Supplementary Information for:

Structural insights into the mechanism of archaellar rotational switching

Florian Altegoer^{1,2#}, Tessa E. F. Quax^{3,4}, Paul Weiland¹, Phillip Nußbaum³, Pietro I. Giammarinaro¹, Megha Patro³, Zhengqun Li³, Dieter Oesterhelt⁵, Martin Grininger⁶, Sonja-Verena Albers³, Gert Bange^{1,7#}

 ¹ Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Karl-von-Frisch-Straße 14, 35043, Marburg, Germany
 ² current address: Heinrich-Heine University Düsseldorf, Institute of Microbiology, Universitätsstraße 1, 40225 Düsseldorf, Germany
 ³ Archaeal virus-host interactions, Faculty for Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
 ⁴ Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7
 9747 AG Groningen, The Netherlands
 ⁵ Max-Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried
 ⁶ Goethe University Frankfurt, Institute of Organic Chemistry and Chemical Biology and Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
 ⁷ Max-Planck Institute for terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany

[#]To whom correspondence should be addressed: altegoer@hhu.de, gert.bange@synmikro.uni-marburg.de

Supplementary information

	MjCheF	<i>Ph</i> CheF	MmCheY:CheF
Data collection	,		
Space group	$P2_{1}2_{1}2$	P2 ₁	P2 ₁
Cell dimensions			
a, b, c (Å)	169.058 86.144	50.62 188.6 58.29	56.29 70.87 59.82
	166.523		
α, β, γ (°)	90 90 90	90 112.904 90	90 91.603 90
Resolution (Å)	47.16 - 3.59	46.63 - 2.75	44.07 - 2.3 (2.382
. ,	(3.719 - 3.591)	(2.848 - 2.75)	- 2.3)
R _{merge}	0.2395 (1.739)	0.141 (2.366)	0.1551 (1.825)
// σľ	10.50 (1.54)	23.1 (1.04)	7.66 (0.88)
Completeness (%)	99.53 (97.16)	99.92 (99.84)	99.61 (99.52)
Redundancy	13.1 (13.9)	13.6 (13.3)	6.5 (5.9)
CC _{1/2}	0.998 (0.62)	0.999 (0.536)	0.997 (Ó.577)
Pofinomont			
Resolution (Å)		46 63 - 2 00	<i>11</i> 07 <u>-</u> 2 30
No reflections		22251 (2207)	20984 (2090)
$R \downarrow R_{c}$		22231 (2201)	20304 (2030) 24 9/30 7
No atoms		20.1720.4	24.0/00.1
Protein		5544	3281
Ligand/ion		0	10
Water		0	83
<i>B</i> -factors		0	
Protein		102.23	80.08
Ligand/ion		-	62.20
Water		-	69.42
Ramachandran (%)			
favored		96.15	96.62
allowed		3.85	3.38
outliers		0.00	0.00
R.m.s. deviations			
Bond lengths (Å)		0.006	0.005
Bond angles (°)		1.03	0.88

Table S1. Crystallographic data collection and refinement statistics

*Values in parentheses are for highest-resolution shell.

 Table S2.
 Plasmids used in this study.

