/AIO-18.1 randomised trial

(NCT04246684). According to the International Watch & Wait
Database (IWWD), local regrowth is expected in up to 25% of
patients with clinical complete response (cCR) [63], indicating
that a non-surgical approach for all cCR patients diagnosed on
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the basis of radiological and clinical data is unsupportable.
Therefore, the identified signature and other molecular
markers associated with treatment response, e.g. TP53 muta-
tions [64], or analysis of the tumour secretome [43], should be
added to the decision making and validated in clinical trials
[22]. Our data and the complex situation of neoadjuvant
therapy do not support the reverse conclusion that non-pCR
patients should be spared from preoperative CRT. We are
currently exploring the conversion of the classifier to a
NanoString® platform, which has been shown to robustly
quantify gene-expression levels in routinely collected,
formalin-fixed paraffin-embedded tissue.

In summary, we describe a 21-transcript signature that robustly
predicts a pathological complete response in rectal cancer patients
based on gene-expression profiles of pretreatment biopsies.

DATA AVAILABILITY
Gene-expression data were deposited to Gene Expression Omnibus (GSE87211).
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