Plasmid	Usage	Citation
pET24d	Protein overexpression	(Novagen)
pGAT2	Protein overexpression with N-terminal GST-tag	(Novagen)
pET24d-CheY_m. mari	Plasmid for expression of N-terminal his-tagged CheY protein of <i>M. maripaludis</i> S2 in <i>E. coli</i> . pET24d (Novagen®) backbone.	1
pGAT2-MmCheF	Plasmid for expression of GST-CheF of <i>M. maripaludis</i> S2 in <i>E. coli</i>	(this study)
рGAT2-MmCheFстD	Plasmid for expression of GST-CheF Δ N of <i>M.</i> maripaludis S2 in <i>E. coli</i>	(this study)
pGAT2- MmCheF _{NTD}	Plasmid for expression of GST-CheF∆CTD of <i>M.</i> maripaludis S2 in <i>E. coli</i>	(this study)
pGAT2- MmCheF $_{\Delta \alpha 8}$	Plasmid for expression of GST-CheF $\Delta \alpha 8$ of <i>M.</i> maripaludis S2 in <i>E. coli</i>	(this study)
pGAT2- MmCheF $_{\alpha 8}$	Plasmid for expression of GST-CheFα8 of <i>M. maripaludis</i> S2 in <i>E. coli</i>	(this study)
рЕТ24d- MmCheY:CheFстл	Plasmid for expression of CheY:CheF _{CTD} of <i>M.</i> maripaludis S2 in <i>E. coli</i>	(this study)
pET24d-MmCheF	Plasmid for expression of N-terminal his-tagged CheF protein of <i>M. maripaludis</i> in <i>E. coli</i> . pET24d (Novagen®) backbone.	(this study)
pET24d-TkCheF	Plasmid for expression of N-terminal his-tagged CheF protein of <i>T. kodakarensis</i> in <i>E. coli</i> . pET24d (Novagen®) backbone.	(this study)
pET24d-PhCheF	Plasmid for expression of N-terminal his-tagged CheF protein of <i>P. horikoshii</i> in <i>E. coli</i> . pET24d (Novagen®) backbone.	(this study)
pTA1228	Protein expression plasmid for <i>H.volcanii</i> . Amp resistance and pyrE2 marker. Tryptophan inducible.	2
pIDJL-40	Protein expression plasmid to use in <i>H.volcanii</i> for C- terminal GFP tagging based on pTA1228.	3
pSVA3922	Protein expression plasmid to use in <i>H.volcanii</i> for N-terminal GFP tagging based on pTA1228.	4
pSVA5078	pIDJL-40 with <i>H. volcanii</i> cheF1. Epression plasmid to express CheF-GFP in H.vol	(this study)
pSVA5079	pSVA3922 with <i>H. volcanii</i> cheF1. Expression plasmid to express GFP-CheF1 under trp promoter.	4
pSVA5657	Based on pSVA5079. Expression plasmid to express an N-terminal-GFP fused CheF1 truncation (truncated 83 aa at the C-terminus) in <i>H.volcanii</i> GFP-CheF1 Δ C (Δ 83aa)	(this study)
pSVA5658	Based on pSVA5079. Expression plasmid to express an N-terminal-GFP fused CheF1 truncation (truncated 14 aa at the C-terminus) in <i>H.volcanii</i> GFP-CheF1 $\Delta\alpha$ 8 (Δ 14aa)	(this study)

Table S3. Primers used in this study.

Number	Name	Sequence	Description	Reference
7233	CheF1_Ndel_f w	GGAATTCCATATGAAA CCCGGTGAGCAAAAG CTCGGGG	forward primer for amplification of CheF1 of H.volcanii for cloning in pIDJL-40 to create pSVA5078	(this study)
7234	CheF1_BamHI -STOP-rev	CGGGATCCCTGCTCG TTGATGGCGTCCG	reverse primer for amplification of CheF1 from H.volcanii for cloning in pIDJL_40 to create pSVA5078	(this study)
11342	HvcheF1ΔC (Δ83aa)_Fw	GCCGTCAGTTTCCTC TAGGGATCCACTAGT TCTAGAGCGG	forward primer to create a 83 aa C-terminal truncation of CheF of H.volcanii to clone into pSVA5079 to create pSVA5657	(this study)
11343	HvcheF1ΔC (Δ83aa)_Rev	ACTAGTGGATCCCTA GAGGAAACTGACGGC GCGGTCGGAG	reverse primer to create a 83 aa C-terminal truncation of CheF of H.volcanii to clone into pSVA5079 to create pSVA5657	(this study)
11344	HvcheF1Δα8 (Δ14aa)_Fw	GAGGTGCAACTCAAC TAGGGATCCACTAGT TCTAGAGCGG	forward primer to create a 14 aa C-terminal truncation of CheF of H.volcanii to clone into pSVA5079 to create pSVA5658	(this study)
521	MjCheF-Bsal- F	AGGAGGGTCTCccatgg GCATAGACAAATCCT CAGAA	Forward primer to create a full-length MjCheF construct	(this study)
522	MjCheF-Bsal- R	AGGAGGGTCTCctcgag CTATTCCACCGTTTC	Reverse primer to create a full-length MjCheF construct	(this study)
523	TkCheF-Bsal- F	AGGAGGGTCTCccatgg GCACCATTGCACAGG TT	Forward primer to create a full-lengt TkCheF construct	(this study)
524	TkCheF-Bsal- R	AGGAGGGTCTCctcgag TCACATCACGCCCAT	Reverse primer to create a full-length TkCheF construct	(this study)
530	MmCheF- dN245-Bsal-F	AGGAGGGTCTCCCAT GGGCACCATTAAAAG TTTACTTCC	Foward primer to create a MmCheF _{CTD} construct	(this study)
527	MmCheF-dC- Bsal-R	AGGAGGGTCTCCTCG AGTTAGTTGTGATATT TTGTTAATTT	Reverse primer to create a MmCheF _{NTD} construct	(this study)
532	MmCheF- Bsal-F	AGGAGGGTCTCCCAT GGGCAGTGCCAAATC TAAA	Forward primer to create MmCheF constructs	(this study)
533	MmCheF- Bsal-R	AGGAGGGTCTCCTCG AGTTAGAAATTTGTAA TAATAAAGTTTGTA	Reverse primer to create MmCheF constructs	(this study)
535	MmCheF-a8-F	AGGAGGGTCTCCCAT GGGCAGCGGCGAAAA AGGAAGAGCAGTTAC AAACTTTATTATTACA AATTTCTAACTCGAGG AGACC	Forward primer to create a MmCheF construct of helix α8	(this study)
536	MmCheF-a8-R	AGGAGGGTCTCCTCG AGTTAGAAATTTGTAA TAATAAAGTTTGTAAC TGCTCTTCCTTTTTCG	Reverse primer to create a MmCheF construct of helix α8	(this study)

		CCGCTGCCCATGGGA GACC		
603	MmCheY2- Bsal-6H-F	AGGAGGGTCTCccatgg GCCATCATCACCATC ACCACAGTATTGTAAA AACAATGATTGTAGAT GAT	Forward primer to create the CheY fragment for the CheY:Che F_{CTD} fusion construct	(this study)
604	MmCheY2- CheF-Bsal-R	AGGAGGGTCTCCGGA ACCAGACCAGCAGAC GGACCCTGGAACAGA ACGGGAAACAATTTG TTAAACTG	Reverse primer to create the CheY fragment for the CheY:CheF _{CTD} fusion construct	(this study)
605	MmCheF- CheY-Bsal-F	AGGAGGGTCTCGTTC CGCGTGGTTCTGGTG GTATCGAAGGTGGAT CCATGGGCACCATT	Forward primer to create the CheF fragment for the CheY:CheF _{CTD} fusion construct	(this study)
606	MmCheF- Bsal-R	AGGAGGGTCTCctcgag TTAGAAATTTGTAATA ATAAAGTTTGTAAC	Reverse primer to create the CheF fragment for the CheY:CheF _{CTD} fusion construct	(this study)
619	MmCheF-d8- Bsal-R	AGGAGGGTCTCCTCG AGTTATGTTAAATCTG TTTCTTTCCTAATTCT	Reverse primer to create a MmCheF deletion construct devoid of helix $\alpha 8$	(this study)

 Table S4. Strains used in this study.

Name	Species	Background	Genotype	Used Plasmid	Reference
H26	H. volcanii		∆pyrE2		5
HTQ403	H. volcanii	H26	ΔpyrE2ΔcheF1	pSVA5058	1
			∆pyrE2∆CheF1::pT		
HTQ96	H. volcanii	HTQ403	A1228	pTA1228	1
			∆pyrE2∆cheF1::Ch		
HTQ355	H. volcanii	HTQ403	eF1-GFP	pSVA5078	(this study)
			∆pyrE2∆cheF1::GF		
HTQ356	H. volcanii	HTQ403	P-CheF1	pSVA5079	4
			∆pyrE2∆cheF1::GF		
HTQ577	H. volcanii	HTQ403	P-cheF1_∆C	pSVA5657	(this study)

Supplementary Figure 1. a. Mass photometry of CheF from *Methanococcus maripaludis* (Mm, Left) and *Thermococcus kodakarensis* (Tk, right) showing a single species of 88 and 82 kDa, respectively. **b.** Amino acid sequence alignment of CheF's from different archaeal species. Residues are colored according to the Clustal X coloring scheme that depends on the residue type and conservation pattern in the respective column. The actual secondary structure of PhCheF is plotted onto the alignment. The alignment has been generated in Chimera ⁶. Source data are provided as a Source Data file.

Supplementary Figure 2. a. Interaction interface between the two CheF monomers within the CheF dimer. Salt bridges are indicated with yellow dashed lines. **b.** Structural superposition between the PH domain of CheF and a PH domain of ARHGAP9 (PDB-Code: 2P0F).

Supplementary Figure 3. a. Schematic drawing of the CheF constructs generated for GST-interaction assays. **b.** Mass photometry of GST-CheF_{CTD} from *Methanococcus maripaludis* shows a dimeric species of 76 kDa, a tetrameric species of 152 kDa and small fractions of higher oligomeric states. **c.** Isothermal titration calorimetry (ITC) of *Mm*CheY and GST-*Mm*CheF_{ΔNTD} in the absence of BeF₂ and NaF. GST-*Mm*CheF_{ΔNTD} was added to the sample cell and titrated with *Mm*CheY. **d.** Fluorescent image of $\Delta cheF$ cells expressing GFP- CheF_{Δα8}. The scale bar represents 5 µm. **e.** Motility rings of different *H. volcanii* strains on semi-solid

agar plates made of YPC medium. Quantification of the diameter of the motility rings such as shown in a. The experiment was performed with at least 3 technical and 2 biological replicates. WT, *H. volcanii* H26; $\Delta cheF$, *H. volcanii* H26 deleted for CheF; pTA1228, empty plasmid; cheF_{Δα8}, encoding CheF protein with 8 aa C-terminal truncation. ns, not significant (p=0.251). ****P<0.0001 (p= 0.000000000000003736) as calculated with unpaired two-sided T-test. Data are represented as mean values +/- standard deviation. n= 13 experiments Source data are provided as a Source Data file.

Supplementary Figure 4. Anti-GFP Western-Blots. To confirm the integrity of the GFP-CheF phusion proteins, the expressed constructs were blotted and detected via antibodies against the GFP-tag. Left: loading control of the wildtype harboring an empty expression plasmid, Δ cheF strain expressing either GFP-CheF (59.2 kDA), GFP-CheF $_{\Delta CTD}$ (49.2 kDA) or GFP-CheF $_{\Delta \alpha 8}$ (57.7 kDA). Right: Corresponding Western-Blot. The expressed constructs run at around the same height and are indicated by an arrow. The experiment has been repeated three times independently with similar results. Source data are provided as a Source Data file.

Supplementary Figure 5. a. Multi-angle light scattering (MALS) coupled SEC analysis of MmCheY:CheF_{CTD} in the absence (left) and presence (right) of BeF₂ and NaF. The red curve shows the molecular weight as determined by MALS and the black chromatogram the absorbance at 280 nm. The masses above the chromatogram correspond to the components of the gel filtration calibration kit: Carbonic anhydrase (29 kDa), Ovalbumin (44 kDa), Conalbumin (75 kDa) and Aldolase (158 kDa). Source data are provided as a Source Data file. **b.** Detailed view on the CheY-CheF interface. CheY is colored in orange and CheF molecules are shown in blue and dark blue, respectively. Residues involved in the interaction are displayed as sticks. Electrostatic interactions are depicted as dashed yellow lines.

Supplementary Figure 6. Electron density of BeF³ and magnesium coordination. a. 2*Fobs-Fcalc* map contoured at 1σ showing the coordinating residues at CheY, waters, magnesium and BeF³. **b.** *Fobs-Fcalc* map contoured at 3σ prior to refinement of waters, magnesium and BeF³.

Supplementary References

- 1. Quax, T. E. F. *et al.* Structure and function of the archaeal response regulator CheY. *Proc. Natl. Acad. Sci. U. S. A.* **115**, E1259–E1268 (2018).
- 2. Brendel, J. *et al.* A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii. *J. Biol. Chem.* **289**, 7164–7177 (2014).
- 3. Duggin, I. G. *et al.* CetZ tubulin-like proteins control archaeal cell shape. *Nature* **519**, 362–365 (2015).
- 4. Li, Z. et al. Positioning of the motility machinery in halophilic archaea. MBio 10, (2019).
- 5. Allers, T., Ngo, H. P., Mevarech, M. & Lloyd, R. G. Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. *Appl Env. Microbiol* **70**, 943–953 (2004).
- 6. Pettersen, E. F. *et al.* UCSF Chimera?A visualization system for exploratory research and analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).